

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/114461/

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2016 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Accepted Manuscript

Title: Zinc Chloride Aqueous Solution as a Solvent for Starch

Author: Meiying Lin Xiaoqin Shang Peng Liu Fengwei Xie Xiaodong Chen Yongyi Sun Junyan Wan

PII:	S0144-8617(15)00854-1
DOI:	http://dx.doi.org/doi:10.1016/j.carbpol.2015.09.007
Reference:	CARP 10309

To appear in:

Received date:	20-5-2015
Revised date:	30-8-2015
Accepted date:	2-9-2015

Please cite this article as: Lin, M., Shang, X., Liu, P., Xie, F., Chen, X., Sun, Y., and Wan, J.,Zinc Chloride Aqueous Solution as a Solvent for Starch, *Carbohydrate Polymers* (2015), http://dx.doi.org/10.1016/j.carbpol.2015.09.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights:

- ✓ ZnCl₂ aqueous solution (>29.6 wt.%) is a non-derivatizing solvent for starch
- \checkmark Starch can be dissolved completely and regenerated easily in ZnCl₂ solution
- \checkmark The suggested dissolution mechanism was the formation of a "zinc-starch"

complex", not degradation by H^+ .

1	Zinc Chloride Aqueous Solution as a Solvent for Starch
2	
3	Meiying Lin ^{<i>a</i>} , Xiaoqin Shang ^{<i>a</i>} , Peng Liu ^{<i>a</i>} , Fengwei Xie ^{<i>b</i>} , Xiaodong Chen ^{<i>a</i>} , Yongyi
4	Sun ^{<i>a</i>} , Junyan Wan ^{<i>a</i>}
5	
6	^a School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou
7	510006, China
8	^b School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072,
9	Australia
10	
11	* Corresponding author. Tel.: +86 20 13342885662; fax: +86 20 39366902; Email address:
12	hushanren@163.com (X.Q. Shang)
13	

14 Abstract:

15 It is important to obtain starch-based homogeneous systems for starch modification. 16 Regarding this, an important key point is to find cheap, low-cost and low-toxicity 17 solvents to allow complete dissolution of starch and its easy regeneration. This study 18 reveals that a ZnCl₂ aqueous solution is a good non-derivatizing solvent for starch at 19 50 °C, and can completely dissolve starch granules. The possible formation of a 20 "zinc-starch complex" might account for the dissolution; and the degradation of starch, 21 which was caused by the H^+ inZnCl₂ aqueous solution, could not contribute to full 22 dissolution. From polarized light microscopic observation combined with the solution 23 turbidity results, it was found that the lowest ZnCl₂ concentration for full dissolution 24 was 29.6 wt.% at 50 °C, with the dissolving time being 4 h. Using Fourier-transform infrared (FTIR), solid state ¹³C nuclear magnetic resonance(NMR), and X-ray 25 26 diffraction (XRD), it was revealed that ZnCl₂ solution had no chemical reaction with 27 starch glucosides, but only weakened starch hydrogen bonding and converted the 28 crystalline regions to amorphous regions. In addition, as shown by intrinsic viscosity 29 and thermogravimetric analysis (TGA), ZnCl₂ solution caused degradation of starch 30 macromolecules, which was more serious with a higher concentration of ZnCl₂ 31 solution.

32

Keywords: starch; ZnCl₂ aqueous solution; non-derivatizing solvent; dissolution;
 zinc-starch complex

35

36 Chemical compounds studied in this article:

37 Starch (PubChem CID: 24836924); Water (PubChem CID: 962); Zinc dichloride

38 (PubChem CID: 5727)

39

40 **1. Introduction**

41	Starch is one of the most abundant carbohydrates in nature, and has been widely
42	used as a raw material in industry. Furthermore, native starch can be modified into
43	various derivatives to widen its applications. Modified starches such as starch sodium
44	succinate and starch phosphate ester can be used to prepare food additives; and starch
45	can also be converted into value-added chemical products, such as binders and
46	flocculants (Hanselmann & Burchard, 1996; Wu & Hakkarainen, 2014).
47	However, the modification of starch has been greatly limited by its insolubility in
48	water and most organic solvents. This is especially true if a high degree of substitution
49	(DS) is desired, and in this case modification can only occur in a heterogeneous way.
50	In order to increase the DS, starch esters, for example, were usually prepared in
51	organic solvents, where catalysts may be further added. However, these organic
52	solvents were often volatile, not recyclable, and the catalysts such as pyridine were
53	toxic. These heterogeneous systems have limited the development of starch
54	modification and the application of modified starch (Junistia, Sugih, Manurung,
55	Picchioni, Janssen, & Heeres, 2008).
56	Homogeneous systems have been reported to be beneficial to carbohydrate
57	modification (Heinze & Liebert, 2011; Gao, Luo, & Luo, 2012). As a result, efforts in
58	recent years have been focused on the search for solvents that can completely dissolve
59	starch. Solvents can be classified into derivatizing and non-derivatizing types
60	according to whether or not any chemical reaction is occurring in the dissolution
61	process. Some traditionally- and broadly-used solvents for starch include dimethyl
62	sulfoxide (DMSO) and strong inorganic alkalis (e.g., KOH and NaOH). However,
63	research has shown that alkaline solutions may induce undesirable side reactions such

64 as structural depolymerization and oxidation (Jackson, Choto-Owen, & Waniska, 65 Rooney, 1988; Jordan, Schmidt, Liebert, & Heinze, 2014). DMSO was found to be able to dissolve starch without structural degradation (Everett & Foster, 1959). 66 67 However, the dissolution process with DMSO is not straight forward. Starch is heated 68 in 90% aqueous DMSO for about 24 h, followed by precipitation and re-dissolution in 69 water (with further heating); and this procedure requires intensive shear and thermal 70 treatment to starch (Chakraborty, Sahoo, Teraoka, & Gross, 2005; Han & Lim, 2004; 71 Zhong, Yokoyama, Wang, & Shoemaker, 2006). 72 Ionic liquids (IL's) represent a new class of solvents for starch, which have 73 gained much attention recently. IL's have been claimed as "green solvents" for many 74 substances including natural polymers such as starch and cellulose, because of their 75 chemical and thermal stability, low vapor pressure, and high ionic activity (Gericke, 76 Schlufter, Liebert, Heinze, & Budtova, 2009; Lu, Yan, & Texter, 2009). However, the 77 research on IL's has just been started and the toxicity of IL's remains uncertain. 78 Jastorff et al. and Matsumoto et al. (Jastorff et al., 2003; Matsumoto, Mochiduki, 79 Fukunishi, & Kondo, 2004) have preliminarily studied the toxicity of IL's and proved 80 that the commonly-accepted notion that IL's have low toxicity is incorrect. Most IL's 81 are designed with large organic cations, such as pyridinium, imidazolium and pyrrolidinium while the anions are hexafluorophosphate (PF_6) , tetrafluoroborate 82 (BF_4) , dicyanamide $(N(CN)_2)$, etc.. Their release to aquatic environments could 83 84 cause severe water and soil contamination due to the potential toxicity and 85 non-biodegradability (Gathergood & Scammells, 2002). Moreover, the high prices of 86 IL's make them difficult to be applied practically in industry. Therefore, the practical 87 application of IL's remains uncertain.

88 Another class of solvents for natural polymers is inorganic salt hydrates, which

89	are liquids that have a designated water-salt mole ratio close to the coordination
90	number of the strongest hydrated ion. Typical examples are liquid phases of solid salt
91	hydrates, such as Ca(SCN) ₂ /H ₂ O (Warwicker, Jeffries, Colbran, & Robinson, 1966),
92	LiSCN/H ₂ O (Lukanoff, Schleicher, & Philipp, 1983) and ZnCl ₂ /H ₂ O (Letters, 1932).
93	They are inexpensive, convenient, and environmentally friendly. They are
94	non-derivatizing solvents not only being regarded as very efficient solvents for most
95	natural polymers such as cellulose (Cao, Xu, Chen, Gong, & Chen, 1994), chitin
96	(Wang, Pedersen, Deng, Qiao, & Hou, 2013), but also have been applied as a medium
97	for the chemical functionalization or derivatization, such as carboxymethylation and
98	esterification, of these natural polymers, within a short reaction time (Leipner,
99	Fischer, Brendler, & Voigt, 2000; Sen, Martin, & Argyropoulos, 2013). For example,
100	Heinze et al. used molten $LiClO_4/3H_2O$ as a solvent for homogeneous
101	carboxymethylation of cellulose with a high DS (i.e., \leq 2) in a one-step synthesis
102	after a short reaction time of 4 h (Fischer, Thümmler, Pfeiffer, Liebert, & Heinze,
103	2002). Acetylation could also be carried out at a temperature of 130 °C for a short
104	reaction time (0.5-3.0 h) with DS between 1 and 2.5 (Fischer, Leipner, Thümmler,
105	Brendler, & Peters, 2003). When cellulose is dissolved in a molten salt hydrate, the
106	formation of a homogeneous phase makes cellulose hydroxyl groups completely
107	available for chemical derivatization. This allows the control of both the degree of
108	substitution and the distribution of functional groups, which can undoubtedly broaden
109	the reaction paths and the diversity of products. However, there has been no report on
110	molten salt hydrates applied as solvents or reaction media for starch.
111	Thus, the aim of the present work was to investigate the ability of $ZnCl_2$ aqueous
112	solution, a molten salt hydrate, as a solvent for starch, together with the structure and

properties of the regenerated starch from this solvent.

5

113

Page 6 of 31

114 **2. Materials and Methods**

115 2.1. Materials

Native cassava starch (with moisture content of 14%) was obtained from 116 117 Dongguan Wenying Starch Trade Co., Ltd., without further treatment. Anhydrous 118 zinc chloride (ZnCl₂) and methanol (analytical grade) were purchased from 119 Guangzhou Chemical Reagent Factory (Guangzhou, China). Other chemicals 120 including hydrazine sulfate and hexamethylenetetramine were of analytical grade and 121 used as received without further purification. All solutions were prepared with 122 distilled water. 123 124 2.2. Dissolution and regeneration of starch from zinc chloride solutions 125 Certain amounts of anhydrous ZnCl₂ were added to a three-neck, round-bottom flask equipped with an electric stirrer to obtain ZnCl₂ aqueous solutions of certain 126 concentrations (65%, 43%, 35% and 29.6%). The ZnCl₂ solution was then mixed with 127 128 a certain amount of starch (2.0 wt.%, dry weight). Then, the system was stirred at 129 50 °C for 4 h. In order to prevent degradation by shear force, the revolution speed was 130 set as 60 rpm. Besides, during the dissolution process, the solution was sampled at 131 intervals and observed under a polarized light microscope (Motic BA300POL, Motic 132 Asia, Hongkong) equipped with a digital camera (Moticam Pro 205A, Motic Asia, Hongkong). 133 134 Regenerated starch was obtained from the above solutions by adding absolute 135 ethanol with continuous stirring (The absolute ethanol was about 2-5 times the 136 volume of the starch solution). The starch samples were then dried and smashed into powder for further analysis. 137

138 ZnCl₂ aqueous solution was acidic (pH = 4.09 for 29.6% and pH = 0.67 for 65%).

For discussing the influence of H^+ on starch, hydrochloric acid (HCl) solution with a
pH value of 4.09 was prepared. After that, native cassava starch was treated with the
HCl solution under the exactly same processes as with $ZnCl_2$ aqueous solution. And
regenerated starch from HCl solution was collected and compared with those from
ZnCl ₂ aqueous solution.
2.3. Characterization of starch and regenerated starch
Fourier-transform infrared (FTIR) spectra for native and regenerated starches
were obtained in the range of 400–4000 cm^{-1} with a TENSOR27 FTIR model
manufactured by Burker, Germany. The samples were mixed with KBr and well
ground before being pressed into wafers.
X-ray diffraction (XRD) patterns for native and regenerated starches were
obtained on an PW3040/60 X'pert PRO X-ray diffractometer (PANalytical,
Netherlands) using the Cu-Ka X-ray source operating at 36 kV and 20 mA. The
scanning range and rate are 5–90° and 4°/min, respectively.
Solid-state ¹³ C CP/MAS spectra were collected on a Bruker Avance 500 nuclear
magnetic resonance (NMR) spectrometer using a 4mm MAS BB-1H probe head. The
spectral width used was 37.6 KHz. The acquisition time was 27 ms, together with
7.7 μ s pre-scan delay and 13.3 μ s dwell time. All solid experiments were carried out
at 125.8 MHz for ¹³ C with 4096 scans accumulating for each spectrum.
To determine the intrinsic viscosity of native and regenerated starches (Islam,
Mohd, & Noor, 2001), the samples were dispersed in 0.5mol/L KOH solutions and
stirred in a boiling water bath for 10 min. The solutions were then cooled to room
temperature and left overnight. The final concentrations of the solutions were
2.6–6.0 mg/mL. Intrinsic viscosity measurements were obtained using a Ubbelohde

dilution capillary viscometer (size 37, Shanghai Liangjing Glass Instrument Factory,
China) immersed in a water bath maintained at 25 \pm 0.1 °C. The efflux time of solvent
and solutions were measured in triplicate and averaged. Results were expressed as
relative viscosity (η_r), $\eta_r = \eta/\eta_0$; specific viscosity (η_{sp}), $\eta_{sp} = \eta_r - 1$; and intrinsic
viscosity ([η]). η is the solution viscosity and η_0 is the solvent viscosity. Intrinsic
viscosity, [η], was then calculated as the zero concentration-limit of the η_{sp}/c value
resulting from the plots of η_{sp}/c versus c straight lines (c represents the concentration
of solvent).
The thermal decomposition of native and regenerated starches was determined
by a thermogravimetric analysis (TGA) apparatus (TGA4000, PerkinElmer, USA) in
an open system (Liu, Yu, Liu, Chen, & Li, 2009). Starch samples were heated to
800 °C at 20 °C/min. The weight loss results were also converted to derivative weight
percentages to measure and compare the peak temperatures. The temperature
calibration was done by the Curie temperatures of nickel and iron.
3. Results and discussion
3.1. Solubility of starch in $ZnCl_2$ aqueous solutions

Fig. 1 showed the photos of cassava starch (2% concentration) dispersed in
ZnCl₂ aqueous solution (29.6 wt.%). Starch was seen to be fully dissolved in the
solution, as a clear and transparent solution was formed without any sediment
(Fig. 1a). In contrast, when starch was dispersed in water, it was only suspended and
the solution was turbid (Fig. 1b). In this case, starch granules could only partially
swell in water without gelatinization, as the temperature was 50 °C which is lower
than the gelatinization temperature of cassava starch.

188	Since ZnCl ₂ aqueous solution was acidic (pH 4.09 at 29.6% concentration), it is
189	necessary to discuss the influence of H^+ on starch. Fig. 1c shows that when starch was
190	dispersed in a HCl solution (pH 4.09), the granules were also suspended in the solvent
191	and no transparent solution could be obtained.
192	The effect of H ⁺ on starch granules has been studied since 1885 (Lintner, 1886),
193	and different modified starch products can be produced based on it. Lintnerized starch
194	was the first water soluble starch which was prepared by treatment of starch in 7.5%
195	(w/v) HCl for one week at 22-24 °C, or for three days at 40 °C. Nowadays,
196	commercial soluble starch is still produced by this old procedure (Johnston, Mukerjea,
197	& Robyt, 2011). Besides, microporous starch can also be prepared by treatment of
198	starch in acid solution (Kimura & Robyt, 1995).
199	While the degradation of starch is inevitable with H^+ in the solution, the process
200	progresses from the amorphous region to the crystalline region (Srichuwong, Isono,
201	Mishima, & Hisamatsu, 2005; Chen, Yu, Simon, Liu, Dean, & Chen, 2011).
202	Specifically, due to the small molecular size, H^+ can penetrate into the pores on the
203	granule surface, which are the radial channels into the granule interior. Since the
204	amorphous region is looser than the crystalline region, H^+ preferably attacks the
205	amorphous region, with the crystalline region being mostly intact. Therefore, the
206	starch granules can only form a classic "Swiss cheese" appearance in acidic solution,
207	and cannot completely be dissolved. In other words, the degradation of starch
208	granules by H^+ can only result in a suspension (as shown in Fig. 1c). Therefore,
209	although $ZnCl_2$ aqueous solution is acidic, the mechanism for dissolution of starch
210	granules should not be based on the H^+ in the solution.
211	Fig. 2 showed the birefringence (Maltese crosses) changes of cassava starch
212	granules during dissolution in 29.6% ZnCl ₂ aqueous solution. It could be seen that the

starch granules exhibited clear birefringence initially after mixing (Fig. 2a). Then,
with the elapse of time, the amount and size of birefringence was observed to decrease
(Fig. 2b~2d). After an even longer time (4 h), the visual field gradually turned dark,
and all birefringence disappeared totally (Fig. 2d), suggesting that starch granules
dissolved completely. Thus, for 2% cassava starch in 29.6% ZnCl₂ aqueous solutionat
50 °C, the dissolution time was 4 h.

As is known, the main ions in $ZnCl_2$ aqueous solution are H^+ , Zn^{2+} and Cl^- . 219 Since starch is slightly acidic in nature and is negatively charged, Cl⁻ is repelled by 220 starch molecules (Oosten, 1990). H⁺ attacked the amorphous region initially, which 221 222 only resulted in partial degradation of starch granules, but not dissolution. Thus, it was highly possible that the interaction between Zn^{2+} and starch molecules led to the 223 dissolution. Cao et al. (Cao, Xu, Chen, Gong, & Chen, 1994) proved the presence of a 224 zinc-cellulose complex after microcrystalline cellulose (Avicel) was treated with 225 226 ZnCl₂ aqueous solution. Since starch has the same monosaccharide (glucose) and intermolecular force between molecules (hydrogen bonding) as cellulose, a similar 227 complex may be formed between Zn^{2+} and starch molecules. Furthermore, Islam et al. 228 229 (Islam, Mohd, & Noor, 2001) found that when starch is added to sodium chloride 230 solution, sodium ions penetrate into starch chains, replacing H⁺ which migrates to the water phase; as a result, "sodium salts of starch" are formed. Here in this study, it was 231 possible that a "zinc-starch complex" was formed. Specifically, Zn^{2+} can penetrate 232 233 into the inner structure of starch, weakening the intra- and inter-molecular hydrogen 234 bonds, disrupting the crystalline region, and forming a "zinc-starch complex" with 235 starch chains. This could be the dominant factor for starch dissolution in ZnCl₂ 236 aqueous solution.Regarding this complexity, further research is required. 237 Turbidity was also used to determine the dissolution of starch in aqueous ZnCl₂

238 solution as it represents the cloudiness of a fluid caused by particles in suspension. 239 Turbidity is expected to keep reasonably constant as long as the solute is perfectly 240 soluble, but it will increase sharply with newly added solute remaining solid when the 241 maximum solubility is reached (Mazza, Catana, Garcia, & Cecutti, 2009). As shown 242 in Fig. 3, the starch (2 wt.%) was totally dissolved in 65% ZnCl₂ aqueous solution and 243 formed a clear and transparent solution without any sediment. The turbidity in this 244 case was low (about 21.9 NTU). When the ZnCl₂ concentration was decreased, the turbidity increased very moderately. Nevertheless, when the ZnCl₂ concentration was 245 246 below 29.6%, precipitation started to appear and the turbidity increased sharply. This 247 suggests that the ZnCl₂ concentration needs to be \geq 29.6 wt.% for full dissolution of 248 starch (2 wt.%).

249

250 3.2. FTIR spectra fornative and regenerated starches

The FTIR spectra of native cassava starch and regenerated starch from 29.6% 251 252 ZnCl₂ aqueous solution were shown in Fig. 4. The spectra of regenerated starch were 253 quite similar to the native counterpart and no new characteristic peaks were found, 254 indicating no chemical changes to the glucosides in the regenerated starch. Thus, the 255 ZnCl₂ aqueous solution can be considered as a non-derivatizing solvent for starch. 256 Nevertheless, there were also some differences in band wave numbers between 257 native and regenerated starches. As seen from Fig. 4, the O-H bending of adsorbed water at 1647 cm^{-1} was shifted to 1627 cm^{-1} , indicating that the water absorption 258 259 function of regenerated starch became worse (Vicentini, Dupuy, Leitzelman, Cereda, & Sobral, 2005). Moreover, in the adsorption band between 1100 cm^{-1} and 900 cm^{-1} . 260 which indicates the interactions of hydrogen bonds, the peak at 1016 cm^{-1} was shifted 261 to 1020 cm^{-1} and the one at 929 cm⁻¹ was shifted to 935 cm⁻¹. According to Ahmad et 262

263	al. and Ma et al. (Ahmad, Anuar, & Yusof, 2011; Ma, Yu, & Zhao, 2006), the peak at
264	the low wave number results from the strong hydrogen bonds that drag the relative
265	groups to a lower vibration frequency, and the peaks at the higher wave number are
266	due to the weak interaction of hydrogen bonding. Thus, the above changes in wave
267	numbers indicated less hydrogen bonding in regenerated starch.
268	All in all, aqueous $ZnCl_2$ could be considered as a non-derivatizing solvent for
269	starch without causing obvious change to the starch glucosidic structure but can
270	destroy the inter- and intra-molecular hydrogen bonding in starch.
271	
272	3.3. Solid state ¹³ C NMR study of native and regenerated starches
273	For further understanding the effects of $ZnCl_2aqueous$ solution on starch, ¹³ C
274	NMR spectra on native cassava starch and regenerated starch were obtained (Fig. 5).
275	It can be seen that both native and regenerated starches showed very similar spectra
276	which had four dominant NMR signals. The signals at 90–110 ppm and 81–85 ppm
277	were attributed to C-1 and C-4, respectively, while the signal at 59–65 ppm was
278	assigned to hydroxymethyl C-6. The large signal around 70–79 ppm was associated
279	with C-2, C-3, and C-5 (Morrison, Tester, Gidley, & Karkalas, 1993). Except these,
280	no new peaks appeared in the regenerated starch ¹³ C NMR spectrum.
281	Compared with the spectra for native and regenerated starch, two distinct
282	differences could be observed: the chemical shifts of C-1 peak (from 103.66 ppm to
283	105.18 ppm), and the increase inintensity of C-4 peak. The sharp signal intensity of
284	C-4 peak showed an increase in amorphous content (Atichokudomchai, Varavinit, &
285	Chinachoti, 2004; Fan et al., 2013), suggesting that ZnCl ₂ aqueous solution destroyed
286	the crystalline region and changed it into amorphous starch. And the shifts of C-1
287	peak could result from the interaction between Zn^{2+} and hydroxyl groups to form a

288 complex (Cao, Xu, Chen, Gong, & Chen, 1994). This complex could be the

- 289 "zinc-starch complex" as mentioned before.
- 290

291 3.4. XRD analysis of native and regenerated starches

292 Native cassava starch and regenerated starch after treatment with ZnCl₂ aqueous

solutions of different concentrations were examined by XRD, and the results were

shown in Fig. 6. Native starch exhibited a typical A-type XRD pattern, giving strong

reflections at about 15°, 23° and unresolved doublet at nearly 17° and 18°(2θ)

296 (Cheetham & Tao, 1998; Kuo & Lai, 2007). In contrast, the regenerated starch only

had a dispersive broad peak and showed no crystalline peaks. This suggested that the

298 crystalline region of native starch was completely damaged during the dissolution.

299 The loss of crystallinity could be attributed the penetration into starch of Zn^{2+} which

300 weakened the inter- and intra- molecular hydrogen bonds of starch (Gao, Luo, & Luo,

301 2012). These results were in agreement with the shifts in the FTIR and NMR signals.

302

303 3.5. Intrinsic viscosity analysis of native starch and regenerated starch

304 Polymer intrinsic viscosity, $[\eta]$, is an important parameter reflecting the size of a 305 macromolecule in a given solvent at a certain temperature (Liu & Budtova, 2013). 306 This parameter is determined using the classical Huggins equation (see the Materials 307 and Methods section). Fig. 7 shows the intrinsic viscosity of native starch and 308 regenerated starch. Native starch was observed to exhibit the highest intrinsic viscosity (about 192 mL/g). With the increased concentration of ZnCl₂aqueous 309 310 solution, the intrinsic viscosity of regenerated starch apparently decreased, from 311 158 mL/g for 29.6% ZnCl₂ aqueous solution, to 126 mL/g for 65% ZnCl₂ solution. 312 The intrinsic viscosity of polymers is caused by the friction force between the

313 solvent and the solute in dilute solution, and can be used to reflect the size of the 314 macromolecular conformation in the certain solution (Wolf, 2007). For starch, no 315 matter amylopectin or amylose, the size of their macromolecular conformation was 316 caused by the degree of polymerization (DP), namely the molecular weight of macromolecules (Higiro, Herald, Alavi, & Bean, 2007). Therefore, from the 317 318 decreased intrinsic viscosity, it can be deduced that the starch dissolution in ZnCl₂ 319 aqueous solution was accompanied by the degradation of starch chains, which mainly 320 resulted from the attack by H^+ . Since ZnCl₂ aqueous solution of higher concentration 321 had lower pH, the intrinsic viscosity of regenerated starch decreased correspondingly. 322 Moreover, Fig. 7 also shows the intrinsic viscosity of regenerated starch from a 323 HCl solution (pH 4.09), which was apparently lower than that of regenerated starch 324 from 29.6% ZnCl₂aqueous solution (pH 4.09). It was possible that the "zinc-starch 325 complex" prevented starch chains from being attacked by H⁺. Nonetheless, this needs 326 further studies. Also, the accurate quantitative relationship between ZnCl₂ solution 327 concentration and starch molecular weight will be discussed in our ongoing research. 328 3.6. Thermal decomposition of native and regenerated starches 329 330 Based on previous research, the thermal decomposition temperature of starch 331 without chemical modification is mainly based on the DP of starch molecular chains,

and is not significantly influenced by its crystallinity or granule size (Liu et al., 2013).

333 The derivative weight percentage of starch samples (DTG) could be seen in

Fig. 8. There were two peaks on the DTG curves. The first one represented moisture

evaporation, which occurred with the increased temperature until ca.110 °C. The

336 percentage of weight loss in this step was dependent on the moisture content in starch.

337 The second weight loss peak corresponded to the thermal decomposition of starch

338	molecular chains. For native starch, this peak located at 337 °C. For regenerated
339	starch from 35%, 43% and 65% ZnCl ₂ solutions, this peak located at 271 °C, 253 °C
340	and 250 $^{\circ}$ C, respectively. The decomposition temperature of native starch was
341	significantly higher than those of regenerated starch, indicating the reduction in DP of
342	starch molecular chains after dissolution in ZnCl ₂ solutions. Moreover, the
343	decomposition temperature of regenerated starch was decreased with the increased
344	concentration of $ZnCl_2$ solution, also showing that a higher concentration of $ZnCl_2$
345	solution caused greater degradation of starch macromolecules. These results are in
346	agreement with the intrinsic viscosity results.

347

4. Conclusions

ZnCl₂ aqueous solution can be used as an effective solvent for starch at 50 °C, 349 which is inexpensive and environmentally friendly. For 2 wt.% starch, the lowest 350 351 ZnCl₂ concentration to allow full dissolution of starch was 29.6 wt.%, with the 352 dissolving time being 4 h. By characterizing the structure and properties of 353 regenerated starch, ZnCl₂ aqueous solution was found to be a non-derivatizing solvent 354 for starch without causing changes to starch glucosidic structure, but only destroying 355 the inter- and intra- molecular hydrogen bonds of starch and converting the crystalline 356 structure to amorphous state. This is albeit the inevitable degradation of starch chains 357 since ZnCl₂ aqueous solution was acidic. The partial degradation by acid could not be 358 the mechanism of dissolution as it acted mostly to the amorphous region of starch 359 granules. Instead, the dissolution was more likely to rely on the formation of a "zinc-starch complex". 360 361 Further research will be focused on the dissolution mechanism including the

362 verification of the proposed "zinc-starch complex". Besides, it is worth to study the

- 363 interactions between starch and other salt hydrates, the accurate quantitative
- 364 relationship between ZnCl₂ solution concentration and starch molecular weight, and
- 365 the chemical modification of starch in a homogeneous phase with ZnCl₂ aqueous
- 366 solution as a reaction medium.
- 367

368 Acknowledgement

- 369 This work is supported by the National Natural Science Foundation of China
- 370 (NSFC) under the project Nos. 21146011 and 21106023, the Natural Science
- Foundation of Guangdong Province under the project No. 9151008901000169, the
- 372 Technology Planning Project of Guangdong Province under the project
- No. 2013B010403030, and the Science and Technology Projects supported by
- 374 Guangzhou Education Bureau (Project No. 1201410965).
- 375

376 **References**

- Ahmad, Z., Anuar, H., & Yusof, Y. (2011). The study of biodegradable thermoplastic
- 378 sago starch. *Key engineering materials*, 471-472, 397-402.
- 379 Atichokudomchai, N., Varavinit, S., & Chinachoti, P. (2004). A study of ordered
- 380 structure in acid-modified tapioca starch by ¹³C CP/MAS solid-state NMR.
- 381 *Carbohydrate Polymers*, 58, 383-389.
- 382 Cao, N.J., Xu, Q., Chen, C.S., Gong, C.S., & Chen, L.F. (1994). Cellulose hydrolysis
- 383 using zinc chloride as a solvent and catalyst. *Applied Biochemistry and*
- 384 *Biotechnology*, 45, 521-530.
- 385 Chakraborty, S., Sahoo, B., Teraoka, I., & Gross, R.A. (2005). Solution properties of
- 386 starch nonoparticles in water and DMSO as studied by dynamic light scattering.
- 387 *Carbohydrate Polymers*, 60, 475-481.

388	Cheetham, N.W.H	& Tao, L.	(1998).	. Solid state	NMR	studies	on the stru	actural a	and
000	011000111,1	,,,	(- / / / / /				011 0110 0010		

- 389 conformational properties of natural maize starches. *Carbohydrate*
- *Polymers*, *36*, 285-292.
- 391 Chen, P., Yu, L., Simon, G.P., Liu, X., Dean, K., & Chen, L. (2011). Internal
- 392 structures and phase-transitions of starch granules during gelatinization.
- 393 *Carbohydrate Polymers*, *83*, 1975-1983.
- 394 Everett, W.W., & Foster, J.F. (1959). The conformation of amylose in solution.

Journal of the American Chemical Society, *81*, 3459-3464.

- 396 Fan, D.M., Ma, W.R., Wang, L.Y., Huang, J., Zhang, F., Zhao, J., Zhang, H., & Chen,
- 397 W. (2013). Determining the effects of microwave heating on the ordered
- 398 structures of rice starch by NMR. *Carbohydrate Polymers*, 92, 1395-1401
- Fischer, S., Leipner, H., Thümmler, K., Brendler, E., & Peters, J. (2003). Inorganic
 molten salts as solvents for cellulose. *Cellulose*, *10*, 227-236.
- 401 Fischer, S., Thümmler, K., Pfeiffer, K., Liebert, T., & Heinze, T. (2002). Evaluation
- 402 of molten inorganic salt hydrates as reaction medium for derivatization of
- 403 cellulose. *Cellulose*, *9*, 293-300.
- 404 Gao, J., Luo, Z.G., & Luo, F.X. (2012). Ionic liquids as solvents for dissolution of
- 405 corn starch and homogeneous synthesis of fatty-acid starch esters without
 406 catalysts. *Carbohydrate Polymers*, 89, 1215-1221.
- 407 Gathergood, N., & Scammells, P.J. (2002). Design and preparation of
- 408 room-temperature ionic liquids containing biodegradable side chains. *Australian*
- 409 *Journal of Chemistry*, 55, 557-560.
- 410 Gericke, M., Schlufter, K., Liebert, T., Heinze, T., & Budtova, T. (2009). Rheological
- 411 properties of cellulose/Ionic liquid solutions: From dilute to concentrated states.
- 412 *Biomacromolecules, 10,* 1188-1194.

- 413 Han, J.A., & Lim, S.T. (2004). Structural changes of corn starches by heating and
- 414 stirring in DMSO measured by SEC-MALLS-RI system. *Carbohydrate*
- 415 *Polymers*, *55*, 265-272.
- 416 Hanselmann, R., & Burchard, W. (1996). Structural properties of fractionated starch
- 417 polymers and their dependence on the dissolution process. *Macromolecules*, 29,
 418 3277-3282.
- 419 Heinze, T., & Liebert, T. (2001). Unconventional methods in cellulose
- 420 functionalization. *Progress in Polymer Science*, 26, 1689-1762.
- 421 Higiro, J., Herald, T.J., Alavi, S.,& Bean, S. (2007). Rheological study of xanthan and
- 422 locust bean gum interaction in dilute solution: Effect of salt. *Food Research*423 *International*,40, 435-447.
- 424 Islam, M.N., Mohd, A.M.D., & Noor, M.A.B.M. (2001). Effect of temperature and
- 425 starch concentration on the intrinsic viscosity and critical concentration of sago

426 starch (Metroxylon sagu). *Starch/Starke*, *53*, 90-94.

- 427 Jackson, D.S., Choto-Owen, C., Waniska, R.D., & Rooney, L.W. (1988).
- 428 Characterization of starch cooked in alkaliby aqueous high-performance

429 size-exclusion chromatography. *Cereal Chemistry*, 65, 493-496.

- 430 Jastorff, B., Störmann, R., Ranke, J., Mölter, K., Stock, F., Oberheitmann, B.,
- 431 Hoffmann, W., Hoffmann, J., Nückter, M., Ondruschka, B., & Filser, J. (2003).
- 432 How hazardous are ionic liquids? Structure-activity relationships and biological
- 433 testing as important elements for sustainability evaluation. *Green Chemistry*, 5,
- 434 136-142.
- 435 Johnston, D.A., Mukerjea, R., & Robyt, J.F. (2011). Preparation and characterization
- 436 of new and improved soluble-starches, -amylose, and -amylopectin by reaction
- 437 with benzaldehyde/zinc chloride, *Carbohydrate Research*, *346*, 2777–2784.

- Jordan, T., Schmidt, S., Liebert, T., & Heinze, T. (2014). Molten imidazole a starch
 solvent. *Green Chemistry*, *16*, 1967-1973.
- 440 Junistia, L., Sugih, A.K., Manurung, R., Picchioni, F., Janssen, L.P.B.M., & Heeres,
- 441 H.J. (2008). Synthesis of higher fatty acid starch esters using vinyl laurate and
 442 stearate as reactants. *Starch/Starke*, 60, 667-675.
- 443 Kimura, A., & Robyt, J.F. (1995). Reaction of enzymes with starch granules: kinetics
- and products of the reaction with glucoamylase. *Carbohydrate Research*, 277,
 87-107.
- 446 Kuo, W.Y., & Lai, H.M. (2007). Changes of property and morphology of cationic

447 corn starches. *Carbohydrate Polymers*, 69, 544-553.

- Leipner, H., Fischer, S., Brendler, E., & Voigt, W. (2000). Structuralchanges of
- cellulose dissolved in molten salt hydrates. *Macromolecular Chemistry and Physics*, 201,2041-2049.
- 451 Letters, K. (1932). Viskosimetrische Untersuchungen über dieReaktion von Zellulose
- 452 mit konzentrierten Chlorzinklösungen.Kolloidzeitschrift. *Collid and Polymer*
- 453 *Science*, *58*, 229-239.
- Lintner, C.J. (1886). Studien über Diastase, *Journal fur praktische chemie-practical applications and applied chemistry*. *34*, 378–394.
- Liu, W.Q., & Budtova, T. (2013). Dissolution of unmodified waxy starch in ionic
 liquid and solution rheological properties. *Carbohydrate Polymers*, 93, 199-206.
- 458 Liu, X.X., Wang, Y.F., Yu, L., Tong, Z., Chen, L., Liu, H.S., & Li, X.X. (2013).
- 459 Thermal degradation and stability of starch under different processing conditions.
- 460 *Starch/Starke*, 65, 48-60.

461	Liu, X.X.,	Yu. L., Liu	.H.S.	Chen. L.	. & Li. L.	(2009)). Thermal	decom	position of	of
			,,	· · · · · · · · · · · · · · · · · · ·	,	(= ~ ~ /				

- 462 corn starch with different amylose/amylopectin ratios in open and sealed systems.
 463 *Cereal Chemistry*, 86(4), 383-385.
- Lu, J.M., Yan, F., & Texter, J. (2009). Advanced applications of ionic liquids in
 polymer science. *Progress in Polymer Science*, *34*, 431-448.
- 466 Lukanoff, B., Schleicher, H., & Philipp, B. (1983). Untersuchungen zur Auflösung
- und Verformung von Cellulose in Schmelzen und konzentrierten Lösungen
 verschiedener Thiocyanate. *Cellulose Chemistry Technology*, *17*, 593-599.
- 469 Ma, X.F., Yu, J.G., & Zhao, A. (2006). Properties of biodegradable poly(propylene
- 470 carbonate)/starch composites with succinic anhydride. *Composites Science and*471 *Technology*,66, 2360-2366.
- 472 Matsumoto, M., Mochiduki, K., Fukunishi, K., & Kondo, K. (2004). Extraction of
- 473 organic acids using imidazolium-based ionic liquids and their toxicity to
- 474 lactobacillus rhamnosus. *Separationand Purification Technology*, 40, 97-101.
- 475 Mazza, M., Catana, D.A., Garcia, C.V., & Cecutti, C. (2009). Influence of water on

476 dissolution of selected ionic liquids. *Cellulose*, *16*, 207-215.

- 477 Morrison, W.R., Tester, R.F., Gidley, M.J., & Karkalas, J. (1993). Resistance to acid
- 478 hydrolysis of lipid-complexed amylose and lipid-free amylose in lintnerised
- 479 waxy and non-waxy barley starches. *Carbohydrate Research*,245, 289-302.
- 480 Oosten, B.J. (1990). Interactions between starch and electrolytes. *Starch/Stärke*, *42*,
 481 327-330.
- 482 Sen,S., Martin, J.D., & Argyropoulos, D.S. (2013). Review of cellulose
- 483 non-derivatizing solvent interactions with emphasis on activity in inorganic
- 484 molten salt hydrates. *ACS Sustainable Chemistry & Engineering*, *1*,858-870.

485	Srichuwong, S., Isono, N., Mishima, T., & Hisamatsu M. (2005). Structure of
486	lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid
487	and enzyme hydrolysis of starch granules. International Journal of Biological
488	Macromolecules, 37, 115-121.
489	Vicentini, N.M., Dupuy, N., Leitzelman, M., Cereda, M.P., & Sobral, P.J.A. (2005).
490	Prediction of cassava starch edible film properties by chemometric analysis of
491	spectra. Spectroscopy Letters, 38, 749-767.
492	Wang, Y.X., Pedersen, C.M., Deng, T.S., Qiao, Y., & Hou, X.L. (2013). Direct
493	conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated $ZnCl_2$
494	aqueous solution. <i>Bioresource Technology</i> , 143, 384-390.
495	Warwicker, J.O., Jeffries, R., Colbran, R.L., & Robinson, R.N. (1966). A Review of
496	the Literature on the Effect of Caustic Soda and other Swelling Agents on the
497	Fine Structure of Cotton. Shirley Institute Pamphlet No. 93, Shirley Institute,
498	Didsbury, Mancheste.
499	Wolf, B.A. (2007). Polyelectrolytes revisited: Reliable determination of intrinsic
500	viscosities. Macromolecular Rapid Communications, 28(2), 164-170.
501	Wu, D., & Hakkarainen, M. (2014). A closed-loop process from microwave-assisted
502	hydrothermal degradation of starch to utilization of the obtained degradation
503	products as starch plasticizers. ACS Sustainable Chemistry & Engineering, 2,
504	2172-2181.
505	Zhong, F., Yokoyama, W., Wang, Q., & Shoemaker, C.F. (2006). Rice starch,
506	amylopectin, and amylose: molecular weight and solubility in dimethyl
507	sulfoxide-based solvents. Journal of Agriccultural Chemistry, 54, 2320-2326.
508	

1 Figure Captions

- Fig. 1. Pictures of cassava starch (2% concentration) dissolved in 29.6% ZnCl₂
 aqueous solution (a), water (b) and HCl solution (c) after stirring for 4 h
- 4 Fig. 2. Birefringence images for 2% cassava starch granules dissolved in 29.6%
- 5 ZnCl₂ aqueous solution for 0 h (a), 1 h (b), 2 h (c), 3 h (d), and 4 h (e)
- 6 Fig. 3. Turbidity of starch dissolved in aqueousZnCl₂ of different concentrations
- 7 Fig. 4. FTIR spectra for native cassava starch (a) and regenerated starch from
- 8 29.6% ZnCl₂ aqueous solution (b)
- 9 Fig. 5. ¹³C NMR spectra for native starch and regenerated starch from 29.6% ZnCl₂
 10 aqueous solution
- 11 Fig. 6. XRD patterns for regenerated starch samples from 35% (a), 43% (b), 65% (c)
- 12 $ZnCl_2$ solutions, and native starch (d)
- 13 Fig. 7. Intrinsic viscosity of native starch (a), and regenerated starch from 29.6% (b),
- 14 43% (c), 65% (d) $ZnCl_2$ solutions, and from HCl solution (pH=4.09) (e)
- 15 Fig. 8. TGA results for native starch (A), and regenerated starch samples from 35%
- 16 (B), 43% (C) and 65% (D) ZnCl₂ solution.

Fig. 1. Pictures of cassava starch (2% concentration) dissolved in 29.6% ZnCl₂ aqueous solution (a), water (b) and HCl solution (c) after stirring for 4 h.

Fig. 2. Birefringence images for 2% cassava starch granules dissolved in 29.6%

 $ZnCl_2$ aqueous solution for 0 h (a), 1 h(b), 2 h(c), 3 h(d), and 4 h(e).

Fig. 3. Turbidity of starch dissolved in aqueous $ZnCl_2$ of different concentrations.

 $ZnCl_2$ aqueous solution (b).

Fig. 5. ¹³C NMR spectra for native starch and regenerated starch from 29.6% ZnCl₂

aqueous solution.

Fig. 6. XRD patterns for regenerated starch samples from 35% (a), 43%(b), and 65%(c) ZnCl₂ solutions, and native starch (d).

Fig. 7. Intrinsic viscosity of native starch (a), and regenerated starch samples from 29.6% (b), 43% (c), and 65% (d) $ZnCl_2$ solutions, and HCl solution (pH=4.09) (e).

Fig. 8. TGA results for native starch (A), and regenerated starch samples from

 $35\%(B),\,43\%(C)$ and 65% (D)ZnCl_2 solution.