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Abstract

Despite abundant evidence that dopamine modulates medial prefrontal cortex
(mPFC) activity to mediate diverse behavioral functions, the precise circuit computations
remain elusive. One potentially unifying theoretical model by which dopamine can
modulate functions from working memory to schizophrenia is that dopamine serves to
increase the signal-to-noise ratio in mPFC neurons, where neuronal activity conveying
sensory information (signal) are amplified relative to spontaneous firing (noise). To
connect theory to biology, we lack direct evidence for dopaminergic modulation of
signal-to-noise in neuronal firing patterns in vivo and a mechanistic explanation of how
such computations would be transmitted downstream to instruct specific behavioral
functions. Here, we demonstrate that dopamine increases signal-to-noise ratio in mPFC
neurons projecting to the dorsal periaqueductal gray (dPAG) during the processing of an
aversive stimulus. First, using electrochemical approaches, we reveal the precise time
course of tail pinch-evoked dopamine release in the mPFC. Second, we show that
dopamine signaling in the mPFC biases behavioral responses to punishment-predictive
stimuli, rather than reward-predictive cues. Third, in contrast to the well-characterized
mPFC-NAc projection, we show that activation of mPFC-dPAG neurons is sufficient to
drive place avoidance and defensive behaviors. Fourth, to determine the natural
dynamics of individual mPFC neurons, we performed single-cell projection-defined
microendoscopic calcium imaging to reveal a robust preferential excitation of mPFC-
dPAG, but not mPFC-NAc, neurons to aversive stimuli. Finally, photostimulation of VTA
dopamine terminals in the mPFC revealed an increase in signal-to-noise ratio in mPFC-
dPAG neuronal activity during the processing of aversive, but not rewarding stimuli.
Together, these data unveil the utility of dopamine in the mPFC to effectively filter
sensory information in a valence-specific manner.
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Chapter 1

Background

Functions of the prefrontal cortex

The medial prefrontal cortex (mPFC) is a heterogeneous brain region implicated in a

diverse range of cognitive and behavioral functions- including attention, decision-making,

working memory, long-term memory, emotional control, inhibitory control, motivation, among

many others (Arnsten, 2009; Bechara et al., 2000; Miller and Cohen, 2001; Ridderinkhof et al.,

2004). While these functions may appear disparate, they all are related to cognitive control, or

the ability to coordinate emotions and actions to support internally held goals (Miller and Cohen,

2001). Lesions of the mPFC result in robust deficits in performance in tasks that require one to

adapt behavior to contexts or tasks with dynamic or unexpected rules (Dias et al., 1996a,

1996b, 1997; Gregoriou et al., 2014; Milner, 1963; Rossi et al., 2007; Wilkinson et al., 1997).

While many brain regions, neurotransmitter systems, and neural circuits support goal-directed

behavior, the mPFC is well positioned to act as an anatomical hub coordinating adaptive

behavioral output.

At a basic level, successfully seeking rewards and avoiding punishments is critical for

survival, and a defining characteristic of adaptive behavior. To mediate these behaviors, neural

systems must integrate internal motivational states with external information to orchestrate

approach and avoidance of rewarding and aversive stimuli, respectively. For example, an

animal engaging in foraging behavior for food must constantly evaluate its environment for

potential threats, which necessitate a transition from reward-seeking to threat avoidance. While

the mPFC is not critical for basic stimulus-driven unconditioned behaviors, such as those found

in subcortical structures like the periaqueductal gray (Assareh et al., 2016; Bandler and Carrive,
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1988; Bandler et al., 1985a, 1985b; Carrive et al., 1987; Deng et al., 2016; Meyer et al., 2017;

Tovote et al., 2016; Zhang et al., 1990) and hypothalamus (Anand and Brobeck, 1951; Betley et

al., 2015; Burton et al., 1976; Jennings et al., 2015; Nieh et al., 2015, 2016), the mPFC plays a

substantial role in deciphering ambiguous situations. In the example above, the foraging animal

must not only perceive the environmental threat, but also evaluate its importance in relation to

its ongoing efforts (e.g., How far away is the threat? How severe is the threat? How hungry am

I? When will I be able to forage again?).

There is substantial evidence supporting a crucial role of the mPFC in decision-making

in the context of risk and reward, particularly in situations involving competition (i.e., when both

rewarding and aversive stimuli are simultaneously present) (Bechara et al., 1994, 2005;

Botvinick et al., 2004; Burgos-Robles et al., 2017; Mansouri et al., 2009; Milham et al., 2001). In

rodents, pharmacological inactivation of the mPFC produces deficits in the coordination of

reward-seeking and threat avoidance (Sangha et al., 2014; Sierra-Mercado et al., 2011). In

humans, mPFC activity is modulated by the proximity of threat (Mobbs et al., 2007) suggesting

a role in coordinating behavioral coping strategies. Not surprisingly, mPFC neuronal activity is

robustly modulated by motivationally-relevant stimuli- including reward-delivery, reward-

expectation, omission of reward, pain, and pain-predictive cues (for review, see: Euston et al.,

2012)- and mPFC activity is highly correlated with aspects of reward- and fear-motivated

behavioral output (Burgos-Robles et al., 2009, 2013). In competitive situations, neurons

encoding different information compete for representation and subsequent expression of

behavior. However, it is still unknown if these neural responses carrying competing valence-

defined information can be mapped onto specific mPFC circuits, what modulates their

competitive interactions, and how the competition results are translated into behavior.
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Prefrontal anatomy

Consistent with the idea that the mPFC is crucial for cognitive control, this neocortical

region is most developed in primates and animals that have elaborate behavioral repertoires

(Adolphs, 2009; Dunbar, 2009; Kerney et al., 2017; Noonan et al., 2018). Understanding the

mPFC and its functional relevance relies on an understanding of its complex macro- and micro-

anatomical organization. The mPFC is often subdivided into four distinct subregions - medial

precentral / second frontal area (PrCM / Fr2), the anterior cingulate cortex (ACC), the prelimbic

cortex (PL), and infralimbic cortex (IL) - based on afferent / efferent connections and

cytoarchitectural differences (Heidbreder and Groenewegen, 2003). However based on afferent

and efferent connectivity the ventral portion of the PL and dorsal part of the IL are often

combined and referred to as the ventral medial PFC (vmPFC). For simplicity, the remainder of

this manuscript will use vmPFC synonymously with mPFC, as manipulations and recordings in

this region often contained the ventral aspect of the PL and dorsal aspect of the IL.

The local mPFC network consists of excitatory, glutamatergic pyramidal cells and

inhibitory GABAergic interneurons, representing -80-90% and 10-20% of the population,

respectively (Gabbott et al., 1997, 2005). Traditionally it has been thought that pyramidal

neurons comprise the majority of the long-range projection neurons in the mPFC while

GABAergic interneurons powerfully regulate their activity locally. However, recently long-range

GABAergic projections have also been characterized (Lee et al., 2014a). Both of these

populations can be further dissected based on functional, laminar, morphological, and molecular

properties (Gabbott et al., 1997, 2005).

Similar to other cortical structures, the mPFC is laminarly organized (Douglas and

Martin, 2004; Gabbott et al., 2005; Kritzer and Goldman-Rakic, 1995). The mPFC receives

diverse sensory and limbic afferent connections (Hoover and Vertes, 2007) arriving

predominantly in superficial Layers 1 and 2/3 (Douglas and Martin, 2004; Romanski et al.,
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1999a, 1999b). mPFC afferent connections are equally robust projecting to cortical and

subcortical brain regions (Gabbott et al., 2005; Groenewegen et al., 1997; Heidbreder and

Groenewegen, 2003; Sesack et al., 1989; Vertes, 2004). Long-range efferent projections

originate mainly from the deep layers (Layers 5 and 6), while projections to other cortical areas

are located in superficial Layer 2/3 (DeFelipe and Farihas, 1992; Douglas and Martin, 2004;

Gabbott et al., 2005). Notably, downstream connections appear to be densest to brain regions

involved in emotional and autonomic control- including the amygdala, ventral striatum, insula,

hypothalamus, periaqueductal gray, habenula, and midline thalamic structures (Gabbott et al.,

2005; Heidbreder and Groenewegen, 2003; Vertes, 2004). Through this dense interconnectivity,

the mPFC is thought to exert top-down processing of rewarding and aversive stimuli and

subsequent emotional regulation and control of actions. However precise, causal investigations

of these mPFC outputs are still lacking. It is unclear which specific mPFC connections convey

valence-defined information and under what conditions.

The mesolimbic dopamine system

The mPFC also maintains reciprocal connectivity with a wide range of neuromodulatory

systems known to be involved in adaptive responses to rewarding and aversive events-

including the midbrain dopamine system (Gabbott et al., 2005; Heidbreder and Groenewegen,

2003; Vertes, 2004). Dopamine neurons originate in both the ventral tegmental area (VTA, also

known as Al0) and substantia nigra pars compacta (SNc, also known as A9) (for review, see:

BjOrklund and Dunnett, 2007), which are both anatomically and functionally distinct populations.

While VTA dopamine neurons regulate motivation and encode reward expectation, substantia

nigra neurons appear to be more involved in motor functions via connections to the dorsal

striatum / caudate putamen (Berridge, 2007; Bjorklund and Dunnett, 2007; Michel et al., 2016;

Schultz et al., 1997; York, 1973). VTA dopamine neurons send dense projections to the ventral

13



striatum (including the nucleus accumbens [NAc]) and sparser projections to the mPFC,

amygdala, and hippocampus (for review, see: Haber and Fudge, 1997).

VTA dopamine neurons transmit signals in two modes: 1) "tonic" characterized by a

consistent, pacemaker-like 2-5 Hz firing rate, and 2) "phasic" characterized by transient bursts

of high frequency 10-20 Hz firing lasting 100-500 ms (Bunney et al., 1991; Grace and Bunney,

1984, 1984; Grace et al., 2007). Tonic firing maintains a consistent basal, extracellular level of

dopamine in downstream targets. On the other hand, bursting rapidly and transiently increases

dopamine levels, estimated to be -100 pM in the synapse (Garris and Wightman, 1994; Grace

et al., 2007), termed 'phasic dopamine release' or dopamine 'transients' (for review, see:

Robinson et al., 2003). Dopamine release in target regions modulates the activity of specific

populations of neurons expressing postsynaptic dopamine receptors (see below for more

detailed discussion) (Dreyer et al., 2010, 2016). However, it is important to note that bursting

(i.e., dopamine neuron action potentials) may not evoke dopamine neurotransmission

considering dopamine terminals are influenced by local inputs and autoreceptors (Cachope and

Cheer, 2014; Cachope et al., 2012; Cragg and Rice, 2004; Dreyer and Hounsgaard, 2013; Rice

and Cragg, 2004; Zhang and Sulzer, 2004). As such, it is important to use multidisciplinary

approaches to appreciate the complex and dynamic interactions between somatic activity,

dopamine release, and reuptake.

Phasic dopamine neuron activity and phasic dopamine release have been studied

extensively in the context of reward (Berridge, 2007; Berridge and Robinson, 1998; Fields et al.,

2007; Grace et al., 2007; Ikemoto, 2007; Robinson et al., 2003; Schultz, 2013; Schultz et al.,

1997; Volkow et al., 2017; Wise, 2006, 2008). In a seminal study by Schultz and colleagues

(1997), dopamine neurons were found to change their activity based on reward expectation.

Here, dopamine neurons increased their firing to unexpected reward delivery, but shifted this

response to cues that predict reward delivery after pairing. Further, VTA dopamine neurons
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exhibited a decrease in firing if an expected reward (i.e., predicted by a conditioned stimulus)

was omitted. Together, these neurons have been described as encoding "reward prediction

error" (RPE) by signaling discrepancies between expected and received reward. As such, RPEs

provide a mechanism for learning the outcomes of predictive stimuli and updating their internal

representations when the magnitude or valence of their predicted outcomes are altered.

Considering this, and dopamine's role in other appetitive motivational functions, VTA dopamine

has been extensively studied in the context of reward - particularly through its connections with

the striatum (Berridge, 2007; Berridge and Robinson, 1998; Hamid et al., 2016; Howe et al.,

2013; Niv, 2007; Phillips et al., 2003; Salamone and Correa, 2012).

There is considerable debate over dopamine's role in the processing of aversive stimuli.

As previously mentioned, several theories have suggested that phasic dopamine responses

primarily encode reward-related events- including food reward, water reward, social targets,

sex, and drugs of abuse (for review, see: Berridge, 2007; Berridge and Robinson, 1998; Fields

et al., 2007; Robinson et al., 2003; Salamone and Correa, 2012; Schultz et al., 1997). Further,

consistent with the reward prediction hypothesis, some studies report inhibition of dopamine

activity in response to aversive events (Cohen et al., 2012; Roitman et al., 2008; Schultz et al.,

1997; Ungless et al., 2004). However, dopamine responses have also been reported to various

salient and aversive stimuli- including surprising events, stress, pain, and fear-predictive cues

(Badrinarayan et al., 2012; Brischoux et al., 2009; Budygin et al., 2012; Horvitz, 2000; Mantz et

al., 1989; Matsumoto and Hikosaka, 2009; McCutcheon et al., 2012; Salamone and Correa,

2012). As a result, new theories of dopamine function have suggested roles in alerting

(Bromberg-Martin et al., 2010), invigoration of ongoing behaviors (Niv, 2007; Salamone et al.,

2007; da Silva et al., 2018), or encoding the value of work (Hamid et al., 2016) (for review, see:

Salamone and Correa, 2018; Schultz et al., 2017).
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It remains unclear whether reward-encoding dopaminergic signals recorded in denser

terminal regions, like the striatum, are also transmitted to regions like the mPFC. Heterogeneity

observed within the VTA might result from distinct dopamine neuron subpopulations defined by

projection target. Indeed, growing evidence supports distinct behavioral roles of VTA dopamine

subpopulations depending on their ascending forebrain projection (e.g., "projection-defined")

(Gunaydin et al., 2014; Kim et al., 2016; Lammel et al., 2011, 2012; Roeper, 2013). This notion

is anatomically supported by the finding that the majority of VTA dopamine neurons do not

collateralize and send independent, non-overlapping ascending projections to target regions

(Albanese and Minciacchi, 1983; Fallon, 1981). These projection-defined VTA dopamine

subpopulations maintain unique molecular signatures (Bannon and Roth, 1983; Bannon et al.,

1981; Lammel et al., 2008), electrophysiological properties (Chiodo et al., 1984; Lammel et al.,

2008), anatomical locations (Lammel et al., 2012), afferent connectivity (Lammel et al., 2012),

and responses to valence-defined stimuli (see below for discussion) (Abercrombie et al., 1989;

Badrinarayan et al., 2012; Bassareo et al., 2002; Kim et al., 2016; Lammel et al., 2011; Mantz et

al., 1989).

Dopaminergic mechanisms of action

In the mPFC, dopaminergic terminals contact both pyramidal neurons (Goldman-Rakic

et al., 1989; Seguela et al., 1988; Zhang et al., 2010) and GABAergic interneurons (Verney et

al., 1990). Postsynaptically, dopamine exerts its effects on neuronal activity via two main types

of receptors- D1-type (including D1 and D5) and D2-type (including D2, D3, and D4) (de

Almeida et al., 2008; Lidow et al., 1991; Santana and Artigas, 2017; Seamans and Yang, 2004;

Sesack and Bunney, 1989). Both D1 and D2 sub-types are G-protein-coupled receptors,

exerting slow, metabotropic modulation of postsynaptic cells (for review, see: Seamans and

Yang et al., 2004). Activation of D1 receptors in the mPFC exerts excitatory effects through
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sodium (Na+), potassium (K+), and calcium (Ca2+) currents (Gonzelez-Burgos et al., 2002;

Gorelova and Yang, 2000; Henze et al., 2000; Yang and Seamans, 1996; Yang et al., 1996). In

contrast, activation of mPFC D2 receptors exerts an inhibitory effect through the modulation of

glutamaterigic receptors and Na+ conductances (Gorelova and Yang, 2000; Gulledge and Jaffe,

1998, 2001). In both cases, activation of receptors can produce long-lasting (-30 min) changes

in excitability (Gorelova and Yang, 2000; Gulledge and Jaffe, 1998, 2001; Seamans et al.,

2001a, 2001b).

In the mouse mPFC, D1 and D2 receptors are expressed in both pyramidal neurons

and GABAergic interneurons (Gaspar et al., 1995; Lee et al., 2014b; Vincent et al., 1993). D1

receptors are primarily located on the dendritic spines and shafts of pyramidal neurons and on

the axon terminals of putative GABAergic interneurons (Bergson et al., 1995a, 1995b; Muly et

al., 1998). Further, D1 immunoreactivity is present on axon terminals that form asymmetric (i.e.,

putative glutamatergic) synapses with mPFC dendrites (Paspalas and Goldman-Rakic, 2005),

suggesting that dopamine may influence the excitability of mPFC neurons both directly and

indirectly. In pyramidal neurons, D1 and D2 receptors are expressed in Layer 5 (Gaspar et al.,

1995; Gee et al., 2012; Santana et al., 2009; Seong and Carter, 2012) - one of the major

output layers of the mPFC. D1 receptors are expressed in 20% Layer 5 neurons, whereas 25%

express D2 (Santana et al., 2009). Dopamine has been reported by some investigators to

increase (Henze et al., 2000; Penit-Soria et al., 1987; Yang and Seamans, 1996) and by others

to decrease (Bunney and Aghajanian, 1976; Gulledge and Jaffe, 1998; Sesack and Bunney,

1989) the excitability mPFC neurons - suggesting differential modulation by dopamine

depending on mPFC cell-type or projection target. However, the relatively low expression level

of dopamine receptors in mPFC projection neurons suggest that a larger portion of Layer 5

pyramidal neurons are not directly modulated by dopamine, but may be subject to dopaminergic

modulation of presynaptic inputs (Seamans et al., 2001b; Tritsch and Sabatini, 2012).
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Dopaminergic modulation of prefrontal functions and physiology

Although dopaminergic terminals in the mPFC are sparse (Descarries et al., 1987) and

correspondingly, dopamine release is lower compared to other forebrain regions, such as the

NAc (Garris and Wightman, 1994), dopamine has a profound impact on mPFC-dependent

cognition and behavior. The role of dopamine in the medial prefrontal cortex (mPFC) has been

linked to basic functions such as working memory (Brozoski et al., 1979; Sawaguchi and

Goldman-Rakic, 1991; Zahrt et al., 1997) and attention (Chudasama and Robbins, 2004;

Granon et al., 2000), and is also associated with disease states such as schizophrenia (Creese

et al., 1976; Nolan et al., 2004; Okubo et al., 1997a, 1997b; Rolls et al., 2008; Weinberger et al.,

1988a, 1988b), depression (Di Chiara et al., 1999; Tanda et al., 1994), and stress/anxiety

(Abercrombie et al., 1989; Arnsten, 2009; Finlay et al., 1995; Gunaydin et al., 2014; Mizoguchi

et al., 2000; Thierry et al., 1976). However, effects of mPFC dopamine on top-down regulation

of rewarding and aversive stimuli remain controversial given several lines of paradoxical reports.

In an important series of studies by Lammel and colleagues, they demonstrated that

projection-defined VTA dopamine neurons differentially respond to rewarding and aversive

stimuli. More specifically, these studies have suggested that VTA dopamine neurons projecting

to the NAc encode aspects of reward or reinforpement, while VTA dopamine neurons projecting

to the mPFC may encode aspects of aversion (Lammel et al., 2011, 2012). First, Lammel and

colleagues (2011) show that enhanced synaptic plasticity onto VTA dopamine neurons following

rewarding and aversive events depends on projection-defined subpopulations. In vitro

AMPA/NMDA ratios, as a measure of synaptic strength, are enhanced in VTA dopamine

neurons projecting to the NAc medial shell after cocaine exposure - a highly rewarding and

reinforcing experience (Calipari et al., 2015, 2016; Deroche et al., 1999; Nomikos and Spyraki,

1988; Roberts et al., 1977). In contrast, aversive stimulus experience - formalin injection into

the paw (Dubuisson and Dennis, 1977) - did not change AMPA/NMDA ratios in NAc medial
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shell-projecting VTA dopamine neurons. The opposite pattern of results was observed in VTA

dopamine neurons projecting to the mPFC: synaptic plasticity was enhanced following aversive

experience but not after rewarding experience (Lammel et al., 2011).

Measurements of neurotransmitter release and neuronal activity show the mPFC

dopamine pathway is activated by both rewarding (Ahn and Phillips, 1999; Bassareo et al.,

2002; Ellwood et al., 2017; St Onge et al., 2012) and aversive stimuli (Abercrombie et al., 1989;

Kim et al., 2016; Mantz et al., 1989; Thierry et al., 1976). However, several studies have

suggested that the mPFC dopamine system is preferentially sensitive to aversive stimuli. For

example, in addition to the aforementioned Lammel studies (2011, 2012), dopamine

neurotransmission measured by in vivo microdialysis is robustly elevated following tail pinch,

compared to release in the dorsal and ventral portions of the striatum, despite significantly

denser striatal innervation (Abercrombie et al., 1989). Further, bulk calcium signals from

dopamine axon terminals recorded simultaneously in the mPFC and NAc with in vivo fiber

photometry show divergent responsivity to rewarding and aversive stimuli (Kim et al., 2016).

Here, VTA dopamine terminals in the NAc were activated by water reward and inhibited by tail

shock, whereas terminals in the mPFC were activated by tail shock and not robustly responsive

to water reward (Kim et al., 2016). Finally, in vivo electrophysiological recordings of putative

mPFC- and NAc-projecting VTA dopamine neurons revealed preferential responsivity of the

mesocortical pathway to tail pinch - with 65% exhibiting excitation and 25% inhibition - whereas

NAc-projecting units were largely non-responsive (Mantz et al., 1989).

The impact of dopamine neurotransmission on reward- and aversion-motivated

behaviors also suggests functional differences, although this is still debated and likely

dependent on many factors including stress-levels, context, and stimulus characteristics. In a

second study by Lammel and colleagues (2012) they show that activation of inputs onto VTA

neurons projecting to either NAc or mPFC with optogenetics resulted in reinforcement and
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aversion, respectively. Further, direct activation of VTA dopamine terminals in the mPFC has

been shown to support conditioned place avoidance and promote anxiety-related behavior

(Gunaydin et al., 2014) and destruction of dopaminergic innervation of the mPFC disrupts

escape behavior (Sokolowski et al., 1994). Yet the role of mesocortical dopamine in aversive

motivation remains controversial. For example, Ellwood and colleagues (2017) recently reported

that neither phasic nor tonic optical activation of VTA dopamine axon terminals supports

conditioned place preference / aversion (Ellwood et al., 2017), in contrast to Gunaydin and

colleagues (2014). Popescu and colleagues (2016), show that activation of VTA DA terminals

promotes stimulus-discrimination for reward-predictive cues, suggesting a role in reward-

learning (Popescu et al., 2016). These seemingly contradictory reports fail to provide a cohesive

understanding of the functional role of dopamine in the mPFC. Importantly, these studies do not

explore dopaminergic modulation of competitive situations where both rewarding and aversive

stimuli are simultaneously presented - which may profoundly impact the functional role of

dopamine in the mPFC considering its importance to higher-order cognition and decision-

making.

Summary

Dopamine neurotransmission from midbrain VTA dopamine neurons are critically

involved in modulating neural circuits responsible for appetitive and aversive motivation. While

the impact of dopamine release within the striatum has been extensively studied, particularly in

the context of reward-related behaviors, the mesocortical pathway's role in motivation has been

vastly understudied (Figure 1). Mounting evidence suggests that under certain conditions, the

sensitivity of the mesocortical system to aversive stimuli may promote avoidance or escape

behaviors. Further, considering mPFC neurons are responsive to both rewarding and aversive

stimuli (Burgos-Robles et al., 2009, 2013; Euston et al., 2012), it is possible that mPFC neuronal
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circuits encoding aversive or rewarding events are differentially modulated by dopamine,

resulting in a vast array of computations and behavioral outcomes. Here we seek to identify the

neural circuit mechanisms and environmental conditions in which dopamine modulates valence-

encoding in the mPFC and subsequent behavioral output.
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Figure 1. Peer-reviewed studies of dopamine in appetitive and aversive motivation.

Results of PubMed search, April 2015.
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Chapter 2

Aversive stimuli increase dopamine in the prefrontal cortex and activation of dopamine

terminals in the prefrontal cortex biases behavior towards aversion

Introduction

Aversive and stressful stimuli robustly increase dopamine release in the mPFC

(Abercrombie et al., 1989; Thierry et al., 1976). However, the techniques used in these cardinal

studies, lack temporal resolution and it remains unclear how noxious stimuli affect rapid

dopamine release in the mPFC. As such, this slow time course does not allow us to determine

whether dopamine is released in a time-locked manner (sub-second) or whether it is released in

response to the slower stress response (minutes) following the aversive stimulus. Considering

behaviorally-relevant stimuli are often discrete, aversive stimuli must rapidly evoke dopamine

release in order to influence real-time behavioral responses. Recently, dopaminergic terminals

in the mPFC were shown to respond to shock, while no change in activity was observed after

receipt of a water reward using fiber photometry to measure calcium signals (Kim et al., 2016).

However, increased axonal calcium is an indirect measure of neurotransmitter release and

cannot dissociate dopamine release from other neurotransmitters that are co-released (Stuber

et al., 2011; Tritsch and Sabatini, 2012) or assess rates of dopamine uptake. As such,

methodological constraints have made it has been impossible to selectively study how

dopamine neurotransmission within the mPFC may elicit aversive behavior.

Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that is capable of

measuring "real-time" (i.e., 10 Hz) catecholamine release in vivo. While FSCV offers a direct

measurement of catecholamine neurotransmission with precise temporal resolution, it is rarely

used outside the NAc (for review, see: Robinson et al., 2003) (but see: Garris and Wightman,
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1994; Garris et al., 1993; Matthews et al., 2016) due to difficulty in discriminating between

norepinephrine and dopamine (Heien et al., 2003) - which has limited its application to brain

regions like the mPFC which receive both dopaminergic and noradrenergic innervation. Thus,

the time course and source of dopamine release in the mPFC upon aversive stimuli

presentation is unknown. In this line of research, we will use electrochemical, optogenetic,

pharmacological, and behavioral approaches to: 1) characterize the topography of

catecholaminergic innervation in the mPFC, 2) record rapid dopamine signaling in the mPFC

during aversive stimulation, 3) causally manipulate dopamine release in the mPFC to assess its

impact on a variety of behaviors.

Results

To assess noradrenergic and dopaminergic terminal density in the mPFC, we injected a

Cre-dependent virus carrying a fluorescent protein (eYFP or mCherry, counter balanced) into the

VTA and locus coeruleus (LC) of transgenic DAT-Cre mice to selectively express two distinct

fluorescent tags in VTA dopamine (DA) neurons and LC norepinephrine (NE) neurons (Figure 2a-

b). After 8 weeks of incubation, terminal fluorescence was observed in the mPFC (Figure 2c) and

quantified across cortical layers (Figure 2d-e). VTA-DA terminals were densest in deep layers (5

and 6), consistent with previous reports (Berger et al., 1976; Sesack et al., 1998; Zhang et al.,

2010) while LC-NE terminals were densest in the superficial layers (Figure 2f). These data

suggest that dopamine is acting in the deep layers of the mPFC.
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Figure 2. Dopamine terminals are densest in deep layers of the prefrontal cortex.

(a) Injection of viral constructs enabling Cre-dependent expression into the LC and VTA of

TH::Cre mice (n = 3).

(b) Fluorescent labeling of TH positive (TH+) noradrenergic (NE) neurons in the LC and

dopaminergic neurons in the VTA.

(c) Examination of VTADA and LCNE fluorescent terminal labeling in the mPFC.

(d) VTADA terminals (from inset) across cortical layers in the prelimbic subregion of the mPFC.

(e) LCNE terminals (from inset) across cortical layers in the prelimbic subregion of the mPFC.

(f) VTADA terminals were densest in the deep (5 and 6) layers of the mPFC, while LCNE

terminals were denser in superficial (1 and 2/3) layers.
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To investigate the time course of dopamine release, we injected a viral vector enabling

Cre-dependent expression of channelrhodopsin-2 (ChR2) in the VTA of transgenic tyrosine

hydroxylase (TH)::Cre rats (Witten et al., 2011) and inserted carbon-fiber electrodes into the

prelimbic subregion of the mPFC for in vivo FSCV measurements (Figure 3a-c). To convert

recorded changes in current to changes in catecholamine concentration and to eliminate

contributions from transient pH fluctuations, chemometric and principal component analyses

were performed (Figure 3d-f) (Keithley and Wightman, 2011; Keithley et al., 2009; Vander

Weele et al., 2014). Electrodes were aimed at the deep layers (5-6) where VTA dopaminergic

terminals in the mPFC (VTADA-mPFC) were densest, compared to norepinephrine (NE) locus

coeruleus (LC) terminals (Figure 3g-h) and secured in locations, which supported optically-

evoked dopamine release upon stimulation of VTADA neurons (Figure 3i-j). To investigate how

an aversive stimulus impacts rapid catecholamine release, we performed a 10 s tail pinch and

observed a reliable catecholaminergic signal, which peaked just after tail pinch offset and

lingered for -40 s (Figure 31-n). Given the relatively slow decay kinetics, our data are consistent

with other reports suggesting that dopamine reuptake is slower in the mPFC than in the striatum

(Cass and Gerhardt, 1995; Garris and Wightman, 1994; Garris et al., 1993; Kaenmaki et al.,

2010; Sesack et al., 1998) (Figure 4c). This is consistent with reports indicating that

mesocortical dopamine neurons lack D2-type autoreceptors, which provide negative feedback

and autoinhibit the activity of dopamine neurons (Bannon et al., 1981; Chiodo et al., 1984). In

addition, dopamine transporter (DAT) expression is low (Sesack et al., 1998), resulting in slower

dopamine reuptake in the mPFC.

Since norepinephrine release in the mPFC has also been reported using microdialysis

in the minutes following an aversive stimulus (Finlay et al., 1995) we sought to eliminate LC

norepinephrine contribution. To do this, we repeated this experiment immediately after infusing

the sodium-channel blocker, tetrodotoxin (TTX) into the LC (Figure 3k-o) and observed
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catecholamine release before and after LC inactivation were indistinguishable (Figure 3p-r).

TTX microinfusions were co-injected with fast green for cover and spread visualization, which

were inspected and noted during tissue sectioning. We speculate that the previously reported

LC signal measured in the minutes following an aversive stimulus (Finlay et al., 1995) may have

a slower onset and may be related to the subsequent stress response rather than the detection

of the noxious stimulus itself.
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Figure 3. LC inactivation does not alter catecholamine release in the mPFC in response

to tail pinch.

(a) Schematic of strategy for differentiating dopamine and NE neurotransmission in the mPFC

using fast-scan cyclic voltammetry (FSCV). VTADA neurons were selectively transduced with

ChR2 in TH::Cre rats (n = 5). After incubation, rats were prepared for anesthetized FSCV

recordings where an optical fiber was implanted over the VTA and a guide cannula was

positioned over the LC for tetrodotoxin (TTX)-mediated pharmacological inhibition. A glass-

encased carbon-fiber recording electrode was lowered into the mPFC for FSCV neurochemical

measurements.

(b) 20x representative confocal image of ChR2-mCherry expression (red) in VTADA cell bodies

(yellow = TH immunostaining). The optical fiber track is indicated by the white rectangle.

(c) 40x representative confocal image of ChR2-mCherry expression (left, red) in VTADA cell

bodies (right, yellow = TH immunostaining).

(d) Overview of chemometric and principal component analyses of FSCV recordings to isolate

catecholamine signals from pH shifts. Representative false color plot showing the presence of

both basic pH shifts (left inset, pH cyclic voltammogram) and catecholamine release (right inset,

catecholamine cyclic voltammogram).

(e) pH training set composed of acidic and basic pH voltammograms derived from in vivo and in

vitro (flow cell) preparations. Dopamine training set composed of in vivo (optically- and

electrically- evoked) and in vitro (flow cell) preparations.

(f) pH and dopamine traces derived from the representative recording using principal

component regression

(g) Representative image of FSCV electrode track.
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(h) Schematic representation of all recording electrode locations for ChR2 FSCV experiments.

(i) Evoked dopamine release in the mPFC following 20 Hz (60, 30, and 10 pulses) optical

activation of VTADA::ChR2-mCherry cell bodies in the VTA.

U) Optical activation (473 nm, 20 Hz, 60 pulses, 5 ms pulse-duration, 20 mW) of VTADA::ChR2

neurons evoked dopamine release in the mPFC (paired t-test, t(3) = 3.72, p = 0.034), ensuring

FSCV recording electrodes were positioned in dopamine-rich locations.

(k) Representative image of guide cannula track positioned over LCNE cell bodies (yellow = TH).

(I-n) When VTADA and LCNE neurons were intact, tail pinch (10 s in duration) rapidly increased

extracellular catecholamine concentration ([CAT]) release, as shown in (I) a representative false

color plot, (m) average CAT trace, and (n) concentration quantification (paired t-test, t(4) =

3.402, p = 0.027). Color plot insets: representative cyclic voltammograms.

(o) Tetrodotoxin (TTX) + fast-green injection locations were viewed and recorded while tissue

sectioning on a freezing microtome, prior to staining and mounting. The center of each injection

was recorded. Rats that had injections but did not have spread covering the majority of the LC

were excluded. Cannula implant locations were subsequently verified on a confocal microscope.

(p-q) After LC inactivation via intra-LC infusion of TTX, tail pinch evoked responses were

maintained as shown in (p) a representative false color plot, (q) average CAT trace, and (r)

concentration quantification (paired t-test, t(4) = 5.249, p = 0.006). Color plot insets:

representative cyclic voltammograms.

Error bars indicate SEM. Scale bars (histology) = 50 um. "pre" = 5 s time period prior to

stimulation onset; "post" = 5 s time period after stimulation onset.
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Since both dopamine and norepinephrine can be released from multiple sources

(Bjorklund & Dunnet et al., 2007), and it is possible that local modulation of LCNE-mPFC

terminals could occur, we sought to determine the primary source for the pinch-induced

dopaminergic signal in the mPFC. To do this, we performed halorhodopsin (NpHR)-mediated

photoinhibition of VTADA neurons during tail pinch (Figure 4a-b). We found that photoinhibition

of VTADA neurons significantly attenuated the pinch-induced dopaminergic signal in the mPFC

(Figure 4d-f). These data suggest that the majority of the pinch-evoked time-locked signal in

the mPFC was mediated by dopamine release from VTA terminals.
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Figure 4. VTA DA inhibition attenuates catecholamine release in response to tail pinch.

(a) Schematic of strategy to verify dependence of pinch-evoked increases in CAT

neurotransmission on VTADA neurons.

(b) Histologically verified FSCV recording electrode locations for NpHR experiments.

(c) Electrical stimulation (60 Hz, 60 pulses, 200 uA) of the dorsal VTA evoked distinct patterns

of dopamine release in the NAc and mPFC.

(d) Representative false color plots showing tail pinch evoked CAT responses before (left)

VTADA inhibition and during (right) transient VTADA inhibition surrounding the tail pinch (593 nm

laser light, 20 s in duration) (n = 5) Color plot insets: representative cyclic voltammograms.

(e) Average CAT traces with (orange) and without (gray) optical inhibition of VTADA neurons.

(f) Optical inhibition of NpHR-expressing VTADA neurons attenuated tail pinch evoked CAT

release in the mPFC (concentration quantification (paired t-test, t(4) = 5.884, p = 0.004)).
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Error bars indicate SEM. Scale bars (histology) = 50 um. "pre" = 5 s time period prior to

stimulation onset; "post" = 5 s time period after stimulation onset.
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Next, given that dopamine is released in the mPFC following aversive stimuli, we wanted

to explore the causal relationship between VTADA-mPFC and valence processing. To address

this, we tested whether photostimulation of dopaminergic VTA terminals in the mPFC was

sufficient to drive aversion. In TH::Cre rats, we injected a viral vector enabling Cre-dependent

expression of ChR2 in the VTA and implanted optical fibers over the mPFC (Figure 5a-b). We

did not find any detectable differences between ChR2- and eYFP-expressing rats in closed-loop

real-time place avoidance (RTPA) (Figure 5c-d) or conditioned place aversion (CPA) assays

(Figure 5e-f),
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(a) Schematic strategy for manipulating dopamine release in the mPFC. VTADA neurons were

selectively transduced with ChR2 in TH::Cre rats.

(b) Guide cannulae were implanted over the mPFC for the insertion of an optical fiber for light

delivery.

(c) Schematic of experimental design for real-time place preference/avoidance assays

(RTPP/A). When rats entered the ON zone, laser light stimulation was activated for the duration

of the time spent in the ON zone (20 Hz, 60 p, every 30 s, 20 mW of 473 nm for VTADA-mPFC

experiments). When rats entered the OFF zone, light stimulation was terminated for the duration

of time spent in the OFF zone.

(d) Optogenetic stimulation of VTADA neurons did not evoke real-time place avoidance or

preference in VTADA-mPFC::ChR2 animals, compared to VTADA-mPFC::eYFP controls,
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measured by difference score [minutes spent in the ON zone - OFF zone] (unpaired t-test, t(8)

= 0.9337, p = 0.3778).

(e) Schematic of experimental design for all conditioned place preference/aversion assays

(CPP/A). Day 1 consisted of a habituation period where time spent on each compartment of the

arena was recorded. On days 2 and 3, a divider was placed in the middle of the chamber to

separate the two compartments and rats received either no stimulation (OFF) or stimulation

(ON) (20 Hz, 60 p, every 30 s, 20 mW of 473 nm for VTADA-mPFC experiments), counter-

balanced across days. On day 4, the divider was removed and time spent in each compartment

was recorded in the absence of stimulation (i.e., test day).

(f) Optogenetic stimulation of VTADA neurons did not support conditioned place aversion or

preference in VTADA-mPFC::ChR2 animals, compared to VTADA-mPFC::eYFP controls,

measured by difference score [minutes spent in the ON zone - OFF zone] (unpaired t-test, t(9)

= 0.3192, p = 0.7569).

Error bars indicate SEM.
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However, in RTPA and CPA there are no discrete stimuli presented, and in light of the

model for dopaminergic involvement in enhancing signal-to-noise, we considered the potential

importance of dopamine in enhancing neural activity in response to discrete, predictive cues. To

test whether dopamine would bias behavioral responses to discrete cues predicting either

punishment or reward, we used a recently described behavioral paradigm (Burgos-Robles et al.,

2017). Here, rats expressing ChR2 in VTADA neurons (Figure 6a-b) and were trained on a

stimulus competition behavioral paradigm (Figure 6c-d). First trained to associate auditory or

visual cues (counter-balanced across subjects) with sucrose delivery to a nearby port (Figure

6e) and ChR2 and control eYFP subjects learned that the cue predicted reward delivery at the

same rate - as measured by time spent in the sucrose port during the conditioned stimulus

(Figure 6f). Next rats were trained to associate the alternative auditory or visual cues (counter-

balanced across subjects) with footshock (Figure 6g). During discrimination sessions, and

ChR2 and control eYFP subjects discriminated sucrose- and shock-predictive cues similarly, as

measured by time spent in the sucrose port (Figure 6h-i) and time spent freezing (Figure 6j-k),

a species-specific defensive reaction. Once rats learned to discriminate the cues predicting

shock and sucrose by freezing or approaching the delivery port, respectively, we tested their

behavioral responses to the competition of simultaneously-presented cues driving conflicting

motivational outputs (Figure 6d). We found that photostimulation of VTADA-mPFC terminals

(using empirically-determined optical parameters, Figure 2i-j) during the "competition" cues -

wherein both shock-predictive and reward-predictive stimuli were co-presented - caused ChR2-

expressing rats to spend significantly less time in the sucrose delivery port and more time

freezing than eYFP controls (Figure 61-0). There were no differences between groups during

sucrose and shock only trials during competitions sessions (Figure 6p-s).
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Figure 6. Activation of dopamine terminals in the mPFC biases behavior towards
aversion during competitive stimulus presentations.

(a) Schematic of strategy for manipulating dopamine release in the mPFC.

(b) VTADA neurons were selectively transduced with ChR2 in TH::Cre rats and guide cannulae

were implanted over the mPFC for insertion of an optical fiber for light delivery.

(c) Schematic of task used to examine dopamine modulation of reward and fear-motivated

behaviors during competition.

(d) During competition trials (CScomP), VTADA terminals were activated (473 nm, 20 Hz, 60

pulses, 5 ms pulse-duration, every 5 s, 18 mW) to assess the impact of dopamine signaling in

the mPFC on behavior during competition. During "competition OFF", light was not delivered for

the entire session to assess recovery.

(e) During sucrose training, a CS (light or tone, counterbalanced) predicted sucrose delivery

(C S "c). Sucrose was removed from the delivery port by vacuum if not collected.

(f) VTADA-mPFC::ChR2 rats and VTADA-mPFC::eYFP controls acquired sucrose conditioning

similarly (two-way repeated measures ANOVA, F 2 ,2 2 = 0.7, p = 0.5090).

(g) During discrimination, the alternative CS (light or tone, counterbalanced) was introduced and

predicted foot shock (CSh"k)

(h) Average traces showing time spent in the sucrose port before, during, and after each CS

presentation.

(i) Time spent in the sucrose port did not differ between VTADA-mPFC::ChR2 rats and VTADA_

mPFC::eYFP controls during CSsuc or CSShk (repeated measures two-way ANOVA, Fm1 = 0.54,

p = 0.4789, Bonferroni multiple comparisons tests p > 0.05) presentation.

(j) Average traces showing time spent freezing before, during, and after each CS presentation.

(k) Time spent in the freezing did not differ between VTADA-mPFC::ChR2 rats and VTADA_
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mPFC::eYFP controls during CSUC or CS"hk (repeated measures two-way ANOVA, F 1,11 = 0.01,

p = 0.9281, Bonferroni multiple comparisons tests p > 0.05) presentation.

(I) Percent time spent in the reward port during the three trial types in the last competition ON

session.

(m) Percent time spent freezing during the three trial types in the last competition ON session.

(n) During competition sessions, the average time spent in the reward port during CScomp ON

trials was lower in ChR2 rats (closed bars) compared with eYFP controls (open bars, repeated

measures two-way ANOVA, F1, 11 = 8.13, p = 0.0157, Bonferroni multiple comparisons tests p <

0.05).

(o) During competition sessions, the average time spent freezing during CScomp ON trials was

greater in ChR2 rats (closed bars) compared with eYFP controls (open bars, repeated

measures two-way ANOVA, F 1,1 1 = 13.29, p = 0.0039, Bonferroni multiple comparisons tests p <

0.05).

(p) During competition sessions, the average time spent in the reward port for CS" trials during

ON sessions and CSuc trials during OFF sessions did not differ between ChR2 rats (closed

bars) and eYFP controls (open bars, repeated measures two-way ANOVA, F 1,11 = 0.82, p =

0.3845). Note that during ON sessions, stimulation was only delivered during the CScomP trials.

(q) Average time spent freezing for CS'"" trials during ON sessions and CSs"c trials during OFF

sessions did not differ between ChR2 rats (closed bars) and eYFP controls (repeated measures

two-way ANOVA, F1,1 1 = 1.35, p = 1.35).

(r) During competition sessions, the average time spent in the reward port for CSShk trials during

ON sessions and CSshk trials during OFF sessions was not different between ChR2 (closed

bars) and eYFP controls (open bars, repeated measures two-way ANOVA, F 1,11 = 0.94, p =

0.354).
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(s) During competition sessions, the average time spent freezing for CSShk trials during ON

sessions and CSShk trials during OFF sessions was not different between ChR2 rats (closed

bars) and eYFP controls (open bars, repeated measures two-way ANOVA, F 1,11 = 0.16, p =

0.6998).

Error bars indicate SEM.
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Experimental Procedures

General virus surgery

Specific subject/surgery details for each experiment are detailed below. For all subjects,

surgeries were performed under aseptic conditions and body temperature was maintained with

a heating pad. Rodents were anesthetized with isoflurane mixed with oxygen (5% for induction,

2.5-2% for maintenance, 1L/min oxygen flow rate) and placed in a digital small animal stereotax

(David Kopf Instruments, Tujunga, CA, USA). Following initial induction, hair was removed from

the dorsal surface of the head with hair clippers, ophthalmic ointment was applied to the eyes,

the incision area was scrubbed with alcohol pads and betadine (x3 each), and 2% lidocaine was

injected just under the skin surface above the skull for topical anesthesia. All measurements

were made relative to bregma (unless noted otherwise) for virus/implant surgeries. Viral

injections were performed using a beveled microinjection needle (26 gauge for rat; 33 gauge for

mice) with a 10 pL microsyringe (Nanofil; WPI, Sarasota FL, USA) delivering virus at a rate of

0.05-0.01 pL/min using a microsyringe pump (UMP3; WPI, Sarasota, FL, USA) and controller

(Micro4; WPI, Sarasota, FL, USA). For injections at multiple locations on the dorsal-ventral axis,

the most ventral location was completed first and the injection needle was immediately

relocated to the more dorsal location and initiated. After injection completion, 15 mins were

allowed to pass before the needle was slowly withdrawn. After viral infusions were completed,

craniotomies were filled with bone wax and the incision closed with nylon sutures. Subjects

were maintained under a heat lamp and provided 0.05 mg/kg (rat) / 0.10 mg/kg (mouse)

buprenophine (s.c., diluted in warm Ringers solution) until fully recovered from anesthesia.

All experiments involving the use of animals were in accordance with NIH guidelines and

approved by the MIT Institutional Animal Care and Use Committee. For all experiments

involving viral or tracer injections, animals containing mistargeted injection(s) were excluded

after histological verification.
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Viral constructs

Recombinant AAV5 vectors carrying ChR2, NpHR, or fluorescent proteins (mCherry or

eYFP) were packaged by the University of North Carolina Vector Core (Chapel Hill, NC, USA).

We thank the UNC vector core for ChR2 and NpHR vectors.

Catecholamine terminal tracing

Male heterozygous tyrosine hydroxylase (TH)::Cre mice (8-9 weeks old) received

unilateral injections of the anterogradely-traveling adeno-associated virus serotype 5 (AAV5 ),

encoding the fluorescent protein mCherry or eYFP under a double-floxed inverted open-reading

frame (DIO) construct (AAV 5-DIO-EF1a- mCherry or AAV-DIO-EFla-eYFP) in the ventral

tegmental area (VTA; AP: -3.4, ML: +0.4, DV: -4.25 [1 pl]) and locus coeruleus (LC; AP: -5.45,

ML: 1.25, DV: -4.0 & -7.8 [0.5 pl]), counter-balanced. Mice (n = 3) were given 10 weeks for viral

expression and trafficking of the fluorescent protein to terminals in the medial prefrontal cortex

(mPFC). After virus incubation, mice were transcardially perfused, tissue sectioned and

immunohistochemically prepared to label TH+ neurons for histological analyses (described

below). For quantification of fluorescently labeled TH+ neurons in the LC and VTA, single Z-

stacks in the medial VTA and central LC were acquiring using a scanning confocal microscope

(Olympus FV1 000) with Fluoview software (Olympus, Center Valley, PA, USA) under a 60x/1.42

NA oil immersion objective. The number of co-labeled (TH+ and eYFP/mCherry+) neurons and

eYFP/mCherry only labeled neurons were counted. Z-stack stitches encompassing both

prelimbic (PL) and intralimbic (IL) regions of the mPFC were acquired under a 40x/1.30 NA oil

immersion objective. Quantification of fluorescence intensity as a proxy for terminal density was

accomplished by analyzing 100w x 200h pm sections across mPFC layers based on DAPI
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density/morphology in FIJI ImageJ. Sections were normalized to the section with peak

fluorescence within subjects. Sample size was based on reports in related literature and were

not predetermined by calculation.

Fast-scan cyclic voltammetry (FSCV)

Subjects.

Male and female heterozygous BAC transgenic TH::Cre rats (-220 g) were dual housed

with ad libitum access to water on a normal 12h:12h light/dark cycle (lights on at 09:00 AM).

Surgery.

TH::Cre rats which had received a unilateral injection of 2 p adeno-associated virus

serotype 5 (AAV5 ), encoding channelrhodopsin-2 (ChR2)-mCherry or halorhodopsin 3.0

(NpHR)-eYFP, under a double-floxed inverted open-reading frame construct (DIO) (AAV5-DIO-

EF1a-ChR2-mCherry or AAV-DIO-EF1a-NpHR-eYFP) in the ventral tegmental area (VTA; AP:

-5.3, ML: +0.7, DV: -8.2 & -7.8 [1 pl ea]) were given at least 8 weeks for viral expression before

recording. Anesthetized in vivo FSCV experiments were conducted similar to those previously

described (Matthews et al., 2016; Nieh et al., 2016). Rats were anesthetized with urethane (1.5

g/kg, i.p.) diluted in sterile saline and placed in a stereotaxic frame located in a faraday cage.

For both experiments, a glass-encased carbon fiber electrode (-120 pm exposed carbon fiber,

epoxied seal) was lowered into the mPFC (AP: +3.2, ML: +0.8 mm relative to bregma; DV: -2.0

mm from brain surface) through a small craniotomy performed above the deep layers of the

mPFC for voltammetric recordings.

For ChR2 experiments (n = 5), additional craniotomies were performed above the VTA

(AP: -5.5, ML: -0.6 mm), locus coeruleus (LC; AP: -9.6, ML: -1.2 mm), and contralateral cortex.

A Ag/AgCI reference electrode, chlorinated just prior, was implanted in the contralateral cortex,
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a manually-constructed optical fiber" (400 pm core, 0.48 NA; Thorlabs, Newton, NJ, USA) cut

to 8 mm in length held in a 2.5 mm ferrule (Precision Fiber Products, Milpitas, CA, USA) was

implanted above the VTA (DV: -7.0 mm), and a 26 gauge guide cannula (PlasticsOne,

Roanoke, VA, USA) was positioned over the LC (DV: -6.6 mm). Implants were secured to the

skull with adhesive cement (C&B Metabond; Parkell, Edgewood, NY, USA).

After cement dried, the optic fiber implant was connected to a patch cable (Doric,

Quebec, CA) via a ceramic sleeve (PFP, Milpitas, CA, USA) and both reference and carbon-

fiber recording electrode connected to the FSCV interface via custom-made headstage (Scott

Ng-Evans, Paul E.M. Phillips Lab, University of Washington, USA). Dopamine (DA) release was

evoked by optical activation of the VTA using 150 pulses of 473 nm light (25 mW, 5 ms pulse

duration) at 50 or 30 Hz, delivered via a DPSS laser (OEM Laser Systems, Draper, UT) through

the attached patch cable and controlled using a Master-8 pulse stimulator (A.M.P.I., Jerusalem,

Israel). Electrodes were stereotaxically lowered in 0.2 mm increments until optimal DA release

was detected by photoactivation of VTA DA neurons. Optically-evoked DA release was not

detected from one subject for unknown reasons; however, tail-pinch evoked catecholamine

release was observed with characteristic cyclic voltammograms (CVs) for catecholamines and

was therefore included in analyses.

For NpHR experiments (n = 5), craniotomies (in addition to that above the mPFC) were

performed above the VTA (AP: -5.5, ML: -0.6 mm), nucleus accumbens shell (NAc, AP: 1.5, ML:

+0.9), and contralateral cortex. A Ag/AgCI reference electrode, chlorinated just prior, was

implanted in the contralateral cortex and secured to the skull with adhesive cement (C&B

Metabond; Parkell, Edgewood, NY). After cement dried, reference and carbon-fiber recording

electrodes were connected to FSCV interface via headstage and the recording electrode was

stereotaxically lowered into the NAc shell (DV: -6.6 mm relative to brain surface). Following

equilibration (see below), a combination bipolar electrical stimulation electrode and 26 gauge
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guide cannula (PlasticsOne, Roanoke, VA, USA) was stereotaxically lowered above the VTA

(DV: -6.5 mm) and lowered in 0.2 mm increments until DA release was detected in the NAc by

electrical activation of VTA DA neurons via 60 Hz, 60 pulses (biphasic, 200 uA), controlled by

an ISO-Flex stimulus isolator (A.M.P.I., Jerusalem, Israel). Following DA detection, the

combination electrical stimulation / guide cannula electrode was cemented in place (C&B

Metabond; Parkell, Edgewood, NY, USA) slightly dorsal of the VTA and the carbon-fiber

recording electrode transferred into the mPFC (DV: -2.0 mm) and allowed to equilibrate. Sample

sizes were based on reports in related literature and were not predetermined by calculation.

Data acquisition.

For both experiments, electrodes were allowed to equilibrate for 20 min at 60 Hz and 10

min at 10 Hz. Voltammetric recordings were collected at 10 Hz by applying a triangular

waveform (-0.4 V to +1.3 V to -0.4 V, 400 V/s) to the carbon-fiber electrode versus the Ag/AgCl

reference implanted in the contralateral cortex. Data were collected in 60 s files with the tail

pinch onset occurring 10 s into the file for a duration of 10 s (TarHeelCV, Chapel Hill, NC). Files

were collected every 120 s and background subtracted at the lowest current value prior to pinch

onset. Evoked signals maintained characteristic CVs for DA/NE (Heien et al., 2003), with

oxidation and reduction peaks at -+0.65 V and -- 0.2 V, respectively. For ChR2 experiments, 5

tail pinch recordings were obtained with a 120 s inter-recording interval, prior to LC inactivation.

After recording were completed, 1 pl of tetrodotoxin (TTX, 10 ng/1.5 pl artificial cerebral spinal

fluid) mixed with fast green (for spread visualization) was injected into the LC via a

microinjection needle through the 26 gauge guide cannula controlled by a syringe pump. 10 min

following infusion completion, 5 tail pinch recordings were obtained with a 120 s inter-recording

interval, post-LC inactivation. For NpHR experiments, recordings were similarly obtained by 10

recordings at 120 s inter-recording interval were trials were interleaved with no optical

manipulation trials ("OFF" trials) and trials where VTA DA neurons were inhibited with 20 s
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constant 598 nm DPSS laser light (5 mW) delivered by a stripped 200 pm core patch cable

(Doric, Quebec, CA) inserted into the combination electrical stimulation / guide cannula located

dorsal of the NpHR-expressing VTA DA neurons ("ON" trials). Optical inhibition was initiated 5 s

into each "ON" trial (i.e., 5 s prior to tail pinch onset) and remained for 20s (i.e., ending 5 s after

tail pinch offset). Oscillatory signals were often observed in the mPFC (however, no such

signals were detected in the NAc) and were attenuated by tail pinch and electrical stimulation.

Trial averaging alleviated oscillatory interference. Following recording, rats were transcardially

perfused and fixed (as described below) and processed using immunohistochemistry for TH

immunolabeling to confirm viral expression and implant/recording electrode locations using

confocal microscopy. Spread of TTX-fast green was recorded during tissue sectioning on a

freezing, sliding microtome.

Data analysis.

Signals were converted to changes in catecholamine concentration using chemometric,

principal component regression, and residual analyses using a custom LabView program

(Umich CV, Courtesy of Richard Keithley), as previously described (Keithley and Wightman,

2011; Keithley et al., 2009; Vander Weele et al., 2014) using in vivo optically and electrically-

evoked CVs and calibration data obtained from an average of 10 electrodes calibrated in known

DA concentrations and pH units as previously described (Badrinarayan et al., 2012). For

quantification of blue light evoked DA, area under the curve (AUC) was calculated during the 5 s

pre-stimulation period, compared to the AUC 5 s following the initiation of 20 Hz, 60 pulses laser

light. For quantification of tail pinch-evoked DA, AUC was calculated during the 10 s prior to

pinch onset, compared to the AUC during the 10 s following pinch onset For comparison of

pinch-evoked signals in "ON" and "OFF" trials in NpHR experiments, AUC was calculated during

the 30 s period following pinch onset.
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VTADA-mPFC behavioral optogenetic experiments

Subjects.

Male heterozygous BAC transgenic TH::Cre rats (Witten et al., 2011) (-220 g) were dual

housed with ad libitum access to water on a normal 12h:12h light/dark cycle (lights on at 09:00

AM). -1 weeks following viral injection surgeries, rats were individually housed with restricted

food access (-16-20 g chow / day) for -10 weeks, but retained ad libitum access to water.

Sample size was based on reports in related literature and were not predetermined by

calculation.

Surgery.

TH::Cre rats which had received a unilateral injection of 2 pl of AAV 5-DIO-EF1a-ChR2-

eYFP [n = 6-8] or AAV-DIO-EF1a-eYFP [n = 5-7]) in the ventral tegmental area (VTA; AP: -5.3,

ML: +0.7, DV: -8.2 & -7.8 [1 pl ea]) were given at least 12 weeks incubation period to ensure

Cre-specific viral transduction of ChR2 in VTADA neurons and protein transport to distal

terminals in the mPFC. Following incubation, 20G stainless steel cannulae (PlasticsOne,

Roanoke, VA) were bilaterally implanted above the mPFC (AP: +3.2-3.6; ML: 2.0, DV: -2.8;

mm relative to bregma at a 150 angle, bilateral). Guide cannulae were secured to the skull with

2-4 skull screws, a layer of adhesive cement (C&B Metabond; Parkell, Edgewood, NY, USA),

followed by black cranioplastic cement (Ortho-Jet; Lang, Wheeling, IL, USA) containing

gentamicin antibiotic. The implant was allowed to completely dry before closure of the incision

with nylon sutures. 24G dummies were inserted into toe cannulae to present clogging.

General testing procedures.

On each test day, a 400 pm core optical fiber was inserted and attached to the cannulae.

Optical fibers extended -250-500 um beyond the cannulae tips. Rats were then transferred to

their behavioral apparatus and connected to patch cords connected to dual-rotating
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commutators for testing. Real-time place preference / aversion and conditioned place

preference / aversion assays were identical to those described above. 473 nm laser light was

delivered through the patch cords at 20 Hz, 60 p (5 ms pulses) every 30 s at 20 mW from optic

fiber tip. If an optic fiber broke into a guide cannula or if a guide cannula became clogged, the

contralateral guide cannula was used for remaining experiments. Manipulated hemispheres

were counterbalanced.

Real-time place preference / aversion.

Individual food-restricted rats were placed in a Plexiglas arena (241 x 24w in x 20h in)

and were allowed to freely move between two compartments for 1 hr in a dimly lit room

containing constant white noise (Marpac Dohm-DS dual speed sound conditioner, Wilmington,

NC, USA). Entry into one half of the chamber resulted in photostimulation (VTADA_

mPFC::ChR2/eYFP = unilateral 20 Hz, 60 p, 5 ms pulses every 30 s, 20 mW; mPFC-

dPAG/NAc::ChR2/eYFP = bilateral 20 Hz 5 ms pulses, 12-15 mW, see below). Stimulation and

no stimulation sides were counterbalanced between animals. Rats were tested on 2

consecutive days and on the second day; the stimulation side and no stimulation side were

reversed. A video camera positioned directly above the arena tracked and recorded movement

using EthoVision XT (Noldus, Wageningen, Netherlands). All data presented are tracked from

the "center" of the subject and time spent in each zone was averaged across the 2 testing

sessions. In between subjects, the behavioral chamber was thoroughly cleaned with 10% glass

cleanser diluted in ddH20.

Conditioned place preference /aversion.

Individual food-restricted rats were placed in a Plexiglas arena (301 x 15w in x 25h in)

divided into two compartments: one with vertical stripes and the other with horizontal stripes. On

day 1 (habituation), rats were allowed to freely move between two compartments for 15 min in a

brightly lit room containing constant white noise (Marpac Dohm-DS dual speed sound
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conditioner, Wilmington, NC, USA). Movement was tracked by an overhead video camera

positioned above the arena and time spent in each compartment was calculated using

EthoVision XT (Noldus, Wageningen, Netherlands). On day 2 and 3, rats were exposed to

conditioning sessions (20 min ea, 1 per day) during which they were confined to one side of the

chamber and received optical stimulation (VTADA-mPFC::ChR2/eYFP = unilateral 20 Hz, 60 p, 5

ms pulses every 30 s, 20 mW; mPFC-dPAG/NAc::ChR2/eYFP = bilateral 20 Hz 5 ms pulses,

12-15 mW, see below) or no stimulation (counterbalanced for order and side across animals).

On day 4 (test), rats were placed in the chamber and allowed to freely explore both

compartments in the absence of optical stimulation. Again, movement was tracked by an

overhead video camera positioned above the arena using EthoVision XT (Noldus, Wageningen,

Netherlands) and a time difference score was calculated by subtracting the time spent in the

stimulation-paired compartment on the habituation day from the time spent in the stimulation-

pared compartment on the test day (test[time spent in paired side] - habituation[time spent in

paired side]).

Stimulus competition task.

Training and testing procedures were similar to those previously described (Burgos-

Robles et al., 2017). Training was performed in standard rat operant chambers (23 x 30 x 40

cm; Med Associates) located within sound-attenuating cubicles. Each chamber was equipped

with a red house light, speakers for the delivery of tone cues, a sucrose port that was equipped

with an infrared beam for the detection of port entries and exits, a syringe pump to deliver

sucrose (30% in cage water), 2 light cues on either side of the sucrose port, and a grid floor for

the delivery of electrical shocks. Chambers were wiped down with 70% isopropyl alcohol after

each session. Prior to training, rats were pre-exposed to sucrose in their homecage and were

magazine trained in the operant boxes (60 min, 20 sucrose deliveries). The first phase of

training consisted of Pavlovian reward conditioning where rats learned to associate a 20 s
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conditioned stimulus (CSsuc, either a light cue or tone cue [5 kHz, 80 dB], counter-balanced

between subjects) with sucrose delivery into the reward port (30% sucrose, 120 uL/ trial).

Sucrose was delivered over 10 s during the cue presentation (5-15 s, relative to CSUC onset).

Inter-trial intervals were set to an average of 60 s. If sucrose was not consumed (as detected by

the lack of a port entry during the 20 s C SsUC presentation), sucrose was immediately removed

after cue offset via activation of a vacuum tube located in the sucrose port. Rats were trained on

sucrose conditioning for 3 days with each session comprised of 25 trials delivered over -35 min.

The second phase of training consisted of four Pavlovian discrimination sessions where

conditioned stimuli predicted sucrose (CSuc) or footshock (CS"hk) delivery. During these

sessions, the opposite conditioned stimulus (either a light cue or tone cue [5 kHz, 80 dB]) co-

terminated with 0.5 s footshock (0.60 mA, 19.5 - 20 s relative to CS"hk onset). CSSUC and CSShk

cues were counterbalanced and presented in a pseudorandom manner. Each sessions

consisted of 40 total trials (20 of each trial type) with a variable -60 s ITI. During sucrose

conditioning and discrimination sessions, animals were unilaterally connected to a rotating

commutator via a dummy patch cord, but no laser light was delivered.

The third phase was the stimulus competition test sessions. Prior to these sessions, an

optical fiber was loaded into a guide cannula, connected to a patch cord, and attached to a

rotating commutator, identical to the prior phases. During competition sessions, in addition to

CS'" and CSshk trials, competition trials were introduced - in which CSU. and CSshk cues and

their respective outcomes were co-presented to evoke conflicting motivation between reward-

and fear-associated behaviors. 1 s prior to competition trials (CScomP), 473 nm laser was

triggered (20 Hz, 60 p, 5 ms pulses every 5 s) for the duration of the 20 s compound cue (4

stimulation trains per CS). Each competition session consisted of 60 total trials (20 of each trial

type) with a variable -60 s ITI.

Data analysis.
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Sucrose port entries and exits provided a read-out for reward-related behavior (based on

% of time in the port during each trial type) and were sampled from infrared beam breaks (Med-

PC IV, Med Associates. Freezing, defined as the lack of all movement other than respiration,

provided a read-out for aversively-motivated behavior. Videos were sampled using side-profiled

infrared cameras at 30 fps and freezing was quantified using an automated custom MATLAB

script that calculated frame-by-frame changes in total pixel intensity as an approximation for

animal movement. Frame-by-frame motion values were converted into freezing scores using a

binary method relative to a motion threshold. This method produced values which are highly

correlated with hand-scored measured of freezing (Burgos-Robles et al., 2017)The time spent in

the port was subtracted from the freezing quantification, as animals showed little movement

while collecting sucrose.

Histology

Perfusion and storage.

Subjects were deeply anesthetized with sodium pentobarbital (200 mg/kg; i.p.) and

transcardially perfused with 15 mL (mouse) / 60 mL (rat) of Ringers solution followed by 15 mL

(mouse) / 60 mL (rat) of cold 4% paraformaldehyde (PFA) dissolved in 1x PBS. Animals were

decapitated and the brain was extracted from the cranial cavity and placed in 4% PFA solution

and stored at 4 0C for at least 48 hrs. 36 hrs before tissue sectioning, brains were transferred to

30% sucrose solution dissolved in 1x PBS at room temperature. Upon sinking, brains were

sectioned at 60 um on a freezing sliding microtome (HM420; ThermoFischer Scientific).

Sections were stored in 1x PBS at 4 OC until immunohistochemical processing.

Immunohistochemistry.
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Sections were blocked in 1x PBS - 0.3% Triton containing 3% donkey serum (Jackson

ImmunoResearch, West Grove, USA), for 1 h at room temperature followed by incubation in

primary antibody solution: chicken anti-TH (1:1000; Millipore, USA) or rabbit anti c-Fos (1:500;

Santa Cruz Biotechnology, Dallas, TX, USA) in 1x PBS - 0.1% Triton containing 3% donkey

serum for 48 h at 4 0C. Sections were then washed 4 times (10 min each) with 1x PBS and

immediately transferred to secondary antibody solution: AlexaFluor 647-conjugated donkey anti-

chicken (1:1000; Jackson ImmunoResearch, West Grove PA, USA) or Cy3 donkey anti-rabbit

(1:500, Jackson ImmunoResearch, West Grove, PA, USA) and containing a DNA-specific

fluorescent probe (DAPI; 1:50,000) in 1x PBS containing 3% donkey serum for 2 h at room

temperature. Sections not processed for immunohistochemistry were incubated in 1x PBS -

0.3% Triton containing 3% normal donkey serum (Jackson ImmunoResearch, West Grove,

USA) and DAPI (1 :50,000) for 1 hr. Sections were washed 4 times (10 min each) in 1x PBS and

mounted onto glass slides. Slices were allowed to dry and were coverslipped using polyvinyl

alcohol (PVA) mounting medium with DABCO (Sigma, MO, USA).

Confocal microscopy.

Fluorescent images were captured using a confocal laser scanning microscope

(Olympus FV1000), with FluoView software (Olympus, Center Valley, PA), under a dry 10x /

0.40 NA objective, a 60x/1.42 NA oil immersion objective, or a 40x /1.30 NA oil immersion

objective. The locations of opsin expression, injection site, lesion from the optic fiber placement,

and the position of carbon-fiber recording electrodes were determined by taking serial z-stack

images through the 10x objective across a depth of 20-40 pm, with an optical slice thickness of

5-8 pm. High magnification images fluorescence quantifications were obtained through the 40x

or 60x objective using serial z-stack images with an optical slice thickness of 3-4 pm (5 slices)

using matched parameters and imaging locations. Fluorescence (in arbitrary units) was
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obtained from analysis in FIJI ImageJ. For quantitation of fluorescence across layers in the

mPFC, measurements were normalized to the Z-stack containing the maximum value.

Statistics

Statistical analyses were performed using GraphPad Prism (GraphPad Software, Inc, La

Jolla, CA). Paired and unpaired two-way Student's t-tests were used to make single-variable

comparisons. Thresholds for significance were placed at *p < 0.05, **p < 0.01, ***p < 0.001. All

data are shown as mean standard error of the mean (SEM).

Summary

Taken together, these data suggest that dopamine is released in a time-locked manner

upon an aversive stimulus and that VTADA in the mPFC plays an instructive role in biasing

behavioral responses towards aversion in the face of conflicting cues.
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Chapter 3

Prefrontal projections to the striatum and periaqueductal gray are distinct and
differentially encode and promote reward and aversion

Introduction

The mPFC has copious projections throughout the brain (Sesack 1989; Vertes, 2004)

and we next sought to identify a projection that might serve to translate aversive signals into

action. As previously mentioned, subcortical projection predominately reside in output Layers 5

and 6 (Gabbott et al., 2005), which also express dopamine receptors (Gaspar et al., 1995).

Prominent projections from the mPFC include the: basolateral amygdala (BLA), NAc / ventral

striatum, lateral hypothalamus, periaqueductal gray (PAG), medial dorsal thalamic structures,

and the dorsal raphe (Gabbott et al., 2005). mPFC projections to the NAc (mPFC-NAc; -27% of

Layer 5 neurons) and mPFC projections to the PAG (mPFC-PAG; -3% of Layer 5 neurons)

stood out as promising candidate regions which likely convey motivationally-relevant stimuli

from the mPFC (Estimated proportion of projection neurons from retrograde labeling - Gabbott

et al., 2005).

The PAG is a heterogenous midbrain structure considered an important relay center for

defensive and threat responses (Bandler and Carrive, 1988; Bandler et al., 1985a, 1985b;

Carrive et al., 1987; Fanselow, 1991; Tovote et al., 2016). In humans, the PAG is implicated in

the general processing of aversive emotions (Buhle et al., 2013; Lindquist et al., 2012; Satpute

et al., 2013), threat proximity (Mobbs et al., 2007, 2010), and threat anticipation (Meyer et al.,

BioRxiv, 2017). In non-primate models, local electric and glutamate stimulation of the PAG

elicits a diverse range of aversive and defensive behavioral reactions, which vary within

subcolumns along both medial-lateral and dorsal-ventral axes (Bandler & Carrive, 1988).

Recently, optogenetic stimulation of neurons in the dorsal PAG (dPAG) has been shown to
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evoke flight behaviors (Deng et al., 2016; Tovote et al., 2016). Further, dPAG neurons are

activated at the initiation of escape responses measured by in vivo single cell calcium imaging

in freely moving subjects (Evans et al., BioRxiv, 2018) and in vivo electrophysiology (Halladay

and Blair, 2015). Together these data along with many others, strongly suggest that the dPAG is

a crucial node mediating active avoidance strategies, rather than passive strategies (i.e.,

freezing), which have been attributed to the ventral portions of the PAG (Assareh et al., 2016;

Bandler and Depaulis, 1988; Tovote et al., 2016). Considering several lines of evidence suggest

that connections between the mPFC and dPAG (mPFC-dPAG) specifically are involved in

coordinating behavioral strategies in response the threating stimuli (Mobbs et al., 2007;

Halladay et al., 2015), we decided to investigate this pathway's involvement in aversive

motivation and its responsivity to dopamine.

In contrast, the NAc is historically viewed as a reward center because of its involvement

in reward-learning (Schultz et al., 1997), reward-seeking (Phillips et al., 2003; Roitman et al.,

2004) and hedonic pleasure (Castro and Berridge, 2014). Optogenetic stimulation of mPFC

terminals in the NAc has been shown to support place preference and operant reinforcement

(Britt et al., 2012). However attempts to replicate this effect have been unsuccessful (Otis et al.,

2017; Stuber et al., 2011), which may be attributed to the location (i.e., soma versus terminal) or

stimulation parameters (i.e., frequency, light power). Recently, in vivo single-cell calcium

imaging during reward-learning has revealed that mPFC-NAc neurons show enhanced

responses to reward-predictive cues during conditioning and that optogenetic stimulation

promotes the expression of conditioned-reward seeking (Otis et al., 2017). Considering VTA

dopamine axon terminals synapse onto mPFC neurons projecting to the NAc (Carr et al., 1999)

and that a subset of mPFC-NAc neurons express dopamine receptors (Gaspar et al., 1995), we

decided to investigate this pathway as a point of contrast. Here we explore the anatomy,

activity, and behavioral functions of mPFC-dPAG and mPFC-NAc subpopulations.
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Results

To explore the putative density between the mPFC and downstream brain regions, we

transduced mPFC neurons with AAV-CaMKila-eYFP in the rat and explored downstream

fluorescence in a subset of candidate regions (Figure 7a-c). Fluorescence intensity, measured

in arbitrary units (A.U.), revealed putative connections with several brain regions- including the

nucleus accumbens (NAc) and dorsal periqueductal gray (dPAG) (Figure 7d).
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Figure 7. Putative connection strength of mPFC projections to downstream targets.

(a) Schematic of strategy where anterogradely traveling virus was injected into the prelimbic and

infralimbic subregions of the mPFC and fluorescence was quantified in several downstream

brain regions.

(b) Orange boxes represent approximate locations of fluorescence quantification, as a proxy for

connection strength (n = 3).

(c) Representative images of fluorescence in the mPFC and downstream targets in the rat.

(d) Quantification of fluorescence in the mPFC and downstream targets in the rat.
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Abbreviations: agiN = agranular insula; BLA = basolateral amygdala; cl = claustrum; dPAG =

dorsal periaqueductal gray; dStr = dorsal striatum (medial); LH = lateral hypothalamus; LS =

lateral septum; mPFC = medial prefrontal cortex; NAc = nucleus accumbens; PVT =

paraventricular nucleus of the thalamus; vPAG = ventral periaqueductal gray; VTA = ventral

tegmental area.

Error bars indicate SEM.
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In animal studies, stimulation of the PAG evokes aversive responses, including

defensive and attack behaviors (Bandler and Carrive, 1988; Deng et al., 2016; Silva et al., 2016;

Tovote et al., 2016) and in humans, impending threat is associated with shifts in activity from the

mPFC to the PAG (Mobbs et al., 2007). While projections to the dorsal periaqueductal gray

(dPAG) have been explored in the context of social behavior (Franklin et al., 2016),

contributions of the mPFC-dPAG circuit to aversive stimulus processing have not yet been

evaluated. Due to its reported role in reward-related processes, we also investigated the mPFC-

NAc projection for comparison (Britt et al., 2012; Murugan et al., 2017; Otis et al., 2017; Ye et

al., 2016). To determine whether mPFC-dPAG and mPFC-NAc neurons form dissociable

subpopulations, retrograde tracers were injected into the dPAG and NAc in both the rat (Figure

8a-b) and mouse (Figure 8g-h). Consistent with previous results (Franklin et al., 2017), mPFC-

NAc and mPFC-dPAG neurons were localized to specific cortical layers and few neurons were

dual-labeled in both the rat (11 of 1679) and mouse (17 of 458) (Figure 8). Interestingly, mPFC-

NAc layer localization was slightly different between rodent species, with the highest density in

Layer 5 in the rat (Figure 8e) and Layer 2/3 in mouse (Figure 8k). Additionally, anatomical

investigations into collateralization of mPFC-NAc and mPFC-dPAG neurons using virally-

expressed, projection-specific fluorescent synaptophysin did not provide detectable evidence for

collateralization between the two subpopulations (Figure 9a-d), further suggesting that they are

dissociable populations.
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Figure 8. mPFC-dPAG and mPFC-NAc projector populations are distinct.

(a) Schematic of strategy for retrogradely labeling mPFC-NAc and mPFC-dPAG subpopulations

in the rat.
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(b) Representative images of microinjections of cholera toxin subunit B (CTB) conjugated to

fluorescent proteins (AlexaFluor-488, -555, or -647, counter-balanced) placed in the rat dPAG

and NAc.

(c) Representative images of retrogradely labeled cell bodies of dPAG- and NAc-projection

neurons in the rat mPFC.

(d) Fluorescence quantification of retrogradely labeled mPFC-dPAG and mPFC-NAc neurons

revealed differences in cell body location across cortical layers in the rat mPFC.

(e) In the rat, dPAG-projectors predominately originate from deep layer 5, whereas NAc-

projectors are located in both superficial layers 2/3 and deep layer 5.

(f) As a population, only 11 out of 1,679 CTB+ neurons in the mPFC were dual-labeled.

(g) Schematic of strategy for retrogradely labeling mPFC-NAc and mPFC-dPAG subpopulations

in the mouse.

(h) Representative images of microinjections of CTB conjugated to fluorescent proteins were

placed in the mouse dPAG and NAc.

(i) Representative images of retrogradely labeled cell bodies of projection neurons in the

mouse mPFC.

(j) Fluorescence quantification of retrogradely labeled mPFC-dPAG and mPFC-NAc neurons

revealed differences in cell body location across cortical layers in the mouse mPFC.

(k) In the mouse, dPAG-projectors predominately originate from deep layer 5, whereas NAc-

projectors are located in both superficial layers 2/3 and deep layer 5.

(1) As a population, only 17 out of 458 CTB+ neurons in the mPFC were dual-labeled.
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Figure 9. Collateralization of mPFC-NAc and mPFC-dPAG projector subpopulations.

(a) Schematic of viral strategy to explore downstream terminals from mPFC-NAc::synaptophysin

and mPFC-dPAG::synaptophysin projectors (n = 3 per group).
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(b) Quantification of fluorescence in the mPFC and downstream brain regions originating from

mPFC-dPAG::synaptophysin and mPFC-NAc::synaptophysin neurons.

(c) Representative confocal images from a mPFC-dPAG::synaptophysin subject.

(d) Representative confocal images from a mPFC-NAc::synaptophysin subject.

Abbreviations: agiN = agranular insula; BLA = basolateral amygdala; cl = claustrum dPAG =

dorsal periaqueductal gray; dStr = dorsal striatum (medial); LH = lateral hypothalamus; LS =

lateral septum; mPFC = medial prefrontal cortex; NAc = nucleus accumbens; PHA = posterior

hypothalamic area; PVT = paraventricular nucleus of the thalamus; VTA = ventral tegmental

area.

Error bars indicate SEM. Scale bar = 100 um.
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To target mPFC-NAc neurons, we used a dual virus approach (Senn et al., 2014). In

rats, an anterogradely-traveling adeno-associated viral vector carrying ChR2- eYFP or eYFP

alone (AAV-DIO-ChR2-eYFP or AAV-DIO-eYFP), expressed in a Cre-dependent manner, was

injected into the mPFC and a retrogradely-traveling canine adenovirus vector carrying Cre-

recombinase (CAV2-Cre) was injected into the NAc (Figure 10a-b). We found that

photostimulation of mPFC-NAc neurons did not produce detectable differences between ChR2-

and eYFP-expressing groups during RTPP/A (Figure 10c-d) or CPP/A (Figure 10e-f). These

findings are consistent with some reports (Kim et al., 2016; Otis et al., 2017; Stuber et al.,

2011), but not others (Britt et al., 2012). We speculate these discrepancies are related to the

heterogeneity of the nucleus accumbens and differential targeting of core and/or shell

subregions (Badrinarayan et al., 2012; Kim et al., 2017; Lammel et al., 2011) or the strength of

activation due to illumination or opsin expression levels. Further, no effect was observed on

anxiety-related behavior, as measured by time spent in the center in the open-field test (OFT)

(Figure 10g-h) or on gross locomotion (Figure 10i).
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(a) Schematic of viral transduction strategy to achieve optogenetic control of rat mPFC neurons

projecting to the NAc.

(b) Representative image of NAc-projecting mPFC neurons expressing ChR2 (left) and ChR2+

terminals in the NAc.

(c) Representative locomotor heatmaps of mPFC-NAc::ChR2 (top) and mPFC-NAc::eYFP

(bottom) subjects during real-time place preference / aversion assay.

(d) Optogenetic stimulation of mPFC-NAc neurons did not evoke real-time place avoidance or

preference in mPFC-NAc::ChR2 animals, compared to mPFC-NAc::eYFP controls, measured

by difference score [minutes spent in the ON zone - OFF zone] (unpaired t-test, t(1 1) = 0.555, p

= 0.5901).

(e) Representative locomotor heatmap of mPFC-NAc::ChR2 subject during condition place

preference / aversion assay.

(f) Optogenetic stimulation of mPFC-NAc neurons did not evoke real-time place avoidance or

preference in mPFC-NAc::ChR2 animals, compared to mPFC-NAc::eYFP controls, measured

by difference score [minutes spent in the ON zone - OFF zone] (unpaired t-test, t(10) = 0.2143,

p = 0.8346).

(g) Representative locomotor heatmaps of a mPFC-NAc::ChR2 subject during 3 min OFF-ON-

OFF epochs during the open-field test (OFT).

(h) Optical activation of mPFC-NAc::ChR2 did not change time spent in the center region

compared to eYFP controls, as measured by time spent in the center of the arena (two-way

repeated measures ANOVA, F2,18 = 0.4913, p > 0.05).

(i) Optical activation of mPFC-NAc::ChR2 did not change general locomotor activity (two-way

repeated measures ANOVA, F2 18 = 0.5532, p > 0.05).
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To target mPFC-dPAG neurons, we again used a dual virus approach (Senn et al.,

2014), where an anterogradely-traveling adeno-associated viral vector carrying ChR2- eYFP or

eYFP alone (AAV-DIO-ChR2-eYFP or AAV-DIO-eYFP), expressed in a Cre-dependent manner,

was injected into the mPFC and a retrogradely-traveling canine adenovirus vector carrying Cre-

recombinase (CAV2-Cre) was injected into the dPAG (Figure 11a-b). Using ex vivo

electrophysiology, we verified the functionality of ChR2 within this pathway and the 20 Hz

stimulation parameters using 473 nm light (Figure 11c-e). Further, we validated ChR2

functionality in vivo by examining the immediate early gene, c-Fos in mPFC-dPAG::ChR2+

neurons (Figure 1lf-g). In contrast to the lack of effect observed in mPFC-NAc subjects,

activation of mPFC-dPAG neurons in ChR2-expressing rats reduced the time spent in the light-

paired chamber in both RTPA (Figure 11h-i) and CPA (Figure 11j-k), relative to eYFP controls

- thus demonstrating that these neighboring, projection-defined populations are functionally

distinct.
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Figure 11. Activation of mPFC-dPAG neurons supports real-time or conditioned placed

aversion.

(a) Schematic of viral transduction strategy to achieve optogenetic control of rat mPFC neurons

projecting to the dPAG.

(b) Representative image of dPAG-projecting mPFC neurons expressing ChR2 (left) and

ChR2+ terminals in the dPAG surrounding the injection site (marked by an X).

(c) Ex vivo recording from a ChR2-expressing mPFC-dPAG neuron in voltage-clamp mode

showing sustained inward current elicited by a 1 s pulse of 470 nm) light.

(d) In current-clamp mode, action potentials were elicited by 1 Hz laser pulses (470 nm, 5 ms

pulse-duration).

(e) In current-clamp mode, action potentials were elicited by 20 Hz light trains (470 nm, 5 ms

pulse-duration).

(f) Representative confocal images of mPFC-dPAG::ChR2 (top) and mPFC-dPAG::eYFP

expressing neurons showing c-Fos expression following 5 min of blue (473 nm) light exposure

(20 Hz, 5 ms pulse-duration, 15 mW).

(g) 473 nm laser light stimulation enhanced the number of immediate early gene (c-Fos)

positive ChR2-expressing mPFC-dPAG neurons compared to control mPFC-dPAG::eYFP

neurons (mPFC-dPAG::ChR2 n = 4; mPFC-dPAG::eYFP n = 3; unpaired t-test, t(5) = 3.707, p =

0.014).

(h) Representative locomotor heatmaps of mPFC-dPAG::ChR2 (top) and mPFC-dPAG::eYFP

(bottom) subjects during real-time place avoidance assay.
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(i) Optogenetic stimulation of mPFC-dPAG neurons evoked real-time place avoidance in mPFC-

dPAG::ChR2 animals, compared to mPFC-dPAG::eYFP controls, measured by difference score

[minutes spent in the ON zone - OFF zone] (unpaired t-test, t(30) = 3.902, p = 0.005).

(j) Representative locomotor heatmap of mPFC-dPAG::ChR2 subject on test day during

conditioned-place avoidance assay.

(k) Optogenetic stimulation of mPFC-dPAG neurons produced real-time place avoidance in

mPFC-dPAG::ChR2 animals, compared to mPFC-dPAG::eYFP controls, measured by

difference score [minutes spent in the ON zone - OFF zone] (unpaired t-test, t(12) = 2.638, p =

0.022).
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We further investigated the effects of activating mPFC-dPAG neurons on assays for

locomotor activity, general anxiety, and defensive behavior. In the OFT, which assays

locomotor activity and anxiety-related behavior, we did not observe any differences for distance

traveled nor time spent in the center of the chamber between ChR2- and eYFP-expressing rats

during the illumination epoch (Figure 12a-c). Strikingly, mPFC-dPAG photostimulation during a

marble burying assay produced a robust increase in the number of marbles buried (Figure 12-

d-f) and time spent digging (Figure 12g). Importantly, expression was restricted to the dorsal /

lateral portions of the PAG, verified in a subset of animals where CAV2-Cre (no fluorophore tag)

was co-injected with AAV-synapsin-mCherry (Figure 12h-i). The effects in the RTPA and

marble burying assays observed upon mPFC-dPAG activation were reproduced by activation of

mPFC terminals directly in the dPAG (Figure 13).
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Figure 12. Activation of mPFC-dPAG neurons increases marble burying.

(a) Representative locomotor heatmaps of a mPFC-dPAG::ChR2 subject during 3 min OFF-ON-

OFF epochs in the open-field test (OFT).

(c) Optical activation of mPFC-dPAG::ChR2 did not change time spent in the center region

compared to eYFP controls, as measured by time spent in the center of the arena (two-way

repeated measures ANOVA, group x epoch, F2,18 = 1.065, p > 0.05)

(c) Optical activation of mPFC-dPAG::ChR2 did not change general locomotor activity (distance

traveled, two-way repeated measures ANOVA, group x epoch interaction, F2,18 = 1.156, p >

0.05).

(d) Representative arena of mPFC-dPAG::ChR2 animal after marble burying assay when laser

stimulation was OFF (top) and ON (bottom). Sessions were counter-balanced and separated by

24 h.

(e) The number of marbles buried in ON and OFF conditions for mPFC-dPAG::ChR2 (teal, left)

and mPFC-dPAG::eYFP (grey, right) rats.

(f) Stimulation of mPFC-dPAG neurons resulted in a greater change in marbles buried by

mPFC-dPAG::ChR2 animals compared with mPFC-dPAG::eYFP controls, as measured by

difference score [# of marbles buried during ON session - OFF session] (unpaired t-test, t(33) =

2.979, p = 0.005).

(g) mPFC-dPAG::ChR2 subjects spent more time digging compared to mPFC-dPAG::eYFP

controls, as measured by difference score [ON-OFF] (unpaired one-way t-test, t(27) = 1.961, p =

0.0301).
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(h) Representative confocal image of viral spread in the PAG, visualized by co-injection of

AAV-hSyn-mCherry (hSyn = synapsin, red) with CAV2-Cre in a subset of mPFC-

dPAG::ChR2/eYFP expressing rats. Scale bars (histology) = 200 um.

(i) Illustration of reconstructed injection locations and spread in co-injected subjects (n = 14

total, 7 ChR2, 7 eYFP).
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Figure 13. Activation of mPFC terminals in the dPAG evokes marble burying.

(a)Schematic of viral strategy to achieve optogenetic control of ChR2-expressing mPFC

terminals in the dPAG.

(b) Representative image of ChR2+ neurons in the mPFC.

(c) Representative image of ChR2+ terminals in the dPAG.
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(d) Representative locomotor heatmaps of mPFC-dPAG::ChR2 (top) compared to mPFC-

dPAG::eYFP control subject (bottom) in the RTPP/A assay.

(e) Percent of time spent in the ON and OFF zones of the arena in mPFC-dPAG::ChR2 and

mPFC-dPAG::eYFP subjects.

(f) Optogenetic stimulation of mPFC terminals in the dPAG resulted in a trend towards

avoidance in the real-time place avoidance assay in mPFC-dPAG::ChR2 animals, compared to

mPFC-dPAG::eYFP controls (unpaired t-test, t(11) = 1.830, #p = 0.094.

(g) Representative arena of mPFC-dPAG::ChR2 animal after marble burying assay when

optical stimulation was OFF (top) and ON (bottom).

(h) Number of marbles buried in mPFC-dPAG::ChR2 and mPFC-dPAG::eYFP during OFF and

ON sessions.

(i) Optical stimulation of mPFC-dPAG neurons resulted in more marbles buried by mPFC-

dPAG::ChR2 animals, compared with mPFC-dPAG::eYFP controls (unpaired t-test, t(9) = 2.839,

p = 0.019).

(j) Optical stimulation of mPFC-dPAG neurons resulted in more time digging in mPFC-

dPAG::ChR2 animals compared to mPFC-dPAG::eYFP animals (unpaired, one-tailed t-test, t(9)

= 2.775, p = 0.0108).

Error bars indicate SEM.

77



We identified the ability of optogenetic activation of the mPFC-dPAG projection to

mediate place avoidance and defensive behaviors, but acknowledge that such optogenetically-

induced activity may not reflect the endogenous function of this circuit. To address this, we next

investigated the natural neural dynamics of individual neurons in the mPFC-dPAG and mPFC-

NAc populations during receipt of a punishment or a reward. To determine whether mPFC-

dPAG neurons preferentially encode aversive stimuli, we performed in vivo microendoscopic

imaging (Ghosh et al., 2011) of neurons expressing a genetically-encoded calcium indicator

(Akerboom et al., 2013; Chen et al., 2013). To compare the responses of mPFC-dPAG and

mPFC-NAc neurons in mice, we used the same dual virus approach wherein we injected an

anterogradely-traveling viral vector carrying Cre-dependent GCaMP6m (AAV-DIO-GCaMP6m)

into the mPFC and CAV2-Cre into the dPAG or NAc (Figure 14a-b), which allowed us to

visualize changes in intracellular calcium concentration indicative of neural activity. We recorded

neural activity during two 15-minute sessions counterbalanced for order, one in which we

presented a reward (sucrose solution available from a spout), and another in which we

presented an aversive stimulus (foot shock) (Figure 14c). Examination of the bulk fluorescence

from the entire field of view (FOV) revealed that the mPFC-NAc neural population was not

significantly modulated by either shock or sucrose (Figure 14d-e). In contrast, mPFC-dPAG

neurons showed a robust, time-locked increase in activity in response to foot shock and a

decrease in response to sucrose (Figure 14d-e).

To assess the activity of individual projection-defined neurons, we used a modified

constrained non-negative matrix factorization algorithm (Pnevmatikakis et al., 2016) optimized

for micro-endoscopic imaging (CNMF-E) (Zhou et al., 2018) where values were not constrained

to non-negative numbers (i.e., C(N)MF-E) considering calcium fluctuations can exhibit negative

transients, associated with a pause in firing (Otis et al., 2017). We recorded from 169 mPFC-

NAc and 118 mPFC-dPAG neurons. When comparing the normalized responses of cells within
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each population in response to foot shock and sucrose, we found heterogeneous mPFC-NAc

responses - 19 (11.2%) were activated by foot shock, 17 (10%) to sucrose, and only 1 neuron

(0.6%) was responsive to both (Figure 14h-i). In contrast, 42 mPFC-dPAG neurons (35.6%)

showed phasic excitation to the shock, whereas only 9 (7.7%) were excited by sucrose and 5

neurons (4.2%) were responsive to both (Figure 14j-k). Thus, mPFC-dPAG and mPFC-NAc

neurons show distinct response patterns to rewarding and aversive stimuli (chi square, X2=

10.95, p = 0.0042). When examining individual calcium transients (Figure 141), mPFC-dPAG

neurons had transients that were both more frequent (Figure 14m) and higher in amplitude

(Figure 14n) during shock sessions, compared to mPFC-NAc neurons. Importantly, when the

data set was analyzed by a different, ROI-based analysis approach, preferential shock

responsivity was again observed in mPFC-dPAG projectors (Figure 15).
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Figure 14. mPFC-NAc neurons exhibit heterogeneous responses to rewarding and

aversive stimuli, while mPFC-dPAG neurons preferentially respond to aversive stimuli.

(a) Schematic of strategy for monitoring neuronal activity in mPFC-dPAG and mPFC-NAc

neurons using in vivo epifluorescent calcium imaging.

(b) dPAG- and NAc-projecting mPFC neurons were transduced with GCaMP6m using a dual

viral strategy and imaged through an implanted relay lens using a detachable head mounted

mini-microscope.

(c) Dynamic calcium fluctuations were monitored during a 15 min recording session where mice

were allowed to self-administer sucrose via a sucrose lickometer or had random, unsignaled

foot shocks delivered.

(d) Bulk fluorescence across the entire field of view (FOV) aligned to foot shock onset (green

trace) and the initiation of a sucrose consumption bout (purple trace) in mPFC-NAc::GCaMP6m

neurons (n = 5 mice).

(e) mPFC-NAc::GCaMP6m bulk calcium responses to sucrose did not differ from responses to

foot shock (0-3 s AUC, paired t-test, t(4)=0.1482, p = 0.8893).

(f) Bulk fluorescence across the FOV aligned to foot shock onset (green trace) and the initiation

of a sucrose consumption bout (purple trace) in mPFC-dPAG::GCaMP6m neurons (n = 6 mice).

(g) mPFC-NAc::GCaMP6m bulk calcium responses to foot shock were greater than those to

sucrose bout initiation (0-3 s AUC, paired t-test, t(5)=3.743, p = 0.0134).

(h) Calcium signals were extracted from individual ROls and the average calcium traces per

ROI were aligned to shock and sucrose bout onset (heatmaps of z-scores) for both mPFC-

NAc::GCaMP6m (n = 169 ROls) and (j) mPFC-dPAG::GCaMP6m (n = 118 ROls) recordings.

(i-k) The distribution of shock and sucrose excited cells for mPFC-dPAG::GCaMP6m neurons

was different from mPFC-NAc::GCaMP6m neurons (chi square, X2 = 10.95, p = 0.0042).

Notably, more mPFC-dPAG::GCaMP6m neurons were excited to foot shock.
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(1) Representative calcium traces from a mPFC-dPAG::GCaMP6m neuron during shock (top)

and sucrose (bottom) recording sessions. Individual calcium transients (yellow dots) were

identified and quantified.

(m) mPFC-dPAG::GCaMP6m neurons had more frequent calcium transients during the entire

15 min shock session compared the sucrose session (data not shown, one-sample Wilcoxon

signed rank, p < 0.0001), and the number of transients was significantly greater than mPFC-

NAc::GCaMP6m neurons (# of events difference score [shock-sucrose]), unpaired Wilcoxon

signed rank, p < 0.0001), which did not exhibit differences in the number of events between

sessions (data not shown, one-sample Wilcoxon signed rank, p = 0.1251).

(n) mPFC-dPAG::GCaMP6m neurons had higher amplitude calcium transients during the entire

15 min shock session compared to the sucrose session (data not shown, one-sample Wilcoxon

signed rank, p = 0.0022), or compared to mPFC-NAc::GCaMP6m neurons (amplitude of events

difference score [shock-sucrose]), unpaired Wilcoxon signed rank, p < 0.0001). In contrast,

mPFC-NAc::GCaMP6m neurons showed greater amplitude events during the sucrose session

compared with shock (data not shown, one-sample Wilcoxon signed rank, p = 0.0345).

Error bars indicate SEM. AUC = area under the curve. FOV = field of view.
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(a) Calcium transients (yellow dots) within individual mPFC-dPAG::GCaMP6m neurons (n =
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(b) mPFC-dPAG::GCaMP6m neurons aligned to footshock (left) and sucrose (right).

(c) Calcium transients (yellow dots) within individual mPFC-NAc::GCaMP6m neurons (n = 157).

(d) mPFC-NAc::GCaMP6m neurons aligned to footshock (left) and sucrose (right).

(e) mPFC-dPAG::GCaMP6m neurons had more frequent calcium transients during the entire 15

min shock session compared the sucrose session (data not shown: one-sample Wilcoxon

signed rank, p < 0.0001), and was significantly greater than mPFC-NAc::GCaMP6m neurons

(difference score [shock-sucrose], unpaired Wilcoxon rank sum text, p = 0.0057), which did not

exhibit a difference in transient frequency between the two session (data not shown: one-

sample Wilcoxon signed rank, p = 0.3468).

(f) mPFC-dPAG::GCaMP6m neurons had larger calcium transients during the entire 15 min

shock session compared the sucrose session (data not shown: one-sample Wilcoxon signed

rank, p = 0.0081), and this was significantly greater than mPFC-NAc::GCaMP6m neurons

(difference score [shock-sucrose] unpaired Wilcoxon rank sum test, p = 0.0057), which had

similar transient amplitude during both sessions (one-sample Wilcoxon signed rank, p =

0.5021).

(g) The distribution of shock and sucrose excited cells for mPFC-dPAG::GCaMP6m neurons

were different from mPFC-NAc::GCaMP6m neurons (chi square, X2= 32.33, p < 0.0001).

Error bars indicate SEM.
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Experimental Procedures

General virus surgery.

Specific subject/surgery details for each experiment are detailed below. For all subjects,

surgeries were performed under aseptic conditions and body temperature was maintained with

a heating pad. Rodents were anesthetized with isoflurane mixed with oxygen (5% for induction,

2.5-2% for maintenance, 1L/min oxygen flow rate) and placed in a digital small animal stereotax

(David Kopf Instruments, Tujunga, CA, USA). Following initial induction, hair was removed from

the dorsal surface of the head with hair clippers, ophthalmic ointment was applied to the eyes,

the incision area was scrubbed with alcohol pads and betadine (x3 each), and 2% lidocaine was

injected just under the skin surface above the skull for topical anesthesia. All measurements

were made relative to bregma (unless noted otherwise) for virus/implant surgeries. Viral

injections were performed using a beveled microinjection needle (26 gauge for rat; 33 gauge for

mice) with a 10 pL microsyringe (Nanofil; WPI, Sarasota FL, USA) delivering virus at a rate of

0.05-0.01 pL/min using a microsyringe pump (UMP3; WPI, Sarasota, FL, USA) and controller

(Micro4; WPI, Sarasota, FL, USA). For injections at multiple locations on the dorsal-ventral axis,

the most ventral location was completed first and the injection needle was immediately

relocated to the more dorsal location and initiated. After injection completion, 15 mins were

allowed to pass before the needle was slowly withdrawn. After viral infusions were completed,

craniotomies were filled with bone wax and the incision closed with nylon sutures. Subjects

were maintained under a heat lamp and provided 0.05 mg/kg (rat) / 0.10 mg/kg (mouse)

buprenophine (s.c., diluted in warm Ringers solution) until fully recovered from anesthesia.

All experiments involving the use of animals were in accordance with NIH guidelines and

approved by the MIT Institutional Animal Care and Use Committee. For all experiments

involving viral or tracer injections, animals containing mistargeted injection(s) were excluded
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after histological verification. Sample size was based on reports in related literature and were

not predetermined by calculation.

Viral constructs

Recombinant AAV5 vectors carrying ChR2 or fluorescent proteins (mCherry or eYFP)

were packaged by the University of North Carolina Vector Core (Chapel Hill, NC, USA). AAV8 -

hSyn-FLEX-ChrimsonR-tdTomato and AAV 5-hSyn-mCherry was packaged by the University of

North Carolina Vector Core (Chapel Hill, NC, USA). Viruses carrying GCaMP6m were

packaged by the University of Pennsylvania Vector Core (Philadelphia, PA, USA). We recognize

the generosity of the Genetically-Encoded Neuronal Indicator and Effector (GENIE) program,

the Janelia Farm Research Campus, Drs. Vivek Jayaraman, Rex A. Kerr, Douglas S. Kim,

Loren L. Looger, Karel Svoboda for providing GCaMP6m. Canine adeno-associated virus

carrying Cre recombinase (CAV2-Cre 4.2x10 infectious units/mL) was packaged and obtained

from the Istitut de Genetique Moleculaire de Montpellier, France from Dr. Eric Kremer. AAV9 -

hEFla-DIO-synaptophysin-mCherry was packaged from Dr. Rachael Neve at the Viral Gene

Transfer Core Facility at MIT (now located at Massachusetts General Hospital). We thank Dr.

Eric J. Kremer for providing CAV2-Cre vector, UNC vector core for ChR2, NpHR, and

ChrimsonR vectors, and University of Pennsylvania vector core for GCaMP6m packaging. We

recognize Dr. Rachel Neve (formerly at the Gene Transfer Core Facility at MIT, now located at

Massachusetts General Hospital) for packaging the AAV-DIO-synaptophysin-mCherry

construct.

Retrograde cholera toxin-B tracing

Rats.

Male wild-type Long-Evans rats (-220g; Charles Rivers Laboratories, NC, USA) were

dual housed on a normal 12h:12h light/dark cycle (lights on at 09:00 AM). Rats were prepared
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for stereotaxic surgery as described above using the viral infusion parameters also described

above (under general virus surgery). Briefly, 500 nI of cholera toxin subunit B (CTB) conjugated

to Alexa Fluor-488, 555, or 647 17(0.1%, Molecular Probes, Eugene, OR, USA) was injected into

the dorsal periaqueductal gray (dPAG; AP: -6.6, ML: -0.6; DV: -5.4 mm) and NAc shell (AP:

+1.5, ML: +0.95, DV: -7.5 mm) (color counterbalanced between animals). After 7 days, rats

were transcardially perfused and histologically prepared. Z-stack stitches encompassing both

prelimbic (PL) and intralimbic (IL) regions of the mPFC were acquired using a scanning confocal

microscope (Olympus FV1000) with Fluoview software (Olympus, Center Valley, PA, USA)

under a 40x/1.30 NA oil immersion objective. Quantification of fluorescence intensity across

layers was accomplished by analyzing 200w x 400h pm sections encompassing ventral PL /

dorsal IL across mPFC layers based on DAPI density/morphology in FIJI ImageJ. Sections were

normalized to the section with peak fluorescence within subjects. For cell quantification, the

number of CTB positive and double-positive neurons was counted in both the IL and PL

subregions of the mPFC using FluoView software (Olympus, Center Valley, PA). To examine

potential projections from the VTA to the dPAG 14 VTA sections were immunstained for tyrosine

hydroxylase (TH) (see below) and Z-stacks were captured under a 40x/1.30 NA oil immersion

objective. In each stack, 100 DAPI+ cells were identified and the proportion of TH+ and CTB+

cells were counted. Sample size was based on reports in related literature and were not

predetermined by calculation.

Mice.

Adult male wild-type C56BL/6 mice (-10 wks; Jackson Laboratory, Bar Harbor, ME)

were prepared similarly to methods described above. Briefly, 350 nI of Cholera Toxin subunit B

(CTB) conjugated to Alexa Fluor-488, 555, or 647 (Molecular Probes, Eugene, OR, USA) was

injected into the dorsal periaqueductal gray (dPAG; AP: -4.2, ML: -0.5; DV: -2.4 mm) and NAc
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shell (AP: +1.0, ML: +0.75, DV: -4.5 mm) (color counterbalanced between animals).

Histological, imaging, and data analyses are the same as previously described.

Projection-specific behavioral optogenetic experiments

mPFC-dPAG and mPFC-NAc Subjects.

Male wild-type Long-Evans rats (-220g; Charles Rivers Laboratories) were dual housed

on a normal 12h:12h light/dark cycle (lights on at 09:00 AM). -1 weeks following viral injection

surgeries, rats were individually housed with restricted food access (-16-20 g chow / day) for

-10 weeks, but retained ad libitum access to water. Rats were maintained on food restriction

unless noted otherwise.

Surgery.

For projection-specific targeting for behavioral optogenetic, male wild-type Long-Evans

rats were bilaterally injected with 1.2 pL of AAV-Efla-DIO-ChR2(H134R)-eYFP in the mPFC at

2 locations along the dorsal-ventral axis (0.6 pL each) (AP: +3.2; ML: 0.75; DV: -3.5 and -2.5;

mm relative to bregma). To achieve projection-specific recombination, retrogradely traveling

canine adeno-associated (CAV) virus carrying Cre-recombinase (CAV2-Cre; 4.2x1 012 infectious

units/mL; Istitut de Genetique Moleculaire de Montpellier, France) was bilaterally injected (0.6

pL each) in the dorsal periaqueductal gray (dPAG) (AP: -6.0; ML: 0.6; DV: -5.2; mm relative to

bregma [0.4 ul]), or nucleus accumbens (NAc) (AP: +1.4; ML: 1.0; DV: -7.4; mm relative to

bregma [0.5 pL]). A subset of mPFC-dPAG rats were co-injected with 0.1 ul of AAV 5-hSyn-

mCherry to visualize virus spread. -7 days following virus surgery, rats were individually

housed and placed on food restriction. -10 weeks later, manually constructed optic fibers (400

pm core, 0.48 NA) (Thorlabs, Newton, NJ, USA) held in a 2.5 mm ferrule (Precision Fiber

Products, Milpitas, CA, USA) were implanted directly above ChR2/eYFP-expressing mPFC

88



neurons projecting to either the dPAG or NAc for projection-specific manipulations (AP: +3.2-

3.6; ML: 1.5, DV: -2.8; mm relative to bregma at a 100 angle, bilateral).

For terminal manipulations, AAV-CaMKIla-ChR2-eYFP was bilaterally injected into the

mPFC at 2 locations along the dorsal-ventral axis (0.6 pL each) (AP: +3.2; ML: 0.75; DV: -3.5

and -2.5; mm relative to bregma). -7 days following surgery, rats were individually housed and

placed on food restriction. -10 weeks later, manually constructed optic fibers (400 pm core,

0.48 NA) (Thorlabs, Newton, NJ, USA) held in a 2.5 mm ferrule (Precision Fiber Products,

Milpitas, CA, USA) were bilaterally implanted directly above the dPAG for mPFC terminal

manipulations (AP: -6.6, ML: 1.5, DV: -4.3 mm relative to bregma at a 100 angle, bilateral). For

both experiments, optical fibers were secured to the skull with 2-4 skull screws, a layer of

adhesive cement (C&B Metabond; Parkell, Edgewood, NY, USA), followed by black

cranioplastic cement (Ortho-Jet; Lang, Wheeling, IL, USA) containing gentamicin antibiotic. The

implant was allowed to completely dry before closure of the incision with nylon sutures.

Behavioral testing.

Testing was performed at -13 wks following viral injection and -10 days after optical

fiber implantation to allow sufficient time for transgene expression and tissue recovery.

Throughout this period, rats were maintained on food-restriction (-16-20 g chow / day). Rats

were tested during their light phase (09:30 AM - 07:00 pm) under food-deprived conditions.

Optic fiber implants were connected to a 200 um patch cable (Doric, Quebec, Canada) using a

ceramic sleeve (PFP, Milpitas, CA), which connected to a bilateral commutator (rotary joint;

Doric, Quebec, Canada) by means of an FC/PC adapter to allow unrestricted movement. A

second patch cable, with an FC/PC connector at either end (Doric, Quebec, Canada),

connected the commutator to a 473 nm diode-pumped solid state (DPSS) laser (OEM Laser

Systems, Draper, UT). A Master-8 pulse stimulator (A.M.P.I., Jerusalem, Israel) was used to

control the output of the 473 nm laser, with a light power of -10-15 mW (adjusted to account for
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optic fiber efficiency). Following each day's experimentation, rats were provided their -16-20

grams of standard chow.

Real-time place preference /aversion.

Individual food-restricted rats were placed in a Plexiglas arena (241 x 24w in x 20h in)

and were allowed to freely move between two compartments for 1 hr in a dimly lit room

containing constant white noise (Marpac Dohm-DS dual speed sound conditioner, Wilmington,

NC, USA). Entry into one half of the chamber resulted in photostimulation (VTADA_

mPFC::ChR2/eYFP = unilateral 20 Hz, 60 p, 5 ms pulses every 30 s, 20 mW; mPFC-

dPAG/NAc::ChR2/eYFP = bilateral 20 Hz 5 ms pulses, 12-15 mW, see below). Stimulation and

no stimulation sides were counterbalanced between animals. Rats were tested on 2

consecutive days and on the second day; the stimulation side and no stimulation side were

reversed. A video camera positioned directly above the arena tracked and recorded movement

using EthoVision XT (Noldus, Wageningen, Netherlands). All data presented are tracked from

the "center" of the subject and time spent in each zone was averaged across the 2 testing

sessions. In between subjects, the behavioral chamber was thoroughly cleaned with 10% glass

cleanser diluted in ddH20.

Conditioned place preference / aversion.

Individual food-restricted rats were placed in a Plexiglas arena (301 x 15w in x 25h in)

divided into two compartments: one with vertical stripes and the other with horizontal stripes. On

day 1 (habituation), rats were allowed to freely move between two compartments for 15 min in a

brightly lit room containing constant white noise (Marpac Dohm-DS dual speed sound

conditioner, Wilmington, NC, USA). Movement was tracked by an overhead video camera

positioned above the arena and time spent in each compartment was calculated using

EthoVision XT (Noldus, Wageningen, Netherlands). On day 2 and 3, rats were exposed to

conditioning sessions (20 min ea, 1 per day) during which they were confined to one side of the
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chamber and received optical stimulation (VTADA-mPFC::ChR2/eYFP = unilateral 20 Hz, 60 p, 5

ms pulses every 30 s, 20 mW; mPFC-dPAG/NAc::ChR2/eYFP = bilateral 20 Hz 5 ms pulses,

12-15 mW, see below) or no stimulation (counterbalanced for order and side across animals).

On day 4 (test), rats were placed in the chamber and allowed to freely explore both

compartments in the absence of optical stimulation. Again, movement was tracked by an

overhead video camera positioned above the arena using EthoVision XT (Noldus, Wageningen,

Netherlands) and a time difference score was calculated by subtracting the time spent in the

stimulation-paired compartment on the habituation day from the time spent in the stimulation-

pared compartment on the test day (test[time spent in paired side] - habituation[time spent in

paired side]).

Open field test.

Individual food-restricted rats were placed in a Plexiglas arena (241 x 24w x 20h in) and

were allowed to move freely within the arena for 9 min with light stimulation occurring during the

middle 3 min (3 min OFF, 3 min ON, 3 min OFF design) (mPFC-dPAG/NAc::ChR2/eYFP =

bilateral 20 Hz 5 ms pulses, 12-15 mW). The room was brightly lit and contained constant white

noise (Marpac Dohm-DS dual speed sound conditioner, Wilmington, NC, USA). A video camera

positioned directly above the arena tracked and recorded movement using EthoVision XT

(Noldus, Wageningen, Netherlands). In order to assess anxiety-related behavior, the chamber

was divided into a center (40 x 40 cm) and periphery region. In between subjects, the behavioral

chamber was thoroughly cleaned with 3% acetic acid diluted in ddH20. All data presented are

tracked from the "center" of the subject.

Marble burying.

Individual food-restricted rats were placed in a standard, rectangular rodent cage (33w x

401 x 20h cm) containing -7.5 cm of clean standard bedding and 16 black marbles, which was

slightly elevated from the floor (1 m). 16, 1.3 cm diameter black marbles were placed on top of
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the even bedding in a 4 x 4 array separated from the cage sides by -5 cm. Rats were tested

across 2 days for 12 min each, counter-balanced for laser stimulation (mPFC-

dPAG::ChR2/eYFP = bilateral 20 Hz 5 ms pulses, 12-15 mW) in a brightly lit room containing

constant white noise (Marpac Dohm-DS dual speed sound conditioner, Wilmington, NC, USA).

Behavior was recorded via a video camera positioned directly above the arena using Ethovision

XT (Noldus, Wageningen, Netherlands). Photographs of the behavioral arena before

(undisturbed) and after each 12 min session were obtained and marbles that were 100% buried

were counted. Time spent digging was scored by two experimenters blind to condition using

ODLog (Macropod). Cage exploration time was obtained by subtracting the time spent of scored

behaviors from the total session length. The time spent engaging in each behavior was

quantified by taking the average between the two experimenters. One mPFC-dPAG::ChR2

video was corrupted and was not included in analyses. In between subjects a new cage

containing fresh bedding was used and marbles were cleaned with 15% isopropyl alcohol

diluted in ddH20.

Following the conclusion of experiments, a subset of rats were stimulated for 5 min in a

dark, sound-attenuating room (473 nm, 20 Hz, 20 mW, 5 ms pulses) for c-Fos quantification to

verify light-evoked activity in ChR2+ mPFC-dPAG neurons. 80 mins later, rats were deeply

anesthetized and transferred to the lab and transcardially perfused.

In vivo epifluorescent calcium imaging

Projection-specific subjects.

Male wild-type C57BL/6 mice (-8 wks old; mPFC-dPAG::GCaMP6m and mPFC-

NAc::GCaMP6m) or male DAT::IRES-Cre mice (- 8 wks old; mPFC-dPAG::GCaMP6m +

VTADA::ChrimsonR/mCherry) were group housed (2-4 subjects per cage) on a 12h:12h reverse
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light/dark cycle (lights off at 09.00 AM) prior to and 4 weeks following initial virus and

microendoscope (i.e., GRIN lens) implant surgery. Following baseplate adhesion, subjects were

individually housed and placed on food restriction (3-6 grams normal chow / day) with ad libitum

access to water for 3-6 days encompassing testing. Sample sizes was based on reports in

related literature and were not predetermined by calculation.

Surgeries.

Subjects were prepared for in vivo epifluorescent calcium imaging similarly to methods

described elsewhere (Jennings et al., 2015; Resendez et al., 2016). Briefly, to achieve

projection-specific imaging, a virus encoding Cre-dependent GCaMP6m (AAV 5-CAG-Flex-

GCaMP6m) was injected into the mPFC (AP: +1.8, ML: +0.3, DV: -2.75 & -2.4 [300 nI ea, bevel

facing lateral]) and retrogradely traveling canine adeno-associated (CAV) virus carrying Cre-

recombinase (CAV2-Cre; Istitut de Genetique Moleculaire de Montpellier, France) was injected

into the dPAG (n = 6; AP: -4.2, ML: +0.5, DV: -2.4 [350 nl]) or the nucleus accumbens shell (n =

5; AP: +1.0, ML: +0.75; DV: -4.5 [350 nl]). After virus infusions, the mPFC craniotomy was

enlarged to >1 mm in diameter and dura removed with a bent 30 gauge beveled needle, but no

tissue was aspirated. A 1 mm diameter, -4 mm length gradient refractive index lens (GRIN lens;

GLP-1040, Inscopix, Palo Alto, CA) was held via vacuum on the tip of a blunted needle

surrounded by plastic tubing for stability and was lowered stereotaxically through the craniotomy

under constant saline perfusion to minimize tissue/blood desiccation. Lenses were implanted

slightly posterior and lateral of the needle track for virus infusions to avoid tissue damage in the

imaging plane, and were lowered to locations in the ventral PL / dorsal IL subregion of the

mPFC (AP: -1.77, ML: -0.4, DV: -2.32, mm from bregma). Lens implants were secured to the

skull with a thin layer of adhesive cement (C&B Metabond; Parkell, Edgewood, NY, USA),

followed by black cranioplastic cement (Ortho-Jet; Lang, Wheeling, IL, USA) containing

gentamicin antibiotic. Lenses were covered with the top of an eppendorf tube and cemented in
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place with cranioplastic cement for protection during the virus incubation period (3-4 wks). The

implant was allowed to completely dry before closure of the incision with nylon sutures.

Following virus incubation, mice were again anesthetized with isofluorane, streotaxically

secured, and baseplates (Inscopix, Palo Alto, CA) were cemented around the lens to support

the connection of the miniaturized microscope for in vivo, freely moving imaging. During this

procedure, the protective eppendorf cap and supporting cranioplastic cement were removed

using a hand drill. The exposed top of the GRIN lens was scrubbed clean with a cotton-tipped

applicator soaked with 15% isopropyl alcohol diluted in ddH 20. Next, a miniaturized microscope

(single channel epifluorescence, 475 nm blue LED, Inscopix, Palo Alto, CA) with the baseplate

attached was stereotaxically positioned over the implanted GRIN lens and adjusted in the DV

axis in order to focus on visible landmarks (i.e., GCaMP6m expressing neurons and blood

vessels). After the focal plane was identified, the microscope/baseplate was raised by -50 um,

to account for cement shrinkage, and was subsequently cemented in place with pink dental

cement (Stoelting, Wood Dale, IL, USA). The microscope was then detached from the

baseplates, a final layer of black cranioplastic cement (Ortho-Jet; Lang, Wheeling, IL, USA) was

applied to prevent light leak, and the implant was covered with a protective plate (Inscopix, Palo

Alto, CA) until imaging.

Behavioral sucrose/shock paradigm and data acquisition.

Following recovery (-7 days), mice were individually housed and food restricted for 2

days and exposed to 30% sucrose solution (diluted in standard tap/cage H20) in the homecage.

Food-deprived mice were then trained in operant chambers equipped with sucrose lickometers

(Med Associates, St Albans, VT), with a modified spout that extended into the chamber from the

recessed opening, for -60 min while connected to a plastic "dummy" microscope for training

and habituation. All animals readily self-administered sucrose via the lickometer after 2 days of

training. On the testing day, food-deprived mice were gently restrained and connected with the

94



miniaturized microscope (single channel epifluorescence, 475 nm blue LED, Inscopix, Palo Alto,

CA) via the baseplate and secured with a small screw on the baseplate. Mice were allowed to

recover from restraint for 10 min before the first session was initiated. Mice were exposed to two

15-minute imaging sessions ("sucrose" and "shock"), counter-balanced and separated by a 15

min intermediate epoch, during which the animal remained in the chamber, but no sucrose or

footshocks were administered. During "sucrose" sessions, food deprived mice were allowed to

self-administer sucrose for 15 min via the lickometer they had been exposed to previously.

During "shock" sessions, mice were exposed to 27 mild electric food shocks (0.2 mA; 1 s

duration; 10-60 inter-shock interval) for 15 min. Gray scale tiff images were collected at 20

frames per second using 20-60% of the miniaturized microscope's LED transmission range

(nVista HD V2, Inscopix, CA).

Image processing.

Image processing was accomplished using Mosaic software (Version 1.1.2., Inscopix,

Palo Alto, CA). Raw videos were pre-processed by applying x4 spatial downsampling to reduce

file size and processing time, and isolated dropped frames were corrected. No temporal

downsampling was applied. For sucrose/shock experiments, both recordings per animal (i.e.,

"Sucrose" recording and "Shock" recording) were concatenated to generate a single 30 min

video. Lateral movement was corrected for by using a portion of a single reference frame

(typically a window surrounding a prominent blood vessel or constellation of bright neurons).

Images were cropped to remove post-registration borders and sections where cells were not

observed. 2 method were used for ROI identification and single-cell fluorescence trace

extraction in order to verify that these processes did not significantly change the pattern of

results within our data sets. Both methods are described below in CNMF-E analyses and non-

ROI analyses.

CNMF-E analyses.
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After motion correction and cropping, recordings were exported as .tif z-stacks and were

downsampled to 10 frames per second. We used a constrained non-negative matrix

factorization algorithm optimized for micro-endoscopic imaging (CNMF-E) (Zhou et al., 2018)

was used to extract fluorescence traces from ROls. ROls were defined by manually selecting

seed pixels from peak-to-noise (PNR) graphs of the FOV (Murugan et al., 2017). Considering

calcium fluctuations can exhibit negative transients, associated with a pause in firing (Otis et al.,

2017), we did not constrain values to > 0 - as such we refer to this process as "C(N)MF-E".

Non-ROI analyses.

After motion correcting and cropping, recordings were converted to a changes in

fluorescence compared to background fluorescence (F-FO)/F0 using the mean Z-projection

image of the entire movie as reference (FO). Calcium signals arising from individual regions of

interest (ROls, i.e., cells) were identified using independent and principal component analyses

(PCA/ICA). Identified PCA/ICA filters were thresholded at their half-max values to define

possible ROls. ROls were then screened for neuronal morphology and only accepted if the

threshold filters included only on contiguous region with an eccentricity of <0.85 and an area

between 30-350 pixels. Accepted ROI filters were merged if their areas overlapped by more

than 60% after visual confirmation. The accepted ROI filters were then reapplied to the motion

corrected videos to extract dF/FO traces for each ROI. In order to correct for bleaching and

possible neuropil contamination of the extracted ROI trace, we correct each ROI tracing using

signals from the whole field, using a multiple step procedure: The full ROl trace and the signals

from the whole field were filtered using a 30 s median filter to eliminate the influence of sharp

transients or outliers. The influenced of the surrounding signals on the ROI trace were quantified

using regression (gimfit in MATLAB). The resulting regression coefficient was then applied to

the original, unfiltered trace to regress out the influence of the non-ROI thresholded field on the

ROI trace itself. Multiple background subtraction were examined and a non-ROI thresholded
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approach was implemented because 1) this approach excludes subtraction of prominent

processes (i.e., dendrites and axons) observed in our data set, 2) the reasonable correlation

coefficients between individual ROls (i.e., within the range that would expected based on

electrical recordings). To acquire the non-ROI thresholded image for background subtraction,

max Z-projections of individual recordings were created and thresholded to separate ROls and

their processes from the rest of the field of view. Average signal from the remaining pixels was

used as a proxy for the whole field changes in fluorescence, and regressed of the signal from

each ROI.

Data analysis.

Calcium event quantifications (number and amplitude) were performed in MiniAnalysis

(Synaptosoft, Decatur, GA) using individual ROI traces from the entire session after conversion

to z-score. Baseline from the z-transform was computed by thresholding the signal at 20% of

the signal amplitude. Calcium events with z-scores <8 or did no did not have a > 0.5 AUC were

not included in analyses because events of this magnitude were did not reliably retain transient,

calcium-event characteristics across animals. ROls which did not contain events that met event

criterion were excluded.

We thank Drs. Ilana Witten, Courtney Cameron, Nathan Parker, Malavika Murugan,

Pengcheng Zhou and Liam Paninski for advice and code for CNMF-E analysis. We thank Dr.

Mark Schnitzer for advice regarding data analyses and endoscopic imaging. The authors wish

to acknowledge Inscopix, Inc. for a scientific collaboration - particularly Lara Cardy and Dr.

Alice Stamatakis of Inscopix, Inc. for technical assistance.

Histology

Perfusion and storage.
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Subjects were deeply anesthetized with sodium pentobarbital (200 mg/kg; i.p.) and

transcardially perfused with 15 mL (mouse) / 60 mL (rat) of Ringers solution followed by 15 mL

(mouse) / 60 mL (rat) of cold 4% paraformaldehyde (PFA) dissolved in 1x PBS. Animals were

decapitated and the brain was extracted from the cranial cavity and placed in 4% PFA solution

and stored at 4 CC for at least 48 hrs. 36 hrs before tissue sectioning, brains were transferred to

30% sucrose solution dissolved in 1x PBS at room temperature. Upon sinking, brains were

sectioned at 60 um on a freezing sliding microtome (HM420; Thermo Fischer Scientific).

Sections were stored in 1x PBS at 4 0C until mounting and imaging.

Confocal microscopy.

Fluorescent images were captured using a confocal laser scanning microscope

(Olympus FV1000), with FluoView software (Olympus, Center Valley, PA), under a dry 10x /

0.40 NA objective, a 60x/1.42 NA oil immersion objective, or a 40x /1.30 NA oil immersion

objective. The locations of opsin expression, injection site, and lesion from the optic fiber

placement were determined by taking serial z-stack images through the 10x objective across a

depth of 20-40 pm, with an optical slice thickness of 5-8 pm. High magnification images

fluorescence quantifications were obtained through the 40x or 60x objective using serial z-stack

images with an optical slice thickness of 3-4 pm (5 slices) using matched parameters and

imaging locations. Fluorescence (in arbitrary units) was obtained from analysis in FIJI ImageJ.

For quantitation of fluorescence across layers in the mPFC, measurements were normalized to

the Z-stack containing the maximum value.

Statistics

Statistical analyses were performed using GraphPad Prism (GraphPad Software, Inc, La

Jolla, CA) and MATLAB (Mathworks, Natick, MA). Group comparisons were made using one-
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way or two-way ANOVAs followed by Bonferroni post-hoc tests to control for multiple

comparisons. Paired and unpaired two-way Student's t-tests were used to make single-variable

comparisons. Unpaired one-way t-tests were used to make comparisons with a priori

hypotheses (time spent digging in marble burying assay). Tests for binomial distribution were

also used on single populations. Non-parametric Wilcoxon signed rank tests were used to make

comparisons between non-parametric data (in vivo calcium-imaging). Chi square tests were

used to compare distribution of shock and sucrose responsive cells between mPFC-dPAG and

mPFC-NAc. All statistical tests are two-sided unless otherwise noted as an a priori hypothesis.

Thresholds for significance were placed at *p < 0.05, **p < 0.01, ***p < 0.001. All data are

shown as mean standard error of the mean (SEM).

Summary

These data show that mPFC-dPAG and mPFC-NAc subpopulations are anatomically

and functionally distinct. mPFC-dPAG encode aversive stimuli and promote avoidance, whereas

mPFC-NAc responses to rewarding and aversive stimuli are diverse and neither support place

preference nor avoidance.
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Chapter 4

Dopamine enhances neuronal responses to aversive stimuli in periaqueductal gray-

projecting prefrontal neurons and inhibits striatal-projecting neurons

Introduction

Thus far we have shown that mPFC-dPAG projectors are preferentially responsive to an

aversive stimulus, and activation of this population drives defensive and avoidance behaviors.

Given that mPFC-dPAG and mPFC-NAc neurons are non-overlapping and functionally distinct,

we considered the possibility that increased dopaminergic tone might differentially impact these

projection-defined populations of neurons. Controversy has long surrounded the topic of how

dopamine alters the firing of mPFC neurons. Seemingly contradictory results from different

groups performing whole-cell patch-clamp recordings from pyramidal neurons in Layer 5 of

mPFC have reported dopamine-induced increases (Penit-Soria et al., 1987; Yang and

Seamans, 1996) or decreases (Bunney and Aghajanian, 1976; Gulledge and Jaffe, 1998) in

activity. One possible explanation is that these groups recorded from different populations of

neurons, introduced by sampling bias, considering heterogeneous responses to dopamine for

different cell types in mPFC have been demonstrated (Gee et al., 2012; Tritsch and Sabatini,

2012). Here we use ex vivo electrophysiological recordings of mPFC-dPAG and mPFC-NAc

neurons combined with optogenetic activation of VTA dopamine terminals to explore how

dopamine modulates the excitability of these two projector population.

Striatal-projecting mPFC neurons express D1 (-20%) and D2 (-60%) receptors,

reported by in situ hybridization combined with retrograde labeling (Gaspar et al., 1995).

Further, mPFC D1+ terminal axons are observed in the NAc in D1 transgenic reporter mouse

lines (Han et al., 2017) and this pathway is modulated by dopamine release (Brady and
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O'Donnell, 2004; Buchta et al., 2017). Dopamine receptor expression has not been explored in

mPFC-dPAG neurons directly, although sparse downstream terminal fluorescence in D1

transgenic mice suggests that they do not express D1 (Han et al., 2017). As previously

mentioned, considerable evidence supports indirect modulation of mPFC pyramidal neurons by

dopamine - either via interactions with local GABAergic interneurons or modulation of other

inputs (Paspalas and Goldman-Rakic, 2005; Seamans et al., 2001b; Tritsch and Sabatini,

2012). To explore this, we first characterize dopamine receptor localization on both projection-

defined subpopulations and the impact of dopamine on mPFC-dPAG projectors in vivo using

both calcium-imaging and electrophysiology combined with optogenetic phototagging.

Results

To test whether dopamine had different effects on the intrinsic excitability of these

functionally-distinct populations, we performed whole-cell patch-clamp recordings in acute slice

preparations of the mPFC containing ChR2-expressing VTA dopamine terminals and

retrogradely-labeled mPFC-dPAG or mPFC-NAc neurons (Figure 16a). Ex vivo

recordings/reconstructions in labeled cells revealed several differences in the

electrophysiological (Figure 16b-i) and morphological properties (Figure 16j-1).
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Figure 16. mPFC-dPAG and mPFC-NAc projectors have different electrophysiological

properties.

(a) Schematic of viral strategy to optically manipulate ChR2-expressing VTADA terminals in the

mPFC and record from dPAG- and NAc-projectors retrogradely labeled with cholera toxin (CTB)

with ex vivo electrophysiology.

(b) Representative traces showing firing elicited in mPFC-dPAG and mPFC-NAc neurons in

response to current ramp with and without VTADA terminal stimulation (grey dashed line

indicates time of first action potential without optical stimulation).

(c) Optical stimulation of VTADA terminals increased the current required to elicit an action

potential (rheobase) in NAc-projectors and the change in rheobase with optical stimulation (ON-

OFF) was different between dPAG- and NAc-projectors (unpaired t-test, t(12) = 2.669, p =

0.0205).

(d) Electrophysiological properties of mPFC-dPAG and mPFC-NAc neurons. Neither resting

membrane potential (unpaired t-test, t(27) = 0.6265, p = 0.5363), nor capacitance (unpaired t-

test, t(75) = 0.8643, p = 0.3902) were different between dPAG- and NAc-projectors.

(e) The membrane resistance was significantly greater in NAc-projectors (unpaired t-test, t(75) =

7.030, p < 0.0001).

(f) The current-voltage (l-V) relationship of mPFC-dPAG and mPFC-NAc neurons obtained by

applying a series of current steps in voltage-clamp mode (two-way ANOVA, F12 ,324 = 10.16, p <

0.0001).

(g) Representative traces showing action potential firing in mPFC-dPAG and mPFC-NAc

neurons in response to a depolarizing current step.
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(h-i) Instantaneous (1) and steady state (SS) firing frequency in dPAG- and NAc-projectors in

response to increasing current steps.

(j) Representative confocal image of mPFC-dPAG labeled neurons filled with neurobiotin for

reconstruction.

(k) Representative examples of reconstructed mPFC-NAc and mPFC-PAG neurons.

(1) Sholl analysis of mPFC subpopulations.

Error bars indicate SEM.
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We presented current steps to evoke moderate levels of firing and paired these current

steps with photostimulation of VTADA-mPFC terminals on interleaved sweeps (Figure 17a-c).

Photostimulation of VTADA-mPFC terminals reduced the number of spikes per step for mPFC-

NAc neurons, but did not alter the intrinsic excitability of mPFC-dPAG neurons (Figure 17c-e).

Given that dopamine suppressed firing of mPFC-NAc neurons, we hypothesized that this could

be mediated by D2 receptors. To test this, we repeated this experiment in the presence of the

D2 receptor antagonist, raclopride, and found that VTADA-mPFC photostimulation-induced

suppression was attenuated.

VTA dopamine neurons projecting to the striatum co-release fast amino acid

neurotransmitters, such as GABA (Tritsch et al., 2016) and glutamate (Stuber et al., 2010). A

proportion of mesocortical dopamine neurons co-stain for VGIuT2 (Gorelova et al., 2012)

suggesting glutamate co-release within this pathway. Indeed, a recent study has reported co-

release of glutamate from mesocortical dopamine neurons during phasic (50 Hz for 500 ms) but

not tonic (5 Hz) stimulation in Layer 6 mPFC neurons (Ellwood et al., 2017). Importantly, both

stimulation parameters enhanced dopamine release measured by microdialysis combined with

HPLC, although phasic stimulation evoked significantly great dopamine release (phasic = 34.1%

increase versus tonic = 17.1% increase; Ellwood et al., 2017). In Layer 5 mPFC-NAc and

mPFC-dPAG, we observed no evidence of co-release from dopamine axon terminals (Figure

17f).
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Figure 17. Dopamine inhibits NAc-projectors via D2-receptors.

(a) Representative images of a recorded mPFC-dPAG neuron (neurobiotin+ and CTB+)

surrounded by ChR2-eYFP+ VTADA terminals.

(b) Representative traces of current-clamp recordings from a mPFC-NAc and mPFC-dPAG

neuron during a current step without (top) and with (bottom) optogenetic activation of VTADA

terminals (470 nm, 20 Hz, 60 pulses, 5 ms pulse-durations).

(c) Representative traces of a mPFC-dPAG and mPFC-NAc neuron during a current step

without (top) and with (bottom) optogenetic activation of VTADA terminals in the presence of D2-

type dopamine receptor blockade via bath applied raclopride.
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(d) Optical activation of VTADA terminals did not influence the number of spikes per step in

mPFC-dPAG neurons but decreased the number of spikes per step in mPFC-NAc neurons, an

effect not observed with D2-receptor antagonism (two-way repeated measures ANOVA, F 3,56 =

5.531, p = 0.0027, Bonferroni multiple comparisons tests, mPFC-NAc OFF vs. ON, p < 0.001).

(e) The change in spike number with optical stimulation (ON-OFF) was different between

mPFC-dPAG and mPFC-NAc neurons and was blocked by D2-receptor antagonism (one-way

ANOVA, F 3 ,56 = 5.343, p = 0.0026, Bonferroni multiple comparisons tests p < 0.05.

(f) No evidence of co-release of fast-synaptic neurotransmitters (i.e., glutamate and GABA) from

VTADA terminals onto either mPFC-dPAG (teal) or mPFC-NAc (pink) populations.

Error bars indicate SEM. Scale bars (histology) = 50 pm. Scale bars (electrophysiology) = 500

ms. 50 mV.
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These data suggested that dopamine acts directly on mPFC-NAc neurons to inhibit them

via a D2 receptor-dependent mechanism, and that mPFC-dPAG neurons do not express

dopamine receptors. To explore dopamine receptor localization on mPFC-NAc and mPFC-

dPAG neurons, we performed retrograde-labeling of projectors in Drdla-Cre and Drd2-Cre mice

injected with Cre-dependently expressed eYFP (Figure 18a). Consistent with previous studies,

we found that mPFC-NAc projectors express both D1 (31.5%) and D2 (86.3%) receptors

(Gaspar et al., 1995; Vincent et al., 1993, 1995), whereas mPFC-dPAG projectors largely lack

both D1 (5%) and D2 (21.6%) receptors (D1 chi square, X2 = 93.29, p < 0.0001; D2 chi square,

X2 = 345.6, p < 0.0001) (Figure 18b-f).
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Figure 18. mPFC-dPAG projectors largely do not express dopamine receptors.

(a) Schematic of strategy for identifying dopamine receptor type 1 (D1) and dopamine receptor

type 2 (D2) on mPFC-projector populations using transgenic mice (Drdla-Cre [n = 3] and Drd2-

Cre [n = 3]), retrograde labeling, and Cre-dependent eYFP recombination.

(b) Representative confocal images of CTB injections sites (upper left), mPFC terminal

fluorescence (lower left), and mPFC cell bodies (right) in Drdla-Cre::eYFP in NAc CTB injected

subjects.

(c) Representative confocal images of CTB injections sites (upper left), mPFC terminal

fluorescence (lower left), and mPFC cell bodies (right) in Drdla-Cre::eYFP in dPAG CTB

injected subjects.

(d) Representative confocal images of Drd2-Cre::eYFP subjects injected with CTB in the NAc.

(e) Representative confocal images of Drd2-Cre::eYFP subjects injected with CTB in the dPAG.
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(f) 5% of mPFC-dPAG CTB+ were also Drdla+ (19/378), whereas 31.5% of mPFC-NAC CTB+

neurons were co-labeled as Drdla+ (151/479) (D1 chi square, X2 = 93.29, p < 0.0001).

(g) 27.6% of mPFC-dPAG CTB+ neuron were also Drd2+ (74/342), whereas 86.3% of mPFC-

NAc CTB+ neurons were co-labeled as Drd2+ (414/480) (D2 chi square, X2 = 345.6, p <

0.0001).

Error bars indicate SEM. Scale bars (histology) = 50 tm.
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The observation that dopamine attenuates mPFC-NAc neurons ex vivo, is consistent

with previously reported in vivo recordings, which show attenuated responses via a D2-

dependent mechanism within this circuit (Brady and O'Donnell, 2004). Since dopamine did not

modulate mPFC-dPAG neurons in ex vivo recordings and this population does not robustly

express dopamine receptors, this left multiple interpretations. One possibility was that dopamine

does not alter the activity or function of mPFC-dPAG neurons. Another possibility is that

dopamine modulates the signal-to-noise for incoming sensory information, a function that may

only be revealed in vivo when connections carrying such information are intact. Indeed, this

notion is supported by anatomical data showing that D1-receptors are located on axon terminals

that form asymmetric (i.e., glutamatergic) synapses onto mPFC neurons (Paspalas and

Goldman-Rakic, 2005).

To explore this idea, we first used a novel technology allowing for simultaneous

recording of calcium events in mPFC-dPAG neurons while stimulating VTA dopamine terminals

in vivo in freely-moving mice. GGaMP6m was targeted to mPFC-dPAG neurons in mice as

previously described, and neurons expressing the DA transporter (DAT) were transduced with

the excitatory red-shifted opsin, ChrimsonR (AAV-FLEX-ChrimsonR-tdTomato (Klapoetke et al.,

2014) or mCherry as a control (Figure 19a and Figure 20a-b). In order to use two Cre-

dependent systems within the same animal, it is essential these pathways remain distinct.

Indeed, neither dopaminergic nor non-dopaminergic neurons in the VTA project to the dPAG

(Figure 18b-c), eliminating the possibility that retrogradely transported CAV2-Cre injected into

the dPAG permits viral recombination in the non-dopaminergic neurons in the VTA.
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Figure 19. Investigation of VTA projections to the dPAG for simultaneous epifluorescent

imaging in mPFC-dPAG neurons and excitation of VTADA terminals.

(a) Action spectra for Chrimson (adapted from Klapoetke et al., 2014) and GCaMP (adapted

from Shigetomi et al., 2016 and Chen et al., 2013). GCaMP6m was excited with a 450 nm LED.

(b) To verify that VTA neurons do not project to the dPAG (to allow for CAV-Cre mediated

GCaMP6m expression in dPAG neurons and simultaneous expression of the excitatory opsin

ChrimsonR in VTADA neurons) VTA slices were immunostained for tyrosine hydroxylase (TH) in

rats injected with the retrograde tracer CTB in the dPAG.

(c) Of 1,400 DAPI+ cells counted in the VTA, 792 (56%) were TH+, 16 (1.1%) were CTB+, and

0 were TH+ and CTB+. The lack of CTB+ cells suggests that VTA does not make a prominent

projection to the dPAG. Of the retrogradely labeled cells observed in the VTA, none were TH+.
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In a novel homecage, VTA dopaminergic terminals in the mPFC were activated (20 Hz,

60 pulses, every 30 s) during a 10 min ON epoch, flanked by two OFF epochs, where no

stimulation occurred (Figure 20c). Examination of transient calcium events from individual

mPFC-dPAG neuron traces (Figure 20d) revealed that while VTA DA stimulation decreased the

average calcium event frequency, it simultaneously increased the average amplitude (Figure

20e-f), consistent with our model that dopamine increases the signal-to-noise ratio in mPFC-

dPAG.
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(a) Schematic of strategy to simultaneously image fluorescent calcium activity in mPFC-

dPAG::GCaMP6m neurons and activate VTADA terminals in awake and freely moving mice.

(b) VTADA neurons expressed ChrimsonR (n = 4 mice, 44 ROls) or mCherry (control, n = 5

mice, 50 ROls), in a Cre-dependent manner in DAT::Cre mice. In the same animal, dPAG-

projectors in the mPFC expressed GCaMP6m using a dual viral strategy.

(c) Schematic of experimental design. After a 15 min habituation period, each recording session

(30 min total, 450 nm fluorescence emission, 10 Hz) was divided into 3 epochs: OFF-ON-OFF.

During the ON epoch, fluorescence emission was recorded while a 620 nm LED stimulated

ChrimsonR expressing VTADA terminals (20 Hz, 60 p, 5 ms pulses, every 30 s).
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(d) Representative traces from a mPFC-dPAG::GCaMP6m neuron during each 10 min OFF-

ON-OFF recording epoch. Calcium transients (yellow dots) for each neuron were identified and

quantified.

(e) VTADA terminal stimulation decreased the average calcium event frequency per neuron,

during both the ON and second OFF epochs (data normalized to first OFF epoch; two-way

repeated measure ANOVA, F 2 184 = 43.62, p < 0.0001, Bonferroni multiple comparisons tests, p

< 0.05).

(f) VTADA terminal stimulation increased the average calcium event amplitude per cell during the

ON epoch, an effect that recovered in the second OFF epoch (data normalized to first OFF

epoch; two-way repeated measure ANOVA, F2 ,184 = 3.50, p = 0.0322, Bonferroni multiple

comparisons tests, p < 0.05).

Error bars indicate SEM.
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However, the interpretation of our calcium imaging results alone is limited by several

caveats. First, while calcium transients are monotonically-related to action potentials, this

relationship may be non-linear under some conditions (Chen et al., 2013). Second, dopamine

could alter intracellular calcium handling (Gee et al., 2012; Surmeier et al., 1995). To

demonstrate an alteration of the signal-to-noise ratio, we must first presume to know what the

"signal" is and what constitutes "noise." Based on our single-cell mPFC-dPAG imaging data, we

observed that mPFC-dPAG neurons were preferentially excited to shock, relative to sucrose,

which led us to hypothesize that the signal represented aversive stimuli.

To test this hypothesis, we used ChR2-assisted identification of mPFC-dPAG projectors

during electrophysiological recordings, paired with optical manipulations of local dopamine

terminals from the VTA. In a DAT::Cre mouse, we expressed ChrimsonR in VTA dopamine

neurons, expressed ChR2 in mPFC-dPAG neurons. Considering recurrent excitation is a well-

established phenomenon in the mPFC (Gao et al., 2001) we used ex vivo electrophysiological

recordings in ChR2-eYFP expressing cells and non-expressing neighbors to determine their

photoresponse latencies to 5 ms pulses of blue light (Figure 21a-c) (Beyeler et al., 2016). All

ChR2-eYFP expressing fired and action potential (AP) following photostimulation (i.e.,

suprathreshold response) with fast latencies, < 5 ms. In contrast, non-expressing neighbors had

diverse responses to 5 ms blue light: 4 showed no response, 4 were characterized by a

subthreshold response, while none had a suprathreshold response (Figure 21d-f). Based on

these data, the in vivo photoresponse latency threshold was set at <10 ms for mPFC-

dPAG::ChR2 projectors.
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(a) Schematic of viral strategy to optically manipulate ChR2-expressing VTADA terminals in the

mPFC and record from mPFC-dPAG::ChR2 and non-expressing neighboring neurons with ex

vivo electrophysiology.

(b) Representative traces from ChR2-expressing cells showing action potential (AP) firing in

response to a 5 ms blue light pulse.

(c) Representative traces from non-expressing 'in network' cells to delivery of 5 ms blue light.

(d) Number of non-expressing cells with different responses to 1 Hz, 5 ms blue light delivery.

(e) Latency to AP peak for ChR2-expressing cells (n = 5) and latency to EPSP peak for non-

expressing neighbors (n = 4) measured from the onset of a 51.04 mW/mm 2 5 ms blue light
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pulse delivered at 1 Hz. (f) Latency to AP peak for ChR2-expressing cells plotted against light

power density.
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Using the same viral strategy, mice for in vivo recordings were headfixed and implanted

with a drivable, acute optrode in the mPFC (Figure 22a-b). Again, dopaminergic terminals from

the VTA were stimulated in the mPFC during a 10 min ON epoch flanked by two OFF epochs

where no stimulation occurred, in a head-fixed set-up (Beyeler et al., 2016). While recording,

unpredicted sucrose and airpuff presentations were interleaved to assess the effect of

dopamine on stimulus-evoked neural responses (Figure 22c). Sucrose and airpuff deliveries

were terminated at the end of the 30 min recording period and mPFC-dPAG::ChR2 were

optically tagged with blue light (Figure 22d-g). Importantly, photoidentified ChR2-expressing

neurons were not activated by 593 nm red-shifted light used for VTADA::Chrimson terminal

activation (Figure 22h). Of the 204 total mPFC units recorded, 32 were phototagged (Figure

22i) using ex vivo verified response latencies to blue light (Figure 21). Consistent with our in

vivo calcium imaging results, we found that 43.8% of phototagged mPFC-dPAG neurons were

excited to airpuff, while none of the units were selectively sucrose responsive (Figure 22j-k). In

comparison to mPFC-dPAG neurons, our unidentified population was less responsive to airpuff

and more responsive to sucrose (Figure 221).
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Figure 22. mPFC-dPAG neurons are excited to airpuff.

(a) Schematic of strategy to manipulate VTADA terminals in the mPFC and optically identify

mPFC-dPAG::ChR2 neurons using in vivo head-fixed electrophysiology.

(b) Representative image of recording track in the mPFC (Rb, red retrobeads) and ChR2-eYFP-

expressing mPFC-dPAG neurons. Representative image of ChR2-eYFP-expressing terminals

surrounding the PAG.

(c) Schematic of recording blocks. After a 5 min rest period following optrode placement, each

recording session (-35 min total, 30 min test session + -5 min phototagging session) was

divided into 3 epochs: OFF-ON-OFF. During the ON epoch, 593 nm laser light from the optrode

stimulated ChrimsonR expressing VTADA terminals (20 Hz, 60 pulses, 5 ms pulse-duration,

every 30 s, s 4 mW). Neural activity was recorded while mice received random deliveries of

sucrose (purple) or airpuff (green) throughout the 30 min recording block. Following completion

of the final OFF epoch, stimuli delivery were terminated and 473 or 405 nm lasers were

connected to the optrode for phototagging (1 Hz, 5ms pulses; 1 sec pulses; and 100 ms pulses,

20 mW).

(d) Peri-stimulus time histogram (PSTH) of the firing rate in response to the onset of 1 Hz, 5 ms

pulse of 473 nm laser light used for phototagging from a representative unit.

(e) Population z-score of all phototagged units aligned to 1 Hz, 5 ms pulse of 473 nm.

(f) Photoresponse latencies showing < 8 ms response latency from all 32 mPFC-dPAG::ChR2

units.

(g) Action spectra for Chrimson, ChR2 (adapted from Klapoetke et al., 2014), and GCaMP

(adapted from Shigetomi et al., 2016 and Chen et al., 2013) Phototagging was achieved with

blue laser light.
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(h) PSTH from representative phototagged unit (top) and population z-score (bottom) showing

no response to 20 Hz, 60 pulses of 593 nm laser light used for VTADA::Chrimson terminal

activation.

(i) 204 mPFC units were recorded (n = 3 mice, 5 recording sessions) and 32 phototagged units

were identified as mPFC-dPAG projectors (blue), 78 were photoinhibited (red), and 99 remained

unidentified (black).

(j) Neural response magnitudes to airpuff (x-axis) and sucrose (y-axis) in phototagged (blue)

populations.

(k) Percent of units responding (p > 0.01) to sucrose (purple), airpuff (green), or both (brown) in

the phototagged (n = 32) population. Excitatory response are shown in closed bars and

inhibitory responses in open bars.

(1) Percent of units responding (p > 0.01) to sucrose (purple), airpuff (green), or both (brown) in

the unidentified (n = 99) population. Excitatory responses are shown in closed bars and

inhibitory responses in open bars. Excitatory response patterns were different between

phototagged and unidentified populations (chi square, X2 = 9.52, p = 0.0016).

Error bars indicate SEM.
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The robust effect of dopamine on airpuff, but not sucrose, responses in mPFC-dPAG

neurons was striking, as exemplified by time-locked responses to these stimuli (Figure 23a).

Although the dopamine-induced stimulus-evoked and basal firing rate changes were quite

heterogeneous, the increase in signal-to-noise was not (Figure 23a). As a population,

dopamine terminal stimulation did not change basal firing rates in phototagged or unidentified

populations (Figure 24a-b). Remarkably, dopamine selectively enhanced neural responses to

airpuff, but did not influence responses to sucrose in mPFC-dPAG neurons. Further, the signal-

to-noise increase was not observed in the unidentified population (Figure 24c-h) or

photoinhibited populations (Figure 25).
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Figure 23. Representative mPFC-dPAG units.

(a) Representative PSTHs of 4 photoidentified mPFC-dPAG units aligned to airpuff (green) and

sucrose (purple). Histograms show neural responses in the OFF-ON-OFF epochs.
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Figure 24. Dopamine selectively enhances mPFC-dPAG responses to airpuff.

(a) VTA dopamine terminal stimulation in

Hz) in the 3 s pre-stimulus windows in

2.472 p = 0.2905).

(b) VTA dopamine terminal stimulation in

Hz) in the 3 s pre-stimulus windows in

0.8089) population.

the mPFC did not change the baseline firing rate (FR,

the phototagged population(Friedman Test, X 2 (2) =

the mPFC did not change the baseline firing rate (FR,

the unidentified (Friedman Test, X2 (2) = 0.4242 p =

(c) Population z-score for phototagged (blue) and unidentified (black) units aligned to airpuff

across the OFF-ON-OFF epochs.

(d) VTADA terminal stimulation enhanced airpuff responses in phototagged units during the ON

epoch, (Friedman Test, X2 (2) = 9.813, p = 0.0075, Dunn's multiple comparisons tests, p < 0.01).

(e) VTADA terminal stimulation did not change responses to airpuff in unidentified neurons

(Friedman Test, X2 (2)= 0.0625 p = 0.9692).

(f) Population z-score for phototagged (blue) and unidentified (black) units aligned to sucrose

delivery across the OFF-ON-OFF epochs.

(g) VTADA terminal stimulation did not change responses to sucrose in phototagged neurons

(Friedman Test, X2 (2) = 3.960, p = 0.1381).

(h) VTADA terminal stimulation did not change responses to sucrose in unidentified neurons

(Friedman Test, X2 (2) = 0.1818, p = 0.9131).

Error bars indicate SEM.

128



11 Hz,5ms M

15 H

-0.5 0 -05-0.05 0

b

Time (s)

15,

10.

N 5.

0

-6

1 Hz, 5 ms

-0.05:
.... - -- .- - ..-

C a.

LA-

I
Ii

115

0'6 5 16 15
airpuff z-score

1 S

15

A91 .11

-3 0
Time (s)

OFF ON OFF

Photonhlbted (n = 73)

5- 1.5
OFF ON OFF

04

0 3-3 3 OFF ON OFF
Time (s) TMrr (s) Tkme (S)

5Photoinhibitd (n =73)g .
OFF ON OFF

- 6 - 0 OFF ON OFF
Time (S) Time (s) Time (s)
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photoinhibited mPFC neurons.
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(a) 35.8% of recorded units (73/204) were photoinhibited. Representative PSTHs of a

photoinhibited unit in response to 1 Hz, 5 ms (left) and 1 s (right) of 473 nm light.

(b) Neural response magnitudes to airpuff (x-axis) and sucrose (y-axis) in photoinhibited (red)

population.

(c) VTA dopamine terminal stimulation in the mPFC increased the baseline firing rate (FR, Hz)

in the 3 s pre-stimulus windows in the photoinhibited population during the ON and second OFF

epochs (Friedman Test, X 2(2) = 16.22; p = 0.0003; Dunn's multiple comparisons tests, p > 0.05).

(d) Population z-score of photoinhibited units aligned to airpuff in each of the recording epochs.

(e) In photoinhibited neurons, VTADA terminal stimulation did not change neural responses to

airpuff (Friedman Test, X2 (2) = 2.493, p = 0.2875, Dunn's multiple comparisons tests, p > 0.05).

(f) Population z-score of photoinhibited units aligned to sucrose in each of the recording epochs.

(g) In photoinhibited neurons, VTADA terminal stimulation did not affect neural responses to

sucrose (Friedman Test, X2 (2) = 0.4492, p = 0.7988, Dunn's multiple comparisons tests, p >

0.05).

Error bars indicate SEM.
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Experimental Procedures

General virus surgery.

Specific subject/surgery details for each experiment are detailed below. For all subjects,

surgeries were performed under aseptic conditions and body temperature was maintained with

a heating pad. Rodents were anesthetized with isoflurane mixed with oxygen (5% for induction,

2.5-2% for maintenance, 1 L/min oxygen flow rate) and placed in a digital small animal stereotax

(David Kopf Instruments, Tujunga, CA, USA). Following initial induction, hair was removed from

the dorsal surface of the head with hair clippers, ophthalmic ointment was applied to the eyes,

the incision area was scrubbed with alcohol pads and betadine (x3 each), and 2% lidocaine was

injected just under the skin surface above the skull for topical anesthesia. All measurements

were made relative to bregma (unless noted otherwise) for virus/implant surgeries. Viral

injections were performed using a beveled microinjection needle (26 gauge for rat; 33 gauge for

mice) with a 10 pL microsyringe (Nanofil; WPI, Sarasota FL, USA) delivering virus at a rate of

0.05-0.01 pL/min using a microsyringe pump (UMP3; WPI, Sarasota, FL, USA) and controller

(Micro4; WPI, Sarasota, FL, USA). For injections at multiple locations on the dorsal-ventral axis,

the most ventral location was completed first and the injection needle was immediately

relocated to the more dorsal location and initiated. After injection completion, 15 mins were

allowed to pass before the needle was slowly withdrawn. After viral infusions were completed,

craniotomies were filled with bone wax and the incision closed with nylon sutures. Subjects

were maintained under a heat lamp and provided 0.05 mg/kg (rat) / 0.10 mg/kg (mouse)

buprenophine (s.c., diluted in warm Ringers solution) until fully recovered from anesthesia.

All experiments involving the use of animals were in accordance with NIH guidelines and

approved by the MIT Institutional Animal Care and Use Committee. For all experiments

involving viral or tracer injections, animals containing mistargeted injection(s) were excluded
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after histological verification. Sample size was based on reports in related literature and were

not predetermined by calculation.

Viral constructs

Recombinant AAV5 vectors carrying ChR2 or fluorescent proteins (mCherry or eYFP)

were packaged by the University of North Carolina Vector Core (Chapel Hill, NC, USA). AAV8 -

hSyn-FLEX-ChrimsonR-tdTomato and AAV-hSyn-mCherry was packaged by the University of

North Carolina Vector Core (Chapel Hill, NC, USA). Viruses carrying GCaMP6m were packaged

by the University of Pennsylvania Vector Core (Philadelphia, PA, USA). Canine adeno-

associated virus carrying Cre recombinase (CAV2-Cre 4.2x10 infectious units/mL) was

packaged and obtained from the Istitut de Genetique Moleculaire de Montpellier, France from

Dr. Eric Kremer.

Ex vivo electrophysiology to examine dopamine effects on projector populations.

Subjects.

Male and female heterozygous BAC transgenic TH::Cre rats (-220 g; Charles Rivers

Laboratories) were dual housed on a normal 12h:12h light/dark cycle (lights on at 09:00 AM)

throughout the duration of experiments. Sample sizes was based on reports in related literature

and were not predetermined by calculation.

Surgery.

Rats first received bilateral infusions of AAV-EFla-DIO-ChR2-eYFP, as previously

described (Chapter 2 - Experimental Procedures - Fast-Scan Cyclic Voltammetry - Surgeries).

Rats were allowed to recover for virus surgery for an 8-10 weeks incubation period to ensure

Cre-specific viral transduction of ChR2 in VTADA neurons and protein transport to distal

terminals in the mPFC. After incubation, rats received a second surgery to retrogradely label

132



dPAG and NAc shell projectors in the mPFC. CTB injections were performed similarly as

previously described (Chapter 3 - Experimental Procedures - Retrograde cholera toxin-B

tracing - Rats). Briefly, rats received bilateral injections of CTB conjugated to Alexa Fluor-488 or

-555 (Molecular Probes, Eugene, OR, USA) into the dPAG (AP: -6.6, ML: -0.6; DV: -5.4 mm),

the NAc (AP: +1.5, ML: +0.95, DV: -7.5 mm), or one in each hemisphere (fluorophores were

counterbalanced between rats).

Brain slice preparation.

7 days following CTB injections, TH::Cre rats were deeply anesthetized with sodium

pentobarbital (250 mg/kg; IP) and transcardially perfused with 60 mL ice cold modified artificial

cerebrospinal fluid (aCSF) (NaCI 87, KCI 2.5, NaH2PO4*H20 1.3, MgCI2*6H20 7, NaHCO3 25,

sucrose 75, ascorbate 5, CaCl2*2H20 0.5 [composition in mM] in ddH20; osmolarity 322-326

mOsm, pH 7.20-7.30) saturated with carbogen gas (95 % oxygen, 5 % carbon dioxide).

Following decapitation, the brain was rapidly removed from the cranial cavity and coronally

dissected (AP: ~ -1.5 mm from bregma). Coronal 300 pm brain sections were prepared from the

anterior portion of the brain containing the mPFC and striatum, using a vibrating microtome

(Leica VT1000S, Leica Microsystems, Germany). The posterior portion of the brain was

transferred to 4% paraformaldehyde (PFA) dissolved in 1x PBS for fixation and subsequent

histological processing (see below in Histology). Brain slices were given at least 1 hr to recover

in a holding chamber containing aCSF (NaCI 126, KCI 2.5, NaH2PO4*H20 1.25, MgCI2*6H20

1, NaHCO3 26, glucose 10, CaCI2*H20 2.4 [composition in mM]; in ddH20; osmolarity 298-301

mOsm; pH 7.28-7.32) saturated with carbogen gas at 32 OC before being transferred to the

recording chamber for electrophysiological recordings.

Whole-cell patch-clamp recordings.

Once in the recording chamber, brain slices were continually perfused with fully

oxygenated aCSF at a rate of 2 mL/min at 30-32 C. Neurons were visualized using an upright
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microscope (Scientifica, Uckfield, UK) equipped with IR-DIC optics and a Qlmaging Retiga EXi

camera (Qimaging, Surrey, BC, Canada) through a 40X water-immersion objective. Brief

illumination through a 470 nm or 595 nm LED light source (pE-1 00; CooILED, Andover, UK) was

used to identify CTB-488 and CTB-555 expressing mPFC neurons, respectively, prior to

recording. Whole-cell patch-clamp recordings were performed using glass electrodes

(resistance 4-6 MQ) pulled from thin-walled borosilicate glass capillary tubing (World Precision

Instruments, Hertfordshire, UK) on a P-97 horizontal puller (Sutter Instrument, Novato, CA,

USA) and filled with internal solution containing (in mM) potassium gluconate 125, NaCl 10,

HEPES 20, Mg-ATP 3, neurobiotin 0.1 % in ddH20 (osmolarity 287, PH 7.33). For

electrophysiological recordings signals were amplified using a Multiclamp 700B amplifier

(Molecular Devices, CA, USA), digitized at 10 kHz using a Digidata 1550 (Molecular Devices,

CA, USA), and recorded using Clampex 10.4 software (Molecular Devices, CA, USA).

Capacitance, series resistance (Rs), and input resistance (Rin) were frequently measured during

recordings to monitor cell health, using a 5 mV hyperpolarizing step in voltage-clamp. The

resting membrane potential and the current-voltage (I-V) relationship of the neuron were

determined in current-clamp mode using incremental 20 pA, 500 ms square current pulses from

-120 pA to +260 pA. The instantaneous and steady-state action potential firing frequencies were

calculated using the first 100 ms and last 300 ms of the current pulse, respectively.

In order to assess the effect of activating ChR2-expressing VTA (DA) terminals on

mPFC neuron firing, a square current pulse (2 s duration) was applied in current-clamp mode to

elicit stable firing (-2-6 Hz). After 20 s a 20 Hz train of 470 nm light (5 ms pulse duration) was

delivered through the 40X objective for 3 s. During the last 2 s of this blue light train, the same

square current pulse was applied to the cell. This protocol was repeated every 50 s and the

firing during the current pulses (with and without blue light stimulation) was used for analysis. To

determine the effect of VTA (DA) terminal stimulation on the rheobase of the neuron, the same
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protocol was performed, but instead of a square current pulse, a 2 s current ramp was applied

to the cell.

The D 2 antagonist raclopride was used in a subset of recordings during which a square

current pulse was applied with and without optical stimulation of ChR2-expressing VTA (DA)

terminals. Raclopride (Sigma-Aldrich, MO, USA) was prepared fresh at the start of each

recording session and was dissolved in aCSF to give a final concentration of 10 pM. Raclopride

was perfused onto the slice for at least 10 min before electrophysiological recordings were

commenced.

Analysis of action potential firing was performed offline using Clampfit 10.4 software

(Molecular Devices, Sunnyvale, CA) and passive membrane properties were computed using

custom MATLAB software written by Praneeth Namburi based on MATLAB implementation of

the Q-method2 .

Immunohistochemistry.

Following recording, slices were transferred to 4% PFA solution overnight at 4 0C, and

were then washed 4 times (for 10 min each) in 1x PBS. Slices were then blocked in 1x PBS

solution containing 0.3% Triton X-100 and 5% normal donkey serum (NDS; Jackson

ImmunoResearch, PA, USA) for 1 h at room temperature. They were then incubated in primary

antibody solution containing chicken anti-TH (1:1000; Millipore, MA, USA) in 1x PBS with 0.3%

Triton X-100 (Thermo Fisher Scientific, MA. USA) and 3% NDS overnight at 4 0C. Slices were

subsequently washed 4 times (for 10 min each) in 1x PBS and then incubated in secondary

antibody solution containing Alexa Fluor 647-conjugated donkey anti-chicken (1:1000; Jackson

ImmunoResearch, PA, USA) and 405-conjugated streptavidin (1:1000; Biotium, CA, USA) in 1x

PBS with 0.1% Triton X-100 and 3% NDS for 2 h at room temperature. Slices were finally

washed 5 times (for 10 min each) in 1x PBS, then mounted onto glass slides and cover-slipped

using polyvinyl alcohol (PVA) mounting medium with DABCO (Sigma-Aldrich, MO, USA).
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Ex vivo electrophysiology to determine latency for phototagging experiments.

Subjects & surgery.

To verify the latency of blue light-evoked action-potentials (AP) in ChR2-expressing

mPFC-dPAG projectors, DAT::Cre mice were used which had received the same viral surgery

as those for in vivo electrophysiology experiments. Viral incubation for ex vivo recordings was

matched for those for in vivo experiments. For subject and surgery details, see below (in vivo

electrophysiology - Surgery).

Brain slice preparation.

Brian slice preparation was similar to previously described. Briefly, mice were deeply

anesthetized with sodium pentobarbital (90 mg/kg; IP) and transcardially perfused with 20 mL

ice cold modified artificial cerebrospinal fluid (aCSF) (NaCI 87, KCl 2.5, NaH2PO4*H20 1.3,

MgCI2*6H20 7, NaHCO3 25, sucrose 75, ascorbate 5, CaCI2*2H20 0.5 [composition in mM] in

ddH20; osmolarity 322-326 mOsm, pH 7.20-7.30) saturated with carbogen gas (95 % oxygen, 5

% carbon dioxide). Following decapitation, the brain was rapidly removed from the cranial cavity

and coronally dissected (AP: ~ 0 mm from bregma). Coronal 300 pm brain sections were

prepared from the anterior portion of the brain containing the mPFC and striatum, using a

vibrating microtome (Leica VT1000S, Leica Microsystems, Germany). The posterior portion of

the brain was transferred to 4% paraformaldehyde (PFA) dissolved in lx PBS for fixation and

subsequent histological processing (see below in Histology). Brain slices were given at least 1

hr to recover in a holding chamber containing aCSF (NaCI 126, KCl 2.5, NaH2PO4*H20 1.25,

MgC12*6H20 1, NaHCO3 26, glucose 10, CaCI2*H20 2.4 [composition in mM]; in ddH20;

osmolarity 298-301 mOsm; pH 7.28-7.32) saturated with carbogen gas at 32 OC before being

transferred to the recording chamber for electrophysiological recordings.
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Whole-cell patch clamp recordings.

Recordings were similar to those previously described above. Briefly, recordings were

made from visually identified neurons expressing ChR2-eYFP and non-expressing neighbors.

Blue light was provided by a 470 nm LED light source (pE-100; CoolLED, NY, USA) delivered

through a 40X immersion objective. ChR2 expression in recorded neurons was confirmed by the

presence of sustained inward current in response to 1 s constant pulse of blue light delivered in

voltage-clamp mode.

Offline analysis was performed in Clampfit 1.4 software (Molecular Devices, Sunnyvale,

CA). Latency to AP or excitatory postsynaptic potentials (EPSP) were peak averaged from 30

responses to a 5 ms pulse of blue light (delivered in a 10 pulse, 1 Hz train every 60 s). Latency

was measured as the durations from the onset of the light pulse to the peak of the AP or EPSP.

Dopamine receptor localization on projector populations

Subjects.

Transgenic male and female Drdla-Cre [n = 3, B6.FVB(Cg)-Tg(Drdla-cre)FK150Gsat/Mmucd;

ID# 036916-UCD from MMRRC originally from GENSAT BAC Tg Project] and Drd2-Cre mice [n

= 3, B6.FVB(Cg)-Tg(Drd2-cre)ER44Gsat/Mmucd; ID# 032108-UCD from MMRRC originally

from GENSAT BAC Tg Project] (-12 wks old) were group housed (2-4 subjects per cage) on a

12h:12h reverse light/dark cycle (lights off at 09.00 AM) throughout the duration of experiments

with ad libitum access to food and water. Sample sizes was based on reports in related

literature and were not predetermined by calculation. We thank Dr. Jill Crittenden (Graybiel Lab)

for donating D1-TdTomato/D2-GFP mice and Dr. Teruhiro Okuyama (Tonegawa Lab) for

donating Drdla-Cre and Drd2-Cre mice.

Surgeries.
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To label Drdla- and Drd2-expressing mPFC neurons, AAV-EF1a-DIO-eYFP was

injected bilaterally into the mPFC (AP: +1.8, ML: +0.3, DV: -2.75 & -2.4 [300 nl ea, bevel facing

lateral]). Mice were allowed to recover and incubate for 4 wks. In a second surgery, 350 nl of

Cholera Toxin subunit B (CTB) conjugated to Alexa Fluor-555, or 647 (Molecular Probes,

Eugene, OR, USA) was injected into the dorsal periaqueductal gray (dPAG; AP: -4.2, ML: -0.5;

DV: -2.4 mm) and NAc shell (AP: +1.0, ML: +0.75, DV: -4.5 mm) (in contralateral hemispheres,

color counterbalanced) to retrogradely label mPFC-dPAG and mPFC-NAc projectors. Mice were

sacrificed 6 days later as previously described. Histological, imaging, and data analyses are the

similar to those previously described.

In vivo epifluorescent calcium imaging with optical manipulations

Subjects.

Male DAT::IRES-Cre mice (~ 8 wks old; mPFC-dPAG::GCaMP6m +

VTADA::ChrimsonR/mCherry) were group housed (2-4 subjects per cage) on a 12h:12h reverse

light/dark cycle (lights off at 09.00 AM) prior to and 4 weeks following initial virus and

microendoscope (i.e., GRIN lens) implant surgery. Following baseplate adhesion, subjects were

individually housed and placed on food restriction (3-6 grams normal chow / day) with ad libitum

access to water for 3-6 days encompassing testing. Sample sizes was based on reports in

related literature and were not predetermined by calculation.

Surgeries.

Subjects were prepared for in vivo epifluorescent calcium imaging similarly to methods

described elsewhere (Jennings et al., 2015; Resendez et al., 2016). Briefly, to achieve

projection-specific imaging, a virus encoding Cre-dependent GCaMP6m (AAV 5-CAG-Flex-

GCaMP6m) was injected into the mPFC (AP: +1.8, ML: +0.3, DV: -2.75 & -2.4 [300 nI ea, bevel
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facing lateral]) and retrogradely traveling canine adeno-associated (CAV) virus carrying Cre-

recombinase (CAV2-Cre; Istitut de Genetique Moleculaire de Montpellier, France) was injected

into the dPAG (n = 6; AP: -4.2, ML: +0.5, DV: -2.4 [350 nl]) or the nucleus accumbens shell (n =

5; AP: +1.0, ML: +0.75; DV: -4.5 [350 nl]). For manipulation of DA terminals in mPFC-

dPAG::GCaMP6m + VTADA::ChrimsonR subjects (n = 4), DAT::IRES-Cre mice received 1 ul of

AAV-hSyn-FLEX-ChrimsonR-tdT in the VTA (AP: -3.4, ML: +0.4, DV: -4.25). Control mice

(mPFC-dPAG::GCaMP6m + VTADA::mCherry; n = 5), received lul of AAV-DIO-EFla-mCherry

into the VTA using the same coordinated. After virus infusions, the mPFC craniotomy was

enlarged to >1 mm in diameter and dura removed with a bent 30 gauge beveled needle, but no

tissue was aspirated. A 1 mm diameter, -4 mm length gradient refractive index lens (GRIN lens;

=GLP-1040, Inscopix, Palo Alto, CA) was held via vacuum on the tip of a blunted needle

surrounded by plastic tubing for stability and was lowered stereotaxically through the craniotomy

under constant saline perfusion to minimize tissue/blood desiccation. Lenses were implanted

slightly posterior and lateral of the needle track for virus infusions to avoid tissue damage in the

imaging plane, and were lowered to locations in the ventral PL / dorsal IL subregion of the

mPFC (AP: -1.77, ML: -0.4, DV: -2.32, mm from bregma). Lens implants were secured to the

skull with a thin layer of adhesive cement (C&B Metabond; Parkell, Edgewood, NY, USA),

followed by black cranioplastic cement (Ortho-Jet; Lang, Wheeling, IL, USA) containing

gentamicin antibiotic. Lenses were covered with the top of an eppendorf tube and cemented in

place with cranioplastic cement for protection during the virus incubation period (3-4 wks). The

implant was allowed to completely dry before closure of the incision with nylon sutures.

Following virus incubation, mice were again anesthetized with isofluorane, streotaxically

secured, and baseplates (Inscopix, Palo Alto, CA) were cemented around the lens to support

the connection of the miniaturized microscope for in vivo, freely moving imaging. During this

procedure, the protective eppendorf cap and supporting cranioplastic cement were removed
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using a hand drill. The exposed top of the GRIN lens was scrubbed clean with a cotton-tipped

applicator soaked with 15% isopropyl alcohol diluted in ddH 20. Next, a miniaturized microscope

(single channel epifluorescence, 475 nm blue LED, Inscopix, Palo Alto, CA) with the baseplate

attached was stereotaxically positioned over the implanted GRIN lens and adjusted in the DV

axis in order to focus on visible landmarks (i.e., GCaMP6m expressing neurons and blood

vessels). After the focal plane was identified, the microscope/baseplate was raised by -50 um,

to account for cement shrinkage, and was subsequently cemented in place with pink dental

cement (Stoelting, Wood Dale, IL, USA). The microscope was then detached from the

baseplates, a final layer of black cranioplastic cement (Ortho-Jet; Lang, Wheeling, IL, USA) was

applied to prevent light leak, and the implant was covered with a protective plate (Inscopix, Palo

Alto, CA) until imaging.

Recording from mPFC-dPAG neurons while manipulating VT ADA terminal activity.

Following recovery, DAT::Cre mice were individually housed and food restricted for 2

days prior to recording. Prior to the recording day, food-deprived mice were habituated to

handling and the nVoke miniaturized microscope (an integrated imaging and optogenetics

system, 450 nm blue GCaMP excitation LED, 620 nm amber optogenetic LED, Inscopix, Palo

Alto, CA). 24 hrs prior to recordings, mice were habituated in their homecage to a dimly lit

recording room containing constant white noise (Marpac Dohm-DS dual speed sound

conditioner, Wilmington, NC, USA). On the recording day, mice were attached to the nVoke

miniaturized microscope and habituated in their homecage for 15 min. After the 15 min

habituation, a 30 min recording session, composed of 10 min OFF-ON-OFF epochs, was

initiated. Gray scale images were collected at 10 frames per second using 0.094-0.266 mW x

mm 2 (estimated light power based on GRIN lens efficiency) of the miniaturized microscope's

450 nm LED transmission range (nVoke 2.1.5., Inscopix, Palo Alto, CA). During the ON epoch,
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20 Hz, 60p (5 ms pulses) trains of 620 nm LED light were initiated every 30 s for the duration of

the 10 min epoch.

Image processing.

Image processing was accomplished using Mosaic software (Version 1.1.2., Inscopix,

Palo Alto, CA). Raw videos were pre-processed by applying x4 spatial downsampling to reduce

file size and processing time, and isolated dropped frames were corrected. No temporal

downsampling was applied. For sucrose/shock experiments, both recordings per animal (i.e.,

"Sucrose" recording and "Shock" recording) were concatenated to generate a single 30 min

video. Lateral movement was corrected for by using a portion of a single reference frame

(typically a window surrounding a prominent blood vessel or constellation of bright neurons).

Images were cropped to remove post-registration borders and sections where cells were not

observed. 2 method were used for ROI identification and single-cell fluorescence trace

extraction in order to verify that these processes did not significantly change the pattern of

results within our data sets. Both methods are described below in CNMF-E analyses and non-

ROI analyses. The results from the CNMF-E analyses are reported in Figure 13 and Figure 19.

The results from the non-ROI analyses are reported in Figure 14.

CNMF-E analyses.

After motion correction and cropping, recordings were exported as tif z-stacks and were

downsampled to 10 frames per second. We used a constrained non-negative matrix

factorization algorithm optimized for micro-endoscopic imaging (CNMF-E) (Zhou et al.,

2018)was used to extract fluorescence traces from ROls. ROIs were defined by manually

selecting seed pixels from peak-to-noise (PNR) graphs of the FOV (Murugan et al., 2017).

Considering calcium fluctuations can exhibit negative transients, associated with a pause in

firing (Otis et al., 2017), we did not constrain values to > 0 - as such we refer to this process as

"C(N)MF-E".
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Non-ROI analyses.

After motion correcting and cropping, recordings were converted to a changes in

fluorescence compared to background fluorescence (F-FO)/FO using the mean Z-projection

image of the entire movie as reference (FO). Calcium signals arising from individual regions of

interest (ROls, i.e., cells) were identified using independent and principal component analyses

(PCA/ICA). Identified PCA/ICA filters were thresholded at their half-max values to define

possible ROls. ROls were then screened for neuronal morphology and only accepted if the

threshold filters included only on contiguous region with an eccentricity of <0.85 and an area

between 30-350 pixels. Accepted ROI filters were merged if their areas overlapped by more

than 60% after visual confirmation. The accepted ROI filters were then reapplied to the motion

corrected videos to extract dF/FO traces for each ROI. In order to correct for bleaching and

possible neuropil contamination of the extracted ROI trace, we correct each ROI tracing using

signals from the whole field, using a multiple step procedure: The full ROI trace and the signals

from the whole field were filtered using a 30 s median filter to eliminate the influence of sharp

transients or outliers. The influenced of the surrounding signals on the ROI trace were quantified

using regression (glmfit in MATLAB). The resulting regression coefficient was then applied to

the original, unfiltered trace to regress out the influence of the non-ROI thresholded field on the

ROI trace itself. Multiple background subtraction were examined and a non-ROI thresholded

approach was implemented because 1) this approach excludes subtraction of prominent

processes (i.e., dendrites and axons) observed in our data set, 2) the reasonable correlation

coefficients between individual ROls (i.e., within the range that would expected based on

electrical recordings). To acquire the non-ROI thresholded image for background subtraction,

max Z-projections of individual recordings were created and thresholded to separate ROls and

their processes from the rest of the field of view. Average signal from the remaining pixels was
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used as a proxy for the whole field changes in fluorescence, and regressed of the signal from

each ROI.

Data analysis.

Individual lick bouts were characterized by lick events detected at the sucrose lickometer

and events that were separated by >1 s were identified as an individual lick bout. Calcium

signals for the bulk FOV fluorescence and for each ROI were aligned to behavioral events (i.e.,

lick bout initiation and shock). Population z-scores were calculated using the period -10 to -5 s

prior to stimuli onset as baseline. ROls were classified as being stimulus excited if the average

z-score 0-1 s after stimulus onset was greater than 3. Calcium event quantifications (number

and amplitude) were performed in MiniAnalysis (Synaptosoft, Decatur, GA) using individual ROI

traces from the entire session after conversion to z-score. Baseline from the z-transform was

computed by thresholding the signal at 20% of the signal amplitude. Calcium events with z-

scores <8 or did no did not have a > 0.5 AUC were not included in analyses because events of

this magnitude were did not reliably retain transient, calcium-event characteristics across

animals. ROls which did not contain events that met event criterion were excluded.

We thank Drs. Ilana Witten, Courtney Cameron, Nathan Parker, Malavika Murugan,

Pengcheng Zhou and Liam Paninski for advice and code for CNMF-E analysis. We thank Dr.

Mark Schnitzer for advice regarding data analyses and endoscopic imaging. The authors wish

to acknowledge Inscopix, Inc. for a scientific collaboration - particularly Lara Cardy and Dr.

Alice Stamatakis of Inscopix, Inc. for technical assistance.

In vivo electrophysiology.

Subjects.
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Male DAT::IRES-Cre mice (-6-8 wks old) were group housed (2-4 subjects per cage) on

a 12h:12h reverse light/dark cycle (lights off at 09.00 AM) throughout the duration of

experiments. Two days after head-bar adhesion (-2 wks before recordings), cages were placed

on food restriction (4 hrs access to standard chow / day) with ad libitum access to water

throughout training and recording. Sample sizes was based on reports in related literature and

were not predetermined by calculation.

Surgery.

To achieve projection-specific ChR2 expression for in vivo photoidentification of mPFC-

dPAG projecots, a virus encoding Cre-dependent ChR2 (AAV-Ef1a-DIO-ChR2-eYFP) was

injected into the mPFC (AP: +1.8, ML: +0.3, DV: -2.75 & -2.4 [300 ni ea, bevel facing lateral])

and retrogradely traveling canine adeno-associated (CAV) virus carrying Cre-recombinase

(CAV2-Cre; Institut de Genetique Moleculaire de Montpellier, France) was injected into the

dPAG (AP: -4.2, ML: +0.5, DV: -2.4 [350 nl]). For manipulation of DA terminals, DAT::IRES-Cre

mice received 1 ul of AAV-hSyn-FLEX-ChrimsonR-tdT in the VTA (AP: -3.4, ML: +0.4, DV: -

4.25).

Head-bar adhesion.

After 11 + weeks of virus incubation, and -2 weeks prior to behavioral training, mice were

briefly anesthetized small aluminum head-bar (2 cm*2 mm*2 mm) was placed on the skull 5 mm

posterior to the bregma along with one reference and one ground pin contacting the dura mater

just anterior to the head-bar, in the contralateral cortex. A small pilot hole was made with a

cranial drill above the mPFC and was marked with a pen. The area surrounding the pilot

hole/mark was covered with petroleum jelly to prevent covering with dental cement. The three

elements (head-bar, ground pin and reference pin) were cemented using one layer of adhesive

cement (C&B metabond; Parkell, Edgewood, NY) followed by a layer of cranioplastic cement

(Dental cement; Stoelting, Wood Dale, IL). After the cement dried, the pilot hole/mark was

144



covered with a silicone gel (Kwik-Sil Adhesive, WPI, Sarasota, FL) to keep the bone clear during

behavioral training.

Behavior.

2 days after head-bar adhesion, mice were food restricted and pre-exposed to a 30%

sucrose solution. Mice were head-fixed27 in front of two small tubes one located just under the

nose and the other above it pointed at the nose. The bottom tube delivered sucrose (training

and recording days) and the top tube delivered airpuff (recording days only). Mice we trained to

retrieve small drops (3 pL) of sucrose delivered through the bottom tube via a solenoid valve

(Parker, Cleveland, OH), measured by breaks of an infrared beam recorded by an Arduino

board (SmartProjects, Italy). Training sessions gradually increased in total duration (0.5 - 1.5

hr) and sucrose ITIs increased (15 - 80 8 s) over 5-8 days. The solenoid valves were triggered

with a custom software written in LABVIEW (National instruments, Austin, TX) powered by

NIDAQ-6251 and Arduino hardware.

Pre-recording craniotomy.

After 5-8 days of habituation and training, mice were briefly anesthetized with isoflurane

(5% for induction, 1.5% after) and placed in a stereotaxic frame while their body temperature

was controlled with a heating pad. A craniotomy was performed over the mPFC using the pilot

hole/mark previously implemented using a hand-held drill. When the craniotomy was open, the

dura was removed, blood cleaned with perfusion of saline, and then covered with petroleum

jelly. Mice were removed from the stereotaxic and placed in a clean cage while their body

temperature was maintained using a heat lamp until fully they recovered from anesthesia.

In vivo electrophysiological recordings and phototagging.

Once the mice recovered from the craniotomy surgery (at least 1 hr), they were head-

fixed and a silicon optrode (A1x16-Poy2-5mm-50s- 177, NeuroNexus, Ann Arbor, MI) coated
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with red fluorescent latex microspheres (Lumafluor Inc.) was inserted into the anterior mPFC

and lowered from the surface of the cortex for 1 mm at 10 pm/s using a motorized actuator

(Z825B - 25 mm Motorized Actuator, Thorlabs, Newton, NJ, USA) mounted on a shuttle (460A

linear stage, Newport, Irvine CA, USA) fixed to the stereotaxic arm. Next, the optrode was

lowered for 1 mm at 1-2 pm/s. During the insertion of the electrode, sucrose was delivered

every 60 8 s. After the probe was lowered to -2 mm below brain surface, sucrose deliveries

were halted and a 10 min wait period commenced to let the tissue stabilize around the recording

probe. Recording sessions were initiated using a RZ5D TDT system (Tucker-Davis

Technologies, Alachua, FL, USA) while presenting ~ 40 sucrose and 40 airpuff trials (10-12 4 s

ITI) randomly intermixed throughout the entire 30 min recording period. The recording period

was broken into three 10 min epochs: 10 min into the recording period (first OFF epoch), 593

nm laser light pulse trains (20 Hz, 60 p, 5 ms pulses) were delivered through the optrode every

30 s for 10 min (20 pulse trains total, ON epoch). 10 more minutes were recorded in the

absence of laser manipulation (second OFF epoch) - resulting in an OFF-ON-OFF epoch

structure, with laser delivery only occurring during the ON epoch. Following completion of 30

min recording session, a photoidentification session using a 473 and/or 405 nm laser was

conducted, during which pseudorandomly dispersed stimulations were delivered: 1 s constant

light, 10x 1 Hz, 5 ms pulse trains, and 100 ms of 100 Hz (5 ms pulses). Recordings were then

terminated and the optorde was lowered 300 um to a new recording site at 1-2 pm/s. The

recording protocol was then repeated after a 30 min inter-session interval. Recordings sessions

continued until we reached the bottom of the mPFC (-3 mm from brain surface) or when mice

became sated and stopped retrieving sucrose. The electrode was then retracted at 5 pm/s, the

craniotomy cleaned with saline, and covered with silicone gel (Kwik-Sil Adhesive, WPI,

Sarasota, FL) to protect the brain until the next day of recording. During the second day of

recording, the same procedure was repeated in a more posterior recording location. Following

completion of the second day of recordings, mice were anesthetized with sodium pentobarbital
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and transcardially perfused. The brain was extracted, sectioned, and examined under a

confocal microscope to verify the viral expression and the locations of the recording electrode.

Analysis of in vivo electrophysiological recordings.

Recording sessions were exported from the TDT format to Plexon offline sorter using

OpenBridge (Tucker-Davis Technologies, Alachua, FL, USA). Offline sorter (Plexon, Dallas, TX,

USA) was used to sort single units. Neural responses to sucrose / airpuff delivery and light

stimulation were visualized through peristimulus time histograms (PSTH) and rasters for every

unit using NeuroExplorer.

Data from Plexon and Neuroexplorer data files was then imported into MATLAB and

analyzed using software written by P.N. Sucrose and airpuff PSTHs for each epoch (OFF-ON-

OFF) were z-transformed using the histogram values in a 2 s baseline period starting 3 s prior to

the onset of the stimulus. Similarly, PSTHs around a light pulse (used for photo identification of

dPAG projectors) were z-transformed using a baseline window of 40 ms prior to the onset of the

light pulse. To test significance of neural responses, Wilcoxon signed-rank test was performed

on the neural activity of each unit by comparing the number of spikes in a baseline window and

an experimental window starting at the onset of stimulus or light pulse. The experimental

window for mean stimulus response was set to 0.5 s. The experimental window for light

response was 10 ms based on the results of the ex vivo recordings. Significance threshold for

the Wilcoxon signed rank test was set at p < 0.01. Latency to the light pulse was defined as the

first bin in the PSTH to cross 4 standard deviations relative to the 40 ms baseline window. Only

units which met both criterion were considered phototagged and thus mPFC-dPAG projectors.

Histology

Perfusion and storage.

147



Subjects were deeply anesthetized with sodium pentobarbital (200 mg/kg; i.p.) and

transcardially perfused with 15 mL (mouse) / 60 mL (rat) of Ringers solution followed by 15 mL

(mouse) / 60 mL (rat) of cold 4% paraformaldehyde (PFA) dissolved in 1x PBS. Animals were

decapitated and the brain was extracted from the cranial cavity and placed in 4% PFA solution

and stored at 4 0C for at least 48 hrs. 36 hrs before tissue sectioning, brains were transferred to

30% sucrose solution dissolved in 1x PBS at room temperature. Upon sinking, brains were

sectioned at 60 um on a freezing sliding microtome (HM420; Thermo Fischer Scientific).

Sections were stored in 1x PBS at 4 0C until mounting and imaging.

Confocal microscopy.

Fluorescent images were captured using a confocal laser scanning microscope

(Olympus FV1000), with FluoView software (Olympus, Center Valley, PA), under a dry 10x /

0.40 NA objective, a 60x/1.42 NA oil immersion objective, or a 40x /1.30 NA oil immersion

objective. The locations of opsin expression, injection site, lesion from the optic fiber placement,

and the position of recording electrodes were determined by taking serial z-stack images

through the 10x objective across a depth of 20-40 pm, with an optical slice thickness of 5-8 pm.

High magnification images fluorescence quantifications were obtained through the 40x or 60x

objective using serial z-stack images with an optical slice thickness of 3-4 pm (5 slices) using

matched parameters and imaging locations.

Sholl analysis.

Neurobiotin-filled/streptavidin stained mPFC-dPAG and mPFC-NAc projectors from ex

vivo electorphysiology experiments were imaged at 40 x (1.30 NA oil immersion objective) using

a confocal laser scanning microscope (Olympus FV100) covering the whole dendritic and

axonal arborization in the slice. Neurons were reconstructed and Sholl analysis (# of

intersections, 20 um rings from soma) performed using the "Simple Neurite Tracer" plugin

contained in FIJI lmageJ.
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Statistics

Statistical analyses were performed using GraphPad Prism (GraphPad Software, Inc, La

Jolla, CA) and MATLAB (Mathworks, Natick, MA). Group comparisons were made using one-

way or two-way ANOVAs followed by Bonferroni post-hoc tests to control for multiple

comparisons. Paired and unpaired two-way Student's t-tests were used to make single-variable

comparisons. Unpaired one-way t-tests were used to make comparisons with a priori

hypotheses. Tests for binomial distribution were also used on single populations. Non-

parametric Wilcoxon signed rank tests were used to make comparisons between non-

parametric data (in vivo calcium-imaging and electrophysiology data). Chi square tests were

used to compare distribution of shock and sucrose responsive cells between mPFC-dPAG and

mPFC-NAc. All statistical tests are two-sided unless otherwise noted as an a priori hypothesis.

Thresholds for significance were placed at *p < 0.05, **p < 0.01, ***p < 0.001. All data are

shown as mean standard error of the mean (SEM).

Summary

Our data show that activation of dopamine terminals in the mPFC inhibits NAc-projectors

via a D2-dependent mechanism in ex vivo brain slices. Consistent with this, a considerable

proportion of mPFC-NAc neurons (-86%) express D2-receptors. In contrast, mPFC-dPAG

neurons do not robustly express D1- or D2-receptors and their intrinsic excitability is not

modulated by dopamine terminal activation ex vivo. However in vivo, where excitatory inputs are

intact, dopamine sharpens mPFC-dPAG neuronal responses to aversive stimuli.
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Chapter 5

Dopamine in the prefrontal cortex enhances signal-to-noise for aversive stimuli via

projections to the periaqueductal gray

Summary

In these studies, we provide a potential neural circuit mechanism by which dopamine

may be translated into an aversive signal that promotes avoidance. First, using electrochemical

approaches, we reveal the precise time course of tail pinch-evoked dopamine release in the

mPFC. Second, we show that dopamine signaling in the mPFC biases behavioral responses to

punishment-predictive stimuli, rather than reward-predictive cues. Third, in contrast to the well-

characterized mPFC-NAc projection, we show that activation of mPFC-dPAG neurons is

sufficient to drive place avoidance and defensive behaviors. Fourth, to determine the natural

dynamics of individual mPFC neurons, we performed single-cell projection-defined

microendoscopic calcium imaging to reveal a robust preferential excitation of mPFC-dPAG, but

not mPFC-NAc, neurons to aversive stimuli. Finally, photostimulation of VTA dopamine

terminals in the mPFC revealed an increase in signal-to-noise ratio in mPFC-dPAG neuronal

activity during the processing of aversive, but not rewarding stimuli.

Discussion

Theories of mesocortical dopamine function suggest that dopamine neurotransmission in

the mPFC supports behavioral flexibility (Euston et al., 2012; Miller and Cohen, 2001) and

stimulus discrimination (Popescu et al., 2016; Williams and Goldman-Rakic, 1995). Several

microdialysis studies have reported enhancements in extracellular dopamine release in the

mPFC following exposure to rewarding stimuli, specifically food consumption (Ahn and Phillips,
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1999; Bassareo et al., 2002; Hernandez and Hoebel, 1990; St. Onge et al., 2012), yet the

relationship between reward and dopamine efflux in the mPFC is complex (Phillips et al., 2004).

Paradoxically, non-psychostimulant addictive drugs (e.g., morphine, ethanol, nicotine) do not

enhance dopamine release in the mPFC (Bassareo et al., 1996), despite their rewarding and

reinforcing properties. Further, drugs that do enhance dopamine concentrations in the

mPFC (e.g., antidepressants) are often not abused (Tanda et al., 1994). These data suggest

that rewarding stimuli do not reliably evoke dopamine release in the mPFC. Further,

microdialysis, the neurochemical recording tool utilized in these studies, typically entails

sampling extracellular dialysate over a period of >10 minutes, which fails to provide a real-time

time course of dopamine concentration. While these microdialysis studies suggest that that

certain rewarding conditions may enhance tonic dopamine neurotransmission in the mPFC, the

lack of temporal specificity occludes the conclusion that rewarding events evoke time-locked,

phasic dopamine release.

Recently phasic dopamine responses were reported from VTA dopamine terminals in

the mPFC in response to reward, measured by in vivo fiber photometry (Ellwood et al., 2017).

Here they observed an increase in calcium signals in response to reward-predictive cues and

reward-delivery. Importantly, bulk calcium signals, like those recorded by Ellwood and

colleagues, have been shown in the striatum to faithfully reflect dopamine neurotransmission in

vivo (Parker et al., 2016). Indeed, this pattern of responses looks similar to those recorded in

the NAc using in vivo fast-scan cyclic voltammetry in a similar Pavlovian conditioning paradigm

(Day et al., 2007). These data suggest that dopamine neurotransmission in the mPFC does play

a role in reward-related processes, consistent with previous reports (Popescu et al., 2016).

However Ellwood and colleagues did not also investigate dopamine responsivity to

aversive stimuli, omission of reward, or under competitive situations. Given the mesocortical

dopamine pathway is uniquely sensitivity to stressful and aversive stimuli (Abercrombie et al.,

1989; Kim et al., 2016; Lammel et al., 2011; Mantz et al., 1989; Thierry et al., 1976) and our
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data show that mesocortical dopamine biases behavior toward aversion under competitive

conditions, it remains plausible that dopamine neurotransmission functions differently in "safe"

situations (i.e., in contexts where no aversive stimuli have been encountered). To our

knowledge, the only study to examine fast dopamine activity in the mPFC to rewarding and

aversive stimuli reported an enhancement in bulk GCaMP signals in VTA dopamine terminals in

response to tail shock, but not reward delivery. The opposite pattern of responses was observed

in the NAc, where dopamine terminals were activated by reward and inhibited by tail shock (Kim

et al., 2016). Yet how this sensitivity is integrated into theories of mesocortical dopamine

function has not been resolved, despite evidence suggesting it is important for efficient

escape/avoidance behaviors (Sokolowski et al., 1994).

Threatening environmental stimuli require immediate disengagement from ongoing

behavior and engagement of escape and avoidance strategies. Threat avoidance necessitates

a robust strategy-switching signal, which requires tuning of valence-defined circuits. Our data

suggest dopamine release may serve to sharpen responses to motivationally significant stimuli

by simultaneously enhancing the signal-to-noise in aversion-encoding pathways and inhibiting

pathways that contribute to other behaviors. Therefore, while it is still debated whether

mesocortical dopamine release is innately aversive (Ellwood et al., 2017; Gunaydin et al., 2014;

Popescu et al., 2016), our data suggest that dopamine in the mPFC primes neural circuits that

encode aversive stimuli in order to promote avoidance and escape-related behavior.

The notion that dopamine can alter signal-to-noise is attractive, as dopamine-mediated

increases in signal-to-noise could explain its diverse behavioral and cognitive functions -

ranging from improvements in attention and working memory, as well as reduced schizophrenic

hallucinations (Jensen et al., 2008). Despite the popularity of the signal-to-noise model for

mPFC dopamine in computational and theoretical neuroscience (Cohen and Servan-Schreiber,

1992; Cohen et al., 2002; Durstewitz and Seamans, 2008; Rolls et al., 2008), the degree to
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which it translates across brain functions is unknown. Support for dopamine-mediated signal-to-

noise has been found ex vivo (Kroener et al., 2009; Seamans et al., 2001 b), and in vivo during

auditory stimulus discrimination (Popescu et al., 2016), working memory (Williams and

Goldman-Rakic, 1995), and visual cortex orientation selectivity (Noudoost and Moore, 2011).

Our data suggest that distinct mPFC ensembles are modulated by dopamine under certain

conditions and experiences. The fine-tuning of valence-defined subpopulations can result in the

vast array of computations and behavioral outcome attributed to the mPFC.

Dopamine in the mPFC has been linked to mood disorders, such as stress, anxiety, and

depression (Arnsten, 2009; Tanda et al., 1994; Thierry et al., 1976) - raising the possibility that

dopamine may change general affective states rather than transmitting a discrete aversive

signal. Indeed, stressful and noxious stimuli increase dopamine release in the mPFC

(Abercrombie et al.; Finlay et al., 1995; Bassareo et al., 2002) and recently Gunaydin and

colleagues (2014) reported that activation of VTA dopamine terminals in the mPFC evoked an

anxiety-like phenotype measured in the elevated plus maze. However, anti-depressant and anti-

anxiety drugs with different mechanisms of action (e.g., fluoxetine, desipramine, imipramine,

buspirone) consistently increase dopamine release in the mPFC (Tanda et al., 1994). Further, in

stark contrast to reports by Gunaydin and colleagues (2014), another study has shown that

selective dopamine depletion in the mPFC is anxiogenic in the elevated plus maze (Espejo,

1997). Of course, dopamine's postsynaptic effects depend the type of dopamine receptor it

activates. Considering tonic and phasic stimulation parameters evoke different levels of

dopamine in the mPFC (Ellwood et al., 2017) causing differential activation of D1- and D2-

receptors (Dreyer et al., 2010, 2016), these disparate findings may be accounted for by varying

degrees of mesocortical activation. Clearly a deeper investigation into the role of the

mesocortical dopamine system in regulating mood is required.
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The PAG has also been implicated in anxiety (Brandao et al., 2008; Fanselow, 1991;

Jenck et al., 1995). We observed different effects on two tasks often classified as anxiety

assays upon activation of mPFC projections to the dPAG. The open field test is an exploratory

task that uses the relative time spent in the center versus the periphery of the apparatus as a

proxy for the general anxiety level of the animal (for review, see: Calhoon and Tye, 2015),

whereas the marble burying assay presents novel discrete stimuli that the animal may interpret

as threatening and measures digging behavior (burying is a defensive behavior for rats and

mice) (De Boer and Koolhaas, 2003). We speculate that the robust positive result observed in

the marble burying assay juxtaposed with the negative result for the open field test suggests

that the mPFC-dPAG projection may be selective for threat interpretation in the presence of

discrete cues, but not general contextual cues. This would be consistent with our data showing

that activation of dopamine terminals in the mPFC biases behavior toward aversion in response

to discrete cues, but does not support aversion in traditional place preference / avoidance

assays.

The observation that the mPFC-NAc pathway did not robustly encode sucrose reward,

nor promote place preference was surprising given studies implicating this projection in these

processes (Britt et al., 2012; Otis et al., 2017; Ye et al., 2016). However the NAc is a

heterogeneous structure composed of anatomically distinct subregions, the NAc shell and core

(Heimer et al., 1997). Considering different territories and cellular subtypes are differentially

involved in reward and aversion in the NAc (Al-Hasani et al., 2015; Badrinarayan et al., 2012;

Budygin et al., 2012; Kim et al., 2017) and that mPFC-NAc projectors may collateralize to other

downstream targets (e.g., claustrum, insula, amygdala), it is possible that non-selective

targeting sends mixed or irrelevant downstream signals. In addition, the mPFC also sends long-

range GABAergic projections to the NAc and activation of this pathway evokes avoidance

behavior (Lee et al., 2014), further complicating the interpretation of our present findings.
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Considering the mPFC-NAc pathway can be further dissected into molecularly defined circuits

(Kim et al., 2017), future studies should investigate these nuances.

Caveats

Calcium transients are linearly- and monotonically-related to action potentials (Chen et

al., 2013; Otis et al., 2017). Our observed increase in calcium transient amplitude and decrease

in frequency suggests that dopamine is modulating the pattern of mesocortical dopamine

neuron firing, perhaps by increasing phasic bursting activity. However it is important to note that

while neuromodulators, like dopamine, can act presynaptically to regulate the probability of

action potential-evoked neurotransmitter release by changing the size and properties of

presynaptic vesicle pools, dopamine also has indirect effects on release probability by

influencing channels that impact action potential-evoked calcium influx (for review, see: Tritsch

and Sabatini, 2012). Considering dopamine can alter intracellular calcium handling (Gee et al.,

2012; Surmeier et al., 1995) and may directly modulate calcium channels, it is possible that

dopamine may alter calcium activity without affecting spiking; thus, the interpretation of our

calcium imaging results alone is limited. However, the addition of our in vivo electrophysiology

data set showing an enhancement in neuronal responses to airpuff by dopamine in mPFC-

dPAG projectors bolsters our claim that dopamine enhances signal-to-noise in this pathway.

Transgenic D1- and D2-receptor mouse lines identify cells with transcriptionally active

dopamine receptor genes but most dopamine transgenic mouse lines were selected based on

accurate D1- and D2-receptor transgene expression in striatal neurons (Ade et al., 2011; Shuen

et al., 2008) - which many not translate into high-fidelity transgene expression in the cortex.

Indeed, discrepancies have reported which highlight the importance of interpreting results from

these lines with caution. For example, Zhang and colleagues (2010) reported over 90% and

-20% of mPFC neurons express D2- and D1-receptors, respectively, using a Drd2-

156



EGFP/Drdl a-tdTomato BAC transgenic line. These numbers greatly contrast with earlier reports

of D1- and D2- mRNA expression (D1 = <20-40%; D2 = <25%) (Gaspar et al., 1995; Santana et

al., 2009). Further, Zhang and colleagues (2010) do not report robust differences in layer

localization, which also contrasts with previous reports (Gaspar et al., 1995). Given these

disparities, results obtained with these transgenic lines should be interpreted with caution and

with these caveats in mind - particularly when utilized outside of the striatum.

While out of the scope of the current investigation, the mPFC also expresses D3- and

D4-receptors, a subtype of D2-type receptors, which profoundly impact behavior (for review,

see: Lauzon and Laviolette, 2010; Nakajima et al., 2013). D3-expressing mPFC neurons do not

co-express D1- or D2-receptors and are also located on mPFC-NAc projectors (Clarkson et al.,

2017); however the precise behavioral function of this specific subpopulation of mPFC-NAc

neuron has yet to be determined. D4-receptors have been implicated in the encoding of

associative fear memories in the mPFC (Laviolette et al., 2005), but whether D4-receptors are

expressed on either mPFC-NAc or mPFC-dPAG neurons is unknown. Investigation into the

subpopulations is an interesting avenue for future research.

Claims regarding differential mPFC circuit regulation by dopamine in vivo are hampered

by our current inability to interrogate the mPFC-NAc circuit in the same manner as the mPFC-

dPAG circuit, using in vivo calcium imaging and electrophysiology with phototagging.

Considering the VTA projects to the NAc, the use of two Cre-dependent systems within the

same subject is impossible with the tools available. We made several attempts to use a Flp

dependent system using a herpes simplex virus (HSV) preparation (HSV-Flp) and later, a

CAV2-Flp, paired with a Flp-dependent GCaMP. We were unable to observe any recombination

using the HSV virus to carry Flp - which we hypothesize may be due to HSV toxicity. While not

currently feasible, in vivo characterization of dopamine's effect on this subpopulation is of great

interest and should be the subject of future studies as new genetic-targeting tools become

157



available. However, we find ex vivo electrophysiology data to be consistent with previously

reported in vivo recordings - also showing attenuated responses via a D2-dependent

mechanism within the mPFC and NAc circuit (Brady and O'Donnell, 2004).

Clinical relevance

These findings have clinical relevance to neuropsychiatric disorders characterized by

dopamine dysregulation in the mPFC. For example in schizophrenia, hyperdynamic

mesocortical dopamine signaling may prime aversion-encoding pathways and underlie

pathologies in paranoid schizophrenia, such as the tendency to assign negative motivational

salience to otherwise neutral stimuli (Goldman-Rakic and Selemon, 1997; Howes and Kapur,

2009; Jensen et al., 2008; Winton-Brown et al., 2014). Our data suggest that mesocortical

dopamine differentially tunes mPFC circuits and highlights the need for targeted dopamine

therapies in projection-defined circuits in the mPFC.
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