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Abstract

Despite being reflexive, primate view invariant object recognition is a complex com-
putational task. These computations are thought to reside in the ventral visual
stream, specifically culminating in inferior temporal (IT) cortex. Recent research in
machine learning has made great progress in modeling primate ventral visual stream
computations. While the end result of current machine learning approaches produces
models that are highly predictive of the adult state of the ventral stream, the learning
approaches themselves are not biologically plausible, requiring tens of thousands to
millions of human-labeled training points. Understanding primate visual development
is therefore not only interesting from the perspective of neuroscience, but also has
practical value in building more robust learning algorithms capable of functioning in
domains where large amounts of human-labeled training information may be difficult
or impossible to create. Better learning algorithms may also produce agents capable
of adapting and behaving in the world not unlike humans. This thesis first describes
work on predicting visual responses across the human ventral stream using convolu-
tional neural networks (CNNs). We then describe a set of natural image statistics
automatically incorporated into high-performing CNNs from supervised training-it
is possible primate development incorporates these or similar natural image statistics
into its synaptic strengths. Finally, we describe the first-large scale characterization
of IT in 19-32 week old macaques. While we find longer response latencies in these
younger animals, we do not find any differences in representation between adults and
juveniles suggesting that, at 19-32 weeks of age, IT already supports robust object
recognition consistent with adults. Our data provide an upper limit on the amount
of training data needed to reach adult-level performance-approximately 2,800 hours
of waking visual experience.

Thesis Supervisor: James J. DiCarlo
Title: Professor of Neuroscience
Head, Department of Brain and Cognitive Sciences
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Chapter 1

Introduction

Primates excel at visual object recognition and are capable of recognizing thousands

of objects in countless variations, positions, and lighting conditions in tenths of a

second. The ease at which we recognize objects is not a trivial feat-approximately

one third of cortex is involved in some form of visual processing and, until recently,

creating algorithms to solve this task eluded multiple fields of study. Our ability to

recognize visual objects is thought to occur in the ventral visual stream, whereby

information flows in a largely feed-forward fashion from lower to higher visual areas

where representations grow increasingly more categorical. Much work has shed light

on lower ventral visual areas [11, but the neural representations in higher ventral corti-

cal areas have until recently proven extremely difficult to characterize [2, 3]. In the last

few years, however, there has been significant progress toward better understanding

of higher ventral visual cortex, combining advances in neurophysiological measure-

ment techniques [4, 5} with leaps in computer vision and computational modeling

technology [6, 7].

Recent progress in neurophysiological measurement techniques have demonstrated

convincingly that IT cortex contains a robust representation of object category and

identity information [4, 5, 8, 9], while advances in computational modeling have pro-

vided quantitatively predictive models for adult V4 and IT neural response patterns

[10, 11].

While these advances provide effective descriptions of the "adult state" of visual
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representation [10], the dynamic learning rules by which visual areas develop remain

unknown. Based on converging evidence from fMRI [12, 13], unsupervised IT learning

[14], and powerful neural network learning procedures [6, 15, 16, 17, 18], we hypothe-

size that visual cortex is refined postnatally, incorporating a myriad of image statistics

[14, 19, 20, 21, 22]. However, it is far from clear exactly what these learning rules are,

especially in higher visual cortical areas such as IT. Even the magnitude and nature

of developmental changes, relative to hard-wired pre-natal cortical structure, remain

unclear. Indeed, visual sensing, occurs even in some single-celled bacteria and may

have played an important evolutionary role in shaping the primate brain.

1.1 Developmental electrophysiology

Anatomical and electrophysiological developmental studies of vision are often sugges-

tive of early maturation with some dependence on visual experience. These studies

are not typically motivated from a computational or behavioral perspective. As a

consequence, the phenomena tested often have unclear bearing on how they might

influence the flow of information through visual areas and how developmental changes

may influence downstream decoders. For example, development of orientation selec-

tivity occurs without visual experience [231 and can be predicted by thalamic inputs

[24], though visual experience can change orientation selectivity in VI [251, but the

significance of these effects in improving the performance of downstream decoders is

not contextualized. Furthermore, visual experience plays a role in maintaining and

sharpening selectivity, in addition to pruning connections from non-visually respon-

sive neurons [26]. There is evidence that V1 ocular dominance is fully adult-like as

early as 6 weeks, with clear ocular dominance as early as 3 weeks 127]. Generally,

studies of early visual areas suggest that experience may play more of a role in main-

taining these anatomical and single-unit response properties rather than in creating

them [28]. Cortical projections to IT appear adult-like by 7 to 18 weeks [29] and

projections from IT to parahippocampus and perirhinal cortex appear adult-like at

one week. Using cartoon-like face stimuli, awake infant IT appears adult-like at the
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earliest tested age of one month [30].

These studies do not show that invariant object recognition in higher visual cor-

tex is present from birth or even soon after. One problem is that much of the visual

development literature focuses on early visual areas and/or rodent models. However,

mice and rats differ substantially in visual function from human and higher primate

vision at all levels of the visual hierarchy [31, 32], having substantially lower visual

acuity [33], no color vision, lacking clear ocular dominance and columnar organization

[34, 35], and having "higher" visual areas that may only differentially respond to spa-

tial or temporal frequencies [31J (as opposed to the high-level object statistics encoded

by primate higher visual cortex). Moreover, most of the existing juvenile macaque

studies (and all such chronic studies) were performed in anesthetized animals, which

in general showed significantly lower numbers of visually driven cells in higher visual

cortex than adult animals when anesthetized [30]. However, the few studies in awake

juveniles show that the general level of visually driven cells does not appear to be

lower than in adults [30]. This suggests the infant visual cortex is at a gross physio-

logical level more sensitive to the effects of anesthesia than adults, which complicates

the interpretation of the anesthetized recordings in regards to development of un-

derlying visual representation. Additionally, simplistic stimuli used in many existing

studies (ex. no position/pose/size variation, cartoon images, no backgrounds), do not

expose several important axes of variation that make higher-level object recognition

challenging [36]. Thus, these studies may not be sensitive to the key computational

machinery that is present in adult IT.

1.2 Development of object and category recognition

While electrophysiological studies of early visual areas are often suggestive of matu-

ration on the scale of post-natal weeks, studies of higher visual cortex and its rep-

resentation of faces and objects are often suggestive of slower maturation. Human

functional imaging studies have demonstrated that while face selective regions are

present at the earliest tested ages (3-8 months-corresponding to approximately 1-2
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month old macaques) [37], they do not have completely adult-like responses until ado-

lescence [12] and their representational similarities may be different from adults [37].

Preliminary juvenile macaque functional imaging results indicate that category selec-

tive areas are not observable until around 40 post-natal weeks and that face selectivity

does not fully emerge until 2 years [38]. Learning experiments in adult macaques also

show significant residual neural plasticity in response to visual experience [21, 201

and suggest that face experience may be required for development of face patches

[39]. Macaque psychophysical studies often point towards gradual emergence of per-

formance on a variety of tasks [40, 281, though these studies cannot localize where

neuronal development occurs, since most or all of the behavioral change might be

due to development in downstream decision-making or motor action circuitry, rather

than in the visual representation itself [40].

An emerging hypothesis in the field that attempts to explain all of these data

is that later visual areas both take longer to develop and are more plastic [41, 421.

Precisely this sort of developmental trajectory can be observed during the training

a convolutional neural network using supervised error backpropagation [431, where

gross orientation selectivity emerges in first-layer model filters early on (Figure 1-1b),

consistent with the observations in V1 early-development studies [27, 261. However,

achieving ecologically-relevant levels of object recognition performance takes an order

of magnitude more time (Figure 1-1b).

1.3 Models of learning

While a number of learning rules have been proposed in the literature, it is not

until recently that any learning rule-bio-plausible or not-has been capable of gen-

erating models approaching human levels of object recognition performance (Figure

1-la). As is shown in Figure 1-la, higher levels of object recognition performance

are generally predictive of higher neural predictivity. We further this line of work in

Chapter 2. Although it is likely that the actual learning procedure used in primate

development shares properties of previously proposed unsupervised learning rules-
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Figure 1-1: Modeling the ventral stream

a. Recent modeling results have made significant strides in capturing neural response

patterns in higher ventral cortex, including IT and V4 cortex (Figure adapted from

[10]). This work has also shown that object categorization performance is strongly

correlated to neural predictivity across a variety of models exhibiting a wide range of

performance levels. Thus, tracking performance levels in models of this kind is likely

to be a good proxy for neural similarity to the adult IT representation. b. Perfor-

mance vs. time for a convolutional neural network model of inferior temporal cortex,
trained via supervised error back-propagation on a categorization task. Mimicking

the known properties of V1 development, orientation selectivity emerges very early

on in model training (see filter insets). In contrast, categorization performance takes

much longer to fully emerge. Performance is highly sensitive to parameter values -

changes on the order of 0.1% of the values can cause large changes to performance

[431, but will leave orientation tuning apparently unchanged. For this reason, gross

developmental features of lower visual areas are likely not indicative of critical but

subtle changes in higher visual areas.
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for example slowness [22], sparseness [44, 45], and Hebbian-like features [46]-these

ideas are not in themselves seemingly sufficient to build representations capable of

supporting invariant object recognition. Likely, a more general optimization function

is being employed which implicitly results in these properties. As an example: recent

modeling work [47, 48, 49, 50, 51] has proposed a number of unsupervised approaches

to training neural networks revolving around the idea of generative networks. These

networks have been used to predict pixels [50], images [52], and sequences of frames

of natural photographs and videos [49] and provide an approach to training mod-

els which does not rely on human-labeled semantic category labels. In some cases,

increased performance on these tasks indirectly results in networks which can also ro-

bustly recognize objects by training linear classifiers on higher-level network output

layers.

While the previously discussed pixel, image, and frame prediction tasks appear

promising, it is conceivable that none of these are the exact task used to drive ventral

stream development. If true, the general task-based optimization approach still may

prove to be useful in shaping how we view unsupervised learning. The exact task

used by primate vision is likely one whose performance necessitates robust object

recognition abilities and whose performance can be assessed with minimal external

information. For instance, perfect frame prediction far enough into the future im-

plicitly requires not only object recognition ability, but also information on spatial

location, pose, 3D structure, among other latent variables. Additionally, assessing

frame prediction performance requires no external supervisory signals and in theory

could be implemented entirely by local layer-wise update rules (chained backpropoga-

tion, for instance).

Identifying a biologically plausible but computationally effective learning rule for

visual development would be of great conceptual interest in systems neuroscience. A

long-standing hypothesis is that a few powerful general learning rules are operative

in cortical development [53, 46, 45, 16]. Understanding the rules governing visual

development we hypothesize will generalize or at least be a step towards having a more

universal learning rule. Insight into the learning procedures used by cortex would
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allow the creation of algorithms capable of adapting and integrating with the natural

world in similar ways as humans and will also be beneficial for medicinal goals. In

the biomedical domain, a key objective is the treatment of developmental neurological

disorders (eg. amblyopia, autism), many of which implicate abnormalities in cortical

learning rules generally and visual learning in specific. For example, autistic patients

exhibit behavioral deficits in face perception and reduced activation in visual face

processing areas [54, 55], a divergence that occurs on the same developmental time

scale on which fully adult face perception emerges [12]. Measuring and modeling

neurotypical development in higher visual cortex will help provide insight into neural

correlates of developmental abnormalities. For Al purposes, an understanding of

neuronal learning will aid in the development of more data-efficient algorithms that

are capable of training neuronal networks in task domains where limited supervision

is available, such as medical diagnostics where millions of labeled training examples

are difficult if not impossible to obtain.

1.4 Organization of thesis

This thesis contains three major components. First, we have used high-performing

neural networks to predict human functional brain imaging responses. We extend

prior work by demonstrating how neural predictivity of models increase as they are

trained on an object recognition task-previously it was demonstrated that high

performing architectures were better predictors of IT responses [10]. Second, we

have observed a set of statistics incorporated by high performing neural networks as

a consequence of supervised object recognition training. We test the sufficiency of

these statistics alone in producing high-performing models and find that they are able

to sustain some, but not all, of the performance indicating that additional statistical

information is learned than what we have described.

Third and finally, we describe an experiment in which we have chronically im-

planted electrode arrays to record neuronal responses to thousands of image stimuli

in the IT cortex of awake behaving juvenile macaques. These data represent a snap-
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shot of the developing primate visual representation, and serve as a key counterpart

to existing measurements using the same stimuli, including electrophysiology in adult

macaques. By comparing juvenile and adult neuronal responses at both single site

and population levels, we have obtained an unprecedentedly large-scale and detailed

picture of the neural correlates of high-level visual development. These data were

collected with two primary goals: (1) test several broad-scale hypotheses predicting

the time-course and extent of primate postnatal visual development at approximately

25 weeks of age (see Figure 1-2), (2) provided we observe representational differences,

test intermediate states of developmental models (see Figure 1-3).

We have benchmarked the juvenile against adult animals via a battery of perfor-

mance and representational dissimilarity metrics and find that juveniles at 25 weeks

old already contain an IT representation capable of robustly recognizing objects. The

one difference we do find between juveniles and adults is a visual onset latency, the

significance of which this might or might not have to behavior remains to be under-

stood.
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AdultI? performance
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Slow "critical-period"
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Birth 6 months ... Adulthood
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Figure 1-2: Constraining neural developmental time-courses

There are multiple uncertainties regarding primate visual development and, conse-

quently, multiple possible broad-scale time-courses for its maturation. Here, we have

sought to address if, and how, the 6 month IT representation differs from adults

(using categorization performance and other measures)-as represented by the sep-

aration of the red and gray horizontal lines. While recording at 6 months does not

give us direct insight into the initial state of IT at birth, it allows us to rule out some

possibilities-such as slower maturation (depicted as the slow "critical-period" and

slow "tabula rasa?' models in the figure) in the case that the juvenile representation

is indistinguishable from the adult representation, or, conversely, ruling out faster

developmental trajectories (depicted as the "innatism" and "mixed" models in the fig-

ure). The mixed model represents an intermediate between the extreme "innatism"

(fully developed representation at birth) and slow "tabula rasa?' model.
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Juvenile 55 .Adult S
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Figure 1-3: Constraining intermediate model representations
We propose that intermediate (non-developed) IT representations can constrain inter-
mediate model representations (and therefore models of primate visual development)
by first calibrating the object recognition performance of the model and neural repre-
sentations. The calibration provides a means to estimate the correspondence between
model training and developmental time in weeks because most model training proce-
dures do not explicitly map onto time (many are based on performing gradient descent
with some form of input training data). Calibration simply consists of mapping two
points in time: (1) the time at which the model reaches the juvenile recognition per-
formance, and (2) the time at which the model reaches adult recognition performance.
These two time points can then be used as snapshots in which other, more detailed,
metrics can be applied (such as with representational dissimilarity matrices, as shown
in the figure [56]). Some models never reach adult performance levels and are auto-
matically ruled out. However, these models could still be compared to intermediate
IT representations and conceivably could predict responses better than models which
do reach adult recognition levels.
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Chapter 2

Modeling the emergence of object

recognition in the human ventral

stream

Human visual object recognition is subserved by a multitude of cortical areas. To

make sense of this system, one line of research focused on response properties of pri-

mary visual cortex neurons and developed theoretical models of a set of canonical

computations such as convolution, thresholding, exponentiating and normalization

that could be hierarchically repeated to give rise to more complex representations.

Another line or research focused on response properties of high-level visual cortex

and linked these to semantic categories useful for object recognition. Here, we hy-

pothesized that the panoply of visual representations in the human ventral stream

may be understood as emergent properties of a system constrained both by simple

canonical computations and by top-level, object recognition functionality in a single

unified framework [10, 57, 581. We built a deep convolutional neural network model

optimized for object recognition and compared representations at various model lev-

els using representational similarity analysis to human functional imaging responses

elicited from viewing hundreds of image stimuli'. Neural network layers developed

'Work done in collaboration with Daniel Yamins, Diego Ardila, Ha Hong, James DiCarlo, and
Justin Gardner
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representations that corresponded in a hierarchical consistent fashion to visual areas

from V1 to LOC. This correspondence increased with optimization of the model's

recognition performance. These findings support a unified view of the ventral stream

in which representations from the earliest to the latest stages can be understood

as being built from basic computations inspired by modeling of early visual cortex

shaped by optimization for high-level object-based performance constraints.

2.1 Significance

Prior work has taken two complimentary approaches to understanding the cortical

processes underlying our ability to visually recognize objects. One approach identified

canonical computations from primary visual cortex that could be hierarchically re-

peated and give rise to complex representations. Another approach linked later visual

area responses to semantic categories useful for object recognition. Here we combined

both approaches by optimizing a deep convolution neural network based on canonical

computations to preform object recognition. We found that this network developed

hierarchically similar response properties to those of visual areas we measured using

functional imaging. Thus, we show that object-based performance optimization re-

sults in predictive models that not only share similarity with late visual areas, but

also intermediate and early visual areas.

2.2 Introduction

Human cortex contains numerous areas with topographic representations of the visual

world [59, 60]. What does each one of these cortical areas do? At least two major

divergent approaches to this general question have been taken to understand areas

in the ventral visual pathway which is thought to be involved in object vision and

perception [61, 62].

One approach, exemplified by research beginning with the primary visual cortex

in cats [63] and monkeys [641, has been to examine the visual response properties
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of neurons and ask mechanistic questions about how properties such as orientation

selectivity in simple cells and invariance to position in complex cells are created

by neural circuitry [65]. This approach has led to computational models of visual

cortical processing in which receptive fields are described as linear weightings [66]

of inputs from neurons with center-surround receptive fields [67, 68]. As this linear

weighting of visual inputs is performed by neurons with similar filtering properties

tiled across the visual field, this stage of processing is akin to a convolution of a filter

with visual input. Linear receptive fields are followed by output non-linearites such

as thresholding and exponentiation [69, 70, 71] and divisive contrast normalization

[69]. These basic computations are proposed to be canonical [72] such that repeating

them in a hierarchical fashion [73, 74, 75] may recapitulate computations performed

by visual areas along the visual pathways.

A second approach, exemplified particularly by research in humans [76, 771 and

monkeys [78, 79, 80, 81, 4] has started largely by asking about whether high-level

features of visual scenes such as the presence of objects, faces, places and other iden-

tifiable semantic categories are represented in temporal cortex. Links between these

representations and perception, for example with faces, are bolstered by similarities

between the perceptual phenomenology [82] and representations in ventral cortex [83].

Moreover, causal evidence in the form of lesion [84] and stimulation evidence links

high-level representations in the ventral visual stream in both monkeys [85, 86] and

humans [87] to perception.

Here we asked if a combination of these two approaches may help explain the

nature of response properties not just of early and late areas, but for the full hierarchy

of areas in human ventral visual cortex. We used a deep convolutional neural network

model [6, 10] whose basic operations were inspired from the canonical computations

derived from early visual cortex such as convolution, threshold non-linearities, non-

linear pooling and normalization. We also constrained the network to develop high-

level representations of object features, by training the network to perform well on

invariant object recognition. Previous work has shown that these network models

develop representational similarity to V4 and IT in monkey [10, 57] and humans [57,
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58]. We capitalized on the ability to measure responses in multiple topographically

and functionally localized cortical areas of the human using BOLD imaging to see if

this framework could be extended to the whole ventral stream from earliest cortical

stages to later ventral areas. While intermediate visual areas such as V2 might be

expected to have some kind of intermediate representation between V1 and later

stages of the visual system (there are many possible such representations), our model

was not explicitly trained to fit V2 responses and therefore was not guaranteed to

show any correspondence. Nonetheless, we found representational similarity between

the neural network and the human visual system in a hierarchical consistent fashion.

2.3 Materials and Methods

2.3.1 Human subjects

Seven subjects (1 female, ages 22-38) participated. Subjects provided written and oral

informed consent before each session and all procedures were approved by the RIKEN

Function MRI Safety and Ethics Committee. All subjects underwent at least four

imaging sessions (anatomical, retinotopy, category localizer and main experiment).

Similar to other studies [88, 89, 90], our analyses required consistent responses to

hundreds of image stimuli over many scanning sessions from each subject. Therefore,

from the original cohort of subjects, we selected the two which had the highest mean

split-half reliability in VI (see the Stimulus response section) to complete a full data

set (at least 9 sessions each consisting of approximately 10 8-minute scans of the main

experiment). Of the two pre-screened subjects chosen to complete the full dataset, one

was an author. This pre-screening procedure was designed to select subjects based

on the overall reliability of data without introducing bias for what representations

subjects exhibit. We note that because of the design decision to collect a large data

set from a small number of subjects, the results presented here are generalizable only

if visual representations in the ventral visual areas across individuals is similar - a

notion that is supported by a great deal of literature both within and across species
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Figure 2-1: Experimental design
Task and stimuli. A, Stimuli contained 8 objects chosen from 8 categories. Each
object appeared in 27 or 28 images in random positions, scales, orientations, and on
random backgrounds. B, Images were shown for 1.25 s followed by a random delay
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of primates [56, 10, 57, 88, 89, 90, 58].

2.3.2 Stimuli

We presented 1785 gray-scale images of objects a median of six times across multi-

ple sessions to each subject. Objects were drawn from 8 categories (animals, tables,

boats, cars, chairs, fruits, planes, and faces) containing 8 exemplars. Each object was

shown from 27 or 28 different viewpoints against a random natural background (cir-

cular vignette, radius 80 centered on fixation) to increase object recognition difficulty

(Figure 2-1). We used a rapid event-related design where each image was presented

for 1.25 s followed by a random delay between 1 and 4 s. Subjects maintained fixation

while performing a 2AFC luminance decrement discrimination task on the fixation

cross [91] whose timing was randomly out of sync with stimulus presentation.

2.3.3 MRI methods

Data were collected at RIKEN Brain Science Institute with a Varian Unity Inova 4T

whole-body MRI scanner using a head gradient system (Agilent). We collected a T1-

weighted anatomical scan (MPRAGE; TR, 13 ms; TI, 500 ms; TE, 7 ms; flip angle,

110; voxel size, ixixi mm; matrix, 256x256x180) and a T2-weighted anatomical

images (TR 13 ms, TE 7 ms, flip angle 110, matrix 256x256x180; 1 mm isotropic

voxels) for each subject. We divided the TI and T2-weighted images to correct for

contrast inhomogeneities [92] and segmented this reference anatomical to generate

cortical surfaces using Freesurfer [93].

We collected functional scans at 3 x 3 x 3 mm (matrix size, 64 x 64 x 27) using echo-

planar imaging. Scans were collected with a TR of 1.25 s, a TE of 25 ms, flip angle

300 using sensitivity encoding (acceleration factor of 2) [941. We showed 210 distinct

images each session (105 stimuli per run, alternating between two run types). In each

functional session, we collected an anatomical scan for cross-session alignment to each

subject's high-resolution anatomical.

Subject 1 (S1) participated in 14 functional sessions and was shown 2539 images.
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Subject 2 participated in 9 functional sessions and shown 1785 images-a subset of

those shown to S1. Our analyses used the 1785 images shown to both subjects.

2.3.4 MRI data pre-processing

We recorded physiological data to reduce noise artifacts. Respiration measurements

from a pressure sensor and pulse oximeter data were used for retrospective estimation

and correction in k space [95]. tSENSE [96] acceleration artifacts were removed with

notch filtering using mrTools. No slice time correction or spatial smoothing was

performed. We corrected head motion using standard approaches [97].

2.3.5 Visual area definitions

We collected one retinotopic session for each subject [91, 98]. The imaging parameters

were the same as our functional sessions (exceptions: r = 2, tSENSE acceleration,

effective TR 1.02 s, 35 axial slices). We positioned slices perpendicular to the calcarine

sulcus. Preferred angle and eccentricity for each voxel were estimated using a Fourier-

based analysis and projected on the gray matter surface.

We used 6 runs for our retintopic area definitions. Two runs of both clockwise and

counter-clockwise wedges were used and one run each of expanding and contracting

rings. In each run we collected 168 volumes (24 volumes per cycle, 10.5 cycles). We

discarded the first half cycle to minimize visual adaptation effects. While maintain-

ing fixation, subjects performed a staircased two-alternative forced choice contrast

discrimination task at fixation to maintain alertness.

Similar preprocessing was performed on the retinotopic sessions as the main exper-

iment. After preprocessing, we time reversed (2 volume offset to correct for hemody-

namic lag and improve SNR) the counter-clockwise runs and averaged together these

runs with the clockwise runs. This left us with an average time-series for the ring and

wedge runs. We determined the preferred angle and eccentricity phase for each voxel

using a Fourier-based correlation analysis. We projected these values on the flattened

gray matter surface and defined border definitions using published procedures [591.
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V1, V2, V3, V3A, hV4, LO1, and L02 were defined in the ventral stream [99, 100, 60].

2.3.6 Category area definitions

Imaging parameters for the category localizer session were the same as functional

sessions (exceptions: r = 4, tSENSE acceleration, effective TR 1.08 s). We showed

natural images matched to have identical magnitude in Fourier space to reduce dif-

ferences between object categories [101]. Scrambled and intact images were shown at

14' height and width. The session was block designed with 12.9 s blocks, 13 images

per block 0.75 s on, 0.25 s off.

Pre-processing for the localizer session was similar to that of our main experiment;

however we applied spatial Gaussian smoothing (6 mm full width at half maximum).

We created a design matrix with predictors for each of the block types by convolution

with a canonical hemodynamic response function (difference of gamma functions,

x = 6, y = 16, z = 6, where x and y were the shape parameters of the positive and

negative functions and z was the ratio of the scaling parameter of positive to negative

gamma functions). Using the design matrix, we fit a GLM to each subject's data

individually. Using the fitted responses, we calculated a contrast for intact stimuli

(scenes, faces, and natural objects) to scrambled. We defined and masked LOC using

a statistical threshold of p < 0.0001 (uncorrected) and removed all voxels within the

retinotpically defined areas (V1-V4). We defined PPA, OFA, and FFA using similar

procedures. OFA and FFA were defined using a faces to objects contrast [102]. PPA

was defined using a scenes over objects contrast [1031. Some of LOC overlapped with

L02, however it should be mentioned LOC is not a superset of LO1 plus LO2, as they

are defined using entirely separate criteria (category localization versus retinotopy)

[104].

2.3.7 Image responses

We used GLMs with PCA components of non-visually driven voxels as noise regres-

sors to estimate image responses of each voxel with GLMdenoise using the package's
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default HRF [105], which produced for each voxel one response (GLM coefficient) for

all presentations (median of 6) of each image. We computed reliability by randomly

splitting the scans into two groups and estimating responses for each group. The cor-

relation between the vectors was our estimate of split-half reliability. We discarded

voxels with r < 0 (similar to [106]) and pooled voxels across subjects resulting in 536

voxels for VI, 407 for V2, 510 for V3, 379 for hV4, 123 for PPA, 192 for OFA, 292

for FFA, 234 for LOL, 299 for L02, 111 for TOS, and 535 for LOC. Our analyses

are based on the assumption that ventral visual representations are similar across

subjects, based on prior work which has shown remarkable representational similarity

not only across subjects but across species [56, 57].

2.3.8 Convolutional neural network architecture

We used a convolutional neural network (CNN) inspired by [6]. Our model consisted

of two branches of three main layers. Each main layer contained one or more con-

volutional stages followed by normalization and pooling. Figure 2-2 illustrates the

architecture of our network. Normalization and pooling followed the first, second, and

fifth convolutional stages. We used the publicly available cuda-convnet package with

minor custom modifications to train and evaluate our model [6]. Our main analyses

focus principally on the outputs of the three main layers.

Each of the 5 convolutional stage was constructed using rectified linear units.

Rectified linear units are a simple non-linearity of the form f(x) = max(0, x) and

were chosen by [6] in part because training networks with this form of non-linearity

is quicker than other non-linearities. The five convolutional stages contained filters of

spatial sizes 11x11, 5x5, 3x3, 3x3, and 3x3 px. Each convolutional stage had 48,

128, 192, 192, and 192 filters respectively.

We used 3 identical response normalization stages as [6]. For a given unit a

representing the activation of channel i at spatial position x, y, the normalized output
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Figure 2-2: Architecture of our convolutional neural network
Beginning with the first layer and extending through until the fully connected (clas-
sifier) layer, the model contains two branches. The first convolutional layers for both
branches each contain 48 filters, followed by 128 filters in the second convolutional
layer, 192, 192, and 192 filters for the third, fourth, and fifth convolutional layers.
We used the same filter sizes (lix 11, 5x 5, 3x 3, 3x 3, and 3x 3 px) for convolutional
layers 1-5 and striding parameters as [6].

is defined as,

rxry

min(N-,i~n/2

where ri is the number of channels in the same spatial location to normalize across,

and N is the number of channels in the layer. Because we initialize all convolutional

weights randomly, the ordering of the channels is initially arbitrary. Like [6], we set

k = 2, n =5, a = 10-4, #/= 0.75.

Our 3 max pooling stages were also defined as in [6]. Max pooling takes the maxi-

mum value across space in each channel. We used max pool windows of size 3 x 3 with

a spatial distance of 2 units between each pooling window. Using a smaller distance

between windows than the size of the windows results in overlapping pooling, which

[6] observed results in a modest boost in model performance than non-overlapping

pooling.

We simplified the architecture described by [6] based on a preliminary analysis of
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which aspects of the model influenced performance on the 2013 ImageNet challenge-

set. Namely, we removed two of the middle fully connected layers (compromising the

majority of the model's free parameters). Because the only remaining fully connected

layer in our model was the top-layer (the classifier outputs), we did not utilize drop-

out, unlike [6]. We additionally reduced the overall size of the network by reducing the

input image size from 224x224 px to 120 x 120 px. With the training/test split of the

2013 ImageNet challenge-set we observed no significant changes in model performance

after making these changes.

2.3.9 Convolutional neural network optimization

The fitting procedure used here follows that of [6]. We learned filters and bias terms

for each convolutional stage and the final fully connected layer with stochastic gra-

dient descent. Batch sizes of 128 images were used from the 2013 ImageNet chal-

lengeset. The model was not trained on any synthetic images. All normalization

and pooling parameters were held fixed and chosen to match [6]. In total, 9,019,111

parameters were learned. The majority of these parameters (6,912x999 = 6,905,088)

were weights for the fully connected layer, which can essentially be thought of as

classifier weights for the ImageNet challengeset-the output of the fully connected

layer (a vector of 999 elements) is directly normalized to give the probability that

a given image belongs to each of the 999 categories. Excluding the fully connected

layer, which we did not use in subsequent analyses, the remaining five convolutional

stages contributed 3x11x11x48, 48 x5x5x128, 128x3x3x192, 192x3x3x192, and

192 x 3 x 3 x 192 weighting parameters respectively per branch, in addition to 48, 128,

192, 192, and 192 bias parameters per branch, for a total of 2,113,024 parameters.

Backpropagation training was performed for several days on a single NVIDIA

Titan GPU for 74 epochs. To prevent overfitting, we augmented the training set by

randomly cropping 120 x 120 px image patches from re-scaled 130 x 130 px images of

the 2013 ImageNet challenge-set. Weights were initiated from a zero-mean Gaussian

distribution with a standard deviation of 0.01. We manually reduced the learning

rate of the procedure an order of magnitude when we observed the log-probability
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on the testing-set no longer decreased. Three such reductions in learning rate were

performed. We terminated the fitting procedure upon observing further reductions in

learning rate did not produce any additional decrements in the log-probability. The

final performance value of the model reached that of -70% correct (chance = 0.1%

correct) and was within error of [6].

2.3.10 Control models

We included three controls: Vi-like [36], V2-like [107], and HMAX [1081 models. V1-

like consisted of Gabor filters at multiple scales, orientations, phases, and frequencies.

V2-like consisted of non-linear conjunctions of Gabor outputs. HMAX contained hier-

archical operations inspired by V1. We included an animate-inanimate RDM, created

on the categorical animacy of each stimulus. The animate-inanimate RDM represents

something of an upper bound to which increased categorization performance can lead

to increased representational similarity for higher visual areas.

The HMAX model was built on similar principles to our CNN. It contained linear-

non-linear layers involving filtering and max poolings. The architecture and training

procedure of HMAX and our CNN, however differ. HMAX, for instance, contains

approximately an order of magnitude less trainable parameters (10' vs 106) and is

a shallower architecture. In addition, its training procedure is not gradient-based,

making it somewhat less optimal in any given training regime. These properties

make HMAX a reasonable intermediate control between our Vi-like control model

and our CNN. To give the HMAX model the best possible chance to perform, we pre-

trained the model using the stimulus images used to evaluate the model (for which

we have BOLD data). This is in contrast to our CNN which was never trained on any

images shown to our human subjects (or even any synthetic, 3D generated images).

2.3.11 Representational dissimilarity matrices

We computed representational dissimilarity matrices (RDMs), like [56], consisting

of one minus the pair-wise correlation of feature vectors (where features were GLM
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coefficients for each voxel in the case of brain areas and model unit outputs in the

case of the model). Diagonal entries were set to 0.

Compared to other studies [56, 57j, we used a far larger stimulus set where each ob-

ject appears in multiple images shown in different positions, orientations, and scales.

Because we were interested in the emergence of object perception, we created RDMs

of object-averaged response vectors where we average features across images repre-

senting the same object. The object-averaged RDMs were also necessary to increase

the amount of signal in our data - our stimulus set was purposely designed to be very

difficult for observers to recognize the objects in order to expose the key computa-

tional aspects of invariant object recognition. Even when given infinite viewing time,

there are many images in our stimulus set that human observers cannot recognize due

to extreme variations in pose, orientation, and scale.

Because responses in each imaging voxel likely result from the activity of multiple

neurons with different feature selectivities, we used a linear re-mapping of model fea-

tures (c.f. [57j). We computed the correlation between model layers RDMs and visual

response RDMs using a linear re-mapping of model features to match a given visual

area's RDM-each model layer and visual area pairing had its own set of weightings.

The advantage of this approach is that it does not require model features be precisely

synonymous with voxels which reflect large collections of neurons with potentially

varying selectivities. The disadvantage of re-mapping is that it may be prone to over-

fitting, which we address with cross-validated bootstrapping and regularization. To

estimate effect sizes, we used cross-validated bootstrapping which has the advantage

of estimating our fitting reliability but is disadvantageous in that it requires us to fit

on random subsets of the dataset rather than all of it. Each training set consisted of

1000 randomly selected model outputs to 15 images for each of 64 objects (960 images

total). Model outputs for the remaining 12 images per object were used for testing.

We found the vector w that maximizes corr(RDM(V), RDM(X o W)), where corr()

is the Pearson correlation, RDM() is the vector of pair-wise row correlations, V is

the matrix of object-averaged voxel responses (objects by voxels), X is the matrix

of object-averaged model features (objects by 1000), W (objects by 1000) consists
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of rows of w, and o represents point-wise multiplication. We find w using the L-

BFGS-B algorithm [109] for 1 iteration (to both reduce computational time and as

a form of early stopping to prevent overfitting). We report the average correlation

on the testing set over 100 bootstraps (Figure 2-3) and 10 bootstraps (Figure 2-5).

We used this procedure to calculate correlation values for all model layers as well as

for all control models. Our linear re-weighting procedure is closely related but not

identical to [571. [57] fit one weight per layer or model instead of per feature. With

the correct normalization, squared Euclidean distances are proportional to correlation

distances and non-negative least-squares on this quantity should maximize the RDM

correlation distance like the method we used here.

Our linear re-mapping procedure did not overfit to the training images (train and

test correlations were similar), due to regularization (early stopping). We additionally

verified that if we were to overfit the linear re-mappings on the training images, that

this would not automatically result in high correlations on the testing images. If

this were the case, the RDM correlations would effectively measure how invariant the

model representation is. Empirically, we found that overfitting, for instance, pooling

layer 3 to training images from LOC produced lower correlations on LOC testing

images, indicating that our procedure would not merely quantify the invariance of

model layers, even if it were substantially overfitting the weightings to the training

set.

We were not able to reliably calculate split-half explainable variance estimates for

this linear re-mapping procedure due to the difficulty of fitting weights on smaller

fractions of our data. However, these estimates were not critical to the hypotheses

tested in this study because we were comparing the relative ranking of model predic-

tivity for each visual area (ex. layer X explains visual area A significantly more than

layer Y). To avoid the problem of finding linear re-weightings using smaller sub-sets

of our data, we instead computed noise ceilings and percent explained variance values

(Figure 2-6) without using the weighting procedure described above. Noise ceilings

for each visual area were computed by splitting the runs of our data into two non-

overlapping groups. With each group, we estimated stimulus responses (beta weights)
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using the procedure described above (see the Image responses section) and computed

object-averaged RDMs for each visual area. We used the correlation between the

RDM from each of the two groups as our noise ceiling for percent explained variance

estimates (Figure 2-6).

2.3.12 RDM statistical analysis

Using the bootstrapping above, we computed p-values testing if Layer A better ex-

plained visual area X's RDM than Layer B (where A = 1 and B = 3, X =V4, for

example). We use the notation PLA<LB to denote the p-value of rVA < rVB, where

TVA is the testing-set Spearman correlation of layer A and visual area V's RDMs av-

eraged over bootstraps. We use Fisher's r-to-z transformation using [1101's approach

to compute p-values for difference in correlation values [111]. The approach tests for

equality of two correlation values from the same sample where one variable is held in

common between the two coefficients (in our case, an RDM of a given visual area).

We report p-values which are not corrected for multiple comparisons. Our approach

bootstraps over independent stimulus samples and avoids problems that can arise

from randomly sampling RDM matrices directly. Direct sampling of the RDM (ex.

randomly sampling elements from it) can be problematic because two such random

samples are not independent-a single stimulus contributes to multiple elements in the

RDM matrix [112].

Spearman rank correlations are known to be biased for RDMs containing many

tied ranks and can produce artificially high correlations [1121. While the animate-

inanimate control RDM has many tied rankings, none of our model or visual area

RDMs contain tied ranks. For this reason, using Spearman correlations with the

animate-inanimate RDM may produce misleadingly high correlations, particularly

for higher visual areas. As noted in [1121, Kendall's Tau correlation penalizes tied

ranks, however, empirically, for our data-set it does not produce qualitatively different

results. That is, even with Kendall's Tau correlation, the animate-inanimate RDM

significantly out-performs all model layers (ex. for a single bootstrap we observe a

Tau value of 0.328 for animate-inanimate to LOC vs. a Tau value of 0.121 for layer
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3 to LOC).

2.3.13 Classification

We assessed model and neural recognition performance with cross-validated linear

support vector machines (SVMs). Classifiers were trained on stimulus category of

individual image responses. Training consisted of 20 random presentations of each

object and testing consisted of the remaining presentations. We report median ac-

curacy over 20 bootstraps. We set the classifier regularization "C" parameter equal

to 0.0005 and computed significance by a one-tailed Welch's t-test. We have not

performed corrections for multiple comparisons.

2.3.14 Performance vs. fitting

During ImageNet optimization, we measured model and neural similarities. At 100

gradient updates (checkpoints) spaced evenly through optimization, we computed

RDM correlations using the procedure above. We sampled 100 points spaced evenly

over the range of model performance values and plotted the average correlation over

model checkpoints within 0.10 accuracy of each sampled point.

2.4 Results

We optimized a convolutional neural network model for object recognition on a chal-

lenging image-set [113] to test the extent it matched the human visual system. After

optimizing using backpropagation, the model achieved ~70% accuracy (chance =

0.1%) on ImageNet, and comparable although slightly reduced performance relative

to humans, consistent with previous work [6, 101.

Emergence of categorical information was evident in model and human represen-

tations. We computed object-averaged RDMs [56] for visual areas and model layers

(see Materials and Methods). Each entry in an RDM is a measure of how dissimilarly

a pair of objects are represented. Arranging the stimuli by category, we observe the
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Figure 2-3: Model and neural representations

Left, Human functional imaging data and model responses to the same stimuli were

used to compute RDMs at different levels of the visual system (top row) or layers

of the model (bottom row). Increasing block-diagonality of the RDMs from VI to

LOC and from Layer 1 to Layer 3 illustrate emergence of categorical representations.

Rank correlations between model layers and visual area RDMs Top, showed better

correspondence than control models (Vi-like, V2-like, and HMAX). Bars indicate

SEM over bootstraps (see Materials and Methods).

emergence of block-diagonality (Figure 2-3). Blocks correspond to the emergence of

categorical tolerance through the ventral stream, as within-category similarities are

increasingly abstracted despite the high levels of variation in the stimuli. The RDMs

of the model (Figure 2-3) also evidence emergence of categorical information.

We quantified recognition performance in model and visual areas by training sup-

port vector machines (SVM) to decode the category of each stimulus response (Figure

2-4). We observe increasing performance as we move from lower to higher model layers

(PL2>L1 = 6.3 x io-48; PL3>L2 = 3.5 x 10-38; see Materials and Methods: Classifi-

cation) and increased performance as we move from posterior to anterior areas (as

shown in Figure 2-4; PV2>V1 = 0.0065; PhV4>V2 = 5.3 x 10-5; PLOC>hV4 = 2.4 x
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Figure 2-4: Object recognition performance
Accuracy for each model and visual area was computed with a cross-validated linear
support vector machine (chance = 12.5%; dashed red line). The same training/test
procedure was used for model and neural responses.

10-71). Vi-like and HMAX models generally perform worse than the layers of our

model (PL3>HMAX = 4.1 x 10-63; PL2>HMAX = 3.2 X 10-37). Vi-like performs simi-

larly to the fMRI VI responses (but worse than all of our model layers-pL3>VI-like =

8.4 x 10-7 ; PL2>Vi-like = 1.2 x 10-63; PL1>V1-like = 5.9 x 10-29). HMAX performs

in between V2 and hV4 responses (PHMAX>V2 = 1.1 X 10-27; PhV4>HMAX = 4.4 x

10-38).

We found correspondence between model pooling layers and visual areas (see

Tables 2.1 and 2.2). Early areas were best explained by early layers and later areas

by later layers (Figures 2-3 and 2-6, e.g. compare layer correlations of V1 to LOC).

V1 was best explained by lower-layers (pL1>L3= 0.0058; PL2>L3= 8.9 x 10~4; see

Materials and Methods: RDM statistical analysis), and LOC was best explained by

higher layers (pL3>L1= 5.4 x 10-6; PL3>L2= 0.13; PL2>L1= 9.9 X 10~7). We observed

intermediate visual areas, such as V2 and hV4, following this trend. V2, for instance,

was better explained by the middle Layer 2 than the top layer (pL2>L3= 0.047).

Our model exhibited higher similarity to the ventral stream than several control

models: a Vi-like model [36], a V2-like model [107], and HMAX [108] (ex. for V1

PL1>HMAX= 1.3 x 10-4; for V2 PL1>HMAX= 0.026, for hV4 PL2>HMAX= 1.8 X 10-3

and for LOC PL2>HMAX= 1.5 x 10-4; see Materials and Methods: RDM statisti-

cal analysis). HMAX, Vi-like, and V2-like models predicted hV4 and LOC RDMs
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Variable Data structure Type of test p-value

PL2>L I Normal distribution Welch's one-tailed t-test 6.3 x 10-48

PL3>L2 Normal distribution Welch's one-tailed t-test 3.5 x 10-38

PV2>Vl Normal distribution Welch's one-tailed t-test 0.0065

PhV4>V2 Normal distribution Welch's one-tailed t-test 5.3 x 10-57

PLOC>hV4 Normal distribution Welch's one-tailed t-test 2.4 x 10-71

PL3>HMAX Normal distribution Welch's one-tailed t-test 4.1 x 10-63

PL2>HMAX Normal distribution Welch's one-tailed t-test 3.2 x 10-37

PL3>V--like Normal distribution Welch's one-tailed t-test 8.4 x 10-71

PL2>V-like Normal distribution Welch's one-tailed t-test 1.2 x 10-63

PLI>V1-like Normal distribution Welch's one-tailed t-test 5.9 x 10-29

PHMAX>V2 Normal distribution Welch's one-tailed t-test 1.1 x 10-27

PhV4>HMAX Normal distribution Welch's one-tailed t-test 4.4 x 10-3

Table 2.1: Layer-wise t-test statistics

Variable Data structure Type of test p-value

PL1>L3 Two dependent correlations Asymptotic z-test 0.0058

PL2>L3 Two dependent correlations Asymptotic z-test 8.9 x 10-4

PL3>L1 Two dependent correlations Asymptotic z-test 5.4 x 10-6

PL3>L2 Two dependent correlations Asymptotic z-test 0.13

PL2>L1 Two dependent correlations Asymptotic z-test 9.9 x 10-

PL2>L3 Two dependent correlations Asymptotic z-test 0.047

PL1>HMAX Two dependent correlations Asymptotic z-test 1.3 x 10-4

PL1>HMAX Two dependent correlations Asymptotic z-test 0.026

PL2>HMAX Two dependent correlations Asymptotic z-test 1.8 x 10- 3

PL2>HMAX Two dependent correlations Asymptotic z-test 1.5 x 10-4

Table 2.2: Layer-wise z-test statistics
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approximately as well as Layer 1 of our model. For earlier visual areas, the control

models were significantly worse at predicting the neural RDMs than any layer of our

model (see aforementioned statistics). Our model exhibited lower correlations than

the animate-inanimate RDM in LOC. However, unlike other controls, the animate-

inanimate RDM does not represent the outputs of an image-computable model. The

animate-inanimate RDM represents something of an upper bound in terms of how

far we might expect increased performance optimization to lead to increased neural

fitting of higher visual areas. It should be noted that we have not arranged the rows

and columns of our RDMs in a way that visually highlights the animate-inanimate

distinction observed previously [56]. However, the animate-inanimate RDM corre-

lations are a quantitative measure of this phenomenon and the high correlations of

higher visual areas (ex. LOC) to this matrix indicates consistency with previously

reported findings [56].

If recognition performance is key to driving correspondence between model and

brain representations, then improving model recognition performance should also im-

prove correlations between model layers and visual areas. We found that the model's

correlations increased as a function of its optimization on ImageNet (Figure 2-5).

For each step the model took toward better performance, it also became increasingly

similar to neural data. As is known from previous work [88, 114], spatial receptive

fields (pooling of inputs) plays a significant role in voxel responses of early vision.

We also observe this - Layers 1 and 2 have higher RDM correlations with VI than

Layer 3 even before the model has been highly optimized. However, the pooling

structure of our model alone cannot explain these results since as the model becomes

optimized, its similarity to V1 and other areas increases, despite the pooling of the

model remaining fixed. LOC is not best explained by Layer 3 until the model has

been well-optimized-that is, optimization drives Layer 3 above Layers 1 and 2.

We additionally analyzed intermediate convolutional and normalization stages

(Figure 2-6) by computing their object-averaged RDM correlations to each of the

visual areas. We observed that the intermediate convolutional and normalization

stages roughly fall between the pooling layers in terms of their mapping to each
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Figure 2-5: Optimization at object recognition performance vs. predictivity

Correlations between RDMs of each model layer (different colors; light purple: Layer

1, medium: Layer 2, dark: Layer 3) and visual area (different graphs) are shown as

a function of model performance on ImageNet taken at different "checkpoints". A

positive trend indicates that, as the model becomes optimized on ImageNet recogni-

tion, it is better able to explain neural responses. Vertical bars indicate SEM over

checkpoints (they become eclipsed by the width of the line plot on the far right of

the plots).

visual area. For practical reasons, Figure 2-6 presents the unweighted RDM correla-

tions. Empirically, we observed that randomly selecting 1000 features is insufficient

to produce stable RDMs from these model stages. Therefore, we present the un-

weighted RDM correlations using all of the feature dimensions for each layer because

computing many more than 1000 feature weightings was infeasible. This change was

necessary because the convolutional and normalization stages contain four to nearly

ten times more feature dimensions than the pooling layers. Because we did not utilize

feature re-weighting, we were able to reliably estimate noise ceilings for these corre-

lations. Determining noise ceiling for correlations where we used feature re-weighting

(Figures 2-3 and 2-5) was infeasible because it requires estimating the weights on

smaller subsets of the data for which we were unable to learn stable weightings.
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Figure 2-6: Object-averaged RDMs for all model stages
A, Shown are the unweighted model RDMs-they are not re-weighted to any of the
fMRI visual area responses, unlike Figure 2. The pooling stages represent pooling
layers 1 through 3 which were used in our main analyses. B, Shown are the percent
explained variances between each model stage and visual area. We did not re-weight
the model features in this analysis-instead of sampling 1000 random features we used
all features from a given model stage. Blue boxes indicate, for each selected ROI,
which model layer exhibited the highest correlation to the ROI.
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2.5 Discussion

By analyzing human BOLD responses to hundreds of images, we were able to compare

representations of our deep convolutional neural network to those of early, intermedi-

ate, and late visual areas simultaneously, thus extending previous work [10, 1151 both

to humans and to the hierarchy of topographically and functionally localized visual

areas (c.f. [57, 581). We found that a deep convolutional neural network optimized

for object recognition had representational similarity to human ventral stream visual

areas in a hierarchically consistent fashion - early layers best predicted early visual

areas and later layers best predicted later areas. The intermediate convolutional and

normalization layers residing between the pooling layers exhibited similar, but not

as precisely ordered mapping (ex. the second convolution and normalization layers

produce very similar RDMs; Figure 2-6B). The hierarchical correspondence between

the network pooling layers and human cortical visual areas increased as the model's

recognition performance was optimized to perform object recognition, suggesting that

the functional constraint of object recognition performance was a key component for

representations to emerge that resemble ventral visual stream representations. Taken

together, our results suggest that biologically plausible computations (convolution,

threshold non-linearities, pooling and normalization, [72]) coupled with the top-level

constraint of image recognition performance is sufficient to produce hierarchical rep-

resentations similar to those found in the human visual cortex.

Our analysis of visual representations averaged BOLD responses and model rep-

resentations to the same object shown from different views, thus stressing object

properties common to different viewpoints over ones that are different between view-

points. Examining responses to individual exemplar images with a single viewpoint

[57] might give insight into the development of tolerant representations, however, our

stimulus set did not include enough repeats of the same image to allow for split-half

reliability sufficient to analyze without averaging across all views of an object. A po-

tential concern with our object-averaging procedure is that it might artificially favor

stronger representational correspondence between the model and more view tolerant
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cortical areas [116, 5, 117]. However, we did not find this to be the case. Instead,

correlations were of comparable magnitude across VI to LOC to the model, what

differed was which layer best correlated with each area. We note that correspondence

after object-averaging does not necessarily mean that all visual areas or model layers

have highly tolerant representations; incidental properties of objects that are still not

averaged out across different views might also drive correlations between the model

and cortical responses.

The notion that the visual system is hierarchically organized [118] suggests that

intermediate visual areas like V2 and V3 contain intermediate representations, but

intermediate in what sense? Our results demonstrate that similar intermediate repre-

sentations naturally emerge from a deep convolutional network as object recognition

performance is optimized, suggesting that the top-level object recognition constraint

is sufficient to constrain these intermediate representations. An alternative is that

similarity to intermediate areas might only emerge when each model layers are in-

dependently optimized for a relevant task (e.g. edge detection for the first model

layer, curvature conjunctions for middle layers, object recognition for the higher lay-

ers). Nothing in the training of the neural network forced representations to conform

to the intermediate representations in visual cortex - the neural network could have

learned to generate categorical representations through completely different interme-

diate mechanisms than those in visual cortex, but our evidence suggests otherwise.

While our approach differs from others who have sought to understand what explicit

computations might be done in intermediate areas, such as for curvature [119, 120, 3],

angles [1211 or for conjunctions of orientations [71, 122, 123, 124] or other features

[125, 126], we note that our results do not preclude such an understanding of inter-

mediate visual areas. To what extent the intermediate layers of the model can be

characterized as making such explicit computations is a matter of continued investi-

gation which could, in principle, be done by analysis of the receptive field properties

of neural network units [127].

We found that training on object recognition performance was sufficient to drive

representational similarity between the model and the human visual system suggest-
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ing that model performance and not the specific model architecture was the important

factor. Indeed previous analyses [10] showed the strongest correlations of model to

monkey physiology data was driven by object recognition performance rather than

any specific model parameter. This suggests that the exact formulation of the neurally

inspired operations [128, 1] like convolution (linear RFs), rectification (spike thresh-

old), normalization and pooling in a layered architecture are less important than the

top-level object recognition constraint. Therefore, if other hierarchical models of vi-

sual processing similar in architecture to ours, such as HMAX [75], could be trained

to have much higher recognition performance, its representations might become more

predictive of the hierarchy of the human ventral stream.

While we trained our network solely for object recognition, human visual areas

including in the ventral stream likely subserve a multitude of visual functions, and

moreover some make connections into dorsal stream areas in parietal cortex thought to

subserve other functions such as action planning [62j. Why then is object recognition

performance sufficient to create representations in our model similar to the visual

cortex? Object recognition performance may instantiate representations that also

support read-outs for other object properties such as position or 3D orientation that

might be important for visual functions such as action planning. Alternatively, but

not mutually-exclusively, training networks to perform multiple different tasks may

better constrain representations to match across multiple visual areas in humans.

There are many facets of visual representation in human visual cortex which are

not adequately predicted by the model. For instance, we found that the animate-

inanimate distinction was a better predictor of higher visual area responses than our

model. However, animacy, like many high-level semantic categories [102, 129, 103,

130] is not (yet) image-computable and therefore does not represent a model of visual

processing. It may be that top-down input representing linguistic, semantic and other

cognitive factors or high-level conjunctions and associations between complex stimuli

may be required to fully explain high-level representations, particularly for complex

representations in the most anterior parts of the ventral stream [131]. It may also be

the case that additional task constraints such as better model training performed on
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even more realistic object-recognition challenges than ImageNet categorization [10]

are needed to improve the model correspondence to human visual areas. Our model

also does not yet predict the discrete changes in representation for successive and

neighboring areas in human visual cortex for low-level visual features like decrements

in image contrast [1321 or motion coherence [133]. Nor does it predict spatially com-

pact clusters of similar representations such as those found in face patches [102, 81].

Human object and, in particular, face recognition display particular phenomenology

[82, 134, 135] that may be different from the phenomenology and the types of errors

that are made by deep convolutional networks. Thus suggesting that deep convolu-

tional networks using current training regimes are not recapitulating all aspects of

human object vision and representation [136, 137]. Nonetheless, our results here sug-

gests that starting with biologically inspired computations and a top-level description

of just one important function of the visual system can provide a sufficient starting

point for explaining representations in the whole set of hierarchical visual areas we

examined in human cortex. Our results thus challenge the idea that each visual area

in the hierarchy of visual areas should be understood as having a cicumscribed and

easily definable function.
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Chapter 3

Statistical properties of

high-performing CNNs and their

relation to natural image statistics

and unsupervised learning

Recent advances in computer vision and machine learning have made it possible to

train large neural network models to accurately recognize objects in natural images

from thousands of categories. To achieve high performance, these networks are typi-

cally trained on millions of human-labeled images. Here we analyze several statistical

properties of filters from high-performing supervised models. We find that statistics

of the learned filters exhibit strong similarity to the output statistics of the preceding

layer, starting with the natural image statistics at the first layer1 . By constructing

models optimized to match these natural statistics, we then test the sufficiency of

these statistics for producing recognition performance on a challenging recognition

task. We find that we are able to maintain the performance of the fully supervised

model at the first two layers of high-performing networks. With three layers and be-

yond, these same statistics also maintain high performance, but no longer match that

'Work done in collaboration with Daniel Yamins and James DiCarlo
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of the original supervised model. The work presented here provides a step towards

better unsupervised learning procedures.

3.1 Introduction

Current state-of-the-art computer vision algorithms rival the ability of humans to

recognize thousands of object categories in natural image photographs [127]. These

models consist of large convolutional neural networks containing tens of millions of pa-

rameters and are usually trained by gradient-based backpropagation procedures that

require millions of human-labeled images to prevent overfitting [138, 6j. For tasks

where limited labeled data exists (ex. medical diagnostics, sensors outside the visible

spectrum, etc.), training these networks can be difficult. Moreover, while these large

supervised networks have been shown to predict the fully-developed adult neural rep-

resentations in brain areas that are responsible for visual object recognition [10, 11],

it is very unlikely that the heavily supervised training algorithms used to create these

networks accurately describe the neural learning rules by which brains build these

representations during development. Thus, finding unsupervised or semisupervised

learning procedures that equal the performance of supervised procedures would be of

great relevance, as such algorithms could be flexibly and efficiently deployed in a wide

variety of uncontrolled real-world tasks, and potentially yield a better understanding

of the biological visual learning.

A variety of unsupervised learning rules have been put forth in the literature, many

of which are capable of producing high-performing (but not currently state-of-the-art)

models on challenging recognition tasks. These learning rules often take the form of

simple mathematical formulations that optimize filter parameters to produce one or

another pre-determined statistical property, (ex. reconstruction/auto-encoding [139,

140, 141], slowness [22], sparsity [45], denoising [142], etc). Historically, however, these

ideas were proposed before much of the recent capacity of supervised convolutional

neural networks was fully realized. With the advent of high-performing convolutional

neural networks, we take a different approach. We ask: what statistical properties
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of the supervised filters are necessary and sufficient to replicate the performance of

already high-performing models?

We describe an initial set of summary statistics of convolutional filters, based on

the observation that second-order correlation statistics describing each layer's filters

closely resemble the correlations in the input statistics to that layer (or natural image

statistics in the case of the first layer). We test the extent to which filters optimized

to match these key summary statistics produce high-performing models. We find that

for the first two layers, these statistics are a sufficient characterization for producing

models with comparable performance to supervised models. Above the second layer,

we find that a performance gap opens up, suggesting that it will be necessary to

identify additional statistical constraints to produce high-performing models.

3.2 Prior work

Most previous work on unsupervised feature learning is based around the general idea

of optimizing for network outputs with specific properties (ex. slowly varying features

[221, features with denoising or reconstructive properties [142, 139, 1411, sparseness,

etc. [143, 144]). These objective functions were often first derived from intuitions

about what constraints might have shaped the primate visual system (ex. sparseness

from energy constraints [45]) or based on suspected properties of high-performing

models (ex. autoencoding or formulations of mutual information). While many of

these approaches can be used to produce high-performing models or have provided

insight about primate vision, no known unsupervised procedure is currently capa-

ble of producing a model with performance near that of the current state-of-the-art

supervised models. Much less work has been done however on exploring objective

functions on the statistical properties of filters directly, rather than the properties of

their outputs. This discrepancy is partly due historically to the fact that, until rela-

tively recently, the full potential of supervised convolutional neural networks had not

been fully realized, therefore no good target existed for which these properties could

be studied. Nevertheless, many ideas have been put forth (ex. ICA with sparsity con-
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straints [45, 145, 146], efficient coding, etc. [147]) that, when implemented, produce

Vi-like properties at early model layers [45], and in some cases also produce models

that perform well on digit recognition and texture classification problems [148]. Ad-

ditional regularities of natural image statistics (eg. spectral properties [1491, spatial

correlations, joint distributions of pixel intensities [1471) have been observed, but no

known study has explicitly incorporated this information into a learning procedure

capable of producing a deep, high-performing network.

While many intuitive and conceptually elegant descriptions have been found to

characterize filters in the first layer of neural networks (ex. [451), describing the

properties of higher-level model filters has proven more difficult. In part due to this

difficulty, [127, 15] has proposed visualizing feature projections from intermediate and

higher-level model filters. These approaches provide insight into the salient properties

and features of images these model layers are representing, but do not directly provide

insight into the regularities and properties of the filters themselves. It has been

suggested for some models that much of the information contained in these filters is

redundant and predictable by a relatively small proportion of filter parameters [150].

Here we present a formulation of summary statistics that evidences clear structure

in intermediate model layer filters-structure that is predicted by the input image

statistics of each layer.

3.3 Summary statistics

We build on prior work which has sought to understand and improve deep convolu-

tional neural networks by examining the output properties of the network. However,

instead of searching for regularities in the output properties of high-performing net-

works (sparsity, reconstruction, denoising, etc.), here we have searched for statistical

regularities in the filters themselves. The following three sub-sections describe sum-

mary statistics that, when matched, significantly increase model performance relative

to untrained baseline.
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3.3.1 Second order statistics

The main statistical constraint we work with are second order correlational statistics.

We find that the patterns of filter second order statistics observed in backpropagation-

trained models closely matches the natural image statistics of the dataset the model

was trained on.

The filters of a convolutional neural network (CNN) can be thought of as a four-

dimensional tensor, in which the first dimension is the channel dimension, repre-

senting the multiple dimensions in the input data; the second and third dimensions

represent spatial dimensions over which the convolution operation is performed; and

the last dimension is the filter dimension, representing the multiple axes of output

that the filters define. Thus, for a CNN containing N layers, the i-th layer filters are

a real-valued tensor of shape (nci, fsi, fsi, nfi), where nci is the number of channels,

f si is the filter spatial shape, and nfi is the number of filters at layer i E [1, ... , N. In

our case, the first layer takes input from 3-channel color images, so nci = 3. Because

the filter dimensions of one layer feed into the channels of the next layer, nfi = nci+1

for all i.

To define second-order filter statistics (Fig. 3-1), we reshape F so that the channel

and spatial dimensions are unravelled, leaving a two-dimensional tensor Fi (e.g a

matrix) with shape (nci - fsi, nfi). The second order statistics of Fi are then defined

as the pairwise Pearson correlation of the rows of this matrix, e.g.

Mi[j, k] = corr(i[j], F[k]).

The matrix Mi is of shape (nc - f si, nci - fs?).

Second order natural image statistics are defined in a similar manner to the statis-

tics for the filters. Randomly sampling K image patches of size fsi x fsi, produces

a tensor of shape (3, fsi, fsi, K). The tensor is then reshaped into a 2-tensor just

as for the filter values described above and then z-scored across the first dimension

(removing luminance fluctuations across patches). The row-wise correlations are then

computed to produce a matrix No of shape (3 - fsl, 3 1 fsi).
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Figure 3-1: Procedure for computing filter and natural image statistics
Each convolutional layer can be represented by a four dimensional tensor:
(ncL, fs, fs, rf), where nc, is the number of input channels (ex. for layer 1, this is 3
for the input channels red, green, and blue), fs2 is the size of the filter in pixels, and
mf, is the number of filters. The filters of layer i - 1 correspond to the channels of
layer i. Similar statistics can be computed for the input data that each layer receives.
For example, with the first layer a four dimensional tensor can be created with image
patches, with identical dimensions to the filter matrix except for the last dimension
which represents the number of patches used to compute the statistics-empirically
we find that any random selection of approximately 5,000 image patches produces
almost exactly identical statistics. We reshape these 4-tensors into two-dimensional
matrices of size c-1* fs x rf and mcpi* fsg x K and calculate second order statistics
as the pair-wise row correlations. For the second layer, a cropping of the full corre-
lation matrices are shown to illustrate detail. Correlations within a single channel
are shown as blocks of size fsa2 x f, 2 along the diagonal (ex. 112 x 112 for layer
1, 52 x 52 for layer 2-blue boxes in the above figure). Correlations across pairs of
channels are shown ascs c of size fs 2 x for 2 along the off diagonals (ex. red boxes
in the above figure). Within each of these fs x fs blocks are blocks of size fsi x fs
representing the correlation of individual filter pixels with all other pixels. Diago-
nals in these sub-sub blocks represent the extent to which a given spatial location is
correlated across two pairs of channels.

54



This same idea can be repeated for each layer. In CNNs, the inputs to layer i are

the outputs of layer i - 1. For K original inputs of square shape, the output of layer

1 will have shape (nfi, o, o, K), where o is the output-size after layer 1 (which will

be dictated by the original input image size, border effects, padding, and potential

pooling operations). By randomly selecting spatial patches of size fs2 x fS2 for each

input, we can compute N1 exactly as M2was computed. The i-th layer second-order

natural image statistics, which we will denote, N, can be defined iteratively, and will

be the same shape as the filter statistics Mi. Empirically, we find that we do not need

K (the number of sampled image patches) to be larger than 5,000 for the values in

each Ni to stabilize.

For both natural image and filter statistics, the basic structure of the correlation

matrices shows significantly more correlation along super-diagonals close to the main

diagonal, capturing the fact that nearby pixel pairs have more similarity than further

ones (Fig. 3-2). The rate at which this correlation falls off is characteristic of the image

data. However, there are channel pairs for which the correlation is high, capturing the

fact that those channels share some common features relative to the input data. At the

first layer, this simply expresses the fact that the red, green, and blue color channels

in images are strongly related; at higher layers, this expresses a more sophisticated

higher-order similarity structure.

A key "empirical" observation that we base our work on is that, for filters trained

via back-propagation on complex categorization tasks, Nj_1 bears a striking resem-

blance to Mi. Those channel pairs for which the natural image statistics (in Ni_ 1)

show high correlation are invariably those for the filter statistics at the next layer (in

Mi) show high correlation. In other words, the supervised learning process causes

filters to learn some aspects of the natural statistics of the environment, as measured

by these second-order statistic metric. However, the relationship between Nj_1 and

Mi is not trivial, because certain features of the natural image statistics seem to be

reliably changed in the filter statistics (Fig. 3-2).

We have observed that filters from supervised models trained on different image-

sets have significantly different statistics, but that these will correspond to differences
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Figure 3-2: Filter and natural image statistics for each convolutional layer
The bottom row represents the magnitude of second order filter statistics of a CNN
trained on ImageNet and the top row represents the magnitude of second order output
statistics of the previous layer (i.e., what each corresponding filter layer sees as input).
See Fig. 3-1 for details on how these statistics are computed. Here we show sub-
portions of the correlation matrices to emphasize detail.

in the natural image statistics in the image-sets themselves. For example, filters

trained on ImageNet categorization (Fig. 3-2) will correspond to ImageNet natural

statistics, while filters trained CIFAR (not shown) will have second-order statistics

closely reflective of the correlation statistics in the CIFAR dataset. We have also

observed that the second-order filter statistics appear to be determined in a largely

layer-wise fashion, meaning that for a layer i in a k-level model, the filter statistics

Mi will be very similar to those from the k - 1-level model in which the top layer has

been removed. These characteristics suggest that matching the second order statistics

of filters might be a fruitful route toward an unsupervised learning procedure.

Two key questions, however, are (1) unsupervised-ness: how does one compute

Mi from Ni_ 1 , since the relationship is not trivial?, and (2) utility for performance:

even if one was able to perfectly predict Mi from the unsupervised data, is matching

Mi useful for increasing the performance of a model above random baseline? In

this work, we address question (2), because without performance utility additional
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considerations are irrelevant.

We addressed this question by optimizing filter values to match the Mi statistics

of a backpropagation-trained model. We then substituted these filters back into the

model and computed performance on ImageNet classification tasks (see Section 3.4.1

below). The performance of the statistically-matched models was not significantly

higher than the random baseline, showing that second order statistics alone are insuf-

ficient to produce high performing models. This insufficiency led us to examine the

differences between the statistically-matched filters and those from the original super-

vised model. In this process, we found two additional constraints that, when taken

together with second-order filter matching, do produce higher-performing models.

3.3.2 Sparsity in the frequency domain

We found that filters optimized to match only the second order statistics of the

fully supervised filters lacked specificity for high-frequencies in the spatial frequency

domain, unlike the original target backpropagation filters (Fig. 3-3). We chose to

remedy this by optimizing for sparsity in the spatial frequency domain. By making

use of the discrete Fourier transform (DFT) matrix [151], optimizing for sparsity in

the frequency domain amounts to minimizing the Li norm of the product of the DFT

matrix and each filter. We compute the Li norm for each filter channel individually

and minimize the sum across all channels. Specifically, we sought to minimize:

nfi nci

Sparse(X) = [ 3 jDFT(Xf,c). (3.1)
f=1 c=1

3.3.3 Correlated channels

With backpropagation-trained supervised models, we noticed that each filter generally

converges to comparatively similar patterns across its channels. This observation is

particularly apparent in layer 1, where filters either are effectively gray (near perfect

correlation across all 3 color channel) or are color-opponent (correlation near 1 or -1).

However, filters matched to have second order backpropagation statistics and sparsity

57



in the frequency domain do not have such high between-channel correlations (Fig. 3-

3). Therefore, we have added a constraint to impose this property. Specifically, for a

given layer, we sought to maximize, for each layer i,

nfi nci nci

ChannelCorr(X) = E E corr(Xf,, Xf,d) (3.2)
f=1 c=1 d=c+1

where X is the filter block tensor (of shape (nfi, nci, f s)).

3.4 Statistic-Matching Procedure

We wished to evaluate performance of models that had been matched for the three

summary statistics described above, comparing them to the performance both of the

original supervised back-propagation models as well as random-filter controls.

3.4.1 Sequential Substitution

Our strategy was to start with a fully supervised model, with filter blocks bi, b2, ... , bk,

produce filter blocks MI1 , m2 , .. . , ink that matched the statistics of the backpropagated

filters, substitute these matched filters into the original architecture, and then test

the performance of this architecture on the original ImageNet classification task. This

substitution was done in a sequential fashion, as opposed to all at once. This was

necessary because the summary statistics that we use are agnostic to the ordering

of filters in the filter block, and random permutation of the filters would produce

the same summary statistics. However, subsequent layers are not invariant to the

ordering of the filter block, because it is transposed into the channel dimension at

the next layer. Thus, the first matched filter block, m1 , will be out of alignment with

the channels of the second back-propagated filter block b 2 . Thus, having matched

statistics for mi, we retrained all subsequent layers on mi, using backpropagation.

This procedure produced a new b', whose statistics we matched producing a filter

block M 2. We then retrained layers 3 and above to produce a target b', and so on.

This procedure was repeated for all model layers.
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3.4.2 Optimizing for summary statistics

To produce the matched filter blocks each layer, we optimized parameters within

the filter block so that all three of the summary statistics described above would

be matched between mi and the target supervised blocks. To do so, we linearly

combined the three terms (e.g., matching second-order statistics, minimizing DFT

sparsity, maximizing channel correlation) into a single optimization criterion:

Opt(X) = ||Mi(F) - M(X)II + A -Sparse(X) - A2 - ChannelCorr(X) (3.3)

where A, and A2 are two hyperparameter weightings. We used the same hyperparam-

ctcr weightings for all experiments in this work. We found that the performance of

the resulting filters is insensitive to the exact hyperparameter choices in a wide range.

Because all of our summary statistics are differentiable, we analytically derived gra-

dients and minimized Opt(X) using the L-BFGS-B algorithm [1091.

3.5 Are the summary statistics sufficient to produce

high-performing models?

To test the extent to which the summary statistics are sufficient to produce high-

performing models, we performed the sequential substitution analysis described in

the previous section on an architectures whose filers had been trained using error

backpropagation [152] on the 2013 ImageNet challenge-set. Unlike the architectures

in [6, 127], we simplified our architecture based partly on previous work [127, 153]

examining which architectural aspects affected performance. We did not use any

normalization layers as we observed, consistent with previous results [153], that nor-

malization layers do not substantially affect performance.

Specifically, we used a 3-layer architecture without intermediate fully connected

layers, only including the final fully connected classifier layer. This architecture con-

tained 3 layers consisting of convolutional followed by max-pooling. The filter sizes
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of the convolutional layers were 7, 5, and 3 square pixels, respectively. The window

size of the pooling was 3 square pixels and the stride was 2px. We performed our

tests for two versions of this architecture, on in which all layers contained 48 filters,

and on in which all layers contained 128 filters. All models were given 128 x 128-sized

images inputs and were trained using the backpropagation procedure described in [6]

(ex. batch sizes of 128 images, and a learning rate that was stepped down manually

three times when training error decrements plateaued).

For the first two layers of substitution, the performance of the resulting models

was indistinguishable from that of the original supervised, backpropagation models,

to within error bars. Visually, the filters of the first layer are also very qualitatively

similar to the filters of the supervised models (Fig. 3-3). Fig 3-4 and Table 1 present

performance results as we sequentially substituted statistically matched filters for

layers 1 through 3. For the first two layers, the statistically matched filters are able

to maintain the original backpropagation model's performance, suggesting that they

are a sufficient summary with respect to producing high-performing models. There

is, however, a noticeable loss in performance as the final third layer is substituted

into the model, indicating that additional constraints need to be brought to bear to

fully summarize the relevant properties of high-performing filters.

3.6 Generalization to other datasets

To quantify the extent that our statistically matched models generalized to other

datasets, we measured performance on the Caltech 101 and 256 datasets (Table 2).

We found that the substituted filters generalized to the same extent as the original

supervised filters. That is, for layers 1 and 2, the statistically matched filters per-

formed as well as the supervised filters. For the third layer, the statistically matched

filters had lower performance numbers than the supervised filters, consistent with the

lower performance values also observed on the ImageNet challenge-set (Table 1). We

measured all performance numbers using a bootstrapped, cross-validated maximum

correlation classifier (500 held-out test images) on the outputs of the fully substi-
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Model ILSVRC 2012

3-48-bLl-bL2-bL3 69.6 4.8%
3-48-mLl-bL2-bL3 73.9 t 4.1%
3-48-mLl-mL2-bL3 71.4 4.1%
3-48-mLl-mL2-mL3 79.6 t 3.5%
3-48-random 93.3 2.2%

3-128-bLl-bL2-bL3 53.1 4.2%
3-128-mLl-bL2-bL3 48.4 4.4%
3-128-mLl-mL2-bL3 55.6 5.2%
3-128-mLl-mL2-mL3 68.4 4.3%
3-128-random 89.3 2.7%
3 conv. + no fully conn. layers [1271 71.3%
3 conv + 2 fully conn. layers [1271 45.4%

Table 3.1: ILSVRC classification error
Layer names are denoted by (layer number)-(number of channels)-(backprop (b)
or matched (m) statistics)L(layer number). For example 3-128-bLl-bL2-bL3 cor-
responds to a fully supervised model (blue line in Fig. 3-4) and 3-128-mLl-mL2-mL3

corresponds to a model where all filters are derived from summary statistics (light

blue line in Fig. 3-4). Also shown are previously reported accuracies from models
with similar architectures to ours.

tuted models (the models 48-mL1-mL2-mL3 and 128-mLl-mL2-mL3 in Table 1). We

additionally included models of the same architecture with random filters as a control.

3.7 Discussion

These results are lower bound for the extent to which these summary statistics can

maintain performance. There are several sources of error which, if fixed, might lead

to higher performance with the three summary statistics we use here. First, the

backpropagation procedure we use is particularly susceptible to getting stuck in local

minima when initial layers of the model are held fixed. For example, as a control,

we started with a fully supervised 3-layer model, but reinitialized and re-learned

just the third layer filters and the fully-connected classifier layer, while holding the

first and second layers fixed. This yielded final models that were significantly less

high-performing than the original. This indicates that if we used a backpropagation

procedure that was better able to handle just learning top layers, the target statistics
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Table 3.2: Caltech classification accuracy
Layer names are denoted by (layer number)-(number of channels)-(optimization
type). The "matched-stats" entries represent outputs from fully substituted models
(all filters are determined from matching the backpropagation summary statistics).

62

Layer [ Caltech 101 Caltech 256

1-48 backprop 47.0 1.8% 19.9 0.66%
1-48-matched-stats 51.7 0.33% 20.6 0.91%
1-48-random 44.7 t 1.6% 15.3 2.3%
2-48-backprop 57.9 + 2.2% 25.6 0.75%
2-48-matched-stats 53.9 0.75% 22.3 0.33%
2-48-random 50.0 1.5% 18.0 1.3%
3-48-backprop 65.6 1.3% 33.3 + 0.96%
3-48-matched-stats 62.4 2.5% 29.5 0.81%
3-48-random 46.2 0.33% 18.3 1.2

1-128 backprop 52.0 0.28% 21.2 1.2%
1-128-matched-stats 52.9 0.74% 21.0 0.49%
1-128-random 43.1 + 2.4% 15.2 0.59%
2-128-backprop 61.1 0.28% 29.5 1.1%
2-128-matched-stats 59.1 0.38% 30.1 0.75%
2-128-random 50.2 t 1.9% 19.2 1.8%
3-128-backprop 68.7 i 1.6% 37.4 + 0.16%
3-128-matched-stats 58.7 0.84% 27.8 1.4%
3-128-random 50.0 2.1% 19.7 1.6

4 conv. layers 71.0 1.0 % 33.9 + 1.1%

(unsupervised) [15]



learned for the higher layers in the sequential procedure described in section 3.4.1

might be of better quality. Secondly, for the larger 128-filter model, the backpropa-

gation procedure takes many epochs to converge, substantially increasing the amount

of time necessary to re-train the model multiple times. We might have had mod-

estly better performance if we ran the backpropagation procedure for the 128 channel

mLl-mL2-bL3 model (brown line of Fig. 3-4) until performance plateaued. However,

even with these factors, we still suspect that additional statistical constraints will be

necessary to fully capture the performance of higher-level layers.

It has been observed that in supervised models trained with backpropagation,

especially with weight-decay, that a significant fraction of filters are "dead", meaning

that across the spatial and channel dimensions, the filter has very low variance. Unlike

the backpropagation models, the statistically matched filters did not have dead filters

- a seemingly desirable property as minimal, if any, useful information passes through

dead filters. Another observable difference between the statistically matched and

backpropagation filters is that the latter do not show the rough circular aperture seen

in most of the backpropagation filters (Fig. 3-3). The significance of the lack of an

aperture is unclear beyond layer 2 where the filter size is small, but for the first two

layers our substitution analyses indicate that this difference does not appear to affect

performance.

3.8 Conclusions and future directions

We have found that matching three simple statistical summaries of filters learned

by backpropagation algorithms can be useful in producing performance gains over

random filter controls. The performance gap between the statistically-matched and

original fully-supervised filters is negligible for the several network layers, but in-

creases thereafter. Each of the three statistical summaries on their own are unlikely

to be successful at producing above-random performance, but taken together they

constrain filter values in a meaningful way.

This work will have value for producing better unsupervised training algorithms if
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several key obstacles can be overcome. One such obstacle is that the three statistics

that we match here are, obviously, insufficient at higher network layers. Following our

approach, remedying this problem will involve identifying additional statistical sum-

maries that can be matched. Going forward, we will compare statistically-matched

filters we have built so far with those from fully supervised networks, at higher layers,

to determine statistical divergences between them.

A second obstacle is that the statistics we use here are determined from fully-

supervised filters. Producing a fully unsupervised procedure would involve showing

how to learn these statistical summaries from the original input data. However, as we

saw in Fig. 3-2, it appears that there is a strong relationship between the natural im-

age statistics and filter statistics that we compute. We suspect that this relationship

can be stated in the form a mathematical transform that produces filter correlation

statistics as a function of the input correlation statistics. In this work we have worked

under an ideal case where we have such a transform (by using the "transform" em-

pirically found in high-performing models). This assumption allowed us to test the

sufficiency of statistical constraints and would have otherwise been confounded if we

tested both the sufficiency of a transform and our statistical constraints simultane-

ously. One potential route to understanding this transform is via recent analytical

work in deep linear networks [1541, where it is shown for linear networks that the

weight update equation is explicitly determined by a combination of second order

image statistics and image to label statistics. The conclusions of that work do not

directly apply here because the networks we use include a nonlinear max-pooling op-

eration. However, given a fixed set of max-value switches (as discussed in [15]) for a

set of training images, the networks we work with here are linear. In future work, we

will explore this idea more fully.

A final obstacle arises from the fact that we have used comparatively simplified ar-

chitectures here to test our ideas, e.g smaller numbers of layers, no point-wise ReLu

nonlinearities, and no normalization operations. Because state-of-the-art architec-

tures do use these more complex operations and are deeper, we will have to show

that the ideas here transfer to those larger networks before a state-of-the-art fully
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unsupervised procedure can be attained.

Even with procedures differing entirely in approach (different formulation of ob-

jective functions), the second order statistics described here may provide utility as

a quick check-sum for estimating a model layer's performance-layer 1 second or-

der statistics of high-performing models often converge to similar patterns on the

same dataset even when the model architecture differs. Therefore, if one has a high-

performing model on a dataset (ex. trained via backpropagation) and wishes to

quickly test the performance of a model generated by an unsupervised learning pro-

cedure, the correlation of the model in question's second order statistics with the

high-performing model's second order statistics may give a quick sense of whether

the model in question will perform well on that dataset.

More broadly, we suggest a general approach for further refining and understand-

ing the statistical properties sufficient to produce high-performing models: (1) given a

set of relevant summary statistical constraints, like those presented here, optimize to

find filters matching the summary statistics of a high-performing (supervised) model;

(2) then compare the optimized filters with the original supervised filters and charac-

terize any systematic differences between the two; (3) once characterized, formalize

this difference into an additional statistical constraint and repeat. With this loop,

model performance is checked to prevent from including constraints that are orthogo-

nal to model performance and arise from potential artifacts of the supervised learning

procedure.
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Backpropagation Optimizing for all 3 stats.
then apply aperture

Matching 2nd order + Matching 2nd order +
Fourier sparsity channel corr.

Matching 2nd
order only Fourier sparsity only

Optimizing for all 3 stats.

Fourier + channel corr.

Channel corr. only

14

Figure 3-3: Filter visualizations
(Row 1, Col. 1) Filters from a 128-channel backpropagation model. Shown are the
25 filters with the highest variance. A relatively large proportion of the filters in this
model and others trained via backpropagation are "dead" (have low variance-appear
uniformly gray). (Row 1, Col. 2) Filters found by optimizing for the aforemen-
tioned summary statistics (second order statistics, sparsity in the frequency domain,
correlated channels) of the 128-channel model shown above. There are two main dif-
ferences between these filters and the original backpropagation filters. (1) There are
essentially no dead filters and (2) the absolute magnitude of filter values (summed
across all filters and channels) is not localized towards the spatial center of the filters
(i.e., the oriented gratings of the backpropagation filters are almost always centered
spatially within the filter and surrounded by a rough circular aperture of gray). At
least for layers 1 and 2 of the convnets tested, this aperture is not critical for per-
formance. For visualization, we apply the same aperture to our statistically matched
filters. (Row 1, Col. 3) Filters from (Row 1, Col. 2) but without the aperture.
The filters without the aperture were used in our substitution experiments. (Rows
2 and 3) Filters optimized from choosing two out of three of our aforementioned
summary statistics-in all cases, a key aspect seen in the backpropagation filters is
missing in these filters (ex. frequency selectivity (Row 3, Cols. 1 and 3; Row
2, Col. 2), consistency across channels (Row 3, Col. 2; Row 2, Col. 1), low
frequency filters (Row 2, Col. 3)).
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o0s - t 48 channel model

128 channel model

0.6-

bL1-bL2-bL3 mL1-bL2-bL3 mL1-mL2-bL3 mL1-mL2-mL3 random
start finish start finish Backprop training time start finish start finish

(until performance saturation)

Figure 3-4: Substituting in filters with matching summary statistics
Dashed lines represent substitutions into a 3-layer 48-channel model and solid lines

represent substitutions into a 3-layer 128-channel model. The blue lines represent
the test curves on ImageNet as each model is trained via backpropagation. At the
end of the backpropagation training of the blue lines, layer 1 filters optimized to
have matching summary statistics of the backpropagation-trained models are substi-
tuted in. While the new, substituted layer 1 filters are held fixed, layers 2, 3 and
the fully connected classifier layer are re-trained via backpropagation (green lines).
The same procedure is repeated again: layer 2 is now replaced with filters matching
the backpropagation-trained summary statistics and then held fixed as layer 3 and
the fully connected layer are re-trained (brown lines). After, the same procedure is
performed again with layer 3 substituted, resulting in a model containing only filters

derived from summary statistics (light blue line). As a control, we also show the test
curve of a model containing only random filters while training the final fully connected
layer on top (pink lines). In each plot we show the 48-channel and 128-channel models
on the same x-axis for ease of visual comparison. However, the 128-channel model
has a slower backprop convergence in terms of the number of epochs. We binned each

original time-course into 10 equal blocks and plot the average performance within
each block (bars indicate SEM within the block).
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Chapter 4

The visual object representation of

juvenile primates

Visual object recognition is a computationally challenging task that is critical to ev-

eryday functioning. In human and non-human primates, object recognition relies on

information processing along the ventral visual stream and the resulting neural pop-

ulation representation at the top of that stream - the inferior temporal cortex (IT).

Current neurally-mechanistic computational models of this system (in particular, ar-

tificial neural networks, ANNs) can explain and predict much of the image-evoked

activity of the neurons along the ventral stream up to and including IT and the re-

sulting behavior of the subject. These ANN models successfully approximate the

rapid (<200 msec) flow of spike rate information along the adult ventral stream, but

they tell us nothing about how that successful processing stream is set up. Put an-

other way, what are the developmental and post-natal learning mechanisms that are

critical to the performance of the ventral visual stream? Because the aforementioned

models start from an initial macro- and meso-architecture but their high correspon-

dence to the adult ventral stream gradually improves with supervised "training" on

object categorization tasks, one hypothesis is that the initial ANN architecture cor-

responds to the work of genes and developmental mechanisms, while some biological

plausible version of model training corresponds to primate post-natal visual learning.

However, this hypothesis and many others cannot yet be engaged because we know
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next to nothing about the neurophysiological status and capabilities of higher levels

of the ventral stream in either newborn or juveniles non-human primates. Here wel

performed the first large-scale multi-electrode recordings (~200 total sites) of spiking

neurons in IT of three juvenile (~25 weeks post-natal) awake behaving macaques,

and we compare and contrast these with >900 recording sites obtained using iden-

tical methods in adult IT and V4. We used a broad range of comparison metrics,

including - most critically - population-level metrics that assessed the ability of

the IT population to produce high performing object categorization behavior and

explain primate behavioral patterns over different object tasks. Our most striking

finding was that, by all such population measures, juvenile IT is statistically indis-

tinguishable from adult IT, even though our methods have the power to distinguish

the IT representation from its dominant input representation (V4). Interestingly, we

also found that the visual response latency is approximately 50 ms slower in juvenile

IT. In sum, our results show that the ventral visual stream already presents a highly

performant, adult-like object representation as early as 25 weeks of age, and this ar-

gues that either pre-natal development plays a powerful role in setting up this system

and/or that the post-natal visual learning is rapid.

4.1 Significance

Little is known about how about the postnatal development of inferior temporal

cortex, thought to subserve visual object recognition. While prior fMRI studies have

provided a spatially coarse time-line of activation and associated developmental prop-

erties, electrophysiological studies have been less common in higher-visual cortex.

Existent electrophysiological studies have used stimulus sets which have not fully

engaged core object recognition abilities, precluding the use of population-level read-

outs. Here, we utilized array-based physiology in macaque inferior temporal (IT)

cortex to collect large-scale datasets in animals aged 19-32 weeks, and have bench-

'Work done in collaboration with Najib Majaj, Kohitij Kar, Lynne Kiorpes, J. Anthony Movshon,
and James DiCarlo
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marked this data against >900 multi-unit sites in adult IT and V4. Consistent with

prior electrophysiological studies, we observe, at 19-32 weeks, visual response laten-

cies approximately 50 ms slower than any of our adult recordings. However, we do

not observe any deficits in our measures of neural categorization performance, or be-

havioral consistency measures, suggesting that, even at half a year of age, IT already

supports a robust representation capable of supporting challenging recognition tasks.

4.2 Introduction

View-invariant object recognition is a computationally difficult but highly relevant

behaviorally cognitive task. Retinal images of real-world objects vary drastically due

to changes in object pose, size, position, lighting, non-rigid deformation, occlusion,

and many other sources of noise and variation. Humans effortlessly recognize objects

rapidly and accurately in spite of this enormous variation, an impressive computa-

tional feat [1551. This ability is supported by a set of interconnected brain areas

collectively called the ventral visual stream [156, 157], with homologous areas in non-

human primates [158, 159]. The ventral stream is thought to function as a series of

hierarchical processing stages [160, 161, 162], that encode image content (e.g. object

identity and category) increasingly explicitly in successive cortical areas [163, 155, 2].

For example, neurons in the lowest area, V1, are well-described by Gabor-like edge

detectors that extract rough object outlines [1], though the VI population does not

show robust tolerance to complex image transformations [2, 8]. Conversely, rapidly-

evoked population activity in top-level inferior temporal (IT) cortex can directly

support real-time, invariant object categorization over a wide range of tasks [4, 5, 8j.

Mid-level ventral areas - such as V4, the dominant cortical input to IT - exhibit

intermediate levels of object selectivity and variation tolerance [5, 81, 164, 8].

From past developmental studies, three main hypotheses can be formed regarding

the development of postnatal visual object recognition, as described below. Because

no known prior study has explicitly tested neural recognition performance at an early

age, support for each of these hypotheses is indirect and at most suggestive.
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Hypothesis 1: neural responses in high-level visual areas are adult-like at birth

or within several weeks after it. Anatomical and eletrophysiological studies in early

visual areas often find that infants reach adult-like states very early on in develop-

ment. Connections from the Lateral Geniculate Nucleus (LGN) to V1, for instance,

are adult-like by 8 weeks [165]. Retinotopic maps are generally considered the first

stage of development in V1 and develop without retinal inputs [1661, and orientation

selectivity develops following retinotopic organization [1671. Cortical projections to

IT appear adult-like by 7 to 18 weeks [29] and projections from IT to parahippocam-

pus and perirhinal cortex appear adult-like at one week. A caveat is that many

anatomical studies use qualitative approaches to determine if projections or areas are

adult-like, and may not be sensitive to more subtle developmental differences.

Hypothesis 2: neural object recognition performance is at or quickly within adult-

levels several weeks to months after birth, despite neural responses being immature

with other measures (such as visual response latency). Prior work has demonstrated

longer visual response latencies in animals ranging from 4 to 28 weeks of age with

adult-like single-site selectivities [30, 168]. However, these studies showed a limited

number of cartoon-like stimuli which are insufficient to test the full capacity of in-

variant object recognition supported by primate vision. Aside from these results,

there are no other known experiments recording IT responses in awake infant or juve-

nile macaques. While not directly suggestive of invariant object recognition, human

studies have provided evidence of object permanence existing in 20 week old infants

(approximately 5 week old macaques) [169], contrary to earlier work suggesting later

development [170].

Hypothesis 3: higher visual cortex gradually becomes refined and more optimal at

recognizing objects months to years after birth. Recent work has shown face selective

patches, as measured by fMRI, do not appear to develop in face deprived macaques

[39], perhaps not unlike the abnormal developmental trajectories observed in early

visual areas when given altered visual experiences [171, 172]. The face patch findings

suggest that some experience-dependent organization occurs during development of

higher visual areas [39], although the exact nature of this organization and its re-
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lationship to both neural selectivity and population-level decoding remains unclear.

Furthermore, normal visual experience may be generally necessary to maintain orga-

nization rather than to create it [28]. Human fMRI studies have found face patches

in the earliest tested ages (12-32 weeks, approximately 3-8 weeks in macaques), but

found differences from adults using representational similarity measures [37]. Learn-

ing experiments in adult macaques show significant neural plasticity in response to

visual experience [21, 201, however the relationship between adult plasticity and de-

velopment are unknown. Additional lines of work from psychophysical studies often

suggest a gradual emergence [40, 28] of visually-guided behavior on the scale of ap-

proximately 50 to 300 weeks depending on the task [28]. These tasks have assessed

sensitivity to spatial resolution, visual acuity, global form, pattern motion, contour

integration, among other properties [28, 173, 174, 175, 176, 177]. Behavioral studies

inherently do not speak to where development is occurring, leaving open the possi-

bility that decision-making or motor areas may be bottlenecks to performance rather

than the underlying visual representation itself [28].

To investigate juvenile IT and assess how, and if, it differs from the adult state,

we sought to collect data-sets to allow us to compare developmental responses to

adult responses using a battery of tasks and metrics used previously to establish

links between neural responses and behavior [8, 10]. More specifically, we sought to

benchmark developmental IT using population-level metrics assessing neural catego-

rization performance, behavioral consistency, and representational similarity, along

with single-site metrics (such as latency, and d-prime measures). To support this

diverse array of testing, we used a challenging image-set (Figure 4-1) consisting of

thousands of images previously used to expose key computational difficulties in vi-

sual object recognition [8, 10]. We showed these images using a rapid-serial-visual

presentation paradigm to adult and juvenile macaques (aged 19-32 weeks). While

animals viewed the images, we recorded electrophysiological responses to 96-channel

Utah arrays implanted in pIT and V2. Fairly performing cross-animal analyses re-

quired controlling many experimental factors. We, therefore, developed a bootstrap

procedure to carefully match trial, image, and neural sites across animals to remove
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these nuisance factors.

While we observe our juvenile pIT samples exhibit visual response latencies 50 to

up to 100 ms slower than our adult samples, we do not observe such large deviations in

other metrics. Juvenile categorization performance, for instance, is within the range of

our adult IT samples. Although our juvenile data exhibit more latent responses than

adults, the neural responses between 100-150 ms still represent sufficient information

to accurately classify categories at the level of our adult samples. Our results provide

evidence for IT supporting high-levels of categorization performance, in a manner

representationally indistinguishable from adults, on challenging object recognition

tasks as early as 25 weeks.

4.3 Materials and methods

4.3.1 Image-set generation

We used a subset of the image stimuli previously reported [8]. These images were gen-

erated from ray-tracing software (http://www.povray.org). The stimuli were designed

to expose key aspects which make object recognition computationally difficulty. For

this reason, each image was generated to depict one of 64 objects at a random size,

location, and orientation in the image. To de-correlate the background from the ob-

ject, random backgrounds depicting natural scenes were shown in each image. Each

object belonged to one of 8 categories and each category contained 8 objects (ani-

mals, boats, cars, chairs, faces, fruits, planes, tables). For example, the cars category

contains 8 separate car models as objects.

The stimulus set was designed to provide a range of difficulties with respect to

object recognition tasks. Images depicting objects in a canonical view in the center of

the screen were psychophysically easier to recognize than objects in highly eccentric

angles near the edges of the image. Whereas, objects near the edge of the screen

in highly eccentric positions were much harder to recognize. Essentially, the level of

"variation" of object size, position, and location controls the difficulty of recognizing
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Figure 4-1: Experimental design
a. Our stimulus set contains complex three-dimensional objects at high levels of

position, pose, and size variation, and placed on natural backgrounds. Recordings

for the images have previously been made in adult macaques and shown to expose

key aspects of invariant object recognition that differentially engage inferior temporal

(IT) cortex [8, 10]. b. We have placed two 96 channel arrays: one in V2 and one in

posterior IT (pIT) in three animals (at 19, 25, and 26 weeks of age). We additionally

have utilized adult IT and V4 data collected from prior published and unpublished

studies [8]. c. We showed stimuli using a rapid-serial visual presentation (RSVP)

paradigm. Animals fixated at a small (0.250) red fixation point at the center of the

screen and images were shown in pseudo-random order for 100 ms followed by a blank

screen (still containing the fixation point) for 100 ms. This sequence was repeated

either until 8 images were shown or fixation was broken. We showed each image up

to 45 times. For many of our analyses, we average the responses of each neural site

(across trials) to each image to create a stimulus response vector. Stimulus response

vectors contain responses of all neural sites (in a given brain or age-defined area) to

each stimulus image in the interval of 70-170 ms. In some analyses, we use alternative

time windows for construction of these vectors.
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the object. The stimulus set was divided initially into three subsets (variations 0, 3,

6). At variation 0, the objects are all shown in a canonical view centered in the image.

At variation 3, the objects are rendered in positions, sizes, and orientations that fell

within the ranges: x: [-1.2', 1.201, y: [-2.40, 2.4'1, pose: [-45', 450], and size:

[x 13, x 1.3]. Variation 6 used an increased range of positions, sizes, and orientations:

[-2.40, 2.40], [-4.80, 4.801, [-900, 900], and [x i-, x1.61, respectively. Images were

rendered at 256 x 256 px in gray-scale.

We chose to focus our data collection efforts on the variation 3 and 6 datasets

because we hypothesized that it would more readily allow us to separate between

representations of differing underlying recognition abilities. Variation 3 and 6 both

contain 2560 images (64 objects shown 40 times with randomly assigned latent pa-

rameters from the ranges described above). For some of the adult arrays we further

focused collection efforts around a combined subset of variation 3 and 6 (contain-

ing 320 images from each, and 8 distinct objects) - we refer to this reduced set as

variation 640.

4.3.2 Neural data collection

We used three male Macaca nemestrinas (all between 19-32 weeks old at the time of

recording) for our developmental studies. We trained the animals for several weeks

using juice rewards and operant conditioning, acclimating them to our rapid-serial-

visual presentation paradigm. Unlike prior studies in adults which use surgically

implanted head posts, we chose to use custom head masks to stabilize their head

positions similar to [178]. These masks were used to reduce the invasiveness of our

experiment and because they have had a long history of use in younger animals.

We monitored eye position using the SR Research Eyelink II video tracking system.

Animals calibrated by fixating on a red fixation point (0.25') shown at positions

on a computer monitor. During the main experiment, animals fixated at the red

square while images (typically 8) were shown in rapid succession (100 ms on, 100 ms

off, subtending 80 with a resolution of 32 pixels/') overlaid on a gray background.

Animals were rewarded with juice and a tone at the end of each trial if fixation was
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maintained within 2.5' of the red square for the entire sequence of 8 images. If

fixation deviated from this window during the trial, the trial was aborted and the

neural responses during that interval discarded. We showed stimuli in a random

order across multiple days. Each image stimulus used in our analyses was shown a

minimum of 23 times (typically ~45).

Following prior studies, we placed arrays (Figure 4-1) in posterior IT and V2 as

guided by sulcus patterns, visible during surgery and in our pre-surgery anatomical

MRI scans. All surgical procedures and recordings for our developmental data were

performed at New York University and were approved by the University Animal

Welfare Committee. Because of technical hardware limitations, we were not able to

record from both the IT and V2 arrays simultaneously for all of our experiments. We

used most of our recording time for the IT arrays collecting the image-sets descried

above. For the V2 array we used most of the recording time for other non-overlapping

image-sets used in unrelated experiments; consequently, we focus entirely on our IT

recordings here.

In our analyses, we included data collected in four adult male animals. All animals

were trained and recorded from using the same procedures above, with the exception

of using surgically implanted head posts for head stabilization instead of the custom

masks we used for the juveniles. All surgical procedures and recordings for our adult

data were performed at MIT and were approved by the Committee for Animal Care.

Data from two of the adult animals have been previously reported in [8] and contained

2 arrays in IT and 1 array in V4 per hemisphere (for one monkey in this set, we have

recorded separately from both hemispheres using the same array placements). Data

from the remaining two adult animals were obtained as part of an unrelated study

and have not currently been reported elsewhere. These two monkeys were implanted

each with three arrays in IT. In a separate surgery, one of the monkeys was further

implanted with a V4 array in the other hemisphere. We have also collected behavioral

responses of these later two monkeys performing a recognition task which we use for

our behavioral similarity measure also reported elsewhere [179]. All array data were

collected over the course of several months (typically 2 months or more) for each
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animal.

4.3.3 Thresholded spike events

All analyses are performed on binned threshold multi-unit events. All data were first

band-pass filtered (250 Hz to 7.5 kHz) and sampled at 30 kHz using Blackrock Neural

Signal Processors. Thresholds were set for each channel on each day (and in some

cases more than once per day) as -3 x the RMS of each channel's background activity

while the animal was staring at a uniformly gray background screen. A threshold

event was defined as a channel's voltage (falling edge) crossing -3x the RMS of the

baseline voltage.

4.3.4 Unit selection

Units were selected based on visual drive estimated on an independent stimulus set 181.

Visual drive was defined as the d-prime between a unit's cross-validated (across trials)

highest evoked responses (top 10% of image stimuli) vs. blank screen presentations.

Image bootstrapping (while scrambling the "image" and "blank" stimulus labels) was

used to bootstrap a null distribution of visual d-primes and set a threshold of inclusion

for each unit (>80% of the image scrambled bootstrap visual d-primes). We further

screened neural sites based on their trial reliability. We defined the trial reliability for

each neural site as the mean (bootstrapped) Pearson correlation between two image

response vectors estimated from random, non-overlapping trial subsets. Each element

in an image response vector represents a neural site's trial-averaged spike count from

70-170 ms post-stimulus onset in response to a particular image, with other elements

representing other image responses. Similar to the visual d-prime measure, we also

estimated a null distribution for each neural site by scrambling image labels (for

each neural site, one of the two image response vector's elements were scrambled)

and used this distribution to set a threshold for each unit's inclusion (>99.5% of the

image scrambled reliability).

For the variation 0 and 3 datasets, our unit selection procedure (which was per-
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formed once on a single independent image set) yielded 196 units for our juvenile pIT

pool, 171 units for our adult V4 pool, 141 units for our adult pIT pool, and 143 units

for our combined cIT and aIT pool. For the variation 640 dataset we had 196 units

for our juvenile pIT pool, 308 units for our adult V4 pool, 189 units for our adult pIT

pool, and 449 units for our combined cIT and aIT pool. Some adult animals were

not shown the full variation 0 or 3 datasets, resulting in us having more neural sites

for the variation 640 dataset.

4.3.5 Vi-like model

We chose to include a control model representation to provide context and help pro-

vide grounding for our neural data and metrics. A Vi-like model, we hypothesized,

should also provide something of a lower bound for performance-based metrics which

we would expect all of our V4 and IT samples should out-perform. We used the V1-

like model introduced in [36], and previously used as a benchmark in similar contexts

[8, 10]. Briefly, the model takes as input a set of pixel inputs for each image, and

outputs a feature vector (~76 thousand visually-drivable features which we restricted

our analyses to) for each input image. Each feature dimension was processed in sub-

sequent metric evaluation analyses as if it were a "neural site" which provided us

with responses to each stimulus image. Processing the data in this way allowed us to

compare the Vi-like model to the neural data using the same metrics and procedures.

4.3.6 Metric evaluation methods

The general overview of procedures is: (1) pre-processing arid unit selection, (2)

bootstrap sampling, (3) metric evaluation with the sampled data.

4.3.7 Pre-processing

For all population-level metrics (i.e., not the single-site metrics in Figure 4-2), the

following paragraph applies. Aside from this paragraph, the remainder of steps in

this section apply to both single-site d-prime and population-level metrics. We first
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subtract each neural site's response to blank images from the stimulus image trials.

We subsequently normalize each neural site by dividing each site's image responses

by the standard deviation across images.

For each trial and neural site, we then compute the average binned response

over the 70-170 ms time interval (unless stated otherwise in our analyses specifically

relating to time). For each stimulus block, we then subtracted from each neural

site's responses, the site's mean image-evoked activity across all stimuli within the

stimulus block. A stimulus block is defined as the set of images shown within a single

experimental run in pseudo-random order.

Finally, each array is independently common mode (average response to each im-

age across all units) subtracted. In analyses in which the metric is corrected based

on trial-trial reliability (the behavioral consistency and representational dissimilarity

metrics), the common mode subtraction step takes place on each trial splitting inde-

pendently, then the trial-trial reliability is estimated. The final step of pre-processing

consists of trial averaging each neural site's responses across image stimuli - for each

unit, a 2D matrix is emitted of image responses by neural sites (see Figure 4-1).

Except for RDM analyses, all data are trial matched and additionally for per-

formance metrics, bootstrapped over train/test splits. RDM analyses are not trial

matched but are noise-corrected based on split-half trial-reliability. When evaluating

a pool (ex. the pool of adult pIT data) with more units than the analysis calls for,

unit selection is also bootstrapped. When evaluating a pool with more trials than

called for, trials are also bootstrapped.

4.3.8 Bootstrap sampling for population-level metrics

We start with the total pool of all arrays we have collected for a given brain area

and age range (ex. all adult pIT arrays). The next step is to select a sub-pool of

arrays containing a sufficient number of trials of the stimulus set to be analyzed (for

some arrays, we only have data on the variation 640 images, so these arrays would

be excluded here if we were analyzing responses to variation 3 images).

The next step is the random selection of 2 arrays from the pool of valid arrays.
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This step allows us to avoid relying on the assumption that each neural site in an

array represents a completely random sample of, for example pIT. Two such factors

which may make this assumption invalid include: spatial sampling (pairs of neighbor-

ing electrodes on an array are approximately 0.5 mm apart and may exhibit similar

visual responses due to spatial proximity), and cross-hemisphere variance where neu-

ral responses within a hemisphere may exhibit higher similarity than when compared

with another hemisphere. We chose to sample 2 arrays in any given bootstrap to

simultaneously maximize the amount of data used during each bootstrap, while still

leaving out at least 1 array from each pool for the purpose of having the bootstrap

procedure capture across-hemisphere variance.

Finally, from the pool of 2 arrays, we randomly select nnits and ntrials to create a

single feature matrix of [nimages X ntrials x nunits]. This concludes a single bootstrap

sample of our data for a given brain or age-defined area. For each of our two main

stimulus sets (variations 3 and 640) we chose ntrials for the purpose of both maximizing

the number of arrays and trials used. For variation 0, 3, and 640, we set ntrials to 23,

37, and 23, respectively. Similarly, we chose nunits to maximize both the number of

arrays and total data used. For variation 0, 3, and 640, we set nunjts to 58, 58, and

49, respectively.

For RDM analyses, we ensured that when computing the similarity of a brain

area to itself (ex. "adult cIT & alT" RDM correlations to "adult cIT & aIT") data

from the same array never resided simultaneously in both the test and target RDMs.

This requirement, as mentioned above, mitigates the need for assuming the individual

neural sites within a single array represent independent, random neural samples.

4.3.9 Metric-specific methods

Response onset latency and latency adjustment

We defined response latency using a normalized threshold crossing measure. We

used the following pre-processing for this analysis. Spike counts were first binned

into 10 ms bins for each trial (from 0 ms to 250 ms post-stimulus onset). For each
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neural site, we then computed two average time series (from 0 ms to 250 ms post-

stimulus onset): (1) the mean response to all image trials, (2) the mean response to

all blank trials. We then subtracted the time series of blank trials from the image

trials. Next, we normalized (zero mean, unit variance) each neural site's time series

and then smoothed across time using a Gaussian kernel with a standard deviation of

30 ms. We performed an additional neural site rejection step with two criteria: (1)

the maximum of the filtered time series must rise above 1.1 standard deviations at

least once in the time series, (2) the first time bin (0-10 ms) must be less than 0.5

standard deviations. We defined the latency of each neural site as the first time bin

which rises above 0.5 standard deviations.

For some analyses, we use each neural site's latency to adjust the bins used as input

into other metrics (namely, single-site d-prime measures-we do not show latency-

adjusted population-level metrics here). The latency of each neural site, as estimated

above, is used to define the start of a 100 ms bin, which we then process identically

to other neural data estimated from the standard 70-170 ms read-out window. Note

that because we reject some additional units when estimating latency, analyses which

are latency corrected may have fewer units than analyses using the standard 70-170

ms read-out.

Sparsity

We used a measure of sparseness as defined in [180]. The metric quantifies the extent

to which individual neural sites exhibit "sharper" tuning: high responses to few im-

ages, as opposed to responding to all stimuli with the same magnitude. Sparseness

was defined for each neural site as

(EN ri 2
s i=1 N(41zi

where ri represents the neural site's response to the Zth image and N represents the

number of images in the stimulus set.
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Single-site d-primes (category, object, and face identification)

These measures provide estimates of each neural site's selectivity. The category d-

prime was defined as the d-prime between each neural site's highest responding cate-

gory vs. its lowest responding category. The highest and lowest responding category

were computed on a separate half of trials than those used for the computation of the

d-prime.

The object and face single-site d-primes were similarly defined to the category

d-prime. Instead of computing the d-prime for the highest and lowest responding

category, we compute the d-prime between the highest and lowest responding object

(or face).

The variation 3 dataset, for which we compute these metrics on, contains 8 cat-

egories with 8 objects per category (each object is depicted in 40 images in random

positions and orientations on a random background). Each bootstrap evaluation con-

sists of trial-matching the data (using a random selection of 37 trials).

Face detection d-primes

This measure was defined as the d-prime between all face images and all non-face

images. Unlike the face identification d-prime, which measures the ability of a neural

site to discriminate between its highest and lowest responding face, this measure

quantifies the extent that a neural site detects faces from non-faces.

We used the variation 0 dataset to estimate d-primes. Bootstraps are across a

random selection of 23 trials for all data.

Category and object population performance

Similar to the category and object d-primes, the performance metrics provide esti-

mates of neural performance on one vs. all category recognition tasks. Unlike the

category and object single-site d-primes, these measures provide estimates of a pop-

ulation's ability to separate categories.

Cross-validated (90% training images, 10% testing) linear support vector machines
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(C = 1 for the variation 3 and 640 datasets) were trained on neural samples with

the category identity depicted in each image as the label. Percent correct testing-

set classifications were then averaged across categories to provide a population-level

estimate of performance.

We present classification performance relative to the performance of humans com-

pleting an 8-way categorization task using the same stimuli for which we collected

electrophysiological data (we divided our performance estimates by the mean human

performance across participants and categories). The human data was previously

used to demonstrate the consistency of simple, weighted, linear IT read-outs and

human behavior [8]. Human data were collected using procedures approved by the

Massachusetts Institute of Technology Committee on the Use of Humans as Experi-

mental Subjects. In total, 29 humans participated in the subset of data we used from

[8]. Participants completed 30-45 minute sessions via Amazon Mechanical Turk for a

small payment. Trials began with a small fixation point shown for 500 ms, followed

by an image appearing at the center of the screen for 100 ms. Following a delay of

300 ms, the participant was given eight images and was tasked with choosing the one

which matched the category of the test image. After selecting a response, a new trial

began. Participants judged a random subset of 400 images. No feedback was given

to the participant regarding the correctness of their responses.

Face identification performance

The methods for face identification were the same as those used for categorization

performance with the following exceptions. Cross-validation used 80% training im-

ages, and 20% testing images as a consequence of the smaller number of images in

the variation 0 dataset used to estimate identification performance (80 images of the

640 total images in variation 0 depict faces, with 10 images per each face identity).

We additionally used a higher regularization value to prevent classifier overfitting on

the reduced number of training images (C = 1000), however, we found performance

relatively insensitive to this parameter.
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Face probability as a function of distance

To visualize the extent to which face sites were spatially clustered in adult and juvenile

pIT, we plotted the probability of finding two face sites as a function of spatial

distance. Representations which are more "patch-like" would have higher probabilities

of finding pairs of face sites at smaller distances, and this probability would decrease at

farther distances (a negative slope). Conversely, representations which are randomly

distributed across space with face sites, would show equal probability of finding a pair

of face sites regardless of distance (a line with zero slope).

Because aligning arrays across animals and hemispheres presents unique problems,

not only due to uncertainties in exact (sub-millimeter) positioning and orientation of

array implants but also due to uncertainties regarding animal-animal anatomical vari-

ability, we did not attempt to compare across arrays. We performed the analysis only

within sites from the same array, and combined the counts at each spatial distance

at the last step of analysis.

The analysis itself consisted of simply counting (from each face selective site) the

number of face sites found at each pair of spatial distances and normalizing (dividing)

this by the total number of visually responding sites at each of the distances from

the face selective site. Because our electrodes are arranged in a regularly spaced grid,

there were only a small faction of pair-wise spatial distances that existed allowing us

to more easily pool over positions (unlike if we had done single-electrode recordings

where each penetration would be a unique distance from all others). We defined a

face selective site as those which had face vs. non-face d-primes (on our variation 0

dataset) above a threshold defined for each visual or age-defined area. This threshold

was determined by randomly shuffling the image labels of the data and computing face

vs. non-face d-primes. We chose the 99th percentile of the scrambled d-primes for our

threshold-any non-scrambled unit with a d-prime above this would be considered

face-selective.
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Behavioral similarity

We used an image-level one-versus-all performance metric. This metric, called B.I1n,

measures the performance of recognizing each object aggregated across all distractor

objects in the stimulus set [1791. The B.Iln vector represents image-level perfor-

mances on multiple object classification tasks, with each element representing the

performance of recognizing a particular stimulus image (see Figure 4-4). B.I1n vec-

tors can be estimated from neural responses, models, and, importantly, behavioral

responses.

We estimated B.I1n vectors on the variation 640 dataset which contains 8 objects

each depicted in 80 images. Two vectors are used to compute the B.I1 vector (which

is then normalized to produce the B.I1n vector): a hit rate for each image (fraction of

trials the image was correctly classified) and false alarm rates for each object (across

all images). The false alarm rate represents the rate at which an object is reported

as being in the test image when it was not actually depicted. With the hit and false

alarm rates, each element of the B.I1 vector is defined as the normalized (via the

inverse CDF) difference between the hit rate for image i and the false alarm rate for

the object depicted in image i (Figure 4-4), resulting in a vector with an element for

each image in the stimulus set. Finally, the B.Iln vector is computed by subtracting

from each element, the mean d-prime of each object (see Figure 4-4). Normalization

helps focus the metric on image-level variance, instead of mean differences between

object performances which can dominate the variance of the B.I1 vector.

Estimating B.Iln vectors from monkey behavior The behavioral paradigm

we used for collecting monkey behavior utilized eye position for behavioral reports

from the animal. Trials were initiated by fixating at a white square dot (0.20) for 300

ms. A test image (depicted on the far left column of Figure 4-4) was shown for 100 ms

and then, after a delay of 100 ms where a blank screen was shown, a canonical view of

the object (Figure 4-4) in addition to a canonical view of a random distractor object

was shown for up to 1500 ms [1811. The task then was to choose the canonical view

that depicts the same object as the test image by holding fixation for 400 ms on the
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correct object. Before the selection phase, trials were aborted if gaze was not within

2' of the fixation dot. We collected behavioral responses from two adult monkeys

using procedures approved by the MIT Committee for Animal Care [181, 1791.

Estimating B.I1 vectors from neural responses and models Each feature

sample, either from models or from neural sites is processed identically with respect

to the B.Iln and derived metrics. First a linear SVM classifier (C = 10) is trained for

each task (object i vs. all other objects). Cross-validation is used to extract classifier

decision boundary estimates for each held-out test image (5 fold classification with

80% testing, 20% testing images) and classifier. This procedure results in a vector

of 8 classifier decision outputs for each image. The softmax function is then used to

normalize the 8 values for each image to sum to 1 and be within the range of 0 and

1. These outputs are then taken as analogous to trial probabilities and directly used

as hit rates.

Similarity of two B.I1n vectors To measure the similarity of two B.Iln vectors,

we use noise-corrected Spearman correlations. The same noise-correction formula

is used for the RDM metric (Equation 4.2). The B.Iln metric is then defined as

the correlation between a test feature space and the B.I1n vector estimated from

monkeys performing 2-way alternative forced choice object recognition tasks on the

same stimulus images.

Representational similarity analysis

Representational dissimilarity matrices (RDMs) represent the pair-wise dissimilari-

ties (1 - Pearson r) between each pair of stimulus response vectors in an image-set

[56, 159]. We measured the similarity between two RDMs (ex. a test brain area

and a target brain area) as the Pearson correlation. To noise-correct this similarity

measure, we estimate the self-consistency of our test and target RDMs by computing

bootstrapped split-half-trial correlations (i.e., the correlation of two RDMs created

using two disjoint sets of trials). With these estimates, we compute the noise corrected

Pearson correlation between area A and area B's RDMs as,

87



T AB rAB (4.2)
TrAArBB

where rAB is the mean (across bootstraps) Pearson correlation between area A and

B's RDMs. The same number of trials were used for area A in both the numerator

and denominator, and similarly for area B. However, the number of trials for A

and B were not necessarily the same (because we are correcting for differences in

self-consistency, the trials do not need to be matched for this analysis).

In general, RDMs can summarize population responses to any arbitrary feature

space, including brain areas and models. The same procedures apply to each (where

the response vectors for models are vectors of feature responses instead of neural re-

sponses). For the Vi-like control model we use in this study, there is no measurement

noise and therefore its self-consistency is defined as 1.0.

We present data from the variation 640 dataset and evaluate all representations

against the "cIT & aIT" pool using a bootstrapped sample of 265 units to estimate

the target representation. We chose "cIT & aIT" as the target because most of our

metrics are limited primarily by the number of neural sites and, for our data, we have

the largest number of sites with this pool. As mentioned above, when computing the

similarity of "cIT and aIT" against itself, we ensure that no data from the same piece

of cortical tissue (implanted array) reside simultaneously in the rAA and rBB terms

above, to help ensure all of our bootstrap samples are independent.

Single-site statistics

We performed two types of statistical tests on our single-site metrics (latency, sparsity,

and d-prime measures): testing if the means are significantly different and testing if

the right tails are significantly different. We use two-sided t-tests for the former and

two-sample KS-tests for the latter.

For the t-tests, we first averaged the metric value for each neural site in each

array implant together, resulting in a single mean metric value per array. We then

used the array mean values as samples in our t-tests, so the number of samples for
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each area or age was simply the number of arrays we recorded. This test requires

minimal assumption about the data, specifically not requiring us to assume each

electrode within an array represents a statistically independent sample from the other

electrodes within the array. In computing t-values, we did not assume equal variance

between the test and target populations.

For the KS-tests, to fairly compare populations with differing numbers of neural

sites, we sub-sampled populations when they were not matched. For instance, to

compare area A to area B when A has more units than B, we randomly sampled

neural sites from A to match the number of sites in B. After matching the areas in

this way, we took the top 5% of units for a given metric and performed a two-sample

KS-test with the two samples from A and B.

4.4 Results

To compare all of our neural data on a level playing field, all analyses utilize the

bootstrap procedure described above to match the number of neural sites, number

of trials (when the metric itself provides no measure of self-consistency for noise-

correction), and number of stimuli used in each neural sample.

4.4.1 Single-site measures

We first present single-site visualizations and measures. Figure 4-2 shows the peri-

stimulus time histograms from several neural sites and brain areas. Each area and

channel exhibits heterogeneity across different views and positions of the same object,

as indicated by the variable peaks of the individual lines in the plots. Qualitatively,

the juvenile responses take longer to reach their peak values, when compared with

any of the other adult areas.

We quantified the latency of neural responses using a threshold crossing metric.

As shown in Figure 4-2, the juvenile pIT responses are more latent than any of the

other adult areas (see Table 4.1 and 4.5 for statistical testing). As is visible in the

figure, adult latencies for V4, pIT, and "cIT and aIT" almost always occur before 100
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Table 4.1: Initial rise latency mean statistics
Test Type of test t-value I p-value

V4 vs. Juvenile pIT Two-tailed t-test -7.00 0.0134 *
V4 vs. Adult pIT Two-tailed t-test -2.95 0.1703
V4 vs. Adult aIT and cIT Two-tailed t-test -4.16 0.0089 **

Juvenile pIT vs. Adult pIT Two-tailed t-test 3.54 0.0402 *
Juvenile pIT vs. Adult aIT and cIT Two-tailed t-test 5.22 0.0228 *
Adult pIT vs. Adult aIT and cIT Two-tailed t-test 0.93 0.4902

Table 4.2: Sparsity mean statistics
Test Type of test t-value p-value

V4 vs. Juvenile pIT Two-tailed t-test 16.83 0.0001 **
V4 vs. Adult pIT Two-tailed t-test 0.45 0.7310
V4 vs. Adult aIT and cIT Two-tailed t-test 8.72 0.0003 **
Juvenile pIT vs. Adult pIT Two-tailed t-test -1.87 0.3090
Juvenile pIT vs. Adult aIT and cIT Two-tailed t-test -7.73 0.0007 **
Adult pIT vs. Adult alT and cIT Two-tailed t-test 0.73 0.5963

Table 4.3: Object d-prime mean statistics
Test Type of test t-value p-value

V4 vs. Juvenile pIT Two-tailed t-test 0.30 0.7760
V4 vs. Adult pIT Two-tailed t-test -0.96 0.4228
V4 vs. Adult alT and cIT Two-tailed t-test -1.52 0.1889
Juvenile pIT vs. Adult pIT Two-tailed t-test -1.26 0.3162
Juvenile pIT vs. Adult aIT and cIT Two-tailed t-test -1.84 0.1255
Adult pIT vs. Adult aIT and cIT Two-tailed t-test -0.54 0.6287

Table 4.4: Category d-prime mean statistics
Test Type of test t-value p-value

V4 vs. Juvenile pIT Two-tailed t-test 0.77 0.4844
V4 vs. Adult pIT Two-tailed t-test -1.58 0.2260
V4 vs. Adult aIT and cIT Two-tailed t-test -1.41 0.2202
Juvenile pIT vs. Adult pIT Two-tailed t-test -2.87 0.0702
Juvenile pIT vs. Adult aIT and cIT Two-tailed t-test -2.03 0.1058
Adult pIT vs. Adult alT and cIT Two-tailed t-test -0.58 0.6003
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Table 4.5: Initial rise latency right tail statistics
Test Type of test D-value J p-value

V4 vs. Juvenile pIT Two-sample KS-test 0.86 0.0042 **

V4 vs. Adult pIT Two-sample KS-test 0.86 0.0042 **

V4 vs. Adult aIT and cIT Two-sample KS-test 0.83 0.0122 *
Juvenile pIT vs. Adult pIT Two-sample KS-test 1.00 0.0004 **

Juvenile pIT vs. Adult aIT and cIT Two-sample KS-test 1.00 0.0013 **

Adult pIT vs. Adult aIT and cIT Two-sample KS-test 0.83 0.0122 *

Table 4.6: Sparsity right tail statistics
Test Type of test D-value p-value

V4 vs. Juvenile pIT Two-sample KS-test 1.00 0.0001 **

V4 vs. Adult pIT Two-sample KS-test 0.71 0.0275 *
V4 vs. Adult aIT and cIT Two-sample KS-test 0.75 0.0098 **

Juvenile pIT vs. Adult pIT Two-sample KS-test 1.00 0.0004 **

Juvenile pIT vs. Adult aIT and cIT Two-sample KS-test 1.00 0.0002 **

Adult pIT vs. Adult aIT and cIT Two-sample KS-test 0.86 0.0042 **

Table 4.7: Object d-prime right tail statistics
Test Type of test D-value p-value

V4 vs. Juvenile pIT Two-sample KS-test 0.44 0.2500
V4 vs. Adult pIT Two-sample KS-test 1.00 0.0004 **

V4 vs. Adult aIT and cIT Two-sample KS-test 1.00 0.0002 **

Juvenile pIT vs. Adult pIT Two-sample KS-test 0.57 0.1287
Juvenile pIT vs. Adult aIT and cIT Two-sample KS-test 0.75 0.0098 **
Adult pIT vs. Adult aIT and cIT Two-sample KS-test 0.43 0.4232

Table 4.8: Category d-prime right tail statistics
Test Type of test D-value p-value

V4 vs. Juvenile pIT Two-sample KS-test 0.44 0.2500
V4 vs. Adult pIT Two-sample KS-test 0.71 0.0275 *
V4 vs. Adult aIT and cIT Two-sample KS-test 1.00 0.0002 **

Juvenile pIT vs. Adult pIT Two-sample KS-test 0.43 0.4232
Juvenile pIT vs. Adult aIT and cIT Two-sample KS-test 0.75 0.0098 **
Adult pIT vs. Adult aIT and cIT Two-sample KS-test 0.43 0.4232
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ms post-stimulus onset. In contrast, juvenile pIT latencies are almost entirely after

100 ms post-stimulus onset.

We present also sparsity measures in Figure 4-2 and significance testing in Tables

4.2 and 4.6. While the mean sparsity significantly differed, in some cases, between

adult V4 and adult IT, we found no such difference between adult and juvenile pIT.

However, we did find a significant difference between the right tails of the juvenile and

adult pIT distributions. With the right tail statistics, we found significant differences

between all 6 possible area comparisons, perhaps indicating that sparsity, in fact,

differs at each area, or alternatively that the measure is sensitive to properties shared

across electrodes within each array.

To assess single-site object and category selectivity, we measured object and cat-

egory d-primes (Figure 4-2). These bootstrapped measures quantify the extent a

neural site discriminates between its top responding object or category and the re-

maining objects or categories. We used separate trials to determine each site's top

responding object or category and measured d-primes on the remaining trials. Unlike

latency, the mean d-primes did not show a significant difference between the juvenile

and adult data (Tables 4.3 and 4.4). However, the right tail statistics did differ, in

some cases, between adult IT and V4 (Tables 4.7 and 4.8). No significant differences

were found between adult and juvenile pIT.

4.4.2 Performance

Performance measures provide us a means to directly query a neural sample's capacity

to support behavioral recognition tasks-the hypothesized function of higher visual

cortex. We measured the accuracy of linear classifiers in an 8-way categorization

task, as shown in Figure 4-3. Our results do not indicate a significant difference

between juvenile and adult pIT samples when using responses taken from 70-170 ms

post-stimulus onset.

In light of our prior latency results, we measured performance using responses in

three additional time windows: 50-100 ms, 100-150 ms, and 150-200 ms. We observe

that only the first window, 50-100 ms shows a difference in performance readout
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Figure 4-2: Single-site measures

a. Shown are the peni-stimulus time histograms (PSTHs). The rows of the PSTH

plots represent responses from the same neural site. The columns represent responses

to all images depicting the same object (shown at the top of each column-each object

is shown in 40 distinct images). Each line in the PSTH plots represents the mean

(across trial) response to a single stimulus image. The black bar at the bottom left

of each PSTH plot indicates the time at which the stimulus was shown (100 ins,

followed by 100 ms of gray screen). b. Shown are onset latency, sparsity, object

d-prime, and category d-prime estimates across bootstrapped samples of trials. Each

column indicates one metric (latency, sparsity, object, or category d-prime) and each

row indicates an area or age-defined pool of neural sites (ex. V4 or juvenile pIT).

Plots indicate the frequency distribution across units with error bars indicating the

standard error of the mean over bootstrapped draws of random trials.
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between juvenile and adult pIT.

4.4.3 Behavioral similarity

We used a behavioral similarity measure to assess if decoders trained on neural sam-

ples made similar errors to monkeys performing an object recognition task (see Figure

4-4). Similar to our performance measures, there is no significant difference between

our juvenile and adult pIT samples.

While, in some ways, our behavioral similarity measure offers more granularity

than the performance measure presented above (representations with equally high

performance would not be dissociable by a performance measure, but could be disso-

ciable by a measure which takes into account the pattern of errors as our behavioral

measure does here), this behavioral measure is somewhat deficit in terms of power.

For instance, it is not able to separate IT from V4 as robustly as a performance-only

metric (compare Figures 4-3 and 4-4). The power difference between the two metrics

might be due to measurement error existing in both the test (neural samples) and

target (behavioral confusions), as compared with categorization performance where

no measurement error exists in the target (category labels).

4.4.4 Representational dissimilarity

Representational dissimilarity matrices (RDMs) are a compact way to summarize fea-

ture spaces. The technique, termed representational similarity analysis (RSA) uses

RDMs to quantify similarity between brain areas and models (or between brain areas

and brain areas) [56, 159]. Similar to the other population-level metrics presented

above (performance and behavioral consistency), we do not observe significant dif-

ferences between our juvenile and adult pIT samples (see Figure 4-5). Because we

have the highest number of neural samples in the combined areas of adult cIT and

alT, we designated this area as the target to which we measure similarities against.

Consequently, the similarity between the "cIT & aIT" pool and itself (see the bottom

left plot of Figure 4-5) can be interpreted as the noise-ceiling for this metric. As
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Figure 4-3: Categorization performance

a. Conceptual, simulated example of linear classification. Each plot shows the stimu-

lus responses for a pair of two neurons (x- and y-axes). Dots indicate the response to
a particular stimulus image and the color (red or blue) indicates the category which
the image depicts. Shown also is the line which best separates the two categories.
The plot on the left illustrates a pair of neurons which are not very categorical, in the
sense that a linear classifier can not easily separate the categories, in contrast with the
plot on the top right. This concept of linear separability generalizes to additional neu-
rons (higher dimensions) which we utilize for our population-level classifications. b.
left. Performance on 8 category discrimination tasks using the variation 3 stimulus
set. Shown are the cross-validated performances of each area normalized to human
performance. The light gray shading indicates the spread of 95% of bootstrapped
performance values, while the dark gray indicates the spread of 50% of performance
values for each area. To control for experimental noise and sampling, all areas were
matched to contain the same number of trials and units. b. center. Performance as
a function of the number of neural sites used. The width of the shading around each
line indicates the spread of 50% of bootstrapped performance values. All areas were
matched to contain the same number of trials. b. right. Extrapolated performance
for each area. The extrapolation indicates log-linear fits to the plot in the center col-
umn. c. Shown are categorization performances as a function of units using different
read-out windows of time (50-100 ms, 100-150 ms, and 150-200 ms).
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Figure 4-4: Behavioral consistency
a. Creation of a B.Iln behavioral response vector. Animals initiate a 2-way alterna-
tive fixed choice (2AFC) trial by fixating at a red dot at the center of the screen. A
test image is then shown for 100 ms followed by a selection phase. The selection phase
presents two objects in a canonical position on a gray background. One object was
previously shown in the test image, and a second distractor object is also shown. The
animal indicates its choice as to which object was shown in the test image by saccad-
ing to the left or right. We then construct a vector with each element representing the
performance of recognizing the object in a particular test image (see Methods). This
vector is then normalized by the average performance (across all images depicting
the object) to normalize out object-level differences and focus the vector's variance
more so on image-level variance. b. left. Shown are the noise-corrected behavioral
similarities of each area to monkey behavioral responses on variation 640 recognition
tasks. The light gray shading indicates the spread of 95% of bootstrapped correla-
tion values, while the dark gray indicates the spread of 50% of correlation values for
each area. To control for experimental noise and sampling, all areas were matched
to contain the same number of trials and units. b. right. Behavioral similarity as
a function of the number of neural sites used. The width of the shading around each
line indicates the spread of 50% of bootstrapped correlation values. All areas were
matched to contain the same number of trials.
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Figure 4-5: Representational similarity

a. Object-averaged RDMs for each brain or age-defined area. Each RDM was created

from samples of 37 trials and 58 units on the variation 3 dataset. Also shown below

are RDMs created from additional random samples using the same number of units

and trials. b. left. Shown are the noise-corrected RDM correlations of each area to

the pool of adult cIT and aIT neural sites on variation 640 (the stimulus set over which

we have recorded the most neural sites). We chose to use the combined data from

adult cIT and adult alT as the target RDM because this allowed us to utilize the most

data (265 target neural sites). The light gray shading indicates the spread of 95% of

bootstrapped correlation values, while the dark gray indicates the spread of 50% of

correlation values for each area. To control for experimental noise and sampling, all

areas were matched to contain the same number of trials and units. b. center. RDM

similarity as a function of the number of neural sites used. The width of the shading

around each line indicates the spread of 50% of bootstrapped correlation values. b.

right. Extrapolated correlations for each area. The extrapolation indicates log-linear

fits to the plot in the center column.

97

b) -b) 0.500 -

- 0
0.221 -



a)
A 0.2- 171 total sitesAdult V4 I

Juvenile plT 0 *2 149 total sites
1 0.1-

Face detection

41 selective (23%)

38 selective (25%)

b) t .
- 1.0-
U
+J1 -

0.-

a
0

.

CIS1)
oL

Adult V4

Juvenile plT
Adult pIT

70-o. ms

Nm r li 10
Number of units

Adult

Adult plT 02 140 total sites 43 selective (30%) C) 0.0- Juvenil pIT Adul pIT
0.104w=19 t 4
0.0- 1 N...=31 6.7 N =37 i 4.2

0.15-

clT & alT 1. 143 tota 1selective (42%)

-2.5 0.0

d'
2.5 0 4

Distance (mm)

Figure 4-6: Face detection and identification
a. Shown is the distribution over neural sites of face detection d-primes. The face
detection d-prime is the d-prime between face and non-face stimuli. All plots were
repetition matched to use the same number of trials. The red dashed line indicates the
99th percentile of shuffled d-primes where we computed face-vs.-non-face d-primes on
data which had the stimulus identities randomly scrambled. The number of selective
units was defined as the number of units above the 99th percentile of shuffled d-primes.
Similar to the object and category d-primes presented above, we latency adjusted
each neural site before computing d-prime estimates-this correction was not used
for the identification estimations in panel b. b. Shown are the face identification
performances of each area and age-defined pool, estimated from linear classifiers. In
the variation 0 dataset, there were 8 face identities. c. Shown is the spatial clustering
of face selective units within array implants. Starting from each face selective site,
we plot the probability of finding another face selective site as a function of spatial
distance.

shown in the bottom left plot of Figure 4-5, the median of our juvenile pIT samples

is within the noise ceiling of the cIT & aIT pool (it is within the spread containing

95% of the bootstrapped mass of the ceiling).

4.4.5 Face identification and detection

To compare with prior literature on face selectivity, we used our variation 0 dataset

to compute face detection d-primes and face identification performance. Variation 0

depicts all objects in a canonical, centrally positioned, forward facing view, similar
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to the presentation of faces in prior studies. We found that juvenile face detection

d-primes (see Figure 4-6) fell within the distribution of adult data. In general, we

found that face d-prime measures to be poor discriminators between even adult areas

(compare adult V4 and "cIT & aIT" where we would expect the largest differences),

consistent with what we found with other single-site d-prime measures (see Figure

4-2).

An additional measure of face recognition performance is face identification: rec-

ognizing the identity of a specific face. To estimate face identification performance,

we trained linear classifiers using similar methodology to our categorization classi-

fiers described above. We found that adult V4 excelled most at this task, consistent

with prior work which has shown V4 outperforming IT in low variation subordinate

recognition tasks [9]. Juvenile pIT was no more or less performant than adult pIT on

this recognition task (see Figure 4-6), consistent with our prior categorization results

described above.

To assess the spatial distribution of face selective sites, we plotted the probability

of finding two units as a function of distance. Representations in which face selective

units cluster spatially together (as is known to occur in adults), would exhibit a

negative slope, that is, the probability of finding another face selective site goes

down the farther away one moves from a face selective site. At the other extreme,

representations in which units are distributed randomly would exhibit a flat line-

there would be equal probability of finding another face selective site regardless of

where one searches. Our results are suggestive of a difference in spatial organization

between adults and juveniles. However, we caution that because we restricted our

analyses to comparisons within single array implants (which have grids of 10 by 10

electrodes) and that out of this grid, not all sites contained visually responding units

(with even fewer being face selective), our power to make claims relating to spatial

layouts is limited.
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4.5 Discussion

In this study, we have provided the first large-scale, detailed account of juvenile pIT on

a challenging image-set capable of assaying the limits of core object recognition. We

focused on population-level rate coding metrics to quantify consistency between ju-

venile neural responses, adults neural responses, and behavior (with the link between

the latter two previously established [8]). We additionally compared our juvenile to

adult data using single-site measures, primarily to connect with earlier work. We have

presented evidence that, at the age of 19-32 weeks, pIT supports robust categorization

read-outs in a manner presently indistinguishable from adults. We observe latency

effects consistent with prior results [168], while providing additional evidence that

IT exhibits more latent responses at the age of 19-32 weeks. [168] pooled data from

infants recorded in the range of 4-28 weeks, with most of the recordings occurring

before the age of 16 weeks, leaving open the possibility that the adult-infant latency

gap may be less pronounced at the ages we recorded from. We note that the slower

juvenile onset latencies do result in decreased recognition (relative to adults) 50-100

ms after stimulus onset (see Figure 4-3), they do not cause decrements in performance

in later time bins (ex. 100-150 ms). The behavioral significance, or lack thereof, of

this latency effect will require future investigation.

In terms of future developmental electrophysiological studies, there are at least

three possible directions of interest: (1) record from earlier ages in hopes that develop-

mental effects will be more easily observable at earlier ages, (2) record more adult and

juvenile data at the same ages in hopes that there may be differences in representa-

tion at this age not presently detectable due to experimental noise, (3) use alternative

experimental techniques (such as an exchangeable array [182] or large-scale single-site

approaches similar to [183]) to increase not only the number of sampled neural sites

but also to help ensure that each neural sample is closer to the idealized independent,

"random" sample from pIT. Point (3) may also allow for a more detailed character-

ization of both the adult and juvenile states in terms of measures not investigated

here: such as cell type or layer differences.
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4.5.1 Response onset latency

Both the cause and significance, if any, of neuronal latency to development remain

unknown. Possible causes may include differences in synaptic efficacy [184, 185, 186],

myelination diameter, internodal distance [1871, and total axon diameter - all fac-

tors known to change with development. A combination of these factors may be

responsible for developmental latency [1871.

4.5.2 Single-site metrics

Aside from neuronal response latencies, for which we see robust differences between

juveniles and adults, we did not find differences in the means of any of our d-prime

measures (Tables 4.3 and 4.4). We additionally did not see reliable differences between

adult areas using the mean values of these metrics-even between V4 and "cIT &

aIT" for which we would expect to see the largest of differences among our adult

data. While there are many examples in the literature of using single-site measures

to characterize both low [126, 188, 63, 64] and high-level visual areas [189, 30, 5, 168],

these approaches do not appear to provide strong diagnostic utility here (even between

adult areas) unless statistics are computed on the, inherently noisier, right tails of

the distributions (Tables 4.7 and 4.8).

We similarly did not find significant differences between the mean sparsity of

juvenile and adult pIT (Table 4.2), but found significant differences when computing

statistics on the right tails (Table 4.6). If these differences are reflective of actual

biological differences between both areas and ages, rather than being a reflection of

individual differences in character or quality of each array implant (for which we

tried to equalize using trial matching and unified electrode selection procedures),

then these results could connect to prior work on sparse coding. Prior modeling work

has demonstrated that Vi-like edge-selective tuning properties arise, in part, from

response sparsity constraints [45, 1901 and have explored its utility as a regularizer

in machine learning [191]. However, the connection, if any to biological development

remains to be established and requires further examination in narrowing down these
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and other possibilities.

4.5.3 Face metrics

While single-site metrics do not provide us the ability to separate V4 from IT here,

these measures do indicate that all areas measured contain face discrimination and

identification beyond what would be expected from chance (see Figure 4-6). These

results do not contradict prior work, finding 1 year old macaques exhibiting face

selective fMRI regions [421.

Human infant fMRI at 12-32 weeks of age (corresponding to approximately 3-8

weeks in age for macaques), also exhibit face selective fMRI regions [37]. However,

[371 found that infants had less selective responses which additionally corresponded

to differing category-level representational similarities between adults and infants. It

is an open question as to whether or not electrophysiological recordings in 3-8 week

old macaques would also yield such differences. There are are at least two scenarios

in which we would expect to observe deficits in infant fMRI face patch measurements

while simultaneously observing adult-like physiological responses: (1) fMRI deficits

may reflect changes in vascular development unrelated to the visual representation it-

self, (2) fMRI may be detecting large-scale "organizational" differences between adult

and infants, with the underlying neural selectivities of infants and adults being in-

distinguishable. Reorganization of this nature (whereby spatially nearby neurons

represent similar visual features) may have biological utility in minimizing metabolic

activity but have no relation to recognition performance. Many high-performing ob-

ject recognition models contain one or more fully-connected layers as the last layers

of the model where the spatial layout of the representation is discarded entirely [6]-

providing evidence that, computationally, spatial organization (in higher layers) is

not necessary for robust object recognition performance.

While our experimental approaches offer some spatial information allowing us to

test the second hypothesis above (Figure 4-6c), our power is limited because we are

restricted in making cross-animal or hemisphere comparisons. With this preface, we

do observe that our juvenile recordings have reduced spatial clustering of face selective
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units. This finding is not inconsistent with the second hypothesis described in the

paragraph above and, if generally reflective of juvenile pIT, may explain some of the

discrepancies suggested by physiological and fMRI studies.

4.5.4 Constraints on learning algorithms

While progress has been made in understanding and modeling both higher [1] and

lower visual areas [4, 5, 2, 3, 10, 8] aided, in part, by advances in computer vision

[6, 7], current high-performing (and neurally predictive) models require implausibly

high amounts of precisely labeled training examples. Thus, visual developmental

research may serve to both constrain and guide the development of more generic and

predictive learning algorithms of primate vision, and possibly beyond.

Provided that we did not see differences using population-level metrics, our work

does not constrain models of development in a representational sense. However, our

work does constrain models from the perspective of the amount of training data-

models of primate visual development ought to exhibit adult-like performance and

consistency using only 25 weeks of visual experience. Assuming 16 hours of awake

visual experience per day [192] over 25 weeks, our data constrains models of primate

visual development to roughly 2,800 hours of waking visual experience.
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Chapter 5

Conclusions

This thesis has examined several aspects of both adult (Chapter 2) and juvenile

(Chapter 4) visual object recognition. We have additionally described (Chapter 3)

a set of natural image and input statistics automatically incorporated into high-

performing models through supervised training. Our adult fMRI studies have ex-

tended prior work [10] which showed increased model recognition performance (across

model architectures) was a predictor of increased neural predictivity of IT and V4.

We furthered this line of investigation by demonstrating that neural predictivity also

increases within the same model architecture as it is trained to perform object recog-

nition tasks on natural images. Our work on natural image and input statistics

demonstrated that some, but not all, of model performance was sustained only by

matching 2 ,d order filter statistics. This work might lend some plausibility to visual

object recognition being learnable from partly generic learning rules, as opposed to

being largely or entirely dictated by evolutionary architectural constraints.

Our juvenile recordings in higher visual cortex provide the first detailed account

of the juvenile visual object representation at the scale of multi-unit recordings. With

our finding that the multi-unit population representation is indistinguishable from the

adult representation, we are able to rule out several broad-scale hypotheses predicting

the time-course of visual development (see Figure 5-1). Given that we did not find a

representational difference between juveniles and adults, the possibility of a complete

"innatism" model of visual object recognition development (adult-like responses at
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Figure 5-1: Constrained neural developmental time-courses
Our juvenile pIT recordings rule out hypotheses predicting sub-adult recognition per-
formances at 6 months of age. However, the data do no distinguish between any
hypotheses which predict adult-like performance at 6 months.

birth) cannot still be ruled out. While studies of early visual areas find refinement of,

for example, orientation tuning in the first few weeks of postnatal life, it is possible

that these changes may not be necessary for invariant object recognition performance

and that sharpening of early visual area tuning curves could be a consequence of

entirely unrelated processes (such as optimizing metabolic processes or in refining

synaptic efficiency). It may also be possible that the refinement tuning in early visual

areas does serve some behavioral function, but that our tasks were not sufficient to

probe these functions (perhaps the refinement is beneficial for either more difficult

recognition tasks, or for visual tasks unrelated to object recognition entirely, such as

motion detection).

There are multiple ways in which visual development may be further investigated

in light of our results, some of which are described in Chapter 4. While we have ruled

out several "slow" models of visual development (see Figure 5-1), similar variations

of these are still plausible, with an accelerated temporal time-course (see Figure 5-

2). These "faster" hypotheses could be tested by replicating our methods in animals

earlier in age. Aside from recording from younger animals, an alternative approach
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Figure 5-2: Potential earlier neural developmental time-courses

With the constraints of our data, similar hypotheses can be proposed and tested by

recording from animals younger in age (for example, 3 months), similar to our initial

set of possibilities shown in Figure 1-2.

would be to record from additional animals at the same ages we have collected here-

in the context of Figure 5-1, this would result in us reducing the vertical width of

the red and black bars (presently laying exactly on top of each other in the figure).

Conceivably, a gap could emerge between the representations with additional data.

With the prior discussion in mind, it is somewhat straightforward to further con-

strain models of visual development, however, it is less clear as to how to actually

build more predictive models. Supposing there are, in fact, behaviorally-relevant de-

velopmental changes to higher visual cortex in postnatal life, two broad approaches

can be taken: a bottom up approach and a top down approach to studying visual

development (in practice, most approaches will necessarily have elements of each and

the distinction is somewhat subjective).

The "bottom up" approach mentioned here is used to refer to a broader class of

approaches than is typically meant by the term. Here, "bottom up" refers to ap-

proaches that focus on optimizing models on loss functions of explicit visual nature.

The loss functions could either be semi-supervised or completely unsupervised. Ex-

amples include optimizations to explicitly incorporate natural image statistics into
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models (like Chapter 3), optimizations which seek to model or predict visual inputs

through time [49], generative adversarial optimizations [52], pixel completion tasks

[50], among other approaches.

The "top down" approach instead would proceed under the assumption, or hope,

that visual functions would emerge from loss functions which are not explicitly vi-

sual. For example, from a reinforcement optimization with rewards being specified

by both external and internal rewards (the latter of which might be largely specified

by evolution and could include targets like curiosity [1931, or other forms of intrinsic

motivation [194]). It is important to note that reinforcement learning in itself does

not distinguish the top down and bottom up approaches here. For example, "su-

pervised" category classification could be distilled down to a reinforcement problem

where all the labels are provided in the form of a reward signal indicating a correct

or incorrect response. Rather, what distinguishes the approaches is the (somewhat

subjective) generality of the learning signal. The example of giving rewards for cate-

gory classification, or any other explicitly visual task, is an example of a lack of this

generality.

The top down approach has the subjective appeal of potentially demonstrating

much or all of neural visual computation arises from more generic survival or adap-

tation constraints. In the same way that [10] and Chapter 2 suggest that middle and

early visual areas can be understood as subserving a higher-level objective (visual

object recognition), object recognition itself may be demonstrated to be an epiphe-

nomenon of a more generic, cross-modality optimization.
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