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Momentum in language change:
a model of self-actuating s-shaped curves

Abstract

Like other socially transmitted traits, human languages undergo
cultural evolution. While humans can replicate linguistic conventions
to a high degree of fidelity, sometimes established conventions get re-
placed by new variants, with the gradual replacement following the
trajectory of an s-shaped curve. Although modelling work has shown
that only a bias favouring the replication of the new linguistic variant
can reliably reproduce the dynamics observed in language change, the
source of this bias is still debated. In this paper we compare previ-
ous accounts with a momentum-based selection account of language
change, a replicator-neutral model where the popularity of a variant
is modulated by its momentum, i.e. its change in frequency of use in
the recent past. We present results from a multi-agent model that are
characteristic of language change, in particular by exhibiting sponta-
neously generated s-shaped transitions. We discuss several empirical
questions raised by our model, pertaining to both momentum-based
selection as well as previous accounts of language change.

keywords: language change; cultural evolution; momentum; age vectors;
s-shaped curves
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1 Introduction1

Human languages are a prime example of culturally evolving traits: they2

are made up of socially learned conventions which are constantly being3

replicated and which exhibit great diversity across the globe (Evans and4

Levinson, 2009). Important aspects of the dynamics of language change are5

well-understood. Firstly, language change is sporadic (de Saussure, 1959;6

Labov, 2001). Of all the conventions that make up a single language, at7

any given point most of them are not undergoing change, but are repli-8

cated faithfully, from basic word order patterns down to the pronounci-9

ation details of individual words (Pierrehumbert, 2002). Languages are10

transmitted robustly over many generations, a necessary requirement for11

their use as a tool for communication (Lewis and Laland, 2012). Secondly,12

when a convention does change, individuals will gradually replace an es-13

tablished variant with a new variant. This gradual replacement exhibits14

directed transitions in the form of s-shaped curves such as in Fig. 1, akin15

to the patterns of logistic growth found in biological evolution (Bailey,16

1973; Altmann et al., 1983; Kroch, 1989; Denison, 2003; Blythe and Croft,17

2012)1. This similarity to the signature of adaptive selection in biology18

is puzzling: linguistic conventions are arbitrary, which means we should19

not expect an inherent advantage in particular linguistic variants, such20

as which basic word order is used by a language, or how exactly a dis-21

tinctive phonemic segment is pronounced (as long as it maintains its con-22

trastive function). How and why would an entire population of speakers23

go about replacing an existing convention with a different one “to say the24

same thing”?25

[Figure 1 about here.]26

1.1 Language-internal accounts27

In order to explain why languages change, many studies have attempted28

to pin down the causes of individual changes by systematically compar-29

ing the states of the languages prior to and after a change (Hockett, 1965;30

McMahon, 1994). While many of the earliest such studies would attribute31

change to the gradual accumulation of performance and transmission er-32

rors alone (Jespersen, 1922; Hockett, 1958), the generativist paradigm with33

1While the notion of ‘s-shaped curves’ is notoriously ill-defined, for the purposes of
this paper it will suffice to use Blythe and Croft’s definition as any directed trajectory
that does not exhibit “large fluctuations and a tendency for an upward or downward
trend to reverse one or more times before an innovative variant goes extinct or wins
out” (2012, p.285).
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its focus on the language acquisition device shifted the attention firmly to34

child-based language change. Studies of language change in the genera-35

tive tradition have traced changes back to the re-ordering or simplifica-36

tion of rules (Kiparsky, 1968; Wang, 1969; Bailey, 1973; Lass, 1980; Venne-37

mann, 1983), often based on children’s erroneous reanalysis of linguistic pa-38

rameters based on limited linguistic input (e.g. Ellegard (1953); Lightfoot39

(1979); Kroch (1989); Lightfoot (1991); see Foulkes and Vihman (2013)40

for a review). Rather than characterising change as the result of imper-41

fect transmission, a more recent strand of research sees language as a com-42

plex adaptive system which evolves to fulfill the communicative needs of its43

speakers, while at the same time adapting to the constraints imposed by44

their learning mechanisms (Kirby, 1999; Steels, 2000; Griffiths and Kalish,45

2007; Beckner et al., 2009).46

What unites these language-internal accounts is that they all rely on47

a qualitative difference between the language states prior to and after the48

change. This difference can be based on a variety of factors, such as the49

languages’ expressivity, processing efficiency, or simply their stability with50

respect to error-prone language acquisition. Within historical and varia-51

tionist linguistics such explanations of language change have long been52

criticised on the basis that they overpredict change (de Saussure, 1959;53

Greenberg, 1959; Weinreich et al., 1968; Lass, 1980; Ohala, 1989; Croft,54

2000; Labov, 2001; Winter-Froemel, 2008). In their seminal paper, Wein-55

reich et al. succinctly summarised the issue and coined it the actuation56

problem: “Why do changes in a structural feature take place in a particular57

language at a given time, but not in other languages with the same feature,58

or in the same language at other times?” (Weinreich et al., 1968, p.102).59

In other words, language-internal pressures by themselves do not ac-60

count for the sporadicity of language change: many non-adaptive or sub-61

optimal structures that are claimed to have been selected against in one62

language will happily persist in other languages – and when they finally do63

change, language-internal accounts often offer no explanation of what trig-64

gered the actuation of the change (de Saussure, 1959; Postal, 1968; Ohala,65

1993). While language-internal factors offer insights into what changes66

are more likely to occur than others (Jaeger and Tily, 2010; Wedel et al.,67

2013), they do not explain when or why the stable transmission of language68

should suddenly cave under functional pressures. To account for the spo-69

radic nature of language change, many have argued that it is not enough to70

rely on intra-linguistic factors alone.71
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1.2 Social accounts72

Sociolinguistic research of the past five decades has shown that innovations73

do not spread uniformly across a given speech community, but that the74

progression of change is stratified based on factors such as a speaker’s age,75

ethnicity, or socio-economic status (Foulkes and Docherty, 2006; Taglia-76

monte, 2012). Social accounts hold that the social aspects of linguistic77

variants, rather than their inherent linguistic character, are responsible for78

driving language change (Sturtevant, 1947; Croft, 2000; Labov, 2001; Croft,79

2006). Social accounts of language change are evolutionary in nature: they80

decouple the generation of variation from the process of selection which81

leads to the diffusion of variants through a speech community. The under-82

lying mechanisms, however, are very different from biological evolution:83

while the generation of new variants is assumed to be driven by linguis-84

tic or functional factors, social accounts attribute the ultimate selection of85

variants to extra-linguistic social factors (Ohala, 1989; Croft, 2000; Stevens86

and Harrington, 2013). The ‘division of labour’ between language-internal87

and social pressures in this approach can simultaneously account for the88

arbitrary adoption of one linguistic convention from the pool of variants89

over another, while at the same time explaining the crosslinguistic distribu-90

tion of linguistic features which reflect functional pressures.91

Recent work on a mathematical model of language change showed that92

only the presence of a bias favouring the replication of the incoming vari-93

ant can reliably reproduce the s-shaped transitions observed in language94

change (Blythe and Croft, 2012). While this mechanism, known as replica-95

tor selection, is in principle also compatible with language-internal biases,96

the authors eschew this conclusion. In line with social accounts of language97

change they conclude instead that it is the social prestige of a new variant98

that is responsible for its preferential replication. Importantly, the soci-99

olinguistic use of the term prestige actually refers to a content bias : rather100

than preferentially copying variants used by prestigious individuals, pres-101

tige is simply another name for a bias that, while social in origin, is ac-102

tually inherent to the linguistic variant (Sturtevant, 1947; Labov, 2001).103

Crucially, social accounts do not solve the underlying logical problem of104

how a population would agree on the selection of a new variant if there is105

no objective advantage to that variant. The choice of the population to106

attach preferential prestige to some variant is as arbitrary and requires107

just as much explanation as a population’s increased use of one linguistic108

variant over another. Because variant prestige is not accounted for within109

the theory (Meillet, 1921; Labov, 2001) and can only be attributed post-110

hoc (Sankoff, 1988; Trudgill, 2004), social accounts also make no predic-111
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tions whether particular changes are likely to happen or not. If we saw112

competing variants as completely identical in terms of both their linguistic113

and social value, how could directed transitions come about? To address114

this question, it is useful to consider ideas from the wider domain of cul-115

tural evolution.116

1.3 Replicator-neutral accounts117

The evolutionary approach that has been adopted in the quantitative study118

of language variation and change is also used widely to study processes119

of cultural change more generally (Boyd and Richerson, 1985; Mesoudi,120

2011). Interestingly, even though replicator-neutral accounts – where in-121

dividuals have no inherent preference for any of the competing variants –122

have been studied extensively in the context of cultural evolution (Bentley123

et al., 2004, 2007), such models have received relatively little attention in124

the study of linguistic change (e.g. Trudgill, 2008; Baxter et al., 2009).125

Among the few attempts to build a bridge between general models of126

cultural evolution and the dynamics of language change is Reali and Grif-127

fiths (2010). Starting from a model of pure neutral evolution by random128

copying – where individuals replicate the different variants proportionally129

to their current prevalence – they augment it with a pressure for regulari-130

sation, i.e. a slight preference for individuals to adopt grammars exhibiting131

no variation. The authors show that the trajectories produced by this reg-132

ularising neutral model exhibit s-shaped growth, as long as only those tra-133

jectories which start at 0% use of a novel variant and end at 100% use are134

considered. Crucially, however, their mathematical model captures all pos-135

sible trajectories between those two points, and their result holds only for136

the average of all possible trajectories. This idealised trajectory is highly137

unlike the ‘typical’ transitions produced by neutral evolution, which are138

characterised by a noisy trajectory with many reversals. The strict symme-139

try of their Markov model also predicts that for every completed language140

change we should find an equal amount of actuated changes that went to141

the 50% mark before being interrupted, a situation does not seem to be the142

case for language change. These considerations call into question whether143

neutral evolution by random copying can provide an adequate model of the144

dynamics of language change (Blythe, 2012).145

While in pure neutral evolution models the likelihood of replicating a146

variant is assumed to be dependent on that variant’s current prevalence147

alone, another class of replicator-neutral models that has received increased148

attention recently considers the effects of temporal information and mem-149

ory on the diffusion of cultural (and particularly linguistic) traits. Labov150
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(2001) suggested that the systematic incrementation of sound changes151

across generations could be explained by the notion of age vectors. He hy-152

pothesises that, following an initial stage where learners acquire the aver-153

age community usage of linguistic variants, adolescents advance their pro-154

ductions in line with the age stratification of variable usage that can be155

observed in the population – in other words, it presumes that youngsters156

have a bias against sounding outdated. This idea was taken up by Mitch-157

ener (2011), who framed it in terms of prediction-driven instability : in his158

mathematical model, individuals are able to observe the usage levels of a159

categorical sociolinguistic variable among the ‘older’ and ‘younger’ indi-160

viduals in the population. New individuals entering the population then161

adopt a usage rate according to the predicted future use of the variants,162

by extrapolating from the usage levels of the two groups along an idealised163

logistic curve. While the model exhibits spontaneous transitions between164

the two (or more) competing language states, it produces trajectories that165

exhibit rapid growth from the onset of the change, unlike the gradual up-166

take observed in empirical data such as in Fig. 1. The model also relies on167

individuals not changing their usage frequencies once they are added to168

population, i.e. the individuals’ usage rates remain completely fixed after169

they are initally acquired. This leaves open the question of whether the170

same mechanism could also give rise to directed changes when individuals171

adjust their usage rates throughout their lifetime, as has been observed in172

linguistic changes (Sankoff and Blondeau, 2007).173

Another general model of cultural evolution based on a similar principle174

is Gureckis and Goldstone’s model of momentum-based selection (Gureckis175

and Goldstone, 2009), which we will study more closely in the remainder176

of this paper. In this model, an individual’s choice of cultural variants is177

influenced by the variants’ momentum, i.e. by changes to the variants’ fre-178

quency of use in the recent past. Individuals are assumed to be biased to-179

wards variants which have recently seen an increase in their usage rate, and180

conversely biased against variants that have been adopted relatively less181

frequently in the recent past.182

They test their model on a dataset of the frequency of names given to183

children in the US over 127 years. Their prediction for the popularity of184

a name in a given year, which is based on its long-term popularity mod-185

ulated by its momentum, leads to a better fit of the empirical data than186

the prediction made by pure random copying accounts, which is based187

on its popularity in the previous year alone. Importantly, Gureckis and188

Goldstone’s model was intended to improve the fit of an empirical predic-189

tion, but not meant as a generative model of individual behaviour. The190

authors rule this out, noting that “if rising names are preferred, which in191
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turn causes them to rise, then a momentum bias might quickly lead to con-192

vergence on a single token” (Gureckis and Goldstone, 2009, p.668). They193

regard this as a negative property of the model, as they are interested in194

mechanisms that exhibit cycles in the popularity of traits, such as found195

in the realm of fashion (Kroeber, 1919; Berger and Le Mens, 2009; Acerbi196

et al., 2012). In language change, on the other hand, convergence on a197

single convention is the rule rather than the exception, suggesting that198

momentum-based selection may be more appropriate as a model for lan-199

guage than for other cultural domains such as first names.200

2 Momentum-based selection201

Our main contribution in this work is to investigate the dynamics of momentum-202

based selection by integrating it into an existing framework of language203

change, and evaluating it with respect to the characteristics of language204

change we identified above: the sporadic nature of changes which, once ac-205

tuated, proceed in an orderly, directed manner. We begin by reviewing the206

original formulation of momentum-based selection in Gureckis and Gold-207

stone (2009). The model is built around tracking exponentially weighted208

moving averages (EWMAs) of the relative frequencies of competing cul-209

tural traits in an unstructured population. Given a time series of relative210

frequencies ~n = 〈n1, n2, n3, . . .〉, the weight of each datapoint towards the211

moving average, which we denote n̂α(t), decreases exponentially over time212

(hence the name). Given a new datum nt, the moving average can be up-213

dated iteratively using214

n̂α(t) = α · nt + (1− α) · n̂α(t−1) (1)

where the subscript α ∈ [0, 1] specifies a constant smoothing coefficient215

that determines the weight given to newly incorporated datapoints, as well216

as how quickly the datapoints’ weight decreases over time. At time t, the217

relative weight of datum nt−i in the current average is α · (1 − α)i. The218

higher α, the more weight is given to more recent datapoints. Based on219

this, the momentum of a variant at time t, m(t), is determined by cal-220

culating two EWMAs n̂α(t), n̂γ(t) of the variant’s attested frequencyies221

〈n1 · · ·nt〉 with decay parameters γ > α, and taking their difference,222

m(t) = n̂γ(t)− n̂α(t). (2)

Because the higher γ gives more weight to recent datapoints, the moving223

average n̂γ(t) corresponds to the recent popularity of a trait while n̂α(t)224
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captures its long-running popularity. The momentum term m(t) will con-225

sequently be positive if a variant has been more popular in the recent past226

compared to its long-term popularity, and negative if the variant has been227

adopted relatively less frequently in the recent past.228

2.1 Mathematical properties of the momentum dy-229

namics230

To understand just what is captured by the momentum term m(t), we231

can investigate the general dynamics of the difference between two EW-232

MAs n̂α(t), n̂γ(t) based on their decay parameters γ > α. The strongest233

possible trend in changes to relative variant frequency can be achieved234

by initialising both EWMAs at one extreme values (e.g. 0), then contin-235

uously updating them with the opposite extreme value (i.e. 1). Starting236

from an initial momentum of zero, both the number of data points it takes237

to reach the maximum difference between the two and the amplitude of238

this highest possible momentum value depend on both decay parameters239

α and γ, as can be seen in Fig. 2a. What is of interest to us are the dif-240

ferent shapes of these momentum curves, and how they affect the model241

dynamics: a parameter combination which exhibits a rapidly rising curve242

will cause an individual to posit a trend based on just a few suggestive in-243

put data points, while a curve that slopes off slowly means that a momen-244

tum bias will persist for a long time after the initial detection of a trend.245

The parameter γ is of particular importance, as it controls the time depth246

at which trends are detected, as can be seen in Fig. 2b. A high γ causes247

the momentum term to immediately reflect short-term variation in the in-248

put, while settings of γ closer to α lead to more conservative trend esti-249

mates which smooth over the noise present in individual input data points.250

Generally, the number of iterations that both EWMAs have to be updated251

with the same constant input value before the maximum possible difference252

between the two is reached is253

tmmax(α, γ) =
ln α

γ

α− γ
. (3)

[Figure 2 about here.]254

The maximum possible amplitude of the momentum term at that point255

is256

mmax(α, γ) = e−γtmmax(α,γ) − e−αtmmax(α,γ) . (4)
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Knowing the mathematical boundaries of the momentum-based selection257

bias we can now go on to incorporate the momentum bias into a generative258

model of language change.259

2.2 The Utterance Selection Model of language change260

To investigate the dynamics of momentum-based selection as a model of261

individual behaviour, we implemented the momentum-based selection bias262

in the utterance selection model of language change (USM) (Baxter et al.,263

2006; Blythe and Croft, 2012). Derived from Croft’s evolutionary theory264

of language change (2000), the USM provides a well-studied multi-agent265

framework to study the dynamics of the competition and diffusion of dis-266

crete linguistic replicators, be they lexical items, constructions, or different267

categorical variants of a speech sound2.268

Two fundamental principles underlie the design of the USM: firstly, the269

individual agents use the competing variants proportionally, rather than270

categorically. In the minimal case with only two competing variants stud-271

ied here, an agent’s usage rates can be fully described by a single num-272

ber, call it x, in the range [0, 1]. While this value can be interpreted as273

reflecting some cognitive state of the speaker, it also has a more direct274

behavioural correspondent: when an agent is selected to participate in an275

interaction, their probability of producing the novel variant is equal to x,276

while the probability of producing the competing variant is 1 − x. This277

aspect of the USM is in line with linguistic evidence which shows that hu-278

man language use is inherently variable (Kroch, 1994; Labov, 1994; Bybee,279

2007).280

Secondly, to mimic humans’ tendency to align their linguistic behaviour281

with that of their interlocutors, agents continuously tune their own propor-282

tion of variant usage towards the productions they observe in interactions283

with other agents (Jaeger and Snider, 2013; Nardy et al., 2013). This as-284

pect of the USM is in line with the finding that many aspects of linguistic285

behaviour do not remain fixed throughout an individual’s lifetime, instead286

remaining malleable across the life span (Kerswill, 1996; Sankoff and Blon-287

deau, 2007; Beckner et al., 2009; Bowie and Yaeger-Dror, 2013; Stanford,288

2014). According to the formal definition of the USM (Baxter et al., 2006),289

an agent’s current proportion of use of a variant xα(t), is simply an expo-290

nentially weighted moving average (EWMA) of the frequencies of the in-291

coming variant that the agent has observed in their input over time3. The292

2For an account of how age vectors can drive change in a continuous dimension such
as vowel productions, see Swarup and McCarthy (2012).

3For simplicity of notation we will henceforth omit theˆabove the variables denoting
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rate of alignment is controlled by the decay parameter α of this EWMA,293

which can be understood as a learning rate. This learning rate is typically294

held small (in the range of 0.01): there is alignment, but the individual fre-295

quency adjustments after an interaction are very small and it takes many296

interactions for an agent to change their preferred variant.297

On top of this basic update rule, a USM agent’s alignment behaviour298

can be altered by applying biases to their input data before it gets incor-299

porated into the EWMA. This is where momentum-based selection comes300

into play.301

2.3 Momentum-based selection in the USM302

We now explain how to minimally incorporate momentum-based selection303

as defined by Gureckis and Goldstone (2009) into the USM. Assuming an304

agent using learning rate α has just engaged in its t-th interaction and ob-305

served another agent use the incoming variant with a relative frequency306

of y, then their own frequency of use xα is updated to be307

xα(t) = α · f(y) + (1− α) · xα(t−1) , (5)

where f(y) is a function from [0, 1] to [0, 1] which transforms the objec-308

tive observed frequency of the variant into a perceived frequency which the309

agent then aligns to. Similar to Gureckis and Goldstone (2009) we can now310

simply define the perceived frequency f(y) of an agent in the momentum-311

based USM as the objective frequency y of a variant observed in an inter-312

action offset by that variant’s momentum,313

f(y) = y + b ·m′(t) (6)

with the exception of314

f(0) = 0 and f(1) = 1 . (7)

We impose the latter since we are only interested in modelling the diffu-315

sion of existing linguistic variants, not in how those variants were intro-316

duced into the population to begin with – in other words, this constraint317

stops our momentum-biased selection function from generating novel, unat-318

tested variants (Boyd and Richerson, 1985). The positive bias parameter b319

in equation 6 controls the strength with which the normalised momentum320

term m′(t) as defined below in equation 8 influences the perceived fre-321

quency. Should the momentum bias cause f(y) go below 0 or above 1, it322

EWMAs.
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is simply truncated at 0 and 1, respectively4. Crucially, because the mo-323

mentum term can be positive or negative (depending on the direction of324

the trend), this perceived frequency function is symmetric, which makes it325

replicator-neutral : no matter what value is used for parameter b, the func-326

tion does not a priori favour one of the variants over the other.327

Since the effect of different strengths of this bias parameter on the model328

dynamics is relevant to our analysis, we have to make sure that its set-329

tings are comparable across conditions. This isn’t as straightforward as330

it might seem, because the range of values that the momentum term m(t)331

as defined in equation 2 can take on depends on their decay parameters α332

and γ, as can be seen from Fig. 2. The absolute amplitude of the momen-333

tum curves is of little interest to us; on the contrary, the differences in334

maximum possible amplitude distort the effect of the bias parameter b335

which is supposed to control the strength with which momentum is ap-336

plied. To counteract this, we normalise the momentum term m(t) based on337

the α, γ used in a given simulation condition. For any given pair of decay338

rates α, γ, we can scale the momentum term to the [−1, 1] range by defin-339

ing the normalised momentum340

m′(t) =
xγ(t)− xα(t)

mmax(α, γ)
. (8)

To calculate the momentum component in the numerator, the difference341

between two EWMAs, we simply re-use the agent’s own usage frequency,342

which according to the USM definition is also an EWMA. To augment343

the basic USM with momentum-based selection, every agent simply has344

to keep track of another xγ on top of the long-term estimate xα it already345

maintains.346

3 Results347

3.1 Analytical approximation348

Before proceeding to a full population-based simulation we can establish349

the general dynamics of the model by investigating the behaviour of an350

individual agent set in a production-perception loop (Wedel, 2006). We351

initialise a single agent to use the incoming variant at some low level and352

4The exact form of the bias function f(x) matters much less than its monotonicity
and the fact that f(x) > x when the momentum term is positive (i.e. when the agent
perceives an upward trend) and f(x) < x when it is negative (indicating a downward
trend).
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repeatedly update their two EWMAs xα(t), xγ(t) by having them align to353

their internal proportion of use xα(t). Nothing happens: an agent align-354

ing to their own variable use with no added noise simply remains at that355

proportion, and the momentum term remains 0 (see the first 100 interac-356

tions in Fig. 3). To test how the model reacts to fluctuations in the input357

we alter the agent’s input by fabricating a datapoint which suggests that358

their interlocutors are actually categorically using the incoming variant (see359

Fig. 3a). When the agent aligns to this usage rate it leads to a small punc-360

tual increase in their variant use, but the sudden change in the input data361

also makes the momentum term take on a positive value (dashed grey line).362

Following the fabricated data point, the agent again receives their own363

samples as input data. But the bias exerted by the momentum term, which364

makes the agent’s perceived usage rate higher than their actual usage rate,365

causes further increases in their use of the incoming variant. However,366

the lack of further perturbations causes the momentum to decay back to-367

wards 0, and the agent becomes stationary again at a usage level not far368

from their initial setting. If we introduce a second fabricated data point369

shortly after the first one, the model’s behaviour changes dramatically: the370

system enters a regime where the momentum bias generated by the two371

fabricated datapoints affects the perceived frequency of the agent’s input372

so much that it causes the momentum term to increase further, leading to373

self-reinforcing runaway change (Fig. 3b).374

[Figure 3 about here.]375

This preliminary analysis shows that the momentum-based selection376

model exhibits two different regimes, accounting for both periods of sta-377

bility and of directed change. Capturing the dynamics of the transition378

between the two regimes is however not trivial: particularly the switch379

from a period of stability to a directed transition depends crucially on both380

the strength of the momentum bias as well as random fluctuations in the381

agents’ input as they sample input data from their interlocutors. We there-382

fore turn to numerical simulations, where the data production and agent383

interactions will be driven by stochastic processes.384

3.2 Numerical simulation385

In order to get a fuller picture of the momentum-based selection dynam-386

ics we explored a performed simulations with a total of 2, 520 parameter387

combinations. The six parameters of the momentum-based USM are sum-388

marised below. Only one, the learning rate α, was held constant across all389
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simulation runs, the other five parameters were varied at the levels given in390

parentheses:391

- α: the agents’ learning rate (.01)392

- γ: the agents’ short-term memory decay rate (.015, .02, .025, .03, .35, .4)393

- T : the Binomial sample size determining the resolution at which394

agents can observe each other’s relative usage frequencies (2, 3, 4, 5)395

- b: the bias strength with which agents apply the normalised momen-396

tum to yield their perceived frequency of usage (.5, 1.0, 1.5, 2.0, 2.5)397

- N : number of agents in the population (2, 5, 10, 20, 30, 50, 100)398

- x0: initial proportion of the incoming variant used by all agents (.01, .02, .03)399

Combining all these possible parameter combinations and running the400

2, 520 conditions for 48 trials each resulted in a total of 120, 960 simulation401

runs. On top of the conditions listed above, we also produced simulation402

runs where we set the bias strength b = 0, which makes it equivalent to403

pure neutral evolution. 24, 192 runs from this additional condition provide404

a baseline that the dynamics of our momentum-based selection model can405

be compared against. Every run of our simulations proceeds as follows:406

Firstly, initialise N agents, setting both their xα(0) and xγ(0) to x0.407

Then, carry out interactions between agents by repeating the following408

steps:409

1. randomly select two agents i, j from the pool of N agents – we as-410

sume that all pairs of agents have the same probability of interacting411

with each other.412

2. let both agents produce T tokens of the variable by taking a random413

sample ni, nj for each agent from the Binomial distribution B(T, xα),414

using the agents’ respective value of xα at the time of the interaction.415

3. calculate the perceived frequencies that the agents will align to, using416

equation 6. For agent i, who will align to j’s productions, calculate417

f(nj

T
) using agent i’s current normalised momentum term m′(t); for418

agent j, calculate f(ni

T
) using j’s m′(t).419

4. update both agents’ xα as well as xγ by incorporating their perceived420

frequency according to equation 5.421
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The simulations were run until every individual in the population had422

converged to within one millionth of a percent of using only one of the two423

competing variants, or for a maximum of 200, 000 interactions per agent5.424

3.3 Simulation results425

For the sake of our analysis we use a simple definition of what a ‘transi-426

tion’ is. Taking a fixed threshold (say 5%), we can define the two extreme427

areas where the mean population usage level of the minority variant is be-428

low this threshold as the two regions of ‘near-categorical use’ of either vari-429

ant. A transition, then, is the period in which the mean usage levels of the430

population crosses from near-categorical use of one to near-categorical use431

of the other variant. A first striking finding when analysing the simulation432

results is that changes are rare: of the 120, 960 simulation runs using the433

momentum bias, only 18, 040 (around 15%) ever exhibit a directed transi-434

tion, while the majority of runs simply converge on categorical use of the435

majority variant. This result is in line with the observation that the actua-436

tion of language change is sporadic: even when a novel variant is known to437

the entire population, this alone is not likely to lead to a community-wide438

language change.439

[Figure 4 about here.]440

When we investigate the transitions across the different parameter set-441

tings, we find that the bias strength b carves the space into two regions442

with distinct dynamics: while simulation runs with b ≥ 1 exhibit directed443

transitions at comparable time scales, the neutral evolution condition with b =444

0 as well as the weak momentum bias setting at b = .5 yield both fewer445

and temporally less consistent transitions, as shown in Fig. 4. The differ-446

ence between those two regimes is exacerbated as population sizes become447

larger, making transitions in the neutral evolution conditions even rarer448

and slower.449

Beyond this qualitative difference in successful transitions, our earlier450

prediction regarding the general directedness of trajectories in the neutral451

evolution condition are also borne out by the simulations: of all simulation452

runs where the incoming variant ever reaches the half-way mark (average453

50% usage across the population), only 55% of trajectories in conditions454

with b ≤ .5 actually result in the diffusion of the incoming variant, while455

the other half of the trajectories revert back to the established variant,456

5More than 99% of simulation runs had terminated before this time limit was
reached.
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representing interrupted changes. In contrast, in conditions with b ≥ 1,457

97% of the trajectories that reach the half-way mark eventually lead to the458

population-wide adoption of the incoming variant.459

In contrast to the low-bias conditions which exhibit the dynamics of460

neutral evolution, conditions with a sufficiently high momentum bias b will,461

once a change is actuated, produce reliable s-shaped transitions between462

the two regions of near-categorical use. The dynamics are robust under463

many different parameter settings which give rise to highly similar transi-464

tion dynamics (see Fig. 4; the parameters’ much greater influence on the465

likelihood of transitions occurring will be explored in a later paper). While466

similar transitions are also found in models driven by replicator selection,467

an important difference is that our model has no a priori preference for any468

of the variants built in. Instead of having a constant bias applied from out-469

with the model, the momentum term provides the opportunity for a bias470

to emerge dynamically and gradually from within the system, as can be471

seen from the temporal development of the momentum term in Figs. 5.472

Crucially, rather than relying on an external trigger, the s-shaped transi-473

tions are self-actuating : agents constantly read weak trends into the ran-474

dom fluctuations in their input but, across the population, these temporary475

individual biases will vary across the population, and more often than not476

cancel each other out. There is, however, always the possibility that these477

weak biases will overlap, causing a subset of agents to slowly shift their478

variant use in parallel. When this shift is detected by other agents they479

will themselves start to amplify it, leading to a self-reinforcing feedback480

loop. The directed transitions in a momentum-based model of language481

change are triggered spontaneously and, while likely, changes are not guar-482

anteed to succeed either: even if a change is actuated, its propagation is483

not completely inevitable, as can be seen in interrupted changes such as484

the one shown in Fig. 5b. The dynamics exhibited by momentum-based485

selection offer an intriguing explanation of the unpredictability of the actu-486

ation of linguistic changes, by exhibiting sporadic directed changes without487

the need for an external bias or trigger.488

[Figure 5 about here.]489

The trajectories shown in Figs. 5 are exemplary of the dynamics of490

momentum-based selection across the full range of parameter settings we491

explored. Only for settings of the momentum bias b close to 0 as well as for492

short-term decay rates γ very close to the learning rate α do the momentum-493

based selection dynamics break down, and the model reverts to pure neu-494

tral evolution-like behaviour. In comparison to the prediction-driven model495
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of Mitchener (2011), the momentum-based selection model shows that it is496

not necessary for learners to engage in active prediction of the population’s497

future state. Rather, having a simple bias based on variant history is suf-498

ficient to drive orderly directed changes, and the transitions generated by499

our model appear to exhibit a more gradual uptake than the trajectories500

reported by Mitchener. We also find that having a bias for regularisation501

is not necessary to guarantee an orderly progression of the changes. In a502

population of agents who are continuously updating their usage rates, the503

momentum bias presented here is robust enough to drive changes to near-504

completion.505

4 Discussion506

We have shown that the momentum-based selection model fulfills two defin-507

ing requirements of a model of language change: the spontaneous, sporadic508

actuation of changes, and their progression in the form of a directed, s-509

shaped curve. However, other accounts of language change which posit a510

selection bias in favour of the incoming variant also predict s-shaped tra-511

jectories, so how can we know which account best describes the empirical512

data? While the progression of every instance of language change will be513

influenced by several factors concurrently or at different times (see e.g.514

Ghanbarnejad et al., 2014; Stanford, 2014; Bickel, 2015), it is still inter-515

esting to investigate which (if any) of the mechanisms of language change516

discussed in the introduction can be identified as the main driving force517

behind language change. Here, we want to highlight some of the more518

subtle differences in the predictions made by different accounts of lan-519

guage change which would allow us to tease apart the momentum-based,520

language-internal and social accounts of language change based on cross-521

linguistic data.522

4.1 The two rates of linguistic change523

An interesting (and to our knowledge novel) way to evaluate competing524

theories of language change is to look at the predictions they make re-525

garding the rates of linguistic change. It is important to note that rate526

can refer to two different things in the context of language change: one527

interpretation of rate is essentially the probability of a particular change528

occurring, such as when talking about different English past tense forms529

becoming regularised over time (Lieberman et al., 2007) or the rate of lex-530

ical replacement more generally (Monaghan, 2014). Rather than referring531
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to the time frame within which a specific change takes place this is really532

the likelihood of a (type of) change, or an actuation probability. The other533

use of rate refers to the speed of the transition of one particular change,534

i.e. the time span from the introduction of a new variant to its completely535

replacing an older one. Under the assumption that language change fol-536

lows an s-shaped pattern, this second rate of change is often taken to be537

the growth rate parameter of the logistic function (Pintzuk, 2003), and it538

is this ‘rate’ that is referred to by the ‘Constant Rate Effect’ observed in539

syntactic change (Kroch, 1989).540

What is interesting about these two rates of change is that different ac-541

counts of language change make different predictions on whether they are542

correlated, i.e. whether the likelihood of a change occurring is correlated543

with the rate at which the change proceeds once it has been actuated. As-544

suming that the same pressures that lead to the introduction of more func-545

tional or ‘adaptive’ variants are also responsible for their preferred selec-546

tion, language-internal accounts would predict that changes which occur547

more often cross-linguistically should also be selected for more strongly in548

individual languages. This would translate into faster changes so that, con-549

trolling for other factors such as frequency, the two rates of change should550

be positively correlated according to language-internal accounts. This dif-551

fers from the prediction made by the momentum-based account: while the552

probability of a new variant appearing, and consequently its random actu-553

ation from the pool of variants, is dependent on linguistic factors, these554

factors are not what drives the selection of the variant. Assuming that555

individuals apply similar momentum biases to all linguistic variables, a556

momentum-based account would predict the speed of individual transitions557

to be uncorrelated with the changes’ actuation probability.558

The situation with social accounts is trickier: the fact that many dif-559

ferent social factors have been posited to influence the selection of a vari-560

ant, both positively and negatively, makes it difficult to derive a general561

prediction regarding the speed of individual changes. What determines562

the probability of actuation is an equally open question: it has been pro-563

posed that the actuation of changes might be driven by the need to cre-564

ate distinct social identities within a community (Labov, 2002; Matthews565

et al., 2012; Roberts, 2013), meaning that we should not expect actuation566

probabilities to be constant cross-linguistically. While it is difficult to pin567

down the exact predictions made by social accounts of language change,568

the language-internal and momentum-based accounts can be tested by in-569

vestigating the correlation between the two rates of change that are at-570

tested cross-linguistically.571
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4.2 Momentum-sensitivity in the individual572

While our model successfully reproduces the macro-level s-shaped curves573

that are characteristic of linguistic change, this raises the question of whether574

it makes valid assumptions about individuals’ micro-level behaviour (Mesoudi575

and Lycett, 2009). Firstly, it is clear that both linguistic knowledge and576

performance are embedded in diachrony – language users are sensitive to577

changes in the frequencies of variants (Jaeger and Snider, 2013) and well578

aware of diachronic connotations (Labov, 2001; Walker and Hay, 2011;579

Tagliamonte, 2012), both types of information that could drive momentum-580

based selection. In the general cultural evolution literature it is well-established581

that frequency-dependent biases are a natural strategy for social learning582

tasks, since frequency can be an indicator of the social value of a vari-583

ant (Boyd and Richerson, 1985). Similarly, changes in frequency can be584

a good indicator of the future social value of a cultural variant (Gureckis585

and Goldstone, 2009), and laboratory experiments on cultural evolution in586

humans have provided empirical evidence of the self-perpetuating nature587

of trends, where people will amplify trends even against their own personal588

preferences (Salganik and Watts, 2008; Willer et al., 2009). Even though589

this suggests that individuals would have an incentive to use metalinguistic590

information about the history of linguistic variants, evidence regarding the591

extent of people’s explicit or implicit knowledge about ongoing changes is592

mostly qualitative and anecdotal (see e.g. Trudgill (1972); Labov (2001);593

Guy (2003); Tagliamonte (2012)). While variationist linguists customarily594

uncover patterns in the age distribution of linguistic variation based on col-595

lected data, it remains to be tested quantitatively how well (and by what596

mechanisms) individual speakers are capable of detecting such patterns in597

the wild.598

5 Conclusion599

To conclude, in this paper we investigated a new mechanism for the selec-600

tion of cultural traits and studied its evolutionary dynamics, with a par-601

ticular focus on the domain of linguistic change. Our analysis shows that602

the momentum-based selection model – where individuals are biased to-603

wards variants which have recently seen an increase in their frequency of604

use – fulfills two characteristic requirements of a model of language change:605

the spontaneous, sporadic actuation of changes, and their progression in606

the form of an s-shaped curve. We highlighted a number of open empirical607

questions related to both population-level patterns as well as the under-608
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studied capacity of individuals to detect ongoing changes which need to be609

tackled in order to allow us to distinguish different accounts of language610

change.611
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Figure 1: Competition between two syntactic patterns of yes/no questions, as
observed in a corpus of Middle English writing (Ellegard, 1953). The established
question syntax (e.g. “Went he?”) was gradually replaced by its modern
variant (e.g. “Did he go?”) along an s-shaped trajectory.
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Figure 2: Illustration of how the interaction between exponentially weighted
moving averages (EWMAs) of the same input data but with different decay
parameters (upper graphs) affects the temporal development of the
corresponding momentum terms (lower graphs). (a) Four EWMAs with decay
rates γ = .01, .02, .05, .15 are initialised at n̂γ = 0 and repeatedly updated using
the same constant input data series ~n = 〈1, 1, 1 . . .〉. (i) The higher the decay
parameter, the faster the EWMAs approach the input values; the slowest (solid)
line shows the development of the EWMA with γ = .01, the fastest (dotted) line
γ = .15. (ii) Corresponding momentum terms m(t) = n̂γ(t)− n̂α(t) derived from
the EWMAs above, by taking each of the EWMAs and subtracting the value of
the EWMA with the slowest decay rate α = .01 (line styles correspond to those
in (i)). A value of γ further away from α decreases the time tmmax until the
maximally possible momentum is reached while making the overall time-course
of momentum more peaky, with a higher maximum value mmax and quicker
decay back towards 0 following the peak. (b) Same as (a), only that the
EWMAs’ input data series ~n switches from all 1s to all 0s after 60 data points.
(i) The EWMAs with the highest decay parameter quickly converge back
towards the new input target 0. (ii) Corresponding momentum terms derived
from the EWMAs above, again subtracting the value of the EWMA with the
slowest decay rate α = .01 (line styles correspond to those in (i)). The sudden
change in trend after 60 data points illustrates how the two parameters α, γ
control the time depth at which the momentum term is most sensitive to
underlying trends in the data: momentum terms based on high γ (e.g. γ = .15,
dotted line), while very quick to reflect sudden changes in the input, are very
unstable. After five data points indicating a new downward trend back towards
0, the previous sustained upward trend is forgotten, with the momentum term
quickly returning to 0, then going negative to reflect the new downward trend.
Momentum terms based on settings of γ closer to α (e.g. γ = .02, dashed line)
are more conservative, requiring sustained evidence of a trend over time to reach
a high value.
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Figure 3: Momentum-based selection dynamics of a single agent’s variable usage
rate in a production-perception loop, with learning rates α = 0.01, γ = 0.02 and
momentum bias b = 2. At every time step the agent updates their own usage
rate (solid black line) by aligning to their own average momentum-biased
production with a sample resolution of T = 5 (indicated by the dashed black
line). This stable loop is perturbed by administering fabricated input data
suggesting 100% usage of the incoming variant at the time points marked by
asterisks, demonstrating the two regimes of momentum-based selection:
(a) stability: a single fabricated data point after 100 interactions causes a
sudden increase in the agent’s usage rate (solid black line) as well as the
momentum term (dot-dashed grey line, right axis). The positive momentum
term causes the agent’s own perceived usage level to be higher than it actually is
(dashed black line), which leads to some further increase in the usage rate before
the momentum bias tapers off towards 0 (the feedback loop stabilises again after
around 500 interactions). (b) directed transitions: adding another fabricated
data point after 200 interactions raises the momentum term high enough to
trigger self-reinforcing runaway change, giving rise to an s-shaped transition.
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Figure 4: Successful transitions generated by simulation runs in conditions with
and without the momentum-based selection bias. The graphs show the
development of the average proportion of use of the incoming variant across the
population (black line, left axis) from the point where it crosses the 5% mark
until it reaches 95%, alongside the average momentum term during that
period (grey line, right axis). Transitions are aligned at the point where the
trajectory first crosses the 50% mark of incoming variant usage. (a) 20
trajectories randomly drawn from the 21, 909 successful transitions generated by
momentum-based selection with momentum bias b ≥ 1, population sizes N ≥ 5
and various settings of γ, T, x0. The momentum term influences the agents’
perception of the usage levels around them which, once triggered, leads to a
self-reinforcing feedback loop. (b) all 28 transitions generated in 17, 280
simulation runs with b = 0, equivalent to neutral evolution, with various settings
of γ, T, x0 and population sizes N ≥ 5. Without the influence of the momentum
bias, transitions become both much rarer and slower as population size
increases (note the different time scales). The momentum term, ineffective in
this model, is shown for reference.
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Figure 5: Transitions generated by two simulation runs using identical parameter
settings (N = 5, b = 2.0, T = 2, α = .01, γ = .04). The graphs show the
development of the average proportion of use of the incoming variant across the
population (black line, left axis) as well as the average momentum term
influencing the agents’ perception (grey line, right axis). Shaded intervals
indicate the range (minimum and maximum values) attested in the population.
(a) A successful, s-shaped transition typical of momentum-based selection: an
initially noisy momentum value rises high enough to trigger self-reinforcement of
the momentum bias (at around 450 interactions) until it saturates and tails off
again (b) Example of a rare, interrupted transition: despite the onset of a
directed shift, the wide range of momentum biases across the population
destabilises the feedback loop, causing the average momentum to break down
and invert, returning the usage frequency of the incoming variant back towards
its initial low level.
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