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Abstract

Understanding the travel routine of the individuals is important in many domains.
In transport research understanding daily travel routine is crucial for modeling the
travel behavior of the individuals. Such models help predict the travel demand and
develop strategies for managing that demand. Understanding travel patterns of the
individuals is also important to develop effective incentive mechanisms. Location-
based services like personal digital assistants and journey planners use historical travel
routine to build preferences of the user and make useful recommendations. In health
sciences logging the routine travel behavior is important to monitor health of the
patients and make recommendations wherever necessary. Several fitness tracking
applications available on smartphones utilize the travel activity diary to evaluate the
fitness of the individuals and make recommendations. The proliferation of sensing-
enabled smartphone devices engendered the development of tools for logging travel
routine of individuals. The research in this thesis uses the sensor data collected
from smartphone devices to develop a travel activity inference algorithm. Presently,
the research into travel activity inference has been focused on developing supervised
learning algorithms. These algorithms require a large amount of labeled data for
training algorithms that generalize well. Generalization in personalized travel activity
inference is a challenging problem due to the concept drift. The problem of concept
drift is magnified as the more personalized information is introduced in the input
variables. Once the users start using the applications they are constantly generating
new data. Expecting the users to label all the data generated by them is impractical.
Instead, it would be useful to identify only those examples which would help most
improve the algorithm and have the user label such instance. This reduces the burden
on the user and does not discourage them from participating in the data collection
process. In other words, we need a model that is identifies concept drift in data and
adapts accordingly.

There has been advances in the deep learning research in last few years. The deep
learning algorithms provide a framework for learning feature representation from raw
data. The convolutional neural networks have been particularly effective in learning
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feature representations on many datasets. These models have achieved significant
improvement on many complex problems over other machine learning approaches.
For the sequential classification problems like the travel activity inference, the recur-
rent neural network like long short term memory networks are particularly suitable.
This thesis proposes to use the deep learning algorithms for travel activity inference.
To develop an end-to-end deep learning algorithm that learns feature representations
from raw sensor data and incorporates different sensors with differing frequencies.
The research proposes using a combination of convolutional neural network for fea-
ture representation learning in both time and frequency domain and long short term
memory network for sequential classification. In practical situations, the users of
the smartphones cannot be asked to carry their smartphones in a fixed position ev-
ery time. The proposed algorithm for travel activity inference need to be robust to
changes in orientation of the smartphones.

We compared the performance of the proposed deep learning algorithm against
a baseline model based on the current supervised machine learning approaches. The
deep learning algorithm achieved an overall average accuracy of 95.98% compared to
the baseline method which achieved an overall average accuracy of 89%. We also show
that the proposed deep learning algorithm is robust to changes in the orientation of
the smartphone.

Thesis Supervisor: Moshe Ben-Akiva
Title: Edmund K Turner Professor of Civil and Environmental Engineering

Thesis Supervisor: Fang Zhao
Title: Principal Research Scientist
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Chapter 1

Introduction

Understanding daily human travel routine is central to many research domains like

transportation sciences, health sciences, urban planning, and human geography. So

there has been a lot of research interest into developing tools for recording daily

travel routines of individuals. Traditionally, the researchers in these domain areas

have employed various survey tools for collecting daily travel routines of individuals.

Proliferation of smartphone devices in the last decade present with an opportunity

to develop novel tools for the collecting data on individual's daily travel routine. The

realtime two-way communication enabled by internet connectivity in smartphones al-

lows for expanding these daily travel routine logging tools into an interactive platform.

Interactivity allows for development and testing of intervention measures, develop-

ment of several services that enrich the experience of the travelers, and development

of tools to educate the participants about several travel/health issues. Furthermore,

nowadays smartphones have sensing and positioning capabilities. These capabilities

can be leveraged into automating the travel activity pattern reconstruction. This

thesis focuses on research into algorithms for travel activity inference using sensor

data collected from smartphones.
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1.1 Background

Last decade has seen a proliferation of pervasive computing devices like smartphones,

wearable devices, and smart tablets. Smartphones in particular are the most widely

used personal computing devices. [4] reported a penetration rate of 43.52% in 50

countries included in their market survey. The smartphone penetration rate was as

high as 148.8% in Singapore [3]. Additionally, users carry smartphones everywhere

they travel and use them as primary source of interaction over the internet. Also,

the computing and battery capacities on smartphones have increased significantly

since the first widely adopted smartphone was launched by Apple in 2007. The

smartphones embedded with sensing devices and their ubiquitous nature make them

ideal devices for developing applications for continuous data collection to record the

travel activities of the users. Travel activity pattern generation has application in

many different domains which motivates the research subject of this thesis.

1.1.1 Transportation Modeling

Estimating travel demand is an important aspect of transportation planning and

policy-making. Recently, there has been growing interest in the development of the

Activity-based models. Travel demand models like the activity-based models rely on

household travel surveys for estimation of the model parameters. The travel activity

diaries maintained in the household travel surveys capture different aspects of travel

like the origin and destination of the travel, departure time at the origin, the arrival

time at the destination, the route taken between the origin and the destination and

the mode of travel. Activity-based models assume that the need to perform activities

at different locations induce a demand for travel [15]. The travel activity diary, there-

fore, also captures the purpose of travel, i.e., the type of activity/ activities performed

at the origin and the destination. A user may perform multiple activities at a given

activity location, therefore, we categorize the activity types into a primary activity

and several secondary activities. In the past, modelers employed various approaches

to data collection, like the paper-based travel activity diaries, telephone-based in-
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terviews, personal interviews or web-based surveys. Several studies of the efficacy

of these data collection methods reported several shortcomings like underreporting

of trips, rounding of the reported travel durations and reduced rate of participation

on account of increased burden on the users to keep record of the travel activities

113, 81]. Furthermore, it is costly to conduct the travel surveys using these meth-

ods, as these methods are both time and labor intensive. The costs are compounded

when conducting travel surveys with longer observation periods. [53] indicated an im-

proved understanding of the urban travel behavior given the richness of information

in the long observation surveys. The use of new technologies for data collection like

the travel surveys based on the Global Positioning System (GPS) has enhanced the

quality of the survey data and augmented the ability to conduct surveys for longer

observation periods. There is need to improve the methods for automated inference

of the travel activity diary from the GPS data to fully realize the potential of the

smartphone based travel surveys.

*Oti,. e 1010PM #f40% E)

Getting directions to Work... r

C 27*

6th St-
To Workc

eM SFrom My Location

7 min
CaMbrdge St 1.4 m! Cardinal Medeiros Ave

Fastest route

10:20 7 1.4 End g
Drive WAk Tranmit Ride

Figure 1-1: The figure shows screen shot of a personal digital assistant application
called Siri developed by Apple. The users interact with the application to get direc-
tions to work (left). The figure in the middle shows the navigation interface. The
figure on the right shows an example of journey planner.
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1.1.2 Journey Planning

Journey planners are closely integrated with personal digital assistant applications

like Google Assistance and Apple's Siri. A journey planner allows an user to plan

a trip between an origin and a destination. In the earlier journey planning systems,

the public transit operators digitized the transit timetables and routes and made

them available to the travel agents. The travel agents assisted users in planning their

journeys and booking the itinerary. The next generation of journey planners utilized

the Internet to provide access directly to the end user to their transit information

databases. The growing penetration of the smartphones connected to the Internet

allow journey planning software to be accessed users anywhere, anytime. Advances

in the Geographical Information Systems and their adoption by the applications like

Google Maps, Apple Maps, Open Street Maps provided the infrastructure for build-

ing real-time journey planning smartphone applications. The later advancements in

the journey planning applications incorporate real-time information gleaned from dif-

ferent sources allowing the users of the applications to make intelligent choices for

their journey [39]. Different sources of information are incorporated into the Intelli-

gent Journey planning applications include current traffic information shared by large

number users through crowd-sourcing as is used by the Waze application to suggest

an optimal route with least travel time for car drivers. Some other sources of informa-

tion include use of the current traffic information sourced from sensing infrastructure

like the loop counters, traffic cameras, etc. The most recent developments in journey

planners have seen them closely integrated with the personal digital assistants to not

only provide optimal journey plans but to make recommendations based on personal

histories of the users. When enabled by the user, the assistance applications passively

collect sensor data from the personal devices of the user. The personal assistance ap-

plications use the historical travel-activity patterns inferred from this sensor data to

make the recommendations for places that might be of interest to the user [47]. The

personal assistance applications also use the travel histories of users to recommend

optimal travel modes and optimal navigation routes while taking into account the
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personal preferences of the users [39, 40]. Improvement in the travel-activity pat-

tern inference algorithms will greatly enrich the ability of the digital assistants to

provide personalized experience to the users. From the perspective of transportation

researchers, the journey planning applications are ideal platforms for real-time de-

mand management. The real-time demand management systems can encourage users

to accept underutilized transportation channels to achieve overall system efficiency.

[10] proposed one such application called TRIPOD a sustainable travel incentives

system with Prediction, Optimization and Personalization. These systems present

personalized journey plans based on past user behavior. Depending on the efficiency

gains in the system a reward is associated with each travel option. If the user accepts

the travel option and executes it then the user is awarded the associated incentive.

The travel activity inference algorithms can validate whether the user executes the

chosen option.

.fI AT&T 9 2:41 PM 48%0 ) P1 AT&T 9 9.16 PM * 4IUD IIAT&T 9 10:02PM iE
Done + o 0 +

Have a nice Have a nice evening
evening, ajinkya Partly Cloudy 27-C

- Partly Cloudy27-C

1 Thr*ael time

SLandmark's Kard I Or

Get more done with your Assistant EN

Inst teoof of Man
- AMi check here for Ino about your day, like Technoalogy

your calendar, reminders, and mre ston

GOT IT 6 min to ITS Lab
Svia Memorial Dr

Na daa"

5 NVAvgate home (Jset a tmr From yaa calandor SWa

Download n. w COMING UP FOR YOU Phke a e a Slow

Figure 1-2: The figure shows screenshots of Google's personal digital assistance app
called Google Assistant. The figure on is an example of travel recommendation based
on the historic travel preferences of the user. The figure in the middle is an example
of a suggestion for navigation the user to home. The figure on right shows a route
suggested by the application based on user's preferred travel route.
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1.1.3 Fitness Tracking

Travel pattern inference also plays an important role in the fitness tracking applica-

tions. The pervasiveness of the smartphones made the fitness applications ubiquitous.

[8] summarized the health applications available in the application stores and cate-

gorized them based on the level of intervention. The fitness tracking applications

like Google Fit and Apple's Health track users' travel activities like walking, biking,

running, and step counts. These applications summarize the travel activity patterns

and present them in an activity diary as shown in figure 1-3.a and b. The health or

fitness tracking applications use the historical travel activity pattern to instruct the

users on modifying their activity patterns to improve their fitness as shown in figure

1-3 c. An improved travel activity inference algorithm has great implication for the

fitness tracking applications.

.M AT&T V SUPM * 51%il), ..dIAT&T I 92= PM * 51%6) m.d AT&T 9 SSSPM 6 1W)

< July < Activity Steps + <Health Data Activity
. M T W T S D W Ws.. Move mor. Ge
22 23 24 25 2s 28 soel r Oie .

FrIfdv, Jul 27, 2018 2018

Steps 
p

Fights Climbed

OAILY AVG 3,442 stop$
2018 Steps 8
Add to Favot king + Running

Show All Data

T""a Mafthat 0.1. rS.- Md" 0l Tdny Nhelhat 00. r S_ M""dIcD T-dwy moon DeA S-uce M".dI 10

Figure 1-3: The figures show screenshots of health tracking application developed by
Apple. The screenshot on left is an example of health activity diary. The screen shot
in the middle shows the summarizes the travel activities performed by the user over
the week. The screenshot on the right shows an example of recommendation to the
user based on the travel activity pattern observed over the week.

Travel activity pattern inference is central to the applications mentioned above,

but the different applications concern with different levels of the travel activities.

The smartphone-based travel surveys record travel activities like walk, bicycle, car,
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bus, train, motorcycle, airplane [92]. Fitness tracking applications are interested

in outdoor travel activities like walking, cycling, and running. Some other fitness

tracking applications are also interested in the indoor physical activities like sitting,

walking, sleeping, exercising and climbing the stairs. This thesis focuses on outdoor

travel activities like walking, cycling, driving a car, riding a motorcycle, taking a bus

or train. This research aims to develop travel activity inference algorithms that are

extensible to other travel activities in different applications.

1.2 Problem definition

The research in this thesis focuses on the following problems:

" The sensor data recorded from Inertial Measurement Unit (IMU), barometer,

WiFi routers, Global System of Communication (GSM) and positional data

from Global Positioning Systems (GPS) contains rich information about indi-

vidual's travel routines. The figure 1-4 shows an example of travel activity

pattern recorded by a smartphone based travel survey called Future Mobility

Sensing (FMS) [55]. The top figure in 1-4 shows the raw data GPS data collected

from smartphone. The challenge of the travel activity inference algorithms is

to infer the travel activity pattern as depicted in the bottom figures in 1-4.

The primary goal of the research is to develop a machine learning approach

for inferring the travel activity information from the sensor data collected from

smartphones.

" As was noted in [53], the variation in intra user travel routines explains the

large amount of variation in the population travel patterns. The sudden change

in the travel behavior of the individual from taking a bus to driving a car on the

same route result in a concept-drift problem. A large amount of research effort

in travel activity inference has been focused on developing supervised machine

learning algorithms. The supervised machine learning algorithms require large

amount of high quality ground truth data for training. It is prohibitive to
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obtain large amount of high quality labeled data due high costs and user burden

in collecting the data. On the other hand, a large amount of data can be

accumulated from users of passive smartphone applications. There is a need

for research in development of online adaptive machine learning algorithms for

travel activity inference which not only benefit from large data accumulated

from users but are also robust to concept-drift problems. For the individuals

that participate in long term data collection efforts the algorithm should adapt

to the personal preferences of these individuals. In order to develop adaptable

and personalized travel activity inference algorithms for practical applications

there is a need to explore online machine learning algorithms that learns from

individual's historical data.

* The sensor data collected from smartphones is passed through many steps of

processing before generating the travel activity diary. Each of these steps relate

to different domains. Developing an end-to-end algorithm for sensor fusion

and travel activity inference will reduce the complexity of these systems. An

empirical comparison should be done between classical approaches for travel

activity inference algorithm and the new end-to-end solutions.

* Another concept-drift problem concerns with the uncertainty related to the sce-

narios in which the algorithms may have to operate on classes unknown to it

during training. For example, different regions of the globe have different forms

of transportation. For example, the Funicular railways in Italy operate in a very

different way from the metro lines. The features identified and the algorithms

developed with metro systems in mind may not fare well for individuals trav-

eling on Funicular railways. An algorithm that can quickly adapt to forms of

transportation unknown during training will greatly reduce research time and

costs. It will also improve the user experience.
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1.3 Thesis Structure

The thesis is structured in six chapters including this chapter. The second chapter

gives brief literature survey on the travel activity inference algorithms. The chapter

starts with the review of different sources of data used in travel activity inference.

The next section reviews segmentation algorithms followed by a review of machine

learning approaches for travel activity inference. The review of machine learning ap-

proaches is categorized into supervised and unsupervised approaches. Third chapter

presents the proposed method for travel activity inference. In first section, a brief

introduction to the sources of data used in the project is presented. Next section

presents the deep learning architecture and backend framework developed in this

project for automated travel activity generation. Fourth chapter presents an online

learning algorithm for travel activity inference using classical machine learning ap-

proach. This method serves as a baseline model for empirical comparison of the deep

learning algorithm with classical machine learning algorithm. Fifth chapter discusses

the experiments performed for calibrating the training process of the algorithms, data

collection process, and finally performs empirical comparison on test data set. The

final chapter presents the conclusions and summarizes the research project. It also

discusses future work and limitations of current study.
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Figure 1-4: The figures illustrates raw data transformation to the activity diary. The
figure on top show the raw GPS points on the map. The figure on the bottom left
show the inferred travel activity pattern from the raw data. The user walk from the
home location to study place and then back to home. The figure on bottom right show
the same information in the form of an interactive activity diary. The screenshots of
the activity diary in the bottom two figures were taken from the web based activity
diary of the Future Mobility Sensing project. [92]
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Chapter 2

Literature Review

Travel activity pattern is central to many location based applications, some of which

were discussed in first chapter. In this chapter, we review the literature of travel

activity inference. Since the initial work on travel activity inference algorithms in

the 90s, a vast amount research literature on travel activity inference has emerged.

Researchers have developed different algorithms for inferring travel activities from

different sources of data. Earlier travel activity inference algorithms used in the

automated household travel surveys performed inference on GPS data collected from

the GPS logging devices [22, 46, 62, 68, 69, 78, 95]. The GPS devices were mostly

used to log the driving trips by connecting the devices to the vehicles [61, 70, 821. For

the completeness of the activity diary the later surveys [251 required participants to

carry the GPS devices with them for every trip. The pervasiveness of the smartphones

led to development of the travel activity inference algorithms for data collected from

smartphones. The travel activity inference algorithms developed for smartphones

either rely on GPS only [11, 51,, 9, 37, 75, 831, accelerometer only [27, 79, 36, 88,

77, 56], accelerometer + GPS or accelerometer + GPS + WiFi [59, 57, 64, 921. As

the smartphones are now equipped with additional IMU sensors like gyroscope and

magnetometer as well as barometer, the travel activity inference algorithms rely on

these data sources for improved inference accuracy [80, 26, 72, 6, 71, 21, 60, 18]. Some

travel activity inference algorithms rely on external data sources like Geographical

Information Systems (GIS) data from Open Street Maps (OSM) [421 or Google Transit
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Feed System (GTFS) [32] for the inference of travel activities like bus or train [76,

30, 68, 92].

In this thesis, we propose a travel activity detection algorithm that utilizes raw

sensor data collected from smartphones like GPS, accelerometer, magnetometer, gy-

roscope, Wi-Fi, GSM and barometer.

2.1 Travel Activity Inference Algorithms

The classical machine learning approaches developed for travel activity inference al-

gorithms rely on hand crafted features. The features are extracted from raw stream

of data which needs to be segmented. The choice of the segmentation methods and

features have significant impact on the quality of the inferences.

2.1.1 Segmentation

Depending on the domain of application, the travel activity pattern inference involves

segmenting the input stream of data into a sequence of travel activities and stop ac-

tivities. [57] categorized the application domains based whether they rely on real

time travel inference. In applications like travel surveys, journey planners or health

applications, where the focus is on generating entire travel activity diary rather than

real-time identification of the mode or stop, the accuracy of the travel activity pat-

tern inference depends on the methods of segmenting input data [491. The machine

learning algorithms for travel activity inference uses statistical pattern recognition on

feature representations of the input data. The feature representations are calculated

on segmented input data stream. Majority of the machine learning algorithms devel-

oped for travel activity detection use fixed-size, overlapping or non-overlapping sliding

windows to segment the input data stream. [63] identified a 10 minute window size

such that it is shorter than the average trip duration of 16.5 minutes. If the segments

do not represent homogeneous modes of transportation then the feature representa-

tions are noisy resulting in poor quality of inferences. To mitigate this issue, several

different approaches for segmentation have been proposed in literature.
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[91] proposed using heading change in the GPS traces for segmentation of the input

data. According to [91], a large magnitude of change in heading values within small

distance is an indication of change in the mode of travel. Based on this observation,

they proposed a set of heuristics for identifying the change of travel activity from GPS

traces. Whenever the heading change is above a predefined threshold and within a

small change in position the input stream of data is broken into segments. This

heuristics for change mode detection relies on collecting high frequency GPS data to

calculate the heading change in small change mode segments.

Typically, the GPS speed readings are accurate up to 0.045 m/s, but this accuracy

is highly dependent on external conditions like obstructed sky view, mountains, urban

canyons, etc. Also, collecting high frequency GPS data is expensive in terms of

battery usage [59]. To overcome this challenge, [85] used only the accelerometer

signal to perform change mode detection. [851 posited that using heading change

heuristic for change mode detection is not suitable due to its lack of generality for

application in different countries with varying degrees of road network complexity

and travel behaviors. They proposed using a Wavelet Transform Modulus Maximum

(WTMM) algorithm for detecting travel activity changes in accelerometer signals.

The accelerometer signals go through a sudden change in measurements when users

change travel activity due to the requirement of physical movement between two

modes of travel. The WTMM algorithm captures these changes in the amplitude of

the accelerometer signal in wavelet domain. The input data is segmented at points

of local maximum in the modulus of coefficients in wavelet domain. The algorithm

achieved an absolute detection error of travel activity change times to be within one

minute.

[85] utilized only the accelerometer signal for segmenting the input data into travel

segments. In the domains like fitness applications, the algorithm will be useful to iden-

tify every change in the user activity. For domains like travel surveys and journey

planners, where the the inferences are made on high level travel activities, the segmen-

tation algorithm might end creating false positives. The input stream of data relating

to the users walking in a shopping mall, jogging in park or walking indoors will be
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miss-classified into travel segments. [49, 92] instead developed a rule based algorithm

to identify the change mode stops based on a combination of both accelerometer and

GPS for change mode detection. The heuristics proposed were based on the obser-

vation that the change mode occurs when either the user is spatially within a same

region for some time or that no physical movement is identified in the accelerometer

signal. [491 uses speed signal from the preprocessed GPS data to identify whether

the user is within same geo-spatial region. They also use accelerometer amplitude

to identify whether the user is walking. If anyone of the two conditions are satisfied

then a new segment is created. [92] uses a heuristic based on the speed of GPS and

distance from previous recorded location to identify whether the user is within the

same spatial region. The heuristic also compares the observed Wi-Fi and cell GSM

signatures to identify periods when the user has not moved out of a geo-spatial region.

Additionally, they also check the standard deviation of the norm of the three axes

acceleration measurements to identify whether the user is walking. Whenever change

in the above statistics is detected a new segment is created. [92] refers to stationary

segments as candidate stops.

The segments identified by the segmentation process are used to calculate the

feature representations of the input data so as to develop machine learning approaches

to travel activity inference problem.

2.1.2 Machine Learning Approaches to travel activity Infer-

ence

We now discuss several machine learning approaches developed by the researchers

for travel activity inference algorithms. We have categorized the review of machine

learning approaches into supervised, unsupervised and online learning algorithms for

travel activity inference.
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2.1.3 Supervised Machine Learning Algorithms

A large portion of research effort has been focused on developing supervised machine

learning algorithms for travel activity inference [63, 85, 91, 71, 34, 6, 17, 54, 28, 31,

59, 93, 43, 91, 55, 68]. The discrete categories of travel activitys make an ideal case

for developing supervised classification algorithms for travel activity inference.

Naive Bayes

Naive Bayes is a bayesian generative classification algorithm in which we assume

that the feature variables are conditionally independent given the class. The naive

bayes classifier uses the bayes theorem to model the class conditional probability.

Let xiVi = 1, 2, ... ,n be the input vectors of feature variables and yiV i = 1, 2, ..., n

be the target variable. yk is a multinomial variable whose kIh component out of K

components representing the travel activitys is 1 for the true class and 0 for other

components. The multinomial variable representation is also known as one-hot rep-

resentation. The bayes theorem is given by

p(Yilxi) = PXlipy (2.1)
p(xj)

The inference in the naive bayes model is given by

n

argmax p(yk) fi p(xily?) (2.2)
1,...,K =

where is the predicted travel activity. [68] used naive bayes for modeling the travel

activity detection. They modeled the class probabilities using Gaussian distribution.

The overall average performance using naive bayes was 91.4%.

Decision Tree

The decision trees are easy to interpret classification algorithms. Decision tree algo-

rithms have tree structure with a decision at each node leading to a class at the leaf

node. The C4.5 algorithm [581 builds a decision tree from the training data. The
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C4.5 builds the decision tree by selecting the best attribute of the data to split the

set of samples into pure subsets. The algorithm uses normalized information gain

as a splitting criterion. The best attribute, in this case, is the one with the highest

normalized information gain. During the inference phase, the input example is run

through the tree structure and as a result the class value at the leaf node is the

predicted class. [16, 59, 93, 68] used decision trees for travel activity detection. [59]

reported an overall accuracy of 91.3% using both GPS and accelerometer data while

[16] reported an overall accuracy of 84.48% using only GPS data.

Random Forest

The random forest algorithm exploits randomization and bagging for building an

ensemble of decision trees. The random forest algorithm builds an ensemble of deci-

sion trees by selecting a random subset of features. During inference, the predicted

class is obtained by majority voting between outputs of all the decision trees. Ran-

dom forest has been shown to provide the best results for travel activity detection

[28, 93, 68, 44, 65].

Support Vector Machines

Support Vector Machines (SVM) is a maximum margin classification algorithm [14].

As before, let's denote the observed variables in the training dataset as xi and the

class variables as yi. For binary classification, yi C {-1, +1}. In the learning phase,

the algorithm learns a hyperplane , wTxi = b. Where w are the weights and b is the

bias, such that the minimum margin is,

min IwTxi - bl = 1 (2.3)1<i<N

Thus, for all the training data points we have

yi(W Txi - b) ;> 1, I < i < N (2.4)
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Solving the dual of the optimization problem,

1
min -|wJJ 2
w,b 2 (2.5)

yi(wTxi - b) > 1,1 < i < N

gives,

N

w S a yixi (2.6)
i=1:ai>o

where, ai is the Lagrange multiplier in the dual space. The decision function is then

given by,
N

g(xi) = sign(E a yiX[Xi - b) (2.7)
i=1

The solution in equation 2.7 to linear classification problem can be extended to

non-linear classification by introducing a non-linear design matrix O(xi). Further-

more, the matrix K(xi, xj) = ((xi), #(xi)) = xfxi, known as the kernel matrix, can

be used to project the training data to higher dimension and learn a linear decision

boundary in projected dimension. The linear decision boundary in projected dimen-

sion, depending on the kernel function, translates to non-linear decision boundary in

original dimension. The hard margin classifier is prone to overfitting, so generally

slack variables i > 0 are introduced to the optimization problem in equation 2.5.

The new optimization problem is,

.1 N
min - IWI12 + CE(i
w,b, 2 =i=1

yi(wTxi - b) > 1 - i, 1 i < N (2.8)

>i 0, 1 < i < N

where C is the hyperparameter which decides how hard the classification margin

will be by constraining the values of ao. This classifier is know as soft-margin SVM

classifier. The inference in the soft-margin SVM is same as hard-margin SVM. SVM
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algorithm has been widely applied for solving the travel activity inference problem

[88, 93, 91, 55, 38, 74]. [38] developed a travel activity classification algorithm using

soft-margin SVM classifier. The authors chose to use Gaussian kernel which is given

by,

K(x, xT) = exp( 2g.2 ) (2.9)

The proposed algorithm obtained an overall accuracy of 95.43% using only IMU

sensor data. [88] used a polynomial kernel for SVM classification given by

K(x, xT) = ('yxxj + 1)d (2.10)

where d is the degree of the polynomial. For travel activity inference, [88] used

a multi-class version of the Binary SVM presented earlier. The multi-class SVM

strategy called one-against-one [24], used in [88] involves training k(k - 1)/2) binary

classifiers. The decision about the class is made by majority voting similar to random

forest algorithm. Using majority voting the multi-class SVM algorithm achieved an

overall accuracy of 93.49%.

2.1.4 Unsupervised Machine Learning Algorithms

Developing supervised machine learning algorithms requires collecting high quality

ground truth data. Supervised machine learning algorithms require large amounts of

data for training the algorithms. Collecting ground truth data is intrusive and bur-

densome so the participants are prone to introduce errors to the dataset. Researchers

have developed unsupervised methods to travel activity detection problems. In this

section, we review unsupervised methods.

K-Means

K-Means algorithms is a popular clustering algorithm used in data mining. In k-

means algorithm the modeler has to specify the expected number of classes in the
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data. For a given number of classes, the K-means algorithms build clusters of observa-

tions that are similar within that cluster. The procedure to build k-means clustering

is an iterative procedure. In the initialization step, random values are selected as

centroids of the clusters for given number of classes. All the input instances are then

evaluated to calculate distance from these centroids using a chosen distance metric.

The input instances are assigned to the centroids that are closest to the instance.

New centroid locations are calculated for new clusters and the process is repeated

until a convergence criterion is met. Usually the convergence criteria is when the

input instances stop changing clusters between iterations. [23, 59] used the k-means

algorithm in travel activity detection. [59] compared the performance of k-means

algorithm against the Decision Trees, Naive Bayes, Nearest Neighbor and SVMs.

The overall precision reported for travel activity detection using k-means was 75.8 %

while recall was 70.8 %, which was much lower than the decision tree algorithm. The

precision of the decision tree algorithm was 91.3% and the recall was 91.3%.

Dirichlet Process Gaussian Mixture Model (DPGMM)

DPGMM is an infinite mixture model used in clustering. In DPGMM the approximate

inference algorithm requires the number of classes as parameters but the number of

clusters discovered depends on the input data. The DPGMM algorithm has been

widely used in the object detection in computer vision. For a given input dataset

xi as defined above, the model assumes that each data point xi is drawn from a

Gaussian mixture distribution denoted by p(X) = E 1l 7Fkf(X1k), where K is the

number of mixture components, 7rk is the mixture weight of the component k, and

f (xz ) is the mixture component distributed as a Gaussian with parameters 0 k of

the distribution. The mixture weight 7r w 1 , ..., rk is assumed to be drawn from the

multinomial distribution. The probability of the input instance belonging to a cluster

is given by

p (cj = k) = 7k (2.11)
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where latent ci is a random variable distributed as Multinomial distribution. ci is

also known as indicator variable which encodes the cluster. It is assumed that the

prior distribution of the multinomial variable 7r is a Dirichlet process. The complete

model specification is as follows:

G~ DP(a,H)

Oci ~l. G 
(.2(2.12)

7r ~ Dirichlet(a/ K,..., a/K)

xi ~ f (xi IOc)

where H is the base distribution of prior over parameters of the mixture components,

DP denotes Dirichlet Process, a is the concentration parameter of the DP Since

the exact inference in the DPGMM is intractable, various approximate inference

models have been developed. [73] used DPGMM to identify granular travel activities

like sitting, climbing the stairs, etc, using DPGMM. They used a Gibbs sampling

algorithm [48] for inference in the DPGMM. The approximate inference procedure is

1. Initialize the indicator variable - ci randomly, for all the data points xi.

2. For each observation xi,

(a) Sample the indicator variable ci conditioned on fixing all other indicator

variables c_, using the Chinese Restaurant Process [331:

p(i ~k ~ca ~N -1 fI x + (2.13)

p(ci = K + lc-i, a) oc N fK+1(Xi)

(b) If a new component is discovered then draw the parameters of the Gaussian

Distribution for the new component:

p(OK+1 Xi) c)C f(Xi OK+1)H(OK+1) (2.14)
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[73] also used a hierarchical variation of the DPGMM for high-level travel activity

detection from the low level activities. In hierarchical DPGMM, the DP in model

equation 2.12 itself has a prior distribution, which is also a DP.

Go ~ DP(y, H)

Gi ~ DP(a, Go)

Ocj , ~Gj (2.15)

7r ~ Dirichlet (al/K, ... , a /K )

xjj ~ f (x I Ocji)

where j 1,..., J is the index in the high level travel activities, while i 1, ... , Nj

is the index in the low-level travel activities, Go is the base distribution of the higher

level DP prior and Gj is the distribution over the parameters of the mixture distribu-

tion. [741 compared the perform of DPGMM clustering algorithm for travel activity

detection with K-Means. They reported better performance using DPGMM com-

pared to K-Means the overall average rand index for K-means was around 41% while

it was close to 60% using DPGMM.

2.2 Summary

Despite the difficulty in acquiring high quality labeled data for training supervised

machine learning algorithms, past research efforts have been focused on supervised

learning approaches due to their superior performance on the travel activity inference

task. Another possible reason for the popularity of the supervised learning approaches

seem to be the availability of straightforward evaluation methods of correctness of the

algorithm. The evaluation of the unsupervised methods, on the other hand, is not

as straightforward as supervised learning approaches. [73] used F-measure, Purity

and Rand Index for evaluation of the clustering algorithms. Using purity measure

for evaluating number of topics is not useful since the purity measure increases as
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more clusters are used except for the random initialization conditions. Our approach

combines supervised learning with online learning schemes to get the best of both

approaches.
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Chapter 3

Deep learning architecture for travel

mode inference

The travel mode inference algorithms are at the core of travel activity pattern genera-

tion frameworks. Various current approaches to travel mode inference were discussed

in chapter 2. We categorized the machine learning approaches for travel mode in-

ference into supervised and unsupervised algorithms. It is noteworthy that the large

number of current approaches in travel mode inference use statistical feature repre-

sentations of the sensor data without fusing the sensor inputs. It is also noteworthy

that there is a dearth of algorithmic approaches for online or continual learning of the

algorithms for travel mode inference. In this chapter we present a deep learning al-

gorithm that combines sensor fusion and travel mode inference tasks and also adapts

to the individual behavior through online learning mechanism.

3.1 Data Sources

We now describe the sources of data we used for developing the travel mode inference

algorithm. We used the data collected from the smartphone as well as data from

external source.
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3.1.1 GPS

GPS was developed by the US Department of Defense as a global navigation system.

GPS is based on a constellation of satellites each broadcasting a navigation message,

which is received by the GPS signal receiving components in the smartphones. The

GPS receiver estimates the global position of the receiving device using the broadcast

message. To acquire a location fix, the GPS receiver requires visibility of atleast three

satellites. The more satellites available for estimating the position the quality of the

position estimate improves. The navigation message also include doppler measure-

ments which are used by the GPS receiver to estimate the velocity of the motion of

the device. GPS plays an important role in travel mode inference algorithms. The

quality of GPS data is affected by various sources of errors. The sources of error are

satellite clock error, receiver clock error, ionosphere delay, tropospheric delay, mul-

tipath errors, satellite orbital errors and receiver noise. The GPS receivers contain

various components that mitigate some of the errors. The major source of errors

in urban areas is due to the multipath errors caused by urban canyons. The GPS

components consume significant amount of energy to perform calculations to estimate

position. This makes it challenging to collect high quality and high frequency GPS

data. To mitigate these issues, smartphones utilize the assisted GPS (A-GPS). The

A-GPS uses the cached position data by the telecommunications services to get a fast

GPS fix.

3.1.2 Accelerometer

The accelerometers were initially introduced in the smartphones to enhance the gam-

ing experiences of the smartphone users. Nowadays, the accelerometers play an im-

portant role in travel mode inference. Each smartphone device nowadays includes

a strap-down tri-axial accelerometer sensor which measures physical acceleration of

the device. The acceleration is measured in a reference system fixed to the smart-

phone, which is why the accelerometer data needs preprocessing to re-orient it to a

globally fixed reference system. Using accelerometer data requires having to collect
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high frequency accelerometer to mitigate the noise induced by mechanical errors. [921
reported that sampling high frequency accelerometer data continuously costs battery

loss.

3.1.3 Gyroscope

Since 2014, almost all the smartphones are embedded with gyroscopes. The gyroscope

measures tri-axial rate of rotation of the smartphone from an initial position. The

rotation is measured with respect to a globally fixed reference system. Integrating

the gyroscope readings provides the angle of rotation from the initial position which

is used to transform the orientation of the accelerometer data to the globally fixed

reference system.

3.1.4 Magnetometer

Magnetometer measure the strength of the earth's geomagnetic field along three axes.

The geomagnetic field measurements can be used to calculate the angle of rotation

of the smartphone in horizontal plane along the magnetic north pole. Due to long

term errors in magnetometer measurements, they are combined with gyroscope mea-

surements to transform the accelerometers measurements in a globally fixed reference

system.

3.1.5 Wi-Fi

Wi-Fi technology enables internet connectivity through wireless local area network.

The operating systems on smartphones allow the applications to record the mac

addresses of the Wi-Fi routers and the signal strength of the visible routers. The

unique identifiers of Wi-Fi routing devices help identify the unique locations visited

by the participants. The Wi-Fi connectivity ranges from 60m to 100m. The short

range of the Wi-Fi routers allows for accurate co-location.
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3.1.6 Barometer

The barometer measures the air pressure which can be converted to altitude. Barom-

eter uses comparatively less energy than other sensors [601, so they are now being

explored as data in travel mode inference. [60] used the rate of change of height to

detect travel modes and stops. [60] also used the height estimated from barometer

data and the contours of the geography to infer the travel modes.

3.2 Methodology

3.2.1 Background

In past few years, the deep learning algorithms have outperformed classical machine

learning algorithms in many areas of applications like computer vision, natural lan-

guage processing, image processing, etc. Furthermore, availability of large datasets

required for training deep algorithms, reduced cost of the specialized computing com-

ponents like graphical processing unit (GPU) and significant research and commercial

interest have reduced the bottlenecks in the development of deep learning algorithms

for new areas of application. Especially, there is growing interest to develop deep

learning algorithms for human activity recognition from sensor data 190, 86, 52, 45, 67].

Deep learning algorithms are capable of learning hierarchical representations of

the input data optimized for the given task 1121. A significant amount of cross-domain

expertise is required in feature discovery in travel mode inference algorithms. In the

classical machine learning approaches discussed in last chapter, considerable effort

was focused on identifying the best features for the travel mode inference task. In

deep learning algorithms, feature discovery is part of the learning procedure. Deep

learning algorithms are organized into deep layers of feature extraction through non-

linear interaction between inputs.
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3.2.2 Convolutional Neural Network (CNN)

Usually, the initial feature representation learning is performed by CNN [41] layers.

CNN layers extract local features from the inputs while sharing parameters. Sharing

parameters reduces computational complexity and overfitting to the exact location of

the feature in the input space. Each local feature map or CNN is known as kernel or a

filter. Each kernel learns a feature representation irrespective of its space in the entire

input space. The kernel contains multiple neurons, each neuron has its own weights

and biases. Multiple kernels are specified at each layer to learn different local feature

representations. Higher layers of CNN combine these local features into higher level

features like objects in images. Compared to a fully connected network, CNN have

significantly fewer number of parameters. The figure 3-1 depicts a 4x4 sliding window

kernel moving through two dimensional input space. Despite a large input space the

kernel includes only 16 weight parameters. The convolution operation at each node

p, q is given by

(3.1)
h 1

f(Z Z WijXi+p,j+q + b)
i=1 j=1

where, h is the height of the kernel and 1 is the width of the kernel

Figure 3-1: Illustration of a moving window
[2]

convolution kernel of CNN. Image source:

[86] developed a deep architecture based on CNN for travel mode inference. The

architecture used a single layer of CNN followed by a dense layer. The input long

vector containing data from all the axes of accelerometer, gyroscope, and magne-

tometer data was transformed into a 2D matrix for the CNN layer. The architecture
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also used a max pooling layer for translation invariant training. [86] compared the

algorithm performance with SVM and Adaboost using hand-crafted features. The

CNN based algorithm outperformed the other two algorithms whose overall accuracy

was 94.8% for SVM and 93.6% for Adaboost while the overall accuracy of the CNN

based algorithm was 98.6%.

3.2.3 Long Short Term Memory (LSTM)

Recurrent Neural Network (RNN) is an adaptation of the Neural Network (NN)

for sequential modeling. LSTM is a type of RNN which contains memory units to

remember long term patterns. For a given input sequence X = (x 1, .. , XT) and an

output sequence Y = (Yi, ... , yT), the structure of the LSTM node is given by,

it = 0-(Wi,2xt + Wi,hht_1) (3.2)

ft = o-(Wf,2xt + Wf,hht-1) (3.3)

ot = 0-(Wo,2xt + Wo,ht_1) (3.4)

Ct = ft 0 Ct-I + it 0 g(Wc,2xt + W,hht_1) (3.5)

ht = ot 0 g(ct) (3.6)

where, the function g(.) is the tanh function, o- is the sigmoid function and Ws

are the parameters of the network. The function in equation 3.2 is referred to as the

input gate, the one in equation 3.3 is referred to as the forget gate, equation 3.4 is

referred to as the output gate, equation 3.5 is referred to as the memory cell and the

function in equation 3.6 is referred to as the visible state which connects with the

next input in the sequence. The operator 0 is a scalar product of two vectors. The
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probability of the target variable yt is estimated as follows

p(ytlxt, Wym, by) = /( Wymmt + by) (3.7)

where, by is the bias parameter, W is again the weight matrix. The function q is

usually chosen to be a softmax function. LSTM is suitable for our task because of

its ability to remember long term sequences. The transitions in an individual's travel

activities. An individual traveling on bus won't transition to car without a walk in

between. As was noted by [93j, the transition probability between travel activities

can be learned for each individual. [67] developed a deep architecture by stacking

LSTMs for travel mode inference. The architecture was developed for classification

of multiple targets together through shared layers of LSTM in the middle layers of

the architecture.

3.2.4 Travel Activity Inference Framework

[87] developed a generic framework for sensor fusion in smartphones. The architecture

combines CNN with RNN for training the algorithm for different tasks. The algo-

rithm was applied for travel activity inference problem as well as for dead reckoning

using GPS and accelerometer inputs. Sensor fusion in dead reckoning problems was

traditionally carried out using Kalman Filters. The ability of the deep networks to

learn task specific feature representations allowed for reusing the same architecture for

different problems. The architecture used type of RNN called Gated Recurrent Unit

(GRU) instead of LSTM, which according to [87] is more efficient for implementation

on smartphones. The input to the deep architecture is the Fast Fourier Transform

(FFT) of the input signals along each axis. The architecture learns non-linear local

interactions in frequency domain. The algorithm achieved an overall accuracy of 95%

for low level activity inference also known as Heterogeneous human activity recogni-

tion or HHAR. In comparison, the classical algorithms like Random Forest and SVM

achieved an overall accuracy of 81% and 76% respectively. The past research in travel

mode inference algorithms have identified features useful for travel activity inference
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in both time and frequency domain. So instead of only using the frequency domain

representation of the input signals as in [87] or only using the time domain repre-

sentation of the input signals as found in [861, we propose to use both the frequency

and time domain input representations. Similar to [871, our proposed architecture

combines CNN with RNN. We chose to use LSTMs instead of GRUs.

The figure 3-2 shows the proposed framework for the travel activity inference en-

gine. In the proposed framework, the smartphone application passively logs the sensor

data discussed in section 3.1. The deep travel activity inference algorithm developed

in this thesis will be deployed to the smartphone. The accelerometer, magnetometer,

gyroscope and barometer data collected on the smartphone is fed through the deep

network and the output of the softmax layer - the probability distribution over the

travel activities, is concatenated with the GPS, WiFi and other data logged on the

smartphone and uploaded to the server. The travel activity inference algorithm run-

ning on the smartphone classifies the travel activities into different classes, like walk,

bicycle, stationary, train, etc. On the server side, the feature vector transferred by

the smartphone will be augmented with features based on external data sources and

the personal history of the individual. A CNN based network similar to [861 will be

trained on features available at the server side.

3.2.5 Travel Activity Inference Architecture for Smartphone

The computing capabilities of the smartphones have increased significantly in recent

years and they continue to grow. Nowadays, the smartphones are equipped with

Graphics Processing Unit (GPU). The battery capacity also have more than doubled

since the first smartphones were launched a decade ago. With this growing trend in

mind, deep learning libraries like Tensorflow [5], MxNet [191 released lite versions of

deep learning software for smartphones. We propose a deep learning algorithm for

performing travel activity inference on smartphone.

The figure 3-3 depicts the deep learning architecture we developed for travel ac-

tivity inference. The algorithm accepts 1,.., K segments of sensor data. The choice of

number of the segments and size of each is a design decision and will be determined
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experimentally. The architecture contains three layers of CNNs that operate directly

on the sensor inputs. The max pooling layer ensures invariance to the translation of

inputs due to rotation of the smartphone. The raw measurements from each sensor

axis are transformed into frequency domain using FFT. The magnitude and phase of

the FFT output along each axis is stacked into a 2D tensor and passed to a stack of

three CNN layers. The local feature representations of the time and frequency do-

main are then concatenated with barometer measurements. The concatenated tensor

is passed through another three layers of CNN to capture the interactions between

feature representations learnt from both the time and frequency domains. The output

of the last CNN layer is then passed through dimensionality reduction layers. The

output of the dimensionality reduction layers, is then passed through two layers of

LSTM to learn the sequential feature representations. The LSTMs contain 512 units.

Finally, K LSTM outputs averaged and passed to the output layer. We minimize the

softmax cross entropy loss using Adams optimizer. All the weights of the model are

regularized with L2 loss. Let's refer to this algorithm as TF-CLSTM.

3.3 Summary

We presented a deep learning architecture for travel activity inference algorithm on

smartphones. The deep learning algorithm learns feature representations from the

raw data. These feature representations are uploaded to the server instead of the

raw data. This reduces the size of the data uploaded to the server, consequently,

reducing the costs incurred due to data transfer. The research areas that intend to use

the smartphone applications for collecting daily human routine data face challenges

due to the non participation. One of the main causes of non-participation is the

intrusiveness of such applications is cost to the end user in terms of data upload rates

and battery consumption. The proposed algorithm is fully automated, it reduces the

amount of data uploaded to the server. As a result, the drop out rates in the travel

activity studies will reduce. For applications like TRIPOD discussed in chapter 1, the

validation of the travel activities can be performed in real-time on the smartphone
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itself. As a result, the user can be informed of the progress of the travel task accepted

by them.
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Chapter 4

Online supervised machine learning

algorithm for travel activity inference.

In this chapter we describe the baseline model that we developed to empirically com-

pare the performance of the deep learning algorithm presented in chapter . In the

baseline model, we describe the procedure for rotating the accelerometer readings

which are affected by the change in orientation of the smartphone. The procedure

described here is nowadays available in android and iOS Software Development Kit

(SDK).

4.1 Baseline Model

4.1.1 Data Preprocessing

The data collected from different sources contain noise in it so we apply different

filters to the data from different sources to denoise the data. A low-pass filter was

used to denoise data collected from IMU sensors. In case of GPS data, the application

reports estimated accuracy of the position estimate. We filter out the GPS points

that have very low accuracies. The data collected from smartphones usually have

gaps in them. For example, due to various sources of errors in GPS described in the

section 3.1 it is difficult to obtain GPS data continuously resulting in missing data in
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GPS readings. Software issues sometimes lead to missing data in measurements from

other sensors. To address these issues we apply linear interpolations and resample

the data.

Gravity Removal

The accelerometer, gyroscope and magnetometer readings are collected at 25 Hz sam-

pling rate. The strap-down tri-axial accelerometer sensor installed in the smartphone

records the acceleration readings in smartphone reference coordinate system depicted

in figure 4-1. The smartphone reference coordinate system is referred to as body

reference frame in rest of this document. Since the readings are recorded in the body

reference system, the direction of the vector of acceleration due to gravity will de-

pend on the orientation of the smartphone. During data collection the users are not

required to carry the smartphone in any fixed position, so the accelerometer readings

collected by data collection application contain gravitational acceleration distributed

among the three axis readings.

Roli,,

Yaw Yaw Pitch

Figure 4-1: Smartphone reference coordinate system. [1]

In the first step, we estimate the linear acceleration by reorienting the accelerom-

eter readings to the North East Up reference system, hereafter referred to as the
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Earth's frame of reference. [50, 20, 84] details the algorithm for calculating the linear

acceleration. The Earth's frame of reference is depicted in figure 4-2. The x-axis

points roughly towards easts from the position of the smartphone on the earth's sur-

face, while y-axis is tangential to the location of the smartphone on the surface of

earth and points to the magnetic north pole. Z-axis is orthogonal to X.Y in the

vertical up direction.

Figure 4-2: North East Up reference coordinate system. [1]

The magnetometer records the earth's magnetic field measured in microTesla (AT)

along the three axis coordinate system. The magnitude of the magnetic field varies

by geographic location. The World Magnetic Model (WMM-2010) is used to con-

vert magnetic field measurements at a given location to an angle from the magnetic

north. Since the device is free to rotate in 3 dimensions, the magnetic field is mea-

sured in three dimensions. The tri-axis magnetometer readings provide magnetic field

measurements along three axes in the body frame of reference. Let's denote magne-

tometer readings by i = {m,, my, m_}. The vector of magnetic field it can be used

to determine the azimuth angle from the magnetic north. The azimuth with magnetic

north provides a reference to calculate the rotation to reorient the vectors from the

body reference frame to the earth's reference frame. There are infinite possibilities

of the rotation of the X and Z axes around the axis parallel to the magnetic north.

To obtain the estimate of the rotation angle to reorient the vectors from the body
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reference frame to the earth's reference frame along the X and Z axes we can use the

information about gravity from the accelerometer readings.

Let - = {a, ay, az } be the vector of accelerometer readings along X, Y and

Z axes. Consider the scenario where the smartphone is stationary and the body

reference frame of the smartphone is aligned with the earth's reference frame. In this

scenario, the accelerometer reports acceleration due to gravity along Z-axis while the

acceleration along X and Y axes are 0, i.e. - = [0, 0, g], where g = 9.815 m/s2 is

the acceleration due to gravity. The rotation of the body in the earth's reference

frame will result in the distribution of the gravitational acceleration along the three

axes. This information can be used to calculate the orientation of the Y-axis aligned

smartphone in the earth's reference frame.

The rotation matrix is obtained in following steps. First, calculate the inverse of

the cross product of the magnetometer -M and accelerometer a.

h = iA x
(4.1)

[myaz - mza, mzax - mxaz, may - myax]

- = hx h h ] (4.2)

|; I II h 11|

where h is the norm of vector h .

If the norm of the h is less than 0.1 then it indicates that the device is in free fall

alternatively, - = [0, 0, 0] or the device is close to the north pole, i.e, iA = [0, 0, 0].

Second, we calculate the cross product of inverse of the accelerometer vector -

and h

-1=[ ax ay az ](4.3)

where |Ia|I is the norm of vector a.
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j [jxjyjz]

-t'X (4.4)
- 4-

_ - 1 - _ + -1 Y1, - - -_ 1 - 1, -1 - _ - -

The rotation matrix is then given by

h-1 h-1 h-

RMA x jy jz (4.5)

a-I a-1 a-1

Next, we convert the rotation matrix to the rotation vector in Euler representation,

c MA = [ex, ey, CZ]

h-1 -a-1 (4.6)
= [tan-1 (' ), sin 1 (-ay1 ), tan-1 ( )

Jy az

The rotation vector calculated using the accelerometer and magnetometer has mul-

tiple sources of error. The accelerometer records horizontal and lateral acceleration

as the smartphone device is moved. The rotation vector calculation used the acceler-

ation induced by the earth's gravitational field to determine the Y and Z-axis (pitch

and roll) orientation of the device. When the device moves, the acceleration values no

longer record only the gravitational acceleration resulting in error in determining the

pitch and roll of the smartphone device. The magnetometer readings are also noisy,

affected by local magnetic flux and distortions due to the ferromagnetic elements in

structures near the smartphone. Gyroscope readings can be used as reference to cor-

rect the errors in the orientation estimated from accelerometer and magnetometer.

The gyroscope on the smartphones record the angular velocity in radians per second

along the three axes in body frame of reference. Let -2 = [wx, wy, wZ] denote the

gyroscope readings. Integrating the angular velocity obtained from gyroscope with

respect to time gives the rotation of the smartphone from the orientation in previous
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time step. Since the initial orientation of the smartphone in the world reference frame

is required to calculate the new orientation, we will use the first estimate obtained

from the fusion of the accelerometer and magnetometer sensors discussed above as

the initial orientation. We first normalize the angular velocity observations as follows,

i-i ( .7 W)

where -E is the norm of vector t.

The angular velocity is integrated over elapsed time, say At, since last observation,

At = ret - tprevious

where tcurrent is the timestamp of the current accelerometer observation and tprevious

is the timestamp of the previous accelerometer observation.

The angle of rotation, say is given by

0 = ||$|| - At

Using the angle 0, calculate the quaternion representation, qAt of the rotation vector,

1 =[qx, q,, qz , qw ]

= sin( ) yz -I, sin( ) -1 sin( ) " Cos( )]( .8

A rotation matrix is obtained from the rotation vector

1 - 2q; - 2qz 2qxqy - 2qzqw 2qxqz - 2qyq1

Rq =2qxqy - 2qzqw 1 - 2qx - 2qz 2qyqz - 2qxqw (4.9)

2qxqz - 2qyqw 2qyqz - 2qxqw 1 - 2qx - 2q J
Once we have obtained the rotation matrix for current time step, we apply it to

rotation obtained in previous step to get cumulative rotation from the initial state.

Convert the obtained rotation matrix to Euler representation so that we can fuse it
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with the Euler representation obtained from accelerometer and magnetometer sensors.

_eq =[ex, eY, ez

S[tan-1(R(l2) ), sin-1(-Rq(3, 2)), tan-1 (-( (4.10)
Rq(2, 3) Rq(3,3)

The rotation matrix obtained using gyroscope is erroneous due to multiple rea-

sons. First, the gyroscope has a drift which is amplified by the integration operation.

Second, the gyroscopes available in the smartphones are of poor quality and have

random noise. To remove the random noise the gyroscope readings are filtered using

a low pass filter. To address the problem caused by the drift in the orientation calcu-

lated from gyroscope, we fuse it with the orientation obtained from combination of

accelerometer and magnetometer. The drift in the gyroscope accumulates over time,

so we can design a filter that utilizes the short-term estimates of the orientation from

gyroscope and long-term estimates from fusion of accelerometer and magnetometer.

We then use exponential smoothing, which is effective even at lower frequencies at

which the FMS app collects the data, computationally efficient, and widely used by

the major OEM software providers for smartphones. The fusion of orientation, say,

c is given by

The value of oz was fixed to 0.95.

Next, convert the orientation e to the rotation matrix. The rotation around x

axis is given by

1 0 0

R = 0 cos(ey) sin(ey) (4.12)

0 -sin(ey) cos(ey)

53



The rotation around the y axis is given by

cos(e,) 0 sin(ez)

R = 0 1 0 (4.13)

-sin(ez) 0 cos(ez)

The rotation around the z axis is given by

cos(ex) sin(ey) 0

RX = sin(ex) cos(ex) 0 (4.14)

0 0 1

The final rotation matrix is

R = R2 x Rx x RY (4.15)

To obtain the linear acceleration, (a,), transform the acceleration vector to the

Earth's frame of reference

a+, = R x -a'

Finally, remove the acceleration induced by gravity from a ,

a [ax, ay, (az) - g] (4.16)

Segmentation

As was noted in section 2.1.1, segmentation of the data has effect on the accuracy

of the final classification of travel modes. Similar to the segmentation approach of

[92, 49], we used a segmentation algorithm that uses on both the accelerometer and

GPS data.

Segmentation of Acceleration data We first use the linear acceleration esti-

mated in equation 4.16 to segment the input stream of data. The method is based

on identifying the change points in linear acceleration induced by the changes in low
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level activities of the smartphone user.A smartphone user performs several activities

which are sometimes nested like playing games or interacting with the smartphone

while traveling on the bus or waiting at the subway station. Other such nested

activities include walking in a shopping mall. Each such interaction with the smart-

phone causes a change in the distribution of the acceleration data. We employ an

online bayesian change point detection method proposed by [7], to identify the in-

flection points in the acceleration signal that resulted from changes in user activity.

The change point detection methods usually assume a certain distribution for the

observed data belonging to same segment and the change point occurs when this

distribution changes. We use this information to partition the input stream of data,

let's denote it by XI, x 2 , , Xt, , XT, where t is the time index and xt is the norm of at,

into segments sVn = 1, ... corresponding to homogeneous travel activity types. We

assume that the data stream xt in segment sn corresponding to a travel activity type

is I.I.D. We are interested in estimating the posterior distribution over the run length,

say rt, of the given data x in current observed set. The estimation of the posterior

distribution of the run length of the segment conditioned on the data observed so far

requires estimation of the joint distribution over the data and the run length. Using

the Bayes theorem, we have,

p(rtx(1:t)) p(rt, X(1:t)) (4.17)
P(X(1:t))

The joint distribution is given by,

p(rt, X(1:t)) = Zp(rt, rt - 1, X1:t)
rt-1

Zp(xt, rt rt_ 1, Xr)p(rt_1, Xit_1) (4.18)
rt-1

(rtIrt-1)p(xt rt, rt_1, x')p(rtx1,xi:_)
P

The prior over run length p(rt r(t_1)) in equation 4.18 models the prior belief of

the modeler about the length of the segment. [7] proposed a discrete distribution for
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prior. We assume that the probability distribution of the run length of the segment

is described by the exponential distribution Exp(A), where A is the parameter of

the exponential distribution, then the hazard function gives the probability that a

particular event occurs. The hazard function H(rt) gives the probability of the current

run rt succumbing to the event that a change in travel activity type occurred at time

instance t + t. In our case, we are interested in two events, a) the run length of the

segment increases, i.e., the new observation Xt belongs to the same segment s" as the

observation x(t-1) observed at a previous time instant t - 1 in the sequence, b) change

point occurs, i.e., the new observation xt observed at time instance t belongs to the

new segment s(n+1) # sn, where s, is the segment to which the observation x(t-1)

seen at time t - 1 belonged. The hazard function for the two events is a constant

H(rt) = under the assumption of exponential distribution of the run length of the

segment. The prior probability over the run length of the current activity segment is

then given by,

1 - H (rt) rt = rt +1

p(rtirt1) H(rt) rt = 0 (4.19)

0 otherwise

We assume that the data xt is distributed normally, i.e., xt - N(p, -y), where y is

the mean and A = a-2 is the inverse variance, are the parameters rq of the distribution.

The parameters p and A are unknown and are I.I.D across the segments. We let

/- - N(mo, (Ko)-3) and G(o, 00). The normal gamma distribution is a conjugate

pair, hence, posterior over the parameters can be obtained analytically. The likelihood

for the data, xt is as follows,

p(xth p, A) p(riorno )Aalexp(-( )g(mma (4.20)

The conjugate prior normal gamma is then written as
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NG(p, A lmo, Ko, ao, /o) = AF(pimo, (KoA)- 1 )G(Ajcao, o)
ao (4.21)

_ 0 (Ko e_ (_)[Ko(p-mo)+20o]

F(ao) 27r

The posterior distribution over the parameters r7 is then given by,

p(p, Ajxt) oc NG(p, Almo, KO, ao, o)p(xtkp, A)
(4.22)

= NG(p, A ImtK at, t)

where,

Komo + ts)
(Ko + t)

Kt Ko + t

t
azt =Z a+ -

2

Ot/3 +1 nx_:t2+Kot(j _ MO)2

2 2(Ko + t)

Putting it all together, the predictive distribution of the new observation is given

by,

p(Xt Irt, rt_-1, X') = p (xt I X) (4.23)

rt and rt_1 indicates that either the run length is growing or that a change point

has occurred. If the change point has occurred then the predictive distribution will

depend on the current observation only, i.e it will depend on only T. While if the run

length is growing then the predictive distribution will depend on the observations in

current run after the last change point, i.e., it will depend on r7'_1. In either case, the

above equation 4.23 holds true. So the predictive distribution is now becomes,

ftKt + 1
p(xt 4) = t2,,(Xtjmt , ) (4.24)

at Kt

The predictive distribution thus takes a form of the student's-t distribution. The
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parameters qt of the student's-t distribution were estimated from the data observed

until previous observation.

Segmentation of GPS data As we observed in section 2.1.1, using only accelerom-

eter data for identifying change points between travel activities and stops will poten-

tially generate false positives due to the low level travel activities at stops. So we now

describe the method for the segmentation of the GPS data. We employ the method

same change point detection method to speed signals obtained from the GPS data.

If the product of the posterior probability calculated from each of speed signal and

the acceleration signal is higher than a threshold then we break the previous segment

and create a new segment.

4.1.2 Feature Representation

Once we have identified the segments from the segmentation algorithm we transform

the raw data with segments to meaningful feature representations which can be used

to train the travel activity inference algorithm. We identified the features used in

relevant work. The features identified are listed in table 4.1. We then performed

feature selection to select significant features from those listed in table 4.1. Similar

to [59], we used correlation based feature selection (CFS) for feature selection. We

excluded discrete features from feature selection analysis. CFS selects features that

are highly correlated with the class variable yet uncorrelated with each other [35].

The features selected by the CFS algorithm are listed in table 4.2.

4.1.3 Classification Algorithm:IVM

As discussed in chapter 2, supervised algorithms have been widely used for travel

activity inference. For out baseline model we use the Import Vector Machines (IVM)

proposed by [941. IVMs probabilistic classification method based on Kernel Logistic

Regression (KLR). IVMs provide the probability distribution over the class variables.

For input variables xzVi = 1, .., N and class variable yj E 0, 1, the KLR cross-entropy
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Source Features
Average speed, median speed,
minimum speed, variance of speed,
maximum speed, average heading change,

GPS
5th, 50th, and 95th percentile of speed,
total distance traveled within segment,
skewness, kurtosis, average accuracy of readings.

Average, median, minimum,
maximum, coefficient of variation,
energy, and sum of FFT(Fast Fourier Transform) coefficients

Accelerometer between 5 intervals,
top 4 frequencies,
95th percentile,
top three accelerations within segment,
skewness, kurtosis.
Average, median, minimum,
maximumvariation,

Magnetometer energy, and sum of FFT(Fast Fourier Transform) coefficients
between 5 intervals,
top 4 frequencies.
Average, median,minimum,

Gyroscope maximumvariation,
energy, and sum of FFT(Fast Fourier Transform) coefficients
between 5 intervals, top 4 frequencies.

Barometer Average, median, minimum, maximum,variation,inter-quartile range.
Segment Duration, departure hour of day,
arrival hour of day, day of week.
Number of validated stops within 100 meter,
number of deleted stops within 100 meter.
Minimum distance from nearest bus stop at the start of segment,
minimum distance from nearest bus stop at the end of segment,

GTFS minimum distance from nearest train station at the start of segment,
minimum distance from nearest train station at the end of segment,
maximum route matching score with feasible bus routes,
maximum route matching score with feasible train routes

Table 4.1: Features identified based on relevant work for use in baseline travel mode
inference algorithm.

59



Source Features
Average speed, median speed,
minimum speed, variance of speed,
maximum speed, average heading change,

GPS
5th, and 95th percentile of speed,
total distance traveled within segment,
skewness, kurtosis.
Average, median, minimum,
maximum, coefficient of variation,
energy, and sum of FFT(Fast Fourier Transform) coefficients
between 5 intervals,
95th percentile,
skewness, kurtosis.
Average, median, minimum,

Magnetometer maximumvariation,
energy, and sum of FFT(Fast Fourier Transform) coefficients
between 5 intervals,
Average, median,minimum,

Gyroscope maximumvariation,
energy, and sum of FFT(Fast Fourier Transform) coefficients
between 5 intervals.

Barometer Average, median, minimum, maximum,variation.
Segment Duration, departure hour of day,

Segment Time arrival hour of day, day of week.
Number of validated stops within 100 meter,
number of deleted stops within 100 meter.
Minimum distance from nearest bus stop at the start of segment,
minimum distance from nearest bus stop at the end of segment,

GTFS minimum distance from nearest train station at the start of segment,
minimum distance from nearest train station at the end of segment,
maximum route matching score with feasible bus routes,
maximum route matching score with feasible train routes

Table 4.2: Features selected using CFS algorithm for use in
inference algorithm.

baseline travel mode
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loss function is given by

- N A
H = - E[yif(xi) - in(1 + exp(f(xi)))] + ||lfll (4.25)

where, f = b + h, h E K, b E R WK is a Reproducing Kernel Hilbert Space(RKHS)

generated by kernel K. Then by representer theorem, the equation 4.25 is

H = -(Ka )+ ni(1 + exp(Ka, ))+ 7Kq (4.26)
2

where t = (a,,..., aN)T; the regressor matrix Ka = [K(xj,Xj)]NxN; and the

regularization matrix Kq = Ka. Now set the derivative of the loss function with

respect to a equal to 0. Using Newton-Raphson method to iteratively solve the

score equation. It can be shown that the Newton-Raphson step is a weighted least

squares step:

-(k) = ( KajWKa + AKq) -Ka W1 (4.27)

where -k is the value of a in the kth step, -t= (K= (k1)+W1(7-)). The

weight matrix W = diag[p(Xi)(1 - p(Xi))]NxN. Similar to support vectors in SVM,

IVM algorithm builds a sparse representation of the input data. Let S be the subset

of training data, also known as import points. The procedure to identify the subset

S from training data is

1. LetS= 0,R={X, X2,..., XN, k=1

2. For each x, E R, correspondingly augment Ka with a column, and Kq with a

column and a row.

f(x)= aaK(x, xj)
X2,SU{1x}

Update - according to equation 4.27. Use the updated value of - to calculate

the loss:
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H = ' (Kt') 1 n(1 + exp(KI, '))+ (4.28)

where Ka = [K(xi,Xj)]Nx(q+1),Xi E {X, X2,.,iN},Xj E S U {j}; Kq

[K(xj, X1)](q+1)x(q+1), Xj, X1 E S U {x}; q = |SJ.

3. Append the new data point xj. which minimizes the loss to the subset S:

x =. = argminxjERH(xI)

Let S= SIU {xI*},R= R

{xI*},Hk= H(xj*), k = k + 1

4. Repeat steps 2 and 3 until Hk converges.

The value of the regularization parameter A needs to be provided to the algorithm.

A validation dataset is used to select the optimal value for A. The A is chosen such

that it minimizes the classification error on validation set.

The training procedure for IVM is inherently is incremental. The import points

subset is built incrementally iterating over the entire data set until the loss function

is minimized. The pretrained algorithm can be adapted easily for new labeled obser-

vations. IVM can be updated with new labeled instance, say x*, by adding this new

label to the set R in step 1 of the training procedure. Now execute the rest of the

training procedure for the new instance. If the new instance is useful to the algorithm

then it will be added to the import points subset S. This property of online learning

is suitable to our application. Inference in IVM is similar to inference in the Kernel

Logistic regression method. The class of the new instance in multi-class case is given

by

y* - argmaxp(y* x*) ef(x*) (4.29)
-1,..K 1 + ef(x*)

The multi-class implementation of the algorithm was described in [94].
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4.2 Summary

In this chapter we described the preprocessing steps for raw data. In particular, we

described the method for correcting the orientation of the accelerometer data. As was

noted in chapter 2, the travel activity inference literature has reported that the choice

of raw data segmentation strategies have consequences for the overall classification

accuracy of the algorithms. A new method for segmenting the raw data was described

followed by features used in the baseline model and the classification algorithm. The

IVM algorithm for classification was described. The online nature of the algorithm

makes it suitable for adapting the algorithm to personal preferences of the traveler

over time.
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Chapter 5

Experiments

In this chapter we describe the experiments performed for calibrating the training

algorithms. Later in the chapter an empirical comparison of the proposed method

with the baseline method is presented. The next section introduces the experimental

setup.

5.1 Experimental Setup

5.1.1 Data

The dataset used in these experiments contains raw data collected from smartphones,

which were carried by researchers that were performing curated trips. This dataset

contains the travel activities tagged by the users while they were undertaking the

trips. The dataset is rich in terms of the number of sensors used and the frequency of

sampling from those sensors. We developed a custom ground truth logging version of

the FMS application to collect high frequency, labeled data from the smartphones. A

screenshot of the home screen of the custom FMS application is shown in figure 5-1.

The application continuously logs 25 Hz of accelerometer, gyroscope and magnetome-

ter data, 1 Hz of barometer data and between 0.025 Hz and 1 Hz of GPS data. It

also logs the visible Wi-Fi networks and GSM cell towers to the smartphone every 3

minutes. The users participating in the data collection study carried an android and
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an iPhone with them. We used the different models of smartphone like the Google

Pixel, iPhone 6S, Samsung S5 to collect the data. The users used the toggle buttons

on the home screen of the custom FMS application to record the start and end of the

trip with particular travel mode. The application also included an option to record

the start and end of the stop. In the dataset preparation step we truncated the stop

segments to half hour durations. The 8 users collected the data over a period of

about two weeks each. After preprocessing the data, we have nearly 1300 hours of

data for 5 travel activity types and the stop activities. We used this dataset to train

the deep learning algorithm. Apart from logging the trips in FMS application, the

users carried paper diaries to record their daily travel routine. In all the experiments

the dataset was split into 60% training set, 20% validation set and 20% test set. The

input was standardized and denoised.

Figure 5-1: Home screen of
truth data.

mode colection

0 Stop Mode

G Foot Mode r

( Bus Mode card &
G Train Mode card

0 Car Mode ard

Cycle Mode arcr

) MotorBike Mode

map Information

Today Happiness Diary

the customized FMS application for collecting ground

5.1.2 Training Configuration for Deep Learning Algorithm

The raw input data was segmented in windows of 10 second sizes. For sequential

training of LSTM four different sequence sizes of 5, 10, 15 and 20 were chosen. The
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Figure 5-2: The training loss in TF-CLSTM algorithm per epoch.

parameters of the convolution layers were initialized using Xavier's normal initial-

ization 129]. The LSTM layers were initialized from uniform distribution between

-0.02 and 0.02. The learning rate parameter c of the adam optimizer was set to le-4,

01 parameter value to 0.6 and #2 parameter value to 0.9. Every layer was followed

by batch normalization layer for correcting internal covariate shift. The convolution

layers were also followed by max pooling layers to learn translation invariant rep-

resentations of the input data. Batch size was set to 64 instances. The complete

configuration is shown in table ??. The figure 5-2 shows the loss per epoch during

training. There is a steep improvement in training upto 52 epochs. The improvement

plateaued after about 62 epochs so the learning process was stopped after 79 epochs.

The validation loss is shown in figure 5-3. The accuracy on validation set is shown in

figure 5-4. The accuracy on the validation set increased rapidly in early epochs then

it plateaued. The final overall accuracy on the validation set was 97.4%.

5.1.3 Training Configuration for Baseline Algorithm

A Gaussian kernel was used for the IVM algorithm. For the segmentation algorithm,

any segments smaller than 30 seconds were discarded. The threshold for the proba-
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Figure 5-3: The validation loss in TF-CLSTM algorithm per epoch.
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Figure 5-4: Accuracy per epoch of TF-CLSTM on the validation set during training.

bility to accept change of segmentation was set to 0.5. The change point detection

has a free parameter A of prior run length. To test sensitivity of the model we varied

the value of this parameter from 500 seconds to 5500 seconds. The results of the

sensitivity analysis are shown in figure 5-5. The best performance was achieved at

near 2700 seconds. We fixed A to 2700 seconds for rest of the experiments.

5.1.4 Evaluation Criteria

The algorithms are evaluated based on the accuracy, precision and recall measures.

Accuracy is the ratio of the total instances that were correctly classified with the total

instances tested. For a given class, precision is the ratio of all the positive examples

that were correctly classified with the total number of instances that were classified
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Figure 5-5: Sensitivity analysis for effect of choice of A, the parameter of the prior
distribution over the run length. The graph compares values of A on x-axis against
the validation accuracy on y-axis.

into the given class. Recall is the measure of the instances that were correctly retrieved

from the total relevant instances for a given class.

5.1.5 Comparison

The comparison of the deep learning algorithm (TF-CLSTM) with the IVM algorithm

was performed along three dimensions. TF-CLSTM was trained using only IMU data

and barometer. The features calculated for IVM algorithm used IMU data as well,

additionally, they also used GPS data. The figure 5-6 shows the comparison of the

accuracies achieved by the two algorithms on the test datasets. The overall average

accuracy of TF-CLSTM was 95.8%. The algorithm achieved best accuracy for walk

travel activity at 98.3% while the lowest accuracy was for train travel activity at 92.1

%. The IVM algorithm an overall average accuracy of 89.1% The highest accuracy

was 93.7% for stops and lowest was at 81.4% for vehicle travel activity. The overall

average precision was also higher for TF-CLSTM algorithm compared to IVM. The

overall average precision was 97.08% for TF-CLSTM while it was only 85.92 % for

IVM. Similarly the overall average recall was 97.48% for TF-CLSTM and 86.86 % for

IVM. Both the algorithms had difficulty classifying the vehicular travel activity and
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Layer Name Kernel Size # Kernels Strides # Hidden Units
IMU Conv 1 1,3,2 32 1,3,1 192
IMU Conv 2 1,3,2 32 1,2,1 192
IMU Conv 3 1,2,2 32 1,1,1 128
FFT Conv 1 1,2,3 32 1,1,3 192
FFT Conv 2 1,1,3 32 1,1,3 96
FFT Conv 3 1,1,3 32 1,1,3 96
Conv Layer 1 1,8 32 1,1 256
Conv Layer 2 1,6 32 1,1 192
Conv Layer 3 1,4 32 1,1 128
Dense Layer 1 - - - 1024
Dense Layer 2 - - - 512
LSTM Layer 1 - - - 512
LSTM Layer 2 - - - 512

train travel activity. Note that the classes car, motorcycle and bus were merged to

create vehicular travel activity. The classes were merged to balance the dataset as

these classes had fewer instances than the others.

From the comparison of the two approaches, it can be seen that the deep learning

algorithm improved the accuracy of the travel activity inference by a large margin.

Deep learning algorithm achieved better performance on raw data without orientation

correction for accelerometer. This shows that the deep learning algorithm was able to

learn the feature representations independent of the orientation of the smartphone.
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Chapter 6

Conclusion and Discussions

The research in this thesis was motivated by three main challenges in the travel ac-

tivity inference algorithms. Advancing the research into travel activity inference is

essential to developing tools for understanding the travel behavior of the individuals.

The traditional tools for observing individual's travel behavior like paper-based travel

surveys, telephonic interviews, etc have shown to be not sufficient to meet the needs

of rapidly changing urban dynamics. Also, these traditional methods of data collec-

tion suffered from several shorcomings like underreporting of trips and high dropout

rates. A significant amount of research effort has been invested in developing tools

for automating the data collection methods. The rapid adoption of technologies

like smartphones and internet have presented us with huge opportunity to leverage

these technological advancements for better 'understanding the travel habits of the

individuals. The smartphone based applications for understanding travel behavior

are expected to be significantly convenient as opposed to the traditional methods of

travel surveys. Yet, these applications suffer from participation bias [89]. This re-

search asked whether we can enrich the experience of these applications to encourage

participation from individuals in the data collection process. The another question

was whether we can reduce the initial time required to start a study in new place.
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6.1 Conclusion

A major proportion of variation in the mobility patterns of large populations is ex-

plained by the variation in the daily routine of the individuals over long-term. To

record this behavior there is a need to develop intelligent algorithms that can learn

and adapt to the changing behavior without requiring user intervention. In order

to address this challenge, this research proposed new online learning framework for

travel activity inference problems so that the algorithms can continually improve

themselves by learning from individual's historical preferences thus reducing burden

on end users.

The location based services like journey planning applications are ideal for im-

plementing intervention mechanisms. The intervention mechanisms can be triggered

upon observing certain travel behavior.For example, [66] describes an incentive scheme

for travelers based on energy savings achieved through their travel choices. If an indi-

vidual chooses to accept an energy efficient travel option then this individual earns a

token. In this scenario, the travel activity inference algorithms validate whether the

individual executed the chosen travel option. The smartphone based travel activity

inference algorithm developed in this research can monitor the travel behavior of the

individual in real-time and inform the individual on new options if they fail to execute

the accepted option.

Another challenge addressed by this research is to develop an end to end solu-

tion for travel activity inference. The performance of the deep learning algorithm

proposed here was found to be better than the classical machine learning algorithm

highly adapted for travel activity inference task. The results confirmed that the pro-

posed algorithm learned feature representations from the raw data and those feature

representations were immune to the translations introduced by the rotation of the

smartphone. The algorithm developed in this research fuses the data collected from

different sensors sampling at different frequencies. The IMU data was sampled at 25

Hz while barometer data was sampled at 1 Hz. This algorithm enables straightforward

integration of other sensor data that may become available at a later point.
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The travel activity inference algorithms suffer significantly from concept-drift

problems. The deep learning algorithm proposed in this thesis works primarily on

the sensor data. The travel activities inferred from the IMU data are not affected by

gradual shift in the travel behavior of the individuals. There are scenarios where the

modeler has to take into account that the assumptions about the sources of data may

change. In travel activity inference problems one may except the algorithms to be

deployed in different regions with different new modes of transportation available to

the users. If these modes were not included in the training dataset then the accuracy

of the algorithm will drop. In case of deep learning algorithms, deep transfer learning

allows for addressing these challenges. Transfer learning allows for adapting the archi-

tecture and transferring the knowledge gained on one problem to another problem in

similar or related domain. For example, the deep learning algorithm developed in this

thesis is trained to classify 5 travel activities. If a new dataset becomes available with

more travel activities like jogging, running, or traveling on mono rail then one can

reuse the features discovered in higher layers of this model as starting point in new

classes of travel activities. This will significantly reduce the time lost in launching

studies in new locations.

6.2 Future Work

The ground truth dataset used in this research was collected from a small number

of individuals. It is highly likely that the algorithms developed in this research have

adapted well to the travel attributes of these individuals. To confirm the robustness

of the algorithm, it should be trained and tested with larger data set. The dataset

was also found to unbalanced. The deep learning algorithms usually underperform

on unbalanced datasets. The results of vehicle and train travel activity inference

confirmed that augmenting the dataset with more observations from those two classes

will further improve the performance of the proposed algorithm.

There is a trade-off between choosing to execute the inference algorithms on the

smartphone or having to upload large amounts of raw data to the server. This research
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didn't address the issue of comparing the change in battery consumption due to

the moving inference procedures to the smartphone as against uploading the sensor

data to the server. Future research should collect data on battery consumption and

compare the two options.

Another future research direction would be to evaluate the performance of the

algorithm under different sampling regimes. This thesis evaluated the algorithm on

a sensor dataset collected using high sampling rates. It may not be always feasible

to continuously sample such high frequency data. The future task would be test the

robustness of the algorithm for lower sampling rates.

We discussed briefly the issue of sudden or gradual drift in the travel behavior of

the individuals . These changes affect the performance of the personalized machine

learning algorithms. This thesis research proposed a framework for addressing the

issues caused by sudden or gradual drift. There is need to design an experiment for

collecting data to validate the framework against such issues. The future work in this

area would be to explore the memory networks to handle these issues. They can be

implemented on server side and learn online as new data arrives. They will be good

candidates for addressing both sudden and gradual drift in travel behavior.

Finally, the increasing availability of data sets related to transportation present

an opportunity to incorporate such datasets into the inference algorithms to enhance

their effectiveness. For example, the Uber Api, Lyft Api have opened up to the de-

velopers to collect obtain such data. These datasets provide information about an

individual's travel history. The information can be easily incorporated into travel

activity inference algorithms. We briefly discussed ways for incorporating such in-

formation in the travel activity inference algorithms. Future studies can consider

including these dataset in the development of the new algorithms.
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