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Abstract 

Photocatalytic, hollow fiber membranes based on nanocomposites of titania nanoparticles and 

carbonaceous char were simultaneously fabricated in a single calcination step, and then optimized 

for the photo-degradation of pollutants and water recovery in an integrated membrane operation 

in this study. The physicochemical, mechanical and photocatalytic properties along with 

separation performance of two series of membranes were finely-tuned by systematically changing 

the calcination temperature (series 1: 500 – 1000 °C for 8 h holding time) and calcination time 

(series 2: 2 – 8 h at 600 °C). The calcined membranes were extensively characterized for 

morphology, thermal stability, microstructure, modulus and chemical compositions. Both 

constituents of titania and char are essential in deriving the desirable hollow fiber properties and 

membrane performance for photocatalysis and water recovery. By controlling the calcination 

conditions, membranes prepared at 600 °C for the 3 and 6 h duration displayed an optimal 

balance between enhanced mechanical strength (34 MPa) and high photo-degradation of acid 

orange 7 (90.4%). Membrane performance demonstrated water fluxes of 6.9 (H2O/dark), 12.9 

(H2O/UV) 4.8 (AO7/dark) and 7.9 L m–2 h–1 (AO7/UV) with excellent organic dye rejection. Both 

membranes exhibited photo-induced super-hydrophilicity and defouling potential under the 

influence of UV light due to the photo-activation of exposed TiO2 nanoparticles on the membrane 

surface. The detailed mechanism of property correlation and separation performance for the 

photocatalytic hollow fibers is proposed and elucidated. This work offers an innovative material 

for the research avenue of photocatalytic, hollow fiber membrane reactors for advanced 

membrane treatment applications.  

Graphical Abstract 

Hollow fiber membranes with molecular sieving and photocatalytic capabilities exhibited super-

hydrophilicity and defouling potential under UV photo-oxidation. 
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1. Introduction 

In the last 50 years, membrane research and development have gained a significant interest for 

separation applications and technology. The major advantages of membrane technology, 

particularly hollow fibers, are smaller footprint, ease of maintenance, and high separation 

efficiency [1], which are very appealing for industrial membrane applications. Furthermore, the 

class of inorganic membranes provides excellent mechanical, chemical and thermal stability, and 

durability over the conventional polymeric membranes [2]. Nevertheless, despite the prolific use 

of membrane filtration to remove harmful organic pollutants in wastewater effluents in general, 

its performance and lifespan are undermined by two major issues, namely (1) the increasing 

presence of non-biodegradable, persistent chemical contaminants in the discharged effluents and 

(2) the severity of membrane fouling due to a rapid build-up of the pollutants and the 

omnipresent bacteria on the membrane surface [3-5].  

Among the various effective ways of addressing these significant problems, such as biological 

treatment intervention, adsorption, physical and chemical cleanings, as well as process 

intensification, the applications of advanced oxidation processes (AOPs) are making remarkable 

research grounds. The general mechanism of AOPs relies on the oxidative nature of reactive 

radical species generated from heterogeneous catalysts (TiO2, ZnO, Fe3O4, ZnS), oxidants (e.g. 

ozone, H2O2) and/or irradiation [6-8]. Specifically, titanium dioxide (TiO2) nanoparticles are widely 

investigated for its excellent photocatalytic activity, stability and anti-bacterial property [3, 9, 10]. 

When exposed to UV, electrons-hole pairs are generated on the surface of the nanoparticles 

reacting with the oxygen and water molecules to create radicals. However, the main technical 

barrier that impedes their commercialization is associated with the photocatalytic efficiency and 

post-recovery of the TiO2 nanoparticles from the treated effluents. In order to overcome this 

barrier, the development of novel technologies, such as integrated ultrafiltration/microfiltration 

membranes, which were successfully reported for the removal of organic pollutants from water 

[11, 12]. However, considerations on the catalyst leaching, membrane fouling, pore blocking of 

TiO2 fine powder, and the added process complexity are significant cost burdens on the operation 

and maintenance. Other examples of technologies are magnetic separation, catalyst 

immobilization, and photocatalytic TiO2 membranes, has been recently discussed in several 

comprehensive thematic reviews [3, 10, 13, 14].  

The use of photocatalysts and radiation together to treat and destroy highly toxic molecules, 

while somewhat novel in the membrane research, has been central to advanced oxidation process 

field. Only in the last ten years are researchers beginning to consider how these two fields may be 

integrated to achieve a highly-compact, multifunctional, single-unit operation [3]. The first 

inorganic photocatalytic TiO2 membranes was reported on flat-sheet supported alumina 

substrates. Choi et al. demonstrated mesoporous TiO2 films and membranes with a TiO2 active 

layer on alumina support affording good adsorption and UV photocatalysis of methylene blue, 

whilst producing high water permeability and antifouling property [15, 16]. Since then, there has 

been a continued growth of interest in designing photocatalytic TiO2 membranes as described in 

these recent reviews [3, 17, 18]. Despite the development to date has predominantly been 
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focused on flat-sheet supported membranes and catalyst-deposited membranes, the research of 

photocatalytic TiO2 hollow fibers is rapidly emerging. 

Earlier work involving inorganic-based hollow fibres containing TiO2 as an additive, include 

ceramic [19], carbon [20-22], and hybrid [23-26] materials have demonstrated unique properties 

in niche membrane applications for high-temperature gas processing and water treatment. 

Typically, the syntheses of inorganic hollow fibers require the use of a polymer binder to hold the 

inorganic nanoparticles together to firstly form the green body via a spinning and phase-inversion 

process.  This is followed by the removal of the binder at high temperatures above 1000 °C over 

several hours to ultimately produce the pure inorganic hollow fibers. Also, this intensive thermal 

treatment is essential to sinter the inorganic oxide nanoparticles together in order to achieve high 

mechanical strength. However, the major disadvantages of high-temperature thermal processing 

of TiO2 are nucleation and grain growth leading to irreversible phase transformation [27, 28], 

which can significantly alter the photocatalytic properties and performance of the membranes. 

Therefore, it is a research challenge to control the morphology and properties of the consolidated 

TiO2 matrix, and at the same time, to meet the design criteria of the compact, multifunctional 

hollow fibers as membrane reactors.  

In this study, two series of composite hollow fibers and photocatalytic membrane reactors 

based on titania and binder-derived char were optimized for physicochemical-mechanical-

photocatalytic-performance relationship to achieve efficient photocatalysis and purified water 

recovery. This was carried out by systematically varying the calcination conditions based on 

temperature (500 – 1000 °C; 8 h) and time (2 – 8 h; 600 °C) with comprehensive characterizations 

and membrane evaluations.  

 

2. Experimental 

2.1 Chemicals and materials 

In this study, all the chemicals and reagents were from Sigma Aldrich (ACS grade) and used 

without further purification. The specific details of the Degussa P25 titanium dioxide (TiO2) 

nanoparticles were reported in an earlier study [29].  

2.2 Hollow Fibre Synthesis 

To prepare the hollow fibers, a spinning-pyrolysis technique was employed [30]. Briefly, Degussa 

P25 TiO2 powder was mixed with poly(ether imide) (PEI) and solvent (1-methyl-2-pyrrolidinone 

(NMP)) in a 18:25:75 ratio (w/w) for 24 h until homogenous and then degassed by vacuum for 

another 24 h. The spinning dope was then extruded through a tube-in-orifice spinneret (OD = 2.5 

mm and ID = 0.8 mm). The pressure in the spinning dope and airgap was maintained at 4 bars and 

50 mm, respectively. Phase inversion was induced from the inner side of the hollow fiber followed 

by the outside in deionized (DI) water bath, where the green fiber was left immersed for 24 h. 

Then, the TiO2/PEI green fiber was dried for 24 h at 60 °C. Before pyrolysis, the green fiber was 
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placed inside a double open-ended quartz tube (length = 20 cm; OD = 8 mm) to minimize the 

geometric curvature, and then heated at a temperature in the range of 500 – 1000 °C (series 1) for 

a fixed 8 h holding time, or 600 °C for 2 – 8 h (series 2) using a muffle furnace without the 

introduction of any specialized gases. PEI was gradually pyrolysed into char with partial 

decomposition during the thermal process to afford the final composite, char-TiO2 hollow fibers.    

2.3 Characterization techniques   

The morphological structure of the pyrolysed composite hollow fibers was examined using a field-

emission scanning electron microscope (FESEM JEOL 7001F operating at 10 kV) and high-

resolution transmission electron microscopy (HR-TEM) was performed on a JEOL2100 microscope 

equipped with energy-dispersive x-ray spectroscopy (EDS). The outer surface of the hollow fibers 

was examined by X-ray photoelectron Spectroscopy using a Kratos Axis ULTRA XPS incorporating 

an incident monochromatic radiation Al Kα X-rays (1486.6 eV) at 225 W (15 kV, 15 mA). Nitrogen 

sorption measurement of the hollow fibers was performed using Micromeritic TriStar 3000 

instrument after degassing the samples at 200 °C overnight under vacuum on a VacPrep061. The 

specific surface area was determined from Brunauer, Emmett and Teller (BET) method and total 

pore volume was taken from the last point of the adsorption isotherm (ca. 0.94 P/Po). The 

cumulative pore volume distribution was determined from adsorption branch of the isotherms 

using the Density Functional Theory (DFT) model of cylindrical pores with oxide surfaces. Dubinin-

Astakhov and Barrett-Joyner-Halenda methods were taken to determine the average pore 

diameter of microporous and mesoporous materials, respectively. The char residue content of the 

pyrolysed hollow fibers was determined by thermal gravimetric analyzer (TGA, Mettler Toledo 

TGA/DSC 1 Stare System) from room temperature to 1000 °C at a heating rate 5 °C min-1 and 80 mL 

min-1 flow rate of air. A three-point-bending test was performed using Instron 5543 universal 

machine with a set strain rate of 1 mm min-1 to measure the mechanical strength of the composite 

hollow fibers. The maximum bending strength was calculated by using the following expression for 

a simple tube [31], 
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where, σ is the bending strength (MPa), F is the load applied (N), and L, D and d are the span, 

outer diameter and the inner diameter (mm) of the hollow fiber, respectively. 

The crystal structure and phase composition of the hollow fibers (after grinding) were analyzed 

by a powder X-ray diffraction system (XRD, Bruker AXS D8 advance, Cu-Ka radiation). By using the 

diffraction peak intensities of the anatase (101) and rutile (110) phases, the weight fraction of the 

rutile can be calculated from the following equation [32], 
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where RS is the weight fraction of the rutile phase, Ia is the diffraction peak intensity of the anatase 

(101) plane, Ir is the diffraction peak intensity of the rutile (110) plane [33]. 

2.4 Photocatalysis evaluation of the hollow fibers 

The photocatalytic activity of the composite hollow fibers was evaluated using four UV-A lamps 

(SYLVANIA Blacklite F8W/BL350, 330 – 370 nm emission; 8 Watt each) as the UV source. Acid 

Orange 7 (AO7) was used as a model colour dye due to its excellent stability under UV irradiation 

[34]. 25 ml of AO7 (20 ppm; pH 6.5) in a quartz reactor vessel was placed concentrically at 15 cm 

away from the UV lamps in the UV chamber to minimize the heating effect of the UV lamps. The 

sintered hollow fiber membranes weighing about 50 mg (membrane surface area: approximately 

1.5 × 10-4 m2) were immersed in the AO7 solution in the reactor. 30 min dark sorption experiment 

was performed prior to switching on the UV lamps. The measured intensity of the UV via an 

intensity meter (Model 308, OAI) received on the membrane is approximately 0.17 mW cm‒2 in 

the presence of AO7 solution. During the photocatalysis under UV exposure, the temperature of 

the reactor gradually increased from room temperature (22 °C under air condition) to about 40 ± 

1 °C, of which the impact on the photo-degradation of the AO7 dye is considered insignificant 

based on our observations and the literature [30, 35-37]. Hence, the temperature effect is 

neglected in this study. The UV-Vis spectrum of the feed solution was recorded from 220 ‒ 620 nm 

by a UV-Vis spectrophotometer (Evolution 220, Thermo Scientific). The concentration of AO7 was 

determined by measuring the absorbance at 485 nm based on an established calibration standard 

curve. The photocatalytic activity of the membrane can be determined by the percent degradation 

of AO7 in the feed solution based on the equation, AO7 degradation (%) = (C0 – Ct)/C0 × 100%, 

where C0 and Ct are the AO7 concentration in the reactor solution before photocatalysis (after 

dark sorption) and at reaction time t, respectively.  

2.5 Membrane performance 

The permeability of the membrane was evaluated by measuring the water flux of DI water and 

AO7 solution with UV in a dead end permeation mode adapted for hollow fibers [38, 39]. A control 

experiment without UV irradiation was also conducted. As shown in Fig. 1, one end of the hollow 

fiber is sealed with epoxy resin and the other end is connected to a vacuum line and the permeate 

stream was collected in a cold trap which was immersed in a liquid nitrogen dewar. A vacuum of 

1.5 kPa is applied across the membrane as the driving force. The water flux, F (L m-2 h-1), was 

determined based on the equation F = m/(A·t), where m is the mass of permeate (L) retained in 

the cold trap, A is the surface-active area (m2) of the membrane and t is the time measurement 

(h). The AO7 rejection, R (%), was calculated as R = (Cf – Cp)/Cf × 100%, where Cf and Cp are the 

feed and permeate concentrations of AO7. After 1 h of permeation, UV-vis spectrum of the feed 

and permeate was recorded.  
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Figure 1. A customised membrane permeation and photocatalysis set-up. 

 

 

3. Results 

3.2 Hollow Fiber Morphology and Properties 

Prior to calcination, the green hollow fiber was examined by SEM technique. Fig. 2 shows the 

representative SEM images of the cross-section and surface of green fiber. In general, the entire 

green fiber is measured in the order of approximately 2 ± 0.2 mm with a wall thickness of 500 ± 50 

µm, both of which are directly dependent on a complex set of spinning parameters such as die 

dimension, air gaps, and dope flow rate (pressure). Moreover, the fiber morphology can be 

described as a typical asymmetric structure with a relatively non-porous surface, which is an 

important precursor for obtaining good mechanical strength and separation characteristics.  

 

 

Figure 2. SEM images of green fiber (uncalcined) of the (a) outer surface and (b) cross-section 

with higher magnification in the inset images. 
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In Fig 2(a), the morphology of the green fiber appears to be relatively smooth with 

homogeneous spread of several surface defects. On closer inspection as seen in the inset, the 

surface is granular and nodular, which is attributed to the morphology of the TiO2 nanoparticles. 

Further examination of the cross-section image in Fig. 2(b) shows that the fiber consists of large 

finger-like macrovoid villi extending from both the inner wall to the outer wall. Additionally, as 

shown by the inset, adjacent to the macrovoids are mainly composed of sponge-like microvoids, 

which makes up the bulk of the fiber. These specific characteristics of the fiber morphology have 

been well-ascribed to the thermodynamic instability of the chemical potential during the phase-

inversion process [30, 40-42].  

Upon calcination, two series of hollow fibers were synthesized by systematically changing the 

temperature from 500 to 1000 °C for a fixed holding time of 8 h (temperature-series), and the time 

from 3 to 8 h for a fixed temperature of 600 °C (time-series). Fig. 3 displays the SEM cross-section 

images of the calcined hollow fibers at the outer skin layer. Clearly, the calcination conditions 

strongly influence the morphology and porosity of this layer, which is an important membrane 

feature that dictates selectivity. From the temperature-series images (bottom row), the calcined 

hollow fibers are all porous with varying pore sizes and TiO2 nanoparticle sizes, both of which 

increases with increasing temperature. In comparison, the time-series images of the 600 °C fibers 

show a less pronounced differences with a relatively dense skin layer, except for the 600-8h 

sample. This strongly suggests that when the fiber is calcined below a certain temperature (< 

600 °C) and time (< 6 h), there is an incomplete removal of the PEI-derived phase, which forms the 

interstitial carbonaceous matrix between the TiO2 nanoparticles.  

To better understand the morphology of the hollow fibers, high-resolution TEM analysis was 

carried out. Fig. 4 displays HR-TEM images of the time-series fiber samples with the 800 °C sample 

for comparison. The figures clearly demonstrate that the dense inorganic TiO2 nanoparticles are 

embedded within a carbonaceous matrix with some electron translucency. In fact, a close 

examination of this matrix on a thin section reveals a certain degree of ultra-microporosity, which 

is particularly evident in the 3 and 6 h images. By increasing both calcination time and 

temperature as seen in both of the 8 h samples, the amount of this matrix decreases and almost 

cannot be visually appreciated in the 800 °C image. This observation is in good agreement with the 

morphological analyses by the SEM images in Fig. 3. 
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Figure 3. SEM images of the cross-section of the calcined hollow fibers as a function of 

calcination conditions. 

 

 

Figure 4. HR-TEM images of the calcined hollow fibers as a function of pyrolysis conditions. 

 

Further evidence of this carbonaceous matrix was examined by thermogravimetric analysis 

technique. The calcine hollow fibers were heated from room temperature to 1000 °C to 

quantitatively determine the amount of the residual PEI-derived matrix remained within each of 

the hollow fibers. It is anticipated that the change in fiber mass is only attributed to the mass loss 

associated with the oxidative combustion of the carbonaceous matrix and not due to the TiO2 

nanoparticles. Fig. 5(a) shows the weight profile of the calcined hollow fibers for the time-series 

group along with the data for the 800 °C fiber, and the corresponding normalized mass loss is 

plotted in Fig. 5(b) for both series. From Fig. 5(a), there is a 2 to 4% weight reduction prior to 
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200 °C, which is due to the loss of the physi-sorbed water inside the calcined fibers. Apart from the 

800 °C weight profile, the majority of the weight change occurs between 400 and 600 °C, after 

which the change in weight is observed to be negligible up to 1000 °C. Obviously, the mass loss of 

samples decreases with increasing calcination time for the 600 °C fibers. This trend is clearly 

depicted in Fig. 5(b). Firstly, for the temperature-series hollow fibers, it shows that the largest 

mass loss of 51% occurred in the 500 °C fiber followed by 8 and 3% for the 600 and 700 °C fibers, 

respectively. Above 700 °C calcination conditions, the mass loss is entirely due to the loss of water 

as there would be no carbonaceous residue remained inside the fibers under these high-

temperature calcination conditions. In a similar trend, the relative amount of the carbonaceous 

matrix decreases with increasing calcination time for the 600 °C fibers. Interestingly, the largest 

difference is seen between the 6 and 8 h fibers, which further corroborates with the previous 

electron microscopy results.     

  

 

Figure 5. (a) TGA curve and (b) mass loss of the calcined hollow fibers as a function of 

calcination temperature (blue symbols) and time (red symbols). 

  

The textural property of the calcined hollow fibers was further examined by N2 physisorption 

technique. Fig. 6(a) and Table 1 show the N2 physisorption isotherms and textural results (BET 

surface area, total pore volume and average pore diameter) of the fibers as a function of 

calcination temperature and time. Fig. 6(b) shows the plots of surface area and relative micropore 

percentage determined from the pore size distributions. Firstly in Fig. 6(a), the isotherm profiles of 

calcined hollow fibers in the temperature-series group reveal three types of pore regime in the 

system. At the 600 °C, the fiber contains all the characteristics of a microporous, mesoporous and 

macroporous solid. The initial rapid rise of nitrogen adsorption under the 0.2 P/Po partial pressure 

is characteristics of a microporous texture, while towards the higher partial pressures, the 

adsorption branch continue to increase gradually with a final large uptake of adsorption followed 

by a small degree of hysteresis in the desorption branch. The latter signifies capillary condensation 

associated with meso- and macro-porous structure. This is also evident from the loss of both the 
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surface area and microporous proportion (Fig 6(b)). For higher temperature treatment (> 700 °C), 

the PEI binder is completely removed leaving only the TiO2 phase that causes the fiber to become 

a macroporous solid with a minor degree of mesoporosity as the intra- and inter-particle voids are 

exposed [30]. This structure is also supported by the fiber morphology as observed in the SEM 

images (Fig. 3). Interestingly at the other temperature extreme, the 500 °C fiber produced a 

negligible surface area. It is postulated that this fiber was perhaps relatively dense due to the 

incomplete treatment of the PEI binder, and thus, it was non-porous.  

 

 

Figure 6. (a) Nitrogen adsorption (solid symbols-line) and desorption (open symbols) isotherm 

curves, and (b) BET surface area (full line) and micropore percent (broken line) of the calcined 

hollow fibers as a function of calcination temperature (blue symbols) and time (red symbols). 

 

 

 

Table 1. Surface properties of TiO2 carbon composite hollow fiber membranes with different 

calcination conditions. 

Temp 
(°C) 

Time 
(h) 

BET surface area 
(m2 g-1) 

Total pore 
volume (cm3 g-1) 

Average pore diameter 
(nm) 

500  8 1.2 0.001 - 

600  63.3 0.161 2.82 

700  15.3 0.094 28.9 

800  7.8 0.041 32.9 
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900  5 - - 

1000  0.7 - - 

600 2 56.2 0.039 1.56 

 3 127.2 0.085 1.76 

 
6 183.0 0.130 1.82 

 8 63.3 0.161 2.82 

 

 

In the time-series group, there is both characteristics of microporous and mesoporous 

structure in the matrix. By extending the calcination time, the degree of N2 adsorption increases 

significantly, but at the same time, proportion of the mesoporous domain also builds up. This 

behaviour in the textural property is clearly depicted in Fig. 6(b), whereby the increase in surface 

area is seen from 2 to 6 h, but is marked by a decline in microporous proportion. However, by 

further extending the calcination time, the degree of microporosity significantly decreases as can 

be seen by the 70% reduction of the adsorption branch in the 8 h sample. This is attribute to the 

loss of the carbonaceous matrix as evidenced from the TGA results (Fig. 5(b)), leading to the 

revelation of a predominantly meso/macroporous solid. Such transition is demonstrated by a 

decline in both the surface area and micropore percentage (Fig. 6(b)).  

Therefore, based on the correlation between the trends of porosity, and the TGA and SEM 

results, the carbonaceous matrix is of microporous, amorphous origin. By retaining a high amount 

of carbon matrix, the isotherm of the composite hollow fibers shows a rapid onset of N2 

adsorption at low relative partial pressure of 0.2 P/Po. This is indicative of a highly microporous 

material [43]. On the other hand, by removing the carbon matrix, the TiO2 hollow fibers fabricated 

by high-temperature calcination conditions (700 to 1000 °C) produced a meso/macroporous 

texture, which is typically described for TiO2 nanomaterials and membranes [29, 30, 44]. 

The mechanical property of the hollow fiber in terms of fracture toughness was also examined 

by 3-point bending test. Fig. 7 displays the mechanical bending stress (MBS) of the calcined fibers 

with respect to temperature and time. As shown in Fig. 7, when either the temperature or time 

increases, MBS values of the hollow fibers decrease significantly from 95.5 (500 °C) to 3 (900 °C) 

MPa, and from 52 (2 h) to 13 (8 h) MPa. By systematically removing the carbon matrix, the MBS 

can also be seen to decline in parallel. Similarly, there is a MBS minimum region between 600 and 

900 °C when only the TiO2 phase is present. This strongly suggests that the presence of the carbon 

matrix improved the mechanical strength of the composite hollow fibers. However, it is 

noteworthy that the TiO2 hollow fiber calcined at 1000 °C showed a rise in the mechanical 

strength, which is attributed to the sintering effect of the nanoparticles as confirmed by the SEM 

image in Fig. 3. It is well-known that inorganic hollow fibres containing alumina, titania and 
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perovskites have been routinely calcined at high-temperatures in excess of 1000 °C leading to a 

densified membrane matrix with improved mechanical strength [19, 45-49]. Also, it was 

demonstrated by Zhang et al.[30] that the TiO2 hollow fibers calcined at 800 °C can only achieve a 

maximum bending strength of 3 MPa, which significantly improved by 10-fold at a much higher 

calcination temperature of 1400 °C.  

 

 

Figure 7. Maximum bending stress of the pyrolyzed hollow fibers with respect to calcination 

temperature (blue symbols) and time (red symbols). Dotted lines are shown to guide the eyes. 

 

To determine the TiO2 phase composition of the hollow fibers after calcination, the hollow 

fibers were grounded into powder and analysed by XRD. Fig. 8(a) and 8(b) show the XRD pattern 

of the fibers over the 20 – 80° 2θ region, and the corresponding weight fraction of the anatase 

phase determined the diffraction peak intensities of the anatase (101) and rutile (110) phases 

according to the equation described in the methodology. The data for Degussa P25 TiO2 is also 

included for comparison. In Fig. 8(a), it can be observed that the major TiO2 phase is anatase in all 

the time-series fibers, but the major peak attributes to rutile phase at 27.4° 2θ becomes more 

intense and pronounced with increasing calcination time. As shown in Fig. 8(b), the anatase weight 

fraction slowly decreases from approximately 80.1 to 67.1%. However, this is still very comparable 

to that of the Degussa P25 TiO2 (81.9%). The transformation of anatase to rutile is well-known to 

proceed via a nucleation and growth process which is favoured at high temperatures because the 

rutile crystalline phase is thermodynamically more stable [50-52]. The trend of the XRD results 

suggests that the presence of carbon matrix surrounding the TiO2 nanoparticles is inhibiting the 

extent of thermally-induced aggregation, and thus preventing the morphological transformation of 

the TiO2 phases [43]. On other hand in an another study, Kordouli et al.[53] reported that P25 TiO2 

nanoparticles calcined at 600 °C in air loses more than 50% of the anatase fraction in the first 3 h 

of heat treatment. Moreover, by increasing the calcination temperature from 600 to 1000 °C, the 

transformation of anatase to rutile takes place and reached near completion at 800 °C and 
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thereafter [30, 53]. This is not surprising as the rutile phase is more thermodynamically stable than 

the anatase phase and will form by thermally-induced aggregation of the anatase TiO2 [36].  

 

 

Figure 8. (a) XRD patterns of the composite hollow fibers and Degussa P25 titanium dioxide (as-

received) over 20 – 80° 2θ region, and (b) the weight fraction of the anatase phase of TiO2 a 

function of calcination temperature (blue circles) and time (red squares). Diffraction peak of the 

rutile phase (110) at 27.4° 2θ of the 800-8h sample is truncated for clarity in Fig. 8(a) and the black 

dotted line in Fig. 8(b) represents the weight fraction of anatase TiO2 calculated for the P25 TiO2.  

 

Fig. 9 shows the percentage of photo-degradation of AO7 dye by the titania carbon hollow 

fibers membranes after 1 h of UV exposure with different calcination conditions. The data shown 

in Fig. 9 has been corrected for the 30 mins of dark sorption in each test and this was estimated to 

be between 4 and 7% in the cases of microporous hollow fiber samples [54]. In both series of data, 

there is a strong dependence of photocatalytic efficiency on calcination temperature and time. It 

can be observed that at both extremities of the temperature range, there is negligible AO7 

degradation (< 2%) whilst the maximum region is found near 600‒700 °C (43‒41%), after which it 

decreases slowly. Similarly, the degradation profile of the time series shows a rapid surge from 0% 

(2 h) to 76% (3 h) and plateau to 90.4% at 6 h followed by a large drop to 43% at 8 h, despite all 

the samples contains very high proportion of the anatase TiO2 phases. In both data series, it is 

observed that further increasing the calcination temperature or time would only result in a 

decrease in the degradation percentage of AO7 meaning a reduced photocatalytic activity of the 

composite hollow fibers. In contrast, insufficient temperature or time of calcination resulted in no 

degradation at all suggesting that the photoactivity of these composite hollow fibers is either non-

active or hampered by the presence of a high concentration of amorphous carbon. Thus, this 

demonstrates that there is a compromise between calcination temperature and time. Although 

both the calcination temperature and time equally play important roles in controlling the 

photocatalytic properties of these composite hollow fibers, to gain shorter fabrication times, 

calcination temperature must be elevated, and vice versa.  
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Figure 9. Percent degradation of AO7 by TiO2 carbon composite hollow fibers after 1 h under 

UV irradiation as a function of calcination temperature (blue circles) and time (red squares) using 

50 mg of hollow fiber and 20 ppm of AO7.  

 

 Overall, the properties and photocatalytic performance of the two series of hollow fibers 

indicates that there is a critical window of calcination temperature and time in this study. The 

hollow fibers prepared at 3 and 6 h at 600 °C calcination condition were selected for further 

membrane evaluation. These fibers were optimized to produce the carbon matrix with a good 

balance between porosity, chemical composition, mechanical strength and photocatalysis  

 

3.3.2 Water Permeation 

Fig. 10 shows the water flux of the 3 and 6 h hollow fiber membranes in deionized water and AO7 

feed solutions in the dark and with UV irradiation in a customized dead-end filtration mode. 

During the membrane testing, both membranes continued to operate under pervaporation 

without any pore-wetting effect, which was however observed on the 8 h fiber during the first 30 

sec and was excluded from further study. It was found that both membranes achieved greater 

than 99% rejection of AO7 in the permeate water demonstrating that these membranes are 

selectively permeable towards water molecules. 
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Figure 10. Pervaporation performance of TiO2 carbon composite hollow fiber membranes 

prepared by the (a) 600-3h and (b) 600-6h of calcination time in deionized water and AO7 

solutions (20 ppm) with/without UV irradiation using 4 cm of hollow fiber membrane length 

(surface area ~1.5 × 10-4 m2). Data and error bar represent the mean ± two standard deviations 

(95% confidence interval) from three measurements. 

 

Clearly in all of the testing conditions, the 3 h membranes out-performed the 6 h membranes 

because of the higher water flux values. In Fig. 10 (a), the 3 h membranes achieved the highest 

water fluxes of 6.9 (H2O/dark), 12.9 (H2O/UV) 4.8 (AO7/dark) and 7.9 L m–2 h–1 (AO7/UV), in 

comparison to 1.5 (H2O/dark), 2.7 (H2O/UV), 0.2 (AO7/dark) and 0.7 L m–2 h–1 (AO7/UV) for the 6 h 

membranes (Fig. 10(b)). In fact, the water fluxes produced by the 3 h membranes are very 

comparable to the water permeability of the TiO2 hollow fiber (12.2 L m–2 h–1) and the TiO2/Al2O3 

composite membranes (7.7 L m–2 h–1) reported by Zhang et al.[30] and Choi et al.[16], respectively. 

Nevertheless, there are some interesting trends and patterns worthy of discussion, which is 

provided in the next section. 

 

4. Discussions 

The calcination process is routinely carried out to produce inorganic membranes with controlled 

porosity for a variety of separation applications. In this work, a low-temperature calcination 

protocol without the use of any specialized gases was chosen, which is unconventional for the 

normal thermal processing of carbon and titania hollow fibers described in the literature. It was 

found that the PEI polymer binder will form an amorphous carbon matrix by partially 

decomposition within this prescribed treatment protocol. This was proven by the SEM (Fig. 3), TGA 

(Fig. 5) and N2 physisorption (Fig. 6) results as the final composite hollow fibers possess a high 

degree of microporosity in molecular dimensions typically reported for the carbon matrix. This 

property is directly responsible for the molecular-sieving properties of the membranes produced 

in this work. Another motivation for adopting this calcination protocol is optimizing the phase 
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concentration of anatase TiO2 by keeping the calcination temperature threshold at 600 °C. Both 

chemical constituents that co-exist in two distinct phases within these hollow fibers are essential 

in producing the desired functionalities and properties for this study.  

Fig. 11 displays the schematics of the hollow fiber formation during the calcination process. In 

Fig. 11(a), the dry green fiber consists of the PEI binder and the TiO2 nanoparticles that are 

embedded within the polymer matrix. Upon calcination at low temperatures (600 °C) as shown in 

Fig. 11(b), the degree of pyrolysis and partial decomposition of PEI to carbonaceous char can be 

achieved, particularly in a temporal-controlled manner as evidenced by the characterization 

results of the time hollow fibers series. Also under this condition, the TiO2 nanoparticles remain 

morphologically stable and un-sintered. Therefore, the microporous char forms between the voids 

of the TiO2 nanoparticles imparting good mechanical strength. However, embedment of the TiO2 

nanoparticles by the carbon matrix led to a compromise in the photocatalytic efficiency because 

only the external surface of the fibers, where the anatase TiO2 is accessible by the UV and AO7 

molecules, can be considered photoactive. This is generally confined to a surface depth of a few 

hundreds of nanometer [15, 16].  

In contrast, when the calcination temperature is raised above 700 °C, the char completely 

decomposes [55] and exposing the TiO2 nanoparticles and the inter-particle voids. Furthermore, 

the titania nanoparticles are observed to undergo a phase transformation from the anatase phase 

to rutile and brokite phases [30]. During this process, some densification also takes place but the 

structural integrity of the hollow fibers becomes much weaker due to an increase concentration of 

surface defects and internal stress fractures. Hence, the mechanical strength diminishes with the 

loss of char. However, upon reaching close to 1000 °C, the TiO2 nanoparticles start to be sintered 

together, which leads to an overall improved mechanical property which is in good agreement 

with these references [56, 57]. Despite the observable improvement, this process is marked by the 

loss of photoactivity due to the disappearance of preferred anatase phase of the TiO2 

nanoparticles.  
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Figure 11. Schematic representation of the (a) green hollow fiber, (b) calcined composite 

hollow fibers with increasing calcination temperature or time, and (c) idealized pore structure of 

the composite matrix and diffusions of water molecules through a non-homogenous pore during 

photocatalysis-membrane operation.  

 

Based on the results of the membrane performance, the hollow fibers were clearly capable of 

rejecting AO7 whilst producing purified water in the permeate stream. This implies that the 

composite hollow fibers were able to provide a selective barrier between the water and the dye 

molecules. In this work, the carbon matrix obviously plays the dominant role in imparting 

membrane selectivity due to its highly microporous texture as demonstrated by the N2 

physisorption results (Fig. 6). As shown in Fig. 11(c), the pore system of the carbon matrix is 

assumed to be non-homogeneous as it consists of a variation of size, shape and connectivity 

making up for both microporous constrictions and wider openings. It is generally accepted that the 

constrictions are responsible for selectivity, while the openings contribute to the majority of pore 

volume and thus are responsible for permeability. According to the transport mechanism of the 

carbon membranes [20], separation is caused by passage of smaller molecules through the pores 

while the larger molecules are obstructed. Such characteristic pore texture is consistent with the 

amorphous carbon membranes typically reported in the literature [20, 58]. Therefore, as shown in 

this study that the carbon matrix offers the fine-tuning of porosity and pore volume, which are 

extremely important for determining water flux of the hollow fibers for water production as 

membranes. This is exemplified by numerous studies of microporous ceramic membranes for 

desalination [59-61] and alcohol pervaporation [62-64]. On the other hand, highly mesoporous 

membranes, although lead to a high water production, will fail to separate the solute from water 

due to pore-wetting effect [39, 65].  

In the context of this work, the constrictions in the carbon matrix have molecular dimensions 

between the size of the water (kinetic diameter = 2.6 Å) [66] and the much larger AO7 molecules 
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(9.4 Å), thereby working as a sieve. Note that the molecular size of AO7 molecule is estimated 

based on its chemical structure and is in good agreement with the calculation derived from the 

Stokes-Einstein equation [67, 68] using polyethylene glycol standards [69]. Although the N2 

physisorption results showed that the average pore diameters of the 3 and 6 h hollow fibers are 

recorded at 1.76 and 1.82 nm respectively, these results merely indicate the mean average of all 

the pore sizes (micropores and mesopores) that are measured by the N2 gas. For even smaller 

constrictions that are less than the kinetic diameter of the N2 gas (dk = 3.65 Å), they simply exist 

outside of the detectable limit. Therefore, the N2 physisorption technique is often used as 

qualitative comparison to assess the trend of pore size distribution and pore evolution. 

Nevertheless, both of these hollow fibers demonstrated the molecular-sieving property by 

producing clean permeate water with over 99% of the dye rejection during pervaporation, which is 

a true testament of the existence of micropore constrictions below 9.4 Å.  

During the process of pervaporation, the hollow fibers not only provided the selectivity and 

water transport, but they also showed profound changes in response to the presence of AO7 

molecules and UV irradiation. To further elucidate the effect of membrane fouling and photo-

induction, Table 2 shows the calculated ratios of water flux with respect to feed condition 

(AO7/H2O) with and without UV, and the exposure environment (UV/Dark) in only water or AO7 

solution. The rationale of water flux ratios is depicted in Fig. 12 which shows a flowchart of testing 

conditions and correlations. 

 

 

Table 2. Calculated ratios of water flux of the 600-3h and 600-6h hollow fibers with respect to feed 

conditions and exposure environments. 

 Water Flux Ratios 

Membrane 
AO7/H2O UV/Dark 

Dark UV H2O AO7 

600-3h 0.70 0.61 1.86 1.64 

600-6h 0.11 0.27 1.74 4.11 
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Figure 12. Flow chart of membrane testing conditions and correlations. 

 

As seen in Table 2 and Fig. 12, the presence of AO7 molecules in the feed under the dark shows 

that the total value of water flux could not be fully restored as reflected by the reduced AO7/H2O 

ratios of 0.70 (600-3h) and 0.11 (600-6h) for both membranes. In comparison, AO7 molecules 

significantly inhibited the water flux especially for the 6 h fiber. This indicates a greater extent of 

membrane fouling is experienced by the 6 h fiber during filtration. On the other hand, by 

comparing AO7/H2O water flux ratios in the presence of UV, the effect produced a 250% increase 

(0.27/0.11) in the water flux ratio for the 6 h fibers. The analysis demonstrates that there is a 

significant flux recovery upon application of the UV light, which suggests that AO7 fouling can be 

remediated as seen in the case of the 6 h membrane. In contrast, the initial fouling in the 3 h 

membrane was comparatively much less hence the flux recovery for the 3 h fiber was deemed 

insignificant. These differences in the behaviour can be explained by two membrane properties, 

namely porosity and hydrophilicity. 

According to the textural results produced by N2 physisorption (Fig. 6 and Table 1), the textural 

differences between the 3 and 6 h fibers lies in the increase of the total porosity, particularly due 

to the mesoporous domain. This change in porosity causes the relative micropore proportion to 

decrease as the calcination time doubles from 3 to 6 h. The enlargement of the total porosity seen 

in the 6 h fibers did not produce a higher water flux in comparison, but it actually caused a greater 

propensity of pore blocking by the AO7 molecules. As a result of this, the water flux (AO7/dark) 

only reached 11% of the pure water flux under the dark condition. Indeed, the presence of the 

AO7 molecules, with a 3.6 times larger than the size of a water molecule, will not only obstruct the 

membrane pores but will also hinder the water diffusion in the solution. The problem is also 

compounded by the fact that membrane pore blocking will lead to a reduction in transmembrane 

pressure, and thus results in an overall loss of permeate water production. In contrast, when UV is 

applied, the water recovery and defouling potential are observed to be very significant for the 6 h 

fibers because of a larger surface exposure of TiO2 nanoparticles and a greater surface-to-AO7 

contact from pore plugging. Hence, the flux ratio increased 2.5 times (0.27/0.11).   

Another insight provided by the flux ratios in Table 2 is revealed by examining the effect of the 

exposure environment (UV/Dark) for a given feed condition (pure water or AO7 solution). Based 

the results, both fibers show a water flux enhancement when UV is used regardless of the feed 

condition. Under the pure water condition, the increase of water flux is 86% (3 h) and 74% (6 h) 

when UV is applied, which demonstrate that both hollow fibers become much more permeable. It 

is not surprising that the composite hollow fibers have such unique functionality under the 
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influence of UV light. This can be explained by the fact that TiO2 nanoparticles are hydrophilic by 

nature and have been described to express the behaviour of photo-induced super-hydrophilicity 

[27, 36]. This photo-induction effect has been reported to cause an increase in the water transport 

through composite TiO2 membranes [70, 71], which is also supported by the results in this study. 

Furthermore, the most profound enhancement is seen again in the 6 h membranes which 

produced the largest UV/Dark ratio of 4.11 in the AO7 feed. As shown by Fig. 11(c), when the 

membranes are irradiated by UV, the TiO2 nanoparticles on the outer surface become super-

hydrophilic, and at the same time become activated, causing the rapid decomposition of the AO7 

molecules on the membrane surface. In turn, this resulted in both an increase in water affinity and 

a lesser degree of pore obstruction simultaneously, and thus, the water flux is enhanced 4-folds. In 

contrast, the 3 h membranes exhibited a lesser extent of AO7 fouling and lesser amount of 

exposed TiO2 nanoparticles on the membrane surface, hence the photo-inductive effect (UV/Dark 

ratio of 1.64) is observed considerably smaller.   

 

5. Conclusions 

In this study, the syntheses of the composite hollow fibers were optimized for physicochemical, 

mechanical and photocatalytic properties by changing the calcination temperatures (500 to 1000 

°C for 8 h) followed by times (2 to 8 h at 600 °C). It was found that by increasing the calcination 

temperature from 500 to 900 °C that the hollow fibers show a decreasing trend in bending 

modulus and photocatalysis. This was respectively due to the effect of thermal decomposition of 

the polymer binder and thermally-induced transformation of anatase to rutile phases of the titania 

nanoparticles. By limiting the calcination temperature to 600 °C, it was demonstrated that the 

hollow fiber membranes displayed multi-functional properties. The titania nanoparticles within 

these hollow fibers retained a high proportion of the anatase phase whilst the polymer binder was 

partially decomposed and pyrolyzed to form an amorphous, microporous carbon, which not only 

enhanced the surface area and pore volume, but also overcoming the trade-off between the 

bending modulus (~34 MPa) and photocatalytic degradation (> 90%) of AO7. The membrane 

performance of optimized photocatalytic hollow fibers (600-3h and 600-6h) were found to fully 

reject AO7 whilst producing purified water in the permeate stream via molecular-sieving process. 

The 600-3h membrane achieved the highest water fluxes of 6.9 (H2O/dark), 12.9 (H2O/UV) 4.8 

(AO7/dark) and 7.9 L m–2 h–1 (AO7/UV), which are generally 5- to 10-folds larger than that of the 

600-6h membrane. Notably, the effects of super-hydrophilicity and defouling potential of both 

membranes under the influence of UV light, especially for the 600-6h hollow fiber, are attributed 

to the photo-activation of the titania nanoparticles on the membrane surface. In summary, these 

hollow fibers demonstrate that they are excellent candidates for future studies regarding 

membrane scale-up and long-term performance stability in real environmental water matrices, 

and the potential to significantly reduce the processing and energy requirements for water 

treatment applications. 
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Highlights 

 Single-step low temperature pyrolysis offers robust inorganic composite hollow fibers 

 Hollow fiber with carbon molecular sieve and photocatalytic titania nanoparticles 

 Enhanced bending stress of 34 MPa and 90.4% acid orange dye photo-degradation  

 Maximum water flux of 7.9 L m–2 h–1 and over 99% dye rejection 

 Fibers exhibit super-hydrophilicity and defouling potential under UV irradiation 

 




