

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/114457

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2016 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Accepted Manuscript

Title: Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties

Author: Jin Chen Yi Liang Xiaoxi Li Ling Chen Fengwei Xie

To appear in:

Received date:	31-3-2016
Revised date:	27-4-2016
Accepted date:	11-5-2016

Please cite this article as: Chen, Jin., Liang, Yi., Li, Xiaoxi., Chen, Ling., & Xie, Fengwei., Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties. *Carbohydrate Polymers* http://dx.doi.org/10.1016/j.carbpol.2016.05.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Supramolecular structure of jackfruit seed starch and its relationship with digestibility and
2	physicochemical properties
3	
4	Jin Chen ^a , Yi Liang ^b , Xiaoxi Li ^a , Ling Chen ^{a,*} and Fengwei Xie ^{c,†}
5	
6	^a Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province
7	Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and
8	Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
9	^b Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong 525427,
10	China
11	^c School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia
12	

^{*} Corresponding author. Tel.: +86 20 8711 3252; fax: +86 20 8711 3252. Email address: felchen@scut.edu.cn (L. Chen)

[†] Corresponding author. Tel.: +61 7 3346 3199; fax: +61 7 3346 3973. *Email addresses:* <u>f.xie@uq.edu.au</u>, <u>fwhsieh@gmail.com</u> (F. Xie).

13 ABSTRACT

14	The influence of supramolecular structure on the physicochemical properties and digestibility
15	of jackfruit seed starch (JSS) were investigated. Compared with maize and cassava starches (MS
16	and CS), JSS had smaller granules and higher amylose content (JSS: 24.90%; CS: 16.68%; and MS:
17	22.42%), which contributed to higher gelatinization temperature (T_0 : 81.11°C) and setback viscosity
18	(548.9 mPa·s). From scanning electron microscopy, the digestion of JSS was observed mainly at the
19	granule surface. Due to its higher crystallinity (JSS: 30.6%; CS: 30.3%; and MS: 27.4%) and more
20	ordered semi-crystalline lamellae, JSS had a high RS content (74.26%) and melting enthalpy (19.61
21	J/g). In other words, the supramolecular structure of JSS extensively determined its digestibility and
22	resistance to heat and mechanical shear treatment.
23	
24	Keywords:
25	Jackfruit seed starch; Supramolecular structure; Resistant starch; Digestibility; Thermal properties
26	
27	
28	
29	
30	
31	
32	
33	
34	

35	
36	
37	
38	Highlights:
39	\checkmark Jackfruit seed starch (JSS) had higher resistant starch content than other starches
40	\checkmark High crystallinity and ordered semi-crystalline lamellae were the major reasons for the
41	higher enzyme-resistance of JSS
42	✓ Digestion of JSS occurred mainly at the granule surface
43	✓ Digestion caused slight decrease in crystallinity and lamellar regularity of JSS
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	

57	
58	Chemical compounds studied in this article
59	Starch (PubChem CID: 24836924); Sodium hydroxide (PubChem CID: 14798); Water (PubChem
60	CID: 962); Hydrochloric acid (PubChem CID: 313); Ethanol (PubChem CID: 702); Acetic acid
61	(PubChem CID: 176); Iodine (PubChem CID: 807); Potassium iodine (PubChem CID: 4875);
62	Sodium acetate (PubChem CID: 517045).
63	
64	
65	1. Introduction
66	Starch is one of the most important carbohydrates in human diets and has been extensively used
67	as a food ingredient. Understanding starch digestibility is of great interest to food industry and
68	importance for diet-related disorders such as obesity, diabetes, and cardiovascular diseases. Not all

69 starch can be digested in the small intestine, where the portion of starch that is not digested is 70 termed resistant starch (RS) (Asp & Björck, 1992). Physiological benefits have been correlated to the RS consumption (Englyst & Hudson, 1996; Jenkins et al., 1998), which notably alters fecal bulk 71 72 and short-chain fatty acid metabolism, thus promoting the colonic health (Jenkins et al., 1998). 73 Because hydrolysis influences all level of food processing and nutrition, several arguments 74 prevail for a closer examination of the effects of hydrolytic enzymes on native starch granules. The hydrolysis process of starches includes the diffusion of enzymes to the granule surface, followed by 75 76 the adsorption and subsequent catalytic events (Colonna, Leloup & Buleon, 1992). Previous studies 77 have shown that the action of α -amylase on starches from different botanical origins results in 78 varied digestion kinetics and degradation patterns (Fuwa, Takaya, Sugimoto & Marshall, 1980;

79 Sarikaya, Higasa, Adachi & Mikami, 2000). Generally, starch is a mixture of two types of 80 macromolecules, amylose and amylopectin (Hizukuri, 1985). Double or single helices of amylose 81 and amylopectin can be packed to form amorphous and crystalline regions (Oates, 1997), which is 82 the basis of the supramolecular structure (granule morphology, fractal structure, lamellar structure, 83 and crystalline structure) of starch. There are many structural factors of starch that affect the pattern 84 and rate of enzymatic hydrolysis, such as the size and shape of granules, granule integrity, porosity 85 of granules, crystallinity, amylose/amylopectin ratio, phosphate content, proteins, and lipids on the 86 granule surface (Copeland, Blazek, Salman & Tang, 2009; Dona, Pages, Gilbert & Kuchel, 2010; 87 Planchot, Colonna, Gallant & Bouchet, 1995; Robertson, Wong, Lee, Wagschal, Smith & Orts, 88 2006; Tester, Qi & Karkalas, 2006). The features of native starch granules that control the site, rate 89 and extent of hydrolysis by α -amylase are interrelated and not easily definable. Thus, studying the 90 changes of supramolecular structure would help to build the ability to manipulate and understand 91 the hydrolysis of starch granules. 92 Jackfruit is one of the most popular tropical fruits grown in Asia especially in Thailand. Its 93 seeds take up 10–15% of the whole fruits and contain abundant starch and proteins. With the rapid 94 development of the cultivating and processing industry of jackfruit, however, most seeds are 95 discarded, which causes a huge waste of starch resource. Jackfruit seed starch has not been 96 considered and exploited as a potent source of starch. To solve this problem, there have been studies 97 on the isolation and the properties of starch extracted from jackfruit seeds to verify its applicability 98 in food, pharmaceutics and other uses. Jackfruit seed starch has the Type-A crystallinity pattern and 99 a high amylose content (Madruga, de Albuquerque, Silva, do Amaral, Magnani & Neto, 2014). 100 Compared with other starches, jackfruit seed starch has significantly higher gelatinization

101	temperature and lower breakdown viscosity, suggesting that this starch can be used to products
102	where a high level of gelatinization is not desirable during cooking (Bobbio, EI-Dash, Bobbio &
103	Rodrigues, 1978; Kittipongpatana & Kittipongpatana, 2011; Rengsutthi & Charoenrein, 2011;
104	Theivasanthi & Alagar, 2011; Tulyathan, Tananuwong, Songjinda & Jaiboon, 2002; Yi &
105	Shenghong, 2006). However, the literature provides little information about the structural features
106	of jackfruit seed starch and its effects on different properties. In particular, while the supramolecular
107	structure and its effect on the hydrolysis of native jackfruit seed starch are essential to ensure the
108	nutritional value and a diverse range of food industry uses, this information has not been reported so
109	far.
110	The aim of the present study was to investigate the functional properties and enzyme digestion
111	of jackfruit seed starch, as well as the related hierarchical structure changes in the native starch
112	granule that control the susceptibility of starch to enzymatic hydrolysis. The results of jackfruit seed
113	starch were compared with cassava starch and maize starch, which are two of the most popular
114	starches used in food industry. This would provide us with nutritional implications which are
115	instrumental for practical applications.
116	
117	2. Materials and methods
118	2.1. Materials
119	Jackfruit Seed Starch (JSS) was isolated from jackfruit seeds using a modified method of
120	(Bobbio, EI-Dash, Bobbio & Rodrigues, 1978). The seeds were manually separated from the

121 mucilage, and then the aril and spermoderm were peeled off. The peeled seeds were slurried in a

122 Waring Blender (HR 1727 Philips, Zhuhai, China) with an equal weight of a 0.1% sodium

123	hydroxide solution for approximately 10 min. Then, the slurry was pressed through multiple gauzes
124	to remove seed fibers. The resulting milking suspension was allowed to decant at 4-5°C and
125	rewashed with distilled water to eliminate soluble sugars. The supernatant was drained, and the
126	upper brown sediment was scraped. The remaining sediment was mixed with 0.1% sodium
127	hydroxide solution and filtered through a sieve (0.058 mm mesh size) to eliminate fibers. When the
128	supernatant became clear, the filtrate was neutralized with 0.1M hydrochloric acid to pH 7.0, and
129	the slurry was centrifuged at 3,000 g for 20 min. The starch was dried at 40°C for 24 h. The starch
130	was grounded with a mortar, passed through a sieve (0.15 mm mesh size), packed in a plastic bag
131	and kept at room temperature until further use. The yield of JSS from Jackfruit seed was
132	25.45–27.34 g/100 g (dry basis).
133	Cassava starch (CS) was purchased from Vietnamese Food and Investment Co., Ltd. (Nanning,
134	China). Maize starch (MS) was from Inner Mongolia Wang Yu Biotechnology Co., Ltd. (Inner
135	Mongolia, China). The moisture contents of JSS, CS, and MS, determined using a moisture
136	analyzer (DHS20-1, Sartorius Stedim Biotech GmbH, Germany), were 13.03%, 13.44%, and
137	13.25%, respectively. Porcine pancreatic α -amylase and amyloglucosidase were purchased from
138	Sigma-Aldrich (St. Louis, MO, USA). A glucose-oxidase peroxidase (GOPOD) assay kit was from
139	Megazyme International Ireland, Ltd. (Wicklow, Ireland). Potato amylose was purchased from
140	Heilongjiang Academy of Agricultural Sciences (Harbin, China).
141	

142 2.2. Starch characterization

143 2.2.1. Amylose content analysis

144 The RS content of each sample (JSS, CS, and MS) was determined using a modified method of

ISO 6647-2:2007, of the International Standardization Organization (ISO, 2007).

146	0.1 g of the starch (dry basis) was accurately weighed and dissolved in 1 ml of ethanol and 9 ml
147	of sodium hydroxide solution (1 M), then heated in boiling water for 10 min. After cooling off, this
148	solution was then diluted to 100 mL in a volumetric flask with deionized water. An aliquot (2.50
149	mL) of this solution was then diluted with 25.00 mL of water, 0.50 mL of acetic acid solution (1 M),
150	0.50 mL of I_2/KI solution (0.0025 M I_2 , and 0.0065 M KI), and the absorbance of this solution was
151	read in a 1cm path length quartz cell at 620 nm using an Evolution UV/Visible spectrophotometer
152	(Thermo Scientific, Waltham, USA). The amylose from potato (amylose content: 97.0%) was used
153	for the calibration curve (R^2 =0.9962).
154	
155	2.2.2. Differential scanning calorimetry (DSC)
156	Thermal behaviors of JSS, CS, and MS were studied using a PerkinElmer DSC 8000
157	(PerkinElmer, Waltham, America) with an internal coolant (Intercooler 2P) and nitrogen purge gas.
158	A high-pressure stainless steel pan (PerkinElmer No. B0182901) with a gold-plated copper seal
159	(PerkinElmer No. 042-191758) was used to achieve a constant moisture content (MC) during DSC
160	measurements. The sample, with about 70% MC, was prepared by premixing the starch with added

161 water in a sealed glass vial, which was kept at 20°C for 24 h before measurement. About a 4 mg

162 (dry basis) sample, scanned from 40 to 120°C, was used in this study. A slow heating rate of

163 5°C/min was used. The onset temperature (T_0), peak temperature (T_p), conclusion temperature (T_c),

and enthalpy (ΔH) of starch gelatinization were calculated. The enthalpy was calculated based on

165 the weight of dry basis starch.

166

145

167 2.2.3. Pasting properties

Pasting properties were studied using an Anton Paar MCR302 (Anton Paar China, Shanghai,
China). The sample slurry (6% concentration, starch on dry basis), after 1 min pre-shearing, was
heated from 30°C to 95°C at a heating rate of 5°C/min, held at 95°C for 15 min, and cooled to 50°C
at 5°C/min. Then the sample was held at 50°C for 15 min. The changes of viscosity were recorded.

- 173 2.3. Enzyme digestion of starches
- 174 2.3.1. In vitro digestibility of native starches

175 For native JSS, CS, and MS, the starch digestibility was determined following the modified 176 method of Englyst (Englyst, Kingman & Cummings, 1992). Based on the rate of hydrolysis, starch 177 was defined as rapidly-digestible starch (RDS, digested within 20 min), slowly-digestible starch 178 (SDS, digested between 20 min and 120 min), and resistant starch (RS, undigested within 120 min). 179 In brief, porcine pancreatic α -amylase (3 g) was dispersed in water (20 mL), stirred for 10 min 180 and centrifuged at 3000 g for 15 min. The supernatant (13.5 mL) was transferred to a beaker, and 181 225 U of amyloglucosidase and 1 mL of deionized water were added to the solution. The enzymatic 182 solution should be freshly prepared for each digestion. Duplicate samples (one named Sample A, 183 the other Sample B) of each starch (JSS, CS, and MS) (1 g, dry basis) were dispersed in 20 mL of 184 0.1 M sodium acetate buffer (pH = 5.2) and then mixed with an enzyme solution (5 mL) consisting 185 of the pancreatic extract and amyloglucosidase. The dispersion was incubated in a 37 °C shaking 186 water-bath at 180 strokes/min. An aliquot (0.5 mL) of Sample A was taken at interval of 20 min and 187 mixed with 20 ml of 70% ethanol. The mixed solution of Sample A was centrifuged at 3000 g for 10 188 min, and then the supernatant was used for hydrolyzing the glucose content, measured by the

189 glucose oxidase-peroxidase reagent. Sample B was mixed with ethanol to eliminate the activities of 190 enzyme, and then the dispersion was centrifuged at 3,000 g for 20 min. After three times of mixing 191 with ethanol and centrifugation, the sediments of Sample B were dried at 40°C for 12 h, named 192 JSS-20, CS-20, and MS-20 ("20" means the time interval (min) for which the three starches were 193 hydrolyzed), respectively. When the time interval reached 120 min, another aliquot (0.5 mL) of 194 Sample A was taken and mixed with 20 ml of 70% ethanol, centrifuged to analyze the hydrolyzed 195 glucose content. The sediments were treated using the same method of Sample B. These sediments 196 were JSS-120, CS-120, and MS-120, respectively. 197 2.3.2. Scanning electron microscopy (SEM) 198 Granule morphology was studied using an EVO18 scanning electron microscope (ZEISS, 199 Germany) operated at a high voltage of 10.0 kV. Before the SEM examination, the samples were 200 coated with a gold thin film.

201

202 2.3.3. Small-angle X-ray scattering (SAXS)

203 A SAXSess small angle X-ray scattering system (Anton Paar, Austria), operated at 50 mA and 204 40 kV, using Cu K α radiation with a wavelength of 0.1542 nm as the X-ray source, was applied to 205 perform the SAXS measurements according to our previously method (Zhu, Li, Chen & Li, 2012) 206 with proper modification. Each sample was placed in a paste sample cell and exposed at the 207 incident X-ray monochromatic beam for 10 min. The data, recorded using an image plate, were 208 collected by the IP Reader software with a PerkinElmer storage phosphor system. 209 The samples used for the SAXS measurement were prepared by premixing the starch with 210 added water in glass vials and were equilibrated at 20°C for 24 h before the analysis. The total MC

211	of each sample was 65%. All data were normalized, and the background intensity and smeared
212	intensity were removed using the SAXSquant 3.0 software for further analysis.
213	
214	2.3.4. Polarized light microscopy
215	Polarized light microscopy was performed using a polarized light microscope (PLM)
216	(Axioskop 40 Pol/40A Pol, ZEISS, Oberkochen, Germany) equipped with a 35mm SLA camera
217	(Power Shot G5, Canon, Tokyo, Japan). The magnification was 500 (50×10). Each sample was
218	dispersed as 10 mg (wet basis) of starch in 1 mL of distilled water in a glass vial. Then, a drop of
219	the starch suspension was transferred onto a slide and covered by a coverslip. Polarized light was
220	used for observation.
221	
222	2.3.5. X-ray diffraction (XRD)
223	XRD analysis was performed with an Xpert PRO diffractometer (Panlytical, Netherlands),
224	operated at 40 mA and 40 kV, using Cu K α radiation with a wavelength of 0.1542 nm as the X-ray
225	source. The scanning of diffraction angle (2 θ) was from 5° to 40° with a scanning speed of 10°/min
226	and scanning step of 0.033°. The MC of each sample was about 10%. The relative crystallinity of
227	each sample was calculated using a previous method (Hermans & Weidinger, 1948).
228	
229	2.4 Statistical analysis
230	The mean values and differences were analyzed using Duncan's multiple-range test. Analysis of
231	variance (ANOVA), followed by the least significant difference test (LSD-test), was performed
232	using the software SPSS (Version 22.0). The significance level was set at $p < 0.05$.

233

234 **3. Results and discussion**

235 3.1. Amylose contents and in vitro enzyme digestion analysis of native starches

236	The amylose/amylopectin ratio is an important index of starch and it can influence digestion
237	and swelling properties through the way of amylose and amylopectin packed. As seen from Table 1,
238	compared to CS and MS, the amylose content of JSS was higher (24.90%), which was similar to a
239	previous finding (Li & Zhong, 2004). CS had the lowest amylose content, only 16.68%. Based on
240	the Englyst test, the percentages of RDS, SDS, and RS in JSS were 5.92%, 19.82%, and 74.26%,
241	respectively. The RS content of JSS was much higher than CS and MS while RDS and SDS were
242	lower, indicating that JSS had strong anti-enzymatic capability. Interestingly, MS had the lowest RS
243	content but the highest SDS content, suggesting that it is a good material of SDS. The
244	slow-digestion property of MS is more likely to be controlled by its inherent structure (perhaps
245	amylopectin chain length distribution) although the existence of surface porous channels might
246	contribute to a high rate of starch hydrolysis (Zhang, Ao & Hamaker, 2006).
247	
248	
249	
250	3.2. Supramolecular structure characteristics of native and hydrolyzed starches
251	3.2.1. Granule morphology

Fig. 1 shows the SEM images of JSS, CS and MS in their native states and after 20min and 120min enzyme hydrolysis. The JSS and CS granules had round to bell shapes with a smooth surface. Unlike the other two starches, the MS granules were irregular in shape with small pores and

255	pits randomly distributed on a rough surface. The JSS granules were less irregular in shape, being
256	smaller than the CS and MS granules.
257	
258	
259	
260	The susceptibility of starch granules can be classified by the degree and manner by which the
261	granules are eroded and corroded. As seen from SEM, the degree of digestion of starch followed the
262	order: MS > CS > JSS, contrary to the trend of RS (Table 1), which is as expected. Besides, the
263	observed levels of digestion were comparable between large and small granules for all three raw
264	starches. Some small granules in JSS-20 and CS-20 even became hollow with only a thin external
265	shell structure. This suggests a fundamental difference in the mode of α -amylase and
266	amyloglucosidase action, according to the granule size. Smaller granules, by virtue of their higher
267	available surface area per unit mass, facilitate the diffusion and adsorption of enzymes (Colonna,
268	Leloup & Buleon, 1992).
269	Digestion of JSS was not clearly apparent; the main indication was a less smooth and more
270	rugged granule surface with a few pits (JSS-20 and JSS-20, in Fig.1). Enzymatic digestion of CS
271	was apparent from the increased surface roughness and formation of deep cracks and large holes in
272	many granules (CS-20 and CS-120 in Fig.1). After 20min of enzymatic digestion, some CS granules
273	were in a truncated form (CS-20 in Fig.1). Truncatures are weak points in the granule structure that
274	lead to increased susceptibility, resulting in enhanced hydrolysis of CS. (Valetudie, Colonna,
275	Bouchet & Gallant, 1993). Because of no pores and smooth surfaces, SEM micrographs for JSS and
276	CS showed that enzymatic erosion occurred mainly at the surface. The MS granules showed

extensive corrosion, mainly in the direction of the radial axis and only a few granules remained
intact. The surface pores of hydrolyzed MS became larger and deeper into granules because of the
more extensive hydrolysis (MS-20 in Fig.1). After 120min hydrolysis, some granules were split,
exposing their layered internal structure (MS-120 in Fig.1). The layered internal structure showed
different susceptibility of the semi-crystalline structure and amorphous growth rings toward
digestion (Zhang, Ao & Hamaker, 2006).

- 283
- 284 *3.2.2. Lamellar structure characteristics*

285 The double-logarithmic SAXS patterns of native and hydrolyzed starch residues are shown in 286 Fig. 2. From this figure, we can obtain some parameters of a theoretical model for the lamellar 287 structure in starch (Cameron & Donald, 1993a, b), including d, the average thickness of the 288 semi-crystalline lamellae; $\Delta \rho = \rho_c - \rho_a$ (where ρ_c and ρ_a are the electron densities of the crystalline 289 regions and the amorphous regions in the semi-crystalline lamellae), the difference in electron 290 density between the crystalline lamellae and the amorphous lamellae; $\Delta \rho_u = \rho_u - \rho_a$ (where ρ_u is the 291 electron density of the amorphous background), the difference in election density between the value of q of the peak at ca. 0.6 nm⁻¹ can be used to calculate the average repeat distance (d) of the 292 293 semi-crystalline lamellae in starch granules according to the Woolf-Bragg's equation $d = 2\pi/q$ 294 (Blazek & Gilbert, 2010; Vermeylen, Goderis & Delcour, 2006). Table 2 shows the SAXS 295 parameters from the peaks of native and hydrolyzed starches. It can be seen from Table 2 that the 296 average thickness of the semi-crystalline lamellae of JSS and CS were thinner than that of MS (JSS: 297 9.06 nm; CS: 9.14 nm; and MS: 9.42 nm) and the peak areas of JSS and CS were larger than MS 298 (JSS: 0.1288; CS: 0.1248; and MS: 0.0800). This indicates JSS and CS may have more ordered

semi-crystalline lamellae than MS.

300

- 301
- 302

303	The log $I \sim \log q$ SAXS patterns of JSS, CS, and MS and their hydrolyzed residues are
304	presented in Fig. 2a, b and c. The scattering intensity changed slightly for JSS (JSS-20 and JSS-120
305	in Fig. 2a) during the whole enzymatic hydrolysis. After 120min hydrolysis, the scattering intensity
306	at the low q region showed an increasing trend (JSS-120 in Fig. 2a) and the definition of the peak of
307	JSS-120 was lower than those of JSS and JSS-20. This can be explained by the easier disturbance of
308	starch molecular arrangement in the amorphous background than in the amorphous lamellae by
309	α -amylase, thus resulting in an increase in $\Delta \rho_u$ (Cameron & Donald, 1992). All the analysis of JSS
310	showed that most of the semi-crystalline lamellae of JSS remained intact even after 120min
311	hydrolysis. And the slight changes in the scattering intensity of JSS, JSS-20, and JSS-120 explained
312	a high RS content of JSS and less obvious surface erosion. However for CS and MS (CS-20 in Fig.
313	2b and MS-20 in Fig. 2c), the q region around the peak showed a decreasing trend, suggesting the
314	crystalline regions in the semi-crystalline lamellae were disturbed after 20min hydrolysis. And the
315	scattering intensity at the low q region showed an increasing trend, due to more destruction to the
316	amorphous background than to the amorphous lamellae. After 120min hydrolysis (CS-120 in Fig.
317	2b and MS-120 in Fig. 2c), the scattering intensity decreased to an extensive degree. It is noted that
318	the decrease of scattering intensity in MS was faster during the first 20 min of enzymatic hydrolysis
319	and slower from 20 min to 120 min than in CS. This could be an excellent explanation for the
320	higher SDS content of MS. Based on the above discussion, a conclusion can be made that the

321	semi-crystalline lamellae of JSS were more ordered and thus more resistant to the hydrolysis that	an
322	those of CS and MS.	

323

324 3.2.3 Crystalline characteristics

325	Normally, a birefringence cross can be observed when the starch granule is exposed under
326	polarized light, due to orderly-arranged starch molecules of crystalline regions and
327	disorderly-arranged starch molecules of amorphous regions. Therefore, information about the
328	crystalline structure of starch can be reflected by the birefringence pattern when starch granules
329	suffered from hydrolysis or external attack. The polarized light microscope images of JSS, CS, and
330	MS and their hydrolyzed residues are shown in Fig. 3. Given the different sizes of JSS, CS, and MS
331	granules, native JSS showed weaker birefringence intensity than CS and MS, while CS showed the
332	strongest intensity. It is noted that the birefringence intensity remained almost the same for JSS after
333	enzyme hydrolysis for 120 min, suggesting most of crystalline structure of JSS was retained.
334	Nevertheless, the birefringence intensity decreased significantly for CS and MS (especially for MS),
335	and the birefringence crosses became less apparent, owing to the disturbance of double helices in
336	their crystallites during enzyme digestion. This result is consistent with the analysis of SAXS.
337	
338	
339	
340	Fig. 4 shows the XRD patterns of JSS, CS, and MS, and their hydrolyzed residues. It is seen
341	that JSS and MS displayed a typical A-type crystalline structure with main diffraction peaks at ca.

342 15, 17, 18 and 23° (2θ) (Tulyathan, Tananuwong, Songjinda & Jaibbon, 2002; Zobel, 1964). CS

343	exhibited a weak diffraction maximum at 5.6°(2 θ), and the 17°(2 θ) peak was somewhat more
344	intense than its $18^{\circ}(2\theta)$ neighbor (Chrastil, 1987). Both features indicated CS contained some
345	B-type crystalline structure but the main structure was still A-type. The degree of relative
346	crystallinity of starch followed the order: JSS \approx CS > MS. According to the XRD patterns of
347	partly-digested starches of JSS, CS and MS, the crystalline types of all three starches remained
348	essentially unchanged after digestion. However, after enzyme treatment, decreased diffraction
349	intensities were observed (Figure 4a, b, and c). The relative crystallinity of JSS changed moderately,
350	decreased from 30.6% to 27.6% (Table 2) after 20min digestion, while CS and MS decreased more
351	sharply from 30.3% to 23.6% and 27.4% to 19.4%, respectively. These results suggest that
352	hydrolysis did occur in the crystalline regions despite that most of crystalline structure of JSS was
353	retained after 120min hydrolysis.
354	

355 It is noted that although JSS and CS both had a smooth surface and similar relative crystallinity 356 (Table 2), the RS content of JSS was higher than CS. This can be demonstrated by the observation 357 that the degree of the ordered structure in semi-crystalline lamellae was in the order JSS• CS• MS 358 in the SAXS, suggesting not only the crystallinity but the way how molecules are ordered play a 359 key role in the enzyme digestion of JSS. Another reason could be due to their amylose/amylopectin 360 ratio. Specifically, a higher amylose content may mean an increased number of long chains and 361 facilitate the amylose-lipid complex formation on the granule surface, leading to an increased 362 content of enzyme-resistant starch (Crowe, Seligman & Copeland, 2000; Cui & Oates, 1999; 363 Tufvesson, Skrabanja, Björck, Elmståhl & Eliasson, 2001). The surface pores and low relative 364 crystallinity of MS could contribute to its high RDS and low RS contents.

365 When the α -amylase attacks starch granules, the double helices must first be unwound, as 366 single-stranded helices are the polymeric substrates for the enzyme (Larson, Day & McPherson, 367 2010). The amylopectin double helices can only be unwound if they are dissociated from their 368 crystallites. However, the amylopectin side chains of starch strongly interact, not only with their 369 helical duplex partners, but also with other neighboring helices. Thus, more ordered crystalline 370 structure leads to a lower rate of enzymatic hydrolysis because of stronger interactions between 371 neighboring helices. Normally, higher crystallinity is in consistent with more ordered arrangement 372 of amylopectin double helices in the semi-crystalline lamellae, since the crystallinity reflects the 373 long range order of starch. In the light of these principles, the more ordered crystalline structure 374 (corresponding to more ordered semi-crystalline lamellae and high relative crystallinity) was the 375 main reason for the strong anti-enzymatic capability of JSS.

376

377 *3.3. Thermal behavior*

378 Fig.5a shows the DSC thermograms of JSS, CS and MS in excess water (70 wt.%) and the 379 related thermal parameters were shown in Table 3. From Fig.5a and Table 3, it was obvious that JSS 380 had the highest gelatinization temperature (T_0 : 81.11°C), followed by MS (T_0 : 65.58°C) and CS (T_0 : 381 60.47°C). The higher T_0 , T_p , and T_c of JSS could be due to a higher content of amylose-lipid 382 complexes with an increased amylose content, resulting in reduced swelling of the granule 383 (Karkalas & Raphaelides, 1986; Pycia, Juszczak, Gałkowska & Witczak, 2012; Svihus, Uhlen & 384 Harstad, 2005; Tester & Morrison, 1990). The higher gelatinization temperature of JSS may also 385 reflect its much longer amylopectin chains, as there is a significant positive correlation between the 386 DSC gelatinization parameters and the amylopectin unit-chain length distribution of starches (Jane

387	et al., 1999; Noda et al., 1998; Shi & Seib, 1995; Srichuwong, Sunarti, Mishima, Isono &		
388	Hisamatsu, 2005a). Since the granule size followed the order CS • MS • JSS (Fig.1), another reason		
389	could be related to the size of starch granules since larger granules might be more vulnerable during		
390	heating (Chiotelli & Le Meste, 2002; Kaur, Singh & Sodhi, 2002; Vasanthan & Bhatty, 1996). JSS		
391	and MS showed rather symmetric peaks and had similar ΔT , which was narrower than that of CS.		
392	This indicates that the crystalline structure of JSS and MS are more unified and consistent than that		
393	of CS, resulting in more homogeneous heat conductivity. Higher ΔT of CS was proposed to arise		
394	from the inconsistency of crystalline structure corresponding to the melting of B-type in CS		
395	although the main structure in CS was A-type. JSS and CS had similar ΔH (Table 3), due to their		
396	similar relative crystallinity, which were higher than that of MS. The higher ΔH values suggested		
397	that the interactions (via hydrogen bonding) between double helices (which were packed in clusters)		
398	forming the crystalline regions of JSS and CS were probably more extensive than in MS (Cooke &		
399	Gidley, 1992; Zhou, Hoover & Liu, 2004).		
400			
401			
402			
403			
404	3.4. Pasting properties		
405	Fig.5b shows the pasting properties of JSS, CS and MS. As seen from Table 3, the peak		
406	viscosity (PV) of three starches followed the order JSS• CS• MS, which corresponded to the trend		
407	of T_{0} . The breakdown viscosity (BDV) of JSS (109.5 mPa·s) was lower than those of CS and MS		

408	(473.2 mPa·s and 288.4 mPa·s, respectively). When viscosity reached PV, almost all of amylose
409	leached out and therefore BDV was less affected by amylose, but more by amylopectin fine
410	structure (Han & Hamaker, 2001). Lower BDV is another indicator that JSS may have much longer
411	amylopectin chains since dissociation of double helices of amylopectin leads to granule swelling
412	and affects pasting properties to some extent (Han & Hamaker, 2001; Srichuwong, Sunarti,
413	Mishima, Isono & Hisamatsu, 2005b). The final viscosity (FV) and setback viscosity (SBV)
414	indicate the re-association of the starch molecules involving amylose after gelatinization and a
415	formation of a gel network (Charles, Chang, Ko, Sriroth & Huang, 2004). JSS had higher FV and
416	SBV than CS and MS (Table 3), owing to a high amylose content (Sasaki, Yasui & Matsuki, 2000;
417	Vandeputte, Derycke, Geeroms & Delcour, 2003). The reason CS had less amylose content but
418	higher FV and SB than MS might be due to the finer amylopectin structure (enrichment in B2
419	chains) of CS (Srichuwong, Sunarti, Mishima, Isono & Hisamatsu, 2005b).
120	

420

421 **4.** Conclusion

422 JSS granules were shown to be small, round to bell shapes, with a smooth surface and 423 displayed a typical A-type crystalline structure. Compared with MS and CS, JSS had higher 424 amylose content, higher RS content and more ordered semi-crystalline lamellae. According to the DSC measurement, JSS had the highest T_0 . This might be because of the reduced swelling of the 425 426 granule, probably due to more amylose-lipid complexes with higher amylose content and to its 427 smaller granules which were more resistance to heat. JSS and CS had similar ΔH , due to their 428 similar relative crystallinity. From the pasting property study, the BDV of JSS was lower than those 429 of CS and MS while FV and SBV were higher. Lower BDV might indicate longer amylopectin

430	chains of JSS, which needs further investigation. As seen from SEM, the degree of digestion of
431	starch followed the order: $MS > CS > JSS$. Digestion of JSS only apparently occurred at the surface,
432	with a less smooth and more rugged granule surface with occasional pitting. In the course of
433	digestion, for JSS, the scattering intensity and the relative crystallinity were decreased slightly, and
434	the birefringence intensity remained almost the same. These observations indicate the more ordered
435	semi-crystalline lamellae and high relative crystallinity were the major factors for the stronger
436	anti-enzymatic capability of JSS than those of CS and MS. In conclusion, the results presented the
437	detailed related supramolecular structure changes (especially granular, crystalline, and lamellae
438	structure) of JSS granules that control the susceptibility of starch to enzymatic hydrolysis and the
439	physicochemical properties. The knowledge obtained from this work is expected to facilitate further
440	research on the nutritional and other properties of JSS for widening its industrial application.

441

451

(2015ZZ106).

442 5. Acknowledgments

443 This research has been financially supported under various projects by the Key Project of the 444 National Natural Science Foundation of China (NSFC) (No.31130042), NSFC-Guangdong Joint 445 Foundation Key Project (No. U1501214), NSFC (No.31271824), YangFan Innovative and 446 Entepreneurial Research Team Project (No. 2014YT02S029), the Ministry of Education Special 447 R&D Funds for the Doctoral Discipline Stations in Universities (20120172110014), the Ministry of 448 Education Program for Supporting New Century Excellent Talents (NCET-12-0193), the Key R&D 449 Projects of Zhongshan (2014A2FC217), the R&D Projects of Guangdong Province 450 (2014B090904047), and the Fundamental Research Funds for the Central Universities

452	
453	References
454	Asp, NG., & Björck, I. (1992). Resistant starch. Trends in Food Science & Technology, 3,
455	111-114.
456	
457	Blazek, J., & Gilbert, E.P. (2010). Effect of enzymatic hydrolysis on native starch granule
458	structure. Biomacromolecules, 11(12), 3275-3289.
459	
460	Bobbio, F., EI-Dash, A., Bobbio, P., & Rodrigues, L. (1978). Isolation and characterization of
461	the physicochemical properties of the starch of jackfruit seeds (Artocarpus heterophyllus). Cereal
462	Chemistry.
463	
464	Cameron, R.E., & Donald, A.M. (1992). A small-angle X-ray scattering study of the annealing
465	and gelatinization of starch*.
466	
467	Cameron, R.E., & Donald, A.M. (1993a). A small-angle X-ray scattering study of the
468	absorption of water into the starch granule. Carbohydrate Research, 244(2), 225-236.
469	
470	Cameron, R.E., & Donald, A.M. (1993b). A small - angle x - ray scattering study of starch
471	gelatinization in excess and limiting water. Journal of Polymer Science Part B: Polymer Physics,
472	<i>31</i> (9), 1197-1203.
473	

474	Charles, A.L., Chang, Y.H., Ko, W.C., Sriroth, K., & Huang, T.C. (2004). Some physical and
475	chemical properties of starch isolates of cassava genotypes. Starch - Stärke, 56(9), 413-418.
476	
477	Chiotelli, E., & Le Meste, M. (2002). Effect of small and large wheat starch granules on
478	thermomechanical behavior of starch. Cereal chemistry, 79(2), 286-293.
479	
480	Chrastil, J. (1987). Improved colorimetric determination of amylose in starches or flours.
481	Carbohydrate Research, 159(1), 154-158.
482	
483	Colonna, P., Leloup, V., & Buleon, A. (1992). Limiting factors of starch hydrolysis. European
484	journal of clinical nutrition, 46, S17-32.
485	
486	Cooke, D., & Gidley, M.J. (1992). Loss of crystalline and molecular order during starch
487	gelatinisation: origin of the enthalpic transition. Carbohydrate Research, 227, 103-112.
488	
489	Copeland, L., Blazek, J., Salman, H., & Tang, M.C. (2009). Form and functionality of starch.
490	<i>Food Hydrocolloids, 23</i> (6), 1527-1534.
491	
492	Crowe, T.C., Seligman, S.A., & Copeland, L. (2000). Inhibition of enzymic digestion of
493	amylose by free fatty acids in vitro contributes to resistant starch formation. The Journal of
494	nutrition, 130(8), 2006-2008.
495	

496	Cui, R., & Oates, C. (1999). + The effect of amylose-lipid complex formation on enzyme
497	susceptibility of sago starch. Food Chemistry, 65(4), 417-425.
498	
499	Dona, A.C., Pages, G., Gilbert, R.G., & Kuchel, P.W. (2010). Digestion of starch: In vivo and in
500	vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate
501	Polymers, 80(3), 599-617.
502	
503	Englyst, H.N., & Hudson, G.J. (1996). The classification and measurement of dietary
504	carbohydrates. Food Chemistry, 57(1), 15-21.
505	
506	Englyst, H.N., Kingman, S., & Cummings, J. (1992). Classification and measurement of
507	nutritionally important starch fractions. European journal of clinical nutrition, 46, S33-50.
508	
509	Fuwa, H., Takaya, T., Sugimoto, Y., & Marshall, J. (1980). Mechanisms of Saccharide
510	Polymerisation and Depolymerisation'. Academic Press, New York.
511	
512	Han, XZ., & Hamaker, B.R. (2001). Amylopectin fine structure and rice starch paste
513	breakdown. Journal of Cereal Science, 34(3), 279-284.
514	
515	Hermans, P., & Weidinger, A. (1948). Quantitative X - Ray Investigations on the Crystallinity
516	of Cellulose Fibers. A Background Analysis. Journal of Applied Physics, 19(5), 491-506.
517	

518	Hizukuri, S. (1985). Relationship between the distribution of the chain length of amylopectin	
519	and the crystalline structure of starch granules. Carbohydrate Research, 141(2), 295-306.	
520		
521	ISO. (2007). 6647-2:Rice—Determination of amylose content—Part 2.	
522		
523	Jane, J., Chen, Y., Lee, L., McPherson, A., Wong, K., Radosavljevic, M., & Kasemsuwan, T.	
524	(1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and	
525	pasting properties of starch 1. Cereal chemistry, 76(5), 629-637.	
526		
527	Jenkins, D.J., Vuksan, V., Kendall, C.W., Wu rsch, P., Jeffcoat, R., Waring, S., Mehling, C.C.,	
528	Vidgen, E., Augustin, L.S., & Wong, E. (1998). Physiological effects of resistant starches on fecal	
529	bulk, short chain fatty acids, blood lipids and glycemic index. Journal of the American College of	
530	Nutrition, 17(6), 609-616.	
531		
532	Karkalas, J., & Raphaelides, S. (1986). Quantitative aspects of amylose-lipid interactions.	
533	Carbohydrate Research, 157, 215-234.	
534		
535	Kaur, L., Singh, N., & Sodhi, N.S. (2002). Some properties of potatoes and their starches II.	
536	Morphological, thermal and rheological properties of starches. Food Chemistry, 79(2), 183-192.	
537		
538	Kittipongpatana, O.S., & Kittipongpatana, N. (2011). Preparation and physicochemical	
539	properties of modified jackfruit starches. LWT-Food Science and Technology, 44(8), 1766-1773.	

_	- 4	
~	71	
,	4	.,
~		~

541	Larson, S.B., Day, J.S., & McPherson, A. (2010). X-ray crystallographic analyses of pig
542	pancreatic α -amylase with limit dextrin, oligosaccharide, and α -cyclodextrin. <i>Biochemistry</i> , 49(14),
543	3101-3115.
544	
545	Li, Xj., & Zhong, M. (2004). Study on Granular Morphology of Starch Isolated from
546	Jack-fruit Seeds. Food Science, 6, 012.
547	
548	Madruga, M.S., de Albuquerque, F.S. M., Silva, I.R. A., do Amaral, D.S., Magnani, M., & Neto,
549	V.Q. (2014). Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus
550	heterophyllus L.) seeds starch. Food chemistry, 143, 440-445.
551	
552	Noda, T., Takahata, Y., Sato, T., Suda, I., Morishita, T., Ishiguro, K., & Yamakawa, O. (1998).
553	Relationships between chain length distribution of amylopectin and gelatinization properties within
554	the same botanical origin for sweet potato and buckwheat. Carbohydrate Polymers, 37(2), 153-158.
555	
556	Oates, C.G. (1997). Towards an understanding of starch granule structure and hydrolysis.
557	Trends in Food Science & Technology, 8(11), 375-382.
558	
559	Planchot, V., Colonna, P., Gallant, D., & Bouchet, B. (1995). Extensive degradation of native
560	starch granules by alpha-amylase from Aspergillus fumigatus. Journal of Cereal Science, 21(2),
561	163-171.

5	6	2
J	υ	L

563	Pycia, K., Juszczak, L., Gałkowska, D., & Witczak, M. (2012). Physicochemical properties of
564	starches obtained from Polish potato cultivars. Starch - Stärke, 64(2), 105-114.
565	
566	Rengsutthi, K., & Charoenrein, S. (2011). Physico-chemical properties of jackfruit seed starch
567	(Artocarpus heterophyllus) and its application as a thickener and stabilizer in chilli sauce.
568	LWT-Food Science and Technology, 44(5), 1309-1313.
569	
570	Robertson, G.H., Wong, D.W., Lee, C.C., Wagschal, K., Smith, M.R., & Orts, W.J. (2006).
571	Native or raw starch digestion: a key step in energy efficient biorefining of grain. Journal of
572	agricultural and food chemistry, 54(2), 353-365.
573	
574	Sarikaya, E., Higasa, T., Adachi, M., & Mikami, B. (2000). Comparison of degradation abilities
575	of α -and β -amylases on raw starch granules. <i>Process Biochemistry</i> , 35(7), 711-715.
576	
577	Sasaki, T., Yasui, T., & Matsuki, J. (2000). Effect of amylose content on gelatinization,
578	retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds.
579	<i>Cereal chemistry</i> , 77(1), 58-63.
580	
581	Shi, YC., & Seib, P.A. (1995). Fine structure of maize starches from four wx-containing
582	genotypes of the W64A inbred line in relation to gelatinization and retrogradation. Carbohydrate
583	Polymers, 26(2), 141-147.

584	
585	Srichuwong, S., Sunarti, T.C., Mishima, T., Isono, N., & Hisamatsu, M. (2005a). Starches from
586	different botanical sources I: Contribution of amylopectin fine structure to thermal properties and
587	enzyme digestibility. Carbohydrate Polymers, 60(4), 529-538.
588	
589	Srichuwong, S., Sunarti, T.C., Mishima, T., Isono, N., & Hisamatsu, M. (2005b). Starches from
590	different botanical sources II: Contribution of starch structure to swelling and pasting properties.
591	Carbohydrate Polymers, 62(1), 25-34.
592	
593	Svihus, B., Uhlen, A.K., & Harstad, O.M. (2005). Effect of starch granule structure, associated
594	components and processing on nutritive value of cereal starch: A review. Animal Feed Science and
595	<i>Technology, 122</i> (3-4), 303-320.
596	
597	Tester, R., Qi, X., & Karkalas, J. (2006). Hydrolysis of native starches with amylases. Animal
598	Feed Science and Technology, 130(1), 39-54.
599	
600	Tester, R.F., & Morrison, W.R. (1990). Swelling and gelatinization of cereal starches. I. Effects
601	of amylopectin, amylose, and lipids. Cereal Chem, 67(6), 551-557.
602	
603	Theivasanthi, T., & Alagar, M. (2011). An insight analysis of nano sized powder of jackfruit
604	seed. arXiv preprint arXiv:1110.0346.
605	

Tufvesson, F., Skrabanja, V., Björck, I., Elmståhl, H.L., & Eliasson, A.-C. (2001). Digestibility

606

607	of starch systems containing amylose-glycerol monopalmitin complexes. LWT-Food Science and
608	<i>Technology</i> , <i>34</i> (3), 131-139.
609	
610	Tulyathan, V., Tananuwong, K., Songjinda, P., & Jaiboon, N. (2002). Some physicochemical
611	properties of jackfruit (Artocarpus heterophyllus Lam) seed flour and starch. Science Asia, 28,
612	37-41.
613	
614	Valetudie, J.C., Colonna, P., Bouchet, B., & Gallant, D.J. (1993). Hydrolysis of Tropical Tuber
615	Starches by Bacterial and Pancreatic α - Amylases. <i>Starch - Stärke</i> , 45(8), 270-276.
616	
617	Vandeputte, G., Derycke, V., Geeroms, J., & Delcour, J. (2003). Rice starches. II. Structural
618	aspects provide insight into swelling and pasting properties. Journal of Cereal Science, 38(1),
619	53-59.
620	
621	Vasanthan, T., & Bhatty, R. (1996). Physicochemical properties of small-and large-granule
622	starches of waxy, regular, and high-amylose barleys. Cereal chemistry, 73(2), 199-207.
623	
624	Vermeylen, R., Goderis, B., & Delcour, J.A. (2006). An X-ray study of hydrothermally treated
625	potato starch. Carbohydrate Polymers, 64(2), 364-375.
626	
627	Yi, L.X. H. C. H., & Shenghong, C.H. X. (2006). Starch Extraction and Its Characteristics of

628	Jack-fruit Seeds	[1]	Food	and	Fermentation	Industrias	10	032
020	Jack-Hull Seeds	J .	гооа	ana	rermentation	mausines,	10,	032.

629

630 Zhang, G., Ao, Z., & Hamaker, B.R. (2006). Slow Digestion Property of Native Cereal Starches.

- 631 *Biomacromolecules*, 7(11), 3252-3258.
- 632

Zhou, Y., Hoover, R., & Liu, Q. (2004). Relationship between α-amylase degradation and the
structure and physicochemical properties of legume starches. *Carbohydrate Polymers*, *57*(3),
299-317.
Zhu, J., Li, L., Chen, L., & Li, X. (2012). Study on supramolecular structural changes of
ultrasonic treated potato starch granules. *Food Hydrocolloids*, *29*(1), 116-122.

639

Zobel, H. (1964). X-ray analysis of starch granules. *Methods in carbohydrate chemistry*, *4*,
109-113.

- 642
- 643
- 644
- 645

646 Figure Captions

Fig.1. SEM images of native and hydrolyzed starch residues at 1000× and 3000×magnification

648 Fig.2. Double-logarithmic SAXS patterns of native and hydrolyzed starch residues. (a) jackfruit

649 seed starch (JSS, JSS-20, and JSS-120); (b) cassava starch (CS, CS-20, and CS-120); (c) maize

- 650 starch (MS, MS-20, and MS-120).
- Fig.3. Polarized light microscopic images of native and hydrolyzed starch residues
- Fig.4. XRD patterns of native and hydrolyzed starch residues, (a) jackfruit seed starch (JSS,
- JSS-20, and JSS-120); (b) cassava starch (CS, CS-20, and CS-120); (c) maize starch (MS, MS-20,
- 654 and MS-120).
- Fig.5. Differential scanning calorimetry (DSC) thermograhs (a), and viscosity curves (b) of
- 656 jackfruit seed starch, cassava starch and maize starch
- 657
- 658 Tables

Table 1 Amylose contents and *in vitro* enzyme digestion analysis of jackfruit seed starch (JSS), cassava starch (CS) and

660 maize starch (MS).

Raw starches	RDS (%)	SDS (%)	RS (%)	Amylose (%)
Jackfruit seed starch (JSS)	5.92±0.49 ^c	19.82±1.01 ^c	74.26±1.28 ^a	24.90±0.10 ^a
Cassava starch (CS)	10.50±0.04 ^b	38.43±0.03 ^b	51.07±0.08 ^b	16.68±0.54 ^c
Maize starch (MS)	12.04±0.04 ^a	69.73±1.14 ^a	18.23±1.18 ^c	22.42±0.19 ^b

Values are means of three determinations (±standard deviation); values followed by the different letters within a column

662 differ significantly (p < 0.05).

663

664

Sample	$q_{\text{peak}} (\text{nm}^{-1})$	<i>d</i> (nm)	Peak Area	RC (%)
JSS	0.6934 ^{abc}	9.06 ^{de}	0.1288 ^a	30.6 ^{ab}
JSS-20	0.6868 ^{bcd}	9.15 ^{cd}	0.1240 ^a	28.5 ^{abcd}
JSS-120	0.7001 ^{ab}	8.98 ^{de}	0.0653 ^c	27.6 ^{bcd}
CS	0.6868 ^{bcd}	9.14 ^{de}	0.1248 ^a	30.3 ^{ab}
CS-20	0.6802 ^{cd}	9.24 ^c	0.0639 ^c	25.4 ^{def}
CS-120	0.6934 ^{abc}	9.01 ^{de}	0.0318 ^d	23.6 ^{efg}
MS	0.6670 ^e	9.42 ^b	0.0800 ^b	27.4 ^{cde}
MS-20	0.6604 ^e	9.51 ^b	0.0572 ^c	21.5 ^g
MS-120	0.6208^{f}	10.12 ^a	0.0213 ^d	19.4 ^g

Table 2. SAXS parameters and relative crystallinity of native and hydrolyzed starches.

666 Values are means of three determinations; values followed by the different letters within a column differ significantly (p

667 < 0.05).

668

Table 3 Gelatinization parameters and pasting properties of jackfruit seed starch (JSS), cassava starch (CS) and maize

0	starch (MS)			
	Sample	JSS	CS	MS
	$T_{\rm o}$ (°C)	81.11±0.53 ^a	60.47±1.00 ^c	65.58±0.45 ^t
	$T_{\rm p}$ (°C)	85.39±0.64 ^a	65.88±0.78°	69.43±0.15 ^t
	$T_{\rm c}$ (°C)	91.70±1.12 ^a	79.32±0.84 ^b	75.48±0.38°
	$\Delta T (T_{\rm c} - T_{\rm o})$	10.59±0.65 ^b	18.85±1.85 ^a	9.90±0.09 ^b
	$\Delta H \left(\mathrm{J/g} \right)$	19.61±0.76 ^a	19.67±0.41 ^a	15.86±0.32 ^k
	PT (°C)	82.0±0.2 ^a	66.9±0.3°	71.5±0.2 ^b
	PV (mPa·s)	844.0±5.1 ^b	963.2±4.3 ^a	743.9±3.3°
	BDV (mPa·s)	109.5±2.4°	473.2±1.5 ^a	288.4±1.8 ^b
	FV (mPa·s)	1354.0±7.4 ^a	1044.0±6.3 ^b	827.9±5.2°
	SBV (mPa·s)	548.9±3.5 ^a	514.4±4.1 ^b	349.1±3.8°

670 starch (MS)

671 $T_{\rm o}$, $T_{\rm p}$ and $T_{\rm c}$ correspond to onset, peak and conclusion gelatinization temperature (°C); whereas ΔH and ΔT represent

672 melting enthalpy (J/g of starch) and gelatinization temperature range (°C) respectively. PT represents peak temperature

673 (°C), whereas PV, BDV, FV, SBV correspond to peak viscosity, breakdown viscosity, final viscosity and setback

674 viscosity (mPa·s) respectively.

Values in the table are means of three determinations (± standard deviation); values followed by the different letters

676 within a column differ significantly (p < 0.05).

677	
678	
679	Figures
680	
681	
682	Fig 1

683

684

685 Fig 2

686

688 fig 3

 689
 JSS
 Image: Signature Signate Signate Signature Signature Signature Signate Signat

700 Fig 4

-20

CS-120

710

711 Fig 5

- 719
- 720