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Bicoprime Factor Robust Control Synthesis via
Reduced Dimension Algebraic Riccati Equations

Mihalis Tsiakkas1,∗ and Alexander Lanzon2

Abstract— Bicoprime factorizations of the plant have recently
resurfaced in control theory, after being a largely dormant
subject for three decades. Recent results have shown that
bicoprime factorizations can be beneficial in solving some
control problems. In this paper, an additional advantage is
presented where the use of bicoprime factorizations of the
plant allow for robust control synthesis via reduced dimension
algebraic Riccati equations by discarding some (or all) of the
stable dynamics of the plant. This is a major advantage in the
stabilisation of high order systems for which robust control
synthesis can become computationally intractable.

I. INTRODUCTION

Bicoprime factorizations (BCFs) of the plant over RH∞
were recently reintroduced to the control community in
[1], [2]. Though these factorizations were proposed more
than three decades ago, in fact BCFs are derivative of the
polynomial methods developed by Rosenbrock [3], however
little was done to advance the field. The primary reason for
this seems to be the fact that coprime factorizations and state
space methods (which BCFs generalize) are very easy to
work with and produce powerful results. It was shown in
[1], [2] that using BCFs can yield computational advantages
in internal stability analysis.

BCFs received brief attention in the past and were shown
to be good candidates in the development of decentralized
control strategies. For example, a Youla type controller
parametrisation was presented in [4] utilising BCFs; these
results were then extended and put in a decentralized control
context by [5]. Furthermore, in [6] BCFs were used to enu-
merate the so-called decentralized blocking zeros of a system
which assist in deducing the existence of a decentralized
stabilising controller.

Coprime factorizations (which form a special subset of
BCFs) have found extended applications in control theory
[7]. Coprime factor uncertainty was first proposed by [8].
It was argued therein, and corroborated by many other
authors that such an uncertainty structure is superior to others
(such as additive, multiplicative, etc.). Some of the appealing
properties of coprime factor uncertainty include the ability
to model both the number and location of uncertain right
half plane poles while in the normalized case the resulting
stability margin can be shown to be equivalent to the one
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m.tsiakkas@ieee.org

2Alexander Lanzon is with the Control Systems Centre, School of Elec-
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∗ Corresponding author.

obtained from the four block problem. BCF uncertainty was
first proposed in [1], [2], where it was shown to encompass
and generalize the coprime factor uncertainty structure. For
a brief comparison of the two, the reader is referred to [2].

In this paper, it is shown that employing a strategically
constructed BCF of the plant can lead to computational ad-
vantages in robust control synthesis allowing for the synthe-
sis of a robustly stabilizing controller using the formulation
of [9] via the solution of two reduced dimension Algebraic
Riccati Equations (AREs). The proposed procedure provides
a method to discard some or even all of the plant’s stable
modes during H∞ robust control synthesis without imposing
or assuming uncontrollability or unobservability. This can be
beneficial for very high order systems with numerous open
left half plane poles where solving the standard AREs asso-
ciated with H∞ synthesis can present numerical difficulties.

II. PRELIMINARIES

The sets R and C are defined as the real and complex
numbers respectively. Let A ∈ Cm×n then A∗ denotes its
complex conjugate transpose of A. The rank of A is denoted
by rankA. If m = n, Λ(A) is the spectrum of A and ρ(A)
is its spectral radius; furthermore, the notation A > 0 (resp.
A ≥ 0) is used to denote that A is positive definite (resp.
semi-definite). Given two matrices A ∈ Rm×n and B ∈
Rp×q , A ⊗ B ∈ Rmp×nq denotes the Kronecker product of
the two.

The set of all real, rational, proper transfer matrices is
denoted R. The subset of R containing all stable transfer
matrices is given by RH∞.

Let H ∈ R and ∆ ∈ R, then the lower and upper linear
fractional transformations (LFTs) of H with respect to ∆
are given by Fl(H,∆) and Fu(H,∆) respectively. See [10,
Chapter 10] for further details.

Let P ∈ R, then P =

[
A B

C D

]
is shorthand for P =

C (sI −A)
−1
B +D.

The notation adopted herein with regards to AREs is that
of [10, Chapter 13]. Specifically, Ric is defined as the Riccati
operator mapping a Hamiltonian matrix to the stabilizing
solution of the associated ARE (if it exists) and dom(Ric)
the domain of Ric.

Left and right coprime factorizations (LCF and RCF
respectively) are invaluable tools in control theory with uses
ranging from control synthesis [11] to distance measures
[12]. A pair {L,M} is said to be left coprime (LC) over
RH∞ if L,M ∈ RH∞ and there exist X,Y ∈ RH∞
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such that MX + LY = I . Furthermore, the pair is a
LCF of a plant P ∈ R if it is LC, M is square with
detM(∞) 6= 0 and P = M−1L. Similarly, the pair {N,M}
is right coprime (RC) over RH∞ if N,M ∈ RH∞ and there
exist X,Y ∈ RH∞ such that XM + Y N = I . A RCF is
defined dually to a LCF with the pair being a RCF of a plant
P ∈ R if it is RC, M is square with detM(∞) 6= 0 and
P = NM−1.

The following lemma outlines a special case of an ARE
where the solution can be obtained by solving a reduced
order equation corresponding to a subset of the ARE. This
forms the basis of the main result of the present paper.

Lemma 1: Consider the continuous time ARE

A∗X +XA+XSX + C∗C = 0 (1)

where A =
[
A+ 0
0 A−

]
∈ Rn×n with A+ ∈ Rn+×n+ and A−

Hurwitz, S =
[
S11 S12

S∗12 S22

]
∈ Rn×n with S11 ∈ Rn+×n+ and

C = [C1 0 ] ∈ Rp×n with C1 ∈ Rp×n+ . Then the stabilizing
solution of (1) is given by X =

[
X′ 0
0 0

]
where X ′ ∈ Rn+×n+

is the stabilizing solution to the reduced dimension ARE

A∗+X
′ +X ′A+ +X ′S11X

′ + C∗1C1 = 0. (2)
Proof: By definition X is a stabilizing solution if and

only if A+SX is Hurwitz. Let X ′ be the stabilising solution
to (2) and define X =

[
X′ 0
0 0

]
. Then

A+ SX =

[
A+ 0
0 A−

]
+

[
S11 S12

S∗12 S22

] [
X ′ 0
0 0

]
=

[
A+ + S11X

′ 0
S∗12X

′ A−

]
.

Then A + SX is Hurwitz since both A− and A+ + S11X
′

are Hurwitz. Proving that X also satisfies (1) is trivial and
thus omitted.

III. BCF PRELIMINARIES

BCFs first appeared in the literature in [7] where their ex-
istence was acknowledged with no significant results given.
In the original definition, BCFs of a plant were presented as
a quad of objects in RH∞; this definition follows.

Definition 1 ([7]): The ordered quad {N,M,L,K} is
bicoprime (BC) in RH∞ if {L,M} is LC in RH∞, {N,M}
is RC in RH∞ and K ∈ RH∞. Furthermore, the quad is a
BCF of a plant P ∈ R over RH∞ if it is BC, M is square,
detM(∞) 6= 0 and P = NM−1L+K.

The following definition presents the notation used for the
sets of all BC quads and BCFs of a plant.

Definition 2: The set of all BC quads in RH∞ is denoted
by B, while the set of all BCFs of a plant P ∈ R over RH∞
is denoted by B(P ).

It is often convenient to pack a BC quad into a matrix as
in the following definition.

Definition 3: The set B̃ is defined as

B̃ =

{[
M −L
N K

]
: {N,M,L,K} ∈ B

}
.

When representing a BCF of a plant P ∈ R, the notation
B̃(P ) will be used.

Formulae for computing L/RCFs of plant using state space
data were first given by [13]. The following theorem presents
a similar result for constructing a BCF of a plant.

Theorem 1 ([2]): Let P ∈ Rp×q have a stabilizable

and detectable state space realization P =

[
A B

C D

]
.

Furthermore, suppose that Q ∈ Rn×r and R ∈ Rr×n are
such that A+QR is Hurwitz. Finally, define

[
M −L
N K

]
=


A+QR Q B

R I 0

C 0 D

 . (3)

Then {N,M,L,K} ∈ B(P ).
The BCF parametrization presented in Theorem 1 will

henceforth be referred to as a QR-BCF parametrisation, as
it is purely parametrised by the matrices Q and R.

Following coprime factor convention, BCF uncertainty is
defined by additive perturbations on the BC factors. With the
resulting perturbed plant given by

P∆ = (N+∆N ) (M+∆M )
−1

(L+∆L)+(K+∆K). (4)

In the case of LCF and RCF uncertainty, the perturbed
plant is admissible only if coprimeness of the factors is
preserved [14, Remark 4.4]. A similar condition, namely
that bicoprimeness is preserved under the perturbations of
the factors, is imposed herein.

Figure 1 shows a block diagram representation of the
proposed BCF uncertainty structure given by (4). It can
be observed that this generalizes many of the uncertainty
structures studied in the past, for example by [15]. From this
a generalised plant and uncertainty matrix can be defined as

Π =


M−1 0 M−1L

0 0 I

NM−1 I P

 and (5)

∆ =

[
−∆M ∆L

∆N ∆K

]
. (6)

It is straightforward to confirm that using the above Π and
∆ yields P∆ = Fu(Π,∆).

Let P ∈ R have a stabilizable and detectable state space

realization P =

[
A B
C D

]
. Using the QR-BCF parametrisa-

tion in (3), the BCF generalized plant Π given by (5) can be
expressed in state space form as

Π =

[
Π11 Π12

Π21 Π22

]
=


A Q 0 B
−R I 0 0
0 0 0 I
C 0 I D

 . (7)

Using the QR-BCF parametrisation, a BCF H∞ control
synthesis theorem is developed based on the 2-ARE solution
to the H∞ problem given by [9]. This result is given in
Theorem 2.
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Fig. 1: Perturbed plant block diagram with BC factor uncer-
tainty.

Theorem 2: Let P ∈ Rp×q have a stabilizable and de-

tectable state space representation P =

[
A B
C D

]
where

D = 01 and a QR-BCF as outlined in (3). Furthermore, let
0 < γ ∈ R and define Π as in (7),

H∞ =

[
A− 1

γ2−1QR
1

γ2−1QQ
∗ −BB∗

− γ2

γ2−1R
∗R −(A− 1

γ2−1QR)∗

]
(8)

and

J∞ =

[
(A− 1

γ2−1QR)∗ 1
γ2−1R

∗R− C∗C
− γ2

γ2−1QQ
∗ −(A− 1

γ2−1QR)

]
. (9)

Then there exists a controller C∞ ∈ Rq×p satisfying
‖Fl(Π, C∞)‖∞ < γ if and only if

1) γ > 1;
2) H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0;
3) J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0;
4) ρ(X∞Y∞) < γ2.

If the above conditions hold, the set of all such controllers
is given by

{C∞ = Fl(Π∞,Φ) : Φ ∈ RH∞, ‖Φ‖∞ < γ} ,

where

Π∞ =


A∞ −Z∞Y∞C∗ Z∞B

B∗X∞ 0 I

−C I 0

 ,
Z∞ =

(
I − γ−2Y∞X∞

)−1
, and

A∞ = A− 1
γ2−1QR− Z∞Y∞C

∗C

+
(

1
γ2−1QQ

∗ −BB∗
)
X∞.

Proof: The proof follows by direct application of [9,
Theoresm 3 & 4] to the generalized plant Π in (7).

1The assumption that P (∞) = 0 is standard in this context and can be
guaranteed via simple loop transformations [10].

IV. MAIN RESULT

In this section the main result of this paper restricts the
synthesis procedure outlined by Theorem 2 to a special class
of state space realizations to achieve robust control synthesis
via the solution of reduced dimension AREs.

Due to the structure of the QR-BCF parametrisation, it
is possible to synthesize a controller by solving reduced
dimension AREs which is the main contribution of this
paper. Suppose that a plant P ∈ R has the stabilizable and
detectable state space realization

P =

[
A B
C D

]
=

 A+ 0 B+

0 A− B−
C+ C− D

 , (10)

where A− ∈ Rn−×n− is Hurwitz and A+ ∈ Rn+×n+ . Such
a realization always exists and is equivalent to decomposing
the plant into a stable and anti-stable part. This is often
referred to as a Gilbert realization and can be obtained via
a Jordan decomposition of A.

Now let Q+ ∈ Rn+×r and R+ ∈ Rr×n+ be such that
A+ +Q+R+ is Hurwitz. Then a QR-BCF of P is given by

A+ +Q+R+ 0 Q+ B+

0 A− 0 B−

R+ 0 I 0

C+ C− 0 D

 ∈ B̃(P ). (11)

Note that in the above QR-BCF, the modes contained in A−
are both controllable and observable only in the additive term
of the factorisation.

A new generalized plant Π′ can then be constructed for
the uncertainty structure in Figure 1 using the QR-BCF of
P given in (11) as follows:

Π′ =



A+ 0 Q+ 0 B+

0 A− 0 0 B−

−R+ 0 I 0 0

0 0 0 0 I

C+ C− 0 I D


. (12)

Now using Π′ in Theorem 2 results in Hamiltonians where
the associated AREs have the structure assumed in Lemma 1.
Therefore it is only necessary to solve AREs corresponding
to A+ whose dimension is dictated by n+. This fact is
formally stated in the following result.

Theorem 3: Let P ∈ Rp×q have a stabilizable and de-
tectable state space realization of the form given by (10)
with A− Hurwitz, D = 0 and a QR-BCF of the form given
by (11). Furthermore, let 0 < γ ∈ R and define Π′ as in
(12),

H ′∞ =

[
A+ − 1

γ2−1Q+R+
1

γ2−1Q+Q
∗
+ −B+B

∗
+

− γ2

γ2−1R
∗
+R+ −(A+ − 1

γ2−1Q+R+)∗

]



and

J ′∞ =

[
(A+ − 1

γ2−1Q+R+)∗ 1
γ2−1R

∗
+R+ − C∗+C+

− γ2

γ2−1Q+Q
∗
+ −(A+ − 1

γ2−1Q+R+)

]
.

Then there exists a controller C ′∞ ∈ Rq×p satisfying
‖Fl(Π′, C ′∞)‖∞ < γ if and only if

1) γ > 1;
2) H ′∞ ∈ dom(Ric) and X ′∞ = Ric(H ′∞) ≥ 0;
3) J ′∞ ∈ dom(Ric) and Y ′∞ = Ric(J ′∞) ≥ 0;
4) ρ(X ′∞Y

′
∞) < γ2.

If the above conditions hold, the set of all such controllers
is given by

{C ′∞ = Fl(Π′∞,Φ) : Φ ∈ RH∞, ‖Φ‖∞ < γ} ,

where

Π′∞=


A′∞ −Z ′∞Y ′∞C∗+C− −Z ′∞Y ′∞C∗+ Z ′∞B+

−B−B∗+X ′∞ A− 0 B−

B∗+X
′
∞ 0 0 I

−C+ −C− I 0

,

Z ′∞ =
(
I − γ−2Y ′∞X

′
∞
)−1

, and

A′∞ = A+ − 1
γ2−1Q+R+ − Z ′∞Y ′∞C∗+C+

+ ( 1
γ2−1Q+Q

∗
+ −B+B

∗
+)X ′∞.

Proof: The fact that Π′ still satisfies the assumptions
of [9] is trivial to prove and thus omitted.

Now, define Q =

[
Q+

0

]
and R =

[
R+ 0

]
, then

A− 1
γ2−1QR =

[
A+ − 1

γ2−1Q+R+ 0

0 A−

]
,

R∗R =

[
R∗+R+ 0

0 0

]
and QQ∗ =

[
Q+Q

∗
+ 0

0 0

]
.

Therefore, the AREs associated with the Hamiltonians H∞
in (8) and J∞ in (9) have the structure necessary to apply
Lemma 1. The proof then follows by applying Theorem 2
to Π′.

It must be noted that, although the above procedure
presents a possible significant computational advantage, the
resulting controller has the same order as the plant.

It is important to note that such a procedure is not possible
when using classical coprime factorizations of the plant2.
Suppose a plant has a state space realization given by
(10) and let F =

[
F+ 0

]
be such that A+ + B+F+ is

Hurwitz. Then using the RCF induced by F , synthesizing
a robustly stabilizing controller requires the solution of the
ARE associated with the Hamiltonian matrix [10]

H̃∞=


[
A+− 1

γ2−1
B+F+ 0

− 1
γ2−1

B−F+ A−

]∗
− 1
γ2−1

[
C∗+C+−F∗+F+ C∗+C−

C∗−C+ C∗−C−

]
− γ2

γ2−1

[
B+B

∗
+ B+B

∗
−

B−B
∗
+ B−B

∗
−

]
−
[
A+− 1

γ2−1
B+F+ 0

− 1
γ2−1

B−F+ A−

]


2In that case however, one of the two AREs admits the trivial solution and
hence in essence the number of states that need to be stabilised in halved.

which clearly does not conform to the structure required
by Lemma 1. We now show that this Hamiltonian does not
admit a block diagonal solution of the form

[
X+ 0
0 0

]
to the

corresponding ARE. Suppose that the ARE associated with
the Hamiltonian H̃∞ has a solution of the form

[
X+ 0
0 X−

]
≥

0, then

X−A− +A∗−X− −
γ2

γ2−1X−C
∗
−C−X− + 1

γ2−1B−B
∗
− = 0.

Now if X− = 0 (as in the BCF case), it follows that
1

γ2−1B
∗
−B− = 0 and therefore B− = 0, which implies that

the modes captured by A− must be completely uncontrol-
lable for a block diagonal solution to exist.

It would therefore be possible to omit the associated states
prior to synthesis, by starting with a minimal state space
realisation.

V. NUMERICAL EXAMPLE

A numerical example will be given in this section to
demonstrate the applicability of the proposed results. The
problem considered is that of a swarm of autonomous vehi-
cles where a centralized controller is tasked with maintaining
a formation.

These robots are required to move in a square formation
relative to r1 as shown Figure 2a. We assume the following
hardware setup: r1 is equipped with an absolute position
measurement system as well as hardware that can be used to
measure the relative positions of r2 and r3. Similarly, r2 and
r3 are able to measure the relative position of r4. Finally, r4

is not equipped with any position measurement hardware.
All robots are assumed to have access to their internal states
(acceleration, velocity, etc.). The relative position measure-
ments available in the overall system can be summarized
by the directed graph in Figure 2b. Formation control can
then be achieved by stabilising the relative position errors
according to the same graph.

r1

r2

r3

r4

(a) Desired robot formation.

r1

r2 r3

r4

(b) Swarm relative position
measurement graph.

For simplicity we consider a swarm of four homogeneous,
holonomic omnidirectional ground vehicles, such as the ones
considered in [16], these will be denoted henceforth as ri
for i ∈ {1, . . . , 4}. Using the local velocity and acceleration
measurements available to each robot, linearising velocity
controllers are implemented such as the one described in
[17], hence each robot can be given a reference velocity
which it will track. The transfer matrix mapping the reference
velocity to the position of each of these vehicles can be
modelled as P = 1

s P̂ where P̂ ∈ RH 2×2
∞ corresponds to

the closed loop velocity dynamics of each robot and has

the minimal state space realization P̂ =

[
A B
C 0

]
with



A ∈ Rn×n. Then, noting that detA 6= 0 since P̂ ∈ RH∞,
a minimal state space realisation of P is given by

P =

 0 C 0
0 A B
I 0 0

 =

 0 0 −CA−1B
0 A B
I CA−1 0

 .
(13)

Finally, the relative position dynamics can be expressed in
terms of a Kronecker product as

Z ⊗ P where the Laplacian Z =

[ 1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 −1

]
. (14)

Then combining the above with (13) a state space realisation
of the overall system can be expressed as

Z ⊗ P =

 0 0 −I ⊗ CA−1B
0 I ⊗A I ⊗B

Z ⊗ I Z ⊗ CA−1 0

 . (15)

Note that since the Laplacian Z is rank deficient (15) is
unobservable. A simple solution to this problem is to redefine
Z as

Z =

[ 1 0 0 0
1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 −1

]
. (16)

Since the above has full column rank it follows that the state
space realisation given by (15) is observable. Additionally,
the inclusion of the position of r1 in the output vector leads
to a controller covering both the formation of the swarm as
well as its absolute position.

We can now proceed to apply the result of Theorem 3
to the system under consideration. First, note that (15) is
already in Gilbert form as required by Theorem 3. Now let
Q+ ∈ R2×r and R+ ∈ Rr×2 be such that Q+R+ ∈ R2×2

is Hurwitz which implies via [18, Theorem 13.12] that I ⊗
Q+R+ is also Hurwitz. Finally, define

G+ =


I ⊗Q+R+ 0 I ⊗Q+ −I ⊗ CA−1B

0 I ⊗A 0 I ⊗B
I ⊗R+ 0 I 0
Z ⊗ I Z ⊗ CA−1 0 0

 .
Then G+ ∈ B̃(Z ⊗ P ).

With the velocity dynamics of each vehicle given by

P̂ =

[ −2 0 2 0
0 −3 0 3
1 0 0 0
0 1 0 0

]
and Q+ = −R+ = −2I2, the Hamiltonians given by
Theorem 3 can be constructed as

H ′∞ =

[
4εI (4ε− 1)I

−4(1 + ε)I −4εI

]
and

J ′∞ =

[
4εI (4εI − Z∗Z)⊗ I

−4(1 + ε)I −4εI

]
,

where ε = (γ2 − 1)−1. Solving the associated AREs gives

Ric(H ′∞) = X ′∞ = 2.359I8 ≥ 0 and

Ric(J ′∞) = Y ′∞ =

[
2.755 ? ? ?
2.258 4.427 ? ?
2.258 2.859 4.427 ?
2.274 3.395 3.395 5.012

]
⊗ I2 ≥ 0

with the spectral radius of their product given by
ρ(X ′∞Y

′
∞) = 5.459. Finally, a robustly stabilising controller

C ′∞ can be synthesised according to Theorem 3 achieving a
robust stability margin ‖Fl(Π′∞, C ′∞)‖∞ = 5.466 against
BCF uncertainty of the form depicted in Figure 1. The

controller C ′∞ is given by C ′∞ =

[
A′c B′c
C ′c 0

]
where

A′c=−


133.74 179.13 179.13 0 0 0 198.12 0
179.13 258.23 252.76 0 0 0 278.19 0
179.13 252.76 258.23 0 0 0 278.19 0

0 0 0 258.23 179.13 252.76 0 278.19
0 0 0 179.13 133.74 179.13 0 198.12
0 0 0 252.76 179.13 258.23 0 278.19

198.12 278.19 278.19 0 0 0 312.87 0
0 0 0 278.19 198.12 278.19 0 312.87

,

B′c=


2.25 0 0.41 0 0.41 0 −0.01 0 −0.01 0
1.84 0 −0.49 0 −1.77 0 −0.44 0 0.84 0
1.84 0 −1.77 0 −0.49 0 0.84 0 −0.44 0

0 1.84 0 −1.77 0 −0.49 0 0.84 0 −0.44
0 2.25 0 0.41 0 0.41 0 −0.01 0 −0.01
0 1.84 0 −0.49 0 −1.77 0 −0.44 0 0.84

1.86 0 −0.92 0 −0.92 0 −1.32 0 −1.32 0
0 1.86 0 −0.92 0 −0.92 0 −1.32 0 −1.32


and

C ′c=−


159.84 220.40 220.40 0 0 0 242.99 0

0 0 0 220.40 159.84 220.40 0 242.99
220.40 309.97 313.26 0 0 0 341.89 0

0 0 0 313.26 220.40 309.97 0 341.89
220.40 313.26 309.97 0 0 0 341.89 0

0 0 0 309.97 220.40 313.26 0 341.89
242.40 341.89 341.89 0 0 0 380.24 0

0 0 0 341.89 242.99 341.89 0 380.24

.
A normalized coprime factor (NCF) controller was also

synthesised according to the procedure outlined by [14] and
simulated in parallel with the proposed BCF controller for
comparison. In both cases no loopshaping weights were
used for the synthesis. The simulation results are shown in
Figure 3 and Figure 4, depicting the position and relative
errors respectively.

−1 −0.5 0 0.5 1

−1

0

1

r1 r2
r3 r4

Fig. 3: Robot formation trajectory. Solid and dashed lines
correspond to the responses obtained using the BCF and NCF
controllers respectively.

The advantage of the proposed synthesis method can be
observed when considering a dynamically changing number
of agents; for example adding new robots to the formation
during operation. For every group of new mobile robots
added to the network a new controller would need to be
synthesised since in this example we consider a centralized
control strategy. Suppose now that the total number of robots
in the network is changed to k ≥ 1, then an NCF controller
would require the solution of two3 ARE with dimension 4k
each (since P is 4th order) while the BCF approach would
require solving two AREs with dimension 2k each (since P

3Two AREs are required; one to obtain a NCF of the plant using the
formulae given by [19] and one to synthesize the controller.
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Fig. 4: Relative position error. Solid and dashed lines cor-
respond to the responses obtained using the BCF and NCF
controllers respectively.

has two stable well-damped poles that can be discarded and
two poles at the origin which must be stabilized). Noting
that solving AREs typically has complexity O

(
n3
)

[20] it
follows that the BCF could be constructed significantly faster
and thus not affect performance or risk losing stability4.

In the presented simple example, the total number of
states being stabilised in the two cases is equal which could
be misleading; this is a result of the fact that the modes
of the agent dynamics are equally split between open left
and closed right half complex planes. It is more realistic
however that, in practical situations, a plant of the type
being considered has more stable modes than unstable ones.
Thus the computational advantage afforded by the proposed
synthesis method is even more pronounced.

VI. CONCLUSION

A robust control synthesis theorem has been presented
in this paper considering a bicoprime factor uncertainty
structure. It was shown that the use of BCFs allows for
a separation of stable modes in the plant and thus robust
stabilisation can be achieved via the solution of reduced
order AREs. This amounts to a possibly significant com-
putational advantage that can be especially beneficial when
the controller needs to be dynamically updated such as in
gain scheduling scenarios. The presented methodology could
be extended using the normalized BCF results presented
in [21] to yield even greater reduction in computational
requirements. The theory developed is applied in a numerical
example to a swarm of mobile robots in the context of
formation control.

4The imposition of normalization in the NCF example allows for a direct
computation of the stabilising controller without the need for iterations that
are necessary in the BCF case. Hence, for a sufficiently small k, the NCF
approach would be more efficient. This is not the case for large k.
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