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ABSTRACT
The fluid-structure energy transfer of a tensioned beam of

length to diameter ratio200, subject to vortex-induced vibrations
in linear shear flow, is investigated by means of direct numerical
simulation at three Reynolds numbers, from110to 1,100. In both
the in-line and cross-flow directions, the high-wavenumber struc-
tural responses are characterized by mixed standing-traveling
wave patterns.

The spanwise zones where the flow provides energy to excite
the structural vibrations are located mainly within the region of
high current where the lock-in condition is established, i.e. where
vortex shedding and cross-flow vibration frequencies coincide.
However, the energy input is not uniform across the entire lock-
in region. This can be related to observed changes from counter-
clockwise to clockwise structural orbits. The energy transfer is
also impacted by the possible occurrence of multi-frequency vi-
brations.

INTRODUCTION
Long flexible cylindrical structures immersed in cross-flow

exhibit Vortex-Induced Vibrations (VIV). Such vibrations are an
important issue for ocean engineering applications as they may

∗Address all correspondence to this author.

lead to fatigue failure of tubular members such as risers placed
within sheared ocean currents. In this context, the reliable es-
timation of the structural fatigue damage requires detailed un-
derstanding and efficient prediction of these self-excited oscilla-
tions.

Most of VIV studies have focused on the simplified prob-
lems of a rigid circular cylinder free to move or forced to oscillate
in the cross-flow direction, in uniform current. These works have
contributed to elucidate some fundamental VIV mechanisms as
reviewed in Bearman (1984); Sarpkaya (2004); Williamson &
Govardhan (2004). In particular, it appears that large amplitude
oscillations occur when the vortex shedding and the structural vi-
bration frequencies coincide, a condition referred to as ‘lock-in’.

Despite its implications in the domain of applications, the
case of long flexible cylinders has attractred less attention, espe-
cially for beams in sheared currents. Field and laboratory exper-
iments on long tensioned beams free to oscillate in non-uniform
flows highlighted the mixed standing-traveling wave nature of
the vibrations, involving high structural wavenumbers and, of-
ten, multiple frequencies of response (e.g. Trimet al., 2005; Lie
& Kaasen, 2006; Vandiveret al., 2009). Such features have
also been analyzed through numerical simulations at moderate
Reynolds number (Lucoret al., 2006). These studies have fo-
cused on a quantification of the structural response, but did not

1 Copyright c© 2011 by ASME

Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering 
OMAE2011 

June 19-24, 2011, Rotterdam, The Netherlands 

OMAE2011-49057 

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 01/04/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/187720103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


provide information concerning the occurrence of the lock-in
condition and the mechanisms of structure excitation. The ef-
fect of the possible multi-frequency nature of the vibrations on
the fluid-structure interaction processes has to be investigated. In
addition, the orientation of the cylinder orbits can influence the
regularity of its trajectories (Dahlet al., 2007) and may also be
related to the occurrence of the lock-in condition along the span
(Vandiveret al., 2009; Modarres-Sadeghiet al., 2010). However,
its possible impact on the energy transfer between the flow and
the structure is still unclear.

On the basis of a joint analysis of the vibrational responses
and flow patterns, the objective of this work is to shed light on
the fluid-structure energy transfer and especially on the mecha-
nisms of long flexible cylinder excitation in non-uniform flow.
We employ direct numerical simulation to predict the VIV of a
long tensioned beam of length to diameter aspect ratio 200, im-
mersed in a linear shear flow, in the range of Reynolds numbers
110−1,100, so as to include the transition to turbulence in the
wake.

The physical model and numerical method are briefly de-
scribed in a first section. The structural vibrations are quantified
in a second section. The occurrence of the lock-in condition is
examined in a third section and the fluid-structure energy transfer
are analyzed in a fourth section. The main findings of this study
are summarized in a fifth section.

PHYSICAL MODEL AND NUMERICAL METHOD
The flow past a flexible cylinder of circular cross-section

is predicted using direct numerical simulation of the three-
dimensional incompressible Navier-Stokes equations. The cylin-
der is submitted to an oncoming flow which is parallel to the
global x axis and linearly sheared along the globalz axis, as il-
lustrated in Fig. 1. In the following, all physical variables are
non-dimensionalized using the cylinder diameterD and the max-
imum inflow velocityU , which occurs atz= 0. The ratio be-
tween maximum and minimum inflow velocity is equal to 3.67.
The Reynolds number (Re) is based onD and the inflow veloc-
ity. Three Re ranges are considered: Re∈[30,110], Re∈[90,330]
and Re∈[300, 1,100]. The three corresponding simulations are
denoted by the maximum Reynolds number Rem.

The cylinder aspect ratio isL/D = 200, whereL is the cylin-
der length in its equilibrium position in quiescent flow. It is
pinned at both ends, while it is free to move in both the in-line (x)
and cross-flow (y) directions. The cylinder mass ratio is defined
asm= ρc/ρ f D2, whereρc is the cylinder mass per unit length,
andρ f the fluid density (Newman & Karniadakis, 1997). The
actual ratio between the mass of the cylinder and the mass of the
displaced fluid is equal to 4m/π. The mass ratio is set equal to
6. The constant tension, bending stiffness and damping of the
structure are designated byT, EI andK, respectively. The in-
line and cross-flow displacements of the cylinder are denoted by

x

y

z

Inflow

D

L

Shear

o

FIGURE 1. SKETCH OF THE PHYSICAL CONFIGURATION.

ζx andζy. The sectional drag and lift coefficients are defined as
Cx = 2Fx/ρ f DU2 andCy = 2Fy/ρ f DU2, whereFx andFy are the
in-line and cross-flow dimensional fluid forces. The structural
dynamics are governed by a tensioned beam model, expressed as
follows in non-dimensional form (Evangelinos & Karniadakis,
1999):

∂ 2ζ
δ t2 −ω2

c
∂ 2ζ
δz2 +ω2

b
∂ 4ζ
δz4 +

K
m

∂ζ
δ t

=
1
2

C
m
, (1)

where ζ = [ζx,ζy]
T and C = [Cx,Cy]

T . t denotes the non-
dimensional time variable.ωc and ωb are the cable and beam
phase velocities, defined asω2

c = T/m andω2
b = EI/m, respec-

tively. The structural damping is set equal to zero (K= 0) to
allow maximum amplitude oscillations. A tensioned beam is
considered in this study, withωc = 4.55 andωb = 9.09. These
structural parameters lead to vibrations involving high struc-
tural wavenumbers, which are representative of configurations
encountered in the context of ocean engineering.

The parallelized codeNektar, based on the spectral/hpel-
ement method (Karniadakis & Sherwin, 1999), is used to solve
the coupled fluid-structure system. Details regarding validation
studies of the numerical method and parameters have been re-
ported in Newman & Karniadakis (1997) and Evangelinos &
Karniadakis (1999). The computational domain extends 50D
downstream and 20Din front, above, and below the cylinder.
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A two-dimensional grid of 2175 elements with polynomial or-
der p= 6 or p= 7, depending on the Reynolds number, is used
in the (x,y) planes. In thez direction, 512 planes (256 complex
Fourier modes) are used for the Rem= 110 case, and 1024 planes
(512 complex Fourier modes) in the Rem= 330 and Rem= 1,100
cases. The spatial resolution is similar to Evangelinos & Karni-
adakis (1999)’s study for a cylinder of aspect ratioL/D = 4π
constrained to oscillate in cross-flow direction, at Re=1,000. A
buffer region of 8% of the cylinder length (16D) is defined, where
the inflow velocity profile is adjusted to satisfy the spanwise pe-
riodicity boundary condition due to Fourier expansion (Lucor
et al., 2006). The buffer region is not shown in the following.
Numerical tests on the boundary conditions, computational do-
main and buffer region sizes have been performed. The results
reported in this study are based on time series of more than 300
convective time units, collected after the initial transient dies out,
for each Rem.
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FIGURE 2. TEMPORAL EVOLUTION OF (a) IN-LINE DIS-
PLACEMENT FLUCTUATION AND (b) CROSS-FLOW DISPLACE-
MENT ALONG THE CYLINDER SPAN, AT Rem = 330.

STRUCTURAL VIBRATIONS
In both the in-line and cross-flow directions, the structural

response is a combination of standing and traveling wave pat-
terns, as illustrated in Fig. 2 by the spatio-temporal evolution

of the in-line displacement fluctuation and cross-flow displace-
ment over a selected time interval, at Rem = 330. The traveling
components of the vibrations are more pronounced in the in-line
direction and principally oriented from the high to low inflow
velocity regions (increasingz). Standing wave patterns dominate
in the region nearz= 0 in both directions until approximately
z= 30.

RMS values of the vibration amplitudes reflect the mixed na-
ture of the responses (Fig. 3). In these plots and in the following,
only the deviations of the in-line motion from its mean value,ζ̃x,
are considered. The standing character of the responses leads to
the formation of cells along the span corresponding to alternat-
ing ‘nodes’ (minima of the response envelope) and ‘anti-nodes’
(maxima of the response envelope). Despite the shear flow, the
displacements associated with anti-nodes remain relatively con-
stant along the cylinder span. The RMS values of the displace-
ments associated with nodes are different from zero because of
the superimposed traveling wave components. The Rem influ-
ence on response amplitudes is more pronounced in the in-line
direction. The amplitudes of vibration reached at Rem = 1,100
are similar to experimental measurements carried out with flex-
ible cylinders at higher Reynolds numbers (Trimet al., 2005;
Chaplinet al., 2005; Lie & Kaasen, 2006; Huera-Huarte & Bear-
man, 2009).
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FIGURE 3. RMS VALUE OF (a) IN-LINE DISPLACEMENT
FLUCTUATION AND (b) CROSS-FLOW DISPLACEMENT ALONG
THE CYLINDER SPAN. THE MAXIMUM INFLOW VELOCITY
OCCURS ATz= 0.
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FIGURE 4. SPATIO-TEMPORAL SPECTRAL ANALYSIS OF (a,c,e) IN-LINE DISPLACEMENT FLUCTUATION AND (b,d,f) CROSS-FLOW
DISPLACEMENT AT (a,b) Rem = 110, (c,d) Rem = 330, (e,f) Rem = 1,100. WHITE VERTICAL DASHED LINES DENOTE PREDOMINANT
FREQUENCIES. WAVENUMBERS OF SELECTED SINE FOURIER MODES ARE INDICATED BY YELLOW HORIZONTAL DASHED LINES.
WHITE (RED) CROSSES DENOTE NATURAL (MODIFIED) FREQUENCIES ASSOCIATED WITH THESE WAVENUMBERS.

Spatio-temporal spectral analysis is carried out to clarify the
nature of the structural vibrations. This is achieved by a two-
dimensional FFT of the spatio-temporal evolution of the struc-
tural responses which are zero padded to reach a frequency res-
olution of 5× 10−4 in both time and space. In Fig. 4, Power
Spectral Densities (PSD) of the in-line and cross-flow displace-
ments are plotted as functions of temporal frequency and spatial
wavenumber. Positive frequencies are presented and thus nega-
tive wavenumbers (upper part of each plot) are associated with
traveling waves moving towards the low velocity region while
positive wavenumbers (lower part of each plot) represent trav-
eling waves moving towards the high velocity region. PSD are
normalized by the maximum observed on both domains (positive
and negative wavenumbers) to illustrate the traveling or standing
character of the response. The predominant vibration frequen-
cies are identified by white vertical dashed lines. Sine Fourier

modes (sin(πnzD/L) for thenth mode) are often used to describe
the structural response (e.g. Chaplinet al., 2005; Lie & Kaasen,
2006). For illustration purposes, and comparison with the exist-
ing literature, the wavenumbers corresponding to selected sine
Fourier modes are indicated by yellow horizontal dashed lines.

Responses at a single frequency as well as responses at sev-
eral frequencies can be observed along the span. These two
types of response are referred to as ‘mono-frequency’ and ‘multi-
frequency’, respectively. In the case of multi-frequency re-
sponse, as, for instance, in the in-line direction at Rem = 330,
it can be noticed that the peaks are clearly defined and distinct
from each other, despite a narrow-band vibration, in the range of
[0.24,0.36]. The ratio between the in-line and cross-flow excited
frequencies is generally close to 2, including the multi-frequency
cases.

The predominant excited wavenumbers correspond to
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modes n ∈ {22,23,24,25} in the in-line direction andn ∈
{13,14,15} in the cross-flow direction. These mode numbers are
close to those measured experimentally by Trimet al.(2005) and
Lie & Kaasen (2006), where cases of multi-frequency response
have been reported in shear flow. It is recalled that in the present
case of mixed standing-traveling wave reponses, the concept of
structural modes is used loosely, for illustration purposes only.
In all cases, the ratio between the in-line and cross-flow excited
wavenumbers is different from 2 as expected, since for a mixed
cable/beam structure, the relation between a spatial wavenumber
and the corresponding natural frequency is not linear.

In general, at a given vibration frequency it appears that
only a single peak emerges in the spatial spectrum, at the same
wavenumber on both the negative and positive sides; i.e. a sin-
gle structural wavelength is excited at a given frequency. As ex-
pected for a tensioned beam, the excited structural wavenumber
increases with increasing excitation frequency. The natural fre-
quencyf nat of the tensioned beam associated with the wavenum-
berk can be evaluated as follows, in vacuum:

f nat(k) = k
√

ω2
c +4π2ω2

bk2. (2)

The frequencies corresponding to the selected wavenumbers are
indicated by white crosses in Fig. 4. The effective vibration fre-
quencies present a strong drift from the natural frequency spec-
trum. This spectrum can be modified as follows to take into ac-
count the immersion of the cylinder into the fluid:

f mod= f nat
√

m
m+ π

4Cm
, (3)

whereCm is the added mass coefficient induced by the fluid.
The corresponding modified frequenciesf mod, for a choice of
Cm = 1, are indicated by red crosses in Fig. 4. While this modi-
fied spectrum seems to provide a reasonable approximation to the
effective excited frequencies in some cases, significant discrep-
ancies appear in other cases which emphasizes the variability of
the added mass coefficient, and hence the difficulty of estimating
a priori the structural response.

The relative weights of negative and positive wavenumber
peaks for the same frequency confirm the observations made
previously concerning the mixed standing-traveling character of
structural vibrations and, especially, the preferential orientation
of the traveling wave components from high to low inflow veloc-
ity regions.

LOCK-IN WITHIN SHEAR FLOW
In the case of flexibly-mounted rigid cylinders in uniform

flow, the phenomenon of lock-in consists of self-excited, vortex-
induced vibrations accompanied by the synchronization of the
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FIGURE 5. PSD OF THE TEMPORAL EVOLUTION OF CROSS-
FLOW COMPONENT OF FLOW VELOCITY ALONG A SPANWISE
LINE LOCATED AT (x,y) = (20,0), AT (a) Rem = 110, (b) Rem =

330, (c) Rem = 1,100. DASHED LINES INDICATE PREDOMINANT
FREQUENCIES OF STRUCTURE VIBRATION.
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frequency of vortex formation with the frequency of cylin-
der vibration. The lock-in phenomenon has been extensively
investigated in this context (Bearman, 1984; Sarpkaya, 2004;
Williamson & Govardhan, 2004).

In the context of long flexible cylinders in shear flow, the
lock-in condition can be defined locally; at each spanwise loca-
tion, the lock-in condition is established when the local vortex
shedding frequency coincides with the local cross-flow vibration
frequency. The corresponding frequency is the local lock-in fre-
quency. In the absence of such synchronization, the condition is
referred to as non-lock-in. The spanwise region which includes
all the locally locked-in locations is referred to as the lock-in re-
gion and the rest of the span as the non-lock-in region.

The vortex shedding frequency is quantified from the cross-
flow component of the flow velocity,v, along a spanwise line
located downstream of the cylinder at(x,y) = (20,0). The PSD
of thev velocity component is plotted along the span for the three
Rem in Fig. 5. The predominant cross-flow vibration frequencies
determined in Fig. 4 are indicated by white dashed lines.

In all cases, a region of lock-in can be identified in the high
oncoming flow velocity zone, nearz= 0. The rest of the span
corresponds to a non-lock-in region, where the vortex shedding
and the structural vibrations are not synchronized. The lock-
in region covers 59D, 75Dand 77Dat Rem = 110, Rem = 330
and Rem = 1,100, respectively. The case of Rem = 330 exhibits
lock-in at all three distinct frequencies identified in the multi-
frequency structural response. Despite some secondary contri-
butions, it can be observed that, at each spanwise location, the
vortex shedding is mainly synchronized with a single frequency,
which can be different for each location. In addition, a compar-
ison of the cross-flow vibration and flow velocity spectra shows
that the locally predominant vibration frequency is preferred by
the coupled-fluid structure system when establishing the lock-in
condition. At Rem = 1,100, the spanwise evolution of the pre-
dominant frequency ofv is more irregular than in other cases,
due to the absence of stable wake patterns in several spanwise
regions. These zones form ‘holes’ in the lock-in spanwise pat-
tern.

FLUID-STRUCTURE ENERGY TRANSFER
The fluid-structure energy transfer is quantified by means

of the force coefficient in phase with the cylinder velocity in a
similar way as used in Newman & Karniadakis (1997), Hover
et al.(1998) and Dahlet al.(2010). The present analysis includes
both the in-line and cross-flow contributions of this coefficient.
The time-averaged force coefficient in phase with the cylinder
velocity is defined as:

Cf v =

√
2〈C̃x

˙̃ζx+Cyζ̇y〉
√

〈 ˙̃ζ 2
x + ζ̇ 2

y 〉
, (4)
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FIGURE 6. SPANWISE EVOLUTION OF THE FORCE COEFFI-
CIENT IN PHASE WITH VELOCITY. BLUE HORIZONTAL LINES
INDICATE THE LIMIT OF THE LOCK-IN REGION ISSUED FROM
Fig. 5 (SAME LINE STYLES AS FORCf v).

whereC̃x is the fluctuating part ofCx about its mean value,〈·〉 the
time-averaging operator and ˙p the time derivative ofp. The lift
and drag coefficients are based on the maximum oncoming flow
velocityU (z= 0) so thatCf v is representative of the relative con-
tribution of each spanwise location to the overall energy transfer.
Cf v quantifies the power developed by the fluid acting on each
section of the vibrating cylinder. PositiveCf v implies that the
fluid supplies, on average, energy to the structure and hence ex-
cites cylinder vibration, while negativeCf v indicates that the fluid
is damping the cylinder motion.

The spanwise distribution ofCf v is plotted in Fig. 6 for the
three Rem studied. The limits of the lock-in regions are indicated
by blue horizontal lines. Regions of positiveCf v are located in
the high velocity zone for all Rem cases, corresponding princi-
pally to the lock-in regions. In the non-lock-in region,Cf v re-
mains negative.

Within the lock-in region,Cf v exhibits large spanwise varia-
tions. Negative peaks can occur near the minima of the vibration
envelope in all studied cases.Cf v can also be influenced by the
orientation of the cylinder orbital motion in the (x,y) plane. The
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FIGURE 7. EXAMPLES OF COUNTER-CLOCKWISE AND
CLOCKWISE TRAJECTORIES.

shape and orientation of the beam trajectories are controlled by
the phase difference between the in-line and cross-flow displace-
ments, which are non-linearly coupled by the fluid forces. The
instantaneous phases of the in-line and cross-flow displacements
(φx andφy respectively) are determined by means of the Hilbert
transform. Adopting an approach similar to Huera-Huarte &
Bearman (2009), the phase differenceΦxy is evaluated as fol-
lows:

Φxy = [pφx−qφy, mod 360o], (5)

where p and q are two integer numbers defining the level of
synchronization studied. The couple(p,q) = (1,2) is chosen
here. Values ofΦxy in the range 0o − 180o (180o − 360o re-
spectively) correspond to ‘figure eight’ orbits where the beam
moves upstream (downstream respectively) when reaching the
cross-flow oscillation maxima. These two types of trajectories
are referred to as ‘counter-clockwise’ and ‘clockwise’ respec-
tively (Dahl et al., 2007). Examples of counter-clockwise and
clockwise trajectories are plotted in Fig. 7.

Detailed views of the spanwise evolution ofCf v nearz= 0
are plotted in Fig. 8, in the cases of mono-frequency (Rem= 110,
Fig. 8(a)) and multi-frequency responses (Rem = 330, Fig. 8(c)).
Fig. 8(b) and (d) represent the spanwise evolution of the his-
togram of phase differenceΦxy between the in-line and cross-
flow motions in the same region, in the corresponding cases. In
both cases, a predominant trajectory can be identified at each
spanwise location. Due to the pronounced standing wave com-
ponent of the vibrations nearz = 0, an alternating pattern of
counter-clockwise and clockwise trajectories is observed in this
zone, asz increases. It can be noticed that the passage from
counter-clockwise to clockwise motion is accompanied by a re-
duction ofCf v. As a consequence, counter-clockwise trajectories
appear more favorable to cylinder excitation, in both mono- and
multi-frequency cases.

Within the non-lock-in region,Cf v exhibits a more regular
spanwise pattern (Fig. 6): negative peaks are observed near vi-
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FIGURE 8. (a,c) FORCE COEFFICIENT IN PHASE WITH VE-
LOCITY AND (b,d) HISTOGRAM OF IN-LINE/CROSS-FLOW MO-
TION PHASE DIFFERENCE ALONG THE CYLINDER SPAN (DE-
TAIL NEAR z= 0), AT (a,b) Rem = 110 AND (c,d) Rem = 330.

bration anti-nodes andCf v ≈ 0 near vibration nodes.

A frequency decomposition ofCf v is presented in Fig. 9
to study the relation between lock-in/non-lock-in conditions and
fluid-structure energy transfer in the case of multi-frequency vi-
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FIGURE 9. FREQUENCY DECOMPOSITION OF FORCE CO-
EFFICIENT IN PHASE WITH VELOCITY ALONG THE CYLIN-
DER SPAN (DETAIL OF THE LOCK-IN REGION), AT Rem = 330.
BLACK DASHED LINES INDICATE THE PREDOMINANT FRE-
QUENCIES OF THE CROSS-FLOW VIBRATION AND WHITE
SEGMENTS INDICATE THE LOCAL LOCK-IN FREQUENCY.

brations (Rem = 330). Previously identified vibration frequen-
cies are indicated by black dashed lines. In the case of multi-
frequency response, it has been shown previously that lock-in
occurs mainly at a single frequency at each spanwise location; as
a consequence, positive energy transfer at each spanwise location
is expected to occur mainly at this frequency. This is verified in
Fig. 9, where white dashes are used to indicate the local predom-
inant lock-in frequency as determined from Fig. 5(b): the main
peaks of positiveCf v occur at the locally predominant lock-in
frequencies.

SUMMARY
The in-line and cross-flow vortex-induced vibrations of a

long tensioned beam immersed in a linearly sheared current have
been predicted by means of direct numerical simulation, in the
range of Reynolds numbers 110− 1,100, so as to include the
transition to turbulence in the wake. The selected tension and

bending stiffness lead to high-wavenumber vibrations, similar to
those encountered in long ocean structures.

The structural response consists of a mixture of standing and
traveling wave patterns in both the in-line and cross-flow direc-
tions; the traveling wave component is preferentially oriented
from high to low oncoming flow velocity regions. Both mono-
frequency and multi-frequency responses may be excited along
the span. The local synchronization between the cross-flow vi-
bration and vortex shedding frequencies, the lock-in condition,
occurs in the high flow velocity region, over 30% or more of the
cylinder span.

In the non-lock-in region, where vortex shedding and struc-
ture vibrations are not synchronized, the flow uniformly damps
structural vibrations. In contrast, the flow does not uniformly
excite structural vibrations within the lock-in region. In this re-
gion, the spanwise variability of the energy supplied by the flow
to the structure can be associated with local changes in the ori-
entation of the cylinder in-line/cross-flow trajectories. In both
mono- and multi-frequency response cases, we find that orbits
where the cylinder moves upstream at the extremes of cross-flow
motion are more favorable to structure excitation.

In the case of multi-frequency vibrations, structural exci-
tation occurs at multiple frequencies across the lock-in region.
We find however that the lock-in appears as a locally mono-
frequency event and hence the flow supplies energy to the struc-
ture mainly at the local lock-in frequency, i.e. the mechanism of
excitation is that of locally mono-frequency excitation.

These results can provide insights for the development of
VIV suppression or control techniques. They are also expected
to influence the semi-empirical modeling efforts to predict VIV,
which are based on short-span rigid cylinder hydrodynamic re-
sults.
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