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Abstract

This thesis introduces computationally efficient, robust, and scalable calibration al-

gorithms for large-scale stochastic transportation simulators. Unlike a traditional

"black-box" calibration algorithm, a macroscopic analytical network model is em-
bedded through a metamodel simulation-based optimization (SO) framework. The
computational efficiency is achieved through the analytical network model, which
provides the algorithm with low-fidelity, analytical, differentiable, problem-specific
structural information and can be efficiently evaluated. The thesis starts with the

calibration of low-dimensional behavioral and supply parameters, it then addresses
a challenging high-dimensional origin-destination (OD) demand matrix calibration
problem, and finally enhances the OD demand calibration by taking advantage of
additional high-resolution traffic data. The proposed general calibration framework
is suitable to address a broad class of calibration problems and has the flexibility to

be extended to incorporate emerging data sources.
The proposed algorithms are first validated on synthetic networks and then tested

through a case study of a large-scale real-world network with 24,335 links and 11,345
nodes in the metropolitan area of Berlin, Germany. Case studies indicate that the
proposed calibration algorithms are computationally efficient, improve the quality

of solutions, and are robust to both the initial conditions and to the stochasticity

of the simulator, under a tight computational budget. Compared to a traditional
"black-box" method, the proposed method improves the computational efficiency by
an average of 30%, as measured by the total computational runtime, and simultane-
ously yields an average of 70% improvement in the quality of solutions, as measured

by its objective function estimates, for the OD demand calibration. Moreover, the
addition of intersection turning flows further enhances performance by improving the
fit to field data by an average of 20% (resp. 14%), as measured by the root mean
square normalized (RMSN) errors of traffic counts (resp. intersection turning flows).
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Chapter 1

Introduction

1.1 Motivation and Objective

Traffic congestion is a severe and growing problem worldwide, especially in urban

areas. One solution is to expand traffic infrastructure, but this requires public land,

sufficient funds, and costly labor, and this investment may even worsen the situation.

A more feasible and cost-effective solution is to deploy models to strategically manage

traffic over space and time. Transportation professionals and the research commu-

nity rely on these models, with different ranges of complexity, comprehensiveness,

and potential usefulness, to optimize traffic management strategies, evaluate poten-

tial impacts, and forecast future traffic conditions. Compared to analytical traffic

models, traffic simulation models describe complex traffic dynamics through detailed

representations of demand. The most detailed models represent the traffic system

at the scale of individual travelers. This comes at the expense of increased model

complexity and computational inefficiency. Barcel6 (2010) provides a review of the

state-of-the-art for traffic simulation models.

These high-resolution models typically have a large number (e.g., thousands) of

input parameters. The process of setting optimal values for the input parameters so

as to obtain a close match between the simulation-based performance metrics and the

field traffic measurements, such as flow, speed, and occupancy, is called calibration.

Calibration is a critical prerequisite for simulators prior to their application. System-

9



atically calibrating traffic simulators is important, yet mathematically difficult.

Designed to achieve asymptotic convergence, traditional calibration algorithms are

computationally inefficient general-purpose algorithms that require a large number of

simulation evaluations. On the one hand, these algorithms are generic and can be

applied to any simulation model (e.g., finance, biomechanics, and maritime). On the

other hand, they treat the simulator as a "black-box", capturing little to no structural

information of the underlying problem. Given very limited computational budgets

in practice, these algorithms are of little use, so there is a need for computationally

efficient calibration algorithms that can identify solutions with good performance at

low computational cost (i.e., within a few simulation evaluations).

In this thesis, we formulate the demand calibration of large-scale traffic simula-

tion models as a simulation-based optimization (SO) problem, and develop computa-

tionally efficient metamodel SO approaches. The metamodels embed transportation

problem-specific structural information derived from low-fidelity analytical network

models, which significantly boosts the computational efficiency and the quality of

the solutions of the calibration algorithms. In other words, the proposed methods

benefit from both the realistic representation of congested traffic systems provided

by traffic simulation models and from the computational tractability of analytical

traffic models. This thesis is structured as follows. Chapter 2 provides an extensive

overview of the state-of-the-art demand calibration algorithms and data sources and

introduces the SO framework, upon which the algorithms of the following chapters

are developed. Chapter 3 designs an algorithm for a low-dimensional route choice

behavioral parameter calibration problem, which is then further applied to calibrate

supply parameters in Chapter 4; then, we present in Chapter 5 a more challenging

high-dimensional origin-destination (OD) demand matrix calibration. In the end, the

proposed methodology is further extended to incorporate additional high-resolution

data sources in Chapter 6. As a first step, we demonstrate the extensibility of the

proposed methodology by exploring the possibility and benefits of integrating a new

data source, namely turning traffic flows at intersections.
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1.2 Contributions

This thesis formulates computationally efficient demand calibration algorithms for

high-resolution large-scale stochastic traffic simulation models. By doing so, It con-

tributes both theoretical and practical advances in transportation.

Theoretically, the broad family of metamodel SO methods have been used to effi-

ciently address large-scale urban traffic management problems while using inefficient

yet detailed stochastic high-resolution simulation models. This thesis extends meta-

model SO ideas to the field of model calibration. The main contributions of this thesis

are summarized as follows.

Computational efficiency We propose calibration algorithms that can identify

points with good performance within a few algorithmic iterations. Therefore,

they are computationally efficient algorithms that reflect well the computational

conditions under which calibration problems are addressed by both the trans-

portation research and practice communities. This is achieved by designing

algorithms that exploit the transportation-specific structure of the calibration

problem. More specifically, the proposed approach solves at every iteration of

the calibration algorithm, an analytical (i.e., not simulation-based) approximate

calibration problem. This analytical problem is solved by using information

from an analytical network model. The latter is computationally efficient. It is

formulated as a system of analytical and differentiable equations. Hence, it can

be evaluated with a variety of efficient solvers. This is key for the efficiency of

the calibration algorithms.

The proposed approach resorts to the use of a derivative-free algorithm. In other

words, it does not rely on estimates of the derivatives of the simulation-based

objective function. This further contributes to the efficiency of the algorithm.

Analytical network models The analytical network model, which provides problem-

specific structural information, is the key to improving computational efficiency

of the calibration algorithms. This contributes to a largely unresolved method-

ological challenge which is the formulation of tractable analytical measurement
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equations that link available surveillance field data to the simulator's calibra-

tion parameters. Specifically, we formulate analytical network models that are

simple, tractable, and specifically suited for each given calibration problem. In

Chapter 3, the analytical network model with endogenous assignment is formu-

lated based on a probabilistic queueing-based analytical traffic model, which is

then reduced to one with exogenous assignment in Chapter 4. In Chapter 5,

the analytical network model with exogenous assignment is further simplified to

a system of linear equations. In Chapter 6, the analytical network model with

endogenous assignment is formulated as a system of nonlinear equations.

Robustness The use of the analytical network models improves the robustness of the

calibration algorithms to both the quality of initial points and to the stochas-

ticity of the simulation models under various demand and supply scenarios.

Hence, the performance of the proposed algorithms is similar for various initial

points, as well as for various algorithmic runs with the same initial conditions.

Scalable algorithms The proposed algorithms are suitable for the efficient calibra-

tion of large-scale networks. This is achieved with the formulation of scalable

analytical network models. For example, the analytical network model in Chap-

ter 3 is defined as a system of nonlinear equations with a dimension that scales

linearly with the number of links. Moreover, the analytical network model in

Chapter 5 is formulated as a simple system of linear equations, the dimension

of which scales linearly with the number of links and independently of other

link attributes (e.g., link length) and of the dimension or structure of the OD

matrix.

Stochasticity The algorithms are simulation-based optimization algorithms that ac-

count for the simulator's stochasticity, making them suitable for use with either

probabilistic or deterministic models.

Capability of handling heterogeneous data The proposed calibration framework

is capable of handling multiple heterogeneous data inputs. This enables the pro-
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posed method to take advantage of additional high-resolution data types from

emerging technologies (e.g., automatic vehicle identification (AVI)) to address

the calibration problems more effectively. This further sheds light on the devel-

opment of enhanced calibration algorithms that leverage big data with higher

resolution in the future.

Added value for general-purpose SO algorithms Given the good performance

of the proposed algorithms under tight computational budgets, they can be

used as techniques to identify good initial solutions to launch or initialize tra-

ditional general-purpose calibration algorithms. They can serve to accelerate

the convergence of general-purpose algorithms. This is particularly important

when using the general-purpose algorithms under tight computational budgets,

which are by design sensitive to the initial conditions.

In more practical terms, the proposed computationally efficient calibration al-

gorithms enable the transportation community to more effectively and consistently

calibrate inefficient high-resolution stochastic traffic simulation models. The proposed

calibration algorithms are scalable, efficient, and robust compared to general-purpose

"black-box" calibration algorithms. The proposed methodology is validated on real

case studies. The scalability is demonstrated through case studies based on a large-

scale network and field data in the metropolitan area of Berlin, Germany. The net-

work includes 24,335 links and 11,345 nodes with traffic count data from 346 sensors.

The proposed algorithms are shown to be computationally efficient and applicable to

large-scale real scenarios.

1.3 Structure

This thesis focuses on the problem of offline demand calibration by dealing with

different types of input parameters, such as behavioral parameters and OD demand

matrices. It is structured around four journal papers. The outline of this thesis is

presented as follows and for each chapter reference to the publication is provided.
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Chapter 2 describes the context and the background of this research, reviews the

state-of-the-art in demand model calibration, and introduces the general meta-

model SO framework, which lays the foundation for the rest of this thesis.

Chapter 3 develops the metamodel SO demand calibration algorithm based on the

metamodel SO framework introduced in Section 2.3 and demonstrates it through

a low-dimensional route choice behavioral parameter calibration problem. The

methodology and the case studies presented in this chapter have been published

as:

Zhang, C., Osorio, C., and F16tter6d, G. (2017). Efficient calibration techniques

for large-scale traffic simulators. Transportation Research Part B: Methodolog-

ical, 97, 214-239.

Osorio, C., F16tter6d, G., and Zhang, C. (2015). A metamodel simulation-

based optimization approach for the efficient calibration of stochastic traffic

simulators. Transportation Research Procedia, 6, 213-223.

Chapter 4 further extends the algorithm developed in Chapter 3 to the calibration of

two parameters, namely flow capacity and space capacity, in the supply models.

The methodology and case studies shown in this chapter have been presented

and published as:

Zhang, C., Osorio, C., and F16tter6d, G. (2016). An efficient algorithm for

the supply calibration of large-scale stochastic traffic simulators. In Proceedings

of the Symposium of the European Association for Research in Transportation

(hEART).

Chapter 5 tackles the high-dimensional problem of calibrating OD demand ma-

trices. The general methodology presented in Section 3 is extended for this

calibration problem.

Chapter 6 enhances the OD demand calibration algorithm presented in Chapter 5

by leveraging several heterogeneous data sources including high-resolution emerg-
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ing data. As an example, intersection turning traffic flow information is consid-

ered and its added value is illustrated through a case study on a real network.

Chapter 7 summarizes the main conclusions and implications of this thesis, recom-

mends areas of future work on this topic, and provides additional insights on

related problems, .

Appendices provide supplementary information regarding the description of the SO

calibration algorithms, additional experimental results, and the implementation

details for Chapters 3 through 6.
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Chapter 2

Literature Review and Methodology

2.1 Background

Traffic models describe the dynamics of the transportation system through demand

and supply models, which interact with each other. Overall, they can be catego-

rized into: analytical models and simulation models. Analytical models are flow-

based methods that describe the interactions of traffic at an aggregate level, thus

are less expensive to evaluate but less realistic. Their applications are usually lim-

ited to small networks under strong assumptions (e.g., simplified travelers' behav-

iors). With the rapid evolution of transportation infrastructure and the introduc-

tion of next-generation mobility (e.g., autonomous vehicles), higher-resolution mod-

els, such as simulation models, are needed to capture the ever-increasing complex-

ity of the transportation system. In traffic simulation models, the demand models

estimate activity or trip patterns (i.e., origin-destination (OD)) and simulate the

behaviors of individual travelers (e.g., travel mode, route choice, car following, and

lane changing). On the other hand, supply models represent in detail the capac-

ity of network elements (e.g., link, node). Examples of traffic simulation models

are DynaMIT (Milkovits et al., 2010), MITSIMLab (Ben-Akiva et al., 2010), DY-

NASMART (Zhou and Mahmassani, 2006), Aimsun (Barcel6, 2010), VISSIM (PTV,

2008), and MATSim (Horni et al., 2016).

In this thesis, we use the MATSim traffic simulation model (Multi-Agent Trans-
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port Simulation). However, the methodology developed in this thesis is suitable

for a broad family of transportation simulation models. MATSim is a large-scale

multi-agent activity-based traffic simulation model. Each iteration of the simula-

tion in MATSim mimics the journeys of individual travelers (i.e., agents) given the

transportation infrastructure in one virtual day. Each agent has socio-demographic

attributes (e.g., age, gender, employment status, home location, and car availability)

and performs a series of activities and trips. By interacting with other travelers, each

traveler tries to make the best possible choices (e.g., varying departure time, travel

mode, and route choice) based on a utility function. The next day, travelers make

decisions aiming to achieve a better utility based on their travel experience from the

previous day. The simulation stops once the total utility cannot be further increased

in the day-to-day replanning process (i.e., the equilibrium state). Figure 2-1 shows

the simulation process in MATSim.

Calibration, which is to infer model inputs and parameters based on traffic data,

is the key to enable the successful application of high-resolution simulation models.

A complete calibration of traffic simulators involves estimating input parameters for

both demand models and supply models. In each single model embedded in the traffic

simulator, there are numerous input parameters to be determined. Supply calibration

determines parameters of supply models such as free-flow speed, jam density, and flow

capacity. Demand calibration includes, for instance, the estimation of behavioral pa-

Fbced Atributes, e.g., Utity Function At):
Home Location and Agents' Day acy Participation
Census Data Plans and bavel

Demand

Exit Condition:
Rlelaxed state,

L .e., equilibriurn

Share of Agents

(usualny 10%):
Tm, route, and
location coice

Figure 2-1: A typical cycle of MATSim simulation. Source: Horni et al. (2016)
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rameters and of OD demand matrices. The latter is needed for planning, monitoring,

and management of traffic. It contains the expected number of trips made during

a certain time period between origin zones and destination zones. The problem of

OD demand calibration is one of the main problems in modern traffic management

systems and intelligent transportation systems and it has received a large amount of

attention from researchers and practitioners alike. This thesis focuses on the topic of

demand calibration of simulation-based road transportation models.

The calibration of traffic simulation models is challenging. Traffic simulation

models are often stochastic and can involve sampling for every traveler from a variety

of disaggregate behavioral moddls (e.g., choice models such as departure time, mode,

route, lane-changing, etc.). Thus, a single run of the simulator involves drawing, for

each of the thousands or hundreds of thousands of travelers, from a set of behavioral

distributions. Given a sample of behavioral choices, a traffic flow model is used

to propagate the travelers throughout the network. Thus, the mapping between the

calibration input parameters and the objective function of a calibration problem is an

intricate function. In particular, the aforementioned mapping is usually non-convex

and contains multiple local optima. Thus, it is difficult to identify good solutions. The

stochasticity of the simulator requires the use of optimization algorithms that account

for the lack of both: (i) a closed-form expression of the objective function, and (ii)

exact function evaluations (since the functions can only be estimated via simulation).

Hence, the traditional approach to calibration has been the use of simulation-based

optimization (SO) algorithms.

This thesis focuses on the calibration of simulators that are computationally costly

to evaluate. The high computational cost can be due to: (i) the simulation of high

levels of demand along with a high-resolution representation of demand (e.g., dis-

aggregate representation of travelers), (ii) the simulation of a large-scale network,

(iii) the use of a stochastic simulator requiring the evaluation of numerous simulation

replications, and (iv) the desire to evaluate performance under equilibrium conditions,

which requires running sequentially multiple simulation-based assignment iterations

(Nagel and Fl6tter6d, 2012).
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2.2 State-of-the-art Demand Calibration

The calibration of traffic simulators has evolved rapidly over the past decade, fueled by

the need for applications from real-time traffic operations to long-term transportation

system planning. The problem of model calibration has been extensively studied

within the transportation community.

2.2.1 Methods for Demand Calibration

Many early studies on calibration resorted to computationally inefficient manual ad-

justment and trial-and-error enumeration based on engineering judgment or prior ex-

perience rather than a systematic approach (e.g., Chu et al., 2003; Hourdakis et al.,

2003; Gomes et al., 2004). In accordance with the types of transportation models

described in Section 2.1, the formulations and solution approaches of numerous ex-

isting algorithms for systematic model calibration mainly fall into two categories:

the analytical approach and the simulation-based approach. Balakrishna (2006) pro-

vides a survey of both analytical and simulation-based calibration problems and algo-

rithms. Additional reviews on demand calibration algorithms are available in Djukic

(2014); Zhang et al. (2017) and Tympakianaki (2018). In the literature, analytical

demand calibration problems are commonly referred to as demand estimation. Sem-

inal work on demand estimation includes Cascetta and Nguyen (1988); Yang et al.

(1992); Cascetta et al. (1993) and Yang (1995).

The recent research on demand calibration is summarized in Table 2.1. Each row

of the table corresponds to one paper. For each paper, the table indicates whether

the problem is formulated as: an OD demand calibration or a joint supply-demand

calibration problem, an online or an offline problem, and a time-dependent problem.

The table also indicates the scale of case studies, in terms of the number of nodes

and the number of links, of the largest and/or real-world network, as well as the di-

mension of the calibration vector. Table cells are left empty whenever the dimension

is not directly reported in the paper. All papers use field traffic counts, which are

the most widely available type of traffic data, for calibration. The last column of the
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table indicates the papers that consider additional types of field data. As indicated

in this table, there have been few studies that have used the algorithms to calibrate

large-scale network models. To the best of our knowledge, the work of Fldtter6d et al.

(2011) and of Verbas et al. (2011) considers the largest-scale network instances with

over 24,000 nodes and over 60,000 links. Regarding additional field data, various

new data types have been considered, such as the most popular link condition mea-

surements (e.g., speeds, densities) collected by conventional sensors and the emerging

higher-resolution data sources (e.g., subpath travel times, route choice probabilities)

collected by advanced transportation infrastructure.

Online calibration problems are commonly formulated based on state-space mod-

els with the state defined as the calibration parameters, which is then solved us-

ing Kalman filtering techniques (e.g., Antoniou, 2004; Bierlaire and Crittin, 2004;

Zhou and Mahmassani, 2007; Antoniou et al., 2007; Huang, 2010). This thesis fo-

cuses on the offline demand calibration of stochastic traffic simulators. The most

common approach to offline simulation-based OD demand calibration has been the

use of general-purpose SO algorithms, such as simultaneous perturbation stochastic

approximation (SPSA) (Spall, 1992) and genetic algorithms (GA) (Holland, 1975).

As a derivative-based SO algorithm, SPSA efficiently estimates first-order derivative

information through simultaneous perturbation of all the parameter vector and thus

requires only two computations of the objective function per algorithmic iteration. It

has been used, for instance, in Balakrishna et al. (2007); Vaze et al. (2009); Lee et al.

(2009); Cipriani et al. (2011); Ben-Akiva et al. (2012) and Nigro et al. (2018). The

transportation research community has also recently proposed various extensions of

the SPSA algorithm to enhance efficiency, including Cipriani et al. (2011); Antoniou et al.

(2015); Lu et al. (2015) and Tympakianaki et al. (2015). As a derivative-free random

search algorithm, GA is another commonly used general-purpose SO algorithm. It

has been used, for instance, in Kim et al. (2001); Stathopoulos and Tsekeris (2004);

Kattan and Abdulhai (2006) and Vaze et al. (2009) for addressing low-dimensional

calibration problems. Other derivative-free algorithms applied for calibration include

the Box-Cox algorithm (Box, 1965) used in Kunde (2002) and the SNOBFIT (Stable
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Table 2.1: Recent demand calibration literature overview

Kim et al. (2001)
Tavana (2001)
Zhou et al. (2003)
Antoniou (2004)
Bierlaire and Crittin (2004)
Jha et al. (2004)
Eisenman and List (2004)

Antoniou et al. (2006)

Kattan and Abdulhai (2006)

Nie (2006)
Zhou and Mahmassani (2006)
Balakrishna et al. (2007)
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Noisy Optimization by Branch and FIT) algorithm (Huyer and Neumaier, 2008) used

in Balakrishna et al. (2007).

The generality of these SO algorithms stems from the fact that they treat the

simulator as a "black-box". The main implication of this is that they are designed

to achieve asymptotic (i.e., large-sample size) convergence properties. They are not

designed to identify good solutions within a few algorithmic iterations, i.e., they are

not computationally efficient. The repeated evaluation of high-resolution simulation

models involves extremely costly computer runs, even though offline applications do

not require real-time computation. Nonetheless, they are used under very limited

computational budgets in practice. Given the high computational costs involved in

evaluating the simulation models, there is a need for calibration algorithms that can

identify solutions with good performance at low computational cost. It is also chal-

lenging to design SO algorithms that remain efficient for high-dimensional problems.

In particular, OD demand calibration problems are of high dimension, e.g., in the

order of thousands or tens of thousands. of decision variables. To sum up, there is a

pressing need for algorithms that can identify good solutions within a few algorith-

mic iterations and can be applied to calibrate high-resolution yet computationally

expensive simulation models of large-scale transportation networks.

There have been recent efforts to design scalable demand calibration algorithms.

One approach is based on the use of dimensionality reduction techniques, such as sen-

sitivity analysis (e.g., Ge et al., 2014; Ge and Menendez, 2014; Ciuffo and Azevedo,

2014; Ciuffo et al., 2015; Ge and Menendez, 2016; Zhong et al., 2016) and principal

component analysis (PCA) (e.g., Djukic, 2014; Prakash et al., 2017). To address the

scalability issues, Frederix et al. (2014) propose a spatial network decomposition ap-

proach for offline demand calibration.

General-purpose SO algorithms exploit limited, or no, problem-specific structural

information (e.g., at most they are based on numerical linearizations). Another line

of research to derive computationally efficient algorithms is to exploit the structure

of the underlying calibration problem. It aims to improve both scalability and com-

putational efficiency by embedding problem-specific structural information that is
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derived from an analytical network model. One recent work that does exploit prob-

lem structure within the calibration algorithm is that of F16tter6d et al. (2011). It

formulates and embeds within the algorithm an analytical approximation of the first-

order derivative of the simulator's measurement equation. This leads to significant

reductions in the computational requirements of the algorithm. This thesis follows

this line of research.

2.2.2 Data Sources for Demand Calibration

Conventional data sources such as link traffic counts collected by inductive loop de-

tectors and historical demand information estimated from census reports, possibly

outdated, have been the most common data sources used for demand calibration in

the theoretical literature and in practical applications. Traffic counts are typically

scarce (due to the limited number of loop detectors) and thus lead to a significantly

under-determined problem. In addition, traffic counts may fail to effectively dis-

cern between a congested and uncongested traffic state of a link, because of the

non-monotonic nature of the flow-density relationship. As a result, a good fit to

traffic counts does not necessarily indicate a high quality calibration. In search of a

physically plausible solution, researchers have continued to use additional informa-

tion (column "Additional field data" in Table 2.1) on link conditions, such as speeds,

travel times, and densities, to restrict or bind the solution space of the problem (i.e.,

reduce the number of local minima). Examples of such data sources included in de-

mand calibration are, for example, speeds (Balakrishna, 2006; Lee and Ozbay, 2009;

Cipriani et al., 2011; Frederix et al., 2011); link travel times (Ben-Akiva et al., 2012);

speeds and densities (Antoniou, 2004; Huang, 2010); and link travel times and den-

sities (Zhou et al., 2012). These additional measurements of link conditions can be

obtained from conventional detectors (e.g., inductive loop detectors) and they pro-

vide information regarding traffic congestion. They can be simply included in the

objective function (offline) or the measurement equations (online) of the calibration

problem and have shown significant added value to the effectiveness of calibration.

Demand calibration keeps evolving by taking advantage of both methodologi-

23



cal advances and additional data types from emerging technologies. The new gen-

eration of calibration algorithms will be supported by big data (e.g., social me-

dia data, cell-phone traces, and global positioning system (GPS) trajectories) with

higher resolution. Automatic vehicle identification (AVI) systems and automatic ve-

hicle location (AVL) systems are examples of emerging technologies for probe ve-

hicle re-identification and tracking. AVI technology, such as in-vehicle traffic sen-

sors (e.g., GPS, global system for mobile communications (GSM)), roadside cameras,

and radio frequency identification (RFID) tag/plate readers, allows the detection of

vehicles across multiple locations as they traverse the network. AVL technology,

such as electronic-toll collection devices, infrared cameras, Bluetooth, and Wi-Fi,

may also provide (partial) direct measurement of OD flows (over a fraction of OD

pairs), point-to-point travel times and traffic counts, route choice probabilities, ve-

hicle paths, and turning flows. Recent demand calibration work uses path travel

times, subpath travel times, route choice probabilities, turning flows, OD split frac-

tions, and/or OD flows collected by on-board mobile/GPS devices (e.g., Caceres et al.,

2007; Yamamoto et al., 2009; Cao et al., 2013; Nigro et al., 2018), Bluetooth/Wi-Fi

devices (e.g., Barcel6 et al., 2010, 2012; Djukic et al., 2015), roadside cameras (e.g.,

Asakura et al., 2000; Mishalani et al., 2002), and tag/plate readers (e.g., Dixon and Rilett,

2002; Eisenman and List, 2004; Zhou and Mahmassani, 2006; Antoniou et al., 2006;

Sun and Feng, 2011; Cipriani et al., 2014). Reviews of heterogeneous traffic data used

for calibration are presented in Djukic (2014) and Tympakianaki (2018). This the-

sis aims to develop computationally efficient algorithms for demand calibration that

leverage several heterogeneous data sources.

Conventional detectors, such as inductive loop detectors, collect aggregate infor-

mation regarding link conditions, such as traffic counts, speeds, and densities, for all

vehicles. However, their deployment is only limited to specific locations (i.e., a small

subset of links), which barely cover the entire network, due to high installation and

maintenance costs. Compared to conventional data types, advanced technologies,

such as GPS, roadside cameras, and RFID tag/plate readers, enable the collection of

more detailed data, such as path travel times, route choice probabilities, and turning
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flows. They contain information for the entire or partial journey and provide addi-

tional information on route choice behavior or individual mobility that can integrate

conventional link condition data. As a result, they can be useful in reducing the com-

plexity of the calibration problem. However, they may provide biased measurements

since only a fraction of traffic is captured (e.g., probe vehicles). In addition, they

suffer from issues such as limited network coverage, misidentification, and fears in

data protection and privacy (Djukic, 2014, Section 2.3.1). In terms of cost, roadside

video or image cameras are costly, which prevents them from large deployment. As

more cost-effective ways for advanced data collection, RFID, Bluetooth, and GPS just

require the installation of on-board electronic devices, although they currently cannot

effectively cover the entire transportation network due to the low market penetration

of required devices (e.g., smart mobile phones) (Herrera et al., 2010). The latter leads

to the current use of GSM data, such as the call detail records (CDR), by leverag-

ing the existing communication infrastructure for demand calibration (Iqbal et al.,

2014). GSM data are usually incomplete and are not as high-resolution as GPS data.

Nevertheless, these issues will be ameliorated as these technologies increasingly pen-

etrate the market in the near future. Mimbela and Klein (2000, Chapter 3) provide

a comprehensive discussion on the pros and cons of various vehicle detection and

surveillance technologies.

The methodology in this thesis is able to leverage additional high-resolution data

to enhance the performance of the calibration algorithm. Specifically, Chapter 6 of

this thesis uses turning traffic flows at intersections to enhance an SO calibration and

demonstrates that the enhanced calibration algorithm further improves the quality

of solutions, maintains the computational efficiency of the calibration algorithm, is

robust to both the initial points and the stochasticity of simulators, and is capable

of handling multiple available data sources. This sheds light on the development of

enhanced calibration frameworks for large-scale stochastic traffic simulation models

that leverage big data in the future.
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2.3 Metamodel Simulation-based Optimization (SO)

Framework

This section presents the general metamodel simulation-based optimization (SO)

framework, upon which the methodology of the following chapters is developed.

In this thesis, the offline demand calibration is formulated as an SO problem

and addressed using a metamodel SO approach. The metamodel SO calibration

algorithm is based on that of Osorio and Bierlaire (2013), which is in turn based on

the derivative-free trust-region (TR) algorithm of Conn et al. (2009).

The broad family of SO problems considered can be formulated as follows:

min f(x, z; 4). (2.1)
XEX

Problem (2.1) consists of two components: a simulation-based objective function

f, and a feasible region X. The objective function f is not available in closed-form,

it can only be estimated via simulation. It depends on: the calibration parameters

x (e.g., behavioral parameters, supply parameters, and demand matrices), endoge-

nous simulation variables z (e.g., link flows, travel times) and exogenous simulation

parameters 4 (e.g., network topology). The feasible region X is defined by a set of

constraints assumed analytical (rather than simulation-based), differentiable, and of

general-form (e.g., non-convex).

For a review of metamodel SO methods, we refer the reader to Osorio (Chap.

5, 2010). The main idea underlying metamodel SO algorithms is to address the

simulation-based Problem (2.1) by recursively solving a set of analytical problems.

At iteration k the SO algorithm solves an analytical problem with the following form:

min mk(X; 3k). (2.2)
xEX

The main idea is to construct, at every iteration, an analytical approximation (Mk

in (2.2)) of the simulation-based objective function (f in (2.1)) using a low fidelity
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analytical traffic model. The function mk is known as the metamodel. It is often

a parametric function, with the iteration-specific parameter vector, /k, being fitted

based on simulated observations.

For a given iteration k, the metamodel SO algorithm loops through two primary

parts as depicted in Figure 2-2: (1) metamodel fitting and (2) subproblem optimiza-

tion. In metamodel fitting (Step 1), coefficients of metamodel A3 are fitted based

on simulation observations obtained up until the current iteration. For instance,

to fit the parameters the algorithm of Osorio and Bierlaire (2013) solves a weighted

least squares problem that minimizes the distance between the simulated objective

function estimates and the metamodel predictions. A description of how the meta-

model parameters are fitted is given in Appendix C.3. Then, the algorithm identifies

new points to be simulated (Step 2). Figure 2-2 distinguishes between two types of

points, which correspond to Steps 2a and 2b, respectively. In Step 2a, the meta-

model mk(x) is used instead of the original simulation-based objective function (2.1)

to perform optimization, which we refer to as subproblem optimization, and to de-

rive a solution (known as a trial point). A second type of point to simulate are

model improvement points (Step 2b), which are identified based on general sampling

F. Fit metamodel Mk

2a. Optimize mk(x) 2b. Sampling strategy

Trial point Model improvement
point

Evaluate new point x

3. Simulate

New performance estimate: f(x)

4. Determine current iterate

IX k

Figure 2-2: Metamodel simulation-based optimization framework. Adapted from
Chong and Osorio (2018)
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strategies (e.g., uniformly and randomly sampling from the feasible region X). Step

3 simulates the newly identified point x to obtain a new performance estimate f(x)

and the new simulation observation is added to the prior simulation observations to

re-fit the metamodel parameters. Step 4 determines whether to update the current

iterate Xk (i.e., the best point found so far). These steps are iterated: as new points

are evaluated by the simulator, new simulation observations become available and the

accuracy of the metamodel can be improved, leading to trial points with improved

performance derived by the subproblem optimization. The aforementioned steps are

solved recursively until, for instance, the computational budget (e.g., the total num-

ber of simulation runs) is depleted. The focus of this thesis is on the formulation of

novel metamodels that can lead to trial points with good simulation-based perfor-

mance, and can do so under tight computational budgets (i.e., with a few simulation

observations).

In order to use this framework for calibration, the main challenge is to formulate

a metamodel that: (i) provides a good approximation of the mapping of the decision

vector (i.e., calibration parameters) to the objective function, and (ii) is also computa-

tionally efficient such that Problem (2.2), which needs to be solved at every iteration

of the algorithm, can be solved efficiently. The following chapters contribute by for-

mulating suitable metamodels that achieve these two goals for specific calibration

problems.

Metamodels can be classified as either: (i) functional models, which are general-

purpose functions (e.g., polynomials) suitable to approximate an arbitrary function

f; (ii) physical models, which are problem-specific functions. In other words, their

functional form depends on the specific problem.

We use the metamodel idea of Osorio and Bierlaire (2013) that combines func-

tional models and physical models. At iteration k the metamodel is defined by:

mk(x; /A) - flk,ofA(X) + q5(X; k)- (2.3)

Equation (2.3) defines mk as a linear combination of a general-purpose parametric
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function (e.g., a polynomial) denoted by # and a problem-specific approximation of

f (defined in (2.1)) denoted by fA. The role of the general-purpose function # is to

ensure asymptotic algorithmic properties and that of the problem-specific function

fA is to enable computational efficiency. The first scalar element of the coefficient

vector 3k is denoted by A3 ,o. Based on (2.3), the metamodel can be interpreted as a

problem-specific approximation (fA) which is corrected by a scaling factor (A3 ,o) and

an additive general-purpose correction term (0).

The problem-specific approximation (fA) is derived from an analytical macroscopic

network model. Hence, the analytical problem solved at every iteration is defined by:

min mk (x; /k) (2.4)
xX

h(x, f;q) 0, (2.5)

where h denotes the analytical macroscopic network model, with endogenous variables

x and i (e.g., expected link queue-lengths) and exogenous parameters 4 (e.g., network

topology). This problem differs from Problem (2.2) in the presence of an additional

set of constraints (2.5). This set of constraints represents the analytical macroscopic

network model used.

The key to achieving computational efficiency is in formulating a problem-specific

approximation fA that is a good approximation of the true, unknown, simulation-

based objective function f. Hence, for a given transportation problem the main

challenge is in the formulation of a suitable analytical network model (function h of

(2.5)) that satisfies the following requirements:

(i) It leads to a good analytical approximation (fA) of the simulation-based objec-

tive function (f);

(ii) It is a scalable analytical network model, such that large-scale networks can be

addressed;

(iii) It is computationally efficient to solve. Every iteration of the SO algorithm re-

quires solving Problem (2.4)-(2.5), which contains the analytical network model
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as a set of constraints. Hence, the analytical network model needs to be com-

putationally inexpensive to evaluate;

(iv) It maps the decision variables (i.e., calibration input parameter vector) to avail-

able traffic measurements, at least partially.

The broad family of metamodels defined by (2.3) has already been used to effi-

ciently address large-scale urban traffic management problems (e.g., Chen et al., 2012;

Osorio and Chong, 2015; Osorio and Nanduri, 2015a,b; Chong and Osorio, 2018; Osorio and Selvam,

2017; Osorio and Atastoy, 2017), behavioral and supply parameter calibration prob-

lems (Zhang et al., 2017, 2016a), and a high-dimensional OD demand calibration

problem (Zhang and Osorio, 2018) while using inefficient yet detailed stochastic mi-

croscopic traffic simulators. Metamodel approaches have also been used recently for

addressing various transportation problems, such as in Chen et al. (2016), where a

pricing optimization problem is addressed based on a large-scale mesoscopic network

model. As in traditional simulation literature, the metamodel of Chen et al. (2016)

is a general-purpose (also known as a functional) metamodel. This comes with the

advantage of being a general-purpose methodology, which can be directly applied to

a problem regardless of its formulation (e.g., the choice of the objective function, the

decision variables, the underlying network structure). Nonetheless, general-purpose

metamodels lack problem-specific structural information, and hence are not designed

to be computationally efficient.
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Chapter 3

Travel Behavioral Model Calibration

of Stochastic Traffic Simulators

The contents of this chapter were published as: Zhang, C., Osorio, C., and Flat-

ter6d, G. (2017). Efficient calibration techniques for large-scale traffic simulators.

Transportation Research Part B: Methodological, 97, 214-239.

3.1 Introduction

This chapter focuses on the demand calibration of simulation-based road transporta-

tion models and illustrates the use of the proposed algorithm with the calibration of

a single demand parameter (i.e., a route choice behavioral parameter). This chapter

formulates the calibration problem as a simulation-based optimization (SO) problem

and uses a metamodel SO algorithm. The chapter formulates a novel metamodel

suitable for demand calibration problems. The analytical metamodel combines in-

formation from the simulator and information from an analytical differentiable and

tractable network model that relates the calibration parameters to the simulation-

based objective function. The algorithm is first validated on a toy network and then

used to address a calibration problem for a large-scale Berlin metropolitan network.

The rest of this chapter is organized as follows. Section 3.2 presents the proposed

methodology, which is developed based on the metamodel SO framework in Sec-
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tion 2.3, followed by case studies on both a toy network and the Berlin metropolitan

network (Section 3.3). We conclude with a brief discussion (Section 3.4). Appendix A

details the SO algorithm. Appendix B.1 contains additional details of the numerical

results of Section 3.3.

3.2 Methodology

The general framework discussed in this chapter is suitable to address a broad class

of calibration problems (e.g., demand, supply, time-independent, time-dependent,

etc.). Section 3.2.1 formulates a general calibration problem. In order to provide a

more detailed formulation of the proposed framework, Section 3.2.2 focuses on one

specific calibration problem which is a time-independent one-dimensional demand

calibration problem. Section 3.2.2 formulates the calibration problem as a metamodel

SO problem. It then formulates a suitable metamodel to address the calibration

problem.

3.2.1 Problem Formulation

We consider the calibration of travel demand parameters from link flows. Origin-

destination (OD) pairs are trip production and attraction points connected by a

set of routes in an urban network. Let r and i index the simulation time intervals

of duration T and the network links, respectively, and let n = 1 ... N index the

individual trip-makers (i.e., simulated travelers or agents) in the system. Denoting

by Ani- E {0, 1} the stochastic binary indicator of traveler n crossing link i in time

interval T, the stochastic simulated link flow rate Fi,, on link i in time interval r is

N

F7, = 1 An& (3.1)
n=1
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with the expectation

E[Fi,r] = 1 nr, (3.2)
n=1

where 6ni, = E[An i] is the probability that traveler n crosses link i in time interval T

(Fl6tter6d and Bierlaire, 2009). This probability is in turn dependent on the network

conditions z, in particular travel times of the various routes, which in turn depend on

the travel behavior (e.g., departure time, route choice), requiring typically to solve

(3.2) iteratively. This is subsequently expressed by writing 6niT = 6,ji,(O; z) with 6 a

parameter vector of the underlying behavioral model. Here, 6 represents a general

calibration parameter vector. It can include, for instance, coefficients of attributes

of behavioral models, such as the travel time coefficient of a route choice model or

of a departure time choice model. In a transportation simulator that simulates the

movement of individual travelers (microscopic and often mesoscopic), these iterations

can be interpreted as a learning process over subsequent days, where in each day

some travelers update their travel decisions (typically route choice, in some models

also time and mode choice) based on the most recent network conditions z, followed

by a simulation of the corresponding vehicle flows through the network, which in turn

yields updated network conditions.

Let yi,, be the number of vehicles counted in the field on link i in time interval T.

A traditional nonlinear least squares formulation of the calibration problem is then

to minimize the following objective function:

f (6) = min (yi,, - E[Fi,7 (0; z)])2. (3.3)
iEI 

The summation considers all time intervals r and all links i that belong to the set

of links with measurements available, denoted by I. The feasible region E is defined

analytically, and often consists of simple bound constraints.

Formulation (3.3) illustrates the main challenges of the calibration problem de-

scribed in Section 2.1. The function E[Fi,,(O; z)] has no closed-form expression avail-
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able, since z (e.g., the travel times) and E[Fi,,(9; z)] (i.e., the expected link flows)

can only be estimated by evaluating the stochastic simulation model. Thus, Prob-

lem (3.3) cannot be solved using traditional analytical and deterministic optimization

approaches. The function E[Fi,,(6; z)] is a nonlinear function that describes intricate

spatial-temporal traffic phenomena in the stochastic traffic simulator and lacks sound

mathematical properties such as convexity.

The purpose of this chapter is to propose an efficient calibration algorithm for

such difficult problems. The main idea is to embed within the algorithm analytical

structural problem-specific information. In particular, we propose to formulate and

provide the algorithm with an analytical approximation of the relationship between

0 and E[Fi,,(9; z)]. We expect this analytical information to enable computational

efficiency.

Developing such an analytical approximation is a challenging problem because the

approximated mapping involves the highly nonlinear and stochastic network loading

map of path flows on network conditions, comprising in the simulation context all dif-

ficulties that come along with real traffic flow dynamics in urban networks (including,

e.g., multi-lane flows, spillbacks, flow interactions in intricate intersections).

3.2.2 Metamodel Formulation

The novel methodology proposed in this chapter is valid for a general class of cali-

bration problems. In order to illustrate and implement a specific instance of it, we

focus, hereafter, on: (i) a time-independent calibration problem (i.e., we consider a

single time interval), (ii) the calibration of a single behavioral parameter, a scalar 0,

which governs route choice. Recall, that Section 2.3 presented a general calibration

problem with a general calibration vector denoted by x. This section considers a

specific calibration problem. Hence, 6 now represents a scalar that denotes the travel

time coefficient of a route choice model.
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The specific SO problem is then formulated as:

f(0) = min (y - E[F(6; z)])2 (3.4)
iEI

6
L 0 _ OU, (3.5)

where 6
L (resp. 6 u) denotes a lower (resp. upper) bound. The purpose of the meta-

model is to approximate the simulation-based performance metric E[F(O; z)], which

denotes the expected flow on link i. Let mi,k denote the analytical approximation of

E[F(O; z)] at iteration k of the SO algorithm. Given an expression for mi,k, the SO

algorithm would then solve a series of analytical problems of the form:

min (yi - mT,k(0; A,3k)) 2  (3.6)
iEI

6 L 0  OU (3.7)

h(0, i;; q) = 0, (3.8)

where h denotes the analytical network model used to analytically approximate the

expected link demands.

The metamodel is formulated for link i and iteration k as:

mTi,k(; 3i,k) = /,i,oAi( 6 ) -+ A,i1 + 3 i,k,2 0 , (3.9)

where 6 is the (scalar) behavioral parameter, Aj(6) is the expected demand for link

i approximated by the analytical network model, and /
3 ,k is a three-dimensional

vector of metamodel parameters: !i,k = [!i,kO, /i,k,1, /i,k,2]. The metamodel can be

interpreted as the analytical approximation (Ai(6)) corrected by a scaling factor (/i,k,O)

and an additive linear-in-6 error term (represented by /i,k,1 + i,k,20).

We now present the analytical network model that will yield the analytical ap-

proximation of expected link demands (Aj(6)). The model is a probabilistic and

differentiable network model. We map the road network as a probabilistic queueing

network. Each link is modeled as a single queue. Hereafter, the terms "link" and
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"queue" are used interchangeably. We first introduce notation, we then present the

model formulation and comment on its derivation.

d, expected travel demand for OD pair s;

fi space capacity of queue i;

i length of link i (road length);

vi maximum speed on link i;

pi service rate for queue i;

7i expected external demand for queue i;

Ai expected demand for queue i;

t, expected travel time for queue i;

i expected number of vehicles in queue i;

pij turning probability from queue i to queue j;

tr expected travel time on route r;

fr expected demand on route r;

Psr probability that a traveler on OD pair s takes route r;

6 travel time coefficient of the route choice model;

S set of OD pairs;

Q set of queues;

R set of routes;

R, set of routes of OD pair s;

g9i set of routes that consecutively go through queues i and j;

7Wi set of routes that go through queue i;

T set of routes that start with queue i;

IF, set of links on route r.
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Equation (3.10a) describes how expected OD demand is mapped to expected route

demand through the route choice model. In other words, it defines the expected

route demand as a weighted sum of expected OD demands. Equation (3.10b) is the

route choice model. It is a multinomial logit (MNL) model with a single attribute:

expected route travel time. This is a simplification of the route choice model used in

the simulation models in the application in Section 3.3. For a detailed description of

the route choice models of the simulator, see Zhang et al. (2016b). Equation (3.10c)

defines the expected route travel time as the sum of expected link travel times.

Equation (3.10d) approximates the expected link travel time as the sum of ex-

pected free-flow travel time and expected delay. The analytical approximation model

used here is based on stochastic point queues, meaning that it does not capture

spillbacks and that all link outflow constraints result from the link's downstream

bottleneck capacity. Recall that the structural metamodel is, by design, a simplified
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approximation of the simulator, which may itself use space queues and capture spill-

backs. The expected time it takes a vehicle to traverse a spatial link with a point

queue downstream bottleneck is the sum of: (i) the time to join the point queue,

which corresponds to term - and represents a constant free-flow travel time, and (ii)
Vi

the expected delay or time needed to pass the bottleneck, which corresponds to term

n and is obtained by modeling the downstream bottleneck capacity as a distributed

quantity in order to capture variability in link discharge flows.

The expected delay is based on Little's law (Little, 2011, 1961), assuming an

infinite space capacity queue. The expected free-flow travel time is defined as the

travel time to travel the link at maximum speed. Equation (3.10e) approximates

the expected length of a given queue. It is obtained by considering the queue as an

isolated M/M/1/ queue, with finite space capacity f. A derivation of this expression

can be found in Appendix A of Osorio and Chong (2015). Equation (3.10f) defines pii,
which is known as the traffic intensity of the queue, as the ratio of expected demand

to expected supply. Equation (3.10g) is a flow conservation equation that relates

the expected demand for queue i (denoted by Ai) to the sum of expected external

demand to queue i (denoted by -yi) and expected demand arising from upstream

queues. The expected demand, A, is also referred to as the arrival rate of the queue.

The expected external demand, -yi, represents demand that arises from outside the

network, i.e., trips that start at queue i. The turning probability from queue i to

queue j (denoted by pij) is defined by Equation (3.10h) as the ratio of the expected

demand from i to j and the expected demand for queue i. The expected external

demand for queue i is defined in Equation (3.10i) as the sum of the expected demand

over all routes that start at queue i.

For the simulation model used in the application, the set of route alternatives

for a given OD pair is endogenous (i.e., it varies with 6 and across assignment it-

erations). However, for the purpose of tractability a fixed (i.e., exogenous) route

choice set is considered for the analytical model. For every OD pair, a set of 10

routes is constructed. Details on the derivation of this choice set are given in Section

2.3 of Zhang et al. (2016b). Since the analytical model does not capture congestion-

38



dependent route choice changes, these are captured by the polynomial component (<0

of Equation (2.3)) of the metamodel. The use of an endogenous, iteration-dependent,

route choice set could yield more accurate analytical results, but at a higher compu-

tational burden.

In summary, the analytical approximation of Ai(6) of Equation (3.9) is obtained

by evaluating the analytical network model defined by the system of nonlinear differ-

entiable Equations (3.10). The exogenous parameters of this system of equations are:

0, ds, ,Pi, -y , i, i, vi, S, Q, R, RS, G, 'Hi, Ti, and 'Fr. All other variables are endogenous

and are obtained when solving the above system of equations.

As is illustrated with the case studies of Section 3.3, the proposed model (system of

Equations (3.10)) works well for scenarios with various levels of congestion, including

congested scenarios. This is remarkable given that the model does not account for

the occurrence of spillbacks and their impact on the performance of upstream links.

Nonetheless, the model accounts for the impact of the link's finite space capacity

on the expected link delay. More specifically, the expected link travel time equation

(Equation (3.10d)) consists of the sum of expected link free-flow travel time and

expected link delay. The delay term is based on the approximation of the expected

number of vehicles on the link (Equation (3.10e)) which assumes that each link has a

finite space capacity (denoted fi). Hence, the impact of finite space capacity on the

expected delay is accounted for.

Equation (3.8) represents the system of Equations (3.10). The function h is of class

C . There exists a variety of algorithms to efficiently solve this differentiable system

of nonlinear equations. The dimension of the system of equations scales linearly with

the number of links in the network and linearly with the number of OD pairs. This

makes it a scalable model suitable for the calibration of large-scale networks.

This metamodel framework is not constrained to the use of the concrete ana-

lytical queueing-theoretic network model (3.10) but is compatible with a variety of

other analytical network models. We consider this flexibility a strength of the pro-

posed framework. The proposed analytical model is particularly efficient, since its

evaluation consists of solving a system of nonlinear equations, the dimensionality of
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which scales linearly with the number of links in the network and linearly with the

number of OD pairs. This makes it a scalable model suitable for the calibration

of large-scale networks. The proposed framework can be used with other analytical

network models. Ongoing work studies the use of traffic-theoretic network loading

models for simulation-based optimization, such as the model of Osorio and F16tter6d

(2014), which is a stochastic model consistent with Newell's deterministic simplified

theory of kinematic waves (Newell, 1993). The use of approximate expressions of lo-

cal, and path marginal cost functions (e.g., Ghali and Smith, 1995; Shen et al., 2007;

Qian and Zhang, 2011; Lu et al., 2013) could be of interest. The main challenge in us-

ing more traditional traffic-theoretic models is to develop formulations that both: (i)

have endogenous user-equilibrium assignment, and (ii) are computationally efficient

for large-scale networks.

The modeling of route choice sets is in general an unresolved problem; this is

because route choice sets are not directly observable (e.g., Frejinger et al., 2009;

Fl6tter6d and Bierlaire, 2013). Hence we consider it adequate to deploy the simplest

possible approach to route choice set generation (where the choice set is exogenous)

and to rely on the general-purpose polynomial term in the metamodel to absorb the

resulting modeling error.

We briefly describe how the exogenous route choice set is derived. A more de-

tailed description is provided in Section 2.3 of Zhang et al. (2016b). The exogenous

set consists of 10 route alternatives per OD pair. We consider different behavioral

parameter values. For a given value, we run a set of sequential assignment iterations,

and extract the set of routes used by the simulator in the last assignment iteration.

We group the set of routes extracted from the various behavioral parameter values.

Then for a given OD pair, the final set of 10 routes is determined by selecting the set

(of 10 routes) with maximal distance-based overlap with the entire set of extracted

routes. For a given network, this process is carried out once, prior to calibration. The

route choice set is then kept fixed throughout the entire calibration process.

The use of an exogenous choice set contributes to the computational efficiency of

the proposed approach. As will be discussed in Section 3.3.3, for the Berlin metropoli-
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tan network, the analytical model with exogenous route choice set yields an accurate

approximation of the form of the simulation-based objective function. This highlights

the negligible effect that the exogenous route choice set has on the analytical model's

accuracy. Nonetheless, this observation is network- and problem-specific. A discus-

sion on extensions of this framework to allow for the use of endogenous route choice

sets is given in Section 3.4.

3.3 Case Studies

3.3.1 Experimental Design

We apply the proposed approach in two case studies: a hypothetical toy network

and a Berlin metropolitan network. The simulator used is MATSim (Horni et al.,

2016). The main purpose of both case studies is to evaluate the added value of

embedding within the calibration algorithm the problem-specific analytical structural

information, which is provided by the analytical network model. For each case study,

we compare the performance of two calibration approaches that only differ in the use

(or not) of the analytical network model. All other algorithmic details are identical.

The first approach is the proposed approach (denoted by algorithm Am), which uses

the metamodel defined by (3.9). The second approach (denoted by algorithm A#)

considers a metamodel defined for iteration k and link i as:

/i,k(O; i,k) - i,k,1 + /i,k,2 0 . (3.11)

This metamodel differs from that of (3.9) in the absence of the macroscopic ana-

lytical network model. In other words, compared to Am, AO uses the same general-

purpose metamodel component but has no problem-specific metamodel component.

The network topology characteristics of both networks are summarized in Ta-

ble 3.1. The main details of the experimental design for each network are displayed

in Table 3.2. The first row of Table 3.2 considers the lower and upper bounds for 6,

this defines the feasible region, 8. For the toy network, we consider a set of hypothet-

41



Toy network Berlin network
Number of links 6 24335
Number of nodes 6 11345
Number of OD pairs 1 3635
Expected demand (veh/hr) 1400 172900

Table 3.1: Network attributes

Toy network Berlin network

Bounds for 9 values (1/hr), E0L, u] -60,0] [-60,0]
True 9 values (1/hr), 9* {-5, -20, -55} N.A.
Initial 9 values (1/hr), Oo {0, -40, -60} {0, -40, -60}
Computational budget 30 20
Simulation replications 5 10
Simulation assignment iterations 50 100
Total simulation assignment 7500 20000
iteration per algorithmic run

Table 3.2: Experimental design

ical 9 values, based on which we simulate synthetic traffic counts. The second row of

the table displays these hypothetical values, which we refer to as the true values and

denote by 9*. For the Berlin network, 9* is unknown. Recall that 0 is the travel time

coefficient of the route choice model. Hence its unit is the inverse of the unit of travel

time. In other words, the concrete value of 9 depends on the time unit used for travel

time. For both networks, the travel times are computed in hours, hence the unit of 0

is hr- 1 .

For a given 9*, we initialize the SO algorithms with three different initial points,

denoted by 00. The initial values used are displayed in row 3. Therefore, in total there

are 9 different experiments for the toy network and 3 different experiments for the

Berlin network. For each experiment, we run each SO algorithm (Am or AO) 3 times.

The need to run an algorithm multiple times for a given experiment is due to the

stochastic nature of the traffic simulator. Each algorithmic run consists of a maximum

number of points (9 values) to be evaluated. This is known as the computational

budget or the sampling budget (displayed in row 4). Once this computational budget

is reached, the algorithm is terminated.

For a given 9 value, an estimate of the simulation-based objective function (Equa-
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tion (3.4)) is obtained by averaging over a set of independent simulation replications.

The number of independent simulation replications is displayed in row 5. Each sim-

ulation replication consists of a sequential set of simulation assignment iterations

(displayed in row 6). For a given simulation replication, the estimate of E[F(6; z)] is

obtained by averaging the observations from the last 5 assignment iterations. Details

on how the assignment iterations are initialized are given in Zhang et al. (2016b).

The last row of the table indicates the total number of simulation assignment itera-

tions per SO algorithmic run. For example, for the toy network, the computation of

a single experiment (i.e., one run of the algorithm) requires a total of 7500 simulation

assignment iterations: the performance of a total of 30 6 values are estimated, each

estimation involves 5 independent replications, each of which requires 50 sequential

assignment iterations. This leads to a total of 30*5*50=z7500 simulation assignment

iterations. Similarly, for the Berlin network each SO run involves 20*10*100=20000

simulation assignment iterations. In other words, we allow for a tight computational

budget, which is defined as a small number of iterations of the calibration algorithm.

This number is 30 (resp. 20) for the toy (resp. Berlin) network. Each iteration of

the calibration algorithm involves an estimation of the simulation-based optimization

objective function (f of Equation (3.4)). For each estimation, we carry out a set of se-

quential assignment iterations. Hence, each estimation involves calling the simulator

5*50=250 (resp. 10*100=1000) times.

Table 3.3 displays the runtime statistics considering the 9 (resp. 3) experiments

for the toy (resp. Berlin) network. For the toy network, a single assignment iteration

takes an average of 0.06 minutes, leading to an average of 3 minutes per SO iteration

and 90 minutes per SO algorithmic run (i.e., one experiment). For the Berlin network

an assignment iteration averages 1.2 minutes, an SO iteration 120 minutes, and an

algorithmic run 2400 minutes (i.e., 40 hours). The toy network experiments are

carried out on a standard laptop with a 4-core Intel i7-3740QM processor and 8GB

RAM. The Berlin network experiments are carried out on a server with a 40-core

Intel Xeon E5-2660 processor and 64GB RAM.
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Toy network Berlin network
Average runtime per assignment iteration 0.06 1.2
Average runtime per SO iteration 3 120
Average runtime per experiment 90 2400

Table 3.3: Simulation runtime statistics in minutes

3.3.2 Toy Network

Network Attributes

For the hypothetical toy network, we pick a set of true 0 values, 6* (row 2 of Table 3.2).

We use these values to generate the "real" traffic counts via simulation. The topology

of the network is displayed in Figure 3-1. Each link consists of a single lane road.

Table C.1 of Appendix C details the link properties.

The network has one OD pair (node 1 to node 6) and an expected demand of 1400

vehicles per hour. There are two alternative routes connecting the OD pair, a route

to the north which goes through node 3 and a route to the south which goes through

node 4. The northern route has a signal controlled intersection at node 3, whereas

the southern route is un-signalized. The traffic signal control at node 3 is green for

75 seconds out of the 100 seconds cycle time. The free-flow travel time on the route

to the north (resp. south) is approximately 14.9 (resp. 15.5) minutes. The free-flow

travel time on the route to the north is shorter and hence it is preferred when there is

no congestion. As congestion increases, the route to the south becomes increasingly

attractive.

u2 3 5 

4

Figure 3-1: Toy network topology
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Results

We first consider the experiment with 0* = -5hr 1 . Figure 3-2 displays the simulation-

based objective function and the objective function approximation provided by the

analytical traffic model (Equations (3.10)). The simulation-based objective function

is defined by Equation (3.4). The simulation-based estimates are displayed as blue

circles. For a given point, the estimate is based on 5 simulation replications. The red

error bars displayed are 95% confidence intervals. The black curve is the analytically

approximated objective function, which is defined as:

S (yi - A(0)) 2  (3.12)
iEI

In other words, the analytical approximation is obtained by replacing the simulation-

based metric (expected link flow) with the analytical metric. The black curve appears

an excellent approximation of the simulation-based objective function.

Figure 3-2 also displays a green range for 0. This range is a set of 0 values that have

statistically equivalent objective function values to that of 0*. If an SO method yields

6 values within this range, we consider it to have converged. Statistical equivalence

is tested with a paired t-test where the null hypothesis assumes equal expectations,

while the alternative hypothesis assumes unequal expectations. For this experiment,

the equivalent region is [-6, -4] (in units hr-).

Figures 3-3 to 3-5 each considers different initial points, 00. The x-axis displays

the iteration of the SO algorithm, and the y-axis displays the current iterate (i.e.,

the best 0 value found so far by the algorithm). The solid black lines correspond to

the proposed method, Am, while the dashed red lines correspond to the benchmark

method, A#. Recall that the only difference in the methods is their metamodel

formulation, all other algorithmic details are identical. These figures also display the

aforementioned equivalent region (in green).

Note that in Figure 3-5, 2 of the red curves overlap from iteration 1 to iteration

14, this occurs for the right-most red curve. For all 3 figures (3-3 to 3-5), the following

observations hold.
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" All Am and all A0 runs converge.

" All Am runs converge faster than the A0 runs.

We now consider a true value of 9* = -20hr'. The different objective functions

are displayed in Figure 3-6. Again, the analytical approximation of the objective

function provided by the analytical network model (Equations (3.10)) is an excellent

approximation of its simulation-based counterpart. The statistically equivalent region

for 9 is [-21, -18] (in units hr-1). The corresponding experimental results are shown

in Figures 3-7 to 3-9. Note that in Figure 3-9, all 3 red curves overlap from iteration 1
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to iteration 8. For Figures 3-7 to 3-9, all Am runs converge, while 7 out of 9 A# runs

converge. Of the 2 A0 runs that do not converge, both had current iterates within

the green region, yet exited the region. For the converged runs, convergence tends to

be faster for Am than for A0.

The different objective functions for the experiments with 9* = -55hr- 1 are dis-

played in Figure 3-10. As before, the analytical objective function approximation is

almost identical to the simulation-based objective function. The statistically equiva-

lent region for 9 is [-57, -54] (in units hr- 1). The results for these experiments are

displayed in Figures 3-11 to 3-13.
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Note that in Figure 3-11, 2 of the red curves overlap from iteration 1 to iteration

11, this occurs for the left-most red curve. As with the previous experiments, all Am

runs converge. Eight of the nine A0 runs also converge.

From the perspective of the values proposed by the algorithms for the calibra-

tion parameter, 9, both SO methods yield values with good performance and do so

within a few algorithmic iterations. Overall the performance of both methods is sim-

ilar and good. Overall, Am identifies good solutions faster than A0, and converges

systematically.

Let us compare the performance of both methods in terms of their computational
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efficiency. Table 3.4 considers all the above experiments. It displays for each experi-

ment and each method, the number of algorithmic iterations until convergence (i.e.,

the first time the equivalent region is entered and not exited thereafter). If a method

upon termination of the algorithm (i.e., iteration 30) has not converged, then we

indicate a value equal to the computational budget (i.e., the maximum number of it-

erations) of 30. This underestimates the convergence statistics for the non-converged

experiments.

This table indicates that for Am and for 0* = -5hr 1 , 8 of the 9 experiments

converge after 1 iteration. For 0* = -20hr-1, this happens 6 out of 9 times, and

for 0* = -55hr 1 , this happens 8 out of 9 times. At the first algorithmic iteration,

only a single objective function estimate is available (the estimate obtained at the

initial value 00). Hence, this instantaneous convergence is due to the information

provided by the analytical network model. When considering all true values (i.e.,

all 27 experiments), Am converges on average at iteration 2.7, and in the worst case

at iteration 18. Algorithm A# converges on average at iteration 14.4 (this average

includes the non-converged cases, where we enter an iteration value of 30), at best at

iteration 6, and does not converge for 3 experiments. The corresponding numerical

values of the solutions derived by each method for each experiment are presented in

Table B.1 of Appendix B.

Table 3.5 analyzes the convergence of the methods in terms of their simulation

Am AO
0= 0 1 1 1 10 6 14

0* = -5 0o = -40 1 13 1 13 22 11
00 = -60 1 1 1 11 27 15
00 = 0 1 1 1 22 8 10

0* = -20 o = -40 8 6 1 7 30 10
_o = -60 1 18 1 17 11 30
00 = 0 1 1 5 30 12 14

0* = -55 0o = -40 1 1 1 11 9 8
0= -60 1 1 1 9 13 8

Table 3.4: Number of algorithmic iterations until convergence for the toy network
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00 = 0 3 3 3 30 18 42

0* = -5 00 = -40 3 39 3 39 66 33
6 o = - 6 0  3 3 3 33 81 45

0 = 0 3 3 3 66 24 30
0* = -20 6O = -40 24 18 3 21 90 30

_ _ = - 6 0  3 54 3 51 33 90

00 = 0 3 3 15 90 36 42
0*= -55 0o= - 4 0  3 3 3 33 27 24

___ = -60 3 3 3 27 39 24

Table 3.5: Simulation runtimes until convergence for the toy network (minutes)

runtimes in minutes until convergence. As in the above analysis, if a method has

not converged, we indicate the total simulation runtime used until the algorithm was

terminated. This underestimates the runtime needed until convergence. The method

Am converges on average within 8 minutes of simulation, while A# converges on

average in 43 minutes. By providing the algorithm with the analytical information,

we can converge with an average 81.4% reduction in simulation runtime. This table

highlights the computational efficiencies that are achieved when using Am.

3.3.3 Berlin Metropolitan Network

Network Attributes

Figure 3-14 displays the metropolitan Berlin network topology, as modeled in the

simulator. As a reference, we also display here the road map of the correspond-

ing network (Figure 3-15). This network represents the metropolitan area of Berlin,

Germany. The area includes the city of Berlin and the broader federal state of Bran-

denburg. It consists of 24,335 uni-directional links, 11,345 nodes, and 3,635 OD

pairs. Real (i.e., field) traffic counts from sensors on 346 links are available per hour

for 24 hours collected by the Traffic Management Center (in German: Verkehrsman-

agementzentrale). We focus on the morning peak hour: 8-9 AM, during which the

expected demand is 172,900 vehicles. The model considers automobile traffic only.

For more data and model details, see Ziemke et al. (page 120, Section "Counts", 2015)
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Figure 3-14: Metropolitan Berlin simula-

tion network

Figure 3-15: Metropolitan Berlin
road network. Map source:
http://goo.gl/2kLXzj, down-loaded
on 06/06/2017

and Ziemke (pages 57-59, 2013).

Results

Figure 3-16 displays the simulation-based objective function estimates with corre-

sponding 95% confidence intervals obtained from 20 simulation replications. As for

the toy network, the green region represents the range of statistically equivalent 9

values, which is [-6, -1] (in units hr- 1). Based on the finite and small set of sim-

ulated points, the 9 value at which the minimum objective function is obtained is

near -2hr-1. The analytical approximation of the objective function derived from

the analytical network model (Equations (3.10)) is displayed in Figure 3-17. Both

functions have similar form and seem to be non-convex. Note that these figures have

different y-axis limits. Hence, the analytical function closely approximates the form

of the simulation-based function, but is not scaled properly. The scaling is corrected

by the metamodel (term 1
3 ,k,o of Equation (3.9)). The minimum of the analytical

objective function is obtained at -5hr-1, which is in the green statistically equivalent

region.

We proceed as for the toy network: we run experiments for 3 different initial values

0. For each initial value, we plot the current iterate (i.e., best 9 value identified so
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far by the algorithm) versus algorithmic iteration. We do this for both SO methods:

Am and A0. The results are presented in Figures 3-18, 3-19 and 3-20.

In these figures, some curves overlap: in Figure 3-18, two dashed red lines overlap

at 9 = Ohr- 1 for all iterations; in Figure 3-19, two solid black lines overlap at 9 =

-4.7hr-'.

In Figure 3-18, all Am runs converge, 1 of 3 A0 runs converges, the remaining 2

stay at the initial 9 value of Ohr 1 . In Figure 3-19, all Am runs converge, 1 of the

3 A0 runs converges, the remaining 2 reach and stay at the lower bound value for 9

equal to Ohr 1 . In Figure 3-20, all Am runs converge, none of the A0 runs converge,

2 reach the lower bound and the third stays at the value of -0.4hr- 1 .

For all 3 figures, the following observations hold.

" All Am runs converge. Seven of the nine runs converge at the first itera-

tion. This is thanks to the analytical network model closely approximating

the simulation-based objective function.

" Only 2 of the 9 A0 runs converge. Of the non-converged runs, two stay at the

initial value of 9 = Ohr 1 (Figure 3-18), 4 leave the initial value, reach and stay

at the upper bound value of 9 = Ohr- 1 (Figures 3-19 and 3-20).

* When comparing the converged runs: all Am runs converge faster than the A0

runs.
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We analyze the convergence statistics of the two methods. We proceed as for

the toy network. Table 3.6 considers all the above Berlin experiments. It displays

for each experiment and each method, the number of iterations until convergence

(i.e., the first time the equivalent region is entered and not exited thereafter). If a

method has not converged before termination of the algorithm (i.e., iteration 20), we

indicate a value equal to the computational budget, which is 20. This underestimates

the convergence statistics for the non-converged experiments. This table indicates

that method Am converges at iteration 1 for 7 of the 9 experiments. On average it

converges at iteration 2.4 and at worst at iteration 8. Method AO converges only

2 of the 9 runs. For those two converged experiments, convergence is achieved at

iterations 8 and 11. The corresponding numerical values of the solutions derived by
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Am A$
0o = 0 1 7 1 20 20 8

00 = -40 1 1 8 20 20 11
00 = -60 1 1 1 20 20 20

Table 3.6: Number of iterations until convergence for the Berlin network

each method for each experiment are presented in Table B.2 of Appendix B.

The corresponding statistics in terms of simulation runtimes are displayed in Ta-

ble 3.7. If a given method has not converged upon termination of the algorithm,

we indicate the total simulation runtime upon termination (i.e., 2400 minutes). As

before, this underestimates convergence runtime for method A0 which often does not

converge. On average method Am converges after 293 minutes (i.e., 4.9 hours), while

A# does so within 2120 minutes (i.e., 35.3 hours). Method Am achieves an average

86.2% reduction in runtime until convergence, which corresponds in this case study

to average savings of 30.4 hours of simulation per experiment.

We now compare the performance of the best solutions proposed by each method

with the performance of the value currently used in the Berlin model, the latter

was obtained from prior calibration efforts (Ziemke et al., 2015). Let 0 denote this

pre-calibrated value -6hr-.

Recall, that for a given initial value, 00, we ran each method 3 times, this leads to

3 solutions. We now compare the performance of these solutions with that of 0. In

order to evaluate the performance of a given 0 value, we ran 50 simulation replications

and obtained 50 observations of the objective function. More specifically, for a given

0 value, we ran 100 assignment iterations to obtain 1 objective function estimate. We

repeated this process 50 times to obtain 50 independent simulation observations (or

Am A#
00 = 0 120 840 120 2400 2400 960

00 = -40 120 120 960 2400 2400 1320
Oo = -60 120 120 120 2400 2400 2400

Table 3.7: Simulation runtimes until convergence for the Berlin network (minutes)
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estimates).

Figure 3-21 displays the cumulative distribution function (cdf) of these 50 obser-

vations. Each curve corresponds to a given 6 value. The solid black (resp. dashed red)

curves correspond to values derived by Am (resp. AO). The dotted black curve corre-

sponds to the pre-calibrated value 6. The more a curve is shifted to the left, the lower

the objective function estimates, i.e., the better its performance. More specifically,

for a given x-value, the corresponding y-value on the cdf curve gives the proportion

of observations (out of the 50) that have objective function values smaller than x.

Figure 3-21 presents the solutions obtained with an initial value of 00 = Ohr- 1 . 2 of

'the 3 runs of A# yield the same solution (i.e., the algorith-m considers for all iterations

the initial value, 60 = Ohr-1, as the best value). Thus, only 2 dashed red curves are

visible. The right-most dashed red curve represents the 2 identical solutions (i.e.,

6 = Ohr- 1 ). All 3 values derived by Am outperform the 3 values obtained by AO.

They also outperform the pre-calibrated value.

Figure 3-22 displays the cdf of each solution obtained when initializing the al-

gorithms with 60 = -40hr- 1 . Here as well, 2 of the 3 runs of A# yield the same

solution of Ohr- 1. Hence, only 2 dashed red curves are visible, one of which repre-

sents 2 identical solutions. The proposed method Am also yields 2 solutions that

are similar (both are approximately -4.7hr 1 ). The same conclusions as above hold:

all solutions derived by Am outperform all solutions derived by AO and outperform

the pre-calibrated value. Figure 3-23 displays the cdf of each solution obtained when

initializing the algorithms with 00 = -60hr 1 . The method AO yields a solution of

Ohr- 1 for 2 of the 3 runs. Hence, only 2 distinct dashed red curves are visible. For

this figure, the same conclusions as above hold.

For each initial value 60 and each method, we choose only one proposed solution

which is defined as that with the smallest objective function average (the average

over the 50 simulation replications). In Table 3.8, we give the numerical values of

the best proposed solutions for the three sets of experiments. Figure 3-24 presents

the cdf of the best solutions for all three initial values. It also displays the cdf of the

pre-calibrated value and of the value obtained by solving the problem with only the
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analytical network model (i.e., no simulation). The solid black curves correspond to

Am solutions. Only two curves appear, because Am yields the same solution (9 =

-4.7hr- 1) for two initial values (0 = -40hr-1 or 00 = -60hr- 1 ). Hence, the left-most

solid black curve represents two solutions. The dashed red curves correspond to the

three solutions of A0. The dash-dotted blue curve corresponds to the solution of the

analytical traffic model (i.e., no simulation) and the dotted black curve corresponds

to the pre-calibrated value.

Figure 3-24 indicates that the solutions proposed by Am, for each of the three

initial values, outperform all 3 solutions proposed by A0. It also outperforms the
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S

Am AO
00 = 0 -2.1 -1.1

00 = -40 -4.7 -2.8
00 = -60 -4.7 -0.4

Table 3.8: Best solution of each method and each initial 6 value

pre-calibrated value. This figure also shows that the analytical solution outperforms

all AO solutions. This indicates the added value of the analytical network model

information. All Am solutions outperform the analytical solution. This indicates the

value of combining analytical and simulation-based information, rather than merely

solving the problem with an analytical-only approach.

Recall that the traffic field data consists of traffic counts from sensors on 346 links.

Figure 3-25 compares the performance of the best Am solution (6 = -4.7hr-I, the left-

most curve in Figure 3-24) and the pre-calibrated solution. For each solution and each

sensor location, we compute the relative error of the count: (y -E[F(O; z)])/yj, where

yi represents the field count at location i and E[F(6; z)] represents the simulated

estimate of the count at that location. Figure 3-25 displays two curves, one for each

solution (Am or pre-calibrated). The curve is the cumulative distribution function

of the relative error. The distribution is over all 346 links. Let us illustrate how to

interpret these curves. The solid black curve corresponds to method Am. A vertical

line through x = 0 intersects the Am curve at y = 0.17. This means that under the

Am solution, 17% of the sensor locations yield a negative relative difference, i.e., they

overestimate 17% of the counts. The pre-calibrated curve intersects this vertical line

at y = 0.07, meaning that 7% of the locations overestimate the counts. Similarly, a

horizontal line through y = 0.6 intersects the Am curve at x = 0.35. This indicates

that 60% of the relative errors are below 0.35. This horizontal line intersects the

pre-calibrated curve at x = 0.44, which indicates that 60% of the relative errors are

below x = 0.44. From this figure we can deduce that 31% of the counts have a relative

error within [-0.2, 0.2] under the Am value, while this is the case of only 21% of the

counts under the pre-calibrated value.

We now carry out a more detailed analysis of the performance of the different
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points within the green equivalent region. Figure 3-26 considers the equivalent region

[-6, -1] (in units hr- 1). It displays a more detailed simulation-based estimate of

the objective function. The function is now sampled with a step size of 0.25 (i.e., a

smaller step size than in Figure 3-16). Each estimate is obtained as an average over

30 simulation replications. Its corresponding 95% confidence interval is displayed.

Within this interval [-6, -1] (in units hr- 1), we compute a new green equivalent

region. We identify the point with the smallest objective function estimate. This

is 0 = -4.75hr 1 . We conduct for each point, a paired t-test to test whether its

performance (i.e., objective function value) is equivalent to that of 6. If two adjacent

points have statistically equivalent performahce to that of 0, then both points belong

to the new equivalent region. The resulting green region is now defined (in units hr- 1 )

as: [-5, -4.5], [-3.75, -2.75], and [-2.25, -2]. This new region is displayed in green

in Figure 3-26.

Figure 3-26 indicates along the x-axis the location of: the 9 solutions proposed

by Am (all 9 solutions fall in the initial green equivalent region of [-6, -1] (in units

hr-1); they are represented by black crosses), 2 solutions proposed by A# (2 solutions

fall in [-6, -1] (in units hr- 1 ); they are represented by red squares), the pre-calibrated

value d (represented by a black triangle), and the solution obtained using only the

analytical traffic model (i.e., no simulation-based optimization; it is represented by a
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blue asterisk). Note that 3 of the Am solutions overlap at the value -4.7hr-1, hence

they are displayed as stacked upon each other on the x-axis.

Considering this more accurate estimation of the equivalent region, we observe

that 5 of the 9 solutions of Am fall within this region, while only 1 solution of A# is

in the region. The solution using only the analytical traffic model also falls in this

region.

The scenarios of Section 3.3 all consider high levels of congestion. For instance,

in the toy network the expected demand is 1400 veh/hr, and the expected supply of

links 1 and 6 is 1200 veh/hr, giving a ratio of expected demand to expected supply of

1.17. The analytical model describes the within link build-up of congestion but does

not capture the occurrence and impact of vehicular spillbacks. Nonetheless, as shown

in Figures 3-2, 3-6 and 3-10, it provides a good approximation of the simulation-

based objective function. The Berlin network consists of a set of links with varying

levels of congestion: ranging from uncongested to highly congested. For instance, the

city center contains approximately 7% of links with a ratio of expected demand to

expected supply that is greater than 1. For the entire metropolitan network, 2% of

the links have a ratio greater than 1.

3.4 Conclusions and Discussion

In this chapter, we propose a computationally efficient calibration algorithm. Ef-

ficiency is achieved by providing analytical problem-specific information to the al-

gorithm. We formulate a metamodel that embeds information from an analytical

differentiable and tractable network model. The analytical network model provides

an analytical description of how the calibration parameter is related to the objective

function. The performance of the method is evaluated with case studies for both a

hypothetical toy network and for the Berlin metropolitan area network. The per-

formance of the proposed method is compared to that of an algorithm that differs

only in that the information from the analytical network model is not provided to it.

For both networks, the proposed approach significantly improves the computational
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efficiency of the calibration algorithm with an average reduction in the simulation run-

time until convergence of more than 80%. The simulator used in both case studies of

this chapter, MATSim, is computationally efficient compared to other high-resolution

simulators. Inefficient simulators are typically calibrated under tight computational

budgets. By accelerating the convergence of traditional black-box calibration algo-

rithms, the proposed approach is of particular interest for the calibration of inefficient

simulators.

The analytical route choice model (Equation (3.10b)) is a multinomial logit (MNL)

model. This calibration algorithm can be used for a simulator that embeds a different

route choice model specification by replacing Equation (3.10b) with an analytical and

differentiable approximation of the simulator's route choice model. If such an approx-

imation is not available or is not computationally efficient, then one can continue to

use the MNL formulation of this chapter. In this case, the polynomial error term

of the metamodel will capture the effects of this specification difference between the

analytical and the simulation-based models.

In this chapter, the simulation-based optimization algorithm used is derivative-

free, i.e., it does not require the evaluation of derivatives of the simulation-based

objective function. Derivative-based algorithms have been proposed for calibration

problems (e.g., Yang, 1995; Antoniou et al., 2011; Balakrishna, 2006). Such algo-

rithms have been traditionally designed to achieve asymptotic properties. There is

extensive ongoing and recent work that formulates their extensions for use under

tight computational budgets (Lu et al., 2015; Tympakianaki et al., 2015). Another

area of ongoing research aims to achieve efficiency through the combined use of mul-

tiple models with varying efficiency-accuracy trade-offs (e.g., Corthout et al., 2014;

Osorio and Selvam, 2017).

The analytical model of the proposed approach is based on the use of an exogenous

route choice set. This set is computed once prior to calibration. This contributes to

the computational efficiency of the calibration algorithm. For cases where the use

of an endogenous route choice set is desirable, one efficient approach would be to

use at each iteration of the calibration algorithm, the route choice set used by the
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simulator for the current iterate (i.e., the calibration vector value considered as best so

far). This would require, at every iteration of the calibration algorithm, to compute a

smaller set of routes to be used by the analytical model (this can be done as described

in Section 3.2.2), and then to compute the exogenous parameters of the analytical

model that depend on the route choice set. This can be done efficiently. This would

allow the route choice set used to solve Problem (3.6)-(3.8) to vary across iterations of

the calibration algorithm. However, for a given iteration, Problem (3.6)-(3.8) would

still be solved assuming a fixed route choice set.

61



Chapter 4

Supply Calibration of Stochastic

Traffic Simulators

The contents of this chapter are available as: Zhang, C., Osorio, C., and F16tter6d,

G. (2016). Capacity calibration for large-scale traffic simulators: an efficient and

scalable approach. Technical report, Massachusetts Institute of Technology.

4.1 Introduction

The focus of this chapter is on the calibration of supply parameters. Traditional

gradient-based nonlinear optimization algorithms (e.g., trust-region) have been ex-

tensively used for the calibration of speed-density or flow-density functions (e.g.,

Leclercq, 2005; Hou et al., 2013). The high computational cost required for the es-

timation of the gradients of the simulation-based objective function has led to the

use of two types of algorithms, namely derivative-free algorithms (e.g., GA) and

derivative-based algorithms combined with efficient derivative estimation techniques

(e.g., SPSA), as discussed in Section 2.2. There is a lack of, and a need for, efficient

calibration algorithms for supply models.

Compared to the demand calibration problem addressed in Chapter 3, the ana-

lytical calibration metamodel proposed in this chapter is simpler. This is because it

assumes traffic assignment to be exogenous, while the model of Chapter 3 has endoge-
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nous traffic assignment. Hence, the proposed model scales linearly with the network

size, and independently of the dimension of the route choice set. In Section 4.3.3, we

consider a Berlin metropolitan area network model, combine the supply calibration

results of this chapter with the demand calibration results of Chapter 3, and show

that together they lead to significant improvements in the objective function.

The remainder of this chapter is organized as follows. Section 4.2 discusses the

proposed methodology. Case studies of both a synthetic toy network and the Berlin

metropolitan network are presented in Section 4.3. Section 4.4 concludes this chapter.

Appendix A details the simulation-based optimization (SO) calibration algorithm.

4.2 Methodology

We first formulate the supply calibration problem mathematically (Section 4.2.1). In

Section 4.2.2, we formulate a metamodel for the supply calibration problem and use

the general metamodel SO framework described in Section 2.3 to address the supply

calibration problem. The metamodel is both computationally efficient and scalable

making it suitable for the efficient supply calibration of large-scale network models.

4.2.1 Problem Formulation

The supply calibration problem is formulated the same as Problem (3.4)-(3.5), but

with the behavioral parameter 6 replaced by the supply parameter vector a and the

lower (resp. upper) bound OL (resp. 6 U) replaced by aL (resp. au). Similarly, yi

denotes the field measurement of a given performance metric of link i, E[Fi (a; z)]

denotes the simulation-based expectation of this same performance metric, I denotes

the set of links with measurements, z denotes a set of endogenous simulation variables

(e.g., network states such as link speeds, travel times, queue-lengths) and exogenous

simulation parameters (e.g., network topology, expected demand), and f denotes the

simulation-based objective function.

The above problem is a traditional calibration problem, where the objective is to fit

the calibration parameters such as to minimize the distance between observed traffic
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conditions and simulated conditions. Here, we use a least-squares distance function,

which is a commonly used formulation. The proposed methodology is suitable for

use with a variety of link performance metrics (e.g., speeds, travel times). For the

Berlin metropolitan area case study in this chapter, we have access to traffic count

data. Hence, yi represents the average flow on link i for the considered time of day,

and E[Fi(a; z)] represents the expected (simulation-based) flow of link i.

The feasible region (Constraint (3.5)) is defined by upper and lower bounds. The

proposed methodology can be directly applied to any general (e.g., non-convex) fea-

sible region as long as it has an analytical and differentiable formulation. Simulation-

based constraints (i.e., constraints that depend on the outputs of the stochastic sim-

ulator) are not accounted for in this methodology.

The above problem is time-independent. The Berlin case study focuses on calibra-

tion for the morning peak hour 8-9 AM. The extension of the proposed methodology

to time-dependent supply calibration is straightforward and is part of ongoing work.

4.2.2 Metamodel Formulation

As described in Section 2.3, the approximation fA is problem-specific. In order to

formulate fA, let us first focus on a specific supply calibration problem. The Berlin

metropolitan area case study of Section 4.3 uses the multi-agent transport simulator,

MATSim. We calibrate two supply parameters: a and K. These parameters denote

"flow capacity factor" and "storage capacity factor", respectively, in MATSim (page

37-38, Chapter 4.3.1, Horni and Nagel, 2016).

The parameter a (resp. K) is a scaling factor for adjusting flow (resp. space)

capacities of the links. We assume all links have the same scaling parameters (i.e.,

a and r, are scalars). This formulation can be readily generalized to account for one

scaling parameter for each category of links, or even for each individual link. The link

model of MATSim is based on a particle-discretized instance of the kinematic wave

model and assumes a triangular fundamental diagram, where the flow capacity and the

jam density are linearly dependent (see Equation 50.1 of page 348, Fldtter6d, 2016).

Thus, the flow capacity and the space capacity are also linearly dependent. This
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allows us to formulate a one-dimensional calibration problem with a = r. Hereafter,

the supply parameter is a single scalar denoted by a.

For each link i for which there are field measurements (i E I of Equation (3.4)),

we proceed as in Chapter 3 and use a link-specific metamodel formulation. For a

given link i and a given iteration k of the SO algorithm, the metamodel approximates

the (simulation-based) expected flow of link i. Hence, the problem solved at every

iteration (i.e., the subproblem) is given similarly by Equations (3.6)-(3.8) with the

variable changed from 0 to a.

For each link-specific metamodel, we assume the same functional form as in Chap-

ter 3. In other words, at iteration k of the SO algorithm and for link i, the metamodel

mi,k is defined by:

mT,k(a; /i,k) = 3 ,k,OfA,i(a) -+ #(a, /i,k), (4.1)

and the general-purpose metamodel (0 of Equation (2.3) and (4.1)) is a linear function

of the calibration parameter a:

#i(a, /i,k) = 
3 i,k,l - !ik,2a, (4.2)

where 3 i,k,1 and /i,k,2 are scalar coefficients. The focus of this chapter is on the

formulation of a suitable problem-specific approximation (term fAj).

Let us now formulate the macroscopic analytical network model used to derive the

problem-specific approximation of the expected link flow of link i, which is denoted

by fA,i, in Equation (4.1). The network model is based on the probabilistic queueing

theory. We proceed as in Osorio and Chong (2015), and represent each link of the

road network as a queue with finite space capacity. Hereafter, the terms "link" and

"cqueue" are used interchangeably. We introduce the following notation. The index i

refers to a given queue.
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fj space capacity;

w service rate (i.e., flow capacity);

y2 external arrival rate;

Ai effective arrival rate;

pij turning probability from queue i to queue j;

pi traffic intensity;

Pi probability of queue i being full (i.e., spillback probability);

a supply parameter;

Q set of queues.

jEQA A=,(1-p)+ s~ Vi EQ (.a

pA = - Vi E Q (4.3b)
ap-t

1= - Vi E Q (4.3c)
1 -p

Equation (4.3a) corresponds to Equation (6a) of Osorio and Chong (2015) (in

that, the effective arrival rate is denoted by A'). It is a flow conservation equation

that defines the effective arrival rate at queue i as the sum of two terms. The first, cor-

responds to the arrivals that arise outside the network (i.e., trips that start at queue

i). This term states that trips can enter the network through queue i at a rate of 'Yj

as long as queue i is not full (i.e., with probability 1 -p). The traffic intensity, pi of a

queue is defined as the ratio of expected demand to expected supply. Equation (4.3b)

approximates it as the ratio of the effective arrival rate to the scaled service rate.

This equation can be derived by taking Equation (6b) of Osorio and Chong (2015)

and both scaling the service rate by the factor a and discarding the impact of down-

stream spillbacks on the traffic intensity of link i. Equation (4.3c) approximates the

probability that a link is full. This represents the probability of spillbacks on the link.

In queueing theory, this probability is known as the blocking probability. This expres-
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sion is obtained by approximating queue i as an M/M/1/afj queue, where acv is the

scaled space capacity of the queue. The derivation of the analytical expression for the

blocking probability of such a queue can be obtained in, for instance, Bocharov et al.

(2004). This equation differs from Equation (6c) of Osorio and Chong (2015) in that

it uses a scaled version of the space capacity ati instead of the space capacity fi.

The expression for the blocking probability assumes an integral value for the space

capacity. Here we do not constrain aej to be integral.

The network model approximates the expected flow on link i (fA,i of Equa-

tion (4.1)) with Aj. For a given a and a given network with n links, the network

model (Equation (4.3)) is formulated as a system of n linear equations and 2n non-

linear equations. The dimension of the system scales linearly with the number of

links in the network and is independent of link-specific attributes, such as link length.

This makes it a formulation that is suitable for large-scale networks and is computa-

tionally efficient. For a given a, the exogenous parameters of the network model are:

pij, 7i, Pi, ei, Q, and the endogenous variables are Aj, Pi, pi.

Let us now detail how the proposed analytical network model (Equation (4.3)) dif-

fers from that used for demand calibration in Chapter 3. The main distinction is that

Chapter 3 assumes endogenous traffic assignment. In other words, the network model

analytically approximates the route choice model, while the above model assumes that

the turning probabilities (pij) and the external link arrival rates (-yi) are exogenous.

This significantly simplifies the model, leading to enhanced computational efficiency,

and, as will be illustrated in the case studies of Section 4.3, the proposed calibration

algorithm remains capable of quickly finding solutions with good performance, i.e., it

remains computationally efficient. A secondary distinction between the two models,

is that the model of Chapter 3 approximates the traffic intensity of a queue, pi, as

the ratio between the total arrival rate (which is equal to Ai/(1 - Pj)) and the service

rate, while here we consider the ratio between the effective arrival rate (A 2 ) and the

service rate. The implication of this is that the proposed model may underestimate

the congestion levels of the links compared to the model of Chapter 3. The case

studies of this chapter consider scenarios with a variety of levels of congestion. The
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proposed model is shown to perform well for all experiments. This shows the minor

effect of this simplification.

Note that other network models can be used to construct the metamodel functions.

In other words, the framework is not limited to the use of the above system of equa-

tions (Equation (4.3)). Nonetheless, for the SO algorithm to remain computationally

efficient for large-scale networks, the subproblem needs to be solved efficiently (since

it is solved at every iteration of the SO algorithm). Hence, the analytical network

model needs to be highly computationally efficient.

4.3 Case Studies

This section evaluates the performance of the proposed algorithm. The experimental

design is presented in Section 4.3.1. Section 4.3.2 validates the performance of the

algorithm with a small synthetic case study. Section 4.3.3 then applies the algorithm

in the calibration of a large-scale model of a metropolitan area (Berlin, Germany)

based on the use of real traffic count data. This Berlin network was also used for

demand calibration in Chapter 3, hence, Section 4.3.3 also evaluates the added value

of using the proposed supply calibration algorithm along with the demand calibration

algorithm of Chapter 3.

4.3.1 Experimental Design

Recall that the main premise underlying the proposed algorithm is that computation-

ally efficient calibration algorithms can be designed by formulating and providing the

algorithm with analytical problem-specific structural information. To validate this

premise, we benchmark the proposed algorithm with an algorithm that differs only

in the analytical information provided to the algorithm. More specifically, the same

SO algorithm is used along with a different metamodel: The benchmark approach

uses a general-purpose metamodel which does not include any information from an
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analytical network model. For link i and iteration k, the metamodel is formulated as:

#i,k(a; 3i,k) = !ik,1 - A3 ,k,2Ce. (4.4)

Unlike the proposed metamodel (Equation (4.1)), this metamodel does not contain

the problem-specific component #A,k,ofA,i(a). In this benchmark method, all other

algorithmic details are identical to that of the proposed method. Hereafter, we use

Am to denote the proposed algorithm and AO to denote the benchmark, or general-

purpose, algorithm.

The toy network is a hypothetical network adapted from Figure 3-1 in Chapter 3.

The main link properties for this chapter are given in Table C.2 of Appendix C. The

period considered is one hour of the morning peak period, during which the expected

OD demand rate is 1,800 vehicles per hour. There are two possible routes: the north

route that travels through node 3 and the south route that travels through node 4.

The free-flow travel time on the north (resp. south) route is approximately 5.6 (resp.

7.9) minutes. Under free-flow conditions, the north route has smaller travel time. As

congestion increases, so does the probability of choosing the south route.

The topology of the Berlin metropolitan simulation model and the road map of

this area are as presented in Figures 3-14 and 3-15 of Chapter 3.

The experimental design information for both networks is the same as that dis-

played in Table 3.2 except for the bounds, underlying true values, and initial values,

which are displayed in Table 4.1. The first row of Table 4.1 specifies the lower bound

(aL) and the upper bound (au) for the supply parameter a. For instance, the upper

bound for both networks corresponds to scaling the supply by a factor of 10.

The toy network is a synthetic case study. The set of true supply parameter values

Toy network Berlin network
Bounds for a values, [aL, aU [0-01,10] [0.1, 10
True a values, a* {0.1, 0.4, 1.1} N.A.
Initial a values, ao {0.01, 0.3, 0.5,1.3, 10} {0.1, 0.3, 0.5, 1.3, 10}

Table 4.1: Experimental setup
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is given in row 2 of Table 4.1 and denoted by a*. The three chosen values (i.e., 1.1,

0.4 and 0.1) lead to significantly different, and increasing, levels of congestion. For

a given a*, synthetic "true" traffic counts are obtained from the simulator. For the

Berlin network, field traffic count data are used and the true (or optimal) value, a*,

is unknown.

For a given algorithm (Am or AO) and a given a*, the algorithm is initialized

with 5 different initial values ao (row 3 of Table 4.1). For each algorithm, this leads

to a total of 15 different experiments (i.e., 5 different initial values for each of the 3

true values) for the toy network and 5 different experiments for the Berlin network.

For a given experiment, we run the algorithm 3 times. This is to account for the

stochasticity of the simulator.

4.3.2 Synthetic Case Study Results

For the toy network, we run experiments considering three different true values (recall

row 2 of Table 4.1), a* c {1.1, 0.4, 0.1}. Let us start by analyzing the performance

of the algorithms for a* 1.1. Of all three values, the value of 1.1 leads to the least

congested conditions, yet the levels of congestion are still relatively high. Specifically,

the ratio of expected demand to expected supply on links 1 or 6 is 0.91, that on links

2 and 3 is 1.23, and that on links 4 and 5 is 0.55.

Figure 4-1 displays the estimated simulation-based objective function evaluated at

points that are evenly distributed in the feasible region. Recall that the simulation-

based objective function is defined as:

S (yi - E[F(a; z)j)2. (4.5)
iEI

The blue circles correspond to the simulated estimates with 95% confidence in-

tervals (in red), which are computed based on 5 replications. The green region in

the figure identifies the points that have statistically equivalent performance to that

of the true value a*. The statistically equivalent region corresponds to the range

[1.050, 1.113]. Statistical equivalence is tested with a paired t-test where the null hy-
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pothesis assumes equal expectations of the objective function value, while the alter-

native hypothesis assumes unequal expectations. We use this statistically equivalent

region as a metric to determine the convergence of an algorithm. If an algorithm

yields a solution within the statistically equivalent region, we consider it to have con-

verged. The black curve in Figure 4-1 is the approximation of the objective function

provided by the analytical network model. This approximation is defined as:

E (y, - A())2  (4.6)
iEI

In other words, the black curve replaces the -simulation-based expected link flow

with the expected link flow of the analytical network model. Figure 4-1 indicates that

the analytical model closely approximates the simulation-based objective function

when a < 1. For a > 1, the analytical approximation is a flat line, which is inaccurate.

Note that the simulation-based objective function is well approximated by a

quadratic function. Hence, for such an experiment method A# is expected to perform

well.

Figures 4-2 to 4-6 each considers a given initial point, ao. In each figure, the

x-axis displays the total number of points simulated (i.e., the computational budget

consumed so far) and the y-axis displays the current iterate (i.e., the best solution

7 \
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Figure 4-1: Simulation-based and analyt-
ical objective functions for a* = 1.1

6
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Figure 4-2: Algorithmic solutions as a
function of the total number of simulated

points, for a* = 1.1 and ao = 0.01
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Figure 4-3: Algorithmic solutions as a
function of the total number of simulated
points, for a* = 1.1 and ao = 0.3
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Figure 4-5: Algorithmic solutions as a
function of the total number of simulated
points, for a* = 1.1 and ao = 1.3
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Figure 4-4: Algorithmic solutions as a
function of the total number of simulated
points, for a* = 1.1 and ao = 0:5
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Figure 4-6: Algorithmic solutions as a
function of the total number of simulated
points, for a* = 1.1 and ao = 10

a found so far). In each figure, there are three solid black (resp. dashed red) lines

representing the 3 runs of the proposed method Am (resp. the benchmark method

AO). The green horizontal region corresponds to the statistically equivalent region

derived based on Figure 4-1.

Figure 4-2 considers initial point ao = 0.01. The three black lines mostly overlap.

All black lines (i.e., Am runs) approach the green region faster than the red lines (i.e.,

AO runs). This is also the case for ao = 0.3 (Figure 4-3) and ao = 10 (Figure 4-6),

and to a lesser extent for ao = 0.5 (Figure 4-4) and ao = 1.3 (Figure 4-5).

Upon depletion of the computational budget, we evaluate for each run, whether
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the final solution is within the green region. If so, we consider the algorithm to have

converged. For Am, 14 of the 15 runs converge. For A0, 11 of the 15 runs converge.

The average number of points simulated until convergence for all converged runs is 9

for Am and 16 for A0. Hence, Am appears to converge both more often and faster

than A$.

Let us now consider the scenario with true value a* = 0.4. This leads to higher

levels of congestion than in the previous scenario. In this scenario, the ratio of ex-

pected demand to expected supply exceeds 1 for all links, i.e., all links are significantly

congested. The simulation-based and analytical objective functions are displayed in

Figure 4-7. As before, the siniulation-based objective function could be closely ap-

proximated by a quadratic function. Hence, we expect A0 to perform well for this

scenario. Just as in the previous scenario, the analytical objective function (black

curve) closely approximates the simulation-based objective function for ce < 1, and

provides an inaccurate approximation for a > 1. We proceed as in the previous sce-

nario to compute a statistically equivalent region for a*, it is estimated as [0.397,0.413]

and is displayed as the green interval in Figure 4-7.

Figures 4-8 to 4-12 display, respectively, the results for initial points, ao, equal to

0.01, 0.3, 0.5, 1.3, and 10. For all five initial points, all runs of Am converge. They

do so very fast. On the other hand, the convergence of A0 is sensitive to the initial

4.

j2

0 03 1 1.5 2

Figure 4-7: Simulation-based and analyt-
ical objective functions for a* = 0.4

S10 Is n0 25 M

Figure 4-8: Algorithmic solutions as a
function of the total number of simulated
points, for a* = 0.4 and ao = 0.01
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Figure 4-9: Algorithmic solutions as a
function of the total number of simulated

points, for a* = 0.4 and ao = 0.3
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Figure 4-11: Algorithmic solutions as a

function of the total number of simulated
points, for a* = 0.4 and ao = 1.3
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Figure 4-10: Algorithmic solutions as a
function of the total number of simulated
points, for a* 0.4 and ao 0.5
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Figure 4-12: Algorithmic solutions as a
function of the total number of simulated
points, for a* = 0.4 and ao = 10

point: none of the runs converge for Figures 4-8 and 4-12, while some, but not all, do

for Figures 4-9, 4-10, and 4-11. In total 5 of the 15 runs of A# converge. Of these 5

converged runs, the average number of simulated points until convergence is 7. For

Am, all runs converge, and the average number of simulated points until convergence

is 2.

An additional interesting difference between Am and A# is that once a run of

Am enters the green region (i.e., has converged) it no longer exits the green region,

while for A# there are cases where points within the green region are sampled yet

are considered to have worse performance than points outside the green region. This
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indicates that the analytical structural information provided by the analytical network

model can contribute not only to converge faster and more frequently, but also to

differentiate between the performance of optimal and near optimal solutions.

Let us now consider the third, and final, scenario with true value a* = 0.1.

This scenario is the most congested one among the three. Figure 4-13 displays the

simulation-based objective function, the analytical approximation of the objective

functions, and the statistically equivalent region. The estimate of the statistically

equivalent region is [0.099, 0.103]. As for the previous experiments, the analytical

approximation is accurate for a < 1, yet inaccurate for a > 1.

Figures 4'-14 to 4-18 show the results of this scenario. The trends are similar to

those of the past 2 scenarios. All Am runs converge, while only 8 of 15 AO runs

converge. Among the converged runs, the average number of simulated points until

convergence is 3 for Am and 5 for A0.

Let us now evaluate the computational efficiency of each method in terms of two

performance metrics: (i) the number of simulated points until convergence, and (ii)

the simulation runtime until convergence. The first metric is of particular interest

since it is simulator-independent, i.e., it does not depend on the efficiency of the un-

derlying simulator. The first (resp. second) metric is displayed in Table 4.2 (resp. 4.3).

In Table 4.2, the runs that have not converged are indicated by the symbol e. In Ta-

is

0 0.5 1 15 2

Figure 4-13: Simulation-based and ana-
lytical objective functions for a* = 0.1
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Figure 4-14: Algorithmic solutions as a
function of the total number of simulated
points, for a* = 0.1 and ao = 0.01
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function of the total number of simulated

points, for a* = 0.1 and ao = 0.3
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Figure 4-17: Algorithmic solutions as a
function of the total number of simulated

points, for a* = 0.1 and ao = 1.3
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Figure 4-16: Algorithmic solutions as a
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Figure 4-18: Algorithmic solutions as a

function of the total number of simulated

points, for a* = 0.1 and ao = 10

ble 4.3, the runs that have not converged are underlined and the reported runtime is

the runtime until the computational budget is depleted.

Note that different a values, lead to different levels of congestion, and hence

different simulation runtimes. In other words, the computational runtime of a single

simulation run depends on the specific a value and varies significantly across the

feasible region of a.

Table 4.2 indicates that Am converges for 44 of the 45 toy network experiments,

i.e., it converges for 98% of the experiments. On the other hand, A#, converges for

24 of the 45 experiments, i.e., it converges for 53% of the experiments. Among the
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ao = 0.01 2 2 2 * * *

ao = 0.3 2 2 2 3 3 3
a* = 0.1 ao = 0.5 2 2 2 3 3 3

ao = 1.3 3 3 3 9 17 0

ao = 10 4 4 11 e 10 *

ao = 0.01 2 2 2 * * *

ao = 0.3 2 2 2 * 11 7
a* = 0.4 ao = 0.5 2 2 2 3 3 *

ao = 1.3 3 3 3 9 S 0

ao=10 3 3 3 o . .
ao = 0.01 8 8 8 o 24 10
ao = 0.3 12 8 4 20 17 20

a* = 1.1 ao = 0.5 12 8 16 20 16 10
ao = 1.3 3 3 3 o 3 15
ao = 10 * 12 26 o o 21

Table 4.2: Number of points simulated
symbol e represents non-converged cases.

intil convergence for the toy network, the

Am AO
ao = 0.01 63 65 64 1216 1031 1074

ao = 0.3 36 35 38 68 67 65
a* = 0.1 ao =0.5 18 19 18 49 54 55

ao = 1.3 14 24 15 207 168 201

ao = 10 36 23 75 739 220 1263
ao = 0.01 23 37 30 707 658 1894
ao = 0.3 18 30 12 591 262 295

a* = 0.4 ao = 0.5 23 11 15 28 58 846
ao = 1.3 14 14 29 210 475 531
ao = 10 24 22 18 1666 1427 136
ao = 0.01 76 92 93 248 622 87
ao = 0.3 44 27 16 58 77 59

a* = 1.1 ao = 0.5 46 27 24 71 89 31
ao = 1.3 12 23 11 245 9 87

1ao = 10 79 19 79 129 145 68

Table 4.3: Simulation runtimes until convergence for the toy network (minutes). For
the non-converged cases, the statistic reported is underlined and indicates the runtime
until the computational budget is depleted

converged runs, convergence is achieved on average after 5 points are simulated for
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Am and after 11 points are simulated for A0. Considering only the converged runs,

the average runtime until convergence is 33 minutes for Am and 119 minutes for

A#. The average runtime, considering both converged and non-converged cases (i.e.,

considering all entries of Table 4.2) is 34 minutes for Am and 406 minutes for A0.

This corresponds to an improvement of 92% in runtime.

In summary, the toy network experiments show that Am leads to significantly

improved performance: the frequency of convergence is improved by 83%, and for

the converged runs it improves the average convergence speed (measured in num-

ber of simulation iterations) by 55%. The method Am has increased robustness to

both the initial points and the simulator stochasticity. The scenarios account for

various levels of congestion, including highly congested scenarios. The performance

of Am is consistent across these congestion levels. Recall that for all experiments,

the simulation-based objective functions could be well approximated by a quadratic

function (Figures 4-1, 4-7, and 4-13), hence the benchmark method AO is expected

to perform well. Even under such scenarios, the proposed method Am outperforms

the benchmark method A#. We expect the added value of the proposed method to

be even greater for more intricate experiments (e.g., non-convex objective functions

with several local minima).

4.3.3 Berlin Case Study Results

We now evaluate the performance of Am and of A# for the calibration of the Berlin

metropolitan area network. Unlike the synthetic case study of the toy network, for

Berlin network the true (or best) parameter value, a*, is unknown. We run the

algorithms considering a set of five different initial values, ao.

Let us first discuss the congestion levels of the Berlin metropolitan network case

study. The congestion level depends on the supply parameter, a. Increasing values of

a lead to decreasing levels of congestion. Table 4.4 summarizes the congestion levels

for three different values of a. The first row of the table considers the lower bound

of the feasible region (denoted by aL and equal to 0.1), the last row considers the

upper bound of the feasible region (denoted by au and equal to 10), and the second
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City center Metropolitan area

a= aL 81% 11%
a = are-calib 7% 2%

a= au 0% 0%

Table 4.4: Congestion levels of the Berlin network with various a

row considers the value currently used in the model, we refer to this value as the

pre-calibrated value (denoted by aPrecalib and equal to 2). The column denoted by

"City center" (resp. "Metropolitan area") displays the percentage of links in the city

center (resp. metropolitan area or full network) with a ratio of expected demand to

expected supply that is greater than 1. For instance, this table indicates that for

a = aL, 81% of the city center links have a ratio that is greater than 1, i.e., they

are highly congested. For a = au, none of the city center links are highly congested.

This table shows that the considered feasible region (a E [aL, aU]) leads to various

levels of congestion ranging from free-flow conditions to highly congested conditions.

Let us proceed as for the toy network and estimate the simulation-based objec-

tive function. Figure 4-19 displays the simulation-based objective function estimates

(blue circles) with 95% confidence intervals (in red) and the analytical approximation

obtained from the network model (black curve). The simulated points are equally

spaced. Additional points in the vicinity of the minimum of the simulation-based

objective function are simulated in order to estimate the function more accurately

near its minimum. The true (or best) supply parameter value a* is observed to be

around 1.1. The green region of Figure 4-19 represents the set of statistically equiv-

alent points: [1.04, 1.10]. Solutions within this green region are considered to have

converged. The simulation-based and analytical objective functions share similar

functional form.

Figures 4-20 to 4-24 each considers a different initial value, ao. We proceed as

for the toy network, and analyze the current iterate (i.e., point with best simulated

performance) as a function of the total number of simulated points. Figure 4-20

considers the initial point ao = 0.1, which is the lower bound of the feasible region

(displayed in row 1 of Table 4.1). This initialization leads to highly congested traffic
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conditions, and hence to high simulation runtimes. All three solid black lines repre-

senting the method Am enter, and stay within, the green region (i.e., they converge)

after 3 points are simulated, while all three dashed red lines representing the method

A# fail to enter the green region before the computational budget is depleted (some

cross the region but do not evaluate points within the region). For all other initial

points, we observe similar trends: Am converges faster and more often than A#. The

difference in performance is particularly marked in Figure 4-24, where all Am runs

converge within 3 simulation points, while none of the A# runs converge.

Table 4.5 indicates for each run and each method, the number of points simulated
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Figure 4-19: Simulation-based and ana-
lytical objective functions for the Berlin
network
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Figure 4-24: Algorithmic solutions as a
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points, for a0 10

until convergence. This table indicates that all Am runs converge, while only 5 of

the 15 runs of A# converge. When considering only the converged runs, the average

number of points simulated until convergence is 4 (resp. 5) for Am (resp. AO). In

other words, the method Am increases by a factor of 3 the frequency of convergence

and, when considering only the converged cases Am increases the speed of convergence

by 20%. This table also highlights the stark difference in performance when initializing

the algorithms with either the lower bound (first row of Table 4.5) or the upper bound

(last row). In these two cases, all Am runs converge after 3 points have been simulated,

while none of AO runs converge.

Table 4.6 presents the simulation runtimes, in minutes, until convergence for the

converged cases, and for the non-converged cases, the table indicates the runtime until

the simulation budget is depleted. The non-converged runs are underlined. When

considering only the converged runs, the method Am reduces the average simulation

runtime until convergence by 28% (669 minutes for AO and 479 minutes for Am, i.e.,

a reduction of 3.2 hours). The average runtime, accounting for both converged and

non-converged cases, is 479 minutes for Am and 1727 minutes for AO. The proposed

method reduces the runtime by 72%.

In summary, compared to AO, Am leads to a significantly higher proportion of

converged runs, and when considering only the converged runs, Am leads to faster
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Am A$
ao = 0.1 3 3 3 e 9 6

ao = 0.3 5 5 11 9 11 e
ao =.5 3 3 3 9 4 4
ao = 1.3 3 3 3 3 3 S

ao=10 3 3 3 e e

Table 4.5: Number of points simulated until convergence for the Berlin network, the
symbol e represents non-converged cases

Am A0
ao = 0.1 394 424 427 2359 2230 2231
ao = 0.3 541 539 1683 1800 1312 1667
ao = 0.5 302 422 684 1905 629 538
ao = 1.3 413 328 416 448 419 1371
ao = 10 174 221 223 3140 2912 2948

Table 4.6: Simulation runtimes until convergence for the Berlin network (minutes).
For the non-converged cases, the statistic reported is underlined and indicates the
runtime until the computational budget is depleted

convergence.

Let us now compare in more detail the performance of the solutions derived by

each method. Recall that each method yields a total of 15 solutions (i.e., 3 SO runs

for each of the 5 initial points). For each solution, we evaluate its performance based

on estimates of the objective function as follows. We run 50 simulation replications

to yield 50 observations of the objective function. For each simulation replication,

100 sequential assignment iterations are carried out to obtain one objective function

realization. We then use the 50 simulation replications to construct a cumulative

distribution function (cdf) of the objective function. We compare the performance of

the various solutions by comparing their cdf's.

Figure 4-25 displays the cdf's for all 15 solutions of both Am (solid black curves)

and A0 (dash-dotted red curves). The x-axis of the figure represents objective func-

tion values. For a given x value, the corresponding y value of a curve gives the

proportion of simulation replications (out of the 50 replications) that have objective

function values smaller than x. Hence, the more a cdf curve is shifted to the left, the

82



higher the proportion of low objective function values, i.e., the better the performance

of the corresponding solution. This figure shows that 3 A# solutions have significantly

worse performance than all other solutions. These 3 solutions correspond to the 3

rightmost curves.

Figure 4-26 excludes these 3 cdf's and plots the remaining cdf's. Here, the black

curves are almost all to the left of the red curves. In other words, most Am solutions

outperform most A0 solutions. Additionally, most black curves are very similar. This

means that the solutions proposed by Am have similar performance across most of

the 15 experiments. Actually, the 14 best Am solutions have statistically equivalent

performance. Thus, the performance of Am is similar for experiments initialized with

different initial points. Additionally, for a given initial point, the performance is

similar across SO runs. Therefore, the performance is robust to both the quality of

the initial points and the simulator stochasticity. On the other hand, the performance

of A0 solutions varies significantly across experiments, meaning that AO is less robust

to the quality of the initial points and to the stochasticity of the simulator.

For each method, we select the solution with the best performance. This is de-

fined as the solution with the smallest objective function estimate. The best Am

(resp. A#) solution corresponds to a supply parameter value a of 1.075 (resp. 1.061).

Hereafter, these values are denoted by Am-best and A#-best, respectively. Let us now
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Figure 4-25: Objective function distribu-
tions for all Am and all A# solutions
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Figure 4-26: Objective function distribu-
tions for all Am solutions and 12 of the
15 A0 solutions

83



compare the performance of three points: Am-best, A#-best, and the pre-calibrated

value (denoted by Pre-calib) which is currently used for the Berlin network model.

Figure 4-27 displays the cdf of the objective function for each of these three points.

The solid black curve corresponds to Am-best, the dash-dotted red curve corresponds

to Ao-best, and the dotted black curve corresponds to Pre-calib. This plot indicates

that Am-best and A#-best outperform Pre-calib. Figure 4-28 displays the cdf's of

only Am-best and Ao-best. It indicates that Am-best outperforms A#-best. This

difference is statistically significant. The average objective function is improved by

6%.

Let us now analyze how these supply calibration results complement the demaid

calibration results derived in Chapter 3. The above analysis compares the perfor-

mance of three a values: the pre-calibrated value (a = 2), the best value proposed

by Am (a = 1.075), and the best value proposed by A0 (a = 1.061). The algo-

rithm proposed in Chapter 3 is a demand calibration algorithm. Its performance

was illustrated on the same Berlin network with the same objective function, based

on the calibration of the travel time coefficient of the route choice model. This de-

mand parameter is denoted by 0. Chapter 3 calibrates 0 assuming a fixed supply

parameter a set to the pre-calibrated value (a = 2). In the present chapter, we have

calibrated a assuming the demand parameter is fixed and set to its pre-calibrated
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Figure 4-27: Objective function distri-

butions for the best solutions of each

method and for the pre-calibrated value
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value (6 = -6). In Chapter 3, the performance of three 6 values were also compared:

the pre-calibrated value (9 = -6), the best value obtained by the proposed demand

calibration algorithm (which was denoted by Am) (6 = -4.7), and the best value

proposed by the benchmark demand calibration algorithm (which was denoted by

AO5) (6 = -2.8).

Figure 4-29 displays 9 cdf curves of the objective function. They correspond to

the 9 combinations of the above 3 supply solutions (a E {2, 1.075, 1.061}) and the

above 3 demand solutions (6 E {-6, -4.7, -2.8}). For a specific combination, we

construct the cdf of the simulation-based objective function as described before. The

3 blue curves correspond to cases where the supply parameter takes its pre-calibrated

value (a = 2) and the demand parameter takes one of the 3 values: its pre-calibrated

value (dotted blue curve), the best value as proposed by the demand calibration

algorithm of Chapter 3 (solid blue curve), and the best value as proposed by the

benchmark method of Chapter 3 (dash-dotted blue curve). The three black (resp.

red) cdf curves of Figure 4-29 correspond to the three cases with a set to the best

value obtained from the proposed (resp. benchmark) supply calibration algorithm.

The black and red curves of this figure significantly outperform the blue curves. This

means that regardless of the value of the demand parameter, the biggest improvement

in performance can be obtained by improving the fit of the supply parameter. The 3

blue cdf's correspond to the 3 cdf's displayed in Figure 3-24 of Chapter 3.

Figure 4-30 displays only the black and red cdf's of Figure 4-29. The black (resp.

red) curves correspond to cases where a takes the best value obtained by the proposed

(resp. benchmark) supply calibration algorithm. The dotted curves correspond to

6 set to its pre-calibrated value. The solid (resp. dash-dotted) curve corresponds

to 6 set to the best solution obtained by the proposed (resp. benchmark) demand

calibration algorithm. Note that the black and the red dotted curves correspond

to the black and red curves of Figure 4-28. Figure 4-30 indicates that the best

combination corresponds to the case where a takes the value obtained by the proposed

supply calibration algorithm and 0 takes the value obtained by the proposed demand

calibration algorithm of Chapter 3. This difference in performance compared to the
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other solutions is statistically significant.

In summary, for all runs, the proposed supply calibration algorithm Am converges,

while the benchmark method converges only one third of the time. When consider-

ing the converged runs, the proposed method converges faster than the benchmark

method: it requires, on average, 20% less points to converge with a 28% reduction in

simulation runtime. The performance of the proposed method is robust to the quality

of the initial points and to the stochasticity of the simulator.

We now analyze the computational runtime of the algorithm Am. At every it-

eration of the algorithm Am, the two steps with highest computational cost are the

simulation evaluation (step 4 of Figure 2-2) and solving the (metamodel) subproblem

optimization (step 3a of Figure 2-2). For all experiments of this Berlin case study, we

consider the computational runtimes of each of these two steps.

Figure 4-31 displays two cdf curves, one for each step. Each curve is constructed

based on 15 observations, one for each SO run. The x-axis considers the runtime in

minutes. For a given x value, the y-axis considers the proportion of observations (out

of the 15) that take x minutes or less to be completed. The red dash-dotted curve

represents the total simulation runtime per SO run (i.e., total simulation runtime for

all iterations of a given SO run). The solid black cdf represents the total subproblem

optimization runtime per SO run (i.e., total time spent solving the subproblem for
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and of the metamodel subproblem optimization

all iterations of a given SO run). The black cdf is to the left of the plot, it is almost

parallel to, and barely distinguishable from, the y-axis. The total simulation runtimes

are within the range: [174,1683] minutes, while the total subproblem optimization

runtimes are within the range: [3,17] minutes. Over 90% of the total subprobleni

optimization runtimes are smaller than 10 minutes. This figure highlights that the

computational cost of solving the metamodel subproblem is negligible compared to

that of evaluating the simulation model. Recall that the metamodel subproblem con-

tains the proposed analytical network model as a set of constraints. Hence, this figure

illustrates the computational efficiency of the proposed analytical network model.

4.4 Conclusions and Discussion

This chapter proposes a supply calibration algorithm that is suitable for stochastic

and large-scale network simulators. The proposed approach is based on a metamodel

simulation-based optimization algorithm. The metamodel combines information from

the simulator with information from an analytical network model. This chapter for-

mulates a highly computationally efficient and scalable network model that is used

as part of the metamodel. The network model is analytical and differentiable. It

is formulated as a system of nonlinear equations, the dimension of which scales lin-

early with the number of links in the network and scales independently of the link
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attributes (e.g., link length). It is this network model formulation that leads to an

SO algorithm that is both highly efficient and robust to both the stochasticity of the

simulator and to the quality of the initial points. The performance of the proposed

approach is evaluated with a small synthetic case study and a case study of the Berlin

metropolitan area. The performance is compared to that of an SO approach that dif-

fers only in that the metamodel does not use information from the analytical network

model. The proposed approach outperforms the benchmark approach: it converges

both more frequently and faster.
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Chapter 5

Origin-Destination (OD) Demand

Calibration of Stochastic Traffic

Simulators

The contents of this chapter are available as: Zhang, C. and Osorio, C. (2018). Effi-

cient offline calibration of origin-destination (OD) demand for large-scale stochastic

traffic models. Technical report, Massachusetts Institute of Technology.

5.1 Introduction

We focus here on the offline calibration of demand as defined by origin-destination

(OD) matrices. This is known as OD calibration and is the most widely studied and

traditionally challenging calibration problem.

The transportation demand, represented by time-dependent OD demand matrices,

is an essential input for traffic simulators to evaluate, for example, traffic management

and planning strategies. Each entry of an OD demand matrix contains the number

of trips made during a certain time interval between an origin zone and a destination

zone. OD calibration has been one of the main problems attracting attention from

both transportation researchers and practitioners.

Compared to the calibration problems addressed in Chapters 3 and 4, the problem
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of OD calibration is particularly challenging for the following reasons. First, it is a

high-dimensional problem: the number of non-zero entries of an OD demand matrix

is typically in the order of 1,000. Second, there is most often only a small set of

links that have sensors (i.e., for which we have field measurements). This makes

the optimization problem under-determined. This has led the calibration community

to include in the formulation of the calibration problem information from a prior

(also known as a seed) OD matrix. Specifically, the objective function includes a

term that aims to reduce the distance between a solution and the prior OD matrix.

This prior matrix is typically estimated based on census data or past static traffic

assignment studies, possibly outdated. Third, when using a detailed simulation-based

traffic model (rather than an analytical model), the problem is often non-convex and

contains many local minima. Fourth, when using a stochastic simulator, the problem

becomes a simulation-based optimization (SO) problem. In the field of SO, problems

with dimensions in the order of 200 are considered high-dimensional. Hence, there is

currently a lack of suitable algorithms designed for high-dimensional SO problems. As

discussed in Section 2.3, the objective function has no closed-form expression and can

only be estimated via computationally inefficient simulation evaluations. Fifth, the

use of a computationally costly stochastic simulator makes the use of derivative-based

SO algorithms prohibitive. Instead, derivative-free algorithms which do not require

estimation of the derivatives of the simulation-based function are used. However, these

are less efficient, and hence less appropriate for high-dimensional problems than their

derivative-based counterparts.

In this chapter, we perform OD calibration for a Berlin metropolitan network

with over 11,000 nodes and 24,000 links. In Chapter 3, we proposed a metamodel

formulation for the calibration of a one-dimensional demand parameter (i.e., the travel

time coefficient of a route choice model). From a methodological perspective, the main

distinction between this chapter and our previous work lies in the key component

of metamodel SO which is the formulation of the analytical network model. More

specifically, the formulation of Chapter 3 is more intricate in that it accounts for

endogenous traffic assignment. Hence, it is formulated as a system of nonlinear (rather
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than linear) equations. It can provide a more accurate approximation of the SO

objective function, yet at a higher computational cost. In Chapter 3, we used it

for a one-dimensional problem. Its use for high-dimensional problems, such as OD

calibration problems, has yet to be explored. In addition, the objective function for

the OD calibration problem in this chapter is different from that used in the previous

chapters. In this chapter, the objective function is defined as the sum of: (i) the

distance between field observations and simulated observations, and (ii) the distance

between the prior OD matrix and the solution. The latter term is used to improve

the under-determination of the calibration problem.

The remainder of this chapter is organized as follows. Section 5.2 formulates

the OD calibration problem and presents the proposed methodology. Section 5.3

compares the performance of the proposed approach to a benchmark approach, which

differs only in that it does not use information from the analytical network model. We

carry out a case study for a synthetic toy network and one for the large-scale Berlin

(Germany) metropolitan network. The main conclusions are presented in Section 5.4.

Appendix A presents the SO algorithm. Appendix C gives the implementation details.

5.2 Methodology

5.2.1 Problem Formulation

Consider an urban network divided into traffic analysis zones (i.e., TAZ), which are

spatial units commonly used in transportation planning models (page 57, Miller and Shaw,

2001). Travel demand in the network is represented by an origin-destination (OD)

demand matrix that states the expected number of trips between all pairs of TAZ.

A given pair is referred to as an OD pair. An OD matrix is defined for a given time

interval. Basically, the OD calibration problem is to determine an OD matrix that

results in simulated traffic performance metrics that are similar to those estimated

with field data. We focus on a formulation that considers the most widely available

type of traffic data: link traffic counts. We consider a single OD matrix for the time
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period of interest. The goal is to identify the OD matrix that yields simulated link

flows similar to field link counts.

To formulate the OD calibration problem, we introduce the following notation.

d, expected travel demand for OD pair z;

f simulation-based objective function;

Fi flow on link i as defined by the simulator;

yi average flow on link i estimated from field data;

d, prior value for the expected demand for OD pair z;

6 weight parameter for prior information;

I set of links with sensors;

Z set of OD pairs.

The offline OD calibration problem is formulated as follows.

min f(d) = (yi - E[Fi(d, ul; U 2)])2 + 6 (z - dz) (5.1)
iEI zEZ

d > 0. (5.2)

The first term of the objective function, f, represents the distance between the ob-

served field traffic counts, yi, and the simulation-based expected flow, E[Fi(d, ui; U2)].

The latter is a function of the decision vector, d, a vector of endogenous simulation

variables, ui (e.g., link speeds, travel times, queue-lengths) and a vector of exogenous

simulation parameters, U2 (e.g., network topology, traffic management strategies).

Hereafter, we use simplified notation and denote E[Fi(d, u1 ; i 2 )] by E[Fi(d)]. The

second term represents the distance between the proposed OD matrix, d, and a prior

OD matrix, j. The latter is referred to in some papers as the seed or the initial OD

matrix. It is typically estimated from historical data (e.g., census data) and from

a static traffic assignment analysis. Case studies that provide more details on this

prior OD matrix component can be found in Balakrishna (pages 158-159, 2006). The

factor, 6, is an exogenous and fixed weight scalar that represents the relative weight
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of the prior OD demand information versus the traffic count data. Constraint (5.2)

is an analytical (i.e., not simulation-based) and differentiable lower bound constraint

that ensures positive OD demand. Hence, the problem consists of a simulation-based

objective function with analytical bound constraints.

Problem (5.1)-(5.2) is challenging to address for the following reasons. The deci-

sion vector, d, is typically high-dimensional, with a dimension in the order of several

thousands. The number of links with sensors, card(I), is typically small compared

to the total number of links in the network. The problem is under-determined and

contains numerous local minima. Among the many solutions to this problem some

will be physically plausible (i.e., they will be consistent with the land-use and ac-

tivity patterns of the city), while others may merely represent mathematically valid,

yet physically implausible, solutions. The goal of the second term of the objective

function is to enable the algorithm to identify physically plausible solutions. The ex-

pected flow function, E[F(d)], is a nonlinear function that lacks sound mathematical

properties,, such as convexity, and has no closed-form expression available. It can be

estimated by running multiple simulation replications, each of which is computation-

ally costly to evaluate.

Let us illustrate the intricate spatial-temporal traffic phenomena represented by

the stochastic traffic simulator that leads to expected link flows. The expected flow

function can be defined as:

E[Fi(d, ui; u 2)] = dz 13 AriPz(rId,ui; U 2 ), (5.3)
zEZ rERz

where Pz(r Id, Ui; U2 ) is the probability that a trip-maker traveling on OD pair z selects

a route r among the set of feasible routes for OD pair z, R,, and Ani equals 1 if route

r traverses link i and 0 otherwise. This probability depends on the link travel times,

which in turn depend on link flows. Hence, the expected link flow function is typically

estimated iteratively. In a traffic simulator, these iterations can be interpreted as a

learning process over subsequent days, where each day all trip-makers make route

choices according to the most recent network conditions u1 , followed by a simulation
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of the corresponding vehicle flows through the network, which in turn updates the

network conditions.

5.2.2 Metamodel Formulation

To address the OD calibration problem, we use a metamodel SO approach as described

in Section 2.3. This section formulates a novel metamodel specifically for OD demand

calibration.

Most often, the metamodel is defined as an analytical approximation of the objec-

tive function (f of Equation (5.1)). In this work, we propose to use one metamodel

for each of the simulation-based terms in the objective function. In other words, for

each link i with sensor, we define a metamodel to approximate the expected link flow

function, E[F(d)]. To formulate the metamodel, we introduce the following notation.

The index k refers to a given SO iteration, and the index i refers to a given link.

m odb objective function of the analytical optimization problem;

mi,k analytical approximation of the expected flow for link i;

1i,k vector of parameters for metamodel mi,k;

!i,kj element j of vector 3 i,k;

Ai expected demand of link i as approximated by the analytical network model;

Pij turning probability from link i to link j;

Pzi proportion of demand from OD pair z that takes a route that starts with link i;

q vector of exogenous parameters of the analytical network model;

L set of links in the network.

At iteration k of the SO algorithm, the analytical optimization problem solved
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(Step 2a of Figure 2-2) is defined as follows.

mi ob(d) (yi - Mik(d; Ak, q) )2 + j - dz2 (5.4)
iEI zEZ

d > 0 (5.5)

card(Z)

mi,k(d; 3 i,k, q) = Ai,k,oAi(d) + (k, 1 +E A , k, z+1dz (5.6)

Aj(d) IPzidz + ZpjiAj(d). (5.7)
zEZ jEL

Hereafter, we refer to the above optimization problem as the metamodel opti-

mization problem. This problem differs from the initial SO problem (i.e., Problem

(5.1)-(5.2)) in three ways. First, the simulation-based expected link flow function

for link i, E[F(d)], is replaced by the analytical metamodel, mi,k. The latter de-

pends on the decision vector d, on a vector of parameters #i,k that are both link- and

iteration-specific, and on a vector of exogenous parameters q (e.g., network topology,

link attributes). Second, it is an analytical and differentiable optimization prob-

lem. Hence, we can use traditional algorithms to address it. Third, it has a set

of 2 additional constraints. Equation (5.6) defines the metamodel as the sum of

two terms. These terms are known in the SO literature as the physical component

(denoted by Aj(d)) and the functional or general-purpose component (which is the

term in parentheses), respectively. The goal of the physical component is to provide

a problem-specific approximation of the simulation-based function, E[F(d)], while

that of the functional component is to provide a general-purpose (i.e., valid for all

types of problems) approximation of the simulation-based function, E[F(d)]. The

functional component is typically chosen based on its mathematical properties (e.g.,

convexity) such as to guarantee asymptotic convergence properties for the SO algo-

rithm. Functional components often used include low-order polynomials, radial-basis

functions, and Kriging functions. For a more detailed classification and description

of metamodels, see Sondergaard (pages 12-33, 2003).

Equation (5.6) defines the functional component as a linear (polynomial) function.
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The physical component is defined by Equation (5.7). We refer to the latter as the

analytical network model. It is a linear system of equations, which represents demand

conservation. It states that the (analytical) expected demand on link i is defined as

the sum of the expected demand that arises from trips that start on link i (first

summation term in Equation (5.7)) and the expected demand that arises from trips

that arise from upstream links (second summation term in Equation (5.7)). Note

that the expected link demand, Ai, is used as an approximation for the expected link

flow. The term pij represents an exogenous probability of turning from link i to link

j. The term Pzi represents an exogenous fixed proportion of demand of OD zone z

which starts trips on link i (i.e., it enters the network through link i). Both pij and

Pzi are estimated, prior to optimization through simulation by using the prior OD

matrix (d of Equation (5.1)).

The main challenge in metamodel SO is to formulate a metamodel that both: (i)

leads to solutions to the metamodel optimization problem (i.e., Problem (5.4)-(5.7))

that are good solutions to the original SO Problem (5.1)-(5.2) (i.e., they yield small

SO objective function estimates), and (ii) is computationally tractable. The latter is

essential because the metamodel optimization problem is solved at every iteration of

the SO algorithm. Hence, it needs to be solved in a computationally efficient way.

Otherwise, one is better off allocating the computational resources to running addi-

tional simulations rather than to solving this analytical (and approximate) problem.

For the metamodel to achieve both of these goals, it should be able to: (i) describe well

the network-wide interactions between OD demand and link flows; (ii) be sufficiently

scalable that it can be used for both large-scale networks and for high-dimensional de-

cision vectors; and (iii) be sufficiently efficient such that the metamodel optimization

problem can be solved quickly.

The formulation proposed above achieves these goals. It is a scalable formulation:

the analytical network model (Equation (5.7)) is defined as a system of equations

with a dimension that scales linearly with the number of links in the network and

that does not depend on other link attributes (e.g., link lengths). It is a computa-

tionally efficient formulation: the metamodel optimization problem is an analytical
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problem with lower bound constraints and linear equality constraints. In particular,

the analytical network model is formulated as a system of linear equations. Hence,

the metamodel optimization problem can be addressed by a variety of commercial

solvers.

Nonetheless, the scalability and computational tractability come at the cost of

using a simple low-resolution analytical network model. More specifically, the ana-

lytical network model is a stationary model, which does not describe the temporal

propagation and dissipation of congestion. As described in Section 5.2.1, the simula-

tor has endogenous traffic assignment. In other words, it accounts for how the spatial

distribution of demand, as described by the- OD demand matrix, impacts the link

costs (e.g., travel times, speeds) and thus the route choices. The analytical network

model assumes exogenous traffic assignment. In other words, it does not capture the

interactions between the spatial distribution of demand, d, and the traffic assignment,

pij and Pi~. Nonetheless, the experiments of Section 5.3 indicate that despite these

simplifications, the metamodel leads to good analytical approximations for all levels

of congestion.

5.3 Case Studies

We use the proposed methodology to address calibration problems for a synthetic

toy network (Section 5.3.1) and for a real-world network of the Berlin metropolitan

area (Section 5.3.2). For both networks, we compare the performance of our proposed

method to that of an SO method that differs only in the metamodel. More specifically,

the benchmark method does not include the analytical network mo&l. In other words,

the metamodel does not contain a physical or problem-specific component. This is

obtained by setting the term 3 i,k,O of Equation (5.6) to zero. The comparison serves to

evaluate the added value of the problem-specific structural information provided by

the analytical network model. The proposed (resp. benchmark) method is denoted by

Am (resp. AO). For both case studies, the MATSim simulator is used (Horni et al.,

2016).
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5.3.1 Synthetic Toy Network

Experimental Design

The synthetic toy network is shown in Figure 5-1. Its topology is adapted from the

network in Shao et al. (2015). The network contains a total of 11 links, 10 nodes, and

2 OD pairs (from node 1 to node 9, and from node 2 to node 10). For each OD pair,

there are two alternative routes: a straight route and a route that passes through

nodes 4 and 7. All links are uni-directional single-lane roads. The full specification

of the link attributes is given in Table C.3 of Appendix C. We focus on a 1 hour time

period.

The experimental setup is the same as that shown in Table 3.2 except for the first

three rows, which are detailed in Table 5.1. Table 5.1 indicates that the bounds for

the decision vector are [0, +oc) (first row). The second row presents the two synthetic

"true" OD demand cases that are assumed. The first case considers an asymmetrical

OD demand of 800 veh/hr for OD pair 1-9 and 1,400 veh/hr for OD pair 2-10. The

second case considers a symmetrical OD demand of 1,400 veh/hr for both OD pairs.

These two cases lead to different levels of congestion throughout the network. More

specifically, the ratio of expected demand to expected supply varies across the links

in case 1 (resp. case 2) from 0.44 to 0.80 (resp. 0.60 to 0.81). For each true OD

demand case, synthetic traffic counts are obtained, via simulation, on links 5, 6, and

7. Note that this leads to an OD calibration problem that is not under-determined.

The weight factor 6 (of Equation (5.1)) is set to 0.01 (row 3).

1 3 6 9

4 7

2 5 8 10

Figure 5-1: Synthetic toy network
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Table 5.1: Experimental design

Synthetic toy network Berlin network

Bounds for d values (veh/hr) [0, +oo) [0, +oo)
True d values (veh/hr), d* {[800, 1400]; [1400, 1400]} N.A.
Weight factor of the prior OD matrix, 6 0.01 0.01

The prior OD matrix (d of Equation (5.1)) is obtained by perturbing the true OD

demand, d*, as follows. For each OD pair z, its demand is defined as the sum of

its true demand, d*, and of a random perturbation term which is uniformly sampled

from the interval [-0.3s, 0.3s]. The scalar s denotes the maximum entry of the true

OD matrix, d*. The factor 0.3 can be interpreted as 30% variations of this maximum

value s. After this perturbation, any negative OD demand terms are set to zero.

For each true OD matrix, we consider six scenarios with different initial points

(i.e., different starting values for the optimization algorithms). Three initial points

are obtained by perturbing the prior OD matrix in the same way we perturb the true

OD matrix described above. We refer to these points as perturbed initial points. The

remaining three initial points are obtained by sampling each OD entry independently

and uniformly in the interval [0, 2000]. We refer to these points as random initial

points.

We define a scenario as a combination of a true OD demand and an initial point.

There are 2 true OD demands and 6 initial points, which gives a total of 12 scenarios.

For each scenario, we run each SO algorithm three times. This serves to account

for the impact of the simulators' stochasticity on the algorithm's performance. The

experiments are carried out on a standard laptop with a 4-core Intel i7-3740QM

processor and 8GB RAM.

Numerical Results

We first consider the asymmetrical true OD demand (i.e., [800,1400] veh/hr). Fig-

ure 5-2a illustrates how even such a simplistic toy experiment can lead to intricate

objective functions. It displays a contour plot of the SO objective function (i.e., f

of Equation (5.1)). This function is estimated by sampling equally spaced and uni-
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Figure 5-2: Objective function for true demand d* =[800, 1400] (veh/hr)

formly distributed points in the range [0, 2000] with increments of 100 along each of

the two demand dimensions. Each estimate is obtained from 10 simulation replica-

tions. Based on this estimation, there are a total of 8 local minima (marked with red

dots), which include one global minimumi (marked with a red asterisk).

The approximation of the SO objective function as derived by the analytical net-

work model is displayed as a contour plot in Figure 5-2b. To compute this function,

for a given OD matrix, d, we solve the system of linear equations defined by Equa-

tion (5.7). We then consider Equation (5.1) and replace E[Fi(d)] with Ah(d). There

is a single local and global minimum (marked with a red asterisk). This analyti-

cal function, unlike its simulation-based counterpart, is convex. The comparison of

Figures 5-2a and 5-2b indicates that the analytical network model closely approxi-

mates the simulation-based objective function. Importantly, the location of the global

minimum is accurate. Additionally, this figure indicates that the use of the analyt-

ical network model allows us to address an intricate SO problem with non-convex

objective function by solving a series of convex and analytical optimization problems.

The two plots of Figure 5-3 each displays a one-dimensional cut of the simulation-

based objective function along with corresponding 95% confidence intervals. The left

plot varies the demand for the first OD pair (node 1 to node 9), di, and leaves the

demand for the second OD pair, d2 , fixed to its underlying true value (i.e., 1,400
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Figure 5-3: One-dimensional cut of the simulation-based objective function for true

demand d* = [800, 1400] (veh/hr)

veh/hr). Similarly, the right plot varies the demand for the second OD pair (node

2 to node 10), d2 , and sets d, to its underlying true value (i.e., 800 veh/hr). Both

plots indicate a non-convex function with multiple local minima. Figures 5-2a and

5-3 illustrate that even for such a simplistic toy network, the SO objective function

is an intricate (e.g., non-convex) function with numerous local minima.

Figure 5-4 displays six plots. Each plot considers a different scenario. Plots 5-4a

to 5-4c consider the three scenarios with perturbed initial points. Plots 5-4d to 5-4f

consider the three scenarios with random initial points. Each plot displays three solid

black (resp. dash-dotted red) lines, which correspond to each of the 3 runs of the

algorithm Am (resp. A#). The x-axis displays the computational budget consumed

so far (i.e., number of points simulated). The y-axis represents the corresponding

simulation-based objective function of the current iterate (i.e., point with the best

simulated performance). Note that the y-axis is displayed with a logarithmic scale.

For all Am runs of all plots, the lines of Am achieve a significant reduction of

the objective function once the second point is simulated (i.e., at x = 2). For Am,

the second point to be simulated is that obtained by solving the calibration problem

using only the analytical network model. In other words, we minimize the function

displayed in Figure 5-2b. Recall that the y-axis uses a logarithmic scale. Hence,

the use of the analytical network model improves the objective function by several
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Figure 5-4: Objective function estimate of the current iterate as a function of

total number of simulated points, for true demand d* = [800,1400] (veh/hr)

orders of magnitude, and this holds for all initial points. Thus, the use of an an-

alytical network model makes the SO algorithm robust to the quality of the initial
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points. For all plots, as the iterations advance, Am identifies points with improved

performance. More specifically, it identifies points that outperform that obtained by

optimizing the analytical network model alone (i.e., the point obtained at x = 2).

Overall, the benchmark algorithm A# performs well: it reduces the objective func-

tion significantly from the initial point. Nevertheless, Am is able to achieve good

performance faster (i.e., with fewer simulated points) compared to A#. In addition,

once the computational budget is depleted, the solutions of Am lead systematically to

small objective function estimates, while this is not always the case for the solutions

derived by A0. As an example, for Figure 5-4b, the final solutions proposed by Am

have a performance that is on average 39% better than those proposed by A0. More

specifically, the average (over SO runs) of the objective function estimates of the final

solutions is 537.6 for Am and 881.8 for A0.

Since we know the true OD demand for these synthetic experiments, we can

evaluate the distance of a given demand from the true demand (i.e., the distance to

the optimal solution). Figure 5-5 displays six plots. As before, each plot considers a

given scenario. The difference from the previous plots is that Figure 5-5 displays along

the y-axis the Euclidean distance between the current iterate and the true demand.

All Am runs outperform all A# runs for Plots 5-5b, 5-5c and 5-5e. Two of the three

Am runs outperform all other runs for plot 5-5a. For Plots 5-5d and 5-5f, the best

solution of Am outperforms all other runs.

Figure 5-6a illustrates the trajectory of a given Am run and a given A0 run

considering random initial point 3 (i.e., one of the runs in Figures 5-4f and 5-5f).

The contour lines display the SO objective function. The green (resp. red) line

displays the trajectory of Am (resp. AO). This plot shows how Am immediately

identifies a current iterate in the neighborhood of the true demand, while A# requires

more iterations to reach this neighborhood. Given the intricacy of the SO objective

function, this immediate convergence is remarkable.

We now evaluate the quality of the solutions proposed by each algorithm for each

of the six scenarios. In order to select a "best" solution for a given method and a

given scenario, we consider the solutions proposed once the computational budget is
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depleted (there are 3 such solutions, one for each algorithm run). We then select as

the "best" solution, among the 3 proposed solutions, that with the smallest objective
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function estimate. Figure 5-7 displays six black solid (resp. red dash-dotted) curves,

which correspond to each of the six "best" solutions proposed by Am (resp. A#). For a

given "best" point, we estimate its performance by running 10 simulation replications.

Each curve is the cumulative distribution function (cdf) of the 10 estimates of the

objective function. The x-axis represents objective function estimates. For a given

x value, the corresponding y value of a curve gives the proportion of simulation

replications (out of the 10) that have objective function values smaller than x. Hence,

the more a cdf curve is shifted to the left, the higher the proportion of low objective

function values, i.e., the better the performance of the corresponding solution. Three

Am solutions outperform all A# solutions. The other three Am solutions outperform

all but one A#~ solution. All Am curves are close to each other, while there is a higher

variance in performance across the A#5 solutions. This indicates a higher robustness of

Am to both the quality of the initial points and to the stochasticity of the simulator.

We now analyze the second case with a symmetrical true OD demand (i.e.,

[1400, 1400] veh/hr). The total demand is higher than that for the first case, leading to

more links with high levels of congestion. Contour plots of the simulation-based objec-

tive function and its analytical approximation are presented in Figure 5-8. Both func-

tions, simulation-based and analytical, are symmetrical. As before, the simulation-

based function contains multiple (ten) local minima (marked with red dots), one of
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which is a global minimum (marked with a red asterisk), while the analytical network

model has a single global minimum, which closely approximates that of the simulator.

We proceed as before to analyze the performance of the algorithms. Each plot of

Figure 5-9 considers one initial point. Plots 5-9a to 5-9c (resp. Plots 5-9d to 5-9f)

are associated with scenarios initialized by perturbed (resp. uniformly distributed

random) points. Similar conclusions as before hold: (i) at the second simulated point.

Am yields a significant improvement in performance, which is due to the analytical

network model; (ii) as iterations advance, Am continues to identify solutions with
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good performance; and (iii) for most runs, Am outperforms A# both across iterations

and at the final iteration. Compared to the previous experiment, the performance

of A# appears here to be more sensitive to the quality of the initial points. More

specifically, some runs of A0 (e.g., Plots 5-9e and 5-9f) have current iterate points

with performance similar to that of the initial points until the last 5-10 points are

simulated.

Figure 5-10 displays one plot per initial point. For each plot, it displays the

distance to the true demand as a function of the number of simulated points. For all

plots, the performance of Am is very similar across SO runs (i.e., for a given plot, the

three Am cu-rves are similar). For A0, there is higher variability both for SO runs

of a given initial point (i.e., a given plot) and across initial points (i.e., across plots).

These plots indicate that right after the first simulated point, Am identifies current

iterates that are close to the true demand. This is consistent across initial points.

On the other hand, the performance of A0 is more sensitive to the quality of the

initial points. For 3 of the 6 scenarios (i.e., Plots 5-10b, 5-10e, and 5-10f), there are

A# runs that require a larger number of simulated points (~10-20) to identify points

with significantly improved performance. Especially, one AO run (Plot 5-10f), which

upon depletion of the computational budget, yields a proposed solution that is still

far from the true demand (with a distance of -800).

Figure 5-6b illustrates the trajectory of a given Am run and a given AO run

considering random initial point 3 (i.e., one of the runs in Figure 5-9f and 5-10f).

The conclusions are the same as for the previous demand scenario: Am immediately

identifies a current iterate in the neighborhood of the true demand, while A# requires

more iterations to do so.

We proceed as before and select, for each scenario and each method, the "best"

solution. Figure 5-11 compares the cdf's of the best solutions across both methods

and scenarios. The conclusions are very similar to those of the asymmetrical true OD

demand experiments: (i) three of the Am solutions outperform all A0 solutions; (ii)

the remaining three Am solutions have performance similar to that of one AO solution

and they outperform the remaining 5 A# solutions; and (iii) the Am solutions have
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similar performance, while there is a high variance in performance across solutions

for A0. The last point illustrates the robustness, provided by the analytical network
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model, of Am with regard to both the quality of the initial points and the simulators'

stochasticity.
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5.3.2 Berlin Metropolitan Network

We now study a high-dimensional OD demand calibration problem. We perform OD

calibration for the Berlin (Germany) metropolitan area, which consists of two federal

states: Berlin and Brandenburg. A map of the road network of this area is shown

in Figure 3-15 of Chapter 3. The road network simulation model is displayed in Fig-

ure 3-14 of Chapter 3. The network is decomposed into a set of 557 traffic analysis

zones (TAZ), according to the senate Department for the Environment, Transport

and Climate Protection in Berlin, Germany, which is presented in Figure 5-12. They

include 138 LORs (i.e., statistical planning region; in German, Lebensweltlich Orn-

entierte Rdume) within the city of Berlin and 419 municipalities in Brandenburg.

The network consists of a total of 24,335 links, 11,345 nodes, and 2,585 OD pairs.

Unlike the synthetic toy network, the link traffic counts are now field data obtained

from a set of 346 links; the true OD demand is unknown; and the problem is under-

determined. Additionally, the network model is computationally costly to evaluate

with the simulator. Hence, there is a pressing need to design calibration algorithms

that can identify points with good performance within small computational budgets.
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Figure 5-12: Traffic analysis zones

Experimental Design

The prior OD demand vector, d, is an existing matrix derived from census data. The

experimental design is detailed in the second column of Table 5.1. The rest of the

experiment design refers to Table 3.2. The demand bounds are the same as for the

synthetic case study (row 1 of Table 5.1). The true OD demand is unknown (row 2).

The weight factor for the prior OD matrix is set to 6 = 0.01 (row 3).

We consider 3 scenarios, each with different initial points, two of which are per-

turbed initial points. We use the same perturbation approach as for the toy network.

The perturbation term is sampled in the interval [-500, 500]. The third point is ran-

domly drawn from a uniform distribution in [0, 2000]. Experiments are carried out

on a workstation with a 32-core Dual Intel Xeon Processor E5-2630 v3 and 512GB

RAM.

Numerical Results

Figure 5-13 displays one plot for each scenario. Note that the y-axis is no longer

logarithmic. For all runs of all three scenarios, Am outperforms AO and does so

across all iterations (i.e., all x-axis values). Additionally, for all runs and all initial
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points, upon depletion of the computational budget, the solutions proposed by Am

have significantly lower objective function estimates than those of AO. On average, the

final solutions proposed by Am improve the objective function by 70% compared to

those of A0. The performance of Am is similar both across SO runs for a given initial

point (i.e., across curves of a given plot) and across initial points (i.e., across plots).

This indicates the robustness of Am to both the quality of the initial points and to the

simulator's stochasticity. In contrast, the runs of A0 vary in performance both across

SO runs for a given initial point, and, more markedly, across initial points. In all plots,

the significant improvement of Am at the second simulated point is remarkable. As

disctissed before, this is due entirely to the analytical network model. As the iterations

advance, Am continues to identify points with further improved performance. For

Figures 5-13b and 5-13c, A0 finds points with improved performance as the iterations

advance. Nonetheless, for Figure 5-13a, for all three A# runs, no further progress is

made after 4 points are simulated.

For each scenario, each SO run and each method, we consider the final proposed

solution. This corresponds to the current iterate once the computational budget is

depleted. For each proposed solution, we run 10 simulation replications. Figure 5-14

compares the cumulative distribution functions (cdf's) of each proposed solution. The

solutions proposed by Am (resp. A#) are displayed as black solid (resp. red dash-

dotted) curves. The figure also displays the cdf of the solution obtained by using only

the analytical network model (i.e., no simulation-based optimization is performed).

This cdf is displayed as a black solid line with crosses, and is denoted by Analytical

in the plot legend. This solution corresponds to the point evaluated by Am at x = 2

for each plot of Figure 5-13. Figure 5-14 also displays the cdf of the initial point (blue

dashed), as well as the cdf of the prior OD matrix (black dotted).

For all 3 plots of Figure 5-14, the following observations hold.

* All solutions of Am outperform all other solutions. They outperform the analyt-

ical solution, which indicates the added value of complementing the analytical

information with the simulation-based information. They outperform AO, which

indicates the added value of complementing the simulation-based information
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total number of simulated points.

as a function of the

with the analytical information.

" The analytical solution outperforms all 3 solutions proposed by AO. This in-

dicates the added value of the analytical information. Even though it is a

very simple model, it contains essential structural information that leads to the

identification of points with good performance.

" All three solutions of A0 outperform the initial point and the prior OD matrix.

Regardless of the initial points (i.e., across all 3 plots), Am yields solutions with

similarly good performance. On the other hand, A0 has similar performance for a

given initial point, yet its performance varies significantly across initial points. This
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proposed by each method

indicates the robustness of Am, provided by the analytical network model, to the

quality of the initial points.

Table 5.2 considers for each initial point, the "best" solution by each method (i.e.,

smallest average objective function value). It displays the percentage improvement in

the average objective function value compared to the value of the prior OD matrix,

d. It emphasizes that the performance of AO is sensitive to the initial points, with

an improvement that varies from 22% to 65%. The analytical network model yields

similar improvements in the order of 73%. Additionally, the 3 solutions proposed by

the analytical network model are identical for all three initial points. The proposed

method Am yields improvements that are similar across all initial points, which range
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Table 5.2: Percentage improvement of the objective function of the "best" solution
compared to the prior OD d matrix

Initial point
Perturbed point 1
Perturbed point 2
Random point 1

AO Analytical Am
65.4
31.0
22.4

73.1 82.3
72.7 77.1
72.8 79.5

from 77% to 82%.

Let us now compare the performance of the methods in terms of their ability to

replicate the traffic counts from field data. For each method, we consider all 9 runs

displayed in the plots of Figure 5-14 and select the solution with best performance

(i.e., for each cdf curve we compute its average value and select the cdf with the lowest

value). Each plot of Figure 5-15 contains 346 points that represent each of the 346

sensors in the network. The plots compare the field traffic counts (x-axis) to those

of: (i) the prior OD matrix (y-axis of the left-most plot); (ii) the best solution of AO

(y-axis of the middle plot); and (iii) the best solution of Am (y-axis of the right-most

plot). In each plot, the diagonal line is included as a reference. The closer the points

are to the diagonal, the better the fit to the field data. These plots indicate that

the best solution of Am. outperforms both the best solution of AO and the prior OD

matrix.

A commonly used metric to evaluate the calibration performance is the root mean
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square normalized error (RMSN) function, which is defined by:

RMSN = N Z _E(yi - (5.8)
Nk ZicEIYi

where N = card(I) and E[Fi] denotes the simulated estimate of the expected flow

of link i for a given method. Small RMSN values are indicative of good fit of the

simulated estimates to the field data. Table 5.3 lists RMSN statistics for the prior OD

matrix (column 1), for the best solution of A0 (column 2), and for the best solution

of Am (column 3). The best solution of Am improves the fit compared to the prior

OD matrix by 58%, and improves the fit compared to the best solution of A0 by 29%.

Table 5.4 compares the computational runtimes of Am and A#. Note that these

Berlin network runs are carried out on a server for which the CPU resources allocated

to a given job vary over time and depend on what other jobs are running simulta-

neously. We provide these computation statistics to give a general idea of runtimes,

nonetheless the differences in runtimes cannot be attributed solely to the algorith-

mic performance of Am and A#. The table indicates, for each of the 9 runs of each

method, the total computational runtime per experiment (i.e., time to run one SO

run until depletion of the computational budget). This total runtime includes the

runtime for each metamodel optimization (i.e., solution of Problem (5.4)-(5.7)) and

the total simulation runtime. Each row corresponds to the runs of a given initial

point. Overall, Am reduces total runtime on average by 30% (64 hours versus 45

hours). For the first perturbed initial point (row 1), the computing times are similar:

Am has an average computing time of 62.8 hours versus 59.9 hours for AO. For the

other two initial points (rows 2 and 3), the runtimes for Am are significantly smaller

than those for A#. For the second perturbed initial point (row 2), the average com-

puting time for Am is less than half that of A0 (27.2 hours versus 58.1 hours), i.e.,

Table 5.3: Root mean square normalized error (RMSN) statistics

Prior OD d A0 Am
RMSN 0.952 0.561 0.397

116



Table 5.4: Total computational runtime (hr) per algorithmic run

Initial point Am A0
Perturbed point 1 71.1 63.0 54.2 63.5 55.6 60.6
Perturbed point 2 31.9 25.0 24.6 44.2 70.0 60.2
Random point 1 43.8 40.5 50.6 72.2 77.0 73.8

there is a 53% reduction in average computing time. For the random initial point

(row 3), the reduction is 40% (45 hours versus 74.3 hours).

The table indicates that even though each run consists of the same computational

budget (which is defined as a maximum number of simulated points), the total runtime

varies significantly across runs. This variation is due to both varying simulation

runtimes and varying metamodel optimization runtimes. In particular, the simulation

runtimes are a function of total demand and the level of congestion on individual links.

We can combine the results of Tables 5.2 and 5.4 to summarize the added value

of using the information derived from the analytical network model. It allows the

proposed method to improve performance by 49% over the benchmark method (based

on Table 5.2 there is an average of 39.6% improvement for A0 compared to an average

of 79.6% for Am) while also achieving an average reduction in computing time of

30%. The use of analytical structural information to address intricate SO problems,

such as demand calibration, allows identifying solutions with significantly improved

performance and does so significantly faster.

5.4 Conclusions and Discussion

This chapter presents a computationally efficient algorithm for OD demand calibra-

tion for stochastic, high-resolution, and large-scale network simulators. The proposed

approach is based on a metamodel simulation-based optimization algorithm. The

computational efficiency is achieved by using a metamodel that combines informa-

tion from the simulator with that from an analytical network model. The analytical

network model is differentiable, computationally efficient, scalable, and convex. It

is formulated as a system of linear equations, the dimension of which scales linearly
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with the number of links in the network and does not depend on other link attributes,

such as link lengths. We formulate an analytical network model that is simple yet

captures problem-specific structure. We show with a synthetic toy network its ability

to approximate the intricate (e.g., non-convex) simulation-based objective function

and to accurately locate the global optimal solutions.

The performance of the proposed calibration algorithm is evaluated with both a

synthetic toy network and a large-scale metropolitan area network of Berlin, Germany.

Its performance is benchmarked against a general-purpose algorithm that differs only

in that the metamodel does not use information from the analytical network model.

For both networks, the experiments indicate the significant added value of using

such analytical structural information for the SO algorithm. For the Berlin network,

compared to the benchmark method, the proposed method yields an average of 70%

improvement in the quality of the solution, as measured by its objective function

estimates, while simultaneously reducing the computational runtimes by an average

of 30%. The analytical structural information is also shown to yield an algorithm

that is robust to both the quality of the initial points and the stochasticity of the

simulator. For all experiments, the proposed method was able to identify a solution

with significantly improved performance at the first iteration of the algorithm.

Given the intricacy of simulators, as well as their high computational runtime

costs, there is a pressing need to enable their use to efficiently address the types

of intricate optimization problems faced by transportation stakeholders around the

globe. A promising approach is to use the family of metamodel ideas, combining

ideas from analytical traffic modeling and simulation-based traffic modeling. Ongoing

work explores the use of metamodel ideas for online calibration. Of ongoing interest

is also the combination of these metamodel ideas with disaggregate data, which is

increasingly available, such as partial vehicle trajectories, to improve the calibration

and validation of large-scale network simulation models.
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Chapter 6

Enhanced Origin-Destination (OD)

Demand 'Calibration Incorporating

Emerging Data Sources

The contents of this chapter are available as: Zhang, C. and Osorio, C. (2018).

Enhanced offline origin-destination (OD) demand calibration incorporating emerging

data sources. Technical report, Massachusetts Institute of Technology.

6.1 Introduction

This chapter formulates origin-destination (OD) demand calibration combining sev-

eral heterogeneous data sources as a simulation-based optimization (SO) problem of

high dimensionality whose objective function depends on the output of a large-scale,

stochastic, noisy traffic simulator that does not have an analytical closed-form ex-

pression; and it also introduces a computationally efficient metamodel SO solution

algorithm that is able to take advantage of higher resolution emerging data sources.

This chapter considers a specific type of high-resolution data: intersection turn-

ing flows. They are the proportions of traffic flows turning from one link to down-

stream links at intersections. This type of traffic data can be obtained by various

methods. For instance, they can be obtained from the existing detector infras-
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tructure. Coifman and Krishnamurthy (2007) propose a methodology for deriving

path travel times and turning fractions from dual loop detectors by re-identifying

vehicles at downstream detector locations. However, the success of this method is

built upon the premise that vehicles have distinct lengths. More reliable ways of

collecting turning flow data require the use of advanced transportation technolo-

gies, e.g., AVI and AVL systems, for probe vehicle re-identification and tracking.

Specifically, they can be obtained from roadside cameras, video-based sensors, RFID

plate or tag readers, and GPS that capture the chained locations of probe vehi-

cles. Intersection turning flows or other similar data types, such as turning frac-

tions and route choice probabilities, have already been used to improve demand

calibration in literature (e.g., Van Der Zijpp and De Romph, 1997; Mishalani et al.,

2002; Alibabai and Mahmassani, 2008). Mishalani et al. (2002) use link travel times

and intersection turning flows processed from video cameras to estimate dynamic

OD matrices for a 3-intersection arterial and show the intersection turning flow

data significantly improves the quality of the estimated OD matrices. Similarly,

Alibabai and Mahmassani (2008) show that the addition of intersection turning move-

ments improves the reliability of the estimated OD demand. Intersection turning flows

can be a promising data source for demand calibration to complement the conven-

tional traffic count data. This chapter incorporates the high-resolution intersection

turning flow data to formulate an OD demand calibration problem and uses meta-

model SO techniques to address it in a computationally efficient way.

In this chapter, we assume that intersection turning flows, going from the subset

of links with loop detectors to each of their downstream links, are available. Specif-

ically, we assume that the conventional traffic data collected by loop detectors is

complemented by the richer and more detailed intersection turning flow data. The

problem formulation and solution procedure proposed in this chapter are flexible with

respect to the other types of traffic data used. This sheds light on the development

of enhanced calibration framework for large-scale stochastic traffic simulation models

that leverages big data in the future.

This chapter enhances the metamodel SO demand calibration algorithm proposed
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in Chapter 5, which is extended based on Chapters 3 and 4. Compared to Chapter 5,

this chapter is enhanced in the following ways: (1) using a link-independent meta-

model to approximate the objective function directly, which avoids the problem of

overfitting; (2) using a fundamental diagram-based analytical network model with en-

dogenous assignment, which is able to better capture traffic congestion in the network

and provides the mapping of OD demand to traffic counts, intersection turning flows

and (possibly) other traffic measurements; (3) leveraging an additional data source,

i.e., the intersection turning flows, for a refined solution to the SO calibration prob-

lem. Results on a large-scale real-world metropolitan Berlin network show enhanced

performance of the calibration algorithm.

This chapter is organized as follows. Section 6.2 mathematically formulates the

offline OD demand calibration problem combining several heterogeneous data sources,

explains the metamodel SO solution procedure, and presents a novel link-independent

metamodel. Section 6.3 presents the experimental design and reports the numerical

results. Specifically, we first validate the proposed algorithm on a synthetic toy net-

work and then demonstrate its performance on a large-scale network in the metropoli-

tan area of Berlin, Germany. Section 6.4 summarizes the main conclusions and im-

plications. Appendix A details the enhanced calibration algorithm and Appendix C

provides details regarding the implementation.

6.2 Methodology

6.2.1 Problem Formulation

The offline OD demand calibration using several heterogeneous data sources is for-

mulated as an SO problem. We model the transportation network in terms of traffic

analysis zones (TAZ). Each component of the vector of decision variables d is the

expected number of trips made between a given origin zone and a given destination

zone. We aim to obtain an OD demand matrix that yields simulation-based traffic

measurements as close as possible to their observed values.
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The following notation is used to formulate the SO demand calibration problem:

f simulation-based objective function;

Fi flow on link i as defined by the simulator;

GiC flow turning from link i to downstream link j at an intersection;

y, average flow on link i estimated from the field data;

gij average flow turning from link i to downstream link j at an intersection;

d, expected travel demand for OD pair z;

dz prior travel demand for OD pair z;

1, subset of links with field traffic counts;

L2 subset of link pairs with field intersection turning flows;

Z set of OD pairs;

61 weight for prior OD demand information;

62 weight for intersection turning flows;

u1  endogenous simulation parameters;

u2  exogenous simulation parameters.

With the notation, the SO problem can be expressed as:

min f(d) = E (yi - E[F(d, ul; U2 )])2 +61 (dz - dz)2

+62 (gij -E[G i (d, ui; 2)] )2 (6.1)
1L2121(ij)EL2

d>0, (6.2)

where - represents the cardinality of a set. Endogenous (resp. exogenous) simulation

parameters ui (resp. U2) are such as link speeds, travel times, and queue lengths (resp.

network topology, traffic management strategies) in the simulator.

The objective function (6.1) minimizes the goodness-of-fit measure, which is mod-

eled as a weighted combination of the distances between: (1) the observed and the

simulated traffic counts; (2) the observed and the simulated intersection turning flows;

and (3) the decision variables and the prior estimate of the OD demand matrix (also
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called seed matrix or target matrix). Additional weights are pre-determined and

assigned to the second and the third terms based on the decision maker's relative

preferences for, or confidence in, the specific data source. For example, the weight

factor 6 1 is usually very small to avoid confining the search to the vicinity of the prior

OD demand matrix, which is usually less reliable. Specifically, we set 61 to 0.01 and

set 62 to 1 in this chapter.

The objective function (6.1) depends on the output of a large-scale, stochastic,

noisy traffic simulator. Specifically, it depends on two simulation-based components

E[F] and E[Gij], which are derived from the intricate spatial-temporal traffic dy-

namics modeled by traffic simulators. They can be defined as follows:

E[F(d,ui; U 2 )] Z:dz 1 AriPz(rld,ui; U 2 ) (6.3)
zEZ rERz

E[Gij(d, ui;U 2 )] = > dz Qrij Pz(rld, ui;tt 2 ), (6.4)
zEZ rERz

where Rz is the set of feasible routes connecting OD pair z. Pz(r Id, ui; u 2) represents

the probability of choosing a route r E Rz for a trip-maker traveling between OD pair

z. Binary variable Ani (resp. Qrij) equals 1 if link i (resp. consecutive link pair (i, i))

is on route r and 0 otherwise.

Equations (6.3)-(6.4) map OD demand d to available traffic measurements, namely,

link traffic counts and intersection turning flows. The route choice probability Pz(r Id, ui; a 2 )

is a function of link travel times, which in turn depend on link flows E[F] and inter-

section turning flows E[Gij]. In traffic simulators, Equations (6.3)-(6.4) are based on

simulations of replanning (e.g., route choice, mode choice, and departure time choice)

and network loading, which are recursively evaluated. Therefore, they are nonlinear

functions that lack sound mathematical properties such as convexity, have no closed-

form expression, and can only be evaluated by running simulations. Due to the

stochasticity of simulation models, each simulation evaluation requires multiple simu-

lation replications. For high-resolution traffic simulators, each simulation replication

is computationally inefficient. This poses challenges primarily to the computational
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efficiency of calibration, especially for simulation-intensive traditional "black-box" al-

gorithms that require a large number of simulation evaluations.

In addition, Problem (6.1)-(6.2) is a high-dimensional optimization problem since

the decision variable, OD demand vector d, is typically in the order of several thou-

sands. Due to the scarcity of traffic data y, and gij, the problem is under-determined

and contains numerous local minima. The inclusion of the prior OD demand d helps

the algorithm to identify solutions that are consistent with the land-use and activity

patterns of the area. Compared to the formulation in Chapter 5, the enhanced formu-

lation includes the term (i.e., the third component in (6.1)) addressing the distance

between the simulation-based and the observed turning flows, which complements the

problem formulation with additional high-resolution information.

6.2.2 Metamodel Formulation

We use a metamodel SO algorithm for solving the OD demand calibration prob-

lem. Adapted from the methodology in Section 2.3, the metamodel SO algorithm is

customized to solve demand calibration problems.

Next, we present the novel metamodel for Problem (6.1)-(6.2). The proposed

metamodel is an analytical approximation of the simulation-based objective func-

tion (6.1). We approximate the objective function by using a link-independent meta-

model. Compared to a link-dependent metamodel (e.g., Zhang et al., 2017, 2016a;

Zhang and Osorio, 2018) that approximates each link separately, the link-independent

metamodel requires fewer model parameters to be fitted and thus avoids overfitting.

In order to formulate the metamodel, we introduce additional notation as follows.
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fA analytical approximation of SO objective;

k iteration index;

mk metamodel function at iteration k;

A parameter vector of metamodel Mk;

expected turning flow from link i to downstream link j;

PZ8 proportion of demand from OD pair z that takes a route between link pair s;

ds expected travel demand between link pair s;

Ai expected demand of link i;

ki expected density of link i;

Vi expected speed of link i;

ii expected travel time of link i;

tr expected travel time of route r;

P(r) route choice probability of route r;

k Jam jam density of link i;

Viax maximum speed of link i;

qcaP link flow capacity;

fi length of link i;

O travel time coefficient of the route choice model;

c scaling parameter common to all links;

0(r) OD pair of route r;

f) endogenous analytical model variables;

q exogenous analytical model parameters;

h macroscopic analytical network model;

L(r) set of links of route r;

R,1(i) set of routes that include link i;

R 2(ij) set of routes that include consecutive link pair (i, j);

7Z3 (s) set of routes for link pair s.

As defined earlier, d, denotes the demand for OD zone pair z, which is the aggre-
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gation of individual trips at the link level. Regarding one zone z, trips may come from

(resp. go to) different trip generation (resp. attraction) links within the zone. Each

pair of these links (i.e., trip generation or attraction links) is called an OD link pair

and is denoted by s. The aggregate zonal demand dz and the disaggregate link level

demand d, is related through an incidence matrix P, which is exogenously defined.

The subproblem optimization at iteration k of the SO algorithm is formulated as:

min mk(d; A,) = !k,fA(d) + q$(d; A3 )+61- (dz dz)2 (6.5)
A zEZ

fA(d) = (yj - Ai) 2 + 62 1 (gij -ij)2 (6.6)
I1 iE1 21 iEL

0(d; A,) =/ 3 ,1 + E 3k,z+1dz (6.7)
zEZ

h(d, i;) 0 (6.8)

d > 0. (6.9)

The difference between Problem (6.1)-(6.2) and the Subproblem (6.5)-(6.9) is that

the latter replaces all simulation-based components with counterparts derived from

the analytical network model (Constraint (6.8)), which are firstly scaled by a factor

A3 ,0 and are then complemented by a linear polynomial of the decision variables, d,

modeled by Equation (6.7). The subproblem optimization is the problem solved in

Step 2a in Figure 2-2.

The analytical network model (6.8), which is formulated as a system of nonlinear

equations, is presented as follows:

126



ds =Pzsdz (6.10)

A = P(r)do(r) (6.11)
rElZ(i)

Oi= = P(r)do(r) (6.12)
rEIZ2(ij)

P(r) eOtr (6.13)
-jCI 3 (O(r)) e'ti

tr = ii (6.14)
iEL(r)

i =-(6.15)

Vi = max - k ) (6.16)

ki = ck A . (6.17)qcaP

The analytical network model is based on the model of Osorio (2017). Firstly,

Equation (6.10) disaggregates demand between traffic analysis zones to that between

specific link pairs. Equation (6.11) defines the expected demand through link i, Aj,

as the sum of the expected route demand over the set of routes that contains link

i. Similarly, Equation (6.12) defines the expected demand over consecutive link pair

(i, j). The route demand is the summation of demand from all OD pairs that traverse

the route. The demand for an OD pair is mapped to a route by multiplying the de-

mand by the corresponding probability of choosing that route, P(r). The route choice

model is defined as a multinomial logit (MNL) model in Equation (6.13). The route

choice is solely based on the route travel time, tr, which is modeled in Equation (6.14)

as the summation of the travel time of links along the route. Equation (6.15) defines

the travel time of link i, i, as the link length divided by the expected speed, which is

approximated by a simple linear fundamental diagram, as shown in Equation (6.16).

Equation (6.17) assumes a linear relationship between the expected link density and

the expected link demand where parameter c is chosen based on insights from prior
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experience. In this chapter, we set c to .

Compared to the original model of Osorio (2017), the proposed model differs in the

following ways. Equation (6.10) is included for converting demand at the aggregate

zonal level to that between a specific pair of links. This enables the model to be appli-

cable to networks whose demand are represented in terms of zones. Equation (6.12) is

new. It approximates the traffic measurements corresponding to the new data source:

intersection turning flows. This is how we derive the analytical approximation for the

more detailed turning flow data. Equation (6.16), modeling the relationship between

the expected speed and the expected density, is further simplified from the original

nonlinear function to a linear one. The aforementioned changes enable the analytical

model to be capable of deriving other types of traffic measurements, to be able to

handle aggregate demand at zonal level, and to further improve the computational

tractability of the model.

6.3 Case Studies

6.3.1 Experimental Design

In order to comprehensively illustrate the methodology proposed in this chapter, we

first validate the algorithms on a synthetic toy network, and then apply them to a

large-scale network in the metropolitan area of Berlin, Germany.

Network Topologies

We consider two road transportation networks: a toy network and the real Berlin

metropolitan network.

The topology of the synthetic network is shown in Figure 6-1. The network con-

tains a total of 11 links and 11 nodes. All links are single-lane uni-directional roads.

Four OD pairs, namely, 1-4, 7-11, 9-4, and 9-11, are considered. For demand between

OD pair 1-4, there are two alternative routes: 1-2-3-4 and 1-2-5-6-3-4, respectively.

For demand between the rest of OD pairs, there is a single route available. Hypo-
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Figure 6-1: Synthetic toy network

thetically, a single loop detector is installed on link 5-6 (dashed) to collect traffic

counts and two pairs of AVI sensors are installed on the following links: 5-6 (dashed),

6-3 (dotted), and 6-10 (dotted), to get turning flows at this intersection. In other

words, the traffic flows turning from link 5-6 to its downstream links 6-3 and 6-10 are

available. Unlike traffic counts, intersection turning flows provide additional informa-

tion regarding travelers' route choice behavior. For example, turning flows reflect the

route choice probabilities at intersections. We estimate the demand for all four OD

pairs from traffic counts and intersection turning flows for a one-hour time interval.

Additional link attributes are detailed in Table C.4 of Appendix C.

The large-scale transportation network in the metropolitan area of Berlin includes

both the city of Berlin and the federal state of Brandenburg, Germany. A map of the

road transportation network of this area is shown in Figure 3-15 of Chapter 3. The

corresponding network implemented in the traffic simulator is displayed in Figure 3-14

of Chapter 3. The network is decomposed into a set of 557 traffic analysis zones

(TAZ) which are presented in Figure 5-12 of Chapter 5. We focus on a single time

interval: the morning peak hour, 8-9 AM. In this chapter, we assume, AVI sensors

are installed at all count stations and their downstream links so that intersection

turning flows from all count stations to their successors are recorded. In order to have

controlled experiments, traffic counts and intersection turning flows are all synthesized

via simulation runs.
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Algorithms

The primary objectives of the case studies are to:

a. Highlight the added value of the analytical network model;

b. Quantify the added value of using intersection turning flows;

c. Demonstrate the flexibility, effectiveness, and efficiency of the metamodel SO

calibration algorithm in handling multiple data sources.

In accordance with the objectives, we primarily conduct comparative analyses by

considering the proposed algorithm and three other algorithms as listed in Table 6.1.

The proposed algorithm is denoted by Am-new, which uses the analytical network

model and incorporates richer data sources, namely, traffic counts and intersection

turning flows. We compare it to other algorithms either do not use the analytical

network model or do not incorporate intersection turning flows. Algorithms titled

new are those that incorporate the more detailed data source while algorithms titled

old only use the conventional traffic count data (i.e., without the last term in the

objective function (6.1)). Algorithms titled Am use a metamodel that is dependent

on the analytical network model, however, algorithms titled AO use only a general-

purpose metamodel without exploiting the problem-specific structure (i.e., they are

"black-box" algorithms with A3 ,O set to zero in (6.5)). In addition, we also consider

algorithms Anal y-new /Analy-old, which use only the analytical network model for

calibration with/without using intersection turning flows.

Pair-wise comparative analyses are conducted by comparing two algorithms that

differ only in one factor. Through analysis of algorithm pairs {Am-new, A#-new}

Table 6.1: Calibration algorithms

Traffic counts Intersection turning flows Analytical network model
Am-new V V"$
Ao-new
Am-old
Ao-old /
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and {Am-old, A#-old}, the performance regarding Objective a is studied. Similarly,

Objectives b and c are assessed by comparing algorithm pairs {Am-new, Am-old}

and {A#-new, A#-old}.

Settings

The case studies are configured as displayed in Table 6.2. The rest of the experiment

design are shown in Table 3.2. The demand scenario for the toy network case study is

associated with various congestion levels across links. Specifically, it leads to a ratio

of expected demand to expected supply that is greater than 1 on links 5-6, 9-6, 6-3,

3-4, and 6-10. The configuration for both networks as shown in Table 6.2 is consistent

except for the computational budget, which is reduced for the Berlin network due to

the added computational cost of simulating large-scale networks.

For the toy network, the prior OD demand matrix (i.e., seed matrix) is obtained

by perturbing each entry of the true OD demand matrix with an error uniformly

distributed in the range of {-30%, 30%} of its maximal entry of the true OD matrix.

For the Berlin network, traffic counts and intersection turning flows are first obtained

by running simulations with the original demand specified by the simulator. The

seed matrix is then obtained by applying the same procedure as described for the toy

network. The seed matrix serves as an initial guess of the OD demand matrix, which

is then updated using information from traffic counts and intersection turning flows.

Initial points are the demand vectors that are used to start algorithms. We vary

initial points for a given algorithm to test its sensitivity to the initial conditions. For

both case studies, two types of initial points are generated beforehand. The first type

of initial points, which is referred to as perturbed initial points, is obtained through

Table 6.2: Experimental settings

Synthetic toy network Berlin network
Bounds for d values (veh/hr) [0, +-o) [0, +o)
True d values (veh/hr), d* [1500,1000,1000,1000] N.A.
Weight factor of the prior OD matrix, 61 0.01 0.01

Weight factor of turning flows, 62 1 1
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further perturbing the seed matrix by an additional 30% of the maximal entry of the

seed matrix. The second type of initial points are generated randomly by sampling

each entry of the OD demand vector independently from a uniform distribution in

the interval [0, 2000] (veh/hr). We refer to these points as random initial points.

We call an experiment with a given initial point a scenario. For each scenario, we

run each algorithm three times. We do this in order to account for the stochasticity

of traffic simulators. The traffic simulation model used is MATSim (Multi-Agent

Transport Simulation; Horni et al., 2016), which is activity-based and agent-based.

The toy experiments are carried out on a standard laptop with a 4-core Intel i7-

3740QM processor, and the Berlin experiments are carried out on a workstation with

a 32-core Dual Intel Xeon Processor E5-2630 v3 and 512GB RAM.

6.3.2 Results and Discussion

This section presents the numerical results of the case studies and analyzes the algo-

rithmic performance in terms of accuracy, efficiency, and robustness, etc.

Toy Network

One challenge for demand calibration is the intricacy of the objective function which

exhibits numerous local minima. In order to illustrate the objective function visually,

we fix the demand for OD pairs 9-4 and 9-11 to their true values and only vary the

demand for OD pairs 1-4 and 7-11. We first sample equally spaced and uniformly

distributed points in the range of [0, 2000] veh/hr with increments of 50 along each of

the two demand dimensions. For a given demand, a point estimate of the objective

function is obtained as the average of the estimates from 10 simulation replications.

A contour plot is then constructed based on a set of point estimates and is displayed

in Figure 6-2a. We mark the global minimum with a red asterisk and mark local

minima with red dots. Figure 6-2a has a global minimum at [1450, 1000] veh/hr,

which is close to the true demand for the two varying OD pairs, [1500, 1000] veh/hr.

Compared to the objective function without using the more detailed data (i.e., 62 = 0
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Figure 6-2: Contour plot of objective functions for true demand

[1500, 1000, 1000, 1000] (veh/hr)

in the objective function (6.1)), the total number of minima is reduced from 25 to

6 by taking advantage of the more detailed data source. Therefore, the inclusion of

intersection turning flows adds additional field data that constrains the set of OD

demands that are consistent with the field measurements. Given that OD calibration

problems are under-determined problems, this is an important advantage of using

such new or higher resolution data sources.

The main premise of the proposed metaniodel SO methodology is that computa-

tional efficiency can be improved by taking advantage of the problem-specific analyti-

cal information. We first investigate this by comparing the simulation-based objective

function to its analytical counterpart. The latter differs from the former by using traf-

fic measurements derived from the analytical network model instead of evaluating the

simulation model. The analytical approximation of Figure 6-2a is displayed in Fig-

ure 6-2b. Similarly, we mark the global minimum with a red asterisk. Figure 6-2b has

the global minimum at [1200, 1000] veh/hr. Comparing the contour plots, the analyt-

ical objective function approximates the simulation-based objective function in terms

of the approximate shape and the global minimum. This indicates that the analyt-

ical network model is able to capture problem-specific structural information of the

simulator. To demonstrate the added value of the structural information provided by

the analytical network model, we first compare algorithms Am-new to Ao-new. The
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latter differs from the former only in terms of not embedding the analytical network

model.

In Figure 6-3, we show the simulation-based objective function estimate of the

current iterate (i.e., point with the best simulated performance) as a function of the

number of simulated points. Note that the y-axis is displayed on a logarithmic scale.

Algorithm Am-new (resp. A#-new) is denoted by solid black (resp. red) curves. Each

subplot represents one scenario with a different initial point. For each algorithm, three

experiments are conducted and represented separately in each subplot. The x-axis

displays the computational budget consumed so far as the number of simulated points,

and the y-axis represents the corresponding simulation-based objective function of the

current iterate.

Overall, the black curves achieve much smaller objective function values than the

red ones for all scenarios. The curves corresponding to Am-new significantly reduce

the objective function when only two points are simulated, and continuously achieve

reductions in the objective function until the fifth point is simulated. In fact, the

second simulated point is obtained by solving the calibration problem using only the

analytical network model (i.e., 3 k,O = 1 and !3 ,J = 0 Vj > 0 in Subproblem (6.5)-

(6.9)). Specifically, Am-new directs any given initial point to the minimum of the

analytical objective function in Figure 6-2b, which closely approximates the global

minimum of the simulation-based objective function in Figure 6-2a and thus corre-

sponds to a much smaller objective function than the initial point. We then calculate

the average objective function value for all final solutions achieved by a given method

for all scenarios and all runs, which is 1,620 for Am-new and 117,456 for Aq-new. As

a reference, the average objective function value across all initial points is 669,386. In

contrast to the initial points, Am-new (resp. A#-new) achieves an average reduction

in the objective function by 99.8% (resp. 82.5%). Compared to A#-new, Am-new

further reduces the objective function by 98.6% on average. In summary, Am-new

outperforms Aq-new by consistently yielding high-quality solutions (i.e., correspond-

ing to smaller objective function) across all iterations and obtaining solutions with

better performance when the computational budget is depleted, regardless of the

134



5 15 15 20 25
Number of simrulaterd p01111

(a) Perturbed initial point 1

0

101

30 5 10 15 20 25 5
Numfber (A simrulated points

(b) Perturbed initial point 2

3 01

101

1045~

I

5 10 15 20 25 30 5 10 15

Number of simulated poin1ts Number of simulated posm s

(c) Random initial point 1 (d) Random initial point 2

Figure 6-3: Simulation-based objective function estimate of the current iterate as a

function of the total number of simulated points

quality of the initial points.

An important metric for evaluating the quality of calibration is the ability to

replicate the field traffic measurements. Figure 6-4 displays for all scenarios the

comparison of the "true" traffic measurements, i.e., the traffic count on link 5-6,

and the turning flows from 5-6 to 6-3 and 6-10, and the simulated ones for a given

algorithm. Three algorithms, namely, A#-new, Am-new, and Am-old, are compared

to the initial solution, denoted by Init. Each subplot corresponds to one algorithm.

Traffic counts are marked with crosses and turning flows are marked with circles.

The traffic measurements corresponding to different scenarios are shown in different

colors: red for the perturbed initial point 1, yellow for the perturbed initial point 2,
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Figure 6-4: Comparison of the "true" traffic measurements and the simulated traffic

measurements for the algorithmic solutions

green for the random initial point 1, and black for the random initial point 2. For all

subplots, the x-axis represents the "true" traffic measurements, the y-axis represents

the simulated traffic measurements for an algorithmic solution, and a dashed blue

diagonal line is displayed as a reference. The closer the data points are to the dashed

blue line, the better the simulated traffic measurements replicate the "true" ones.

The subplot representing AO-new closely approximates the traffic count but do

not approximate well the turning flows, especially when the random initial points

are supplied. This indicates that Ab-new is not robust to the initial conditions.

Compared to AO-new, Am-old provides a better approximation to both traffic mea-

surements. Am-new further outperforms Am-old by providing a good approximation

to the traffic count and a much better approximation to the turning flows. Since the

only difference between Am-new and Am-old is the more detailed data, the added

value of embedding the more detailed data in the problem formulation is highlighted

in the presence of the embedded analytical network model. In conclusion, algorithms
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titled Am outperform all others by consistently approximating well the "true" traf-

fic measurements for all initial points, and Am-new further outperforms Am-old in

terms of its better approximation to the turning flows by taking advantage of the

more detailed data source. A quantitative analysis of the fit to field data in terms of

the root mean square normalized (RMSN) errors for the toy network experiments is

available in Tables B.3 and B.4.

Although the objective function is an important metric for evaluating the quality

of calibration, a small objective function only indicates that the simulated traffic

measurements fit the field data well but may not necessarily entail the accuracy of

calibration, especially when the problem is under-determined (i.e., there are multiple

local minima). The most effective way of evaluation is to compare the calibrated

demand to the "true" demand directly, which is inapplicable in practice since the

"true" demand is unknown. However, this is possible for controlled experiments such

as the toy network experiments, where the "true" demand is known since all traffic

measurements are synthesized. We calculate the. Euclidean distance between the

current iterate and the "true" demand for each simulated point.

Figure 6-5 displays the distance between the current iterate and the "true" demand

as a function of the number of simulated points. Each subplot represents the scenario

with a different initial point. For each scenario, solutions from all four algorithms are

compared. For all scenarios except for Figure 6-5b, Am-new decreases the distance

monotonically as more points are simulated. In Figure 6-5b, Am-new increases the

distance a bit from iterations 1 to 4 but still achieves a reduction in the distance

eventually. Overall, compared to Am-new the performance of Am-old deteriorates

as more points are simulated in scenarios represented by Figures 6-5b and 6-5d. For

Figure 6-5c, the final solutions for algorithm titled A0 are very different although

their corresponding objective functions are very close. We then compare in terms of

the average distance from the final solution to the "true" demand across all scenarios

and all runs for a given method, which is, respectively, 2,023 for A#-old, 2,150 for A#-

new, 882 for Am-old, and 337 for Am-new. This average distance calculated across all

initial points is 1,001. Compared to the initial points, Am-old and Am-new achieves
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an average reduction in distance by 11.9% and 66.3%, respectively. In contrast to

Am-old, Am-new further reduces the distance by 61.8%. However, both A#-old and

A#-new end up with more than doubled distance than the initial points. To sum

up, the solutions derived by Am-new outperform those of Am-old, which reflects the

added value of the more detailed data source, and both outperform algorithms titled

AO, which reveals the added value of the embedded analytical network model.

We illustrate the trajectory of the solution of a given algorithmic run for each

initial point over the contour plot of the simulation-based objective function in Fig-

ure 6-6. Different from Figure 6-2a, we display an unfilled contour plot of the

simulation-based objective function, which is extended to show each axis in the range
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each algorithm, for different initial

of [0, 4000] veh/hr, in the background. The left part (i.e., [0, 1300] veh/hr) of all

subplots in Figure 6-6 shows gradual changes of color while the remaining part tends

to be represented by just a few lines in similar colors. This is due to the fact that

the objective function value changes dramatically in the left part and thus contour

lines in different colors are clustered. However, the rest part of the objective function

is stagnant (i.e., flat). The global minimum of the contour plot is marked with a

magenta asterisk and local minima are marked with magenta dots. Over the contour

plot, each subplot displays the trajectories of iteration-specific solutions proposed by

all 3 runs of Am-new and A#-new for a given scenario. The solution trajectories for

Am-old and A#-old are not shown here since they use an objective function that is
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different from the one shown in the background. Note that the actual objective func-

tion for the 4-dimensional problem is more intricate with more local minima than the

one displayed in the plot because the plot shows only the first two dimensions of the

demand vector by fixing the other two dimensions at their "true" values. The location

of initial solutions is marked with a blue triangle. Starting from the initial solution,

it is apparent that Am-new converges quickly to the vicinity of the global minimum

and does so for all 4 scenarios. For all scenarios, Am-new first goes to a point near

[1200, 1000] veh/hr, which is the minimum identified by using only the analytical net-

work model. After that, Am-new identifies points with further improved performance

and are close to *the global optimal solution. Across all subplots, A#5-new* traverses a

larger space by deriving points that are far away from the global minimum. As more

points are simulated, A#-new slowly makes progress towards the global minimum in

some scenarios as seen in Figure 6-6c. For the rest of scenarios, the algorithm A-

new is prone to be stuck at local minima that are far away from the "true" solution.

Therefore, the added value of the more detailed data source is particularly highlighted

when the analytical network model is embedded in the calibration algorithm.

Lastly, we examine the computational efficiency of Am-new and A#-new by look-

ing at the simulation-based objective function of the current iterate as a function of

the computation time, which is displayed for different initial points in Figure 6-7.

Figure 6-7 differs from Figure 6-3 in terms of the x-axis, where the former uses the

elapsed time in hours instead of the number of simulated points. The overall compu-

tation times for both algorithms are comparable. Along the x-axis, Am-new achieves

a significant reduction in objective function much quicker than Aq-new. It is worth

noting that Am-new may take a longer time per simulated point since the total com-

putational time of Am-new is greater than Aq-new in Figures 6-7a, 6-7b, and 6-7d.

This is due to the fact that Am-new needs to solve a more intricate subproblem op-

timization problem. Nonetheless, the additional optimization time is still very small

compared to the simulation time, and the contribution of the embedded analytical

network model clearly justifies the extra computational burden.

In summary, Am-new outperforms all other algorithms by achieving good so-
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function estimate of the current iterate as a

lutions more quickly, resulting in high-quality final solutions, and being robust to

the initial points and the stochasticity of simulators, by taking advantage of both

the analytical network model and the intersection turning flow information. Am-old

is inferior to Am-new but outperforms all others due to the structural information

captured by the analytical network model (e.g., Figures 6-4 and 6-5).

Berlin Metropolitan Network

We first compare the performance of Am-new and A#-new. Figure 6-8 displays the

simulation-based objective function of the current iterate as a function of the total

number of simulated points. Each subplot corresponds to one scenario with a different
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initial point. We consider two scenarios with perturbed initial points and one scenario

with a random initial point. In total, there are 6 curves in each subplot representing

three runs of Am-new and three runs of Afr-new, respectively. The y-axis uses a

logarithmic scale.

Given different initial points, the initial estimates of the simulated objective func-

tion (i.e., y-axis values when x = 1) are very different. For example, the objective

function for the random initial point is 35.6% greater than the average of the other

two scenarios, which reflects the inferior quality of the random initial point. For all

scenarios, Am-new outperforms A#-new by achieving a significant smaller objective

function across all iterations regardless of the initial point supplied. The most sig-
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nificant improvement is made by Am-new when the second point, which is obtained

by solving the calibration problem using only the analytical network model, is simu-

lated. In contrast, A#-new makes small improvements starting from the initial point.

The magnitude of the objective function for the final solutions derived by Am-new

is very similar. However, A#-new always ends up with greater objective function

values especially when worse initial points (e.g., the random initial point) are used.

We then calculate the average objective function value for a given method across all

scenarios and all runs, which is 4.82 x 10 5 for Am-new, 6.89 x 106 for Aq-new, and

7.20 x 106 for the initial points. Compared to the initial points, Am-new and Aq-new

on average reduce the objective function value by 93.3% and 4.3%; respectively. In

contrast to A#-new, Am-new further improves it by additional 93.0%. In conclusion,

Am-new has a superior performance by consistently achieving better solutions and is

more robust to both the initial conditions and the stochasticity of the simulator than

A#-new thanks to the embedded analytical network model.

Furthermore, we examine the quality of algorithmic solutions in terms of their

corresponding traffic measurements evaluated by the simulator. Figure 6-9 (resp.

Figure 6-10) compares the "true" link counts (resp. intersection turning flows) and the

simulated traffic counts (resp. intersection turning flows) for the solutions derived by

algorithms A#-new, Am-old, Am-new, and the initial points, denoted by Init. Each

subplot represents on algorithm, and includes all scenarios, which are differentiated

by color. The scenarios with the perturbed initial point 1, the perturbed initial point

2, and the random initial point 1 are marked in red, green, and black, respectively.

A dashed blue diagonal line is displayed as a reference.

Both types of traffic measurements corresponding to Init inaccurately overesti-

mate the field data, among which those corresponding to the random initial point are

the most inaccurate (i.e., the black markers). The subplots for A#-new inherit the

pattern presented in the subplots for the initial points, which indicates the depen-

dency/sensitivity of the general-purpose algorithm on/to the initial points. In other

words, they are non-robust to the initial conditions. The subplots for Am-new and

Am-old show the best overall approximation to the field data, and Am-new outper-
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forms Am-old in terms of both traffic measurements. Therefore, Am-new outperforms

all other algorithms by benefiting from the added values of both the analytical model

and the intersection turning flow data, and the effect of the latter is more obvious in

the presence of the former.
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We then compare the algorithms' ability to replicate the traffic measurements

quantitatively in terms of the root mean square normalized (RMSN) error. The

RMSN for traffic counts is defined in Equation (5.8) of Chapter 5. Equation (5.8)

can be adjusted to address intersection turning flows by replacing yi, I, and E[F]

with gij, L2, and E[Gij], respectively. RMSN quantifies the overall error of calibra-

tion. Lower values usually indicate a better fit to the field data. We calculate RMSN

for traffic counts and turning flows and list the statistics in Tables 6.3 and 6.4, re-

spectively. For each scenario, the statistics for an algorithm are calculated as the

average of three replications of the experiment. Clearly, the algorithms titled Am

show consistently good performance regardless of the initial conditions, however, the

algorithms titled A0 tend to perform better with higher-quality initial points (e.g.,

the perturbed initial points). The average RMSN (row 'Average across all initial

points') for an algorithm is calculated as the mean across all scenarios. The row at

the bottom titled 'Improvement compared to Init' is the percentage improvement in

terms of the average RMSN of an algorithm over Init. Our conclusions drawn from

Figures 6-9 and 6-10 hold. A#-old and Aq-new improve the fit to traffic counts and

turning flows by about 20% and 26%, respectively. However, Am-old and Am-new

Table 6.3: Comparison of the Root Mean Square Normalized (RMSN) errors (%) of
traffic counts

Init A#-old A#-new Am-old Am-new
Perturbed initial point 1 140.95 132.52 127.82 26.64 25.83
Perturbed initial point 2 187.89 168.29 166.57 36.27 28.66
Random initial point 1 278.31 188.43 193.35 35.18 23.79

Average across all initial points 202.38 163.08 162.58 32.70 26.09
Improvement compared to Init N.A. 19.42 19.67 83.84 87.11

Table 6.4: Comparison of the Root Mean Square Normalized (RMSN) errors (%) of
turning flows

Init A#-old A#-new Am-old Am-new
Perturbed initial point 1 172.54 160.99 155.49 40.41 36.88
Perturbed initial point 2 229.43 204.97 202.66 47.99 44.60
Random initial point 1 398.64 226.89 234.27 48.36 35.42

Average across all initial points 266.87 197.62 197.47 45.59 38.97
Improvement compared to Init N.A. 25.95 26.01 82.92 85.40
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improve the fit to both traffic measurements by more than 82%. This reveals the

remarkable added value of embedding the analytical network model. The algorithms,

Am-new and A#-new, that use the turning flow data are able to further improve

the fit, compared to those without using the new data. In contrast to Am-old, Am-

new improves the fit to traffic counts (resp. turning flows) by additional 20% (resp.

14%). However, A#-new achieves slightly better fit than Ao-old for both traffic mea-

surements. Therefore, the added value of the turning flow data is highlighted for

algorithms that embed structural information from the analytical network model. In

a word, Am-new outperforms all others by taking advantage of both the analytical

model and the additional data source.

Last but not least, we evaluate the computational performance of Am-new in com-

parison with Ao-new. Figure 6-11 displays for each algorithmic run, the simulation-

based objective function of the current iterate as a function of the computation time

in hours. This figure differs from Figure 6-8 in having the computation time as the

x-axis. For a fixed computational budget of 20 simulated points, the computation

time for Am-new varies in the range of [66,116] hours while that for A4-new falls in

the range of [80,134] hours. It is worth noting that for Am-new the most computa-

tionally intensive step is from the first iteration to the second one, which corresponds

to the step where subproblem optimization is solved for the first time. Solving this

high-dimensional subproblem optimization requires about 20 hours, however, it leads

to the most significant reduction in the objective function across all algorithmic itera-

tions. Nevertheless, the computation time for solving the subproblem optimization in

the subsequent iterations is much shorter for Am-new. Note also that this subprob-

lem optimization can be made significantly faster by selecting suitable initial values

for the endogenous variables of the analytical network model; this has been such as

not to tailor too much the algorithm to the specific problem instance. For A#-new,

some iterations take a much longer time than the average. This is primarily due to

the sampling of model improvement points (i.e., Step 2b in Figure 2-2). On average,

Aq-new samples about 40% more model improvement points than Am-new. These

model improvement points are sampled randomly from the feasible region, which are
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likely to be inconsistent with the land-use and activity patterns of the area, therefore,

require a longer time to simulate. Thanks to the analytical network model, Am-new

maintains computationally efficiency even with the incorporation of the more detailed

data source.

To summarize, Am-new appears to be the most robust, effective, and efficient

algorithm among the four algorithms under consideration. The Berlin case study

demonstrates the scalability of the proposed algorithm and the added values of both

the analytical model and the turning flow information. The incorporation of the more

detailed data further improves the fit to field data by an average of 20% (resp. 14%),

as measured by RMSN errors of traffic counts (resp. intersection turning flows). Am-
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new is an algorithm that is capable of incorporating additional traffic data and thus

has the potential to be extended to address other emerging data sources.

6.4 Conclusions and Discussion

This chapter presents an enhanced metamodel algorithm for the offline OD demand

calibration of large-scale stochastic traffic simulators that leverages emerging data

sources of higher resolution. Specifically, we propose a computationally efficient de-

mand calibration algorithm that takes advantage of the added value of using inter-

section turning flow data collected by AVI sensors. The algorithm is based on an

SO metamodel approach, which uses an analytical metamodel to approximate the

simulator and then uses the metamodel for optimization. In this chapter, we use a

link-independent metamodel to approximate the objective function. The metamodel

integrates information from both the simulator and the analytical network model.

A computationally efficient analytical network model with endogenous route choice,

which maps the calibration vector to corresponding traffic measurements analytically,

is used.

The case studies compare the performance of our proposed algorithm to three

other benchmark algorithms. We demonstrate that the proposed algorithm is able

to handle multiple traffic data types and outperforms the benchmark algorithms in

terms of the quality of solutions, computational efficiency, and robustness to both the

initial conditions and the stochasticity of simulators. Through pair-wise comparative

analyses of all algorithms, we showed that incorporating more detailed traffic data

significantly improves the fit to field data, and integrating the structural information

derived from the analytical network model maintains the computational efficiency

and improves the robustness of the SO algorithm. According to the Berlin case study,

the proposed algorithm yields an average of 93% improvement in the quality of the

final solution, as measured by its objective function estimates, and simultaneously

improves the fit to field data by more than 10%, as measured by the RMSN errors

for both traffic counts and turning flows, in contrast to a general-purpose algorithm
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that does not embed the analytical network model.
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Chapter 7

Conclusions and Future Research

Traffic simulators are the mathematical modeling of transportation systems through

the application of computer software to better plan, design, and operate transporta-

tion systems. This thesis is shaped by the emerging trend of using simulators for

urban transportation system modeling. Simulation models have grown in complexity

as more detailed information is wanted by transportation agencies, academic institu-

tions, and consulting firms. This added complexity poses a challenge for calibrating

model input parameters based on real traffic data.

7.1 Conclusions

This thesis presents computationally efficient offline demand calibration algorithms

for large-scale stochastic traffic simulation models. First, the demand calibration

problem is formulated as a simulation-based optimization (SO) problem. Then,

metamodel solution approaches are provided. The metamodel approaches embed

problem-specific structural information from an analytical network model, which de-

scribes analytically how the calibration input is related to the calibration objective

function. The proposed approaches are shown to achieve significant improvements

in the computational efficiency, the robustness to both the initial conditions and the

stochasticity of simulators, and the quality of final solutions obtained. Moreover, these

approaches are scalable and thus are applicable to large-scale real world instances.
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In addition, these approaches enable the use of multiple heterogeneous traffic data

sources, including those collected by emerging technologies such as AVI and AVL

systems. Given all these features, the proposed metamodel calibration algorithms are

suitable for a broad family of simulators, are of particular interest for the calibration

of inefficient simulators, and are likely to be supported by big data in the future.

Chapter 3 formulates the behavioral model calibration problem as an SO prob-

lem, proposes a novel metamodel solution approach, and implements it for the cal-

ibration of a behavioral parameter governing drivers' route choice. The analytical

metamodel combines information from a queueing-based analytical network model

and information 'from the traffic simulator. The queueing-based analytic'al network

model captures assignment endogenously through the integration of the multinomial

logit (MNL) model. The proposed algorithm is validated by considering synthetic

experiments on a toy network. It is then used to address a calibration problem with

real data for a large-scale network: the Berlin metropolitan network with over 24,300

links and 11,300 nodes. The performance of the proposed approach is compared to a

traditional benchmark method that differs only in that the metamodel does not use

information from the analytical model. The proposed approach significantly improves

the computational efficiency of the calibration algorithm with an average reduction

in simulation runtime until convergence of more than 80%. The results illustrate

the scalability of the approach and its suitability for the calibration of large-scale

computationally inefficient network simulators.

Chapter 4 extends the algorithm proposed in Chapter 3 to address a 2-dimensional

calibration of the supply models. Specifically, link flow capacity and link storage ca-

pacity are calibrated from traffic counts. A simplified analytical network model that

represents route choice exogenously is presented as a system of nonlinear equations.

Its dimension scales linearly with the number of links in the network and scales inde-

pendently of the link attributes (e.g., link lengths). The proposed supply calibration

algorithm is benchmarked against an SO algorithm that differs only in that the meta-

model does not use information from the analytical model. The performance of the

two methods is compared with experiments on both a toy network and the Berlin
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metropolitan network, considering a range of congestion levels. The case studies in-

dicate that the use of the analytical network model allows the algorithm to: converge

more frequently, converge faster, and be more robust to both the quality of the initial

points and to the stochasticity of the simulator. More specifically, for the Berlin case

study, the proposed supply calibration algorithm improves by a factor of 3 the con-

vergence frequency, by 20% the convergence speed, and by 72% the total simulation

runtime required.

Chapter 5 tackles a high-dimensional calibration problem concerning the origin-

destination (OD) demand matrices. The proposed analytical network model is for-

mulated as a simple system of linear equations that scales linearly with the number

of links in the network, and scales independently of other link attributes, such as

link lengths. This leads to an algorithm that is computationally efficient and suitable

for high-dimensional, non-convex, SO problems of large-scale road networks. Exper-

iments on a small toy network illustrate the ability of the analytical network model

to approximate the simulation-based objective function and to identify the location

of the global optimum. We carry out a case study to calibrate the demand for the

morning peak hour for the Berlin (Germany) metropolitan area. Compared to the

benchmark method that differs only in that the metamodel does not use informa-

tion from the analytical network model, the proposed method yields an average 70%

improvement in the quality of the solution, as measured by its objective function

estimates, while simultaneously reducing the computational runtimes by an average

of 30%. The various experiments indicate that the analytical structural information

yields an algorithm that is robust to both the quality of the initial points and the

stochasticity of the simulator. The structural information enables the algorithm to

identify solutions with significantly improved performance at the first iteration, when

little or even no simulation information is available.

Chapter 6 explores opportunities within the context of OD demand calibration by

taking advantage of high-resolution emerging data sources. Traditional OD demand

calibration resorts to computationally inefficient "black-box" algorithms, largely re-

stricted to conventional traffic data, such as traffic counts that are typically scarce,
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under-specifying the problem. This chapter integrates more detailed data sources to

improve performance of the calibration algorithm. As a first step, we use intersection

turning flows to enhance an SO calibration. This enhanced algorithm is designed to

identify solutions with good performance within very limited computational budgets

by exploiting the transportation problem-specific structure, for both conventional

traffic data (i.e., traffic counts) and more detailed data (i.e., intersection turning

flows). This information is derived from a fundamental diagram-based analytical net-

work model, upon which a metamodel is constructed and used to approximate the

traffic simulation model. Validation on a toy network and a case study on a real-

world large-scale network in the metropolitan area of Berlin, Germany demonstrate

that the enhanced OD calibration algorithm further improves the quality of solutions,

maintains the computational efficiency of the calibration algorithm, is robust to both

the initial points and the stochasticity of simulators, and is capable of handling mul-

tiple heterogeneous data sources. The intersection turning flows refine the objective

function by reducing the total number of local minima. For instance, the inclusion

of intersection turning flows further enhances performance compared to the approach

that does not use this data by improving the fit to field data by an average of 20%

(resp. 14%), as measured by the RMSN errors of traffic counts (resp. intersection

turning flows).

7.2 Future Research

This thesis points to several directions for future research and applications.

7.2.1 Extensions for General Applicability

While the demand calibration framework developed in this thesis is generic, the case

studies involve necessary additional assumptions and simplifications regarding the

time-dependency, the scope of calibration, and the types of input field data, etc. The

methodology can be extended for broader applications by relaxing some or all of these

assumptions.
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With the increase in the availability, diversity, and quality of travel data, comes

increasing interest and relevance of the joint calibration of demand and supply param-

eters (e.g., Balakrishna, 2006; Antoniou et al., 2007; Vaze et al., 2009). This meta-

model framework can be extended to allow for other input parameters of demand

models, supply models, or for joint calibration of both models. This requires the

development of appropriate analytical network models that relate all the calibration

input parameters to the objective function. Challenges and difficulties associated

with this are regarding dimensionality, scalability, and efficiency. If the extension of

the analytical model deems computationally inefficient, then the current analytical

network model can be used as is, and the additional input parameters can be included

in the polynomial error term of the metamodel.

In this thesis, only normal automobile traffic (i.e., road transportation) is con-

sidered. However, urban transportation is a complex system consisting of multiple

systems, including public transit, pedestrian, bike, and (eventually) autonomous ve-

hicles (AV), etc. To fully understand the travel demand, the current calibration

framework can be extended to account for all relevant transportation modes. This

requires a traffic model that integrates multiple transportation systems and captures

the interactions among them.

Another future research direction is to investigate the use of the metamodel cal-

ibration methodology to enhance the efficiency and robustness of traditional data-

driven calibration algorithms such as Kalman filters and particle filters.

7.2.2 Improvements for Enhanced Performance

In addition to extensions for general applicability, the work of this thesis has potential

to be improved for better performance in terms of computational efficiency, accuracy,

and reliability. Research along this line can focus on the improvement of either the

problem formulation, or the metamodel SO algorithm, or both.

The current problem formulation is based on traffic measurements, such as ex-

pected traffic flow/demand and expected intersection turning flows, that are first-

order moments of network performance. One approach to improve the problem formu-
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lation is to account for higher-order distributional information. For example, second-

order distributional information such as the variance of traffic flow can be included in

the problem formulation. In order to use the metamodel SO calibration framework,

the derivation of distributional traffic measurements from both the analytical network

model and the simulation model is required. Chen et al. (2012) address a traffic sig-

nal control problem by formulating the objective function in terms of the expectation

and the standard deviation of total link travel time and demonstrate that this for-

mulation can lead to enhanced network reliability and enhanced network robustness.

However, a major challenge is to develop an analytical and tractable approximation

of the distribution of the main network performance measures.

In this thesis, the weight for the prior OD demand matrix, 61, and the weight for

the term addressing the additional traffic data, 62, are pre-determined based on the

relative confidence of the particular data over traffic counts. The prior OD demand

matrix is usually estimated from historical records (e.g., census, survey) that are

likely outdated, therefore, a very small value (e.g., 0.01) is assigned to 61 according

to the literature. On the other hand, a relative large value (e.g., 1) is assigned to 62.

It is interesting to explore the importance of the weights via sensitivity analysis. In

other words, the robustness of the demand calibration regarding the selection of the

weights can be evaluated and better values for the weights can be obtained through

fine-tuning.

Chapter 6 develops an enhanced demand calibration algorithm by leveraging an

additional high-resolution data source: intersection turning flows. In the near future,

it is likely that demand calibration will be expanded by advances in big data (e.g.,

social media data, cell-phone traces, and GPS trajectories) with higher resolution in-

formation. The extension of the formulation to leverage more detailed data sources,

such as subpath travel times and partial vehicle trajectories, for enhanced perfor-

mance is of interest. Big data techniques, e.g., Hadoop and Spark, at some point

can also be integrated into the metamodel SO calibration framework to improve the

computational efficiency, especially for processing large datasets as input. However,

one challenge associated with this is the derivation of an analytical approximation for
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the new data (e.g., trajectories) and the selection of error metrics (i.e., loss function).

The methodology developed in this thesis can also be used in combination with

other dimensionality reduction techniques (e.g., sensitivity analysis, principal compo-

nent analysis) to further boost scalability and efficiency. For instance, dimensionality

reduction techniques can be applied first to transform the high-dimensional calibra-

tion parameter vector (e.g., OD demand matrices) into a low-dimensional variable

space. Then, metamodel SO techniques can be used to tackle the reduced calibration

problem more effectively and efficiently.

The work of Qin and Mahmassani (2004) discusses the importance of accounting

for sample selection bias in the formulation of the calibration problem. This topic

has not received much attention in the literature, yet is important and if taken into

account has the potential to improve the quality of the calibration. In addition,

Treiber and Kesting (2013) discuss additional interesting open questions in the field

of calibration.

7.2.3 Other Related Problems

Currently, demand calibration still primarily depends on traffic counts that are col-

lected by conventional sensors (e.g., inductive loop traffic detectors) at specific loca-

tions in the network, whose deployment is crucial to the success of calibration since

traffic counts from these sensors can provide different information on OD flows. Ide-

ally, sensors can be placed in a way to ensure the uniqueness of OD flows or installed

on road segments associated exclusively to routes for a specific OD pair, which usually

requires a large number of sensors being deployed. In practice, the total number of

sensors deployed is limited by budget constraints. Thus, demand calibration usually

appears to be under-specified.

A practically significant problem that is closely related to the work of this thesis

is the identification of optimal spatial distributions of sensors. Given a set of can-

didate locations, the problem is to make binary choice of sensor deployment at each

location in order to minimize the total number (or cost) of sensors deployed and to

maximize the calibration accuracy. When there is a clearly defined budget, an addi-
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tional constraint is imposed to ensure that the budget is not exceeded. This problem

is challenging for the following reasons:

* The set of candidate locations for sensor placement is huge, especially for large-

scale real-world networks;

" The measurements from different sensors are highly correlated;

" The impact from other types of traffic data also needs to be considered. Ad-

ditional data sources are becoming widely available, which complement traffic

counts and contribute marginally to the accuracy of calibration.

To combat these, one future research direction is to apply sensitivity analysis tech-

niques to address the sensor coverage problem by exploring the relationship between

the number of sensors and the level of OD coverage in a network.

Recognizing the significance of sensor location and its relationship to the quality of

demand calibration, it is important to establish a connection between the two critical

problems.
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Appendix A

Metamodel Simulation-based

Optimization (SO) Calibration

Algorithm

This appendix presents the metamodel simulation-based optimization (SO) calibra-

tion algorithm. The algorithm is described step by step in Algorithm 1 using the

notation of Osorio and Bierlaire (2013).

The following notations are defined for a given iteration k: current iterate as

Xk, trust region radius as Ak, step size as Sk, metamodel coefficient vector as Vk,

metamodel as Mk, total number of simulation runs carried out up until and including

iteration k as nk, and total number of successive trial points rejected as pk.

The constants r11, 1, Ytnc, -, d, P, Amax are given such that: 0 < I < 1, 0 < <

1 < 7i,,, 0 < r < 1, 0 < d < Amax, ft E N*. Set the total number of simulation

runs permitted, nmax, this determines the computational budget. Set the number of

simulation replications per point f.
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Algorithm 1 Metamodel SO calibration algorithm

1: Initialization
2: Set k = 0, no = 0, po = 0. Determine the initial point xo and the initial trust

region radius Ao (Ao E (0, Amrx]). Evaluate fA(xo) by solving the analytical
network model and compute f(xo). Include the new simulation observation in
the set of sampled points, i.e., set no = no + i.

3: Analytical-only calibration
4: Solve Problem (2.4)-(2.5) using only the analytical network model and without

using any simulation information. This is done by setting the metamodel equal
to fA. Let z denote the solution to this problem. Evaluate fA() and compute
f(z). Set no = no + F. Set the initial current iterate to this solution, i.e., set
xo =3.

5: Initial metamodel fitting
6: Solve Problem (C.1) to fit the metamodel mo.
7: while nk < nma, do
8: Step calculation
9: Solve Problem (2.4)-(2.5) subject to a trust-region constraint (i.e., liskl < Ak),

let Xk + Sk denote the solution, which is referred to as the trial point.
10: Acceptance or rejection of the trial point
11: Evaluate fA(xk + s) by solving the analytical network model and compute

f(xk + sk). Set nk nk + f . Compute:

Sf(xk) -f (xk + sk)

Mk(Xk) ~- Mk(Xk + Sk)

12: if Pk > m1 and f(xk) - f(xk + Sk) > 0 then
13: Accept the trial point: Xk+1 = Xk + Sk, Pk = 0;
14: else
15: Reject the trial point: Xk+1 = Xk, Pk = + 1.
16: end if
17: Solve Problem (C.1) to re-fit the metamodel mk+1.
18: Model improvement
19: Compute rk+1 = I -Vk+1vk If Tk+1 < f, then sample a new point x, which is

uniformly and randomly drawn from the feasible space. Evaluate fA(x) by solving
the analytical network model and compute f(x). Include this new observation in
the set of sampled points and set nk n k. Solve Problem (C.1) to update
the fit of the metamodel Mk+1-

20: Trust region radius update
min{YinAk, Amax , if Pk > 'qi

21: Ak+1 max{'~Ak, d}, if Pk < ?71 and Ilk > ft

Ak, otherwise.
22: if p < 1 and pk > p then
23: Set Ak = 0. Set nk+1 = nk, Pk+1 = 1k, k = k + 1.

24: end if
25: end while
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The general-purpose method A# differs from the proposed method Am as fol-

lows: (i) the step "Analytical-only calibration" (lines 3 and 4) is not carried out;

(ii) the metamodel does not contain a problem-specific component fA derived from

the analytical network model by setting the metamodel equal to the general-purpose

metamodel q.

This general SO calibration algorithm described above can be customized to a

specific algorithm developed in Chapters 3 to 6 by setting x to the specific calibration

vector (e.g., 0 in Chapter 3, a in Chapter 4, and d in Chapters 5-6). In addition,

the metamodel fitting is different for link-dependent (e.g., Chapters 3 to 5) and link-

independent (e.g., Chapter 6) metamodels.
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Appendix B

Additional Experimental Results

B.1 Numerical Values of the Solutions Derived by

Each Method of Chapter 3

Table B.1 (resp. B.2) displays the numerical values of the solutions derived by each

method and each experiment of the toy (resp. Berlin) network of Chapter 3.

Table B.1: Numerical values of the solutions (in units
for each experiment of the toy network

hr- 1 ) derived by each method

Am AO5
00 = 0 -4.7 -5.3 -4.0 -5.2 -5.3 -5.5

0* -5 0o = -40 -5.7 -5.5 -5.0 -5.2 -5.5 -5.3
00 = -60 -4.8 -5.5 -5.8 -5.1 -5.0 -5.4

-0 = 0 -18.1 -18.4 -18.7 -18.3 -19.1 -18.5
* =-20 _o = -40 -19.6 -18.1 -18.6 -18.6 -17.7 -18.3

00 = -60 -18.1 -18.5 -19.5 1-18.3 -18.5 -18.0

0* = -55
= 0
=-40
=-60

-56.1
-55.8
-55.8

-55.9
-56.3
-55.5

-55.9
-55.2
-56.6

-57.2
-56.0
-55.8

-56.4
-56.2
-56.3

-56.0
-56.4
-56.0
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Table B.2: Numerical values of the solutions (in units hr- 1 ) derived by each method
for each experiment of the Berlin network

Am AO
O = 0 -2.5 -1.2 -2.1 0.0 0.0 -1.1

00 = -40 -4.7 -4.7 -1.6 0.0 0.0 -2.8
00 = -60 -1.4 -4.7 -3.5 0.0 0.0 -0.4

B.2 Analysis of the Root Mean Square Normalized

(RMSN) Errors for the Synthetic Toy Network

Experiments of Chapter 6

Tables B.3 to B.4 list the RMSN statistics for traffic counts and intersection turn-

ing flows, respectively, for the toy network. For each scenario, the statistics for an

algorithm are calculated as the average of three replications of the experiment. The

average RMSN for an algorithm is calculated as the mean across all scenarios. The

row "Improvement compared to Init" represents the percentage improvement of an

algorithm over Init in terms of the average RMSN.

Table B.3: Comparison of the Root Mean Square Normalized (RMSN) errors (%) of
traffic counts

Init Aq-old Aq-new Am-old Am-new
Perturbed initial point 1 22.13 0.70 3.49 2.38 1.42
Perturbed initial point 2 18.56 1.22 0.26 5.61 1.61
Random initial point 1 77.75 7.34 7.34 3.40 1.20
Random initial point 2 21.67 2.26 0.69 3.06 0.43

Average across all initial points 35.03 2.88 2.95 3.61 1.17
Improvement compared to Init N.A. 91.78 91.58 89.69 96.66
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Table B.4: Comparison of the Root Mean Square Normalized (RMSN) errors (%) of
turning flows

Perturbed initial point 1
Perturbed initial point 2
Random initial point 1
Random initial point 2

1nit
22.78
30.65
85.43
57.30

A#-old A#-new
28.88
28.00
68.29
16.35

19.33
18.05
68.29
41.67

Am-old Am-new
21.72
12.76
20.08
12.83

1.65
1.65
1.38
0.38

Average across all initial points 49.04 J 35.38 36.84 16.85 1.27
Improvement compared to Init N.A. 27.85 24.88 65.64 97.41
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Appendix C

Implementation Details

C.1 Link Attributes for the Synthetic Toy Networks

Tables C. 1 to C.4 list the attributes of each link of the synthetic toy networks used

in Chapters 3 to 6, respectively.

Link index Nodes connected Length (km) Maximum speed (km/h) Signalized

1 1 - 2 2.5 72 un-signalized

2 2 -+ 3 7.5 54 signalized

3 3 - 5 2.5 54 un-signalized

4 2 -+ 4 7.1 72 un-signalized

5 4 -+ 5 7.1 72 un-signalized

6 5 -+ 6 2 72 un-signalized

Table C.1: Toy network link properties of Chapter 3

Link index Nodes connected Flow capacity (veh/hr) Length (km) Maximum speed (km/h)

1 1 -2 1,800 2.5 72
2 2 -3 800 7.5 108
3 3 -5 800 2.5 108
4 2 -+4 1,200 7.1 54
5 4 -+ 5 1,200 7.1 54
6 5 -+6 1,800 2 72

Table C.2: Toy network link properties of Chapter 4
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Link index Nodes connected Flow capacity (veh/hr) Length (km) Maximum speed (km/h)
1 1 -3 1,800 5 72
2 2 -5 1,800 5 72
3 3 -+4 800 8.6 108
4 5 -+4 800 8.6 108
5 3 46 1,000 21 54
6 4 7 2,000 7 108
7 5 -8 1,000 21 54
8 7 -6 800 8.6 108
9 7- ÷8 800 8.6 108

10 6 -9 1,800 5 72
11 8 -10 1,800 5 72

Table C.3: Toy network link properties of Chapter 5

Link index Nodes connected Flow capacity (veh/hr) Length (km) Maximum speed (km/h)
1 1 -42 2,000 1 111.6
2 2 -+ 3 2,000 0.9144 111.6
3 3 -+ 4 2,000 1 111.6
4 2 - 5 2,000 0.2438 111.6
5 5 - 6 2,000 0.3048 111.6
6 6 - 3 2,000 0.2438 111.6
7 7 - 8 2,000 1 111.6
8 8 -- 5 2,000 0.2438 111.6
9 9 -+ 6 2,000 0.2438 111.6
10 6 -410 2,000 0.2438 111.6
11 10 -411 2,000 1 111.6

Table C.4: Toy network link properties of Chapter 6

C.2 Travel Demand Representation

The transport simulator MATSim uses a plan (or population) file as input that de-

scribes the travel demand of individual travelers in terms of a list of daily plans,

which is a list of chained activities and trips for a given day. Each trip specifies an

origin link and a destination link. We refer to a pair of such links as an OD link

pair. OD demand calibration problems are traditionally defined in terms of zone to

zone demand. A given link-level demand is aggregated into a zone-level demand by

associating each link to its zone. A zone-level demand is disaggregated into a link-

level demand by using a fixed and exogenous proportionality factor, which defines the

proportion of demand for a given OD zone pair that is allocated to a given OD link
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pair. This proportionality factor is estimated based on the daily plan file without the

need for any simulation.

C.3 Metamodel Fitting Process

The iteration-specific metamodel parameters A3 are determined by solving a least

squares regression problem using the simulated traffic measurements obtained both at

the current iteration as well as at all previous iterations. In this section, the notation

of Appendix A is used. The following additional notation is needed to formulate the

regression problem.

Xk current iterate;

f(x) simulation-based estimate of the objective function for point x;

Wk(X) weight for point x;

wO exogenous (fixed) weight coefficient, set to 0.01;

Sk set of points simulated up until iteration k;

d dimension of the calibration vector.

The least squares problem is formulated as follows.

inx x - mk(x;I +W) 2 1)2 + 2 vig . (C.1)

The first term represents the weighted distance between the objective functions

predicted by the metamodel and those estimated by the simulator. The weight for

the point x is defined as in Osorio and Bierlaire (2013):

Wk(X) = 1 (C.2)
1 + ||x -xkII 2

where a point's weight is inversely proportional to its distance from the current iterate,

Xk, aiming to improve the local (in the vicinity of the current iterate) fit of metamodel.

To ensure the least square matrix is of full rank, the second term of Problem (C.1)
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accounts for the distance between the parameter vector, Vk, and initial values. The

initial values used correspond to an initial metamodel that is solely based on the

analytical network model.

For the algorithms of Chapters 3 and 4, the terms f and mk in Problem (C.1) refer

to the function f as defined in the objective function (3.4) and the entire summation

as defined in the objective function (3.6), respectively; in Chapter 5, they refer to the

function f as defined in the objective function (5.1) and the function mobj as defined

in the objective function (5.4); and in Chapter 6, they refer to the function f as

defined in the objective function (6.1) and the function mk as defined in the objective

function (6.5) but without the last term 61- z - )2
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