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Abstract

In the thesis, I develop an algorithm to identify the vehicle model from telematics
data. By extracting the features from the accelerometer and GPS data, we obtain the
classification features, which then goes through a multiclass random forest classifier.
We apply this results into problems of driver and vehicle identification. The result
shows that, while the algorithm could identify the vehicle models to some extent,
the dominating signal comes from driving style, and an approach running purely
unsupervised learning is harder to achieve good classification results compared to
supervised methods.
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Chapter 1

Introduction

1.1 Motivations

In America, on average people spend more than 290 hours a year driving, logging

more than 10500 miles. Vehicle telematics offers a rich source on understanding

users’ driving behaviors. Recent advances from big data processing, machine learning

and sensor networks have allowed for effective telematics data collection and pro-

cessing, which have not only resolved many traditional problems, but also opened

new avenues for studying new questions. Starting from 2006, MIT CarTel project [7]

has attempted to collect and analyze telematics data when driving simply by using

smartphone devices. Combined with big data processing and analytics, the project

has also evaluated users’ driving behavior and given suggestions to make them drive

better.

With the development of big data techniques, automobile insurance companies are

also changing their approach for insurance pricing. Traditional approaches are based

on static, easily defined features, such as driver’s age, gender, years of experience,

as well as vehicle make and model. However, advances in big data has enabled the

rise of telemetry-based insurance model, for example the pay as you go model [3].

The new methods take into account extra information, such as vehicle mileage, usage

pattern or risky driving behavior, and employ complex machine learning models for
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risk assessment. This allows for insurance companies to tailor insurance plan for each

user. The transition process has led to many interesting questions and forced revision

on traditional insurance pricing methods.

1.2 Problem Statement

The focus of this work, is to take the rich telematics data collected on trips to study

the question of vehicle model recognition. There are multiple variants of the problem;

in this instance, we focus on vehicle identification of a user. That is, given driving

history of a user consisting of multiple trips, each trip represented by its telematics,

we need to identify all available vehicles and cluster the trips based on the vehicle the

person is using.

There are multiple applications from solving this problem. For example, determining

which vehicle driven by an user enables analytic and behavioral study on their driv-

ing behavior and helps making suggestion to improve their driving. From insurance

companies’ perspective, this enables them to study large scale behavior of users, for

example, which vehicle model is more prone for unsafe driving behavior.

1.3 Challenges

Like many data problems, the main issues lie in data qualify. In telematics, the data

quality problem is amplified by a wide variety of causes. Since all data is recorded in

open road condition, such data can be affected by external factor, such as road bumps,

traffic or pitch elevations. Such external factors could at best add noise into mea-

surements, and at worst corrupt recorded data (for example, driving through tunnel

makes GPS data become unavailable). The difficulty also comes from the unpre-

dictable nature from human input, which is often case specific. Smartphone position,

if data is recorded from the smartphone, can also add noise to the measurement. The

low sampling rate also limits the ability to extract more granular features, which adds
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difficulty into designing good features that could differentiate different vehicle models.

Practical demand requires us to focus on two important conditions that allow the

algorithm to be easily applied in real world: granularity (able to identify vehicle

type, not just generic transportation mode like train, car or walking) and ubiquity

(require only smartphone sensors, and data is collected on open road condition versus

controlled environment such as closed circuit and wind tunnel). Choosing the right

abstraction and performing controlled feature engineering are crucial for the classifier

to be able to correctly classify trips.

1.4 Related Work

Many previous works have focused on various aspects of vehicle classification under

different measurement conditions. The theory of vehicle modeling is documented

in [5] [12]. Traditionally, most measurements are done in a controlled environment,

with the vehicle is in factory condition and runs on closed circuit track, or require

expensive preparation such as wind tunnel and various custom-made sensors. Such

assumption is generally not applicable in real life condition, where external effect and

driving characteristics can affect the measurements.

Nevertheless, more recent works have attempted to develop algorithms under gen-

eral conditions, using only measurements from smartphone. [6] employs smartphone

accelerometer to detect transportation mode. Many of their idea are adapted in this

thesis. [9] used vertical acceleration to estimate vehicle’s weight.

Telematics data belongs to the class of time series data, hence many techniques to

extract features from time series data are relevant, such as statistical features, time-

dependent features and spectral analysis. [11] gives an overview on feature extraction

techniques and their application in music fingerprinting.
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A similar problem is classifying trips with respect to driving style, in which [2] has

proposed a deep learning solution. Our problem, although on a similar nature, has

remarked difference. Since telematics data is dominantly influenced from driving

input, which is heavily driver dependent, it is not clear how to extract invariant,

vehicle-based features that does not depend on driving style.

1.5 Results Summary

In this thesis, we develop an algorithm for classifying vehicle model, and subsequently

apply into user vehicle identification. If sufficient labeled data for each driver is avail-

able, we could build a per-user classifier that can classify about 90 percent of trips

with their correct vehicle model. In addition, we also develop a classifier that utilizes

data aggregated trips from multiple drivers and from popular vehicle models. With

such framework, the classifier could classify about 45 percent of trips to their correct

vehicle type (SUV, compact or sedan), compared to 33 percent with random guess-

ing. All the classifiers are built using strictly telematics data, that is, no metadata

information about trip or user is considered. However, combining with heuristics

derived from user metadata, the classifier can be used for classify trips of drivers

having no prior labels, achieving robust accuracy, albeit lesser compared to strictly

supervised methods. We also study the features that could effectively discriminate

different vehicle models.

1.6 Organization

Chapter 2 discusses the main technical part of the thesis, containing details on data

collection, feature engineering and algorithm. With large amount of concepts intro-

duced, we choose to present the idea in Chapter 2 with the goal to be self-explanatory

rather than strictly precise. Chapter 3 presents the experiment setup and results.

Chapter 4 discusses implications of the results and future extensions. The Appendix

complements the main chapters by providing formal derivation of technical concepts
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we use in this thesis.

1.7 Disclosure

The work requires access to a large quantity of telematic data. The data is provided

by Cambridge Mobile Telematics (CMT), which has allowed the author to use the

data and general analysis pipeline to perform the work.
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Chapter 2

Description of Approach

2.1 Data Collection

The data is recorded either from user’s smartphone or from a customized hardware

device designed by CMT attached to the vehicle, referred here simply as tag. Trips

are recorded across many countries from 2013 to 2017. Various sensors record data

at different sampling rate, but for simplification we assume all sensors sample at a

fixed rate, with downsampling on sensors with higher sampling rate and linear in-

terpolation on sensors with lower sampling rate. Table 2-1 lists all available sensors,

corresponding with their notation that remain consistent in the thesis.

Figure 2-1: An instance of recorded data of a given trip.

The device records data in raw form and accounts for all the external factors that can

affect the measurement. For example, gravitational force causes a constant down-
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Measurements Sensor used
Longitudial (𝑎𝑥), lateral (𝑎𝑦) and vertical acceleration (𝑎𝑧) Accelerometer

Position and velocity (𝑣) GPS
Roll, pitch and yaw Gyroscope

Road pitch Barometer
Vehicle orientation Magnometer

Table 2.1: List of available measurements and corresponding sensors

ward acceleration in the vertical direction of the accelerometer. Road bumps or poor

weather conditions can also affect the quality of the device’s reading. A processing

algorithm subsequently filters such external effects and aligns the measurements to be

road-oriented, whose details is outside the scope of the thesis. For many trips, there

is label of vehicle make and model, which we will take as ground truth data. However,

the label is made at user basis, meaning for many users there is no information about

their vehicles. There are 30 million such labeled trips, and 90 million unlabeled trips

in our dataset.

Some metadata that are also useful for analysis includes trip information (trip start/end

timestamp, start and end location, duration and distance) and anonymized user ID.

2.2 Intuition for the Approach

We will approach the problem with a semi-supervised learning algorithm. We build

a classifier on vehicle type (such as SUV, compact or sedan) using data from many

trips of many users, then apply the classifier to predict the vehicle type on trips by a

particular user. Finally, we apply heuristics on vehicle usage pattern to group certain

trips into the same vehicle classes.

Note that, although the problem is formulated as a clustering problem, we do not

implement any clustering algorithm here. The reason is that, clustering algorithms

suffer inherent difficulty, such as requiring a notion of similarity, and in some algo-
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rithms requiring the number of clusters in advance. For most cases, results obtained

from clustering algorithms are hard to interpret and there is no obvious strategy on

how to improve the results beside feature engineering, which is often trial and error

process. Furthermore, in this problem, large amount of labeled data can enable semi-

supervised approaches, if interpreted correctly.

Algorithms that rely on global features (for example, global analysis throughout the

trip) suffer from the lack of discriminable features and noises incurred by various

factors from the trip, such as traffic condition.

Figure 2-2: Global comparison between two different trips driven by different vehicle
models traversing on the same route.

As shown here, in the long run, trip trajectory becomes the discriminative factor,

dominating the local difference stemming from driving different vehicles. Therefore,

the classification algorithm needs to exploit the local structures of the time series

data where it suffices to discriminate different vehicle models. We accept to some

extent features that are affected by drivers, since driving behaviors are governed by

vehicle characteristics. Road condition, weather or traffic, on the other hand, should
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be excluded.

Techniques from machine learning suggest to collect locally based characteristics as

the features, such as accelerating, engine characteristics, suspensions, steering and

cornering. Various work from physics and mechanical engineering give initial in-

tuition for constructing such models, but there are two departure from traditional

engineering models. On one hand, the goal here is to reconstruct the model based on

empirical data instead of confirming the validity of the model under road test. On the

other hand, measurement error, limited sampling rate and open road condition may

cause deviation from the ideal model, and it is likely that one sometimes needs to

work with a more abstract or simplified model for the sake of computational efficiency.

We will follow this line of idea, adding justification for abstract models upon necessary.

Although sampling rate limits the ability to obtain the precise values of the parame-

ters, in practice, we don’t need such precision. Since the same feature from different

trips in the dataset is computed using the same algorithm, as long as the feature

extraction function is reasonably well defined and continuous, small adjustments to

the function would result to small change in the feature values, which retains their

classification ability.

Since the classifier is inevitably noisy, there will be error on classifying user’s trips.

Therefore, we apply heuristic correction, which looks at trip history as sequence of

points and find correlations between some pairs of trips. Those correlations allow us

to put trips into the same vehicle type where the generic classifier cannot decide with

certainty.

To summarize, our approach consists of three steps:

1. Build a classifier on vehicle type, using trips having labeled data.

2. For each user, use the classifier to classify unlabeled trips.
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3. Apply subsequent heuristic correction to group certain trips into the same clus-

ter, and output the final clusters.

2.3 Proposed Feature Engineering

The rest of the chapter explains how to obtain the features, their justification and

their characteristics on classification.

2.3.1 Prelude: what to extract from timeseries data?

Unlike typical high dimensional data, timeseries data often comes at different di-

mensions and different channels, making typical feature extraction or dimensional re-

duction approaches such as Principal Component Analysis (PCA) or Singular Value

Decomposition (SVD) difficult or not feasible. In this work, we approach from three

directions:

∙ Extracting statistical features after removing invalid data points in the data.

The selected features consist of mean, standard deviation, skew, kurtosis; 25,

50, 75 percentile, and minimum/maximum value. This approach ignores the

time-dependent nature of the data; however, we find that its simplicity can

essentially capture the nature of the time series, directly relate to the physical

quantity capturing the vehicle’s characteristics and achieve good classification

results in practice. For subsequent subsections, we refer to this definition upon

mentioning extracting statistical features from time series data.

∙ Extracting time-dependent features from the data. The most notable feature

comes from evaluating the spectrogram of the signal. On the flip side, the

features obtained from these techniques are not readily explainable, since they

are only tangentially associated with the physical quantity. However, they can

capture local and rare behavior of the vehicle, making them strong indicators

for classification.
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∙ Extracting event-based features, for example, hard braking and hard acceler-

ation. These events are often time localized and caused by external sources

from the driver road conditions. These features require more engineering and

parameter tuning to achieve good discriminative accuracy.

Several features are inspired from modeling vehicle dynamics. Table 2.2 explains the

dynamics and associated measurements, where subsequent sections explain intuitively

how to extract features. Formal derivations of some of these models are deferred to

Appendix A.1.

Vehicle Dynamic Model Associated measurements
Longitudinal Dynamics 𝑎𝑥, 𝑣

Lateral Dynamics 𝑎𝑦, 𝑣
Suspension Response 𝑎𝑧

Rolling Dynamics 𝑎𝑦 and roll angle

Table 2.2: List of vehicle dynamical models and associated measurements

2.3.2 Suspension response system

The suspension system is designed to reduce the shock coming to the vehicle upon en-

countering road artifacts, such as potholes. In this problem, we model the suspension

as a damped harmonic oscillator that satisfy the following differential equation

𝑑2𝑧

𝑑𝑡2
+ 2𝜁𝜔0

𝑑𝑧

𝑑𝑡
+ 𝜔2

0𝑧 = 0 (2.1)

where 𝜔0 is the undamped angular frequency of the oscillator, and 𝜁 is the damping

ratio. Here 0 < 𝜁 < 1 since the damped spring gradually kills oscillations caused by

road impacts. With impact value 𝐴0 at time 𝑡 = 0, the damping value follows

𝑧(𝑡) = 𝐴0𝑒
−𝜁𝑡 sin(𝜔0𝑡) (2.2)

To learn the parameters 𝜔0 and 𝜁, we compute the autocorrelation of the vertical

acceleration data. Let 𝑣(𝑡) be the vertical acceleration at time 𝑡. For a lag 𝑠 ≥ 0, the
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autocorrelation corresponding to 𝑠 is defined by

𝑎(𝑠) =

∫︀
𝑣(𝑡)𝑣(𝑡+ 𝑠) 𝑑𝑡∫︀

|𝑣(𝑡)|2 𝑑𝑡
(2.3)

with 𝑣(𝑡) = 0 for values of 𝑡 outside the domain of interest. Note that the denominator

corresponds to the autocorrelation at 𝑠 = 0, so that 𝑎(0) = 1. The values 𝑎(𝑠)

correspond to the empirical damping values of the suspension response derived from

actual data. The values 𝜔0 and 𝜁 are chosen to minimize error

(𝜔0, 𝜁) = arg min
0≤𝜁<1,𝜔≥0

∫︁
𝑡
(𝑒−𝜁𝑡 sin(𝜔0𝑡)− 𝑎(𝑡))2 𝑑𝑡 (2.4)

Figure 2-3: Suspension response over time

Since we use empirical data, it is inevitable that there are variations of the returned

values accounting for measurement errors. However, there are patterns across the

trips. For comfort cars, the damping ratio is typically low (at 0.2− 0.3) to maximize
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user comfort, while for offroad and race cars the damping ratio is higher (typically

0.5− 0.7) to quickly smooth the impact.

Figure 2-4: Statistical features of vertical acceleration: damping ratio (horizontal) and
oscillation frequency (vertical)

Vertical acceleration manifests from many car-specific features, such as weight [9] and

suspension response. Hence in addition to computing the damping coefficient and fre-

quency, we could also compute statistical features of vertical acceleration. However,

since vertical acceleration is affected by vehicle speed [10], we need to partition the

vertical acceleration values using vehicle speed and collect their features separately.

Another issue is vehicle’s weight. In practice, the reading from vertical accelera-

tion comes from vehicle’s load, which might include beside curb weight passenger’s

weight, fuel and extra loads. The last one is especially problematic for estimating

parameters of SUV-type vehicle since the vehicle’s weight varies significantly between

different trips.
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2.3.3 Power to weight ratio

By Newton’s second law, the power can be represented as

𝑃 = 𝐹𝑣 = 𝑚𝑎𝑥𝑣 (2.5)

However, using only accelerometer and GPS sensors, there is no obvious way to infer

vehicle mass, so we need to settle for the power to weight ratio which is 𝑃/𝑊 = 𝑎𝑥𝑣.

Collecting such ratio for each valid sample, we have a timeseries representation on

acceleration capacity and engine responsiveness of the vehicle. Since power to weight

ratio can capture the instantaneous change of the engine, we consider it a more reli-

able metric than the conventional metrics, such as braking distance or 0 to 60 mph

acceleration time, which require vehicles to run in controlled condition. We collect

statistical features from the timeseries.

Figure 2-5: Power to weight ratio: mean (horizontal) and standard deviation (vertical).
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Note that our empirical power to weight ratio is different from the power to weight

ratio quoted from manufacturers, which is often measured at peak engine performance

at curb weight (no driver on board). Nevertheless, it is an important measure, since

power to weight ratio depends exclusively on engine performance. Comfort and com-

pact cars often have lower power to weight ratio, while sport cars, luxury and SUV

have high power to weight ratio to compensate for larger vehicle size.

2.3.4 Aerodynamics and Longitudinal Friction

Vehicle longitudinal dynamics follows the equation

𝐹 = 𝑚𝑎𝑥 = 𝐹𝑇 − 𝐹𝑎𝑒𝑟𝑜 − 𝐹𝑅 (2.6)

where 𝐹𝑇 is forward tire force, 𝐹𝑎𝑒𝑟𝑜 is aerodynamic drag and 𝐹𝑅 is longitudinal

rolling friction. At high speed, the dominant drag force is aerodynamic drag, which

is proportional to the square of vehicle’s velocity

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝐶𝐷𝐴𝑣

2 (2.7)

where 𝜌 is atmospheric density, 𝐶𝐷 is vehicle’s drag coefficient and 𝐴 is vehicle frontal

area. Information about vehicle aerodynamic specification can be found on table A.1.

Certain types of vehicle, such as SUV, have higher drag area compared to other types.

Therefore they need higher engine power to operate and is less responsive to brake

and accelerate compared to other vehicle types. Statistical features of longitudinal

acceleration and square of velocity would therefore capture the difference between

vehicle types.

2.3.5 Lateral dynamics: steering features

Measuring vehicle handling is tricky, because the input impulse coming from steering

has small magnitude and occurs in very short period of time. A natural approach

would be to measure the turn radius, corresponding to how tight a vehicle can make
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a turn. There are two issues with this approach:

∙ Noises coming from driving behavior. This is a minor issue since turn radius

tends to correlate with how tight a turn a driver will make.

∙ Noises coming from traffic. This is a big issue since traffic often blocks the

vehicle from making small turn as designed. Traffic law also causes drivers to

make left turn larger than right turn (assuming the law mandates drivers to

drive on the right side of the road).

A better approach is to rely on statistical features from gyroscope sensor, in particular

the yaw rate. Recall that the centrifugal acceleration is derived by the equation

𝑎 =
𝑣2

𝑅
(2.8)

where 𝑎 is yaw rate, 𝑅 is the radius of the turn and 𝑣 is vehicle’s speed. Therefore

at any instant, 𝑣2/𝑎 characterizes the vehicle’s turning capability. Excluding small

values of 𝑎 (indicating vehicle is not turning or ensuring numerical stability), we can

collect the statistical features of turn radius.

2.3.6 Autocorrelation coefficients

Previous features ignore the time dependent nature of the time series, which con-

tains many important information about vehicle characteristics. For example, au-

tocorrelation describes the vehicle wheelbase, since when the vehicle is excited by

road bumps, the time lag between two consecutive bumps correlates with vehicle’s

wheelbase length. We compute the autocorrelation coefficients of vertical acceleration

following the equation

𝑐𝑑 =

∑︀𝑛
𝑖=1 𝑣[𝑖]𝑣[𝑖+ 𝑑]∑︀𝑛

𝑖=1 𝑣[𝑖]
2

(2.9)

(here we normalize 𝑐0 = 1), and use the first five coefficients as features. Similar

definitions can be made for other types of measurements.
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2.3.7 Hard acceleration and hard braking

These features are time localized and characterize many of the characteristics of ve-

hicles, as they direct correlate with braking and transmission of a vehicle. We define

a hard acceleration as the longitudinal acceleration exceeds 0.5𝑚/𝑠2 and an acceler-

ation frame as the consecutive period the hard acceleration exceeds such threshold.

For each frame, we compute the duration and mean acceleration in that period, and

aggregate over different frames using statistical extraction.

The same idea applies for braking events, using −0.5𝑚/𝑠2 as threshold. Similarly,

we can extract features with lateral acceleration and vertical acceleration as input.

For lateral acceleration, event corresponds to a sharp left or right turn. For vertical

acceleration, event corresponds to vehicle’s response when excited by external road

event.

2.3.8 Spectral analysis

The spectral content of a time series often contains rich information about time se-

ries’ characteristics, making it a useful feature to compute. Spectral analysis has been

widely applied in a number of domains, including image classification [8] and speech

recognition [11]. In vehicles, spectral content comes from engine vibration, either

when the vehicle is moving or at idle state. One interesting idea for vehicle model

classification is to analyze the sound emitted by the engine as the vehicle moves,

emitted via fluctuation of gyroscope. However, the sampling rate of sensors in this

problem is too low to capture such information. Therefore we need to settle for lower

frequency characteristic, such as idle state vibration which has frequency of 1 − 2

Hz. As the vehicle can accumulate certain events, such as accelerating and braking,

it is necessary to take Short Time Fourier Transform [11] instead of global Fourier

Transform. We partition the time domain signal into short overlapping frames and

apply Fourier Transform independently on each frame. Taking overlapping frames is

necessary to mitigate the artificial boundary from creating frames.
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On each frame, we compute spectral energy, spectral centroid and spectral variance,

and aggregate over different frames using statistical extraction. We also compute the

spectral flux across the frames, which characterizes the change of spectral content

over time. The details on how to compute these features are described in Appendix

A.2.

2.4 Some discussions on feature engineering

Although we make the best effort to extract features from trips, the signal of some

trips is simply corrupted, rendering them unable to extract features. In such cases,

the algorithm discards the entire trip from consideration. Experiments shows that,

with the given set of features, only 10 percent of the trips are discarded.

The discrimination accuracy can be improved on some special cases by including

metadata features, for example time of day, trip duration or type of road. The intu-

ition is that, within a single driver, there are consistent driving behaviors associated

with each vehicle model. However, as the final goal is to build a classifier on vehicle

type, utilizing data from all drivers, utilizing these features will result in the classifier

overfit toward the specified drivers in the data set. Hence those features are not taken

into account when building classifier and are only used per user basis.

2.5 Algorithmic Discussion

2.5.1 Granularity level

A challenge in classification is to decide at which level of granularity the algorithm

should work on. Directly using vehicle make and model would be too granular, as

there are more than 800 distinct vehicle models, and the usage frequency differs

wildly between different models. In addition, with too few drivers driving a certain

vehicle model, the classifier risks overfitting for these specific drivers. Likewise, se-
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lecting vehicle manufacturer as label is also not a good option, since within the same

manufacturer there are multiple types of vehicles, each having very distinct vehicle

characteristics.

Instead, we restrict the granularity at vehicle type; that is, we classify whether a

trip is driven by a compact, sedan or SUV. We manually label some of the popular

vehicle models with their corresponding vehicle type and build the corpus using only

these vehicle models. On this table and for subsequent chapters, we report only ve-

Vehicle model Vehicle type
VOLKSWAGEN POLO sedan

FORD FIESTA sedan
HYUNDAI I20 sedan

FORD RANGER SUV
VOLKSWAGEN GOLF sedan

AUDI A4 compact
BMW 320I sedan

FORD ECOSPORT SUV
TOYOTA COROLLA compact

HONDA JAZZ sedan
AUDI A3 compact
KIA RIO compact

FORD FIGO sedan
LAND ROVER DISCOVERY SUV

BMW 320D compact
OPEL CORSA sedan
FORD FOCUS compact
HYUNDAI IX35 sedan

TOYOTA FORTUNER SUV
VOLKSWAGEN TIGUAN SUV
MERCEDES-BENZ C180 compact

RENAULT CLIO sedan
TOYOTA YARIS compact

NISSAN QASHQAI SUV
KIA PICANTO SUV

Table 2.3: List of popular vehicle and their type

hicle make and model, ignoring internal variants within vehicle model. This includes

year of manufacturing, engine power or number of doors in the vehicle.
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This list can be potentially expanded, both in term of vehicle make/model and their

corresponding label classes with minimal change in the algorithm. Here we choose

the partition based on similar vehicle characteristics of the corresponding type. This

classification is not perfect; however, as some of the listed vehicle models share char-

acteristics of two different vehicle types.

2.5.2 Classification

Classification is a classic problem in machine learning with many available approaches.

For this problem, we build a Random Forest classifier [1] thanks to its ability to pro-

cess heterogeneous data types. Using the classifier, for each trip we obtain a proba-

bility distribution over types of vehicles.

Since the classifier is trained on the generic case, it ignores many user-based infor-

mation, which we could introduce during the classification step. For example, having

knowledge on upper bound of number of vehicles an user has can help restrict the hy-

pothesis space. Suppose we have a classifier, modeled as a function ℎ : 𝑋×𝑌 → [0, 1]

where 𝑋 is the space of all trip features, and 𝑌 is the space of all possible labels.

For each 𝑥 ∈ 𝑋, the classifier outputs a probability distribution over 𝑌 , that is∑︀
𝑦∈𝑌 ℎ(𝑥, 𝑦) = 1, and denote 𝑝(𝑥) := argmax𝑦∈𝑌 ℎ(𝑥, 𝑦). For a driver having trips

𝑥1, .., 𝑥𝑛, assuming trips are taken independently, their joint likelihood is

𝑛∏︁
𝑖=1

ℎ(𝑥𝑖, 𝑝(𝑥𝑖)) (2.10)

The key observation is that, the set 𝑀 = {𝑝(𝑥1), .., 𝑝(𝑥𝑛)} corresponds to the vehicles

the driver uses, hence its cardinality could not be exceedingly large. A reasonable

assumption is to restrict to |𝑀 |≤ 𝑘 << |𝑌 | (if |𝑌 | is large) and reverse the process

by searching for all 𝑘-subset 𝑀 of 𝑌 and compute the joint probability

𝑃 (𝑥1, .., 𝑥𝑛,𝑀) =
𝑛∏︁

𝑖=1

max
𝑦𝑖∈𝑀

ℎ(𝑥𝑖, 𝑦𝑖) (2.11)
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Choose 𝑀0 that maximizes 𝑃 (𝑥1, .., 𝑥𝑛,𝑀0) and normalize the likelihood of vehicle

types of the trip of interest.

2.5.3 Applying heuristic correction

So far, in prediction, we only use telemetry information. This ignores metadata of the

trip, such as time of day that the trip takes place, location, duration and distance.

Since driver’s behavior follows predictable patterns, we could find specific heuristics

that, with high confidence, group certain trips into one group sharing the same ve-

hicle. The key is to consider their driving history as a sequence of trips, and find

correlations between consecutive trips.

We apply two notable heuristics here:

1. Consecutive matching: if two trips are close in time and the start location of

the second trip is close to the end location of the first trip, it is likely the the

driver picks up the same vehicle for the later trip, hence two trips come from

the same vehicle.

2. Trajectory matching: assuming that some trajectories the driver is likely to

repeat over time, we could assign trips having similar trajectories (in either

direction) to be driven by the same vehicle. This can be simply implemented

at good accuracy by checking several major locations, such as start and end

location. To avoid having to search through many trips, we only consider trips

within a window of 3 days.

Although the equivalence relation introduced by the two heuristics is not necessarily

transitive, we could nevertheless group all such linked trips to the same vehicle. To

assign the cluster label for these trips, we calculate the joint probability

𝑃 (𝑥1 = 𝑐, .., 𝑥𝑛 = 𝑐) =
𝑛∏︁

𝑖=1

ℎ(𝑥𝑖, 𝑐) (2.12)
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choose label 𝑐 maximizing the joint probability, and assign all trips in the group with

label 𝑐.

2.5.4 Other approaches

For comparisons, we also implement alternative algorithms. These approaches also

help reveal the nature of dataset and characteristics of discriminative features.

∙ Raw value: for each trip, create a feature vector consisting of sensor’s measure-

ment without any feature engineering. We pick an interval of 2 minute and use

three accelerometer sensors, thus having a feature vector of 2×60×15×3 = 5400

elements. We train a Random Forest classifier based on these features.

∙ Feature engineering-based algorithms, but with some components removed. We

implement two cases, one with only statistical features, and another combining

statistical features and event-based features (but without spectrogram features).

∙ 1-dimensional Convolutional Neural Network (1D-CNN). This approach has

achieved success in classifying trips by driving style [2]. In deep learning-based

algorithms, instead of doing extensive hand-crafted feature engineering, one can

instead implement a neural network that implicitly learns such features during

training, automatically choosing the right features depending on specific appli-

cations.

In this problem, we select a 2-minute segment of the trip, which is further

divided into frames of 2 second long with 1 second overlapping between consec-

utive frames. In each frame, we compute statistical features of the measurements

and arrange the features to form a statistical feature matrix. We apply convo-

lution and max pooling across frames only in time domain. The results after

convolution and pooling is connected to fully connected layers and subsequently

the output layer.
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Figure 2-6: Architecture of 1D Convolutional Neural Network

2.6 Influence of Driver on Vehicle Identification

Throughout Section 2.3, we implicitly extract features containing driver input, de-

spite performing necessary engineering techniques to reduce their influence. However;

since driver input is a significant part of telemetry signal, the natural question arises:

how big is their influence into vehicle identification? There are two cases, trips con-

taining only a single driver, and trips coming from multiple drivers.

We argue that, if restricting to the same driver, a supervised method would still

give good classification results. The reason is that driving style is consistent on a

driver, and by conditioning on driver the remaining signal manifests the difference

between vehicle models.

On the other hand, if the dataset contains trips from multiple users, classification

becomes significantly harder. Different drivers own different variants of the same ve-

hicle model, and even on the same vehicle model their driving style is unique and is

not easy to factor out. Therefore, in addition to building the classifier, choosing the

right granularity is also crucial for applying to user vehicle identification. Experiments

in Chapter 3 will justify these claims.

36



Chapter 3

Results

3.1 Overview of experiment setup

As discussed in the Chapter 2, a classification or clustering algorithm needs to be

robust in various conditions. We also assess that driving style might be a major factor

affecting the classification accuracy. Therefore, we design a suite of tests covering the

following scenarios:

1. Same driver test, with the same driver driving multiple vehicle models. The

classifier is expected to classify trips based on vehicle models.

2. Driving style test, where trip history comes from multiple drivers, labeled by

the driver. The classifier is expected to classify trips by their corresponding

drivers.

3. Vehicle model test, where trip history comes from several predetermined vehicle

models, each is driven by many drivers. The classifier is expected to classify

trips by their corresponding vehicle models.

4. Vehicle type test, where trip history comes from many vehicle models, each is

labeled by its vehicle type. The classifier is expected to classify trips by their

corresponding vehicle type.
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Finally, we apply the classifier obtained in step 4, combined with additional heuristics

for user vehicle identification. We report the clustering accuracy without and with

heuristics.

For experiments, we typically restrict a smaller data set due to computational con-

straints. On each test, we collect data conforming to the testing scheme described,

split into training and testing data and report accuracy at 10-fold cross validation

(CV). The accuracy here indicates the percentage of trips classified with their correct

label. We find that the accuracy plateaus with sufficient data. All the analysis are

done using Amazon AWS c4.x8large instance.

3.2 Classification

3.2.1 Same driver test

We run multiple tests, on each test we select a driver driving regularly at least two

vehicle models (that each vehicle model represents at least 10 percent the total num-

ber of trips). We select two most popular models per user and balance their vehicle

representativeness in data. The classifier is trained using Random Forest with all

the features described in Chapter 2. The following accuracy is reported per pair of

vehicles, driven by the same user.

As shown here, conditioned on the same driver, the classifier is able to differen-

tiate vehicle models at high accuracy. Although all tests are designed with only two

vehicle models, it is trivial to extend to multiple vehicle models, accepting a marginal

drop of accuracy. Hence the problem can be solved efficiently if for each driver there

is sufficient labeled data about trip history per vehicle model (about 20 trips per ve-

hicle). One can build a classifier per user and apply that on user vehicle identification.

What remains a hard question is to identify vehicle models on users without any
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Vehicle Model 1 Vehicle Model 2 Accuracy (10-fold CV)
HONDA CIVIC MITSUBISHI PAJERO 79.8

TOYOYA CAMRY HONDA JAZZ 84.2
BMW 435I BMW 550I 87.0

VOLKSWAGEN AMAROK MERCEDES-BENZ C200 79.3
HYUNDAI SANTE FIAT BRAVO 84.8

FORD FIGO KIA RIO 67.2
KIA SEDONA PEUGEOT 107 87.8
BMW 320D TOYOTA RUNX 87.2

Table 3.1: Classification results of same driver test

labeled data.

3.2.2 Driving style test

We collect trip history of several drivers, labeling trip by the driver regardless of

the vehicle model they are using. We select 100 trips per driver, running Random

Forest classifier and report the accuracy measured by 10-fold CV. As shown here, the

Number of drivers Accuracy (10-fold CV)
2 95.3
5 77.1
10 57.5

Table 3.2: Classification results of driving style test

method reports good accuracy on classifying driving style.

3.2.3 Vehicle model test

We run the experiment with multiple pairs of vehicles. In each test, we collect 2000

trips per vehicle model, subject to no more than 30 trips coming from the same driver.

We train the classifier using Random Forest classifier.

The accuracy drop compared to the same driver test suggests that the proposed fea-
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Vehicle Model 1 Vehicle Model 2 Accuracy (10-fold CV)
BMW 320D NISSDAN TIIDA 77.5

FORD FIESTA MAZDA CX-3 52.1
KIA RIO ISUZU KB250 71.2

HYUNDAI SANTE KIA SOUL 67.3
AUDI A3 BMW Z4 75.6

HONDA JAZZ MERCEDES-BENZ SLK 70.4
HYUNDAI I20 LAND ROVER RANGE 77.0

AUDI A4 HONDA CIVIC 59.8

Table 3.3: Classification results of vehicle model test (many drivers)

ture engineering approach does take driver characteristic into account, which accounts

for more variance among drives in the same class. The result also shows that the clas-

sification accuracy is higher on pairs of vehicles of different types, suggesting that a

classifier by vehicle type, albeit noisy, could still serve as a good indicator for user

vehicle identification problem.

3.2.4 Vehicle type test

In this experiment, we sample 20000 trips from each type of vehicle, using only vehicle

models listed on Table 2.3 and conditioned that no driver has more than 30 trips in

the dataset. We then build a classifier on vehicle type. Here, there are three different

vehicle types: SUV, compact and sedan. The result is listed as the percentage of trips

having vehicle type classified correctly.

Algorithm Accuracy (10-fold CV)
Raw value 33.5
1D-CNN 35.0

Basic + events 40.5
Basic + events + spectrogram 45.0

Table 3.4: Classification results of vehicle type test
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In table 3.4, we use the following shorthand notation:

∙ Basic: indicate all features collected via statistical extraction methods and time-

dependent features, mainly vehicle dynamics features, but excluding spectral

features.

∙ Events: indicate event-based features, such as hard acceleration and braking.

∙ Spectrogram: indicate features obtained from computing spectrogram.

As shown here, directly using raw value does not give any better predictive ability than

random guessing. While CNN and basic features help obtaining some discriminate

accuracy, the significant contribution comes from using vehicle’s short time response,

manifested through spectral features.

3.3 Clustering

We apply the classifier in 3.2.4 into clustering problem. To evaluate the results, we

need to distinguish between users having one vehicle and users having two or more

vehicles, since evaluation metric differs.

For users having only one vehicle, the metric the ratio between the size of the largest

cluster and total number of trips. In this case, without heuristic the average ratio is

0.75 and with heuristic the average ratio is 0.9, implying the classifier approach does

recognize there is only one cluster.

For users having two or more vehicles, we need to compare obtained clusters with

ground truth data, subject to permutations of labels. By constructing the confusion

matrix and sum over permutation having the largest size, divided by total number of

trips, we find that without heuristic the average ratio is 0.55 and with heuristic the

average ratio is 0.60. In this case, the classifier recognizes different vehicles to some

extent.
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The result shows that the classifier tends to assign trips by the same vehicle to differ-

ent clusters, hence the heuristic can correct to some extent. A more robust classifier

would likely to improve the identification accuracy. In conclusion, there is a limiting

factor on accuracy obtained with multiple vehicles, and a supervised approach as

described in section 3.2.1 would yield a better result.
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Chapter 4

Discussions and Extensions

The thesis has described an algorithm for vehicle model classification. The approach

only requires data collected from smartphone sensors with simple set up, enabling its

scalability and ubiquity in various environments. In addition to traditional techniques

in many other machine learning problems, in this particular problem, the success of

the algorithm combines both study of vehicle dynamics and understanding of driver’s

usage pattern, the later is to compensate for difficulties of implementing a "pure"

machine learning algorithm. A simple extension of the algorithm allows for classifi-

cation of transportation mode, such as train, bike or walking.

It is interesting to see the variations considering different phone positions (for exam-

ple, hand or pocket) and different smartphone models (for example, Android versus

iPhone). While the basic measurements are the same, different smartphone models

also apply different algorithms for motion detection or filtering noise. While this

problem did not take into account difference between smartphone models, it remains

an interesting question to distinguish the difference on data quality collected by dif-

ferent smartphone models and how it affects classification results.

In practice, an user-input trip may alternate between different modes of transporta-

tion (such as car to bus or train). Even when using only a single vehicle in a trip,

not all collected data comes exclusively from driving; for example, an user can stop
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the vehicle at gas station, refuel and come back. Trip segmentation, which separates

different modes of transportation interleaving in a given trip, would improve the anal-

ysis accuracy and give more insights on users’ driving behavior.

Our technique on time series analysis often extracts the features from a single time

series one at a time. Vectorized approach, which extracts features of multiple time

series could provide further insights and relations between different measurements

of the vehicle. Likewise, the features obtained during extraction step only loosely

depends on vehicle dynamics. A more systematic approach would be constructing a

vehicle dynamical model, and infer underlying parameters.

In addition to classifying vehicle types, we can apply the same idea to estimate vehi-

cle’s parameters, such as curb weight, dimensions and aerodynamics coefficients. We

did not do these estimations in the thesis due to its difficulty to obtain ground truth

data, since there are multiple conflicting information sources and for many vehicle

models all the parameters are not available.

Although certain aspects of user behavior are considered to aid classification, these

properties are often case-specific and heuristic. Having a systematic approach in

studying user behavior would be useful in implementing more robust vehicle identifi-

cation models and help unveil the way drivers use their vehicles.
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Appendix A

Formal Derivations

This section presents formally the necessary mechanical and mathematical knowledge

for models used in the problem.

A.1 Vehicle Dynamics

Several formula is derived from [12], which explains vehicle dynamics in great detail.

A.1.1 Longitudinal Vehicle Dynamics

Longitudinal dynamics quantifies characteristics of vehicle engine power and longi-

tudinal acceleration. In this model, we assume the quarter car model. Assuming

road pitch is zero, the longitudinal forces acting on a vehicle can be described by the

equation

𝐹 = 𝑚𝑎𝑥 = 𝐹𝑇 − 𝐹𝑎𝑒𝑟𝑜 − 𝐹𝑅 (A.1)

where

∙ 𝐹𝑇 is tire force.

∙ 𝐹𝑎𝑒𝑟𝑜 is the aerodynamic drag.

∙ 𝐹𝑅 is rolling friction.

∙ 𝑚 is vehicle’s mass.
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∙ 𝑎𝑥 is vehicle’s longitudinal acceleration.

Figure A-1: Longitudinal dynamics equation

(Note that in the diagram, we combine forces acting on front and rear tires for sim-

plification).

The rolling friction occurs due to friction between the tire and the road and is pro-

portional to the normal force acting on vehicle, hence can be described as

𝐹𝑅 = −𝑐𝑅𝑚𝑔 (A.2)

where 𝑐𝑅 is rolling resistance coefficient.

The aerodynamic drag is proportional to the square of velocity

𝐹𝑑 = −1

2
𝜌(𝑣 + 𝑣𝑤𝑖𝑛𝑑)

2𝐶𝐷𝐴 (A.3)
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Here 𝜌 is air density, 𝑣𝑤𝑖𝑛𝑑 is wind’s velocity (with positive value indicates wind di-

rection against vehicle’s motion) 𝐶𝐷 is vehicle’s drag coefficient and 𝐴 is vehicle’s

frontal area. The quantity 𝐶𝐷𝐴 can be empirically determined by a coast down test

[15]. Typical experiments assume 𝜌 is constant value at 101.325𝑘𝑃𝑎, measured at sea

level and temperature of 15 degree Celcius. [14]

In both equations, the minus sign indicates the force act against vehicle motion.

Experiments show that tire force is generated by slip force, which comes as difference

between tire rotational velocity and longitudinal velocity of vehicle’s axle. The dif-

ference is 𝑟𝜔− 𝑣 where 𝑟 is tire’s radius and 𝜔 is tire’s angular velocity. Longitudinal

slip ratio is then defined

𝜎 =
𝑟𝜔 − 𝑣

𝑣
if the vehicle is braking (A.4)

𝜎 =
𝑟𝜔 − 𝑣

𝑟𝜔
if the vehicle is accelerating (A.5)

The tire force is then calculated

𝐹𝑇 = 𝐶𝜎𝜎 (A.6)

where 𝐶𝜎 is longitudinal tire stiffness.

A.1.2 Designs of Passive Suspension

When a vehicle travels on the road, it is subject to perturbation due to road input.

The goal of suspension is to absorb such perturbation, which makes a ride more com-

fortable and ensures vehicle control. Ride qualify can be quantified by measurements

of vertical acceleration.

A passive suspension can be modeled as a spring-mass system. While a passive
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Vehicle model Drag Coefficient Frontal area (𝑚2) CdA (𝑚2)
VOLKSWAGEN POLO 0.32 2.04 0.65

FORD FIESTA 0.32 2.15 0.69
HYUNDAI I20 0.30 2.55 0.76

FORD RANGER 0.49 2.40 0.96
AUDI A4 0.27 2.20 0.59

BMW 320I 0.28 2.20 0.62
FORD ECOSPORT 0.37 2.90 1.07

TOYOTA COROLLA 0.29 2.09 0.60
AUDI A3 0.31 2.08 0.64

LAND ROVER DISCOVERY 0.36 3.84 1.38
BMW 320D 0.31 2.06 0.64

OPEL CORSA 0.32 1.96 0.62
FORD FOCUS 0.32 2.11 0.67

TOYOTA FORTUNER 0.38 3.40 1.29
VOLKSWAGEN TIGUAN 0.37 2.54 0.94
MERCEDES-BENZ C180 0.30 2.05 0.61

RENAULT CLIO 0.33 1.86 0.61
TOYOTA YARIS 0.29 2.14 0.62

NISSAN QASHQAI 0.33 2.88 0.95
KIA PICANTO 0.34 1.98 0.67

Table A.1: List of vehicles and their aerodynamic information

suspension purely absorbs road perturbation, an active suspension could induce ac-

tuator to damp external force by electronic control. In this section, we only consider

passive suspension. Using a quarter car model, its parameters represent

∙ 𝑚𝑠 is equivalent to vehicle body mass.

∙ 𝑚𝑢 is axle mass.

∙ 𝑘𝑠 is coefficient of suspension.

∙ 𝑘𝑢 is stiffness of tire.

∙ 𝑏𝑠 is damping factor.

Alternative to the quarter car model is the half car model, which includes both front

and rear suspension. As shown in Chapter 2, the latency between acceleration of

front versus rear suspension can be used to estimate vehicle’s wheelbase.
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The parameters in the half car model includes

∙ 𝑘𝑡1, 𝑘𝑡2 are stiffness of front and rear tire.

∙ 𝑚𝑢1,𝑚𝑢2 are front and rear axle mass.

∙ 𝑘1, 𝑘2 are coefficient of front and rear suspension.

∙ 𝑚 is vehicle body mass.

∙ ℓ𝑓 , ℓ𝑟 are distance of front and rear suspension to center of mass. Consequently,

ℓ𝑓 + ℓ𝑟 corresponds to vehicle’s wheelbase.

Figure A-2: Quarter car passive suspension model
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Figure A-3: Half car passive suspension model [12]

A.1.3 Roll Dynamics

Rolling is one of the major cause for fatal accidents. Roll occurs when vehicle can

no longer keep balance along the axis along vehicle’s body. Controlling vehicle roll is

crucial for traction and vehicle stability.
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Figure A-4: Basic quantities for rolling dynamics [4]

Intuitively, a vehicle is less likely to roll with wider track width and lower height.

Formally, roll stability is quantified by static stability factor (SSF), defined as

𝑆𝑆𝐹 =
ℓ𝑤
2ℎ

(A.7)

where

∙ ℓ𝑤 is vehicle’s track width.

∙ ℎ is the height of vehicle’s center of gravity.

SSF consequently defines lift off acceleration, or the threshold of lateral acceleration

in which a rollover occurs.

𝑎𝑦−𝑙𝑖𝑓𝑡−𝑜𝑓𝑓 = 𝑆𝑆𝐹 · 𝑔 =
ℓ𝑤
2ℎ

𝑔 (A.8)
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Note that the above quantity is purely based on geometrical shape of the vehicle and

ignores roll preventive mechanisms, such as electronic stability control.

Rollover risk Crash likelihood SSF
5 stars less than 10 percent > 1.44
4 stars 10-20 percent 1.25− 1.44
3 stars 20-30 percent 1.13− 1.24
2 stars 30-40 percent 1.04− 1.12
1 star more than 40 percent < 1.04

Table A.2: SSF and rollover rating (static test) [4]

Vehicle type SSF
Passenger Cars 1.41

SUVs 1.17
Pickup Trucks 1.18

Mini Vans 1.24
Full Vans 1.12

Table A.3: Average SSF by vehicle type, model year 2003 [13]

Figure A-5: Balance equation describing roll moment [12]
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SSF can be derived from the roll moment balance equation. Here, the vehicle has

lateral acceleration 𝑎𝑦, and the load on the inner and outer tire is 𝐹𝑧𝑙 and 𝐹𝑧𝑟, re-

spectively. The moment equation at the bottom of the outer tire is

𝑚𝑎𝑦ℎ+ 𝐹𝑧𝑙ℓ𝑤 −𝑚𝑔
ℓ𝑤
2

= 0 (A.9)

hence the force on the inner tire is

𝐹𝑧𝑙 =
𝑚𝑔 ℓ𝑤

2
−𝑚𝑎𝑦ℎ

ℓ𝑤
(A.10)

Setting 𝐹𝑧𝑙 = 0, it follows the threshold acceleration causing rollover to occur is

𝑎𝑦 =
ℓ𝑤
2ℎ
𝑔.

A.2 Short time Fourier Transform

For a time series 𝑇 , partition it into possibly overlapping short frames 𝑐1, .., 𝑐𝑘.

On each frame, apply Fourier Transform and take the absolute value of the coef-

ficients. Denote the transformed frames as 𝑑1, .., 𝑑𝑘, where the coefficients for frame

𝑖 is 𝑑𝑖1, .., 𝑑𝑖𝑚 with 𝑚 is the number of coefficients. We apply the following feature

extractions. To simplify the notation, for all following features (except spectral flux),

we consider a single frame with coefficients 𝑑1, .., 𝑑𝑚, and the values are aggregated

across frames by statistical extractions.

∙ Spectral centroid, which computes the weighted mean

𝜇 =

∑︀𝑚
𝑗=1 𝑗 · 𝑑𝑗∑︀𝑚
𝑗=1 𝑑𝑗

(A.11)

∙ Spectral energy, which is the average sum of square of the coefficients in the

frame:

𝑅 =
1

𝑚

𝑚∑︁
𝑗=1

𝑑2𝑗 (A.12)
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∙ Spectral spread, which is equivalent to standard deviation.

𝜎2 =
𝑚∑︁
𝑗=1

(𝑗 − 𝜇)2𝑑𝑗 (A.13)

∙ Spectral skew, which measures the skewness of the dataset. We first compute

the third moment

𝑚3 =
𝑚∑︁
𝑗=1

(𝑗 − 𝜇)3𝑑𝑗 (A.14)

and then divide by third power of spectral spread: 𝛾3 =
𝑚3

𝜎3 .

∙ Spectral kurtosis: we first compute the fourth moment

𝑚4 =
𝑚∑︁
𝑗=1

(𝑗 − 𝜇)4𝑑𝑗 (A.15)

and then divide by fourth power of spectral spread: 𝛾4 =
𝑚4

𝛾4

∙ Spectral flux, which characterizes the change of spectral content. For this fea-

ture, we consider all frames 𝑐1, 𝑐2, .. in succession and compute

1

𝑘 − 1

𝑘∑︁
𝑖=2

||𝑑𝑖 − 𝑑𝑖−1||22 (A.16)
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