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On mitigating the analytical limitations of finely stratified

experiments

Colin B. Fogarty ∗

Abstract

While attractive from a theoretical perspective, finely stratified experiments such as paired

designs suffer from certain analytical limitations not present in block-randomized experiments

with multiple treated and control individuals in each block. In short, when using an appro-

priately weighted difference-in-means to estimated the sample average treatment effect, the

traditional variance estimator in a paired experiment is conservative unless the pairwise average

treatment effects are constant across pairs; however, in more coarsely stratified experiments,

the corresponding variance estimator is unbiased if treatment effects are constant within blocks,

even if they vary across blocks. Using insights from classical least squares theory, we present an

improved variance estimator appropriate in finely stratified experiments. The variance estima-

tor is still conservative in expectation for the true variance of the difference-in-means estimator,

but is asymptotically no larger than the classical variance estimator under mild conditions. The

improvements stem from the exploitation of effect modification, and thus the magnitude of the

improvement depends upon on the extent to which effect heterogeneity can be explained by

observed covariates. Aided by these estimators, a new test for the null hypothesis of a con-

stant treatment effect is proposed. These findings extend to some, but not all, super-population

models, depending on whether or not the covariates are viewed as fixed across samples in the

super-population formulation under consideration.

1 Introduction

1.1 The analytical limitations of finely stratified experiment

When considering competing experimental designs, both theoretical and practical concerns must be
taken into account. While the advice stemming from theoretical derivations is often in harmony
with advice addressing issues of implementation, discordant recommendations can be encountered in
the literature. As an illustration, consider the choice of granularity of stratification in a randomized
experiment as it pertains to the variance of the resulting difference-in-means estimator of the average
treatment effect. Imbens (2011) demonstrates that when considering, ex ante, whether one should
use a completely randomized experiment or a block-randomized experiment, the classical difference-
in-means estimator for the average treatment effect in block-randomized experiment has a variance
which cannot be higher than that of the estimator from a completely randomized experiment; see
also Fisher (1935); Cochran and Cox (1957); Cox (1958) and Greevy et al. (2004) among many.
By the same logic, a given block can be further broken into substrata while not increasing the
estimator’s variance. This leads Imai et al. (2009) and Imbens (2011) to prefer paired experiments
from a theoretical perspective. Kallus (2013) further notes that from a population perspective,
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if one believes the response functions under treatment and control are Lipchitz with respect to
some distance metric δ(xi,xj), then optimal pair matching with respect to δ(xi,xj) minimizes the
variance of the difference-in-means estimator.

Moving away from designs with a priori fixed block sizes, Higgins et al. (2016) present a new
experimental design called “threshold blocking" which produces stratifications wherein each block
contains at least some number, call it k, individuals in each treatment arm. Taking k = 1 in a
treatment-control experiment then yields a design that is more flexible than pairing. Higgins et al.
(2016) present a near-optimal threshold blocking algorithm when one takes minimizing the maximal
within-block covariate discrepancy between any two individuals in the same block as the objective.
For the classical treatment-control experiment, the optimal stratification is mix of pairs and triplets,
as any feasible stratum with four or more individuals can broken down into substrata of sizes two or
three without increasing covariate discrepancy. Sävje (2015) illustrates that this additional flexibility
from allowing for both pairs and triplets can result in lower estimator variance than a paired design,
much in the same way that variable ratio matching tends to outperform fixed ratio matching in
observational studies (Hansen, 2004).

We define a finely stratified design as one where within each block, there is either exactly one
treated individual or exactly one control individual; both paired studies and optimal stratifications
returned by threshold blocking satisfy this definition. We contrast these with coarsely stratified
designs, wherein each block has at least two individuals in each treatment group. Of course in
principle this experimental taxonomy is not exhaustive as a treatment-control experiment could
have both fine and coarse strata; we ignore this possibility in what follows. The preceding dis-
cussion has illustrated the theoretical merits of fine stratifications relative to coarse stratifications;
however, finely stratified designs face certain “analytical limitations" avoided by coarsely stratified
designs (Klar and Donner, 1997; Imbens, 2011; Sävje, 2015). As is well known, the true variance of
difference-in-means estimator for the sample average treatment effect cannot be identified without
further assumptions being made on the individual level treatment effects. Following the tradition of
Neyman (1923), conventional estimators for this variance exist which are conservative in expecta-
tion with respect to the experimental design’s randomization distribution; see Gadbury (2001) for
an overview. It is when considering the magnitude of conservativeness for different experimental
designs’ standard variance estimators that the practical issues faced by finely stratified designs come
to light.

As will be presented explicitly in §3, the conventional variance estimator for a paired experiment
is conservative in expectation unless the average treatment effect is constant across pairs, in which
case it is unbiased; however, the typical variance estimator in a coarsely stratified experiment is
unbiased so long as the treatment effect is constant within blocks, even if the effects are heteroge-
neous across blocks. The practitioner must conduct hypothesis tests and form confidence intervals
for the sample average treatment effect using a variance estimator appropriate for the design at
hand. Hence, if the practitioner believes that the blocks in her experiment were formed on the basis
of effect modifying covariates, any benefits in precision from employing a finely stratified design
may be washed away by the increased conservativeness of the corresponding variance estimator.
Klar and Donner (1997) write that “these limitations lead us...to favour stratified designs in which
there are at least two [units] in each stratum" (Klar and Donner, 1997, p. 1753). Imbens (2011)
similarly notes that “[These limitations are an] important reason to prefer experiments with at least
two units of each treatment type in each stratum" (Imbens, 2011, p. 17).
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1.2 An insight from classical least squares squares theory

The analytical limitations of finely stratified experiments thus present an unappealing gap between
theory and practice. Practical limitations hinder the actualization of theoretical benefits, an issue
which we now seek to mitigate. Recent work by Aronow and Middleton (2013); Lin (2013); Fogarty
(2016); Bloniarz et al. (2016) and Lu (2016) among others has shown how regression adjustment
can be utilized to provide improved estimators for the average treatment effect in various experi-
mental designs. In this work, we will demonstrate how illustrate how regression adjustment can be
utilized to yield improved variance estimators in finely stratified experiments while using the clas-
sical difference-in-means estimator for the average treatment effect, hence preserving the so-called
“hands above the table" analysis (Freedman, 2008; Lin, 2013). The key takeaway from this work is
that effect modification can be exploited in a finely stratified experiment to yield improved variance
estimates even when the model is misspecified. As the potential impact of effect modification is
the source of the discrepancy between the variance estimators in finely and coarsely stratified ex-
periments, this serves to close the gap between variance estimators in these respective designs. See
Abadie and Imbens (2008); Ding (2016); Abadie et al. (2017) for recent work on the role of effect
modification in variance estimation in related contexts.

Before proceeding, let us take a detour into classical least squares theory to provide insight into
the improvements which will follow. Suppose we have n responses y = (y1, ..., yn)

T , and an n ×K
centered matrix of covariates X̃ = (I − eeT /n)X, where I is the identity matrix and e is a vector
containing n ones. Consider running two regressions, the first a regression of y on e and the second
a regression of y on e and X̃ . By orthogonality, the coefficient on the intercept column, β̂0, will
equal the sample mean ȳ in both regressions. On the other hand, the variance estimators for β̂0
will differ between the two regressions. For the regression on the intercept, the classical variance
estimator for β̂0 is var(β̂0) =

∑n
i=1(yi − ȳ)2/(n(n − 1)). For a regression of y on e and X̃ , the

classical variance for β̂0 is var(β̂0 | X̃) =
∑n

i=1(yi − ȳ − x̃T
i (X̃

T X̃)−1X̃T y))2/(n(n − K − 1)). As

a result, var(β̂0 | X̃) / var(β̂0). The use of this improved variance estimator, var(β̂0 | X̃), is
typically justified by an ancillarity argument: if the assumptions underpinning the regression model
are satisfied, then the distribution of X is ancillary for inference on any slope coefficient βk. The
conditionality principle would then support conditioning on X in the inference that follows, hence
restricting attention to the relevant subset of the sample space.

Buja et al. (2014) provide an illuminating discussion not only of the classical arguments for
conditioning on X, but also of the breakdown of these arguments in the presence on model misspec-
ification. The fundamental issue is that when X is itself considered to be random, X is ancillary
for inference on βk if and only if the model is correctly specified. The framework considered therein
is one of a practitioner jointly sampling responses and covariates iid from some target population,
with the target of inference being the best linear approximation to the response function for this
population. In the analysis of randomized experiments, a generative model of this nature is often
implausible, as individuals within a given experiment need not constitute a representative sample.
As such, inference is performed on local estimands such as the average treatment effect for the
individuals in the experiment at hand, with the act of randomization itself provides the basis for
inference for these estimands (Neyman, 1923; Fisher, 1935; Rubin, 1974; Imbens and Rubin, 2015).
For these local estimands, conditioning on the covariates for the individuals in the experiment is
justified without an ancillarity, argument, as the estimands are themselves defined with respect to
the sample at hand. As will be illustrated, variance estimators which utilize X will furnish im-
provements in power while facilitating Neyman-style conservative inference for the sample average
treatment effect.
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2 The sample average treatment effect

2.1 Notation for a block-randomized experiment

There are B independent blocks. The ith of B blocks contains ni individuals, of whom n1i receive
the treatment and n0i receive the control. There are N =

∑B
i=1 ni total individuals in the study.

Let Zij be an indicator of whether or not the jth individual in block i receives the treatment, such
that

∑ni

j=1 Zij = n1i and
∑ni

j=1(1− Zij) = n0i. A finely stratified experiment is then characterized
by min{n0i, n1i} = 1 for all i, while in a coarsely stratified experiment min{n0i, n1i} > 1 for all i.
Individual j in block i has a K-dimensional vector of measured covariates xij = (xij1, ..., xijK). Each
individual has a potential outcome under treatment, r1ij , and under control, r0ij , i = 1, ..., B; j =
1, ..., ni. The pair of potential outcomes (r1ij , r0ij) is not jointly observable for any individual.
Instead, we observe the response Rij = r1ijZij + r0ij(1−Zij) for each individual. As a consequence,
the individual level treatment effect τij = r1ij − r0ij is not observable for any individual, nor is the
average of the treatment effects in any block i, τ̄i = n−1

i

∑ni

j=1(r1ij − r0ij) (Neyman, 1923; Rubin,
1974).

Let Ω be the set of
∏B

i=1

(
ni

n1i

)
possible values of Z = (Z11, Z12, ..., ZBnB

)T under the block-

randomized design. Each z ∈ Ω has probability |Ω|−1 of being selected, where the notation
|A| denotes the cardinality of the set a. Let Z denote the event Z ∈ Ω. Quantities depen-
dent on the assignment vector such as Z and R = (R11, R12, ..., RBnB

)T are random, whereas
F = {(r1ij , r0ij ,xij), i = 1, ..., B, j = 1, ..., nB} contains fixed quantities for the experiment at hand.

In a block-randomized experiment, pr(Z = z | F ,Z) = pr(Z = z | Z) = |Ω|−1 =
(∏B

i=1

( ni

n1i

))−1
,

and pr(Zij = 1 | F ,Z) = pr(Zij = 1 | Z) = n1i/ni.

2.2 The estimand and the estimator

The sample average treatment effect, or SATE, is defined as

∆̄ =
1

N

B∑

i=1

ni∑

j=1

τij =
1

B

B∑

i=1

wiτ̄i,

where wi = B(ni/N). The conventional unbiased estimator for τ̄i, the average treatment effect for
individuals in block i, is simply the observed difference-in-means between the treated and control
individuals in block i.

τ̂i =

ni∑

j=1

(
Zijr1ij
n1i

− (1− Zij)r0ij
n0i

)
.

The classical unbiased estimator for the overall sample average treatment effect ∆̄ is

∆̂ = B−1
B∑

i=1

wiτ̂i, (1)

i.e. a weighted average of the block-specific estimators with ni/N serving as weights (Rosenbaum,
2002, Chapter 2).
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3 A comparison of standard variance estimators

3.1 Conventional variance estimation in coarsely stratified experiments

For block i, define the block-specific averages of the potential outcomes under treatment and control
as r̄1i = n−1

i

∑ni

i=1 r1ij and r̄0i = n−1
i

∑ni

i=1 r0ij . Further, define σ2
1i, σ

2
0i, and σ2

τi by

σ2
1i =

1

ni − 1

ni∑

j=1

(r1ij − r̄1i)
2 ; σ2

0i =
1

ni − 1

ni∑

j=1

(r0ij − r̄0i)
2 ; σ2

τi =
1

ni − 1

ni∑

j=1

(τij − τ̄i)
2 .

The variance of the sample average treatment effect estimator in block i, var(τ̂i | F ,Z), can be
expressed as (Imbens and Rubin, 2015, Theorem 6.2)

var(τ̂i | F ,Z) =
σ2
1i

n1i
+

σ2
0i

n0i
− σ2

τi

ni
.

This immediately yields the following expression for var(∆̂ | F ,Z):

var(∆̂ | F ,Z) =
1

B2

B∑

i=1

w2
i

(
σ2
1i

n1i
+

σ2
0i

n0i
− σ2

τi

ni

)
.

This variance is unknown in practice because it depends on the missing potential outcomes. In a
coarsely stratified experiment where we have min{n1i, n0i} ≥ 2 for all i, the conventional estimator
for var(∆̂ | F ,Z) is based on an appropriately weighted sum of the sample variances of the treated
and control responses in each block. Let R̄1i = n−1

1i

∑ni

i=1 Zijr1ij and R̄0i = n−1
0i

∑ni

i=1(1 − Zij)r0ij
be the observed averages of responses for the treated and control individuals in block i. Further,
let s21i and s20i be the sample variances for the responses of the treated and control units in block i,

s21i =
1

n1i − 1

ni∑

j=1

Zij(r1ij − R̄1i)
2; s20i =

1

n0i − 1

ni∑

j=1

(1− Zij)(r0ij − R̄0i)
2

The classical variance estimator in a coarsely stratified experiment takes on the following form:

S2
CS =

1

B2

B∑

i=1

w2
i

(
s21i
n1i

+
s20i
n0i

)
.

A well known fact dating back to Neyman (1923) is that this estimator yields conservative inference
for the sample average treatment effect, since

E[S2
CS | F ,Z] − var(∆̂ | F ,Z) =

1

B2

B∑

i=1

w2
i σ

2
τi. (2)

Hence, the variance estimator S2
CS is an upper bound on var(∆̂ | F ,Z) in expectation unless the

treatment effect is constant within each block (i.e. if for each block i, τij = τ̄i for j = 1, ..., ni). This
thus enables Neyman-style conservative inference on ∆̄ to proceed using S2

CS.
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3.2 Classical results on variance estimation in finely stratified experiments

In a finely stratified experiment, at least one of s21i and s20i will be undefined as min{n1i, n0i} = 1.
As a result, the estimator S2

CS cannot be employed. To the best of our knowledge there does not
exist a “classical" variance estimator for the general class of finely stratified experiments without
making assumptions such as additivity of treatment effects or equal variance of potential outcomes
(Rosenbaum, 2002; Hansen, 2004; Sävje, 2015). In the particular case of paired designs where
n1i = n0i = 1 for all strata, the classical variance estimator is simply the sample variance of the
observed paired differences divided by the number of pairs,

S2
P =

1

B(B − 1)

B∑

i=1

(τ̂i − ∆̂)2. (3)

Imai (2008) discusses inference for the sample average treatment effect within a paired design.
Proposition 1 of that work illustrates that S2

P is also an upper bound in expectation for var(∆̂ |
F ,Z), and that the degree of the bias is given by

E[S2
P | F ,Z] − var(∆̂ | F ,Z) =

1

B(B − 1)

B∑

i=1

(τ̄i − ∆̄)2. (4)

A comparison of bias expressions (2) and (4) reveals the analytical limitations alluded to in
§1.1. For a paired design, S2

P is biased upwards unless the average treatment effects are the same
across pairs. In a coarsely stratified design, S2

CS is unbiased if there is additivity within blocks,
even if there is effect heterogeneity across blocks. If the blocks were formed using covariates that
are thought to be effect modifiers, it may be the case that the coarsely stratified design yields an
unbiased estimator for the variance, while the paired design would yield a variance estimator that is
substantially biased upwards. Were (3) the only variance estimator available to facilitate inference
in a paired experiment, the practitioner in this case may well be justified in preferring the more
coarsely stratified design as a means of shrinking confidence intervals and yielding more powerful
hypothesis tests.

4 Conservative variance estimators in finely stratified experiments

4.1 Two recipes with projection matrices

Let Q be an arbitrary B × L matrix with L < B, and let HQ = QT (QTQ)−1Q be the orthogonal
projection of R

B onto the column space of Q. Let hQij be the {i, j} element of HQ. Define
yi = τ̂i/

√
1− hQii and µi = τ̄i/

√
1− hQii. Let y = (y1, ..., yB)

T , and let the analogous definitions
hold for µ, τ̂ , and τ̄ . Finally, let ΨQ be a B × B diagonal matrix whose {i, i} entry equals
1/(1 − hQii)

2

Let W be a B × B diagonal matrix whose ith diagonal element contains wi = Bni/N . We will
now show that the matrix Q can be used to produce two variance estimators which are conservative
in expectation for var(∆̂ | F ,Z)

Define the first of these estimators, S2
1(Q), as

S2
1(Q) =

1

B2
yTW (I −HQ)W. (5)

Proposition 1. If Q is constant across all elements of Ω:

E[S2
1(Q) | F ,Z]− var(∆̂ | F ,Z) =

1

B2
µTW (I −HQ)Wµ ≥ 0

6



Proof. Define µ as before, and let Λ be the covariance matrix for y, a diagonal matrix with Λii =
1/(1 − hQii)

(
σ2
1i/n1i + σ2

0i/n0i − σ2
τi/ni

)
. Noting that W (I −HQ)W is symmetric,

B2E[S2
1(Q) | F ,Z] = tr(ΛW (I −HQ)W ) + µTW (I −HQ)Wµ

=

B∑

i=1

w2
i

(
σ2
1i

n1i
+

σ2
0i

n0i
− σ2

τi

ni

)
+ µTW (I −HQ)Wµ

Recalling that var(∆̂ | F ,Z) = B−2
∑B

i=1 w
2
i

(
σ2
1i/n1i + σ2

0i/(n0i)− σ2
τi/ni

)

E
[
S2
1(Q) | F ,Z

]
− var(∆̂ | F ,Z) =

1

B2
µTW (I −HQ)Wµ ≥ 0,

where the last line stems from (I−HQ) being a projection matrix, and hence positive semi-definite.

Define the second estimator, S2
2(Q), as

S2
2(Q) =

1

B2
τ̂ TW (I −HQ)ΨQ(I −HQ)W τ̂ , (6)

Proposition 2. If Q is constant across all elements of Ω:

E[S2
2(Q) | F ,Z] − var(∆̂ | F ,Z)

=
1

B2

B∑

i=1

w2
i

(
σ2
1i

n1i
+

σ2
0i

n0i
− σ2

τi

ni

)∑

j 6=i

h2Qij

(1− hQjj)2
+

1

B2
τ̄TW (I −HQ)ΨQ(I −HQ)W τ̄ ≥ 0

Proof. Define τ̄ as before, and let Σ be the covariance matrix for τ̂ , a diagonal matrix with Σii =
1/
(
σ2
1i/n1i + σ2

0i/n0i − σ2
τi/ni

)
. Noting that W (I −HQ)ΨQ(I −HQ)W is symmetric,

B2E[S2
2(Q) | F ,Z] = tr(ΣW (I −HQ)ΨQ(I −HQ)W ) + τ̄ TW (I −HQ)ΨQ(I −HQ)W τ̄ .

The {i, i} element of ΣW (I −HQ)ΨQ(I −HQ)W is given by

(ΣW (I −HQ)ΨQ(I −HQ)W )ii = w2
i

(
σ2
1i

n1i
+

σ2
0i

n0i
− σ2

τi

ni

)
1 +

∑

j 6=i

h2Qij

(1− hQjj)2




Recalling the form of var(∆̂ | F ,Z) and noting that (I −HQ)ΨQ(I −HQ) is positive semidefinite
completes the proof.

Propositions 1 and 2 illustrate that for any constant matrix Q with L < B, the corresponding
projection matrix can be utilized for conservative variance estimation in a finely stratified experiment
through the estimators S2

1(Q) and S2
2(Q) defined in (5) and (6). We will first illustrate that certain

choices of Q recover the standard variance estimator in a paired experiment when using S2
1(Q),

and further suggest two conventional estimators for finely stratified experiments with varying block
sizes. We will then show that the form of the bias expressions in Proposition 1 and 2 provides
insight into choices for Q which will provide improvements in variance estimation.
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4.2 Preliminary conservative variance estimators with equal and unequal block
sizes

Initially, let Q̃1 = [e,We − 1] to be a B × 2 matrix with a constant column along with a column
corresponding to the centered weights (note that B−1

∑B
i=1wi = 1). Define Q1 = Q̃1I2×rank(Q̃1)

,
where Ik×ℓ denotes a matrix of dimension k × ℓ with ones on the diagonal and zeroes everywhere
else; this removes the column We− e when block sizes are equal to avoid rank deficiency. We will
now consider the implications of choosing Q = Q1 in (5) and (6) to define a conservative variance
estimator.

When block sizes are equal Q1 = e, and hence the diagonal elements of the hat matrix associated
with Q1 equal 1/B for each observation. The variance estimator then takes on the simplified form

S2
1(Q1) =

1

B(B − 1)

B∑

i=1

(τ̂i − ∆̂)2.

In the case of matched pairs, this estimator is simply the sample variance of the observed paired
differences divided by the number of pairs, hence recovering the classical variance estimator. Propo-
sition 1 of Imai (2008) for matched pairs can be viewed as a special case of our Proposition 1 with
Q = e. This also indicates that an additive treatment effect model implies unbiasedness of the
estimator S2(Q1) for var(∆̂ | F ,Z) in a finely stratified experiments with equal block sizes, even if
the design is not paired. With equal block sizes, we have that S2

2(Q1) ≥ S2
1(Q1), meaning that the

estimator S2
1(Q1) should always be preferred in this case.

With unequal block sizes, the ith diagonal elements of the hat matrix associated with Q1 is
1/B + (wi − 1)2/

∑B
i=1(wi − 1)2. Since the diagonal elements of the hat matrix depend on wi, the

estimator S2
1(Q1) will be a strict upper bound in expectation for var(∆̂ | F ,Z) under an additive

treatment effect model for finite samples τ̄i = 0 for all i. So long as (wi − 1)2/
∑B

i=1(wi − 1)2 → 0
for all i as B → ∞, the estimator S2

1(Q1) and S2
2(Q1) will both be asymptotically unbiased for

var(∆̂ | F ,Z) under an additive treatment effect (this condition would hold under the assumption
that the block sizes are bounded, for example). In the unequal block case there is no longer a
consistent ordering between S2

1(Q1) and S2
2(Q1), but the discrepancies tend to be minor: as will

be demonstrated Theorem 2, appropriately scaled versions of these two estimators converge in
probability to the same limit under mild conditions.

4.3 Improved variance estimation through exploiting effect modification

For each block i, let x̄i be the vector of length K whose kth entry is the average of the kth covariate
for the individuals in block i, i.e. x̄ik = n−1

i

∑ni

j=1 xijk. Let X̄ be the B × K matrix whose kth

column contains (x̄1k, x̄2k, ..., x̄Bk)
T for k = 1, ...,K. Let M = (I − HQ1

)WX̄ be the weighted
covariate means adjusted for Q1. Let Q2 = [Q1,M ]. While the mutual orthogonality of M , e, and
We − e within Q2 is not required at this point, it facilitates forthcoming illustrations and makes
clearer certain connections to heteroskedasticity consistent standard errors. Let S2

1(Q2) and S2
2(Q2)

be the variance estimators corresponding to setting Q = Q2 in (5) and (6).
To understand the potential benefits of the variance estimator S2

1(Q2), note that from Proposition
1 the bias in BS2

1 is B−1µTW (I − HQ)Wµ. Under mild regularity conditions described in §4.4,
the diagonal elements of the hat matrix associated with Q2 tend to 0 implying that µi ≈ τ̄i in
sufficiently large samples. We can then think of B−1µTW (I−HQ2

)Wµ as, approximately,the mean
squared error from a regression of the weighted treatment effects, W τ̄ , on the weighted covariates,
along with an intercept and a column for the block sizes. If the matrix WX̄ contains covariates

8



which are predictive of the treatment effects in different blocks, S2
1(Q2) could yield a substantially

less conservative estimator for var(∆̂ | F ,Z) than the estimator S2
1(Q1), which does not exploit

potential effect modification.
For S2

2(Q2), there is an additional connection to commonly employed standard error estimators in
linear regression. In fact, since Q2 was constructed such that e is orthogonal to all other columns of
Q2, S

2
2(Q2) exactly corresponds to the square of the HC3 heteroskedasticity consistent standard error

for the intercept column in a regression of W τ̂ on Q2 (MacKinnon and White, 1985; Long and Ervin,
2000). The bias term for BS2

2(Q2) is then approximately equal to B times the HC3 variance for the
intercept column of a regression of W τ̄ on Q2, which is itself a close approximation to the mean
squared error from a regression of the weighted treatment effects W τ̄ on Q2.

Importantly, Propositons 1 and 2 make no assumption about the truth of the linear model
generating the projection matrix HQ. While the magnitude of the improvement from using S2

ℓ (Q2)
instead of Sℓ(Q1) for ℓ = 1, 2 depends on how well the weighted covariate means WX̄ predict W τ̄ ,
any choice of Q in (5) or (6) will yield a variance estimator which is conservative in expectation
for var(∆̂ | F ,Z). As will now be shown, under mild conditions S2

ℓ (Q2) is asymptotically no worse
than S2

ℓ (Q1) for ℓ = 1, 2 regardless of the functional form describing the relationship between the
observed covariates and the stratum-specific treatment effects. Further, both B(S2

1(Q1)− S2
2(Q1))

and B(S2
1(Q2)− S2

2(Q2)) converge in probability to zero.

4.4 Asymptotic performance of variance estimators

We now give sufficient conditions which enable asymptotically valid inference for ∆̄ to proceed using
S2
ℓ (Q1) and S2

ℓ (Q2) for ℓ = 1, 2. In so doing, we will also quantify the potential improvements from
exploiting effect modification through the variance estimator. The finite population asymptotics
presented herein embed a given experiment with B strata within an infinite sequence of experiments
with increasingly many blocks. To reflect their changing values along this sequence, quantities such
as ∆̄, M and W should be subscripted by B for precision of notation; we omit this, trading precision
for readability. Let HM = M(MTM)−1MT be the hat matrix associated with M as defined in the
previous section, and consider the following regularity conditions.

Condition 1. (Bounded Block Sizes) There exists a C1 < ∞ such that ni < C1 for all i and all B
as B → ∞.

Condition 2. (Bounded Fourth Moments). There exists a C2 < ∞ such that, for all B,
B−1

∑B
i=1

∑ni

j=1w
4
i r

4
1ij/ni < C2, B

−1
∑

i=1 w
4
i r

4
0ij/ni < C2, B

−1
∑

i=1 w
4
i τ̄

4
i < C2 and

B−1
∑B

i=1

∑ni

j=1w
4
i x

4
ijk/ni < C2 for k = 1, ..,K.

Condition 3. (Existence of Population Moments).

• B−1
∑B

i=1 wiτ̄i, B
−1
∑B

i=1 w
2
i τ̄i, B

−1
∑B

i=1w
2
i τ̄

2
i and B−1

∑B
i=1w

2
i (σ

2
1i/n1i +σ2

0i/n0i −σ2
τi/ni)

converge to finite limits as B → ∞.

• B−1
∑B

i=1 wiτ̄imik converges to a finite limit for k = 1, ...,K as B → ∞. Let ηM be the vector

of length k containing these limits, i.e. ηMk = limB→∞B−1
∑B

i=1 wiτ̄imik.

• B−1MTM converges to a finite, invertible matrix as B → ∞. Call this limit ΣM .

Let βM = Σ−1
M ηM . The following theorems illustrate that S2

ℓ (Q1) and S2
ℓ (Q2) for ℓ = 1, 2 can all

be used to conduct asymptotically conservative inference for the sample average treatment effect,
∆̄. After establishing asymptotic normality, we demonstrate that inference using S2

ℓ (Q2) will be no
less powerful than that conducted using S2

ℓ (Q1) for ℓ = 1, 2.
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Theorem 1. Under Conditions 1-3 and conditional on F and Z,

√
B(∆̂ − ∆̄)

d→ N
(
0, B−1

B∑

i=1

w2
i

(
σ2
1i

n1i
+

σ2
0i

n0i
− σ2

τi

ni

))
.

Theorem 2. Under Conditions 1-3 and conditional on F and Z, then for ℓ = 1, 2,

BS2
ℓ (Q1)− var(

√
Bτ̂ | F ,Z)

p→ lim
B→∞

1

B
τ̄TW (I −HQ1

)W τ̄ ;

BS2
ℓ (Q2)− var(

√
Bτ̂ | F ,Z)

p→ lim
B→∞

1

B
τ̄TW (I −HQ2

)W τ̄

= lim
B→∞

1

B
τ̄TW (I −HQ1

)W τ̄ − βT
MΣMβ.

Corollary 1. For ℓ = 1, 2,

BS2
ℓ (Q1)−BS2

ℓ (Q2)
p→ βT

MΣMβM ≥ 0.

The proofs are deferred to the appendix. The above results, in concert with Propositions 1 and
2, justify multiple means by which inference can be conducted for the sample average treatment
effect, ∆̄, in finely stratified experiments. The results validate new standard error estimators for
inference on the SATE in finely stratified experiments while using classical weighted difference-
in-mean estimator. Furthermore, these results highlight how effect modification can be leveraged
to reduce the degree of conservativeness of the performed inference. As Corollary 1 demonstrates,
standard errors derived by including suitably weighted average values for covariates within blocks
are, asymptotically, never worse than those derived without including covariate information.

5 Consonant and dissonant super-population formulations

5.1 Population-level causal estimands

The preceding results make no assumptions about the manner by which individuals were selected
for inclusion into the block-randomized experiment in the first place; that is, they neither require
nor postulate the existence of a larger population from which individuals were drawn. The tar-
get of estimation, the sample average treatment effect, attests merely to the treatment effect for
individuals in the sample at hand, and the act of randomization provides a reasoned basis for mak-
ing probabilistic statements (Fisher, 1935). That being said, it is sometimes desired to postulate
that individuals in the study at hand were in fact draws from a super-population, and to perform
inference on the average treatment effect within that super-population.

5.2 Conditional average treatment effect (CATE)

As an initial super-population extension, suppose we consider the covariates xij and the block sizes
{n1, ..., nB} as fixed and consider the pairs of potential outcomes (r1ij , r0ij) as having arisen through
the following sampling mechanism.

(r1ij , r0ij) = (f1i(xij), f0i(xij)) + (ǫ1ij , ǫ0ij),

where (ǫ1ij , ǫ0ij) are drawn from an arbitrary distribution with mean (0, 0) and block-specific
variance-covariance matrix Σiǫ. Let f1ij = f1i(xij), and let f0ij = f0i(xij). Let C = {xij} be

10



the set containing the covariates for all individuals. Within this super-population abstraction, the
conditional average treatment effect, or CATE, in a finely stratified experiment is defined as

∆̄(C) =
1

N

B∑

i=1

ni∑

j=1

(f1ij − f0ij) (7)

Let f̄i = n−1
i

∑ni

j=1(f1ij − f0ij), and let f̄ = (f̄1, ..., f̄B)
T . Note that (7) reflects the view of the

covariates as fixed, in much the same way that conventional least squares theory operates under
the assumption of fixed covariates. The classical unbiased estimator for the overall conditional
average treatment effect remains the weighted difference-in-means estimator given in (1). The true
variance for this estimator is inflated, as unlike with the sample average treatment effect we no
longer condition on the potential outcomes in each block. Nonetheless, we now demonstrate the
variance estimators S2

1(Q) given in (5) and S2
2(Q) given in (6) remain conservative estimators in

expectation for var(∆̂ | C,Z).

Proposition 3. If Q is constant across all elements of Ω:

E[S2
1(Q) | C,Z]− var(∆̂ | C,Z) =

1

B2
gTW (I −HQ)Wg ≥ 0,

where g is a vector of length B with gi = (1− hQii)
−1/2f̄i. Further,

E[S2
2(Q) | C,Z]− var(∆̂ | C,Z)

=
1

B2

B∑

i=1

w2
i var(τ̂i | C,Z)

∑

j 6=i

h2Qij

(1− hQjj)2
+

1

B2
fTW (I −HQ)ΨQ(I −HQ)W f ≥ 0

The proof is analogous to that of Propositions 1 and 2. The insights from Theorem 2 similarly
extend variance estimation for the conditional average treatment effect: through using regression
adjustments on the average level of the covariates in a given block results in less conservative variance
estimators, with the degree of improvement now dependent on the extent to which the average of
the weighted covariates in a given block are able to predict wifi, the weighted conditional average
treatment effect in a block given the covariate values.

In the case of equal block sizes, if the stratum-level treatment effects are homoskedastic (i.e.
var(τ̂i | C,Z) is constant across all blocks), then we are also entitled to an additional variance
estimator connected to HC2 standard errors. Let Ψ̃Q be a diagonal matrix whose ith diagonal
element is Ψ̃Qii = 1/(1− hQii), and define S2

3(Q) as

S2
3(Q) =

1

B2
τ̂ TW (I −HQ)Ψ̃Q(I −HQ)W τ̂ , (8)

Proposition 4. If Q is constant across all elements of Ω, block sizes are equal (such that W = I),
and var(τ̂i | C,Z) is constant across blocks:

E[S2
3(Q) | C,Z]− var(∆̂ | C,Z) =

1

B2
f̄T (I −HQ)Ψ̃Q(I −HQ)f̄ ≥ 0.

The proof is deferred to the appendix. In the general case with across block heteroskedasticity,
unequal block sizes, or when conducting inference on the the sample average treatment effect S2

3(Q)
need not be conservative in expectation. It does, however, converge in probability to the same
limiting value as S2

1(Q) and S2
2(Q), indicating that the prospect of anticonservative inference through

S2
3(Q) may only be a realistic concern in small samples.
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These developments demonstrate that the modes of inference presented for the sample average
treatment effect in §4 yield harmonious extensions to inference on the conditional average treatment
effect. That is, hypothesis tests and confidence intervals for the sample average treatment can also
be interpreted as hypothesis tests and confidence intervals for the conditional average treatment
effect should the practitioner deem the super-population formulation.

5.3 Population average treatment effect (PATE)

As an alternative super-population formulation, suppose we now consider the block sizes {n1, ..., nB}
as fixed, but the covariates within a given block, {xi1, ...,xini

} as random. We now consider the
pair of potential outcomes {r1ij , r0ij} as having arisen through the following model:

xij = ζi + εij

(r1ij , r0ij) | xij = (f1i(xij), f0i(xij)) + (ǫ1ij , ǫ0ij),

where ζi are block-specific fixed effects, εij are iid from some mean zero, finite variance distribution
G, and the (ǫ1ij , ǫ0ij) are drawn iid from an arbitrary distribution F with mean (0, 0) and block-
specific variance-covariance matrix Σiǫ. Within this super-population abstraction, the population
average treatment effect, or PATE, in a finely stratified experiment is defined as.

∆̄(P ) =
B∑

i=1

(ni/N)

∫
(f1i(ζi + εij)− f0i(ζi + εij))dG(εij) (9)

The classical weighted difference-in-means estimator ∆̂ remains an unbiased estimator for the
population average treatment effect. Imai (2008) consider this model in a paired experiment with
ζi = ζ0 for all i. Therein, they demonstrate not only that the average of the paired differences yields
an unbiased estimator for the average population average treatment effect, but that the classical
variance estimator for the difference-in-means, S2

P , is an unbiased estimator for var(∆̂|Z) regardless
of whether or not the underlying treatment effect is additive.

It is here that we see the potential incongruity between inferential methods for the sample
average treatment effect and for the population average treatment effect appear. The improvements
presented herein empower the practitioner to use the average level of the covariates within a given
block as a means to improve variance estimation when the sample or conditional average treatment
effects are the targets of estimation. If the target is instead the population average treatment effect
as formulated in this section, randomness in {xij} renders these conclusions inapplicable. As an
illustration, consider the expectation of S2

1(Q2) within this super-population formulation.
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E[S2
1(Q2) | Z] = E[E[S2

1(Q2) | Z, C]]

= E[var(∆̂ | Z, C)] + 1

B2
E[gTW (I −HQ2

)Wg | Z]

= var(∆̂ | Z)− var


 1

N

B∑

i=1

ni∑

j=1

(f1i − f0i) | Z


+

1

B2
E[gTW (I −HQ2

)Wg | Z]

= var(∆̂ | Z)− var


 1

N

B∑

i=1

ni∑

j=1

(f1i − f0i) | Z


+

1

B2
E[gTW (I −HQ1

)Wg | Z]

− 1

B2
E[gTWHMWg | Z]

≈ var(∆̂ | Z) +
1

B2
E[g | Z]TW (I −HQ1

)WE[g | Z]− 1

B2
E[gTWHMWg | Z],

where the approximation stems from ignoring the division by
√

1− hQ2ii in
gi = f̄i/

√
1− hQ2ii in the term E[gTW (I −HQ1

)Wg | Z], a safe approximation in large samples.

The last line need not be greater than var(∆̂ | Z). For example, in the case where ζi = ζ0 for all
i, it will approximately equal var(∆̂ | F) − B−2

E[gTWHMWg | Z], meaning that it provides an
underestimate. In short, the implications of this derivation are that effect modification cannot be
safely exploited in variance estimation when conducting inference for the PATE as defined in (9),
while it can be exploited for inference on the SATE and CATE. Valid inference for the sample
average treatment effect using the developments in §4 may, or may not, be anti-conservative for
inference on the population average treatment effect depending on whether or not the corresponding
variance estimator was constructed using M , the average level of the covariates. As a consequence,
S2
1(Q2) and S2

2(Q2) cannot be relied upon to yield valid inference for the PATE.
The above derivation also illustrates that if the covariate means X̄ were not present, the issue

with potentially anti-conservative variance estimation disappears. That is, S2
1(Q1) and S2

2(Q1) can
safely be utilized when conducting inference on PATE since these estimators do not exploit effect
modification. Similar dissonance for variance estimates for population average treatment effects
versus sample average treatment effects is also observed when conducting inference after regression
adjustment in completely randomized experiments; compare, for example the suggested variance
estimator of Pitkin et al. (2013) and Berk et al. (2013) to that of Lin (2013).

6 An exact test for additivity with power under linear effect mod-

ification

The developments of the previous sections naturally lend themselves to a new test of the null
hypothesis of an additive treatment effect model when the researcher suspects the presence of effect
modification on the basis of observed covariates. Suppose we want to test the null hypothesis of an
additive treatment effect model against the alternative that there is effect heterogeneity,

Ho : τij = ∆̄ for some ∆̄, for all i = 1, .., B; j = 1, .., ni

Ha : τij 6= τi′j′. for some i, i′, j, j′

13



Let F (Z) be the F -ratio for a partial F -test comparing a regression of W τ̂ on Q1 to one on
Q2 = [Q1,M ] = [Q1, (I −HQ1

)WX̄ ] with observed treatment allocation Z,

F (Z) =

(
τ̂ TW (I −HQ1

)W τ̂ − τ̂ TW (I −HQ2
)W τ̂

τ̂ TW (I −HQ2
)W τ̂

)
B − rank(Q2)

K

=

(
τ̂ TWHMW τ̂

τ̂ TW (I −HQ2
)W τ̂

)
B − rank(Q2)

K
,

where the second line stems from orthogonality of M and Q1. Small values for this ratio indicate that
the reduction in residual variation from using Q2 was modest relative to the model only containing
Q1. Large values for this ratio indicate substantial reduction in residual variation from exploiting
effect modification through Q2.

Note that while the null hypothesis specifies that the treatment effect is additive, it does not
specify the value of the additive treatment effect. That is, in general the true value of the additive
effect, call it ∆̄0, is a nuisance parameter for the desired inference. Fortunately, our choice of test
statistic eschews this dependence.

Proposition 5. F (Z) is a pivotal statistic for testing the null of an additive treatment effect in a
finely stratified experiment.

Proof. Suppose the null hypothesis was true and that the additive treatment effect equaled ∆̄0.
Note then that in the ith block, wiτ̂i can be written as

wiτ̂i = wi

ni∑

j=1

(
Zij(r0ij + ∆̄0)/n1i − (1− Zij)r0ij/n0i

)

= wi∆̄0 + wi

ni∑

j=1

(Zijr0ij/n1i − (1− Zij)r0ij/n0i) ,

Hence, the vector W τ̂ i can be broken into the sum of two vectors, one of which is a mean zero
random variable, and the other being the deterministic vector ∆̄0We. To complete the proof, simply
note that We is in the columnspace of both Q1 and Q2, such that the term ∆̄0We drops out of
both the numerator and denominator of F (Z).

Let t be the observed value of F (Z) in the sample at hand. To compute a p-value corresponding
to t, we can simply choose an arbitrary value for the additive treatment effect, say ∆̄0 = 0, and
compute the randomization distribution of F (Z) which is entirely specified under the null,

pval =
1

|Ω|
∑

z∈Ω

χ {F (z) ≥ t | F ,Z, τij = 0 ∀ i, j} , (10)

where χ{A} is an indicator that the event A occurred.
Among alternatives to strict additivity, the test will be more powerful when there exists effect

modification that is well modeled by a regression on Q2. The test will not be particularly powerful
when there exists heterogeneity that is not well modeled as a linear function of the covariates which
compose Q2. Regardless, the test will maintain the desired size even in finite samples as, for each
fixed value of ∆̄0, the distribution of T (Z) can be computed exactly under the null of additivity.

Note that, in principle, other estimation procedures beyond linear regression could be used to
compare sums of squared errors including and not including the observed covariates. In general,
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the corresponding test statistics will not be pivotal, meaning that their distribution could depend
on the value of the additive treatment effect. This can be accommodated through the technique
of Berger and Boos (1994) by first finding 1 − γ confidence interval for the value of ∆̄ through
inversion of randomization tests under the assumption of additivity (Rosenbaum, 2002), and finding
the maximal p-value for the test statistic for values of ∆̄0 within the confidence interval, and adding
γ to the result. See Ding et al. (2015) for a recent application of this idea to testing for effect
variation in completely randomized experiments.

7 Illustrations and simulations

7.1 Variance estimation in finely stratified experiments

We now explore the improvements in inference for the SATE and CATE that can be attained
by exploiting effect modification, and illustrate our caveat about these benefits not extending to
inference on the PATE. There are B blocks, 0.4B of which are triplets and 0.6B of which are pairs.
The blocks are formed by taking an iid sample of a k = 10 dimensional vector of covariates xi,
where each component is iid uniform on the interval [0,1]. Modifying the function utilized in the
simulation study of Friedman (1991) to remove linear terms, for each block-level covariate vector xi

we then sample potential outcomes under treatment and control from the following distribution:

r1ij = a
(
10 sin(πxi1xi2) + 20(xi3 − 1/2)2 + 10 exp(xi4) + 5(xi5 − 1/2)3

)
+ bǫij (11)

r0ij = 10 sin(πxi1xi2) + 20(xi3 − 1/2)2 + 10 exp(xi4) + 5(xi5 − 1/2)3 + ǫij

ǫij
iid∼ N (0, 1)

For the simulations in this subsection, we set B = 100 for the number of strata, and a = 2
and b = 2 in (11). Under this specification the average treatment effect at the population level,
∆̄(P ), is roughly 24.1, and is fixed as an estimand across samples. Further, var(∆̂ | Z = 0.437. The
sample average treatment effect, ∆̄, and the conditional average treatment effect, ∆̄(C), vary with
each realization, as their definitions depend on F and C respectively. There is effect heterogeneity
present, as E[τij | C] = 10 sin(πxi1xi2)+20(xi3−1/2)2+10 exp(xi4)+5(xi5−1/2)3. In this generative
model, E[var(∆̂ | C,Z)] = 0.443, and E[var(∆̂ | F ,Z)] = 0.401. In each simulation, we

1. Simulate covariates xi, i = 1, ..., 100 and potential responses (r1ij , r0ij), j = 1, .., ni, setting
ni = 3 for 40 blocks and ni = 2 for 60 blocks

2. Compute the variance estimators S2
1(Q), S2

2(Q), and S2
3(Q)

We form the matrix Q used to compute the variance estimators in three ways,

1. None. Only including a constant column and the stratum weights .

2. Correct. Including a constant column, stratum weights, and weighted transformed covariates
wi sin(πxi1xi2), wi(xi3 − 1/2)2, wi exp(xi4), wi(xi5 − 1/2)3 (Correct).

3. Incorrect. Including a constant column, stratum weights, and weighted values for the original
10 covariates (without transformation), wixik, k = 1, ..., 10.

The functional form for effect modification is thus correctly specified within the second form, and
incorrectly specified in the third form.
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Table 1: Expectations for variance estimators for various matrices Q. Target expectations for valid
inference on the SATE, CATE, and PATE are 0.0401, 0.0443, and 0.437 respectively.

Covariates in Q
None Correct Incorrect

S2
1(Q) 0.437 0.0460 0.108

S2
2(Q) 0.447 0.0474 0.126

S2
3(Q) 0.437 0.0443 0.110

Table 1 shows the results of this simulation. We see that, as Propositions 1-4 guarantee, S2
1(·)

and S2
2(·) remained conservative in expectation for the variances for estimating the SATE and

CATE for all choices of Q. Using the correctly specified covariates allows the expectations to
come closest to the true values for the variances, while the incorrect specification still performs
substantially better than ignoring the covariates altogether. For inference on the PATE, we see
that only the choice of Q which ignores the covariates yields a valid estimator for the variance; the
choices incorporating the covariates would produce substantially anticonservative inference for the
population average treatment effect. While not guaranteed to be as such in this simulation, we
see that S2

3(·) produced estimators which remained conservative in expectation for inference on the
SATE and CATE for all three choices of Q, and for the PATE through the choice of Q ignoring
the covariates.

7.2 Testing for effect heterogeneity

We now demonstrate the test for effect modification proposed in §6. We use a similar generative
model for the covariates as was employed in §7.1, but we instead set b = 1 and conduct the test for
effect heterogeneity for increasing values of a in (11). At a = 1, the null hypothesis of additivity is
true; all values a 6= 1 imply that the null is false. We also set B = 20 as a means of illustrating the
exactness of the test. As in the previous section, we conduct the test utilizing both the correct and
incorrect specification for the functional form of the covariates in forming the matrix Q2. Hence, in
each iteration we

1. Simulate covariates xi, i = 1, ..., 20 and potential responses (r1ij , r0ij), j = 1, .., ni, setting
ni = 3 for 8 blocks and ni = 2 for 12 blocks

2. Randomly allocate individuals to treatment or control in accordance with the finely stratified
design, recording the observed outcomes and the value for the test statistic F (Z)

3. Estimate the permutation p-value in (10) through Monte Carlo simulation.

We set α = 0.05 for this study. Figure 1 shows the power of our testing procedure as a function
of a, under both correct and incorrect specifications for Q2. Note that at a = 0 our tests have the
correct size. As a increases, the power increases for both choices of Q2, but more rapidly for the
correct choice of Q2. Hence, while the specification of Q2 affects the power of the test, it does not
affect its validity in terms of maintaining the desired Type I error rate.
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Figure 1: The power of the permutation test for effect modification under both correct and incorrect
covariate specification as a function of a, which controls the departure from additivity. a = 1
corresponds to the null being true. The horizontal line corresponds to α = 0.05, the desired size in
the simulation.

7.3 Pairs or quartets?

In this study, we explore the extent to which the analytical limitations of paired experiments de-
scribed in the introduction are mitigated by the methods presented herein. In our simulation study,
we have N = 80 total individuals. We have a single covariate for each individual. In our study,
we fix the observed values for the covariate at x = (0.25, 0.25, 0.5, .0.5, ..., 10, 10). Hence, there are
40 pairs of individuals who share the same value for the covariate, hence forming natural pairs.
Due to concerns over the analytical limitations of paired experiments, the practitioner may instead
choose to create 20 quartets of individuals, namely those taking on values {0.25, 0.25, 0.5, 0.5},
{0.75, 0.75, 1, 1},....{9.75, 9.75, 10, 10}.

For each experiment, we generate potential outcomes for individual j as

r1j = 100 + 30xj + ǫj, r0j = 20xj + ǫj, ǫj
iid∼ N (0, 102).

xj is thus an effect modifier, as the treatment effect for individual j is 100 + 10xj . We first
consider two situations: one in which the practitioner has access to x itself, and one in which the
practitioner instead has access to bj = exp(xj/3) for each individual. Let Qx be the B × 2 matrix
with e in the first column and the value of xj defining each pair in the second column, and let Qb

be the analogous for the incorrectly specified covariate bj . We imagine the target of inference is the
conditional average treatment effect, and hence seek to estimate var(∆̂ | C,Z) for both the paired
and quartet design. Under this specification, we simply utilize the bias formulae in Propositions 1, 2
and 4 to calculate the expectation for the variance estimators S2

P , S2
ℓ (Qx) and S2

ℓ (Qb) for ℓ = 1, 2, 3.
For the quartet design, we simply compute the true value of the variance, along with the bias of the
conventional estimator S2

CS.
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Table 2: A comparison of variance estimation in the paired and quartet designs

Pairs Quartets

Covariates var(∆̂) S2
P S2

1 S2
2 S2

3 var(∆̂) S2
CS

5.00 21.35 - - - 5.65 5.68
Correct, Linear - - 5.09 5.26 5.00 - -
Incorrect, Linear - - 7.12 8.76 8.25 - -
Correct, Cubic - - 5.52 5.59 5.00 - -
Incorrect, Cubic - - 7.23 6.06 5.24 - -

Table 2 contains relevant numerical information for comparing estimation under the two de-
signs. We first see that the true variance under the paired design is smaller than that under the
quartet design (5.00 vs 5.65), such that if we had access to this true variance the paired design
would undoubtedly be preferred; however, the classical variance estimator in a paired experiment
has an expectation of 21.35, while the classical variance estimator in the quartet experiment has an
expectation of 5.68. This comparison of conventional variance estimators highlights the motivation
for recommending quartet experiments over paired experiments within the literature. In the rows
labeled “Correct, Linear" and “Incorrect, Linear" we see the improvements in variance estimation
both under proper specification and misspecification of the response function. When the response
function is properly specified both S2

1(Qx) and S2
2(Qx) are lower in expectation than S2

CS, show-
ing that proper modeling of the treatment effect heterogeneity provides variance estimators whose
expectations are smaller than that of the coarsely stratified experiments. When the heterogeneity
is not properly modeled, improvements in the variance estimator are still attained; however, the
expectations for the variance estimators now exceed that from the quartet experiment.

Recall once again that the findings of Propositions 1 and 2 facilitate conservative estimation of
the variance for any fixed matrix Q. This allows us, before conducting the experiment, to decide
to include polynomial terms in the matrix Q to more flexibly model the relationship between the
covariates at hand and the treatment effects. Suppose we now add quadratic and cubic terms of x
and b, calling the corresponding matrices Qx3 and Qb3 respectively. In the last two rows of 2, we
consider the performance of S2

1(Qx3), S
2
1(Qb3), S

2
2(Qx3), and S2

2(Qb3). We see that both S2
1(Qx3)

and S2
2(Qx3) have a larger expectation than what was attained when we omitted the polynomial

terms. By adding two more predictor variables, the sum of diagonals of the correspond hat matrix
increases from 2 to 4, hence resulting in additional inflation of residuals. For S2

1(Qb3), we see that
this inflation has also swamped any benefit from flexibility in modeling as its expectation is larger
than that of S2

1(Qb). For S2
2(Qb3), we see that the additional flexibility has been beneficial, and the

expectation for the variance estimator has decreased relative to S2
2(Qb3), although not enough to

fall below the level of S2
CS.

A component of the remaining conservativeness of the estimators S2
1(Qb3) and S2

2(Qb3) stems from
our variance estimators being unbiased in expectation regardless of the degree of heteroskedasticity
across blocks, and hence having to be inflated in the presence of high leverage points. If one is
willing to do away with the requirement, S2

3(Qb3) becomes an appealing estimator. This estimator
combines elements of S2

1(Q), essentially adjusting the variance estimator by 1/(1 − hQii) instead
of 1/(1 − hQii)

2, and S2
2(Q), by adjusting residuals instead of responses to account for influential

points. The column labeled S2
3(·) corresponds to this estimator. In the setting considered herein,

it is exactly unbiased with Qx and Qb3, owing to the fact that var(τ̂i | C,Z) is constant across
pairs. It is necessarily less conservative than S2

2(·) for all four choices of Q considered, and it is
less conservative than S2

1(·) for all choices of Q except for Qb. As B decreases the estimators all
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converge to the same limit, yet here we see the potential benefits of using the estimator S2
3(·).

8 An example: The Children’s Television Workshop Experiment

Ball et al. (1973) designed an experiment to evaluate an educational television program which sought
to improve reading skills for young children. §10.7 of Imbens and Rubin (2015) examined a subset
of the experiment conducted in Youngstown, Ohio with B = 8 primary schools. In each school, a
pair of first-grade classes was selected, with one class in each pair assigned to watch the show during
reading class and the other class assigned to continuing with the usual curriculum. Each class has
a pre-test score assessing average reading ability, xij in our notation, along with a post-test after
the experiment, Rij = Zijr1ij + (1− Zij)r0ij , where Zij is 1 if the class was shown the educational
program The Electric Company. τ̂i is the difference between the observed treatment and control
scores on the post-test in the ith pair.

In this data set, the conventional difference-in-means estimator was τ̂ = 13.4, with an observed
value of the conventional standard error of SP = 4.6. We now consider using the estimators
developed herein to improve upon this standard error estimate. We include linear and quadratic
terms in the covariates, defining Q2 = [e, (I − eeT /B)X̄], where the {i, 1} entry of X̄ is x̄i1 =
(xi1 + xi2)/2, and the {i, 2} entry of X̄ is x̄i2 = (x2i1 + x2i2)/2. The values for S1(Q2), S2(Q2),
and S3(Q2) are 4.2, 4.34, and 3.57 respectively. All three estimators would thus facilitate the
construction of narrower confidence intervals than the ones constructed using SP while maintaining
the conclusion that the treatment was effective at α = 0.05. As noted, S2

3(Q2) is not in general
unbiased for the variance when the target of inference is the sample average treatment effect, so the
discrepancy between this estimator and the other two may well stem from downwards bias. This
concern is not relevant for the other two estimators, a reason to prefer them particularly in small
samples.

9 Discussion

When the target of estimation is either the sample or the conditional average treatment effect,
the developments presented in this work facilitate improved variance estimation for finely stratified
experiments for inference conducted based on both the conventional difference-in-means estimator
and estimators utilizing regression adjustment. As the simulation study in §7.3 illustrated, these
have certainly mitigated the analytical limitations of finely stratified experiments by providing
more powerful inference than that available through classical variance estimators, yet the analytical
issues have not been entirely resolved. If the regression model is grossly misspecified, the variance
estimators presented herein may not provide an improvement over that of an experiment with blocks
of size four.

One direction for future research is investigating the extent to which the improvements presented
in this work can be employed in the super-population setting considered by van der Laan et al.
(2012) wherein rather than pairs being drawn iid, individuals are drawn iid and then optimally
paired after being selected into the study. More generally, the nature of these improvements raise
additional questions about the extent to which inference on local estimands in randomized exper-
iments should be transferable to population-level estimands in popular super-population formula-
tions. With respect to the conventional variance estimator in a completely randomized experiment
Imbens and Rubin (2015) describe the consonance between finite-population and super-population
inference through this variance estimator as an “attractive property." (Imbens and Rubin, 2015,
§6.7, p.101). Yet as was noted in §6.3, variance estimators which exploit effect heterogeneity can
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yield anticonservative inference at the level of the PATE as defined in Imai (2008). Our perspec-
tive is that rather than detracting from the appeal of these new estimators, this dissonance forces
the researcher to critically assess the question, “to whom does the inference apply?" The answer
is often left ambiguous in the analysis of randomized experiments, and iid assumptions are often
made vacuously, without consideration of the true nature of the process by which the data came to
be and the corresponding ramifications for the integrity of the performed inference.

A Lemmas

Lemma 1. Under Conditions 1-3, B−1
∑B

i=1 wiτ̂imik converges in probability to

lim
n→∞

B−1
∑n

i=1wiτ̄imik for any k = 1, ..., rank(M). Further, and B−1
∑B

i=1w
2
i τ̂i and B−1

∑B
i=1 wiτ̂i

converges in probability to lim
n→∞

B−1
∑n

i=1w
2
i τ̄i and lim

n→∞
B−1

∑n
i=1 wiτ̄i respectively.

Proof. We prove the result for B−1
∑B

i=1 wiτ̂imik; the proof for the remaining two weighted sums

are analogous. For any k, E[B−1
∑B

i=1 wiτ̂imik | F ,Z] = B−1
∑B

i=1wiτ̄imik, which has a finite limit
by Condition 3. We now show that var(B−1

∑n
i=1 wiτ̂imik | F ,Z) converges to zero.

var

(
B−1

n∑

i=1

wiτ̂imik | F ,Z
)

= B−2
B∑

i=1

w2
i

(
σ2
1i/n1i + σ2

0i/(n0i)− σ2
τi/ni

)
(mik)

2

≤ B−2





B∑

i=1




ni∑

j=1

w2
i (r

2
1ij + r20ij)




2


1/2{
B∑

i=1

m4
ik

}1/2

≤ B−2





B∑

i=1

n2
i




ni∑

j=1

w4
i (r

4
1ij/ni + r40ij/ni)







1/2{
B∑

i=1

m4
ik

}1/2

≤ C1C2/B

by Conditions 2 and 3, which tends to zero as B → ∞. Chebyshev’s inequality and Condition 3
complete the proof.

Lemma 2. Under Condition 2, hii → 0.

Proof. From Condition 2, we have that B−1MTM converges to a finite, invertible matrix; let
Λ = (limB→∞B−1MTM)−1. Note that hii = mT

i (M
TM)−1mi = B−1(mi)

T (B−1MTM)−1(mi)

lim
B→∞

hii = lim
B→∞

B−1mT
i Λmi = 0

Lemma 3. Under Conditions 1-3 and conditional on F ,Z,

B−1
B∑

i=1

w2
i τ̂

2
i

p→ lim
B→∞

B−1
B∑

i=1

w2
i

(
τ̄2i + σ2

1i/n1i + σ2
0i/(n0i)− σ2

τi/ni

)
,
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Proof. We have that E[B−1
∑B

i=1w
2
i τ̂

2
i | F ,Z] = B−1

∑B
i=1w

2
i (τ̄

2
i + σ2

1i/n1i + σ2
0i/(n0i) −σ2

τi/ni).

It suffices to show that var(B−1
∑B

i=1 w
2
i τ̂

2
i | F ,Z) converges to zero.
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B−1

B∑

i=1

w2
i τ̂

2
i | F ,Z

)

= B−2
B∑
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var(w2
i τ̂

2
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4
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4
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r40ij/n
4
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≤ 2C4
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which tends to zero as B → ∞.

B Proof of Theorem 1

Noting that the random variables wiτ̂i are independent, it suffices to show that the triangular
array version of Lyapunov’s condition is satisfied. Let s2B =

∑B
i=1 var(wiτ̂i | F ,Z). As was

demonstrated in the proof of Lemma 3, B−1
∑B

i=1 E[w
4
i τ̂

4
i | F ,Z] ≤ C∗

1 for a constant C∗
1 . By

Condition 2, B−1
∑B

i=1w
4
i τ̄

4
i ≤ C2 for a constant C2. Further, by Condition 3 we have that

s2B/B = B−1
∑B

i=1 w
2
i

(
σ2
1i/n1i + σ2

0i/(n0i)− σ2
τi/ni

)
has a finite limit as B → ∞, call it L∗. Hence,

using a standard moment inequality,

lim
B→∞

1

s4B

B∑

i=1

E[|wiτ̂i − wiτ̄i|4 | F ,Z] ≤ lim
B→∞

8

B2(s2B/B)2
B

B∑

i=1

E[w4
i τ̂

4
i | F ,Z]/B + w4

i τ̄
4
i /B

≤ lim
B→∞

8

B2L∗
B(C∗

1 + C2) = 0.

The conditions for Lyapunov’s Central Limit Theorem are thus satisfied for s−1
B

(∑B
i=1 wi(τ̂i − τ̄i)

)
.

C Proof of Theorem 2

We prove the result for S2
1(Q2) in the case of unequal block sizes. Let ηQ1

= [∆̄, B−1 limB→∞(wi−
1)wiτ̂i]. Let ΣQ1

be a 2×2 diagonal matrix with ΣQ111 = 1 and ΣQ122 = limB→∞B−1
∑B

i=1(wi−1)2.
Let βQ1

= Σ−1
Q1

ηQ1
. Recalling that Q1 and M are orthogonal, we decompose BS2

1(Q2) as

BS2
2(Q2) = B−1(yTW (I −HQ2

)Wy)

= B−1
(
yTWWy − yTWQ1(Q

T
1 Q1)

−1QT
1 Wy − yTWM(MTM)−1MTWy

)
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B−1yTWWy converges in probability to limB−1(
∑B

i=1 w
2
i (τ̄

2
i + σ2

1i/n1i + σ2
0i/(n0i) − σ2

τi/ni)) by
Lemmas 1 and 3. By Lemmas 2 and 3, B−1yTWQ1(Q

T
1 Q1)

−1QT
1 Wy converges in probability to

βT
Q1

ΣQ1
βQ1

, and B−1yTWM(MTM)−1MTWy converges in probability to βT
MΣMβM . Hence,

B
(
S2
1(Q2)− var(∆̂ | F ,Z)

)
p→ B−1τ̄TW (I −HQ2

)W τ̄

as desired. The proof for S2
1(Q1) simply follows by eliminating the terms above pertaining to the

matrix M . The proofs for S2
2(Q1) and S2

2(Q2) are analogous.

D Proof of Proposition 4

Proof. Define f̄ as before, and let Σ̃ be the covariance matrix for τ̂ | C, which by assumption
homoskedasticity and equal block sizes has constant diagonal elements, call them ν.

B2E[S2
3(Q) | F ,Z] = tr(Σ̃(I −HQ)Ψ̃Q(I −HQ)) + f̄T (I −HQ)Ψ̃Q(I −HQ)f̄ .

The trace of Σ̃(I −HQ)Ψ̃Q(I −HQ) is given by

tr(Σ̃W (I −HQ)Ψ̃Q(I −HQ)W ) = ν

B∑

i=1


(1− hQii) +

∑

j 6=i

h2Qij

1− hQjj




= ν
B∑

i=1


(1− hQii) +

∑

j 6=i

h2Qij

1− hQii




= ν
B∑

i=1

(1− hQii + hQii) = Bν

The second line utilizes symmetry of I −HQ, while the third utilizes idempotence of HQ, implying

that
∑

j 6=i h
2
Qij = hQii(1 − hQii). Noting that var(∆̂ | F ,Z) = ν/B under the assumptions of the

proposition and that (I −HQ)Ψ̃Q(I −HQ) is positive semidefinite completes the proof.
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