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Abstract

The severity of traffic congestion is increasing each year in the US, resulting in higher
travel times, and increased energy consumption and emissions. They have led to
an increasing emphasis on the development of tools for traffic management, which
intends to alleviate congestion by more efficiently utilizing the existing infrastruc-
ture. Effective traffic management necessitates the generation of accurate short-term
predictions of traffic states and in this context, simulation-based Dynamic Traffic
Assignment (DTA) systems have gained prominence over the years. However, a key
challenge that remains to be addressed with real-time DTA systems is their scalability
and accuracy for applications to large-scale urban networks.

A key component of real-time DTA systems that impacts scalability and accuracy
is online calibration which attempts to adjust simulation parameters in real-time to
match as closely as possible simulated measurements with real-time surveillance data.
This thesis contributes to the existing literature on online calibration of DTA systems
in three respects: (1) modeling explicitly the stochasticity in simulators and thereby
improving accuracy; (2) augmenting the State Space Model (SSM) to capture the de-
layed measurements on large-scale and congested networks; (3) presenting a gradient
estimation procedure called partitioned simultaneous perturbation (PSP) that utilizes
an assumed sparse gradient structure to facilitate real-time performance. The results
demonstrate that, first, the proposed approach to address stochasticity improves the
accuracy of supply calibration on a synthetic network. Second, the augmented SSM
improves both estimation and prediction accuracy on a congested synthetic network
and the large-scale Singapore expressway network. Finally, compared with the tra-
ditional finite difference method, the PSP reduces the number of computations by
90% and achieves the same calibration accuracy on the Singapore expressway net-
work. The proposed methodologies have important applications in the deployment of
real-time DTA systems for large scale urban networks.
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Chapter 1

Introduction

Congestion is an important issue in transportation systems. Traffic congestion is a

scenario that commuters experience daily, and its severity is rapidly increasing each

year in the United States. During peak hours in 2016, trips took 35% more time on

average than non-peak hours, while the percentage was only 20% in 2010 (Schrank et

al., 2015). According to FHWA (2016), the average duration of congestion in traffic

systems is 4.7 hours daily in 2016, compared with 4.3 hours in 2009 (FHWA, 2009).

Apart from the time delay, congestion exacerbates air pollution, energy consumption

and emissions. The extra fuel expenditure due to congestion was 19 gallons annually

for an average vehicle in 2014, which is a 4-gallon increase from 2010 (Schrank et al.,

2015). Congestion incurred an estimated $160 billion annual cost for extra time and

fuel in 2014, and the cost is expected to be $192 billion in 2020.

Traffic management is a sustainable and effective alternative to alleviate conges-

tion, given that the traditional practice to build more roads is untenable nowadays

because of physical and economic constraints. A Transportation Management Cen-

ter (TMC) usually serves as the nerve center to manage freeway and arterial traffic

and mitigate congestion. TMCs obtain real-time traffic surveillance data; provide

information to travelers; and generate control strategies or guidance on freeway tolls,

ramp-metering signals and intersections. To make these strategies effective and reli-

able, TMCs should be able to predict short-term traffic conditions, which form the

basis of proactive control strategies. Thus, a model that captures the traffic system

17



is necessary for traffic management. Such a model should be able to estimate traffic

conditions from real-time surveillance data and predict future conditions based on the

estimation. Dynamic Traffic Assignment (DTA) systems have long been considered

effective tools in this regard. A DTA system is one that captures the evolution of

traffic conditions with a synthesis of demand and supply models. DTA systems assign

time-dependent traffic demand to road networks and determine the traffic conditions

through modeling the interactions between demand and supply.

While DTA systems can predict short-term traffic conditions, the prediction accu-

racy relies on the quality of online calibration, which aims at estimating and predicting

DTA model parameters using the real-time surveillance data. Online calibration is

a key component of real-time DTA systems that is crucial in replicating real traffic

conditions and thus providing accurate predictions. However, the accuracy usually

comes with a price of complexity. The complexity of online calibration constrains

the successful deployment of DTA systems in three aspects: robustness of accurate

prediction, large-scale applicability and real-time performance. In this thesis, we ad-

dress these three aspects in online calibration with the aim of improving prediction

accuracy and addressing computational complexity for DTA.

1.1 Dynamic Traffic Assignment

Traffic assignment is a modeling process which aims to determine the traffic states

in the network. It involves assigning demand to road networks, modeling travelers’

behavior and estimating network conditions and travel times. Traffic assignment

involves two key model components: demand and supply. The demand model dictates

the assignment of origin-destination (OD) flows to different routes. Based on the

assigned flows, the supply model determines how traffic flow advances in the network.

There are two types of traffic assignment models: static and dynamic.

Static traffic assignment assumes that the demand and supply models stay the

same for the modeling period and thus, describes the steady state traffic conditions

in the network (Chiu et al., 2011). During the peak period, the traffic volumes are

18



determined by a fixed origin-destination (OD) matrix, and the supply model gives

travel times for each link based on a volume-delay function. The static model does not

explicitly represent detailed traffic dynamics such as queuing and vehicle movements.

Specifically, there are no constraints on the link flow volumes, as the inflow always

equals the outflow. Thus, it is impossible to accurately model traffic flow conditions

in congestion.

In DTA, the interactions between demand and supply are time-dependent. The

demand module generates time-dependent trips. Then, based on the demand assigned

to each segment in the network, the supply module dynamically models traffic condi-

tions. For example, there is a fundamental diagram that determines the traffic speed

on each segment given different traffic volumes on it. When the outflow reaches the

capacity for a segment, a queue will form at the end of the segment. Following this,

on adjacent segments, congestion propagation and queue dissipation are explicitly

modeled with high fidelity. Thus, DTA can capture various traffic conditions (either

steady state or transition to/from congestion) and determine their progression across

time and space. In traffic management operations, DTA models are particularly fa-

vorable since they overcome the drawbacks in static traffic assignment. Since the

late 1970s, DTA has evolved substantially into an important tool for estimating and

predicting dynamic traffic flows on road networks.

Figure 1-1 presents the general framework of DTA systems (Ben-Akiva et al.,

2010a). The demand and supply modules receive inputs and surveillance data from

the management system, which is usually deployed at TMCs. Inputs include the

network representation, historical time-dependent OD matrices, supply parameters,

traveler behavior parameters, incident or event information, weather conditions, and

traffic control strategies. Surveillance data include real-time field measurements, such

as traffic flow counts, average speeds, segment densities, and link travel times. The

demand-supply interaction is captured through simulation in the DTA system (or

mathematical formulation for analytical DTA). Finally, the DTA system generates

traffic conditions that match the surveillance data so as to provide an accurate pre-

diction of future conditions.
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Figure 1-1: General DTA framework (Ben-Akiva et al., 2010a)

Various DTA models have been proposed in the literature which essentially belong

to two categories: analytical and simulation-based (Peeta & Ziliaskopoulos, 2001).

Most analytical DTA models express the route assignment problem as a mathemati-

cal optimization with the target of user equilibrium, system optimum or their variants.

Simulation-based DTA captures traffic flow dynamics using a simulator. The main

difference between analytical and simulation-based DTA is the approach adopted to

model route-choice decisions, queue accumulation or dissipation, vehicle movements

and flow conservation. These processes are discrete and stochastic. Thus, capturing

them adds extra complexity to an analytical model, and it may lose close-form prop-

erties. On the other hand, simulations can easily handle the physical constraints and

discrete decisions via rules and random sampling. Thus, owing to higher fidelity in

replicating traffic conditions, simulation-based DTA has gained wide acceptability in

real-world deployments (Mahmassani, 2001; Ben-Akiva et al., 2010a, 2010b). In view

of the aforementioned advantages of simulation-based DTA, it forms the basis of this

thesis.
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1.2 Challenges of DTA Deployment

1.2.1 Online Calibration for DTA

A key component of real-time DTA systems is online calibration which refers to the

determination of model parameters in real-time so that the DTA system replicates as

closely as possible current traffic conditions implied by the surveillance data. These

parameters are crucial to the demand and supply modules (of the DTA system) and

necessary for accurate estimation and prediction of traffic conditions, which as noted

before are the basis of traffic management systems in TMCs.

Apart from the requirement of prediction accuracy, several other problems restrict

the broad deployment of DTA systems. Three key challenges identified by Peeta &

Ziliaskopoulos (2001) are:

(1) Robustness: incorporating randomness,

(2) Large-scale network applicability, and

(3) Real-time performance.

1.2.2 Robustness: Incorporating Randomness

While traffic prediction plays a significant role in traffic management, the robustness

of the predictions is no less important. Robustness is crucial and requires the appro-

priate characterization of the various sources of uncertainty which arise due to: (1)

inherent stochasticity in the supply and demand simulators of the DTA system, whose

randomness results from departure times and route choice decisions on demand side

and vehicle movement models on supply side; (2) measurement error or noise in the

surveillance data; and (3) modeling errors in the calibration process. The randomness

from these sources accumulate and pose a critical challenge in the online calibration

process since it involves fitting a stochastic simulator to noisy measurements. Thus,

in order to generate accurate and robust traffic state estimations and predictions, it
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is imperative that the online calibration process handles and mitigates if possible, the

stochasticity arising from the aforementioned sources.

1.2.3 Large-Scale Network Applicability

TMCs are interested in DTA’s ability to model large-scale networks since global traf-

fic control is more effective than local control. Thus, one future direction of DTA

is the deployment to large-scale networks. It requires the DTA system be able to

handle time-dependent parameters that may be numerous, in the order of tens of

thousands. Computational tractability will be a key issue when the parameter space

increases. Regarding online calibration, the large dimension of parameter space and

the increased complexity of the DTA system pose additional challenges to estimate

and predict model parameters. Also, the faster growth of parameters than the surveil-

lance data exacerbates this issue. For example, in the case of OD estimation, when

the area of a network increases, the origin and destination nodes and surveillance sen-

sors grow linearly, but the number of OD pairs increase quadratically. In conclusion,

the application of DTA systems to large-scale networks is challenging, and it affects

the computational tractability of online calibration.

1.2.4 Real-Time Performance

As the scale of the network expands, the computational time is likely to increase as

well. Nevertheless, traffic estimation and prediction have to occur on time to respond

to changes in traffic conditions. The real-time requirement also comes from the TMCs

to monitor and manage traffic. Most DTA systems model traffic flows by splitting

time into intervals, typically within a rolling-horizon framework (Figure 1-2). For

these DTA systems, real-time performance requires that the simulation and parameter

estimation should finish within the current interval. For instance, for a DTA system

with 5-minute estimation intervals, it receives surveillance data at 8:00 for the time

interval 7:55-8:00. Next, the DTA system needs to update model parameters using

the surveillance data, make traffic predictions, and generate control strategies for the
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Figure 1-2: The rolling horizon framework for traffic estimation and prediction in
DTA systems

prediction interval. All these tasks need to finish within the estimation interval length

(i.e., 5 minutes). Then at 8:05, the DTA receives new surveillance data, with which

all the tasks will be performed again.

On the other hand, from the perspective of TMCs, estimation intervals smaller

than 5 minute may be preferable for an instant and effective response in non-recurrent

and urgent scenarios such as accidents and emergencies. Hence, the future direction

for real-time deployment is to decrease the interval length which implies a smaller time

budget for the state estimation, state prediction and control generation. Moreover,

reducing the interval length makes online calibration more difficult in the following

two ways. The first is less information captured in each interval about traffic con-

ditions. With the same sparsity of sensors in the road network, a shorter interval

results in less flow for each sensor. The second is increased delay in modeling and ex-

panded parameter space. Some parameters will only be observable in later intervals.

Thus, the delayed relations have to be modeled across time steps, and the number

of parameters increases. These two issues also exist for large-scale networks, where

sensors are sparse; and congested networks, where traffic flows hit less sensors than

free flows.

In a nutshell, with the purpose of accurate traffic prediction, DTA systems have

three significant challenges in their future deployment to real-world applications.
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These challenges will persist, and many endeavors will be made to solve them in

the next few years.

1.3 Thesis Contributions

This thesis aims at addressing three significant challenges and push the frontiers

of online calibration for simulation-based DTA. Specifically, we focus on the online

calibration problem and contribute to the existing literature in the following respects.

• The research identifies, quantifies and investigates the stochasticity in DTA

simulators. The thesis also proposes methods to address the stochasticity issue,

which yields better estimation accuracy for online supply calibration.

• The research extends the online calibration framework to handle measurement

issues on large-scale networks. The state augmentation technique is able to

model the measurement delay and improve the validity of the underlying state

space model. This approach is also able to deal congestion scenarios with small

simulation intervals.

• The research presents a sparse gradient estimation procedure to facilitate real-

time performance for online calibration. It significantly reduces the compu-

tational complexity, while maintaining estimation and prediction accuracy, as

reported in the case study with a large-scale network.

1.4 Thesis Outline

The thesis structure is listed below. Chapter 2 summarizes and comments on the re-

cent developments in online calibration with particular emphasis on Kalman filtering

algorithms. Chapter 3 quantifies and analyzes the stochasticity within the simulation-

based DTA system. The chapter also presents two remedies to mitigate the impacts

of stochasticity and provide robust and accurate traffic estimations. Chapter 4 sheds

light on the modeling of delayed traffic systems, where the impact of parameters is
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only captured in the measurements several intervals later due to long travel times

in large-scale networks and congestion. A simple traffic assignment example demon-

strates the effect of delay. Following this observation, we present the state augmen-

tation technique that addresses this issue. We demonstrate the applicability of the

technique on the traffic assignment example and a synthetic case study with a small

congested network. In Chapter 5, we discuss the gradient estimation process for the

identification of DTA systems. Then, we present a sparse gradient estimation tech-

nique called partitioned simultaneous perturbation to accelerate online calibration.

Chapter 6 presents a case study for online calibration on a large-scale network: the

Singapore expressways. Some practical considerations are also discussed. Finally,

this thesis ends with conclusions and future research directions.
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Chapter 2

Recent Developments in Online

Calibration for DTA

Calibration for DTA involves the estimation of model parameters to fit surveillance

data such that the traffic conditions in the DTA system represent the real world. As

discussed in Section 1.2, the real-time deployment of DTA requires the calibration

process to be online, where surveillance data arrive in batches, and calibration is

performed in real-time with each batch. The goal of online calibration is to estimate

model parameters so that the DTA model can represent the real-time traffic scenario,

in the sense of minimizing the discrepancy between model outputs and surveillance

data. There are two requirements for the solution approach to be truly “online”: (1)

model parameters for an interval are updated only based on data up to that time,

i.e., the algorithm does not “foresee” data; and (2) the calibration for one interval

will complete in less time than the interval length, i.e., the calibration is faster than

real-time data generation.

In this chapter, we start with the literature review of online calibration for DTA.

Next, we present the online calibration framework based on the state space model and

focus on the critical system identification for simulation-based DTA. Following this,

we introduce the Kalman filtering based solution approach, and finally, the chapter

is summarized.
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2.1 Online Calibration in Literature

There has been extensive research on calibration for DTA systems. Existing ap-

proaches to model DTA systems broadly fall into two categories: analytical and

simulation-based. The critical difference lies in whether there exists a direct closed-

form relation between model parameters and measurements. If no analytical relation

is available, the key to calibration is modeling the DTA system as mathematical func-

tions on which optimization algorithms can rely. Given the analytical functions, the

calibration problem is essentially a regression task that aims at estimating parameters

to fit measurements. Here we need to clarify that although the topic of this thesis

is simulation-based DTA, reviewing the literature for general DTAs is still helpful

because they may share the same intuition.

Extensive studies have focused on the online calibration problem, but not many

algorithms have been proven to be efficient and scalable. The state space model (SSM)

is a prominent candidate that achieves both. Recent research has applied the state

space models to online calibration problems, with the Kalman filtering framework as

the solution approach.

The State Space Model

The state space model or hidden Markov model is a time-series model that describes

the transition process and observation process of the state variables. Model pa-

rameters in DTA for each interval comprise the state, which evolves according to a

transition relation. At each time step, observations bear a relationship with the state,

which determines the measurement relation at that time. Since the states may not be

directly observable, they are also called “hidden states”. The goal of the state space

model is to infer and predict the states from the observations.

In order to model the transition equation, there have been numerous approaches

proposed in the literature. Ashok & Ben-Akiva (1993) define a stationary time series

model for the transition equation. It requires offline calibrated OD flows to serve as

historical parameters. Based on the same idea, Ashok & Ben-Akiva (2000) formulated
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an autoregressive (AR) process to the fourth degree on the deviations. The authors

applied Kalman filtering techniques to estimate and predict OD demand in real-time

with satisfactory results. Wang & Papageorgiou (2005) formulated both demand and

supply parameters in a stochastic macroscopic model; a random walk transition model

is applied to estimate traffic conditions on freeway stretches. Zhou & Mahmassani

(2007) assumed a stationary random process with constant mean and variance and

demonstrated its performance as a transition equation for OD estimation on a test

network in Irvine. On the other hand, the stationary time series model may fail

when the pattern of parameters is different from historical values. In such cases,

we can apply an uninformative random walk model to the absolute values of model

parameters, which assumes no historicals as priors. Cremer & Keller (1987); Chang &

Wu (1994) assumed a random walk to make predictions on dynamic split proportions

for route choice. The authors concluded that this assumption worked well in terms of

prediction accuracy and stability. However, the authors used a scenario where demand

changes slowly. Thus, the result may not reflect the trends of time-dependent OD

flows in reality. It is still advisable to apply deviations from historical parameters

whenever available to incorporate maximum historical information.

As for the measurement equation, its specification depends on the DTA system.

In OD estimation, most research applies the assignment matrix to describe the mea-

surement model (Ashok, 1996; Zhou & Mahmassani, 2007). For supply and route

choice parameters, analytical and simulation-based DTAs utilize distinct approaches.

Since closed-form relations exist for analytical DTAs, the measurement equations can

be derived explicitly. Two representative traffic flow models in analytical DTA in-

clude the CTM model (Daganzo, 1995) and LWR model (Richards, 1956; Lighthill

& Whitham, 1955), which are expressed in the form of partial-differential equations.

Thus, either closed-form or numerical solutions are available to describe the measure-

ment equation under current traffic conditions. In the case of simulation-based DTAs,

it is difficult to formulate a closed-form relation due to the complex nonlinear and

stochastic nature of the simulator. An approach to solve this problem is via system

identification: approximating the simulation-based DTA with mathematical models.
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In order words, the DTA system is now treated as a “black box” and an analyti-

cal model is estimated between input parameters and simulated measurements. The

most widely used model is a simple linear relationship, in which case the identification

task reduces to gradient estimation. Since no prior analytical form is assumed, the

gradient estimation approach is generic and can handle all types of input parameters

and measurements (Antoniou et al., 2004, 2006). Nevertheless, its drawback is in

computational complexity: the number of function evaluations required can be as

large as parameter dimensions.

Based on these specifications for the state space model, the solution approach for

a linear state space model is Kalman filtering. Antoniou (2004) applied an extended

Kalman filter (EKF), unscented Kalman filter (UKF) and limiting EKF (LimEKF)

in a case study involving two freeway stretches in the UK and California. The au-

thor calibrated demand and supply parameters for a simulation-based DTA with flow

volumes and speed data. Regarding computational performance, gradient estima-

tion comprises a major part of the computation. The LimEKF was reported to have

superior computational performance with complexity O(1), due to using an offline

estimated Kalman gain matrix and hence, had online performance. EKF and UKF

have a similar computational complexity of O(n), where n is the number of calibra-

tion parameters. The results showed that the EKF outperforms UKF and LimEKF

in terms of estimation and prediction accuracy. Thus, the author concluded that

EKF is still the most straightforward approach, despite the time complexity and the

linear approximation. However, with a freeway stretch, the case study has only 80

parameters for each 15-minute time interval. Since the goal of online calibration is

real-time performance, the approaches are yet to be proven on large-scale networks

with larger parameter dimensions and short time intervals.

Another recent development in offline calibration that may have applications in

the online case is the use of meta-models (Osorio & Bierlaire, 2013; C. Zhang et al.,

2017). The idea is to model the objective function (usually the divergence between

real measurements and simulation) with an analytical approximation. The analytical

model is macroscopic and problem-specific. A general-purpose parametric function
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(e.g., polynomials) is also included in the analytical model to allow for the imperfect

problem-specific modeling. Then, scaling parameters for the problem-specific and

general-purpose functions are estimated from traffic simulation for a given period.

The meta-models work as a hybrid of the analytical form and mathematical approx-

imation. Thus, it may yield benefits of both approaches and is a promising direction

for future research in online calibration.

2.2 Online Calibration Framework

In this section, we first present the state space model in more detail. Next, we discuss

some recent developments and additional assumptions to improve the model. Finally,

we comment on system identification, or the gradient estimation procedure for the

state space model.

2.2.1 The State Space Model

As introduced in Section 2.1, the state space model (SSM) is a Markov model depict-

ing the evolution of state variables and their relation to observations. A graphical

illustration of SSM is given in Figure 2-1, where the white nodes represent hidden

states, and shaded nodes denote observations.

x1 x2 x3 · · · xH

M 1 M 2 M 3 MH

Figure 2-1: State space model (hidden Markov model)

Following the discussion of transition and measurement equations in Section 2.1,

transition equations in SSMs are assumed as first order autoregressive (AR(1)) models
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whereas measurement equations in the SSM are generic and capture all types of pa-

rameters (e.g., demand and supply). In the online calibration context for simulation-

based DTA, the measurement model is the simulator that converts input parameters

to simulated measurements. The mathematical formulation for the model is given by:

xh = fh(xh−1) +wh (2.1)

Mh = gh(xh) + vh (2.2)

where, Equation (2.1) is the transition equation, and Equation (2.2) is the mea-

surement equation. Additional notation is defined below.

• fh(·) and gh(·) are general functions that determine the transition and mea-

surement relations

• h: discretized interval index, h ∈ H = {1, 2, ..., H}, where H is the set of

simulation intervals, where time is discretized into indices

• xh: states of time interval h

• Mh: measurements/observations in the time interval h

• wh,vh are random errors that are zero mean and independent of each other

We have two comments on the SSM. First, the SSM does not assume a functional

form of equations, for the sake of generality. Thus, the transition fh(·) and measure-

ment equations gh(·) are abstract functions that may have different forms for each

interval h. Second, the transition and measurement equations only have dependencies

on one state. The unique dependency is the Markovian assumption or memoryless

assumption, which simplifies the model and makes state estimation easier.

The Idea of Deviations

The idea of deviations is a way to define the states and make use of time-dependent

historical parameters as default values. Ashok & Ben-Akiva (1993) proposed this

idea, and since then, it has been widely tested and applied (Ashok & Ben-Akiva,
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2000; Bierlaire & Crittin, 2004; Antoniou, Ben-Akiva, & Koutsopoulos, 2007). The

idea is simple: we obtain the deviations as new states by subtracting historicals from

parameters. Thus, the transition equation only needs to capture the evolution of

deviations. In comparison, when directly defining the parameters as states, it is diffi-

cult for an autoregressive (AR) process to account for the evolving trend for all cases

throughout the modeling period. As an example, the OD flows in the “building”

phase and the “fading” phase of peak hours are difficult to model with a same time-

invariant AR process, simply because of distinct transition patterns. On the other

hand, deviations as states may be easier to model, as the trend is already incorpor-

tated in the historicals. Thus, the deviations provide a simple way to incorporate

temporal and spatial patterns in the DTA parameters. In the following notation, we

define the state vector ∆xh and measurement ∆Mh in deviations.

∆xh = xh − xHh (2.3)

∆Mh = Mh − gh(xHh ) (2.4)

where, gh(x
H
h ) represents the historical measurement values. Based on this defini-

tion of deviations, the transition equation Equation (2.1) and measurement equation

Equation (2.2) now become:

∆xh = fh(∆xh−1) +wh (2.5)

∆Mh = gh(xh)− gh(xHh ) + vh (2.6)

= g′h(∆xh) + vh (2.7)

where, the g′(·) is another general function to model the observation of the new state

vector ∆xh.

After subtracting the historical values, the deviations ∆xh and ∆Mh can more

reasonably be approximated with random variables of 0 mean, as they represent the

day-to-day fluctuations around the historicals. Thus, the wh,vh terms are more likely
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to be 0 mean (Ashok & Ben-Akiva, 1993) and we can make the following assumptions:

E[wh] = 0, ∀h ∈ H (2.8)

E[vh] = 0, ∀h ∈ H (2.9)

E[whv
T
h ] = 0, ∀h ∈ H (2.10)

E[whw
T
h ] = Qh, ∀h ∈ H (2.11)

E[vhv
T
h ] = Rh, ∀h ∈ H (2.12)

Further, as in Ashok & Ben-Akiva (1993), we assume that the error terms across

different time steps are uncorrelated:

E[whw
T
k ] = 0, ∀h, k ∈ H, h 6= k (2.13)

E[vhv
T
k ] = 0, ∀h, k ∈ H, h 6= k (2.14)

State Augmentation and Approximation

The SSM in Equations (2.1) and (2.2) satisfies the Markovian assumption, where

fh(·), gh(·) only have one state as arguments, implying that direct dependencies on

more than one previous state is not possible. However, in DTA models and trans-

portation systems, this assumption rarely holds. As an example, long trips on the

network will still be captured by the surveillance system a few (e.g., q) intervals after

they begin. This dependency naturally violates the Markovian assumption, because

gh(xh) should also have the previous states xh−1:h−q as arguments. In this sense, the

SSM is somewhat “myopic” in that it attempts to explain all the surveillance data

Mh with the parameters xh in the same interval. Thus, longer trips are likely to be

ignored, and the state estimation is biased.

To extend the model, Ashok (1996) presented a technique called state augmenta-

tion. The technique creates augmented states in the form of a sliding window that

include parameters in q intervals. The measurements are kept the same for each
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interval. Thus, the model accounts for the missing relationships implicit in longer

trips. The augmented state space model (augmented SSM) comprises the following

equations:

• Transition equation

xh = fh−1(xh−1, ...,xh−p) +wh (2.15)

• Measurement equation

Mh = gh(xh, ...,xh−q+1) + vh (2.16)

where, p is the number of previous states that are believed to have relations with xh;

q is the number of states related to current measurement Mh; wh and vh are error

terms, which represent the transition and measurement errors. Note that p and q are

not the same, and the resulting state should use whichever is greater as the number

of intervals to include. Note that the parameter space for each time step is now at

least q times greater since for each Mh we need to update xh, ...,xh−q+1.

The state augmentation with approximation essentially ignores the augmentation

in the measurement equation, resulting in Equation (2.2), as proposed in Ashok &

Ben-Akiva (2000). It assumes that xh will be correctly estimated when Mh is first

used. This assumption is a strong argument that still neglects the transportation

system delay. Ashok & Ben-Akiva (2000) demonstrated that augmented SSM is not

more beneficial than the approximation on a 32-kilometer expressway compared with

SSM. It was also concluded that augmented SSM is not particularly useful when

“most of the information” in the surveillance data is utilized the first time they are

seen.

We comment on the augmented SSM for DTAs. First, the augmented SSM is

also an SSM. It solves the modeling disadvantages of the original SSM by captur-

ing the time delay in the transportation system. The augmented SSM theoretically

should yield a more accurate state estimation and thus, is more likely to provide
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reliable predictions. Second, it increases the parameter space in each time step. The

computational complexity will increase q times if we compare Equation (2.16) with

Equation (2.2). Finally, state augmentation with approximation demonstrated sim-

ilar performance but at a significantly lower computational cost on an expressway

stretch. However, large-scale networks presumably have numerous long trips with

high travel times, especially in congestion where they are delayed.

Linearization of State Space Models

We have presented the SSM and augmented SSM with the state augmentation tech-

nique but the specific functional form of f(·) and g(·) remains to be identified. In

this thesis, they are approximated with linear functions, which follows the logic of

linearization in the extended Kalman filter (EKF). While more complex nonlinear

models exist, the EKF is a well-studied and effective solution approach that relies on

a linear SSM for the nonlinear case. More complex models include approaches like

the unscented Kalman filter (UKF) and particle filter (PF). Studies have reported

that UKF did not result in a significant difference from EKF in traffic predictions

(St-Pierre & Gingras, 2004). PF and UKF have been reported to be more time-

consuming than EKF (Hegyi et al., 2006, 2007). In view of these considerations, we

assume a linear relationship for the SSM.

fh and gh for the linear augmented SSM are given in the following equations.

Note that the original SSM is a special case for p = 1, q = 1:

∆xh =

h−p∑
k=h−1

F k
h∆xk +wh (2.17)

∆Mh =

h−q+1∑
k=h

Hk
h∆xk + vh (2.18)

where, F k
h is a square matrix, representing the effect of ∆xk on ∆xh; If the au-

toregressive transition model holds throughout the period, p matrices (F 1, ...,F p)

completely determine the transition equation for all time intervals. In practice, we

often assume this due to model parsimony. Hk
h is a gradient approximation of the
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simulator that describes the impact of ∆xk on ∆Mh.

We make some comments on the computational tractability. The dimensionality

is nx × nx for F k
h. In practice, a diagonal matrix may be assumed for F k

h, because of

the difficulty in estimating the complete matrix in practice. The dimension of Hk
h is

nM × nx, and a typical gradient estimation procedure based on finite difference will

need O(nx) runs for simulation-based DTA. We will discuss the details of gradient

estimation in Section 2.2.2.

We make some critical comments on the linearization procedure. First, an au-

toregressive (AR) model represents the transition equation. Higher order AR models

are beneficial for the accuracy of transition equations, but requires offline estimation.

Second, the gradient estimation procedure is necessary for Hk
h, and the computa-

tional complexity can be a significant issue as the number of parameters nx and

augmentation degree q increases.

We conclude this section with three remarks. First, the state transition model is

presented with a generic function fh(·) and approximated with linear models. Sec-

ond, the idea of deviations is an elegant framework that utilizes the temporal trend

in historicals. Thus, it should be applied when historical values are available. Fi-

nally, the augmented SSM is beneficial in capturing long trips, but the computational

complexity restricts its application. Hence an approximation is usually employed in

practice.

2.2.2 System Identification

Although simulation-based DTA can efficiently model complex traffic interactions, a

critical issue is the lack of an analytical formulation. We cannot derive it in a closed

form, because of the complexity in simulating demand, supply and their interactions.

Unfortunately, online calibration algorithms typically require a mathematical model

for the DTA system, most notably in the application of the measurement equation.

The model-building procedure is called system identification, in which gh(·) is treated

as a “black box” between xh and Mh, and we attempt to find a mathematical model

that describes it based on function evaluations of gh(·). Following the discussion
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in the linear SSM model, we need to estimate all Hk
hs for the completeness of the

measurement equation.

Gradient Estimation

Under the linear assumption in the SSM model, the system identification task is to

determine the gradient/Jacobian matrix Hk
h in Equation (2.18). The Hk

h matrix

needs to be determined in each time step h because it changes with network state.

Since no closed form is available, we have to rely on simulations of gh(·). In this thesis,

the gradient estimation task for simulation-based DTA is defined as approximating the

gradient Hk
h (a.k.a. Jacobian, H matrix) with function evaluations of the simulator

(i.e., gh(·)).

Although the calibration of DTA models has been studied for more than 20 years,

the gradient estimation task for simulation-based DTA has received relatively less

attention. In the literature, the most widely used approach is the finite difference

method which has a computational complexity of order O(n), where n is the number

of parameters. A more computationally efficient approach is simultaneous perturba-

tion which, unfortunately, yields inaccurate gradient estimates and hence, adversely

impacts calibration accuracy. There have been efforts using a fixed Kalman gain as

presented in Antoniou (2004) that gives immediate results, but we still need to update

the system gradient for each interval to consider changes in traffic conditions.

In the following paragraphs, we present the specific methods for gradient estima-

tion.

Finite Difference

The finite difference (FD) is a widely applied numerical method to calculate the

gradient. Assuming gh(·) is the measurement vector of dimension m and xh is the

parameter vector of dimension n, the gradient is a matrix of dimension (m × n).

Then, the gradient matrix shown in Equation (2.36) can be calculated by FD in

Equations (2.21) and (2.22). Here we add another subscript i for gh,i and j for xh,j to

denote the ith and jth element of each vector, where i = 1, 2, ...,m and j = 1, 2, ..., n.

38



Hk
h =


∂

∂xk,1
gh,1 . . . ∂

∂xk,n
gh,1

...
. . .

...

∂
∂xk,1

gh,m . . . ∂
∂xk,n

gh,m

 (2.19)

=
[

∂
∂xk,1

gh · · · ∂
∂xk,n

gh

]
(2.20)

where,
∂

∂xk,j
gh =

gh(xk + δj)− gh(xk − δj)
2δj

(2.21)

δj = [0, 0, ..., δj, ..., 0]> (2.22)

Note ∂
∂xk,j

gh,i denotes the partial derivative element of gh,i to xk,j. The method

shown in Equation (2.21) is the central finite difference. δj is the perturbation vec-

tor, and indicates that the vector xh is perturbed at the jth element with size δj;

Equation (2.21) approximates the ith column of the Hk
h matrix. In simulation-based

DTA, the simulation run substitutes gh. Observe that with two evaluations of g(·),

we obtain the gradient for xk,j. Thus, the central FD needs 2n calculations for Hk
h,

with each g(·) as one basic operation. Notice that the unit of complexity is a single

run of simulation. Depending on the network size and number of simulated vehicles,

the time needed for one run can be very different.

Simultaneous Perturbation

Another method to calculate the Hk
h is called simultaneous perturbation (SP). It

originates from the idea of SPSA (Spall, 1992). Instead of perturbing the vector xh

in each dimension, SP perturbs all dimensions at the same time. Following the same

representation as FD, SP for each column of the gradient is given by:

∂

∂xk,j
gh =

gh(xk + δ)− gh(xk − δ)

2δj
(2.23)

δ = [δ1, δ2, ..., δj, ..., δn]> (2.24)
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The perturbation vector δ has a different size δj for each dimension. δjs also have

different signs, because each dimension is randomly perturbed in either the positive

or negative direction. Note that all the columns in Hk
h have the same numerator in

Equation (2.23), so we only need twice the evaluation of gh(·). Thus, to obtain an

approximate of Hk
h, we only need one calculation. However, since all columns have

the same numerator vector, they are linearly dependent. Thus, the rank of Hk
h is 1,

which will be uninformative for each iteration when the parameter space is large.

2.3 Solution Approaches

The SSM has been comprehensively studied in the literature, and algorithms in the

Kalman filter family can estimate the state vector efficiently. When the transition and

measurement equations are linear, Kalman filters are proven to be the optimal linear

state estimator with the objective of minimizing the mean squared error (MSE) for

each time step (Ashok, 1996). Under the condition of Gaussian errors, it minimizes

the MSE among all (linear or nonlinear) estimators. Under the case that measurement

model is a linear approximation of nonlinear DTA models, Kalman filter is called the

extended Kalman filter (EKF). While it is difficult to guarantee the optimality for

the EKF, the method is computationally tractable (with polynomial complexity) and

useful in many practical applications (Antoniou, 2004; St-Pierre & Gingras, 2004;

Hegyi et al., 2006).

There have been several Kalman filter variants applied to solve the state-space

formulation in the context of online calibration. Here the extended Kalman filter

algorithm is reviewed first and its connection to the state-space model is made explicit.

Then its variants are summarized and commented upon. Last but not least, the

drawbacks of current practices of EKF are addressed and this leads to the next section.

2.3.1 Extended Kalman Filter

Without loss of generality for augmented SSM and the definition of deviations, the

basic equations are:
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• Transition equation

Xh = fh−1 (Xh−1) +W h (2.25)

which is linearized by:

Xh = Φh−1Xh−1 +W h (2.26)

• Measurement equation

Mh = gh (Xh) + V h (2.27)

which is linearized by:

Mh = ΘhXh + V h (2.28)

where, Equations (2.26) and (2.28) are the state-space formulations that can be ex-

tended to augmented states with the deviation definition, using the following notation:

Xh =
[
x>h ,x

>
h−1, ...,x

>
h−r+1

]>
(2.29)

Θh =
[
Hh

h,H
h−1
h , ...,Hh−r+1

h

]
(2.30)

Φh =

 F h−1
h F h−2

h · · · F h−r
h

I(r−1)n×(r−1)n 0(r−1)n×n

 (2.31)

where, the degree of augmentation is r = max{p, q} and n is the number of DTA

parameters for each interval.

W h and V h are uncorrelated continuous variables. We usually assume them as

zero mean and multivariate Gaussian with covariance matrix Qh and Rh, respec-

tively. Compared with the assumptions in the state space model, the EKF further

assumes the Gaussian distribution, which is necessary for closed-form state estima-

tors. Although it may be difficult to prove, the Gaussian assumption is widely used in
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inference tasks for continuous variables, because it is the only assumption that yields

a closed form solution.

The solution algorithm of EKF is displayed below.

Algorithm 1 Extended Kalman Filter

Initialize

X̂0|0 = X0 (2.32)

P 0|0 = P 0 (2.33)

for h = 1 to H do
Time Update
Predicted state estimate

X̂h|h−1 = Φh−1X̂h−1|h−1 (2.34)

Predicted covariance estimate

P h|h−1 = Φh−1P h−1|h−1Φ
>
h−1 +Qh (2.35)

Measurement Update
INPUT: real-time measurement Mh

Measurement equation linearization

Θh =
∂gh
∂X

∣∣∣∣
X̂h|h−1

(2.36)

Near-optimal Kalman gain

Kh = P h|h−1Θ
>
h

(
ΘhP h|h−1Θ

>
h +Rh

)−1
(2.37)

Updated state estimate

X̂h|h = X̂h|h−1 +Kh

(
Mh − gh(X̂h|h−1)

)
(2.38)

Updated covariance estimate

P h|h = P h|h−1 −KhΘhP h|h−1 (2.39)

OUTPUT: posterior estimates x̂h|h and P h|h
end for

Note that the notation X̂h|h−1 and X̂h|h indicates the estimate of random vector

Xh before and after seeing the surveillance data at h, given we are currently at
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h−1. Similarly, P h|h−1 and P h|h are the corresponding estimate of P h. For the EKF

algorithm, the input parameters are:

• X0: initial starting point (guess) of the state vector at time h = 0

• P 0: initial covariance matrix (guess) of X0

• Qh: time-variant covariance matrix of wh, h ∈ H

• Rh: time-variant covariance matrix of vh, h ∈ H

We briefly summarize the steps of the EKF algorithm. Assume that the initial

state estimate X̂0|0 and the covariance matrix estimate P̂ 0|0 are available according

to Equations (2.32) and (2.33). The time update provides the prediction (i.e., prior

estimate) of the state X̂h|h−1 and its covariance matrix P h|h−1 for the next time step

(Equations (2.34) and (2.35)). Subscript h|h− 1 indicates that we observe measure-

ments at time h − 1 and we predict for time h. When new measurements Mh are

available, the measurement update utilize them to update the predictions in Equa-

tions (2.38) and (2.39), which yields posterior state estimate X̂h|h and its covariance

estimate P h|h. Observe that the EKF algorithm only involves matrix operations ex-

cept Equation (2.36). Thus, excluding the complexity of gradient estimation, EKF is

a polynomial time algorithm that handles real-time measurements.

For the gradient estimation procedure in Equation (2.36), either the FD or SP

can be applied. We name the resulting EKF FD-EKF and SP-EKF, respectively.

Compared with the FD-EKF, SP-EKF improves the computational time, but the

approximated gradient matrix will be inaccurate, as discussed in previous sections.

Due to this characteristic and given that our aim is to obtain accurate parameter

estimates, this thesis bases upon FD-EKF, to obtain the most accurate gradient

estimation.

2.3.2 Constrained Kalman Filter

A recent extension of the Kalman filtering framework to model constraints on state

variables is the constrained extended Kalman filter (CEKF) introduced in H. Zhang
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(2016) and H. Zhang et al. (2017). In Kalman filters, the variables are assumed to be

unconstrained Gaussian. Thus, it is possible that EKF yields unreasonable parame-

ters. For example, OD flows should never be negative, and speed-density parameters

should not be negative in the fundamental diagram. The authors explicitly modeled

the constraints on state vectors through a post-filtering quadratic optimization in the

Kalman filtering framework.

Based on the Gaussian assumption of random errors, the state variables also

follow Gaussian distributions. For the unconstrained state variables, the Kalman

filter estimate X̂h|h is the mean of the distribution that the state vector xh follows.

The posterior covariance matrix P h|h indicates the covariance of Xh. Thus, xh ∼

N (X̂h|h,P h|h), with the probability density function of:

fX(X) =
1√

(2π)n|P h|h|
exp

{
−1

2
(X − X̂h|h)

>P h|h
−1(X − X̂h|h)

}
(2.40)

where, n is the dimension of vector X.

Now we consider the constraints. Xh|h follows the Gaussian distribution and is

subject to constraints. Thus, the optimal solution is not X̂h|h if any violation of

the constraints occurs. Under the objective of the maximum a posteriori (MAP)

probability density, the optimal solution is given by:

max
X

fX(X)⇔ min
X

(X − X̂h|h)
>P−1h|h(X − X̂h|h) (2.41)

s.t. DX ≤ d (2.42)

where, D is a known s× n constant matrix, s is the number of constraints, n is the

dimension of the state vector, and s ≤ n.

The authors also compared this approach with the “truncation” approach that

sets the invalid elements to the bounding condition. The truncation neglects the

correlation between elements in the state vector, while the proposed approach utilizes
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the correlation during the optimization.

As demonstrated on the Singapore Expressway network in H. Zhang et al. (2017),

the CEKF significantly outperforms the EKF, where the EKF tends to overestimate

the demand, due to the truncation process that neglects state covariance.

As a conclusion, in our online DTA calibration, we should apply the constrained

Kalman filter technique whenever possible.

2.4 Summary

In this chapter, we reviewed the recent developments in online calibration for DTA.

We close with several significant comments. First, extensive research has demon-

strated the state space model/Kalman filtering framework as a powerful tool. Recent

developments in state definition, state augmentation and modeling constraints have

enriched its applicability to various situations. Second, although simulation-based

DTA has superior fidelity, the majority of research on DTA calibration is based on an-

alytical DTA, while the simulator unpredictability is less discussed. Third, although

the Kalman filter has been successfully applied in many different DTA calibration

contexts, the computational performance of gradient estimation is a bottleneck for

real-time deployment. Lastly, related to the previous point, the scalability of online

calibration on large-scale networks remains to be realized. In the following chap-

ters, we attempt to advance the state-of-the-art in simulation-based DTA towards

large-scale and real-time performance.
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Chapter 3

Supply Calibration Considering

Simulation Stochasticity

The supply module is a key component of simulation-based Dynamic Traffic Assign-

ment (DTA) systems. Supply parameters in mesoscopic traffic simulators typically

include traffic dynamics or fundamental diagram parameters and segment capaci-

ties whereas in microscopic simulators they include car-following and lane-changing

model parameters. These parameters of the supply simulator primarily describe ve-

hicle movement and queue formation/dissipation, and in conjunction with the de-

mand simulation module, generate traffic measurements such as flow counts, average

speeds and link travel times. Consequently, the supply parameters are crucial in

accurately modeling traffic conditions, particularly congestion. Although in general,

supply parameters are static given that they depend on road segment characteristics

that seldom change, urban transportation networks are in fact frequently subject to

non-recurrent supply changes due to incidents and weather conditions which necessi-

tate online updates of the parameters. Incidents or road constructions will lead to lane

closures, which significantly affects segment throughput. Weather conditions may de-

crease visibility and traction, in which cases people drive more carefully, leading to

reduced speed measurements and increased headways.

The necessity of the supply calibration to be online lies in the fact that these

parameters usually change in an unpredictable manner. Incidents are typically un-
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predictable, in the sense of the time of occurrence, duration, severity, number of lanes

affected. Weather can be predicted, but the accurate duration and impact on traffic

systems are hard to quantify beforehand. While scheduled road constructions are

mostly predictable, the actual execution could still differ from the schedule for vari-

ous reasons. Hence, the most reliable and straightforward source to monitor supply is

still the real-time surveillance system. The online supply calibration should infer the

underlying parameter changes from real-time surveillance data, and readily evaluate

if the supply changes fit the data. For real-time deployment, this online process needs

to be executed for each interval to reflect the supply changes instantly.

Crucial as the supply calibration is, it is also challenging. The challenges of OD

estimation such as nonlinearity, stochasticity and time-delay also apply to supply

calibration. However, there is a subtle difference. A linear function will reasonably

approximate the relation between OD and sensor flows, as the fraction of OD flows

contributing to sensors changes slowly (Ashok & Ben-Akiva, 2000). On the contrary,

the relationship between supply parameters and measurements is nonlinear. While

linear relations are mostly employed to approximate the nonlinearity, the approxi-

mation exacerbates the uncertainty and stochasticity. In this regard, the calibration

procedure should handle the stochasticity carefully to accurately quantify the supply

changes.

In this chapter, we focus on the role of simulation stochasticity in online sup-

ply calibration. Stochasticity leads to uncertainty in the simulated measurements,

which is an important consideration when fitting the simulation to real-world obser-

vations. The chapter is organized as follows. We first discuss related literature on

supply calibration not covered in Chapter 2, and motivate the analysis of simulation

stochasticity. Then, we attempt to quantify the stochasticity, followed by an error

analysis in the Kalman filtering framework. Lastly, we present two methods to re-

duce the effect of simulation stochasticity and demonstrate their performance with a

synthetic case study.
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3.1 Literature Review and Problem Definition

We first recall the general calibration problem definition: given traffic surveillance

observations from the real world, adjust the DTA model parameters such that the

discrepancy between the real-world observations and the simulated measurements is

minimized. In this section, we summarize existing work on online supply calibra-

tion, and identify gaps in the literature pertaining to simulation-based DTA systems.

Finally, we draw attention to the issue of simulation stochasticity.

3.1.1 Literature of Online Supply Calibration

In the context of online supply calibration, moderate research has been conducted

for DTA systems. As noted previously, the online calibration problem involves two

key tasks: (1) system identification that specifies the mathematical model of the

DTA system; and (2) application of a suitable algorithm to calibrate parameters that

utilizes the mathematical formulation. Task (1) is clearly a prerequisite for (2) and

given that (2) has already been extensively discussed in Chapter 2, this review focuses

on (1) in the specific context of online supply calibration.

The supply module in various DTA systems utilizes either analytical formulations

or simulation. The key difference lies in whether there is a closed-form relation

between parameters and measurements. In the following sub-sections, we review

the existing research, with a focus on system identification for both analytical and

simulation-based DTAs.

Analytical DTA

For analytical DTAs, typically, close-form relations exist between the model param-

eters and measurements. A well-known example is the Cell Transmission Model

(CTM) which employs a macroscopic supply model that captures traffic dynamics

with nonlinear differential equations (Daganzo, 1995). Since the model has a closed

form, the analytical relations or numerical solutions can be obtained quickly. Thus,

with the explicit relations, we can formulate the model using the state space frame-
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work. Wang & Papageorgiou (2005) employed a random walk model as the transition

equation and deduced the partial derivatives for the measurement equation. The

authors applied the model on a freeway stretch using the extended Kalman filter.

The estimation results were satisfactory for the segment and boundary variables, and

the time-dependent measurements were well-fitted. The case study demonstrated the

EKF’s capability of tracking traffic states under various traffic conditions.

Simulation-Based DTA

On the other hand, it is generally harder to obtain analytical relations for simulation-

based models. No closed-form relationship is available due to random sampling and

the complex demand-supply interactions in the simulation models. When modeling

the analytical relationship, previous research has employed either a priori knowledge

or an approximation procedure.

First, examples of utilizing prior knowledge include transfer function models,

which are bivariate linear models between traffic flow speeds and densities for each

segment (Tavana & Mahmassani, 2000). The coefficient parameters are estimated of-

fline to match the real scenario. Huynh et al. (2002) extended the work of Tavana &

Mahmassani (2000) and applied an adaptive process to the transfer function where the

parameters are updated online. The authors also proposed a nonlinear least squares

optimization formulation for the update and concluded that an adaptive process for

the transfer function is beneficial, either with or without the nonlinear optimization.

However, in the simulation, the authors modified the supply module by replacing the

Greenshields model with the simpler transfer function. This replacement is based

on the assumption that the transfer function model is a good approximation of the

Greenshields model which may not always hold, thus affecting predictive power of the

model relative to the original simulation-based model.

The second approach, the approximation procedure for system identification in-

volves building models from data using statistical methods. The procedure usually

involves fitting a parametric model and when a linear model is assumed, the pro-

cedure is gradient estimation. The unknown parameters are the gradient matrix
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or Jacobian that describes the system based on a first order approximation of the

relationship between measurements and parameters. The finite difference method

for gradient estimation which was described in the previous chapter is a straight-

forward yet widely-used numerical method to compute the gradient. Each parameter

is perturbed independently and the resulting change in target variables quantifies the

impact on measurements. This yields one column in the Jacobian matrix. Antoniou

(2004) applied the Extended Kalman Filter for the supply calibration problem using

a finite difference method for gradient computation. The EKF was able to accurately

predict speeds on a corridor network under sunny and rainy weather conditions.

In summary, online supply calibration has received relatively less attention in

the literature. The most widely used method is still the Extended Kalman Filter

using the finite difference method for gradient estimation (system identification) which

has successfully been applied to small networks. In this thesis, we adopt a similar

EKF based approach utilizing the finite difference method for system identification.

Moreover, an issue which has not been addressed in the literature is that of simulator

stochasticity and its impact on both gradient estimation and the Kalman Filter model.

We discuss this in more detail in the following section.

3.1.2 Motivation for Quantifying Simulation Stochasticity

Stochasticity has not been systematically addressed in the context of online calibra-

tion of simulation-based DTA systems. A common approach to address stochasticity

is to average the results from multiple runs or “replications” of the simulation. While

averaging more simulations effectively reduces noise, the computational burden may

be unacceptable for online applications as the network scale grows. Furthermore, the

impacts of stochasticity may be more severe in large complex networks, thus requiring

a higher number of replications which may not be computationally feasible given the

time constraints in online applications. Thus, quantifying the stochasticity of simu-

lations offline is crucial because it represents the confidence of each simulated result

and hence, plays an important role in term of minimizing the discrepancy between

simulation and real-world observations.
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A simple method to quantify stochasticity is through variance-covariance matrices.

In the Kalman filtering framework for online DTA calibration, the covariance matrices

for the transition equation (Q) and measurement equation (R) control the confidence

of each model. Finding suitable values for them is called filter tuning. It is generally

known that the Kalman filter is highly sensitive to them. However as of now, there

is no simple guideline to identify the “correct” error covariance matrices. While

guidelines exist for preventing divergence of Kalman filters (Schneider & Georgakis,

2013), in many applications, Kalman filters still need manual tuning by trial and

error. This is primarily because there is no mature adaptive filtering method that

simply works for every field of application (Ananthasayanam et al., 2016) leading to

numerous ad hoc settings for the filter and difficulty in guaranteeing performance.

Within the field of DTA calibration, filter tuning has also received less attention and

R matrices are usually assumed to be time-invariant for simplicity. By quantifying

the simulation stochasticity, we aim to provide a more systematic characterization of

the covariance matrix R for Kalman filters.

Furthermore, the gradient estimation procedure is also greatly impacted by simu-

lation stochasticity, but usually ignored. This is because the finite difference approach

does not specifically consider the error in function evaluations, thus leading to another

unaccounted source of error that should be incorporated in R in the measurement

equation.

Based on the aforementioned motivating factors, it is necessary to analyze the

error caused by simulation stochasticity. Considering this, we may better understand

the error covariance matrices, and potentially give some guidance on Kalman filter

tuning for online calibration of DTA systems.

3.1.3 Supply Calibration Problem Definition Considering Sim-

ulation Stochasticity

We now restate the supply calibration problem under simulation stochasticity. Given

traffic surveillance observations from the real world, adjust the DTA supply param-
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eters such that the discrepancy between the observations and the expectation of the

simulation is minimized considering simulation stochasticity. Specifically, we consider

simulation stochasticity in two steps of the EKF algorithm: (1) gradient estimation

when performing finite difference; (2) simulated measurement error when calculating

the Kalman innovation (prediction residual).

We close this section with the following comments. First, the stochasticity of sim-

ulation determines our confidence in the simulated measurements, which is crucial

when minimizing the discrepancy against real observations. Second, this stochastic-

ity has not been extensively studied in the DTA calibration literature, and the impact

may be underestimated. Lastly, quantifying the stochasticity will also improve esti-

mates of the error covariance in the Kalman filtering framework. This may lead to

better calibration performance. In the remainder of this chapter, we first quantify

simulation stochasticity, then conduct an error analysis to shed some light on error

covariances and finally propose some remedies to reduce its impact on calibration for

simulation-based DTA.

3.2 Quantifying Simulation Stochasticity

The source of simulation stochasticity is the extensive use of random number genera-

tors to mimic stochastic processes. First and foremost, some facts about random gen-

erators are helpful to understand. The generator can produce a sequence of pseudo

random numbers, which appear to be samples drawn from a certain distribution.

However, the sequence is in fact deterministic, because computers can perform de-

terministic operations efficiently. The generator is implemented such that an initial

random seed controls which predetermined sequence to produce. To make a pseudo

random generator a good approximation of a true random one, the seeds are usually

selected from a function of true random events like current date and time, or the

amount of time between keyboard strokes.

In simulation-based DTA, there is usually an initial seed for the random gener-

ator to start with. The generated random numbers are used for various operations:
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sampling Poisson process for vehicle departure times, sampling route choice decisions

with random utility models for pre-trip, en-route choices, etc. Thus, the random num-

bers affect the spatial-temporal patterns of traffic, which in turn affect the simulated

measurements.

3.2.1 Experimental Procedure

To quantify the variation of simulated measurements caused by the use of random

numbers, we conduct an experiment with the following steps:

1. Draw random numbers to comprise a seed pool;

2. For each seed in the pool, run a simulation with the selected seed while keep

the same demand and supply parameters;

3. Compare the difference of simulated measurements and calculate variance-covariance

matrix across seeds.

DTA System & Road Network

We select DynaMIT, a state-of-the-art mesoscopic traffic simulation as our DTA sys-

tem. In DynaMIT, each segment has 7 supply parameters to describe the modified

Greenshields model: free flow speed Vf , jam density Kjam, alpha α, beta β, segment

capacity c, minimum speed Vmin, minimum density Kmin. Thus, the speed-density

relationship is dictated by the modified Greenshields model:

V =


Vf , K ≤ Kmin

max

{
Vmin, Vf

[
1−

(
K−Kmin

Kjam

)β]α}
, K > Kmin

(3.1)

The segment capacity c controls the number of vehicles that can leave the segment

in a unit time interval.

For a proof of concept, the simulations are based on a synthetic network with 2

OD pairs and 8 segments. The network topology is given in Figure 3-1. Each segment
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has a sensor that can capture the mean speed and aggregate flow for each simulation

or estimation interval. Basic information about segment lengths, free flow speeds

and free flow travel time is presented in Table 3.1. On the demand side, Table 3.2

presents the mainstream and off-ramp OD flow statistics for the whole simulation

period 14:00-19:00.

Figure 3-1: Toy road network, traffic going to left

Table 3.1: Specifications of each segment on the toy network

Segment ID 1 2 3 4 5 6 7 8
Length (meter) 297.5 553.8 493.1 351.2 408.6 666.7 377.3 183.0

Free flow speed (mph) 71 66 75 75 60 70 70 60
Minimum travel time (second) 9.37 18.8 14.7 10.5 15.2 21.3 12.1 6.82

Table 3.2: Demand statistics for simulation period 14:00-19:00

OD pair
OD flows at percentile (veh/hour)

Mean OD flow (veh/hour)
10% 25% 50% 75% 90%

Mainstream 3670 3882 4086 4446 4940 4220
Off-ramp 0 168 336 480 708 350

3.2.2 Stochasticity Measures

RMSNs on Simulations with Different Seeds

For the proof of concept, we simulate 5 hours of traffic with 6 seeds treating the sim-

ulation result with the first seed as the benchmark, and calculate the time-dependent

Root Mean Square Normalized Error (RMSN) for the result from each seed against

the benchmark. RMSN is defined in Equation (3.2), where yt is the true value:

55



RMSN =

√∑T
t=1(ŷt − yt)2

n

/∑T
t=1 yt
n

(3.2)

First, we investigate the impact of the simulation interval length (or horizon

length). The length determines how frequently the sensors report measurements.

In our experiment, two simulation intervals are selected: 5 minutes and 15 minutes.

We would expect the 15-minute interval to have less stochasticity since the measure-

ments are averaged over a longer interval. Table 3.3 presents the RMSNs compared

to result from Seed 1.

Table 3.3: RMSNs compared to seed 1 for simulated measurements

Interval Measurement Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Average

5 minutes
Flow volume 0 5.45% 5.28% 5.33% 4.81% 4.74% 5.12%
Sensor speed 0 21.9% 18.6% 20.8% 19.4% 20.9% 20.3%

Link travel time 0 21.6% 23.7% 23.1% 21.5% 22.1% 22.4%

15 minutes
Flow volume 0 3.04% 3.42% 3.20% 4.07% 3.33% 3.41%
Sensor speed 0 9.69% 12.7% 11.1% 10.1% 10.6% 10.8%

Link travel time 0 13.4% 14.5% 15.0% 15.6% 14.9% 14.7%

As we expected, the stochasticity for 5-minute aggregates is greater than 15-

minute aggregates. From the table, it is also evident that the variation of link travel

time and sensor speed is greater than traffic flow volume. This implies that noise

of different measurements should be handled differently, because there is no single

percentage magnitude that describes their variations.

The figures in Figure 3-2 compare the measurements from Seed 1 and Seed 2

with a scatter plot. Each point is the measurement from the same sensor in the

same interval. Thus, more points close to diagonal implies less stochasticity. The

figures support our conclusions above that (1) 5-minute measurements (left) have

more variability than 15-minute ones (right), (2) link travel times and speeds have

more variation than flow volumes. Additionally, it can be observed that the variation

is larger for moderate speeds (30-50 mph) and large travel times (over 50 seconds).
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Figure 3-2: Scatter plot for measurements from Seed 1 and Seed 2 in all intervals.
Left: 5 minute intervals, right: 15 minute intervals
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Standard Deviations of Measurements in a Sample Interval

We now examine the measurements in more detail. We focus on the interval after 1

hour of the warm-up period: 15:00-15:05 or 15:00-15:15, depending on the interval

length. We increase the number of simulations to 30 with different seeds to reduce the

noise in variance estimator. All other parameters and inputs in the 30 simulations are

exactly the same to ensure measurement stochasticity only comes from the random

seed. For presentation of the results, apart from mean and standard deviation (SD),

we use the Coefficient of Variation (CV) as a metric (standard deviation divided

by mean). The results for 5 and 15 minute simulation intervals are summarized in

Tables 3.4 and 3.5.

Table 3.4: Mean, standard deviation (SD) and coefficient of variance (CV) for traffic measurements
for 15:00-15:05 from 30 runs with different seeds

Flow
(veh/5 min)

Segment ID 1 2 3 4 5 6 7 8
Mean 378.1 220.1 203.6 331.8 22.17 156.7 146.8 142.0
SD 2.468 8.291 8.024 8.827 3.260 8.354 7.636 5.574
CV 0.65% 3.8% 3.9% 2.7% 15% 5.3% 5.2% 3.9%

Speed
(mph)

Segment ID 1 2 3 4 5 6 7 8
Mean 53.35 42.31 43.13 29.54 52.95 51.91 35.33 30.78
SD 3.755 2.895 5.013 8.279 2.108 10.788 6.806 4.764
CV 7.0% 6.8% 12% 28% 4.0% 21% 19% 15.5%

Link TT
(seconds)

Segment ID 1 2 3 4 5 6+7 8
Mean 12.28 31.42 26.56 29.27 17.90 55.52 14.91
SD 0.841 3.310 3.312 7.253 0.878 6.654 2.014
CV 6.9% 11% 12% 25% 4.9% 12% 14%

* Segment 6 and 7 are on the same link, thus the link travel time cannot be separated

Table 3.5: Mean, standard deviation (SD) and coefficient of variance (CV) for traffic measurements
for 15:00-15:15 from 30 runs with different seeds

Flow
(veh/15 min)

Segment ID 1 2 3 4 5 6 7 8
Mean 976.2 590.3 542.0 933.0 49.47 387.1 390.3 390.9
SD 1.540 17.77 17.69 9.750 2.432 16.69 15.53 15.37
CV 0.16% 3.0% 3.3% 1.0% 4.9% 4.3% 4.0% 3.9%

Speed
(mph)

Segment ID 1 2 3 4 5 6 7 8
Mean 58.11 48.29 46.23 33.44 55.62 58.95 44.51 32.88
SD 1.533 2.153 4.303 7.628 0.9409 7.656 5.241 3.523
CV 2.6% 4.5% 9.3% 23% 1.7% 13% 12% 11%

Link TT
(seconds)

Segment ID 1 2 3 4 5 6+7 8
Mean 11.20 26.20 25.36 23.59 16.85 44.21 12.79
SD 0.3146 1.125 2.596 5.859 0.3345 3.270 1.391
CV 2.8% 4.3% 10% 25% 2.0% 7.4% 11%

* Segment 6 and 7 are on the same link, thus the link travel time cannot be separated
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We make two general observations from Tables 3.4 and 3.5. First, when the

interval is increased from 5 to 15 minutes, CV for most measurements decrease.

Second and more importantly, the measurements generally have different variabilities.

SD or CV do not have the same magnitude across different segments even for the same

measurement type. This implies that there may not be a simple rule when setting the

diagonals of R matrix to capture simulation stochasticity. This further necessitates

quantifying the simulation stochasticity for different segments.

Next, we examine the differences in variability across segments in more detail.

From both tables, the mean speeds on Segment 4 are lower than most segments. This

may be a result of severe reduction in lanes: Segment 1 has 6 lanes but Segment 4 only

has 3. Thus, congestion is likely to happen on Segment 4. It is also noticeable that

the speed on Segment 4 has significantly greater variance than others. A hypothesis

that may explain this evidence is that congested segments have more variance in

measurements due the simulation stochasticity.

Figure 3-3: Speed measurements on Segment 4 and the mainstream OD flow assigned
in each 5-minute interval

This hypothesis can be supported by Figure 3-3, which presents the simulated

speeds and mainstream demand throughout the simulation period. Congestion starts
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to form at the beginning and stabilizes at 15:15. During this transition, the speed

variance is severe. However, after the transition to the congested regime, the variance

is surprisingly small (e.g., 15:15-16:00). Additionally, when the OD flow decreases and

the congestion is alleviated, there is a tendency that variance will increase, as seen for

14:30-15:00, 17:30 and 18:45. Thus it is likely that the transition between congestion

and free flow is prone to simulation stochasticity.

Covariance of Measurements in the Sample Interval

The previous section presented the variance of measurements, now we focus on the

covariance. In this discussion, we attempt to examine the measurement errors’ re-

lation to each other by quantifying the off-diagonals of the covariance matrix. This

analysis should reveal the spatial relations across measurements caused by simulation

stochasticity.

As in Tables 3.4 and 3.5, we can calculate the covariance matrix from the 30

runs with different seeds for interval 15:00-15:05 and 15:00-15:15. The covariance for

measurement Cov(Mh) in a chosen interval h is given by:

Cov(Mh) = E
[(
Mh −Mh

) (
Mh −Mh

)>]
(3.3)

' 1

n− 1

n∑
i=1

(
M

(i)
h −Mh

)(
M

(i)
h −Mh

)>
(3.4)

where, n is number of random seeds to simulate with. M
(i)
h is the measurement vector

for ith simulation instance. Mh = 1
n

∑n
i=1M

(i)
h is the mean measurement vector over

n different instances of simulation with distinct seeds. Equation (3.4) is the sample

covariance, which is an estimator for the true covariance.

These covariances of measurements for interval 15:00-15:05 and 15:00-15:15 are

exhibited with heat maps in Figure 3-4. Blue blocks represent a positive covariance

while red blocks indicate a negative covariance.

From Equation (3.4), we can see the covariance measures the deviations from
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Figure 3-4: Covariance matrix of measurements for 15:00-15:05 (top) and 15:00-15:15
(bottom), after 1 hour warm-up simulation (links have the same id as segments except
the one containing segment 6 and 7, denoted by “6+7”)

an “averaged” simulated scenario, which is assumed to be the expectation of all

simulated scenarios across different seeds. We comment on the negative covariances

in the flow heat map. Flows of Segment 2&3 and flows of Segment 6,7&8 are two

alternative routes for the same OD pair in Figure 3-1. When total demand is fixed,

less vehicles on one route will result in more on the other. Another observation

regarding speed and link travel time is that Segment 4 and 6 have more stochasticity

than other segments. This may due to the difference in times at which congestion

forms in different simulations.

An overall examination of Figure 3-4 suggests that there is a certain variance-

covariance structure for each measurement type. Here we contrast this observation

with the systematic measurement covariance–namely the R matrix–in the Kalman

filtering framework. In most applications, R is heuristically set based on researchers’

belief. Since it is difficult to propose a covariance structure from heuristics, R is

usually assumed as diagonal with presumed magnitudes. However, the heat maps

suggest that magnitude of diagonals can be significantly different. Besides, the co-

variance may play an important role in capturing spatial correlations across different
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simulated instances.

3.2.3 Summary

We close this section with three major observations. First, aggregating over a longer

time period helps reduce simulation stochasticity, especially for speed and link travel

time measurements. Second, for the given network and the demand inputs, there is

higher simulation stochasticity in speeds and link travel times during the transition

between free flow and congestion, and vice versa. Last but not least, the variance

magnitude is different across sensors, probably due to differing traffic states at dif-

ferent locations. The covariance structure is also different across measurement types.

This implies a calculated covariance matrix from multiple simulations is probably

more accurate than ad hoc error covariance settings in terms of accurately capturing

measurement stochasticity.

3.3 Error Analysis for Kalman Filtering Equations

3.3.1 State Space Model

Having investigated the nature of simulation stochasticity, we now discuss its connec-

tion to error covariances in the Kalman filtering framework. In this section, we first

review the State Space Model and then focus on how to capture uncertainty in the

simulation in the model.

The general State Space Model for online calibration of DTA systems is repre-

sented with abstract functions in Equations (2.15) and (2.16). We review them here

for convenience.

xh = fh−1(xh−1:h−p) +wh (3.5)

Mh = gh(xh:h−q+1) + vh (3.6)

where the function fh−1(·) captures the transition relations from previous p inter-
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vals to interval h, and gh(·) represents the DTA system that transforms the in-

puts/parameters into simulated measurements. Mh denotes the real-world obser-

vations from traffic surveillance systems. Thus, vh is the error term for the gap

between Mh and simulation gh(·), which is usually assumed to include field measure-

ment errors.

When we consider simulation stochasticity, we should minimize the discrepancy

between real-world observations M k and the expectation of simulated measurements.

Thus, the gh(·) in Equation (3.6) no longer represents one instance of the simulation,

but denotes the expectation of all possible simulations with different random seeds.

We introduce the following notation and assumptions:

1. Let Sh(·, ω) denote the simulated measurements with ω as random seed for

interval h, where ω ∈ Ω and Ω is the set of all random seeds;

2. Denote Σh = Cov(Sh(·, ω)) = Eω[Sh(·, ω)Sh(·, ω)>]

3. gh(·) = Eω[Sh(·, ω)]

In a similar manner, we further denote the stochasticity with an error term εh(ω)

such that εh(ω) = gh(·) − Sh(·, ω), the new measurement equation would be given

by:

Mh = Sh(xh:h−q+1, ω) + εh(ω) + vh (3.7)

For the simplicity of the following discussion, we drop ω and let Sh(·) denote the

measurements of one arbitrary simulation instance. This simplification is valid when

we use a randomly drawn random seed, which is exactly the case for each simulation

interval h. Thus, the seeds ω in different intervals can be deemed independent of each

other, albeit in a pseudo-random sense. In light of this, E[f(εh)] = Eω[f (εh (ω))],

as the left hand side is the expectation over all cases possible, which is a superset of

drawing ω from Ω.

We make the following additional assumptions about the error terms:
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1. E[εh] = Eω[εh(ω)] = 0

2. Cov(εh) = E[εhεh
>] = Eω[εh(ω)εh(ω)>] = Σh

3. E[εhvh
>] = 0

where, the last equality is a strong assumption. But it is valid if we assume vh is

the measurement error from the surveillance system. Thus, the error for simula-

tion stochasticity ε is independent of vh. In addition, we have already assumed the

following for the State Space Model.

1. E[vh] = 0

2. E[vhvh
>] = Rh

Based on these characteristics, we can group two error terms and a simple deriva-

tion yields:

1. E[εh + vh] = 0

2. E[(εh + vh)(εh + vh)
>] = Σh +Rh

which applies to the following measurement equation:

Mh = Sh(xh:h−q+1) + εh + vh (3.8)

Thus, we have derived the measurement equation considering simulation stochasticity.

Note when we use Kalman filtering techniques, εh+vh should be assumed as Gaussian

variables, and Σh +Rh will be used as the measurement covariance matrix.

3.3.2 Gradient Estimation

Simulator stochasticity also needs to be explicitly accounted for in the gradient estima-

tion procedure. Recall that this involves a linear approximation of the measurement

equation which requires computation of the system Jacobian (also referred to as the

H matrix). Specifically, the linear analytical model is given by the following equation
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(note for the simplicity of notation, without loss of generality, the augmented state

vector xh:h−q+1 is reduced to xh),

∂Mh = Hh(xh − xHh ) + ηh + εh + vh (3.9)

where, previously defined notation applies. The additional ηh comes from the linear

approximation. While this term is not the focus of our discussion, it is beneficial to

identify it as a source of uncertainty for the completeness of the analysis.

Based on the above derivations, we conclude this section with the following com-

ments. First, the error term of the linear SSM model comprises different sources

of uncertainty, including field-measurement noise vh, simulation stochasticity εh and

linearization error ηh.Second, considering all the cases, the error covariance in the

measurement model is at least Σh +Rh. Lastly, the gradient estimation (obtaining

Hh) is based on simulation and hence, will also suffer from simulation stochasticity.

This is addressed in more detail in the following section, where we will discuss how

simulation stochasticity affects Hh and how to reduce the impact.

3.4 Stochasticity in Gradient Estimation

In this section, we quantify the impact of stochasticity on the gradient matrix which

is critical given that it represents the linear relationship between parameters and mea-

surements. If the gradient matrix suffers from large noise, it is likely to significantly

affect the performance of the Kalman filter. In the literature, the estimated gradient

is usually directly used, and the issue of noise in the linearization procedure is sel-

dom discussed. We attempt to analyze the impact of noise arising from simulation

stochasticity on the gradient.

We first show the evidence of stochasticity in the H matrix. Then we conduct

an analysis to quantify the simulation stochasticity, followed by an experiment that

verifies the analysis. Finally we attempt to minimize the impact via some guidance
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based on our analysis.

3.4.1 Evidence of Stochasticity in the Gradient Matrix

Figure 3-5: The impact of free flow speed Vf in Segment 1 on all segments in different
simulation intervals

As a result of simulation stochasticity for each run, the gradient matrix calculated

from finite difference by two runs of simulation is also stochastic. The key question

now lies in how much impact it has and how this impact can be mitigated. Figure 3-5

presents one column of the gradient matrix for all time intervals, calculated by the

finite difference. The parameter being calibrated is free flow speed Vf for Segment 1
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on the toy network in Figure 3-1, and measurements are speeds on all segments. The

unit of the vertical axis is mile per hour (mph) over meter per second (m/s), because

the parameter Vf follows the International System of Units (SI) while measurements

follow United States customary units. Thus, the gradient value of 2.237 means a 1

m/s change in Vf will increase the speed measurement by 1 mph.

Now we comment on Figure 3-5. First, we expect Vf to have a positive impact

on the speed of the same segment, and it is verified by Figure 3-5. Second, there

is no stable positive/negative relation between Vf of Segment 1 and other segments.

The severe fluctuations and abrupt sign change indicate noisy gradients, thus high

uncertainty in the linear relationship. It is likely that the noise is related to simulation

stochasticity. Thus an error analysis on the gradient matrix is necessary and helpful.

3.4.2 Error Analysis

Based on the analysis of the previous section, we now examine the impact of stochas-

ticity on the H matrix (gradient). We continue to use the finite difference method to

obtain the H matrix.

We first recall the Equations (2.21) to (2.22).

Hh =


∂gh,1
∂xh,1

. . .
∂gh,1
∂xh,n

...
. . .

...
∂gh,m
∂xh,1

. . .
∂gh,m
∂xh,n


∣∣∣∣∣∣∣∣∣
xh=x̂h|h−1

(3.10)

where, Hh(:,j) =
gh(x̂h|h−1 + δj)− gh(x̂h|h−1 − δj)

2δj
(3.11)

δj = [0, 0, ..., δj, ..., 0]> (3.12)

Now we focus on Equation (3.11) and substitute the expected simulation gh(·)

with Sh(·) + εh. This yields:
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Hh(:,j) =
(
gh(x̂h|h−1 + δj)− gh(x̂h|h−1 − δj)

)
/2δj (3.13)

=
(
Sh(x̂h|h−1 + δj)− Sh(x̂h|h−1 − δj)

)
/2δj + (εh − ε′h) /2δj (3.14)

where, we made the assumption that εh and ε′h are two independent random variables

following the same distribution with zero mean and covariance Σh. (εh − ε′h) /2δj is

the error term for column j of the H matrix. Hence,

1. E[(εh − ε′h) /2δj] = 0

2. Cov ((εh − ε′h) /2δj) = E[(εh − ε′h) (εh − ε′h)
>]/4δ2j = Σh/2δ

2
j

Now we attempt to shed some light on the effect of the error term. Here we define

Ĥh(:,j) =
(
Sh(x̂h|h−1 + δj)− Sh(x̂h|h−1 − δj)

)
/2δj, as it is actually an approximation

of Hh(:,j) by finite difference. Thus, Ĥh(:,j) = Hh(:,j) + (ε′h − εh) /2δj, where Hh(:,j)

is the signal and (ε′h − εh) /2δj is the noise. We first examine (ε′h − εh) /2δj. It

has covariance Σh/2δ
2
j , and the magnitude only depends on the perturbation size δj.

Thus, a small δj will magnify the covariance matrix, resulting in more noise. Next, we

focus on Hh(:,j). We claim that the local perturbation size δj does not affect Hh(:,j)

significantly. It is based on the fundamental assumption of the extended Kalman

filter: the slope of the function gh(·) does not change significantly around xh|h−1 so

that a linear function can approximate gh(·) locally. In a global sense, the signal-to-

noise ratio
(
gh(x̂h|h−1 + δj)− gh(x̂h|h−1 − δj)

)
/ (ε′h − εh) also explains the necessity

for a large δj.

Based on the above analysis, to minimize the effect of simulation stochasticity, we

need to choose greater δj. On the other hand, δj should not be too large, for Hh(:,j)

to be a local approximation. As an example, some supply parameters have a small

magnitude, in which case the perturbation size is even smaller, often o(1). Thus, the

noise (εh − ε′h) /2δj may dominate Ĥh(:,j). Another example is OD flow parameters.

However, the perturbation δj on OD is usually O(10). For this reason, the H matrix

for OD flows is usually less affected by simulation stochasticity.
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3.4.3 Experimental Verification

In order to verify our analysis, we conduct an experiment to obtain the standard

deviation of each element in the H matrix via 30 runs of simulation with different

seeds. The following procedure is conducted:

1. Random select 30 seeds to form a pool;

2. Specify the parameters to investigate, in our case, free flow speed Vf ;

3. Determine the perturbation size δ, in our case, 2% and 10% of the initial values

are used for each Vf ;

4. For each seed, run the first interval of simulation with calibration and record

the H matrix calculated;

5. Calculate the element-wise standard deviation of these 30 H matrices and com-

pare the results for different perturbation sizes.

The reason for running only the first interval is to ensure that all runs (for different

seeds) start with the same network state (empty network). If on the other hand,

subsequent intervals were used, the initial traffic states would be different, because

the value of previous estimates xh−1|h−1 are determined by a noisy H matrix.

Figures 3-6 and 3-7 presents the mean and standard deviation heat maps from

these 30 simulation results for two percentage perturbation sizes. It is clear that with

larger perturbation, the standard deviations for a majority of the elements in the H

matrix are reduced significantly. Another important observation is that the mean

for off-diagonal elements is close to zero, but the standard deviation has a greater

magnitude. In such cases, the off-diagonals are very noisy, providing an explanation

of the trends observed in Figure 3-5.

We have quantified simulation stochasticity with an error term in each column

of the H matrix. Since the standard deviation of the error is inversely proportional

to the perturbation size, in order to decrease the impact of simulation stochasticity

on the H matrix, the perturbation size should be increased. However, increasing the
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Figure 3-6: Mean of each element in the H matrix for two percentage perturbations
δ on segment free flow speed Vf

Figure 3-7: Standard deviation of each element in the H matrix for two percentage
perturbations δ on segment free flow speed Vf

perturbation size adversely impacts the accuracy of the local function approximation.

Moreover, this method may not work for sparse H matrices, where noise still exists

in the elements that should be zero. These elements are dominated by noise because

the true “signal” is 0. In the remainder of this chapter, we attempt to mitigate this

with an enforced H matrix structure.
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3.5 Solution Approaches Considering Simulation

Stochasticity

3.5.1 Incorporating Simulation Covariance

Based on the observations in Section 3.3.1, the new measurement error covariance

should be set to Σh +Rh so as to consider simulation stochasticity. In addition, the

form of the error covariance implies that it does not simply rely on a heuristic setting

of Rh, which makes it more robust.

As stated in the literature review, the Σh matrix is usually assumed to be time-

invariant for simplicity. This is incorrect because the traffic states are different for

each time interval, and simulation stochasticity depends on the current traffic states.

However, accurate Σh matrices for each interval h are rarely available in practice.

In this approach, we can rely on the outputs from offline simulations to provide a

universal Σ for online calibration for the whole simulation period. Although this

compromises calibration performance, it is significantly less intensive in terms of data

requirements.

This can be done by calculating the covariance matrix over all different seeds for

each time interval h, and then averaging over all simulation intervals h ∈ {1, 2, ..., N}.

Specifically, the selected covariance comes from the mean of covariance matrices Σh

for each interval, given by:

Σ =
1

N

N∑
h=1

Σh (3.15)

=
1

N

N∑
h=1

Cov(Mh) (3.16)

where, Cov(Mh) is given by Equation (3.4).

The implementation is straightforward and simply involves replacing Rh with

Σ + Rh. The only drawback is that we need to compute the error covariance Σ
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offline. When computing Σ, it is preferable to run simulations with demand and

supply parameters that match the “true” parameters as closely as possible to ensure

accuracy of the covariance matrix. This could be done when offline calibrated de-

mand and default values for supply are available. If they are not available offline,

an online estimation process for Σh is helpful, which could come from offline runs

with calibrated demand and supply for previous intervals. This will be a direction of

future work.

3.5.2 Enforcing H Matrix Structure with a H Mask

From the mean H matrix in Figure 3-7, it is obvious that only the diagonals should

be non-zero. However, the standard deviation of the off-diagonals indicates that each

sample of H matrix is likely to have non-zero off-diagonals. In light of this, we can

assume an H matrix structure–which we call H mask–to force these elements to be

zero. The procedure is to first identify a H mask, then apply the mask to update the

H matrix, which is to be used in the measurement equation.

Identifying Non-Zero H Elements with t-Test

In order to determine whether each element is significantly different from zero, we

define the null hypothesis as the element having a zero mean. We can use the Student’s

t-test for each element of the H matrix (although debatable, discussed later). Then

the test statistics are given by:

t(i,j) =
(
Hh,(i,j) − 0

)/( σh,(i,j)√
N − 1

)
for i = 1, ...,m, j = 1, ..., n (3.17)

where, N is the number of simulation runs with different seeds. Hh is the average

H matrix for those N runs, while σh is the sample standard deviation matrix calcu-

lated element-wise from N H matrices. Subscript (i, j) are the indices in an m × n

matrix. For the same example in the previous section, the t-stat matrix based on

Equation (3.17) yield the following heat maps in Figure 3-8, again for two different

perturbation sizes. Note the diagonal values over 50 are capped, in order for the
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off-diagonal values to be distinguishable from 0.

Figure 3-8: t-stats of each element in H matrix from 30 runs of simulation for two
perturbation size δ

From the figure we can conclude that diagonals are significantly different from

zero, mostly around 50. For off-diagonals, the largest value is 3.44, which has a

0.0018 p-value according to the t distribution with degree of freedom 29. However,

it is worth mentioning that using a t-test for every element is problematic, which is

called a multiple comparison problem. Assume that we have n true null hypotheses,

and we do multiple t-tests with α = 0.01. Then the probability of rejecting at least

one true null hypothesis is 1 − (1 − α)n. For our case in Figure 3-9, n = 64 gives

0.474 as the probability of rejecting a true null hypothesis. To mitigate the issue, the

Holm-Bonferroni method should be conducted.

Identifying Non-Zero H Elements with Holm-Bonferroni Method

The corresponding p-values for each element are exhibited in Figure 3-9. In Figure 3-

10, we plot the critical values according to the Holm-Bonferroni test with the ordered

p-values in the log scale on the y axis. It is obvious that the ninth smallest p-value

is greater than the critical value. Thus we only reject the null hypotheses for first 8

indices, which correspond to the diagonals.
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Figure 3-9: p-values of each element in H matrix from 30 runs of simulation for two
perturbation size δ

Figure 3-10: The Holm-Bonferroni test to detect H matrix for two perturbation size
δ

Applying H Matrix Mask

According to the Bonferroni test, we ensure that the diagonals are non-zero. Hence,

we define the H mask Hmask as an identity matrix, and use the following update rule:

H̃h = Hh ◦Hmask (3.18)

where, ◦ is the element-wise matrix product, also known as the Hadamard product

or Schur product.

Thus we use H̃h in our Kalman filter update procedure. This will significantly

increase the sparsity and reduce the noise in some H matrix elements. In our case

the off-diagonals are forced to be zeros.

74



In theory, H matrices in different intervals may have different H masks. However

in practice, a universal H mask maybe used because H masks for different intervals

may be difficult to obtain. The reason lies in the fact that it is difficult to keep

identical all prevailing simulation conditions and quantify stochasticity in a single

interval.

3.6 A Synthetic Case Study

In this case study, the aforementioned two approaches are applied on the synthetic

network in Figure 3-1: (1) incorporating measurement covariance due to simulation

stochasticity; (2) applying H mask to reduce noise. In our experiments, each approach

is conducted for one selected set of supply parameters.

3.6.1 Using Simulation Error Covariance Matrix

Data Generation

In this experiment, the parameters are segment capacities for the 8 segments. We

assume an autoregressive model with degree 5 (AR(5)) for each segment capacity and

generate the time-dependent capacities as the true parameters for DynaMIT. Note

that the generation is based on a set of historical values, which are time-invariant

default parameters that capture the mean of the simulation period. The AR(5) model

is on the deviations from the historicals. Then with a run of DynaMIT with the true

parameters, we obtain the sensor measurements, which are the surveillance data for

calibration. DynaMIT works as the real world in the data generation procedure.

Calibration Procedure

In our calibration procedure, DynaMIT is the simulation-based DTA to be calibrated.

The AR(5) model is assumed known to the calibration algorithm. The following

configurations are tested:

(1) Use the default values without online calibration
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(2) Use an identity matrix R = I for constrained extended Kalman filter (standard

deviation is 1 mph)

(3) Use an diagonal matrix R = 100I for constrained extended Kalman filter (stan-

dard deviation is 10 mph)

(4) Use R = Σ + I for constrained extended Kalman filter, where Σ is the error

covariance matrix from stochasticity analysis

(5) Use R = Σ + I for constrained extended Kalman filter, change the initial seed

for simulation-based DTA to test robustness

Results

The following results indicate an overall fit of speed in RMSNs (Equation (3.2)). Two

RMSNs with different initial seeds are presented.

Index Setting Speed RMSN
(1) no calibration, seed 1 35.6%
(2) R = I, Seed 1 67.3%
(3) R = 100I, Seed 1 57.3%
(4) R = Σ + I, Seed 1 17.9%
(5) R = Σ + I, Seed 2 18.9%

Table 3.6: Extended Kalman filtering result using Σh + Rh as measurement error
covariance for Seed 1 and 2

The results verified our analysis. The speed RMSN improves when we use Σh+Rh

as covariance. The improvement is observed for both two seeds, meaning that the

calibration algorithm is able calibrate the DTA system for different initial seeds. The

performance is verified in scatter plots in Figure 3-11 as well. In experiment (1) some

of the speeds are under estimated. While experiment (2) and (3) reported poorly

fitted speeds. Experiments (4) and (5) indicated that most of the high speeds are

fitted well. However, the speeds with low values were not fitted as well as those with

high values, which is probably because of the high simulation stochasticity during

transition between free flow and congestion. With high measurement stochasticity,

the calibration task is more difficult.
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(1) No calibration, Seed 1

(2) CEKF with R = I, Seed 1 (3) CEKF with R = 100I, Seed 1

(4) CEKF with R = Σ + I, Seed 1 (2) CEKF with R = Σ + I, Seed 2

Figure 3-11: Scatter plot for observed speeds vs estimated speeds
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3.6.2 Enforcing Gradient Structure

Now we present the experiments with the idea to enforce the gradient structure with

an H mask.

Data Generation

The parameters in this experiment are free flow speeds Vf for 8 segments. We follow

the same procedure as discussed in Section 3.6.1. We assume another AR process,

and obtain speed measurements as surveillance data for the subsequent calibration.

Calibration Procedure

In the calibration experiments, the idea of the H mask is applied. A benchmark for

comparison is the Limiting EKF, where an average gradient matrix is calculated offline

and used for all the intervals. The average gradient matrix is computed from gradient

matrices obtained from previous runs of online calibration, where the Constrained

Extended Kalman Filter with Finite Difference (FD-CEKF) is applied. We apply

both models individually and compare it with the case without calibration. The

following experiments are conducted:

(1) Use the default values without online calibration

(2) Use the computed gradient matrix from finite difference for online calibration

(3) Use the offline averaged gradient matrix for online calibration

(4) Use Hmask to enforce the gradient structure for computed gradient matrix

(5) Apply Hmask on the offline averaged gradient matrix for online calibration

Results

The speed RMSNs are presented in Table 3.7, corresponding to the 5 experiments

discussed above. The online calibration that directly uses computed gradient matrix

in (2) yields no improvement over the historical free flow parameters (1). Using
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Index Masked H Average H Speed RMSN
(1) no calibration 23.6%
(2) 23.7%
(3) X 21.6%
(4) X 17.7%
(5) X X 19.6%

Table 3.7: Extended Kalman filtering result using H mask filtered gradient

an averaged gradient in (3) decreased the RMSN by 9%, compared with (1). An

examination of the average gradient matrix indicates that the noise in the gradient

is reduced but not eliminated for the zero elements. This implies that reducing the

noise for the gradient will improve the calibration performance. Experiment (3) with

Hmask yields the lowest RMSN, improving (1) by 25%. This is because applying

the Hmask eliminates the noise for zero elements, thus making the gradient sparse

and the parameter-dependency accurate. Comparing (3) and (4), it is likely that the

small magnitude of noise in zero elements still restricts the accuracy of the gradient.

Hence, applying Hmask in (5) improves over (3). Surprisingly for (5), applying both

Hmask and averaged gradient yields worse result than applying Hmask alone. This

may be a result of the lack of an online update of the gradient, because in congestion

scenarios, the gradient elements can be significantly different from free flow scenarios.
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(2) FD-CEKF, 16:45 (3) CEKF with average gradient, 16:45 (4) FD-CEKF with Hmask, 16:45 (5) CEKF with average gradient and
Hmask, 16:45

(2) FD-CEKF, 18:25 (3) CEKF with average gradient, 18:25 (4) FD-CEKF with Hmask, 18:25 (5) CEKF with average gradient and
Hmask, 18:25

Figure 3-12: Scatter plot for observed speeds vs estimated speeds at time 16:45 and 18:25
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3.7 Conclusion

In this chapter, we presented the issue of simulation stochasticity with the measure-

ments of flow, speed and link travel time. Then we conducted an error analysis on

simulation stochasticity and its impact on gradient estimation. Based on the error

analysis, two solution approaches–quantifying simulated measurement covariance and

applying gradient structure–were proposed. Two synthetic case studies proved their

applicability and demonstrated improvements over existing approaches. There are

several major conclusions: (1) speed and link travel time measurements are more

prone to simulation stochasticity; (2) the stochasticity is likely to be present during

the transition between free flows and congestion; (3) the stochasticity can be miti-

gated by quantifying the error covariance in the Kalman filtering framework; (4) the

stochasticity introduces noise in the gradient estimation procedure, and enforcing a

sparse matrix can improve the gradient accuracy, hence yielding better calibration

results.

An additional challenge for the future work is how to separate the impact of supply

from demand so that we do not overfit parameters to the measurements. For example,

the speed reduction on a certain link implies increased average density. It may be

caused by demand increase or lane closure. When we just have speed data for this

link, we may not be able to identify the true cause. But if we know upstream and

downstream links are reporting normal speed measurements, then it is likely to be the

lane closure that caused the unusual speeds. Hence when both demand and supply

parameters are calibrated together, it is necessary to consider the cause of effects. For

this matter, it may also be beneficial to quantify the covariance between impact of

supply and demand parameters. It is worth noting that demand-supply calibration

is one important direction for future work.
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Chapter 4

Towards Large-Scale Networks:

Dynamic Bayesian Networks and

State Augmentation

In Chapter 2, we presented recent developments of the state space model for DTA

calibration. In this chapter, we first discuss the Markovian assumption in the state

space model and its drawbacks with a delayed system. Then, we integrate the state

space model into a general framework named Dynamic Bayesian Networks (DBNs).

Dynamic Bayesian Networks are directed graphical models that capture the genera-

tion process of time-series data (Murphy, 2002). In particular, we examine a family

of DBNs that overcome the Markovian assumption in the state space model. This

model family can be solved by the Kalman filter with a technique called state aug-

mentation. Finally, we present a synthetic case study on a toy network to illustrate

the improvement over the standard extended Kalman filter and conclude the chapter.

4.1 The Markovian Assumption

In this section, we discuss the role of the Markovian assumption in the state space

model using a Dynamic Bayesian Network (DBN) representation and illustrate the

drawbacks of this assumption in a time-delayed system such as traffic networks.
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We have presented the Extended Kalman filter and its application to online cali-

bration for DTA. The underlying State Space Model (sometimes called hidden Markov

model or Kalman filter model) is the focus of discussion in this chapter. For conve-

nience, we present the state space model again in Figure 4-1. The shaded nodes are

observed measurements and unshaded ones are latent state variables which cannot

be directly measured. Within the state space model, random variables are assumed

to be either discrete or continuous and Gaussian. In the DTA calibration literature,

almost all the state space formulations assume a continuous parameter space and

Gaussian errors. Thus, in this thesis we restrict our focus to continuous Gaussian

random variables for the state space model with a DBN representation.

x1 x2 x3 · · · xH

M 1 M 2 M 3 MH

Figure 4-1: State space model with measurements

From a Dynamic Bayesian Network (DBN) perspective, Figure 4-1 exhibits a

probabilistic directed graphical model structure that defines the factors of the joint

probability: the directed edges depict conditional probability with connected nodes

being random variables. Specifically,

f(x1:H ,M 1:H) = f(x1)f(M 1|x1)
H−1∏
i=1

f(xi+1|xi)f(M i+1|xi+1) (4.1)

Thus, a directed graph describes the generation of time-series data with condi-

tional probabilities. This representation easily depicts conditional dependencies. We

can intuitively find dependencies by checking the connectivity between nodes. For

example in Figure 4-1, x2 uniquely determines x3. In other words, conditioned on

84



x2, x1 and x3 are independent. Similarly, x1 does not affect M 2 given x2. This is

the Markovian/memoryless assumption in state space models. On the other hand,

it is worth mentioning that x1 and x3 are not independent, because they are both

correlated with x2.

Now we shed some light on the Kalman filtering algorithm that solves the state

space models. At step h, the prior of xh|h−1 is given by the transition equation from

xh−1, and the posterior estimator xh|h is updated from observing Mh. Then xh|h is

used as the prior of xh+1|h, and the process continues. In the Kalman filter solution

approach, previous states are not updated. This is helpful in the online setting,

because we only need to update the estimate of xh for each step. In other words, we

reduce complexity of the parameter space from x1:h to xh for each time slice h.

Although the Markovian assumption simplifies the inference task, it may be prob-

lematic when we have a delayed system. Consider the case that the i-th element of

latent variable xh–denoted by xh(i)–only has an impact on measurement Mh+1 in

time slice h+ 1. Then, an update of the latent variable xh(i) with standard Kalman

filtering techniques is impossible when we only know Mh. We illustrate the exam-

ple more intuitively with its corresponding DBN representation in Figure 4-2. Such

a representation conforms with the measurement equation in the state space model

exhibited in Equation (4.2) with q = 2. Noticeably the Markovian assumption no

longer holds, and the previous structure ignores the true diagonal relations.

x1 x2 x3 · · ·

· · ·

xH

M 1 M 2 M 3 MH

Figure 4-2: A DBN with measurement equation contradicting the Markovian assump-
tion
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Mh = Ah
hxh +Ah−1

h xh−1 + · · ·+Ah−q+1
h xh−q+1 + vh (4.2)

Similarly, the Markovian assumption may also fail when a state have dependencies

on states at 2 or more time slices earlier. For instance, x3 depends on x1, as suggested

in Equation (2.17), which is also rewritten here as Equation (4.3). Figure 4-3 shows

the corresponding structure in the DBN representation for p = 2.

x1 x2 x3 · · · xH

M 1 M 2 M 3 MH

Figure 4-3: A DBN with transition equation contradicting Markovian assumption

xh = F h−1
h xh−1 + F h−2

h xh−2 + · · ·+ F h−p
h xh−p +wh (4.3)

Now we work through an OD estimation example to illustrate the impact of vio-

lating the Markovian assumption.

4.2 OD Estimation Example Violating the Marko-

vian Assumption

In this section, we present an example for OD estimation. The true model is shown

in Figure 4-2, which violates the Markovian assumption. We now analyze the impact

of neglecting the relations in the true model by estimating OD flows with the model

in Figure 4-1.
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4.2.1 Toy road network example and basic assumptions

Figure 4-4 exhibits a toy road network and two OD pairs. s1 and s2 are two flow-

count sensors that report aggregated flow within each 5-minute time interval. The

objective is to infer OD flows in each time interval after measuring sensor flow counts.

Figure 4-4: A road network example and sensor placement that ensures no delay in
capturing the states

In this example, we make three assumptions:

(1) Each link takes 1 time interval to traverse;

(2) All vehicles will travel the same distance within each interval, meaning a sensor

either captures all or nothing from an OD pair in each interval;

(3) There is no measurement error in sensor flow counts.

Table 4.1 exhibits an example of the OD and sensor flows in two intervals. Note s1

only captures O1D in the same interval and s2 captures O2D. The OD flow inference

is instant: we can read off measurements as OD flows. We make an important

observation that the system has no time-delay and the state space model in Figure 4-

1 is accurate.

Now we introduce delay in the time at which measurements capture the state

vector: we change the sensor placement scheme to the one shown in Figure 4-5. The

measurements are listed in Table 4.2. The key change is that now s3 captures O1D

and O2D in the previous interval. This introduces correlation between states and
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Table 4.1: Example OD and sensor flows for toy network

t=1 t=2
O1D 30 24
O2D 20 18
s1 30 24
s2 20 18

measurements across time intervals, making the Markovian assumption invalid. We

can still read off s2 to estimate O2D, but we have no information about O1D at t = 1

unless we also know s3 at t = 2.

Figure 4-5: A sensor placement scheme with lag between OD and flow counts

Table 4.2: Example OD and sensor flows for toy network

t=1 t=2
O1D ? ?
O2D 20 18
s2 20 18
s3 0 50

4.2.2 Iterations of the Kalman filter with the toy example

In the remainder of this section, several iterations of the Kalman filter are presented.

The settings are listed in Equation (4.4). Based on the Kalman filter update rule,

the first iteration gives us Equation (4.5) at t = 1.
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xh =Fxh−1 +w

Mh =Axh + v

x =

O1D

O2D

;M =

s2
s3


x0|0 =

0

0

 ;F =

0.8 0

0 0.9

 ;A =

0 1

0 0


P 0|0 =

0 0

0 0

 ;Q =

10 0

0 10

 ;R =

ε 0

0 ε

 , ε� 1

(4.4)

x1|0 = Fx0|0 =

0

0


P 1|0 = FP 0|0F

> +Q =

10 0

0 10


S1 = AP 1|0A

> +R =

10 0

0 ε


K1 = P 1|0A

>S−11 =

0 0

1 0


x1|1 = x1|0 +K1(M1 −Ax1|0) =

 0

20


P 1|1 = P 1|0 −K1AP 1|0 =

10 0

0 ε



(4.5)

From the first iteration, it is obvious that O1D cannot be estimated from the

measurement update. Hence, based on the above calculated results, we present the

second iteration. The updates for t = 2 are in Equations (4.6).
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x2|1 = Fx1|1 =

 0

18


P 2|1 = FP 1|1F

> +Q =

16.4 0

0 10


S2 = AP 2|1A

> +R =

10 0

0 ε


K2 = P 2|1A

>S−12 =

0 0

1 0


x2|2 = x2|1 +K2(M2 −Ax2|1) =

 0

18


P 2|2 = P 2|1 −K2AP 2|1 =

16.4 0

0 ε



(4.6)

As expected, O1D was not updated at t = 2. In addition, we have two major

observations: 1) the estimate of O1D only relies on the transition model. Even in

our case where the transition model is perfect, a biased initial point x0 = 0 and no

measurement update result in a biased estimate; 2) the posterior variance of O1D in

P h|h does not decrease with t, because the error from transition model accumulates

when there is no update from measurements.

We conclude this section with the claim that failing to model measurement correla-

tion across intervals could lead to no update for hidden states. We also demonstrated

the growth of the estimated variance. In the following sections, the state augmenta-

tion technique will be presented and applied to the same example.

4.3 Solution Approach

4.3.1 The State Augmentation Technique

The transition and measurement equation in a delayed traffic system (Equations (4.2)

and (4.3)) presented in Okutani & Stephanedes (1984); Ashok & Ben-Akiva (1993)

will lead to the model shown in Figure 4-2. It contradicts the Markovian assumption
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and thus, cannot be solved directly by Kalman filtering techniques. Fortunately, this

is only true if we define parameters xh as the state vector. According to (Ashok

& Ben-Akiva, 1993), we could augment the state to include parameters at different

time slices. In DBN terms, we create a super latent node for adjacent time slices,

for example in Figure 4-6. The degree of augmentation is defined as the number of

intervals to include when constructing the super node. The degree of augmentation

is the maximum degree in the transition and measurement equation. Thus, the ad-

ditional edges contradicting the Markovian assumption are absorbed into the edges

between the super nodes. This would enforce that there is no edge between super

latent nodes and measurements at different time slices. For instance, the relation

between x2 and M 3 is represented in edge {x2,x3} → M 3; the transition between

x1 and x3 is captured in edge {x1,x2} → {x2,x3}. The resulting model captures

both structures in Figures 4-2 and 4-3 are shown in Figure 4-6.

0,x1 x1,x2 x2,x3 · · · xH−1,xH

M 1 M 2 M 3 MH

Figure 4-6: A state space model with augmented states, mitigating the issue posed
in Figure 4-2 and Figure 4-3

Corresponding to the augmentation of states, the measurement and transition

equation become Equation (4.7), according to (Ashok, 1996).

X h = Φh−1X h−1 +W h

Mh = AhX h + vh

(4.7)

where, the degree of augmentation is r = max{p, q}. Assuming n is the length of

xh and m is the length of Mh, we define the following quantities:
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Augmented state:

X h =


xh

xh−1
...

xh−r+1

 (4.8)

Transition matrix:

Φh =

 Fh
I(r−1)n×(r−1)n 0(r−1)n×n

 (4.9)

where,

Fh =
[
F h−1
h F h−2

h · · · F h−r
h

]
n×rn

if p < r, F h−j
h = 0n×n,∀j = p+ 1, ..., r

Ah =
[
Ah
h,A

h−1
h , · · · ,Ah−r+1

h

]
m×rn

W h =

 wh

0(r−1)×n


(4.10)

We have some critical comments: (1) with augmentation of the states, the dimen-

sion of covariance matrix P is now r × r times greater, making the matrix multi-

plication more cumbersome. Hence a more computationally complex Kalman filter

iteration may be disadvantageous to real-time deployment. (2) At each step, parame-

ters in previous intervals are adjusted along with current ones. The relation between

these parameters and measurements are revealed in the augmented Jacobian Ah in

the measurement equation. However, obtaining them needs more effort. When using

finite difference, the number of required runs for Ah is O(nr).
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4.3.2 State Augmentation on the OD Estimation Example

With the state augmentation technique, we revisit the OD estimation problem. The

updated settings are listed in Equation (4.11).

X h =FX h−1 +W

Mh =AX h + v

X h =

 xh

xh−1

;M =

s2
s3



X 0|0 =


0

0

0

0

 ;F =


0.8 0 0 0

0 0.9 0 0

1 0 0 0

0 1 0 0

 ;A =

0 1 0 0

0 0 1 1



P 0|0 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ;Q =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ;R =

ε 0

0 ε

 , ε� 1

(4.11)

The outcome of the first iteration is as follows:

X 1|0 = FX 0|0 =


0

0

0

0

 , P 1|0 = FP 0|0F> +Q =


10 0 0 0

0 10 0 0

0 0 0 0

0 0 0 0



S1 = AP 1|0A
> +R =

10 0

0 ε

 ,K1 = P 1|0A
>S−11 =


0 0

1 0

0 0

0 0



X 1|1 = X 1|0 +K1(M1 −AX 1|0) =


0

20

0

0

 , P 1|1 = P 1|0 −K1AP 1|0 =


10 0 0 0

0 ε 0 0

0 0 0 0

0 0 0 0



(4.12)

And a second iteration gives:
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X 2|1 = FX 1|1 =


0

18

0

20

 , P 2|1 = FP 1|1F> +Q =


16.4 0 8 0

0 10 0 0

0 0 10 0

0 8 0 ε



S2 = AP 2|1A
> +R =

10 0

0 10

 , K2 = P 2|1A
>S−12 =


0 0.8

1 0

0 1

0 0



X 2|2 = X 2|1 +K2(M2 −AX 2|1) =


24

18

30

20

 , P 2|2 = P 2|1 −K2AP 2|1 =


10 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



(4.13)

With the result X 2|2, it can be concluded that the true OD values for t = 1 and

t = 2 are recovered, although the O2D = 24 at t = 2 is not directly from M 3 but due

to the perfect transition equation and perfect estimates for t = 1.

Thus, we demonstrate the power of state augmentation with a simple network.

When the sensor placement is configured such that not all OD flows are captured

by sensors in the same interval, state augmentation may benefit the OD estimation

problem by identifying sensor-OD flow relations across intervals. For this toy network,

solving the standard state space model cannot correctly estimate some OD values,

while state augmentation gives exact estimates for those values.

4.4 Synthetic Case Study

4.4.1 Synthetic Network and Data Generation

We demonstrate the performance of state augmentation with an online OD estimation

example on the toy network shown in Figure 3-1. However, the supply parameters in

Table 3.1 need to be modified to make the augmented model valid. Under free flow

conditions in Table 3.1, the main stream OD travel time is 54 and 60 seconds for
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two routes. Thus, 80% of the traffic flow will be captured in a 5-minute simulation

interval. We propose the following network specifications in Table 4.3 by reducing the

free flow speeds. After the reduction, the main stream OD travel time is reduced to 75

and 84 seconds, which is around 40% increase. With this change, the mainstream OD

travel time will exceed 300 seconds after 30 minutes simulation under the moderate

demand in Table 3.2. In such case, the congestion will make the augmented model

valid. The network topology is also presented here again for convenience in Figure 4-7.

Table 4.3: Specifications of each segment on the toy network with reduced free flow
speeds

Segment ID 1 2 3 4 5 6 7 8
Length (meter) 297.5 553.8 493.1 351.2 408.6 666.7 377.3 183.0

Free flow speed (mph) 50 50 50 50 20 50 50 50
Minimum travel time (second) 13.31 24.8 22.1 15.7 45.7 29.8 16.9 8.19

Figure 4-7: Toy road network, traffic going to left

Figure 4-8: Topology of segments in the same color as Figure 4-9
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Figure 4-9: Link travel times on the toy network with the modified supply parameters

Figure 4-9 presents the link travel times obtained by assigning demand in Table 3.2

with the reduced free flow speeds. It is evident that the congestion from Segment 4

propagates backward to Segment 8 and 3, and then affects Segments 6, 7 and 2 and

finally 1. The oscillation in Segment 6, 7 and 2 may be because of stop and go traffic

conditions and may be affected by the simulator stochasticity. But it is certain that

the travel time of Segment 1 will exceed 5 minutes when congestion is present. In such

cases, the traffic flow only passes sensors on Segment 2 in the next interval. It takes

over 900 seconds for congested flows to reach Segment 5. Thus, we have constructed

the test scenario that violates the Markovian assumption.

We briefly summarize the data generation process. The parameters are time-

dependent OD flows. The surveillance data are flow counts in every 5 minutes for

the simulation period 14:00-19:00. Similar to the example in Section 3.6.1, we treat

DynaMIT as the real world that generates the surveillance data.
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4.4.2 Calibration Procedure

Based on the synthetic data, we perform online calibration with the following settings

of the Kalman filter. Since the true time-dependent demand is known, we can obtain

a true AR process. According to the Akaike information criterion (AIC), the best

model was found be AR(5) which is hereafter used for the transition equation. For

the gradient estimation, finite difference is used. As for the solution algorithm, the

Constrained Extended Kalman Filter is applied. To compare different degrees of state

augmentation, the following three models are considered:

(1) CEKF(1): CEKF with original state space model, AR(5) transition model

(2) CEKF(2): CEKF with 2nd-order augmented state space model, AR(5) transition

model

(3) CEKF(5): CEKF with 5th-order augmented state space model, AR(5) transition

model

We have a comment on the implementation of the AR model. As discussed in

Chapter 2, when applying the Kalman filtering technique with AR models, the con-

vention is to use the approximation of state augmentation. It is essentially keeping

the transition model but not augmenting the state for measurement update. Thus,

it is possible to augment the state to a degree that is lower than the transition AR

degree.

4.4.3 Results

We present the RMSN results in the following table:
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Table 4.4: Flow RMSN for state estimation and predictions for 15:00-19:00

Experiment
Estimation

RMSN

Prediction RMSN

Step 1 Step 2 Step 3

CEKF(1) 13.5% 21.0% 26.2% 34.7%

CEKF(2) 9.8% 18.8% 24.2% 31.9%

CEKF(5) 10.8% 15.4% 19.3% 26.6%

Section 4.4.3 illustrates the performance of the three models with the same AR(5)

transition equation. For state estimation, CEKF(2) and CEKF(5) have smaller er-

rors than CEKF(1), while CEKF(2) has the best estimation accuracy. However, for

prediction performance, CEKF(5) outperforms CEKF(2), which in turn outperforms

CEKF(1). This is probably because the CEKF(5) model estimates OD flows more

accurately in the congestion scenario, after 16:00 (see Figure 4-9).

Figure 4-10 presents the scatter plots for simulation period 15:00-19:00 where

points closer to the diagonal indicate a better fit. For the state estimation result in the

first row, points in CEKF(2) (middle) and CEKF(5) (right) are closer to the diagonal

line than CEKF(1). For prediction results in the second to fourth row, CEKF(1) has

more points below the diagonal, which means it tends to underestimate the flow. This

is reasonable because CEKF(1) is “myopic” and can only see the OD flows’ influence

on the same interval. In congestion scenarios, the estimated gradient is close to zero,

because perturbing the input OD flows does not change the saturated flow rate. Thus,

CEKF(1) does not increase the flow because it is irrelevant. However, CEKF(5) can

capture the long-term affect of changing OD flows. Specifically, after perturbing

OD flows, although the first-order gradient is zero, the higher order gradients still

capture the impact of the perturbation. Thus, CEKF(5) will utilize the higher order

gradients for OD calibration. This results in the more balanced fit in the prediction

scatter plots.
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Figure 4-10: Scatter plot for estimated/predicted vs observed flow counts: left:
CEKF(1), middle: CEKF(2), right: CEKF(5)
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4.5 Conclusion

In this chapter, we discussed the drawbacks of the original state space model and

showed with a simple example that in some situations, certain states are not iden-

tifiable. We then presented the state augmentation technique within the Dynamic

Bayesian Network framework. With the augmented state space model, the Kalman

filter is capable of updating parameters in previous intervals, thus having a “long-

term” view. Finally, we presented a synthetic case study in a scenario with congestion

and demonstrated the power of the augmented state space model. A case study with

real world data will be discussed in Chapter 6.
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Chapter 5

Towards Real-Time Performance:

Accelerating Gradient Estimation

In Chapter 4, we presented the state augmentation technique to account for the

delayed observation of hidden states. Employing state augmentation will increase the

dimension of the state vector and consequently, the gradient matrix (H matrix, or

system Jacobian). This generally means that the gradient estimation process will be

more time-consuming which is a challenge for real-time applications. For example,

each 5-minute interval in the case study in Chapter 6 needs around 30 minutes of

computational time, even without state augmentation on a 20 core server. A large

proportion of the computational time consumed by online calibration is spent on

gradient estimation (finite difference is applied to obtain the H matrix). Thus, direct

application of the FD-EKF and state augmentation to real-time DTA systems is

impossible. In this chapter, we attempt to accelerate the gradient estimation process

by finding more computationally efficient approaches.

The structure of this chapter is as follows. First, based on the sparse structure

of the gradient matrices, a Partitioned Simultaneous Perturbation (PSP) approach

is proposed to approximate Finite Difference (FD), based on Simultaneous Perturba-

tion(SP). Then, a time-series model for the H matrices in different intervals is pro-

posed, with the intention of reducing total number of runs for gradient estimation.

Following that, a non-parametric approach based on K-Nearest-Neighbors (KNN) is

101



discussed. Finally the results are presented and commented upon.

5.1 Partitioned Simultaneous Perturbation

In case of the simultaneous perturbation approach introduced in Section 2.2.2, the

inaccurate gradient estimation comes from the fact that perturbations on different

parameters will have impacts on the same measurement. This will result in systematic

overestimation or underestimation. For instance, if perturbing two parameters cancels

out their effects, the obtained gradient will be zero for both of them. Hence it is

generally better to perturb two parameters simultaneously only if they both do not

affect the same set of sensors.

A simple idea is to divide different parameters into partitions such that in each

partition, any two parameters are not captured by any common sensors. Its feasibility,

especially on large networks, can be intuitively understood with the following example.

We assume a large road network with a large number of OD pairs and segments. The

OD pairs within the west would not be captured by the surveillance data on the east

and vice versa. The same conclusion holds for segment supply parameters, as they will

only affect local traffic conditions. Hence, we can group one parameter in the west and

another in the east into the same partition, followed by simultaneous perturbation.

This partitioning guarantees that no sensors are affected by perturbations from other

parameters in the same partition, and thus, the influence on each sensor is neither

exaggerated nor canceled.

5.2 Related Work of Gradient Estimation

There has been a lot of research in gradient estimation. As summarized in Fu (2015,

2002), there are several methods to obtain a gradient matrix. The author divided the

approaches for stochastic gradient estimation into two categories: indirect and direct.

An indirect estimator obtains an approximation of the true gradient value, and it

relies on only function evaluations of the system. The direct estimation approach
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attempts to obtain the true gradient with the help of derivations of the stochasticity

for each case-specific problem. In our online calibration framework, traffic simulators

are treated as a black-box and the mapping of inputs and measurements cannot be

derived in closed-form. Thus, the direct approach is not applicable to the gradient

estimation in DTA calibration. Hence, the focus is on the indirect estimators. As

mentioned in Fu (2015) and also reviewed in Section 2.2.2, the two major approaches

for indirect gradient estimation are finite difference and simultaneous perturbation.

As mentioned in the beginning of this section, finite difference has great computa-

tional complexity. While the simultaneous perturbation approach is more efficient, its

drawback is that the resulting gradient matrix has only rank 1. Thus, it is extremely

noisy and significantly less accurate when compared to finite difference. In sum-

mary, for gradient estimation, simultaneous perturbation and finite difference are at

two extremes of the trade-off between computational complexity and approximation

accuracy. Thus, it is necessary to enrich the family of methods for indirect gradi-

ent estimation with other approaches that are both accurate and computationally

tractable.

While the estimation of sparse Jacobian was discussed thoroughly in Coleman

& Moré (1983), the use of the partitioned simultaneous perturbation (PSP) idea in

DTA calibration was first proposed by Huang (2010). According to the author’s

case study, PSP-EKF was reported to be 10 times faster than FD-EKF although, as

expected, the calibration result is less accurate. A heuristic approach is described

to conduct the partitioning based on previous estimated gradients. However, the

author did not consider its generalization for all parameters (both OD and supply

parameters), primarily due to the difficulty in identifying a correct structure for the

true gradient matrix. Moreover, the work also lacked an analysis of the PSP and

differences from the FD. In this section, we address these undiscussed issues via a

thorough development of the PSP approach for gradient estimation.
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5.2.1 Problem Definition

First and foremost, it is beneficial to summarize the composition of the gradient

matrix (H matrix). Each H matrix has m rows corresponding to m measurements and

n columns for n parameters. These dimensions are the same across time intervals.

The finite difference (FD) approach perturbs each parameter twice to obtain one

column of H.

The partitioned simultaneous perturbation is an approach for the gradient esti-

mation problem. It aims to approximate finite difference with the least computations

possible, assuming knowledge of the gradient structure. PSP comprises 3 proce-

dures/subproblems: (1) gradient structure identification; (2) parameter partitioning;

(3) simultaneous perturbation for gradient estimation. We define each problem as

follows.

(1) Gradient structure identification: obtain the incidence matrix H inc to iden-

tify the sparse structure of the gradient matrix.

(2) Parameter partitioning: divide n parameters into minimum p partitions such

that no two parameters in the same partition relate to any same measurements.

The parameters in these p partitions should be mutually exclusive and collectively

exhaustive.

(3) Simultaneous perturbation for gradient estimation: for each partition,

perturb all belonging parameters in two opposite directions and calculate the

difference in measurements to form each column of a compressed matrix C of

dimension m× p.

Now we analyze each problem and discuss solution approaches in the following

section.
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5.3 Solution Approaches

5.3.1 Gradient Structure Identification

The term structure in this context refers to the locations of zeros and non-zeros in

the gradient matrix. The gradient structure is necessary for the partitioning method

to determine which parameters can be grouped together. An incidence matrix H inc

is a representation for the gradient structure. H inc,(i,j) is 1 if measurement i and

parameter j is related and 0 if not. An incidence matrix is obtained from:

H inc,(i,j) =

1 if H(i,j) 6= 0

0 if H(i,j) = 0

(5.1)

One may ask about the difference between the gradient incidence matrix H inc

and the H mask Hmask in Section 3.5.2 and eq. (3.18). Here, we claim a subtle

but clear distinction between the H inc and Hmask. Hmask indicates the structure of

the expectation of gradient, in which case, elements in Hmask will be 0 only if they

capture pure noise from simulation stochasticity. On the other hand, H inc represents

the structure of all possible gradients, even if they only contain noise. In other words,

H inc represents the least sparse case during the calibration period so as to separate

the impact of parameters on the same sensor. Thus, H inc should be denser than

Hmask. Using the sparser Hmask for partitioning neglects the noise in gradients,

which yields less partitions but more chance that parameters will impact the same

measurement. So it is generally preferable to use H inc.

There are two general comments about the gradient structure. First, the parti-

tioning relies on the sparse nature of the gradient. More sparsity means less shared

measurements among parameters, thus preferably resulting in less partitions. Second,

the gradient structure may change across intervals. Hence, if we assume a gradient

structure beforehand, it must cover all possible structures across all intervals. In

other words, the overall H inc should be the result of OR operation of H inc,h for all
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possible interval h. In such a case, the partitioning needs to be done only once.

5.3.2 Parameter Partitioning

Given the gradient incidence matrix, we are ready to perform the partitioning. While

the task is simply grouping non-conflicting parameters, it may not be so simple as

it seems. In this discussion, we first reduce the issue to a graph coloring problem,

followed by a heuristic algorithm for the graph coloring. Then we extend the problem

to non-sparse cases where the non-zero gradients are affected by noise.

Graph Coloring Problem

First we reduce the partitioning problem to a graph coloring problem. We recall

that each column of H inc is the impact of each parameter on all the measurements.

We want to group two parameters that do not affect the same sensor. In other

words, any two 1s in the same row disqualifies grouping of the two corresponding

parameters. The term conflict is used to describe the fact that two parameters have

gradient values with any same sensor. We call these rows conflicting for a given pair

of parameters. In a graphical representation, we denote the parameters as nodes, and

each pair of nodes that has conflicting rows are connected by edges. In this regard,

the partitioning problem is equivalent to finding minimum colors for all the nodes

such that no two connected nodes have the same color.

For example, Figure 5-1 presents a gradient incidence matrix, and the correspond-

ing graph representation. The first row in H inc shows that Node 1, 2 and 6 are

connected, thus must be assigned with different colors. In this particular example, 3

partitions mean the number of finite difference calculations are reduced from 6 to 3.

There are two major comments about the graph coloring problem, according to

Coleman & Moré (1983). First, finding minimum number of colors is NP-hard. Sec-

ond, there are numerous algorithms that try to find the optimal coloring with heuris-

tics. However, there are cases where any algorithm will perform poorly.
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H inc =


1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1


Figure 5-1: A gradient incidence matrix and its corresponding optimal graph with 3
colors

Sequential Graph Coloring Algorithm

Fascinating as the graph coloring problem is, our focus in this thesis is not inventing

an algorithm that performs well. Hence, here we present a sequential graph coloring

algorithm from Coleman & Moré (1983) that does not guarantee optimality, but has

been widely used and analyzed.

Algorithm 2 Sequential Graph Coloring

v1, v2, ..., vn are n nodes in the graph;
p = 0;
for k = 1 to n do

for i = 1 to p+ 1 do
if connected nodes of vk not assigned Color i then

Break;
end if

end for
Assign Color i to vk;
if i > p then

p← p+ 1;
end if

end for

The resulting p from the algorithm will be the number of colors. It is a greedy

algorithm, and literature has reported the performance depends on the ordering of

nodes (k loop in Algorithm 2). According to Coleman & Moré (1983), there exists

an ordering of nodes such that the sequential graph coloring method can obtain the

optimum.

In our implementation, we perform the partitioning job offline. Specifically, we
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run the sequential graph coloring algorithm with multiple random ordering of the

nodes. In this way we record the minimum number of colors and the corresponding

color assignment used.

Condensing Sparse Gradient

Now we present formulations that describe the gradient condensing process. Assume

the graph color assignments are in an n×p matrix D such that D is also an incidence

matrix: the jth row indicates the color assignment of parameter j, and the kth column

Dk indicates all the parameters with color k. Since one parameter cannot be assigned

to multiple colors, each row would have exactly one element with value 1. Recall the

gradient H is m× n. The condensed gradient is given by:

H̃ = HD (5.2)

Since we ensured the partitioning process, the condensation is lossless.

Inflating Condensed Gradient

Similarly, we present the formulation that the Sparse gradient H could be recovered

without loss from condensed gradient H̃ with the help of gradient incidence matrix

H inc:

H =
(
H̃D>

)
◦H inc (5.3)

where, ◦ is the element-wise product.

5.3.3 Simultaneous Perturbation for Gradient Estimation

Thus our condensed gradient H̃ can be obtained from simultaneous perturbations.

The perturbations yield:
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H̃k =
gh(x̂h|h−1 + δk)− gh(x̂h|h−1 − δk)

2δk
(5.4)

δk = δkDk ∀k = 1, 2, ..., p (5.5)

H =
(
H̃D>

)
◦H inc (5.6)

where, δk is the perturbation size for all parameters in the same partition. Dk is

the kth column of color assignment D such that only parameter in partition k have

non-zero values δk.

Without loss of generality, a perturbation size for each parameter in the vector δ

can be achieved by:

H̃k = gh(x̂h|h−1 + δk)− gh(x̂h|h−1 − δk) (5.7)

δk = δ ◦Dk ∀k = 1, 2, ..., p (5.8)

H =
(
H̃D>

)
◦H inc ◦

[
1

2δ
,

1

2δ
, ...,

1

2δ

]>
(5.9)

where,
[

1
2δ
, 1
2δ
, ..., 1

2δ

]>
is a m× n matrix.

So far, we have successfully introduced the steps to perform the partitioned simul-

taneous perturbation and discussed the existence and reliability of the sparse gradient

incidence matrix H inc. However, the reduction of parameter number n to p may not

be significant. In the next section, we present a real scenario to demonstrate the

reduction rate of the procedure.

5.4 Performance on a Large-Scale Network

5.4.1 Test Network

In this section, we conduct an experiment to demonstrate the performance of PSP

using DynaMIT on the Singapore Expressway network, displayed in Figure 5-2. The
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following figure illustrates the road network topology. It has 4121 OD pairs and 3906

segments.

Figure 5-2: Singapore expressway network

5.4.2 Obtaining Gradient Incidence Matrix

We follow the same procedure as mentioned in Section 5.3 with the focus on gradient

structure identification. To obtain a universal gradient incidence matrix throughout

the whole simulation period, we run the existing scenario with FD-EKF first and

record all the H matrices. Note this procedure may be much longer than real-time,

but it is acceptable since this needs only once. As mentioned before, the incidence

matrix is the OR operation for all the H matrices obtained, for maximum coverage.

5.4.3 Calibration Accuracy and Computational Performance

To compare the accuracy and computation time, we run the calibration with PSP-

EKF for the same scenario as we conducted FD-EKF. We run the simulation for 7-

10AM, with 5 minute for each interval on the Singapore expressway network. We use

real flow count data from the Land Transport Authority (LTA) for this demonstration.

To conduct a fair comparison of the performance of PSP-EKF and FD-EKF,

we need to control all other sources of difference, including default values of supply
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parameters, initial random seed, simulation period, etc. However, fixing the initial

random seed does not necessarily mean the random number sequence will be the

same. It is possible that a small disturbance in the calibration result (either demand

or flow) will change the random sequence afterwards. Despite these uncertainties in

simulation, the gradient matrices obtained by PSP should be close to those by FD

and consequently, the overall calibration errors should be similar.

Accuracy

In response to the expectations, we view the accuracy of PSP approach in two aspects:

(1) the PSP approximation to FD; (2) the overall calibration results.

The simulation results show that for the first 10 intervals, the gradient estimation

from PSP is identical to that from FD. However, for later intervals, as the number of

unequal elements increases, so does the magnitude of difference.

In terms of calibration accuracy, Table 5.1 indicates that the performance is similar

for both methods.

Table 5.1: Calibration accuracy comparison for FD-CEKF and PSP-CEKF

Method
Estimation

RMSN
Prediction RMSN

1 step 2 step 3 step
No calibration 59.7% 59.7% 59.7% 59.7%

FD-CEKF 32.1% 34.0% 36.3% 38.3%
PSP-CEKF 32.9% 34.7% 37.0% 39.0%

Figure 5-3 shows the PSP and FD calibration results interval by interval. Their

performance is very similar, despite the uncertainty of random seeds in simulation

and imperfect gradient estimation. This concludes that the PSP method to estimate

the gradient matrix approximates the FD well in the application of the Kalman filter.

Computation Complexity

For the traditional central finite difference, we need 4121 pairs of simulation to esti-

mate the gradient in each interval. With the PSP approach, we managed to reduce
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Figure 5-3: RMSN by intervals for FD-CEKF and PSP-CEKF
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this to 438 pairs. The computation time is presented in Table 5.2. Note the simulation

is run on a server with 40 cores.

Table 5.2: Compuation time comparison for FD-CEKF and PSP-CEKF iterations

Estimation
method

# Parameter
groups

Calibration time for interval (minutes)
6:00-6:05 7:00-7:05 8:00-8:05 9:00-9:05 Average

FD 4121 12.2 22.3 32.6 48.3 28.8
PSP 438 2.5 3.9 5.3 7.2 4.7

In summary, we make two conclusions. In terms of accuracy, the PSP approach

attains a similar accuracy as FD. In terms of computational complexity, the PSP

reduces significantly the number of computations needed by FD, with the extent of

reduction depending on the sparsity of the gradient structure.

5.5 Practical Considerations for Gradients with Flow

Counts vs OD

5.5.1 Random Order of Coloring

As mentioned in the graph coloring algorithm, the order of parameters affects the

optimality of the partitioning. So a random ordering may be helpful. Here we demon-

strate another benefit of random ordering in terms of reducing unobservable common

impacts from system ordering.

The partitioning is based on avoiding common impacts on sensors. However,

unobservable common impacts may also affect the gradient accuracy. As an example,

Figure 5-4 presents a network with 3 OD pairs. It is obvious that these OD pairs affect

different sensors. According to the PSP algorithm, they can be in the same partition.

However, when we perturb them at the same time, the link without the sensor will

be affected by all perturbations. For instance, if we increase the demand of all OD

pairs by 30 vehicles each, the demand of the shared link increases by 90 vehicles! In

such cases, unexpected congestion may occur. Thus, the simultaneous perturbations

may lead to unexpected change in traffic status due to the large perturbation due to
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aggregation of small individual perturbations.

Figure 5-4: Three OD pairs sharing the same link but not sensors (in black rectangles)

This issue is more likely to happen if the OD pairs are specified in order as opposed

to being random, because OD pairs generated systematically usually either start from

the same origin or end with the same destination. This again necessitates the usage

of a random order for partitioning. Figures 5-5 and 5-6 presents the heat map of

PSP gradient differences from FD, for both cases. The matrix in the former case is

very sparse, as seen from the little dots in the figure. But the matrix for the latter

is strictly a zero matrix. The presented interval is 15 minutes after simulation starts.

With random ordering, the PSP gradient is identical to the FD gradient.
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Figure 5-5: PSP gradient difference with FD gradient estimation, original ordering

Figure 5-6: PSP gradient difference from FD gradient estimation, random ordering
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5.5.2 Gradient Structure for Flow Counts vs ODs

For the issue mentioned previously, there is a remedy for flow counts vs ODs. From

the simulator we can generate the path sets for all OD pairs. Thus, it is possible to

record all the links each OD pair could traverse and construct an incidence matrix

for links vs OD pairs. Then based on the incidence matrix, we can follow the same

procedure and partition the OD pairs.

One important comment is that using the link incidence matrix is likely to result

in more partitions. This is because we consider any two OD pairs sharing the same

link as conflicting, while they may not affect the link within the same interval. Thus,

such a dense incidence matrix will likely yield unnecessary partitions. For the case of

Singapore expressway network with 4121 OD pairs, the best coloring result is 2370

partitions, which comes from 30 runs of random ordering. Compared with 438 in

Table 5.2, it is not advisable to apply this idea directly to the PSP approach.

5.5.3 A Universal Gradient Structure

We have shown that the link incidence matrix is not a good idea for PSP. Next we

look into how the path sets may be helpful for a universal gradient structure.

The assumed gradient structure relies on previous runs of calibration with FD. In

our experiment, we handle this with an OR operation for all the available gradients

that were calculated offline. However, we cannot guarantee the gradients are gen-

eralizable for all cases. In addition, it is unacceptable to run FD for each scenario

whenever the traffic state changes. Thus, it is best to identify a gradient structure

that is universal to all traffic state scenarios.

For the gradient of flow counts with respect to ODs, good news is that the gradient

structure obtained with an empty network covers the case for congested networks.

Given fixed supply parameters, all traffic demand scenarios will yield travel times no

less than empty networks. Thus, compared with an empty network, perturbations

based on a fully-loaded network are captured by a small number of sensors. Once

a gradient incidence matrix is obtained for the empty network, the gradient will
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only be more sparse for following intervals. This feature satisfies our need for the

universal gradient perfectly, however, on one condition: all paths will be chosen when

obtaining the empty structure in simulation. The gradient from an empty network

is not universal when all drivers only choose a particular route in case of congestion.

Hence, checking if all the paths are traversed is necessary to claim a gradient structure

is indeed universal.

We propose the following procedure to check for a universal gradient structure.

For each OD pair, we claim a path is traversed if any of its unique subpath is traversed.

A subpath of a path is defined unique if and only if it is not in any other paths for the

same OD pair. If all the paths for an OD are traversed, the corresponding column

of the gradient is universal. There is one exception: when the traversed part of two

paths is the same, we treat both paths as traversed since within one interval, the

traffic flows have not bifurcated yet.

With this approach, we can calculate the percentage of route choice coverage. The

result we got for Singapore expressways is 76.1%. Which means the coverage is not

exhaustive, but decent enough for real applications. Further research should continue

to increase the coverage for OD estimation in order to obtain a universal gradient

structure.

5.6 Conclusion

We close this chapter with the following comments. We investigated a gradient estima-

tion method named partitioned simultaneous perturbation. It is an existing method,

but seldom used in DTA calibration context. The computational performance of this

method is superior over the traditional finite difference. To employ this method, a

predefined sparse gradient structure is necessary.
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Chapter 6

Case Study

In this chapter, we present a case study to demonstrate the performance of the solution

approaches in Chapters 4 and 5. Compared with the synthetic case studies under full

control, real case studies usually suffer from various sources of uncertainty. The

objective is to apply the proposed approaches to a real-world scenario and report the

performance under uncertainty. In such a case, practical considerations to mitigate

the uncertainty are extremely useful as guidelines for similar applications in the real

world.

This chapter is structured as follows: first the data source and the Singapore

expressway network is briefly introduced. Second, the preparations and calibration

settings are summarized. Third, we conduct the experiments with the proposed

solution approaches in this thesis and present the results along with discussions.

Finally, we draw conclusions for this case study.

6.1 Data Description

6.1.1 Singapore Expressway Network

The Singapore expressway network is a large-scale city-wide urban network shown in

Figure 6-1 (dark orange). The corresponding representation of the network used in

DynaMIT is shown in Figure 6-2. It includes all the expressways and some selected
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arterials. The network consists of 939 nodes, 1157 links and 3906 segments. There are

4121 origin destination (OD) pairs on the network, where on-ramps serve as origin

nodes and off-ramps serve as destination nodes. These 4121 OD pairs have 18532

routes in total, thus, on average, each OD pair has 4.5 routes to choose from. On the

measurement side, there are 650 sensors distributed across the network that capture

traffic flow volumes. In this case study, we run the online calibration from 6AM to

10PM to model the morning peak.

Figure 6-1: Singapore expressway network (Google Maps, 2016)

Figure 6-2: Singapore expressway network in the DTA model
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6.1.2 Surveillance Data

Following the introduction of the Singapore expressway network, we briefly summarize

the real-time traffic flow data from the 650 sensors. The sensors detect traffic flow for

all the lanes on the segments. The real-time flow volumes are collected and aggregated

into each batch of data roughly every 5 minutes. The real-time data are provided

by the Land Transport Authority (LTA) in Singapore for 14 weekdays in December

2015.

However, as with any field data, the flow volumes are prone to errors. The sensors

are unreliable in the following ways:

(1) Some sensors are absent constantly for hours, and some are absent occasionally.

(2) The measurement errors are excessive on numerous sensors. The flow conservation

law is violated for some sensors on the same expressway without ramps in between.

For example, the aggregated flow volume from 5am to 12pm for a particular

sensor is 15542 vehicles, while the flow for its downstream sensor is 13049 vehicles.

Observations suggests that similar cases exist in an extensive area of the Singapore

expressway network.

To address the first issue, we remove the sensors that are absent over half of the

experiment period. For the remaining sensors that occasionally disappear, we modify

the Kalman filter update rule to handle this. In Equation (2.36), the corresponding

rows of the missing sensors for interval h are deleted. Similarly, the corresponding

rows and columns are deleted for Rh in Equation (2.37). The same deletion rule is

applied to the elements of Mh and g(·) in Equation (2.38).

The second issue is more difficult to handle. Thus, we have to carefully set the

measurement error covariance Rh. This is addressed in the preparation for the cali-

bration.
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6.2 Preparation and Experiment Settings

6.2.1 Overview

In this case study, the online calibration task is OD estimation and prediction using

the real-time flow data. The goal is to test the accuracy improvement with the

augmented SSM. The partitioned simultaneous perturbation is also applied for all

the experiments to speed up the calculation.

The parameters in this case study are 4121 OD pairs for each 5-minute departure

interval. At the same time, route choice and supply parameters such as speed-density

relationships and capacity for each segment are set to offline calibrated values.

6.2.2 Preparations of Kalman Filtering

Before performing the experiments, the Kalman filtering framework needs several

inputs to work properly, namely:

• Time-dependent OD matrices. To employ the deviation as the state, cali-

brated time-dependent ODs are needed as historical values.

• The autoregressive (AR) model. Needs to be estimated for the transition

equation.

• The tuning parameters for Kalman filters. The tuning parameters include

the transition and measurement error covariances Q and R.

The workflow in Figure 6-3 indicates how to obtain the mentioned inputs. We

explain the workflow with the following procedure.

(1) Divide the weekdays into training set (10 days), validation set (3 days) and test

set (1 day);

(2) Perform calibration for the training set and validation set. The inputs used in

this stage of calibration are based on heuristics;
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Figure 6-3: Workflow of the preparation for the Kalman filter

(3) Calculate the residuals between the estimated flows and the data in the training

set and validation set. We then compute the variance of the residuals for each

sensor across time intervals, and these variances serve as diagonal elements of R.

The calculation is given by:

R =


r1 0 · · · 0

0 r2 · · · 0
...

...
. . .

...

0 0 · · · rm

 (6.1)

ri =
1

DN

D∑
d=1

N∑
h=1

(
M

(d)
h,i − g

(d)
h,i (·)

)2
(6.2)

where, M
(d)
h,j is the observed measurement and g

(d)
h,i (·) is the simulated counterpart

for the jth sensor at time interval h on day with index d. m is the number of

sensors, and d ranging from 1 to D is the day index in the training set.

(4) Fit an AR(n) model to calibrated time-dependent OD matrices in the training set.
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n takes multiple values: 1,2,3,... Each n results in a different fitted AR model.

Then we test the models and select the best model based on their prediction

performance on the validation set.

(5) Calculate the residuals between each estimated OD and predicted values given

by the best model. We compute the variance of the residuals for all ODs across

time intervals. It serves as a universal variance for all the diagonal elements of

Q, which is given by:

Q =


q 0 · · · 0

0 q · · · 0
...

...
. . .

...

0 0 · · · q

 (6.3)

q =
1

DnN

D∑
d=1

n∑
i=1

N∑
h=1

((
X

(d)
h

)
i
−
(
ΦX

(d)
h−1

)
i

)2
(6.4)

where, X
(d)
h is the state vector in interval h on the day with index d.

(
X

(d)
h

)
i

is

the ith calibrated OD in interval h on day d, and
(
ΦX

(d)
h−1

)
i

is the ith predicted

OD with the AR model, parameterized by Φ. n is the number of OD pairs. D is

the number of days in the training set.

(6) The computed Q and R, together with the selected AR model serve as inputs for

the Kalman filter in online calibration. When these preparations finish, we can

perform online calibration on the test set and report the accuracy and speed, as

performance measures of the calibration results.

(7) The mean of the calibrated demand over the training and validation set for each

interval serves as the time-dependent historical values to construct deviations for

the test set.

Some explanations would be helpful to show the validity of the procedure. Here we

explain the details in steps (3)-(5) and some practical considerations in the following

paragraphs.
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Obtaining R

We now explain how step (3) addresses the uncertainty in measurement. A large

error variance indicates a poor fit to the data. The fault is not entirely in the model,

because of the excessive noise in the measurements (Section 6.1.2). Thus, a large error

variance may imply an enormous noise in the measurement. The large variances in

R indicate high uncertainty for their corresponding measurements, potentially due to

large measurement noise. Then Kalman filters will give less weights to the uncertain

measurements and focus more on fitting others. This mechanism will alleviate the

issue of large measurement noise.

However, there is a risk of overfitting in this approach: the obtained R may not

be generalizable to other model specifications (e.g., different AR model or augmented

SSM). The reason lies in the contribution of modeling errors to the variances. A

measurement poorly fitted with one model may be fine with another. Thus, when the

modeling error is predominant over the measurement noise, the obtained error vari-

ance will prevent the Kalman filter to fit the measurements, resulting in suboptimal

solutions for other models. In a word, the R is “overfitted” to the model specification

that generates it. Hence, researchers should consider the tradeoff between suboptimal

solutions due to overfitted R and the potential erroneous fit caused by large noise

in data. From our observation, the traffic flow inconsistency is severe and widely

present in the dataset. Also, 650 sensors are significantly smaller than 4121 OD pairs

as parameters, which implies an under-determined system that fits measurements

with enormous degree of freedom. Hence, it is likely that error covariances capture

more measurement noise than the modeling error.

Obtaining the AR model

In step (4), we attempt to find the evolution of ODs by selecting the best AR model

to fit the calibrated ODs. To avoid overfitting, we force the same AR model for all

the OD pairs, instead of one model for each OD pair. The reason lies in the validity

of the fitted models. Due to the enormous degree of freedom (4121 OD pairs to fit
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650 sensors), the estimated ODs are zeros for most of the time, which results in high

uncertainty of the fitted AR models. They will not generalize well if the estimated

ODs are non-zero in test set. Thus, we include the calibrated ODs with more than

60 vehicles per hour into the dataset to which we fit the AR models. The dataset

contains 2142 OD pairs for all the 10 days.

Step (4) to choose the best AR model follows a typical machine learning setting:

holdout a validation set before training/fitting the models. The underlying reason

is that a more complex model will always achieve a better fit on the training set,

however it may not generalize well on the validation set, which was not used when

training the model. In our experiment, n ranges from 1 to 10, because we believe a

tenth-order AR process should suffice to describe the transition trend in OD. Next,

we select the AR(n) model with the best prediction power on the validation set. Note

that depending on whether to use deviations, the data for model fitting are different.

Finally we will apply the selected AR model as the transition equation for online

calibration experiments on test set.

Note that depending on whether to use deviations, the data for model fitting are

different. Thus, we would result in two sets of AR models.

Obtaining Q

Similar to obtaining R, we calculate the variance for Q from residuals of the selected

AR model with Equations (6.3) and (6.4). The diagonals have the same value q to

avoid overfitting, with the similar logic for a universal AR model. Otherwise, the

ODs that were calibrated to zeros lead to small variances, with which the subsequent

Kalman filter will always give near-zero ODs. In other words, the same q for the

diagonals ofQ would allow calibrating insignificant ODs that are previously obtained.

Thus, it seems reasonable to assume a universal diagonal structure for Q.

Model Configurations

Following the procedure mentioned above, the calibration results (using all available

sensors) for the training and validation sets are given by Table 6.1, measured in root
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Table 6.1: Calibration result (RMSN and RMSE) for training set

Dataset
Day of

Dec 2015
Estimation

RMSE
Estimation

RMSN
Prediction RMSN

1 step 2 step 3 step

Training

1 125.1 49.0% 49.9% 50.8% 51.4%
2 123.3 48.0% 49.0% 49.9% 50.4%
10 122.5 50.5% 51.6% 52.7% 53.0%
17 120.5 47.9% 48.9% 49.7% 50.1%
18 117.1 47.6% 48.8% 49.5% 50.3%
21 115.4 47.2% 48.2% 49.6% 50.5%
23 119.1 48.0% 49.4% 50.6% 51.6%
24 118.8 50.2% 51.6% 52.7% 53.8%
28 113.4 48.6% 49.8% 51.4% 51.8%
29 112.9 46.8% 48.2% 49.1% 49.7%

Validation
7 123.2 50.1% 51.1% 51.9% 53.0%
14 117.2 47.7% 49.0% 50.4% 51.0%
30 117.3 49.6% 50.9% 52.5% 53.0%

mean square error (RMSE) and root mean squared normalized error (RMSN), with

formula given in Equation (3.2).

Following the procedure in step (4), the best model with calibrated OD from the

training and validation sets as historical values is an AR(2) model, given by:

xh = 0.884xh−1 + 0.0967xh−2 + ε (6.5)

ε ∼ N (0, 17.6I) (6.6)

Figure 6-4 illustrates the RMSE for each sensor across all intervals for Day 1. It

is also the standard error for each estimated measurement, i.e.,√√√√ 1

N

N∑
h=1

(
M

(1)
h,i − g

(1)
h,i (·)

)2
(6.7)

for the ith sensor.

The measurement errors are with different magnitudes, which implies the different

noise levels for sensors. Similar to the insight discussed when obtaining R, this

figure indicates the structure of the diagonals in R. It is also noticeable that some

sensors have zero RMSEs, which correspond to the sensors missing for the whole
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Figure 6-4: Estimated flow RMSE (standard error) for each sensor for Day 1

simulation period. Those small variances in R will lead to an overstated certainty

in corresponding sensors. This improper certainty is then adjusted by setting the

diagonals of R to be no less than 10. There were 89 elements affected by this rule,

while 82 of them are zero (Figure 6-5). Observe that we only have around 430 sensors

with variance less than 10000 (standard error < 100).

6.2.3 Experiment Settings

Given the real-time flow data, the online calibration task is OD estimation and pre-

diction. The goal of this case study is to test the accuracy improvement with the state

augmentation technique compared to the original case. To test the augmented SSM,

we first need to determine the degrees of augmentation. To elucidate this determina-

tion process, we first analyze the gradients with transition step t, which indicates the

gradient for measurements after t intervals.
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Figure 6-5: Estimated measurement variance in increasing order

Degrees of Augmentation

Table 6.2 exhibits the statistics of gradients with different transition steps, calculated

with finite differences. A row or column is only zero if all elements in it are zero. The

rank indicates the dimensions of parameter space determined by each matrix H1
t+1,

while the cumulative rank for t is calculated from the vertically concatenated H1
1 to

H1
t+1. The cumulative rank shows the dimensions of parameter space if we consider

its impact on future measurements to a degree t.

The growing cumulative rank demonstrates the benefit of augmenting measure-

ment equation. The increment of cumulative rank slows down for t > 7 (Table 6.2).

Thus, the benefit of augmentation to more than 7 steps may be marginal. This con-

clusion is also verified by the nonzero elements in gradient matrices. The nonzero

elements for step 8-11 are considerably less than step 7.

Note that we obtained these gradients by perturbing ODs in the first interval in

an empty network. Therefore, when there is congestion, it is likely that the transition
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Table 6.2: Statistics of gradients H1
t+1 for transition step t

Transition Nonzero Nonzero Nonzero
Rank

Cumulative
step elements rows columns rank

0 41635 635 4119 628 628
1 78183 609 4089 607 1210
2 66676 562 3545 562 1736
3 52401 548 2822 541 2242
4 33026 517 2036 511 2705
5 17588 491 1299 459 3064
6 7737 437 675 390 3262
7 2969 360 274 236 3284
8 1045 213 115 99 3284
9 286 95 45 44 3285
10 52 34 12 12 3285
11 0 0 0 0 3285

steps greater than 7 is beneficial in later intervals. This conjecture implies that it

may be beneficial to determine the degree of augmentation based on current traffic

conditions.

While a higher degree of augmentation is favorable, another consideration is the

limited computational power. A model of degree 6 already consumes enormous com-

putational power: the model needs 6 times more simulations for gradient estimation

than the non-augmentation case. Due to the matrix operations of O(n3) in Kalman

filters, the model needs 63 = 216 times of computations. Thus, we choose the maxi-

mum degree of augmentation as 6.

Experiment Specifications

The experiments report the performance for the original SSM and the augmented

SSM of various degrees. The partitioned simultaneous perturbation is applied for all

the experiments to improve computation time. The constrained extended Kalman

filter (CEKF) is also applied to model the non-negativity constraint for OD flows

(H. Zhang et al., 2017). Based on the model configurations in Section 6.2.2, we

propose the following experiments. Each experiment is conducted with the calibrated

time-dependent OD matrices as historical values.
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(1) CEKF(1): constrained extended Kalman filter without state augmentation;

(2) CEKF(3): constrained extended Kalman filter with state augmented to degree

3;

(3) CEKF(6): constrained extended Kalman filter with state augmented to degree

6.

6.3 Results and Discussions

In this section, we present the results and discuss the performance of each model.

We first show the overall performance for DTA estimation and prediction. As for

performance measures, we select root mean square error (RMSE), weighted sum of

squared error (WSSE) and root mean squared normalized error (RMSN) criteria.

6.3.1 Performance Metrics

As a metric to address the sensors that are assumed highly uncertain, the WSSE

utilizes the inverse of R as weights for the squared errors of each measurement. In

our case of a diagonal R, each squared error is divided by its assumed variance and

then summed up. Thus, the WSSE, as an objective function, discounts the impact

of the uncertain measurements. Also, note that the WSSE is a component in the

Kalman filter’s objective function (Sorenson, 1970), and thus a lower bound of it.

Similarly for RMSN, we removed some of the erroneous sensors. The condition

of removal is that a sensor satisfies: (1) assumed variance in R greater than 10000,

and (2) fitted mean square error greater than 10000. This rule removes 122 sensors

poorly fitted with both the training set (216 sensors) and the test set (186 sensors)

while keep the sensors whose fitted variance is less than 10000 with any model.

6.3.2 Results and Discussions

Table 6.3 summarizes the performance of experiments. We start with the estimation

results. The results imply a strict increase of estimation and prediction performance
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as we augment the states. The benchmark is directly using the calibrated demand

as historicals with which we perform calibration for training and validation sets. All

CEKF experiments significantly improve over the benchmark. CEKF(3) obtains the

lowest error for RMSE and RMSN. The RMSN values show that CEKF(3) improves

over CEKF(1) by around 13%. The CEKF(6) has a worse performance in RMSN

for estimation than CEKF(3), but still a 4% improvement over CEKF(1). RMSE,

as an overall goodness-of-fit for all the sensors, suggests a marginal improvement of

CEKF(3) over CEKF(1) by around 3%. However, the WSSE of augmented models

shows a decrease. Since WSSE is a lower bound of the Kalman filter objective, it

is possible that the RMSN does not precisely reflect the decrease in the objective

function, especially when erroneous sensor measurements are assigned large variance

in R.

Table 6.3: Performance of all experiments on test day, simulation period 6:20-7:20

Index Description
Estimation Prediction RMSN

RMSE WSSE RMSN 1 step 2 step 3 step

0 Historical 112.6 18047 36.6% 36.3% 36.2% 35.9%
1 CEKF(1) 109.7 13664 33.1% 33.9% 34.9% 34.4%
2 CEKF(3) 106.8 13995 28.7% 30.1% 31.1% 30.1%
3 CEKF(6) 111.0 16409 31.7% 30.7% 31.9% 30.8%

Index Description
Prediction RMSE Prediction WSSE

1 step 2 step 3 step 1 step 2 step 3 step

0 Historical 116.4 120.6 124.1 19064 20022 20924
1a CEKF(1) 114.6 119.8 123.2 17428 19133 21013
2a CEKF(3) 109.7 115.0 118.2 16498 18165 20007
3a CEKF(6) 110.3 116.3 119.1 16969 18632 20716

For the prediction results in Table 6.3, the overall RMSN also suggests a same

amount of improvement by around 13% for augmented models. The prediction per-

formances in RMSE and WSSE are also improved with the augmented models. If

we compare the prediction results with estimation in WSSE, both augmented models

perform worse in estimation but better in prediction. However, the overall crite-

ria may not be a conclusive proof that the state augmentation improves greatly on

prediction. Next we examine the results in more detail.

To address the issue of different variances in sensors, we divide them into groups

132



regarding their assumed variances in R and report the RMSE for each group (Ta-

ble 6.4). The best RMSE for each group is bolded. Note here we do not remove any

sensors. We have two major observations. First, the CEKF(3) and CEKF(6) have

similar prediction performances. The reason may lie in the fact that there are 4121 OD

pairs and 650 sensors. Thus, a large degree of freedom exists in the non-augmented

model, which may already imply a high model complexity. While augmenting the

states further increases the model complexity, the benefit may be marginal when the

degree of freedom is already large. The marginal improvement also implies a degree

of 3 for augmentation should be enough for our case study. The second observation

about Table 6.4 is that the majority of improvement by the augmented models lies in

sensors with large assumed variances. Recall that they were estimated from residuals

of non-augmented models on the training set. Thus, this observation indicates that

augmented models may improve the sensors that were poorly fitted in non-augmented

models. These improvements are clear and significant.

Table 6.4: Estimation and 3 step prediction of sensors in variance groups

r
range from 1 500 2500 5000 10000 20000

range to 500 2500 5000 10000 20000 +∞
Number of sensors 118 111 90 115 109 107

Estimation
CEKF(1) 35.48 53.86 76.72 132.1 125.1 157.2
CEKF(3) 35.28 52.67 81.99 134.6 119.2 146.7
CEKF(6) 38.87 56.49 88.60 140.4 123.6 149.5

3 step
prediction

CEKF(1) 48.32 60.76 86.42 148.4 142.9 170.0
CEKF(3) 47.36 58.11 86.67 143.0 134.4 163.0
CEKF(6) 48.59 58.39 86.20 143.8 136.1 165.5

Following the discussion of model complexity in augmented models, one may ask if

they may overfit to the measurements. The concern is valid because the dimension of

parameter space is multiplied through state augmentation. However, this is not true

if only the latest updated parameters are reported in our estimation RMSN. Thus,

by state augmentation, we actually adjust our previously estimated parameters to

fit the current interval better, which may result in worsened estimations in previous

intervals, but should lead to better future predictions. Thus, the comparison between

augmented and non-augmented models is fair. This observation explains the fact that
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estimation results are worse than predictions in WSSE and RMSE.
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Figure 6-6: Flow volume RMSN for estimation (top left) and predictions, simulation period 6:20-8:20
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Besides, we present the performances in each interval by showing the time-dependent

RMSN values (Figure 6-6). It is noticeable that augmented models give the better

predictions than CEKF(1) by a small but clear margin. One explanation of the

CEKF(1)’s performance is the lack of delay modeling in the measurement equation.

When using the non-augmented model, it ignores the correlation between parame-

ters and measurements across intervals. Thus, previously estimated ODs cannot be

adjusted. On the other hand, for augmented models with degree q, each state is es-

timated/updated q times. The previous traffic states are re-simulated with updated

parameters through the “rollback” feature.

Following the discussion about modeling delay, we make a comment on the draw-

backs of using the non-augmented model (CEKF(1)). It omits important independent

variables (ODs in previous intervals) when the true model contains delay. The non-

augmented model is forced to explain measurements with parameters in the same

interval. Thus, the error term absorbs the effect caused by omitting variables, which

results in a less accurate model. On the contrary, when we use an augmented model,

part of the error in measurements are “explained away” by modeling the delay for

parameters of previous intervals. Thus by applying such a model, the model does not

force all the unexpected results in measurements be explained by parameters in the

current interval. As a result, longer trips are captured in later intervals, and hence

can be estimated better with augmented models. Therefore, we are likely to recover

the true parameters. Suppose the AR model is good, predicted parameters will also

be more accurate, which yield better traffic predictions.

As for the prediction performance, the augmented models improve over CEKF(1),

but the improvement is less than the synthetic case study in Section 4.4. This obser-

vation may come from two reasons. First, as mentioned before, there are much more

parameters (4121) than observations (less than 650 due to missing sensors) in each

interval. Given the large degree of freedom in the problem, non-augmented models

will perform well enough in terms of goodness-of-fit for sensors. Second, as discussed

in Section 6.1.2, the excessive noise in measurements makes severe violation to the

flow conservation law. Such erroneous surveillance data determines the lower bound
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of the error rate.

Figure 6-7: Number of positive and negative elements for the gradient Hh
h+t in each

transition step t
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Another interesting observation is that at later intervals, the prediction perfor-

mance of CEKF(3) and CEKF(6) begins to deteriorate after 7:30 (Figure 6-6). To

explain this observation, it is helpful to show some details of the H matrices used in

the augmented models. Figure 6-7 shows the number of nonzero elements in gradient

matrices. At 6:00, starting from an empty network, there are no negative elements for

all transition step t. If we only look at transition step t = 0, as time interval increases

from 6:00 to 8:15, the number of negative elements increases, while positive elements

decrease. The negative elements are likely due to the congestion formed in the net-

work, where assigning more vehicles will only increase the congestion level and reduce

flows. However, the increase of negative elements in later intervals for the transition

steps t > 0 is suspicious. The increase may be because the perturbations in a previous

interval change the random number sequence in vehicle movement/queue dissipation

in later intervals. Similar to the case in Chapter 3, gradients in later transition steps

are prone to the simulation stochasticity due to more chance of interactions with the

DTA simulator. Thus, a slight change will cause large variations in the realization

of simulation. This conjecture explains the close number of positive and negative

elements for higher transition steps.

We support the conjecture with Figures 6-8 and 6-9, which presents the distribu-

tion of nonzero elements for the gradient used in SSM and augmented models at 7:00.

A uniform distribution of [0, 1] can approximate reasonably the gradient elements in

CEKF(1) (Figure 6-8). The uniform distribution conforms with the fact that the

sensors capturing different fractions of ODs are equally likely. On the other hand, the

distribution of gradients in augmented models is very different (Figure 6-9). There

are numerous small values in the gradient, which can be approximated with Gaussian

distribution. It is probable that the gradient is affected largely by the stochasticity

in simulations. A large number of elements have noisy gradients, and thus, the aug-

mented model that rely on them will yield worse estimation and prediction results.

The noise in the gradients is an additional reason of limited improvement of CEKF(3)

over CEKF(1). We believe the results with less noisy gradient estimations for state

augmentation will further improve the performance of augmented models.
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Figure 6-8: Distribution of nonzero elements of all gradients Hh
h+t for CEKF(1)

(transition step t = 0) at 7:00

6.3.3 The Computation Performance

Lastly, we make some comments on the computational performance and the PSP,

as it is extensively used in the experiments. First, the PSP method largely reduced

the computational time for gradient estimation. The CEKF(1) has near real-time

performance: the calibration for each interval takes around 5 minutes, as shown

in Table 5.2. CEKF(3) takes around 20 minutes on average and CEKF(6) takes

around 1 hour. Second, the computation complexity increases with the degree of

augmentation, because of more conflicts introduced when quantifying the impact of

parameters on future measurements. Nevertheless, the noisy gradient in later intervals

is also responsible for the excessive conflicts introduced (after 7:00 in Figure 6-7),

which results from the fact that excessive noise makes the gradient less sparse. Thus, a

sparse and accurate gradient is beneficial for both calibration accuracy and efficiency.

Lastly, the computational complexity of Kalman filtering operations increases in a

cubic manner with the parameter dimension, which is also a reason for augmented

models to take much longer time.
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Figure 6-9: Distribution of nonzero elements of gradient Hh
h+t for CEKF(3) (t =

0, 1, 2, top) and CEKF(6) (t = 0, 2, ..., 5, bottom) at 7:00

6.4 Conclusion

From our discussion of results, we conclude that state augmentation is a useful tech-

nique that handles system delay, especially when sensors capture parameters in dif-

ferent time intervals on the traffic network. In such cases, it is erroneous to force the

non-augmented (non-delayed) model to fully explain the discrepancy in simulated

and observed measurements, while it may also be caused by incorrectly estimated pa-
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rameters in previous intervals. Thus, by applying an augmented model, we consider

important independent variables and their impact in current and subsequent intervals.

This is beneficial to accurate estimation and prediction of traffic conditions. The case

study with Singapore expressways illustrated that state augmentation improves over

the non-augmented case by 13% for estimation and prediction accuracy. We expect

the improvement to be greater, if we can address the issue of noisy gradient matrices.

Thus, the noise in gradients should be a future direction as an extension for this case

study.
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Chapter 7

Conclusion

In this chapter, we first identify the contributions of this thesis to the state-of-the-art

of online calibration for simulation-based Dynamic Traffic Assignment (DTA) sys-

tems. We then summarize the detailed findings in this research and discuss directions

for future research.

7.1 Research Contributions

This research contributes to the field of online calibration for simulation-based DTA.

The approaches developed in this thesis are generic to all simulation models. Specif-

ically, this work contributes to the existing literature in the following respects:

• Proposing an error decomposition framework to account for the simulator ran-

domness in online calibration. Two approaches are proposed to mitigate simu-

lation stochasticity: (1) characterizing the error covariance for simulated mea-

surements and (2) enforcing a sparse gradient structure.

• Applying an extension of the State Space Model to deal with the delayed mea-

surement issue on large-scale networks and provide more accurate predictions.

The approach is also helpful on small-scale and congested networks.

• Presenting a sparse gradient estimation procedure that significantly improves

the computational performance of online calibration and facilitates real-time
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performance.

7.2 Summary of Findings

The main findings from this thesis in the context of simulation stochasticity, gener-

alization to large-scale networks, and computational performance are as follows:

• Considering simulation stochasticity

– The stochasticity arises from the random numbers drawn in the simulation.

Thus its stochasticity can be quantified by the statistics from simulations

starting with different random seeds.

– The simulated traffic measurements are significantly affected by the stochas-

ticity (particularly speeds and link travel times in our case), and longer

aggregation intervals reduce the randomness.

– The transition between free flow and congestion scenarios are particularly

prone to stochasticity.

– Multiple realizations of the random measurement vector can be obtained

from simulations with different seeds for the same interval. The covariance

matrix calculated from these realizations describes the simulation error

(under certain input parameters).

– An error analysis suggests that the covariance matrix is crucial in online

calibration. A synthetic test demonstrates an improvement in supply cal-

ibration after applying the covariance matrix.

– The simulation stochasticity also affects the gradient estimation proce-

dure. For the finite difference method, larger perturbation sizes give a less

stochastic gradient estimation.

– The Holm-Bonferroni test is helpful to identify the gradient elements that

are not significantly different from zeros. Thus, the noise of those gradient

elements can be eliminated by enforcing a sparse gradient structure.
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– A synthetic test demonstrated that enforcing the sparse gradient structure

improves the calibration accuracy.

• State augmentation with the State Space Model (SSM) for large-scale networks

– As network area grows, surveillance sensors and origin/destination nodes

grow linearly, while OD pairs grow quadratically. Thus large-scale net-

works are likely to be unobservable.

– A graphical representation for the SSM is introduced to intuitively explain

the violation of the Markovian assumption.

– The augmented SSM is presented to mitigate the violation and the graph-

ical representation is utilized to show its compliance with the Markovian

assumption.

– Synthetic tests on a congested small-scale network demonstrates that the

augmented SSM model yields more accurate and less biased predictions

for online calibration.

– A case study with the Singapore Expressway Network demonstrates its

accuracy improvement on a large-scale network.

• Acceleration of the gradient estimation procedure for real-time performance

– A partitioned simultaneous perturbation algorithm is presented to speed

up gradient estimation. It utilizes the sparse gradient structure to group

parameters and perturb them together; thus the number of calculations is

reduced to the number of groups.

– Finding the minimum grouping of parameters is a NP-hard problem. Find-

ing the optimum may not be necessary because a heuristic solution may

reduce most of the computational complexity compared with the finite

difference method.

– The application of the heuristic algorithm reduced by nearly 90% the com-

putations necessary for OD estimation on the Singapore Expressway Net-

work.
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– The state estimation and prediction accuracy is comparable to the online

calibration result using the finite difference method.

7.3 Future Research Directions

There are several potential future research topics in each of the three directions ad-

dressed in this thesis which are described next.

7.3.1 Considering simulation stochasticity

Since the covariance matrix changes with the simulated traffic scenarios, it may be

beneficial to identify a dynamic measurement covariance matrix Σh to account for

simulation stochasticity based on the current traffic conditions. For instance, during

the transition between free flow and congestion traffic scenario, the covariance matrix

has a higher magnitude on the diagonals. If the task to determine the appropriate

covariance matrix is difficult, a simplification could be applied with a diagonal matrix.

As suggested in Section 6.3.2, the noisy gradients also play an important role in

state augmentation. Thus, the stochasticity within traffic simulators should always

be examined and addressed where applicable. Future research should also include the

stochasticity in traffic flow measurements.

7.3.2 Online calibration for large-scale networks with real-

time performance

The large-scale applicability and real-time performance are closely related in the con-

text of online calibration. The extension to large-scale networks is challenging due to

issues of accuracy and real-time computational constraints. This research addresses

the accuracy issue with augmented State Space Model (SSM) on large-scale networks.

Besides, the partitioned simultaneous perturbation (PSP) approach accelerates the

gradient estimation procedure. However, the computational complexity largely in-

creases with the augmented State Space Model. If the state dimension is n, the
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matrix operations of O(n3) dominate the complexity of the Kalman filter. Polyno-

mial as the algorithm is, the cubic increase of computation time makes the augmented

SSM difficult to generalize.

A recent improvement termed Localized EKF (L-EKF) was proposed to address

this (van Hinsbergen et al., 2012). The algorithm utilized an assumed sparse structure

in P h|h−1 and decomposed the original EKF update into smaller and faster updates.

The small updates are then collected and used to reconstruct the original EKF update.

The main idea is to decompose the n parameters into collectively exhaustive groups,

where each group includes the parameters closely related to each other. Then for

each group, an EKF with a smaller dimension is executed. Thus, the computational

complexity is reduced at the expense of enforcing the covariance structure. The

complexity of L-EKF is controlled by O(ngroupn
3
max), where ngroup is the number

of groups, nmax is the size of the largest group. If groups are divided in similar

sizes, then ngroupnmax ' n. Therefore, the complexity will roughly decrease from

n3
groupn

3
max to O(ngroupn

3
max). It is a promising approximation of the original EKF

and the computational performance should be reported in the future research.
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