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We have developed a nanomechanical resonator, for which the motional degree of freedom is a superfluid
4He oscillating flow confined to precisely defined nanofluidic channels. It is composed of an in-cavity capac-
itor measuring the dielectric constant, which is coupled to a superfluid Helmholtz resonance within nanoscale
channels, and it enables sensitive detection of nanofluidic quantum flow. We present a model to interpret the
dynamics of our superfluid nanomechanical resonator, and we show how it can be used for probing confined
geometry effects on thermodynamic functions. We report isobaric measurements of the superfluid fraction in
liquid 4He at various pressures, and the onset of quantum turbulence in restricted geometry.

PACS numbers: 67.25.bh, 67.10.Jn, 81.07.Oj

I. INTRODUCTION

At low temperatures, liquid 3He and 4He transition into su-
perfluids, which exhibit exotic properties - such as dissipation-
less flow - as a result of macroscopic quantum coherence. The
coherent motion of the superfluid state is described by an or-
der parameter, whose spatial fluctuations are correlated over a
length scale given by the coherence length, ξ. This coherence
length diverges at the superfluid transition and reaches a finite
value in the low temperature limit (ξ0 = 20 − 80 nm in 3He1

and ξ0 = 0.1 nm in 4He2). By confining these quantum fluids
in well-defined structures of size comparable to the coherence
length, non-bulk phenomena can be revealed. For instance,
nanofluidic confinement has allowed the study of the order pa-
rameter fluctuation spectrum3, as well as proximity coupling4,
near the superfluid transition of 4He. In 3He, confinement ap-
proaching the coherence length is predicted to result in new
superfluid phases5,6 due to geometrically induced distortion
of the order parameter. This distortion is directly related to
surface states, which are predicted to be Majorana fermions at
the surface of 3He-B7–10.

Despite the fact that these superfluids are well studied, only
a few experiments are capable of measuring such tiny vol-
umes, or small surface effects at the edge of bulk volumes.
The most powerful experimental techniques to date are nu-
clear magnetic resonance NMR6 in 3He and heat capacity3

in 4He, although new techniques using nanomechanical struc-
tures are promising11–13. Yet numerous theoretical predictions
go untested because the right experimental probes do not exist.
For example, a signature of Majorana fermions in superfluid
3He-B confined to channels of order ξ0 has been predicted
in the superfluid density, ρs/ρ14. Previous studies of super-
fluid density by studying mass flow in confined superfluids
have been limited to Helmholtz resonators in large arrays of
particle-etch track pores15, stacks of thousands of slabs of su-
perfluid16,17, or hindered by normal state decoupling.18 In this
work, we demonstrate a quantum nanofluidic experiment ca-
pable of measuring both the static properties of a highly con-
fined superfluid - in particular the dielectric constant and total
density - as well as dynamic properties, namely mass flow,
superfluid density, and dissipation; and we use this quantum
nanofluidic device to study superfluid 4He, probing just nano-
liters of liquid with high sensitivity. One result of our system

is a measurement of dissipation in thin channels (∼ 500 nm)
at velocities into the quantum turbulence regime19–22. This
presents a scenario in which vortex lines may be pinned by
surfaces in the confined geometry, and it should open the door
to new theoretical and experimental studies.

In the dynamic regime, our experiment is a superfluid
Helmholtz resonator23,24 and its behavior is well described by
analogy with a nanomechanical mass-on-a-spring. Here the
mass is given by the amount of superfluid within a volume of
9 nL, a temperature dependent quantity, which ranges from
≈ 24 ng (ρs/ρ = 0.02%) at T − Tλ ' 2 mK to ≈ 960
ng (ρs/ρ = 80%) near 1.6 K. This represents an unusual
nanomechanical system with small moving mass and intrin-
sic quantum properties, and it may also provide an opportu-
nity to study mechanical resonators in the quantum regime.
Unlike classical mechanical resonators, superfluids are dissi-
pationless coherent macroscopic quantum states. At very low
temperature where the normal component is negligible, the
mechanical quality factor of a superfluid resonator can be ex-
ceedingly large (Q > 1010), as in the ground-breaking work
of De Lorenzo et al.25, in which they measuredQ = 106 at 10
mK. Here, the quality factor of our superfluid nanomechanical
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FIG. 1. The superfluid nanomechanical resonator is defined by an
oscillating mass of superfluid 4He confined in the channels of a
nanoscale structure. (a - d) The nanofabrication process for our de-
vices (see appendix A for details). (e) Photograph of the completed
device with an effective cavity height heff ' 900 nm and a channel
height hcha ' 550 nm. The light blue, yellow and purple colors are
the result of optical interference.
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resonator increases by three orders of magnitude between Tλ
and 0.7 K.

II. EXPERIMENT

In the experiment, we have immersed the nanofabricated
structure shown in Fig. 1e in a liquid 4He bath sealed in a cop-
per sample cell mounted on a cryostat. The device consists of
features etched into glass, where the etch height defines the
relevant confinement length26,27. Specifically, we form a cir-
cular cavity (radius rcav = 2.5 mm and height hcav = 1100
nm) and four channels (length lcha = 2.5 mm, width wcha =
1.6 mm and height hcha = 550 nm). Electrodes (height
hele = 100 nm and radius rele = 2 mm) were deposited on
both inner sides of the cavity before bonding the device, and
they are electrically contacted from two of the channels. The
effective confinement length in the cavity is given by the dis-
tance between the two electrodes (heff = hcav − 2hele = 900
nm).

The completed device realizes a parallel plate capacitor
with a nanoscale gap, which can be used to study the dielec-
tric properties of a fluid in the gap via measurement of the ca-
pacitance. Specifically, C = (Aeleε0εr)/(heff), with heff the
effective confinement length, Aele = πr2

ele the surface area of
the electrodes, ε0 the vacuum permittivity and εr the relative
permittivity of the liquid.

III. RESULTS AND DISCUSSION

We have used this device to measure the dielectric constant
of liquid 4He confined between the electrodes (Fig. 2). The
dielectric constant is given by εr = (C−Cs)/(C0−Cs), with
C0 ' 117 pF the capacitance of the empty capacitor and Cs
the stray capacitance originating from the capacitance of our
measurement coax. We computed the stray capacitance, Cs =
1.0 pF for our setup, by fitting our data at saturated vapor
pressure with the data of Donnelly et al.28 We see excellent
agreement with the temperature dependence of the bulk values
for the dielectric constant, shown in Fig. 2, despite the fact that
we are probing just 11 nL of liquid.

By measuring the relative dielectric constant, εr, one can
obtain the density, ρ, via the Clausius-Mossotti relation, which
works well for a non-polar liquid such as 4He29. Measurement
of the temperature dependent density is then a characterization
step of our nanomechanical resonator, analogous to measur-
ing the mass of the mass-on-a-spring. Results are shown on
the right hand side of Fig. 2. Such dielectric measurements
may also be relevant in superfluid 3He, since the electric field
couples weakly to the order parameter of 3He30,31, and it is
currently unknown whether there are electric field effects in
3He that could be probed with this technique.

Beyond static measurements of the fluid density, one can
use these devices to perform dynamic quantum fluid flow ex-
periments. Indeed, a nonzero flow in the channels induces
a density change in the cavity, which can be detected as a
change in the relative dielectric constant. The flow of liquid
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FIG. 2. Measurements of the dielectric constant εr of 11 nanoliters of
liquid 4He confined between the electrodes of the nanofluidic cavity,
from 4 to 1.65 K at saturated vapor pressure (blue), 5 bar (orange)
and 10 bar (green). Circles are bulk values at saturated vapor pressure
from Ref. 28. The lambda transition occurs at the kink in εr .

4He is well described by the two-fluid model32 composed of a
normal component ρn and a superfluid component ρs. Below
a critical velocity, the two fluids behave independently with
their own local mass flow velocities vn and vs, and the viscos-
ity of the fluid is entirely given by the viscosity of the normal
component ηn. In a confined geometry, the normal compo-
nent can be clamped by the walls in the dynamic regime if
the confinement length is small compared to the viscous pen-
etration depth33. The viscous penetration depth is defined as
λν =

√
(2ηn)/(ρnω), with ω/2π the frequency of the oscil-

lating flow. In this experiment, the frequency did not exceed
5 kHz, and therefore λν > 1.0 µm. This is roughly four times
the distance to a wall in our device, therefore the normal com-
ponent is mostly clamped and only the superfluid oscillates in
the channels. The dynamic resonance described below, there-
fore, only appears in the superfluid phase (T < Tλ) when
ρs/ρ 6= 0. In the case of dc flow, however, it is possible to
measure a contribution from the normal density component
even for nanoscale channels34,35.

We drive an ac Helmholtz resonance23,24 with the same
voltage Vd that is used to measure the capacitance of the
nanofluidic capacitor. The electric field Ed = Vd/heff be-
tween the electrodes produces an attractive electrostatic force
between the glass plates, Fstat = (1/2)Aeleε0εrE

2
d , which

bend under this load (Fig. 3). This deformation produces a
pressure increase in the cavity, which induces a flow in the

Fstat

mHe 

kplate  kHe
 

x(a) (b)

y

cavity channel

FIG. 3. Simplified schematic of the superfluid nanomechanical res-
onator. (a) The electrostatic force, Fstat, deforms the glass cavity and
generates a pressure gradient across the channel. (b) A schematic of
an equivalent mass-spring system - the plate moves by x and the mass
of superfluid, mHe, responds by moving a distance y.
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channels. It is interesting to note that other forces such as the
electrostrictive and the Casimir forces, while of smaller mag-
nitude, exist in the system and can be enhanced by modifying
the present geometry (see Appendix G).

We describe the electrostatically driven Helmholtz reso-
nance in the channels23,24, with a mass-on-a-spring model
(see Fig. 3). In this model, we consider a superfluid mass
mHe = 4ρsleffa, with leff the effective length of the channel,
which accounts for the end effects and is slightly larger than
its physical length, and a = wchahcha is the cross-sectional
area of the channel. This mass is attached to a spring of stiff-
ness kHe, accounting for the bulk modulus of the liquid in the
cavity, which is attached in series to another spring of stiffness
kplate, accounting for the flexural rigidity of the glass plates.
The effective stiffness of this resonator, keff , is a combination
of these two springs in series, multiplied by a geometric fac-
tor. The resonance frequency of the mechanical system is then
given by

ω2
0 =

keff

mHe
= 4

(
ρs
ρ

)(
a

A2
plateleffρ

)
kplate

1 + Σ
(1)

with Σ = kplate/kHe, kHe = (A2
plate)/(χVcav), Vcav is the

volume of the cavity, χ is the compressibility of liquid 4He,
and kplate = 1.94 × 107 N/m is the bending stiffness of the
glass plates, which we measured. Derivation and details can
be found in Appendix E.

The oscillating superfluid in the channels generates a den-
sity oscillation in the cavity that can be measured as a time-
dependent dielectric constant. We measured this by study-
ing the ac response of the dielectric constant of the super-
fluid using a frequency-dependent capacitance measurement.
The electrodes of the nanofluidic capacitor were connected
to a capacitance bridge (General Radio 1615-A). The drive
voltage Vd applied to the capacitor was produced by a func-
tion generator (Stanford Research DS345), and the response
of the capacitance bridge was amplified and measured with
a lock-in amplifier (Stanford Research SR830) synchronized
to the function generator. Measurement of the two quadra-
tures allowed us to extract the real (in-phase) and imagi-
nary (out-of-phase) parts of the complex dielectric constant
(εr = ε′r − iε′′r ), which were simultaneously fit to a damped
harmonic-oscillator equation,

ε̈r +
ω2

0

Q
ε̇r + ω2

0εr = ω2
0ε
d
r (2)

with Q the quality factor and εdr the driving term proportional
to the force applied to the plates, Fstat.

The resonance frequency ω0/2π and quality factorQ of the
superfluid oscillator, from 1.6 K to Tλ at various pressures, are
shown in Fig. 4. Combined with Eq. 1 we can then extract the
superfluid fraction, ρs/ρ, shown in Fig. 4(c). Calculations37

and measurements38,39, suggest the following functional form
for ρs/ρ:

ρs
ρ

= k(1 +Dρt
∆)tζ (3)

4.0 4.2 4.4 4.6
(kHz)

6.0

4.0

2.0

0.0

-2.0

ε 
,ε

  
(a

.u
.)

r
r

’
’’

ρ  S
 /
 ρ

(a)

(b)

ω
/ 

2
π

(H
z
)

4000

3000

2000

1000

0

Q

150

100

0

50

1.6 1.7 1.8 1.9 2.0 2.1

Temperature (K)

2.2

0.8

0.6

0.4

0.2

0
0-0.20 -0.10

t 

ω / 2π

FIG. 4. Temperature dependence of the superfluid nanomechanical
resonator (a) frequency and (b) quality factor, taken at a drive volt-
age Vd = 5 V, for various pressures: 2 (blue triangles), 5 (orange
squares), 10 (green diamonds), 15 (red circles), 20 (black diamonds)
and 25 (purple diamonds) bar. The inset of (a) is the superfluid frac-
tion, ρs/ρ, extracted from the resonance frequency using Eq. 1 with
Tλ taken from Maynard sound measurements36, and the fit function
(black line) given by Eq. 3. The inset of (b) is a frequency sweep
across the resonance, which shows the real part (black circles) and
imaginary part (blue circles) of the relative dielectric constant mea-
sured at 2 bar and 1.62 K and the corresponding fit functions obtained
from Eq. 2.

with k = k0(1 + k1t), and t = (T − Tλ)/Tλ the reduced
temperature. k0, k1, and Dρ are pressure dependent fit pa-
rameters of the critical behavior, ζ = 0.6705 ± 0.0006 the
critical exponent of the superfluid fraction38 and ∆ = 0.5 -
details of the fit parameters can be found in Appendix F. We
find good agreement with Eq. 3 at all pressures, demonstrating
the universality of the lambda transition in our data. An excit-
ing implication is that by replacing 4He by 3He in this super-
fluid nanoresonator, one could measure the superfluid fraction
ρs/ρ of confined superfluid 3He, which, according to Wu et
al.14, will lead to a direct signature of the Majorana surface
excitations.

We note that the agreement between the data taken at a low
drive voltage (Vd ≤ 5 V) and the fit shown in the inset of
Fig. 4b, is an indication of the linear behavior of the oscillator.
We also measured the resonance at various drive voltages to
explore deviations from the linear regime. We show in Fig. 5b
that at low drive (Vd ≤ 7 V), the data for the quality factor as a
function of temperature collapse on the same curve. At higher
drive (Vd ≥ 7 V) they deviate from that curve at particular
temperatures (T1 ' 1.75 K for Vd = 7 V and T2 ' 1.85 K
for Vd = 10 V). This indicates a temperature dependent drive
threshold. As can be seen in the inset of Fig. 5b, the quality
factor measured at T = 1.7 K as a function of drive shows a
threshold near Vd ∼ 6 V. Above this threshold, the dissipation
increases because the flow in the channel enters a regime of
quantum turbulence19.

The resonance frequency data remain unchanged even at
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FIG. 5. Temperature dependence of the superfluid nanomechanical
resonator (a) frequency and (b) quality factor, taken at constant pres-
sure P = 5 bar for various drive amplitudes: 2, 5, 7 and 10 V. The
inset of (b) shows the quality factor measured at T = 1.70 K (black
arrow) as a function of the drive voltage. The inset of (a) is a fre-
quency sweep of the in-phase (black circles) and the out-of-phase
(blue circles) dielectric response at Vd = 10 V with their fit func-
tions obtained from Eq. 2.

the highest drive, indicating that we are only in a slightly non-
linear regime and so we can still fit the resonance curve with
Eq. 2 to a good approximation (inset of Fig. 5a). This allows
us to calculate when the velocity of the oscillating mass in the
channel passes above the critical velocity, vc. For instance, at
T = 1.85 K and Vd = 10 V, the average superfluid velocity in
the channel at resonance is given by

vs =
1√
2

Aρ

aρs

Fstat

kplate
ω0Q ∼ 14 m/s (4)

with Q ' 50, Fstat ' 7 × 10−3 N, and ω0/2π ' 4 kHz.
This is larger than what has been measured by Clow et al.40

in porous materials with a pore diameter of 200 nm, where
they find a critical velocity of ∼ 1 m/s at 1.85 K. Exceed-
ing the critical velocity results in the formation of quantum
turbulence, which is known to decay through a cascade to
smaller vortices - the Kolmogorov spectrum41. Our superfluid
nanoresonators may allow the study of quantum turbulence in
a new regime, where vortices become pinned by the confined
geometry and therefore change this vortex decay, as compared
with bulk turbulence.

Finally, we present additional experiments that could be
performed using these superfluid nanomechanical resonators.
One can identify two limits in the mechanical system pre-
sented above, depending on the ratio spring constants (Σ).
In the “soft plate” limit (Σ � 1), the effective stiffness
kplate/(1 + Σ) reduces to the stiffness of the plate kplate only,
and does not depend on thermodynamic variables (T, P ) of
the liquid. That is, one could remove the compressibility of
the superfluid from Eq. 1, which help to isolate the tempera-
ture and pressure dependence of the superfluid fraction.

In the other “stiff plate” (Σ � 1) limit, the resonant fre-
quency reduces to the formula for a fourth-sound Helmholtz
resonator42, ω2

h = c24a/(leffVcav), where c4 =
√
ρs/(ρ2χ)

is the fourth-sound velocity of liquid 4He43,44, a sound mode
that propagates only in the superfluid phase when the normal
component is clamped. One can possibly drive this mode in
our resonator using an electrostrictive driving force. The work
presented here is between these two limits (Σ ∼ 0.1); details
given in appendix G.

IV. CONCLUSION

We have presented devices to explore quantum fluids under
nanoscale confinement - probing just nanoliters of superfluid
with a high signal-to-noise. In the low-frequency limit, we
measured the dielectric constant, and therefore the total den-
sity, of liquid 4He, which set the stage for probing the resonant
behavior of the confined superfluid. In the dynamic regime,
the device is a superfluid Helmholtz resonator, with a scale of
tens to hundreds of nanograms of oscillating liquid 4He. We
used an analytical model to describe its dynamics, and we per-
formed experiments to measure the superfluid fraction and the
onset of quantum turbulence. This system provides opportu-
nities to study superfluids in restricted geometries - such as
measuring the superfluid fraction in 3He, which will provide
a direct signature of Majorana fermions at the surfaces - as
well as providing opportunities for studying nanomechanical
resonators at low temperatures with intrinsic quantum proper-
ties.
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Appendix A: Nanofabrication

An important component of our experiment is the realiza-
tion of very well defined nanofluidic structures using clean-
room techniques. Here, the design of the nanofluidic de-
vice is a cylindrical basin (radius rcav = 2.5 mm and height
hcav = 1100 nm) and four channels (length lcha = 2.5 mm,
widthwcha = 1.6 mm and height hcha = 550 nm). Electrodes
(height hele = 100 nm and radius rele = 2 mm) were de-
posited on both inner sides of the cavity to form a nanofluidic
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capacitor. In this section, we describe in detail the nanofabri-
cation process of our devices.

The process starts, Fig. 1(a), with the deposition of a Cr/Au
masking layer (30 nm/180 nm) on a 100 mm x 100 mm x 1.1
mm borosilicate glass wafer previously cleaned with a piranha
solution (3:1 H2SO4 and H2O2). A first optical lithography is
performed to pattern the design of the cavity and the channels.
For that, a positive photoresist polymer (HPR504) is spun onto
the wafer (10 s at 500 RPM and then 40 s at 4000 RPM) and
baked for 30 min at 115 degrees, leading to a thickness of
1.2 µm. The photoresist is exposed for 2.2 s with UV light
(365 nm) through the photomask and developed, and as a re-
sult the photomask pattern is transferred onto the photoresist.
We chemically etch the exposed masking layer (Cr/Au) with
an acidic solution and then the glass wafer down to a certain
depth (550 nm for this device) with a glass etchant (50% HF,
10% nitric acid and 40% water).

At this point, the nanofluidic cavity and channels are etched
in the glass wafer. Afterwards, the photoresist and masking
layers are stripped off and a second optical lithography is per-
formed in order to pattern the electrodes. For that, we repeat
the steps described above with a second photomask. Next, us-
ing a sputtering system we deposited a Cr/Au thin film (10
nm/90 nm) on the wafer. We then lift off the photoresist to
obtain the electrode pattern in the bottom of the cavity and
channels, Fig. 1(b).

At this stage, we dice the wafer into smaller rectangular
pieces (10 x 15 mm). These pieces are piranha cleaned and
bonded using direct bonding, which consist of an additional
soft mechanical cleaning of the pieces with a soap solution
and the pressing by hand under the microscope of the two
pieces against each other. This finishes the nanofabrication,
and the relevant confinement length of this device, heff , is
given by the distance between the electrodes, Fig. 1(c).

We bond the two rectangular pieces perpendicularly,
Fig. 1d, such that we can solder electrical wires to the elec-
trodes that are deposited in the bottom of the cavity. The de-
vice is then placed in a copper sample cell and connected to
the electrical coaxial feedthroughs. Next, this sample cell is
sealed with an indium o-ring and mounted on a cryostat.

We study the properties of the flow in the four nanofluidic
channels defined by this nanofabrication process. The four
channels have the same dimensions but because two channels
have electrodes passing through they have different cross sec-
tional geometry. We show in Fig. 6 the cross sections of the
two type of channels.

Appendix B: Characterization

During the nanofabrication process of our devices and prior
to the bonding, we control the depth of glass etch and the
thickness of metal depositions with a surface profiler (Alpha
Step IQ). It is a diamond tip on a piezoelectric transducer,
which is brought in contact with the device and moved lat-
erally across it to measure the topography. This tool has an
excellent resolution (∼ 1 nm).

We have also used a second technique based on optical in-

terference to characterize the confinement length after bond-
ing. This technique has been described previously27 and al-
lowed us to precisely measure the uniformity of the confine-
ment length (∼ 1 %).

Appendix C: Control of temperature and pressure

We filled the sample cell and the nanofluidic structure with
liquid 4He of natural purity (∼ 300 ppb 3He). To regulate
the pressure in the cell, the fill line is filled with a gas pressure
and connected to a ballast containing a heater, which is dipped
into liquid nitrogen. A pressure gauge (Mensor CPT 6000)
with a precision of 2 mbar is connected to the fill line, and a
proportional-integral-derivative (PID) controller allows us to
regulate the temperature of the gas in the ballast in order to
maintain the pressure in the fill line.

We measure the temperature of the sample cell with a
carbon glass resistive thermometer and a resistance bridge
(LakeShore 370 AC). We regulate the temperature with a
heater on the sample and the PID controller of the resistance
bridge.

Appendix D: Measurement of plate stiffness: kplate

The stiffness of the glass plates kplate can be computed
from classic theory of plate elasticity. To do that precisely, one
has to know all the mechanical properties at low temperature.
Another possibility is to measure it directly, and this is what
we have chosen to do. We performed a measurement of the
spacing between the plates via the capacitance while applying
an electrostatic force between the electrodes. We applied a
varying dc voltage (Vdc = 0− 20 V) across the electrodes on
top of an ac voltage (Vac = 1 V), so the drive voltage is

Vd(t) = Vdc + Vac cosωt (D1)

hcha

wcha

wele

hele

hcha

wcha(a) (b)

(c)

lcha

FIG. 6. Cross section of the channels having an electrode passing
through (a) and without an electrode (b). The region of the nanoflu-
idic device confining the liquid 4He: a cavity and four channels (c).
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and the electrostatic force between the electrodes

Fstat(t) =
1

2
ε0εr

Aele

h2
eff

Vd(t)
2. (D2)

This force leads to a deflection of the glass plates inversely
proportional to their bending stiffness. One can write the rela-
tion between the average deflection across the electrodes x(t)
and the electrostatic force,

Fstat(t) = k′platex(t) (D3)

with k′plate = kplate/(1 + β) and β a factor related to the
radius difference between the electrodes and the glass plates,
δr = rcav − rele = 500 µm. By integrating the standard
expression for the bending of a circular plate45 over the plate
surface area, we find

β = 2
δr

rcav
+ 3

(
δr

rcav

)2

− 4

(
δr

rcav

)3

+

(
δr

rcav

)4

(D4)

' 0.49. (D5)

The deflection of the glass plates is related to a change in
capacitance. To the first order in x(t), the capacitance is given
by

C(t) =
Aε0εr

heff + x(t)
' C0 + C0

x(t)

heff
. (D6)

Substituting Eq. D2 in Eq. D3, and Eq. D3 in Eq. D6, we
obtain

C(t) = C0 + γVd(t)
2 (D7)

with

γ =
1

2

C2
0

h2
effk
′
plate

. (D8)

We show in Fig. 7 a measurement of the capacitance as a func-
tion of the average applied voltage squared

Vd(t)2 = V 2
dc +

V 2
ac

2
, (D9)

which allows us to extract γ and therefore k′plate. In the mea-
surement, Fig. 7, performed at T = 1.68 K and with a cell
filled with liquid 4He at P = 5 bar, we fit the data with Eq. D7
and obtained C0 = 124.06 pF and γ = 7.3 × 10−4 pF/V2,
which leads to

k′plate =
1

γ

1

2

C2
0

h2
eff

' 1.30× 107 N/m (D10)

and finally the bending stiffness of the glass plate is given by

kplate = (1 + β)k′plate ' 1.94× 107 N/m. (D11)

124.40

124.35

124.30

124.25

124.20

124.15

124.10

124.05

C
 (

p
F

)

4003002001000

|Vd(t)
2
| (V

2
)

FIG. 7. Capacitance measurement (blue circles) of the nanofluidic
capacitor under the application of a varying dc voltage (0-20 V),
which bends the cavity glass plates and increases the capacitance C.
These data are fit (gray line) to Eq. D7 in order to extract the bending
stiffness of the glass plates.

Appendix E: Equations of motions for the superfluid
nanomechanical resonator

Our nanofluidic structure is composed of a cylindrical cav-
ity connected to four channels of a rectangular cross section.
The liquid 4He that filled the nanofluidic structure has natural
acoustic resonances. In addition, the cavity walls are flexible
and have drum-like resonant modes. To completely describe
this superfluid nanomechanical resonator, one has to take into
account the acoustic resonances of the liquid 4He, the me-
chanical resonances of the nanofluidic structure itself, and the
coupling between these modes. However, we can make use-
ful approximations and obtain a simple analytical model that
describes satisfactorily the superfluid resonance.

We first assume that the cavity walls are rigid. In this case,
there is a resonance related to the oscillation of the super-
fluid in the channels and the compression of the fluid in the
cavity. This Helmholtz resonance is analogous to a mass-on-
a-spring, with the potential energy stored by the fluid in the
cavity and the kinetic energy stored by the fluid oscillation in
the channels. This description is valid if the dimensions of the
structure are smaller than the acoustic wavelength λa in the
fluid. In our experiment, the highest resonance frequency is
ω0/2π = 5 kHz and the smallest first sound velocity c1 = 230
m/s, so the acoustic wavelength is λa > 46 mm. Since the
largest dimension in our geometry (∼ 10 mm), is about five
times smaller than the smallest acoustic wavelength, λa = 46
mm, this description is valid. In our experiment, the cav-
ity walls are flexible and have drum-like resonances at much
higher frequency (∼ 100 kHz) than the Helmholtz resonance
of the fluid (ω0/2π < 5 kHz). As a result, these modes do
not hybridize significantly and, near the Helmholtz resonance
of the fluid, we can reasonably assume that the effect of the
flexible cavity walls is only to redefine the stiffness constant
kplate.
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FIG. 8. FEM simulation of the first mode of liquid 4He confined in
the nanofluidic device. The color bar represents the acoustic pressure
on resonance (ω0/2π ∼ 7 kHz) in arbitrary units. The mode shape is
analogous to the Helmholtz resonance with four masses in the chan-
nels connected to an effective spring in the cavity. In this simulation,
we increased the thickness of the structure by a factor of 1000 so the
mode shape is easier to see.

We show in Fig. 8 a finite-element-method (FEM) sim-
ulation of the acoustic mode of the liquid 4He confined in
the nanofluidic device. The mode shape is similar to the
Helmholtz resonance with four masses in the channels con-
nected to an effective spring in the cavity. To find the reso-
nance frequency of this mode, we write the kinetic and poten-
tial energy for this mechanical system.

All the kinetic energy is concentrated in the vicinity of the
channel flow where the velocity is the largest. Since the chan-
nel confinement length is smaller than the viscous penetra-
tion depth (hcha < λν), the normal component is clamped
and only the superfluid can oscillate. In our nanofluidic struc-
ture, there are two pairs of channels of the same dimensions;
one type of channel has an electrode passing through, and the
other one does not. This leads to the following kinetic energy:

EK =
1

2
ρsl(a1v

2
1 + a2v

2
2)2 (E1)

where a1 = 8.2×10−10 m2 and a2 = 8.8×10−10 m2 are the
cross sectional areas of the channel type with an electrode and
without an electrode, respectively. l = 2.5 × 10−3 m is the
effective length of the channels, a sum of the physical length
of the channel plus a correction due to effects of the diverging
flow at the ends of the channel. This correction factor scales
like the cross sectional area of the channel, which is small in
this case, and so this correction factor will be neglected in our
analysis. v1 and v2 are the average velocities of the superfluid
in the two different types of channels, which are related by
a1v1 = a2v2 from conservation laws. As a result, we can
define an effective superfluid velocity v such that v = v1 =
(a2/a1)v2. Hence, we have

EK =

(
1 +

a1

a2

)
ρsla1v

2. (E2)

This expression represents the kinetic energy of an effective

mass,

mHe = 2

(
1 +

a1

a2

)
ρsla1 (E3)

moving at a velocity v.
The potential energy is stored in the deflection of the glass

plates and the compressibility of the liquid confined in the cav-
ity. The compressibility of the liquid outside the nanofluidic
device is much larger due to the volume difference, and so it
does not contribute. The potential energy can be written

EP =
1

2

kplate

1 + Σ
x2 (E4)

with Σ = kplate/kHe, kHe = A2
plate/(χVcav), χ the com-

pressibility of liquid 4He, Aplate the surface area of the cavity
glass plates, Vcav the volume of the cavity, kplate the stiffness
of the glass plates and x the change in the cavity height in-
duced by the deflection of the glass plates. The conservation
of mass leads to the following relation

xAρ = 2ρsa1

(
1 +

a1

a2

)
y, (E5)

where y is the effective displacement of the superfluid mass in
the channels. Hence, the potential energy can be written

EP = 2
kplate

1 + Σ

(
ρsa1

ρAplate

)2(
1 +

a1

a2

)2

y2, (E6)

which represents the potential energy of an effective spring,

keff = 4
kplate

1 + Σ

(
ρsa1

ρAplate

)2(
1 +

a1

a2

)2

(E7)

with an elongation y. The dynamics of the system is then
simply described by the superfluid mass mHe attached to an
effective spring keff . Using Eq. E3 and Eq. E7 the resonance
frequency of this mechanical system becomes

ω2
0 =

keff

mHe
= 2

(
1 +

a1

a2

)(
ρs
ρ

)
a1

A2
plateρl

kplate

1 + Σ
. (E8)

In addition, since a1 ' a2, we have

ω2
0 ' 4

(
ρs
ρ

)
a1

A2
plateρl

kplate

1 + Σ
. (E9)

Using Eq. E9 and the bulk thermodynamic data of the density
ρ(T, P ) and compressibility χ(T, P ) obtained by Maynard36,
we extract ρs/ρ from the resonance frequency measurements
ω0/2π of Fig. 4. We compared this data with Maynard’s val-
ues for ρs/ρ and found a good agreement if we add a correc-
tion factor α = 0.42, such that

ρs
ρ

= α
ω2

0(1 + Σ)

2kplate

A2
plateρl

a1

(
1 + a1

a2

) . (E10)

Since this correction factor is the same at every pressure be-
tween 2 and 25 bar and every temperature between Tλ and
1.6 K, it is related to the over simplified analytical model used
here, which, for example, does not take into account the exact
mode shape of the superfluid resonance.
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FIG. 9. Temperature dependence of the superfluid fraction, ρs/ρ,
extracted from the resonance frequency using Eq. 1 with Tλ taken
from Maynard sound measurements36. Data taken at a drive volt-
age Vd = 5 V, for various pressures: 2 (blue triangles), 5 (orange
squares), 10 (green diamonds), 15 (red circles), 20 (black diamonds),
and 25 (purple diamonds) bar. The black line is obtained by fitting
the data measured at 2 bar with Eq. F1.

Appendix F: Superfluid Fraction in liquid 4He

The study of thermodynamic functions (specific heat, su-
perfluid fraction, compressibility, etc.) at the superfluid tran-
sition of 4He has provided an important test for the theory of
critical phenomena46,47. The bulk behavior of the superfluid
fraction ρs/ρ is well known38, but very close to Tλ, finite-
size effects can be revealed with nanoscale confinement39 and
these effects are still not fully understood3. We show (Fig. 9)
our measurements of the superfluid fraction as a function of
the reduced temperature. In the bulk regime, previous works
suggest the following functional form

ρs
ρ

= k(1 +Dρt
∆)tζ (F1)

k = k0(1 + k1t)

with t = (T − Tλ)/Tλ the reduced temperature, k0, k1, and
Dρ the pressure dependent fit parameters of the critical behav-
ior, ζ the critical exponent of the superfluid density fraction,
and ∆ = 0.5 a fixed parameter (for a discussion about ∆ see
Ref. 46). This functional form has been used by Goldner et
al.38 for the reduced temperature range 3×10−7 < t < 10−2,
and they obtained the fit parameters given in Table I. The crit-
ical exponent ζ is universal and does not depend on the details
of the experiment (i.e., liquid pressure), so for our fit analysis,
we fixed ζ to the values obtained by Goldner et al.38 which are
ζ = 0.6705 ± 0.0006. In our case, the reduced temperature
range is 2 × 10−3 < t < 2.5 × 10−1, and using their best
fit parameters values for k0, k1, and Dρ, the functional form
starts to deviate from our data near t ' 5 × 10−2. In order
to find a better agreement with the functional form of Eq. F1,
we left the parameters k0, k1, and Dρ as fit parameters. The
best-fit parameters obtained for various pressures are shown
in Table I.

We obtained relatively good agreement with the values ob-
tained by Goldner et al.38, especially for the data at low pres-

TABLE I. The best-fit parameters using the functional form defined
in Eq. F1. for fitting the superfluid fraction data.

Pressure k0 k1 Dρ ζ
SVP a 2.38 −1.74 0.396 0.6705

P = 2 bar b 2.38 −1.06 0.347 0.6705
P = 5 bar b 2.24 −1.17 0.568 0.6705
P = 10 bar b 2.14 −1.30 0.757 0.6705
P = 15 bar b 2.14 −1.36 0.774 0.6705
P = 20 bar b 1.99 −1.62 1.315 0.6705
P = 25 bar b 2.14 −1.55 0.930 0.6705

a Goldner et al.38 at saturated vapor pressure (SVP)
b This work

sure (P = 2 bar), which is closer to the saturated vapor
pressure near Tλ (P ∼ 0.05 bar) used in Goldner’s experi-
ment. Future analysis at lower reduced temperature t may al-
low a detection of finite-size effects in the superfluid fraction.
These effects, with the confinement length of our channels
(hcha ∼ 500 nm), should appear near t ∼ 10−4.

Appendix G: Summary of Forces

The superfluid nanomechanical resonator can be driven by
various forces. As we described above, the voltage applied be-
tween the electrodes generates an electrostatic force between
the glass plates, which is given by

Fstat =
1

2
ε0εrAeleE

2
d (G1)

withEd = Vd/heff the electric field between the electrodes, ε0
the vacuum permittivity and εr the dielectric constant of liquid
4He. In addition, this electrostatic field generates a pressure
gradient in the liquid given by

∇P = −ε0E
2

2
∇εr +

ε0
6
∇
[
E2ρ

dε

dρ

]
. (G2)

This electrohydrodynamic effect has been previously de-
scribed for the general case48 and for the case of superfluid
4He49. In our case, we can reasonably assume that the di-
electric constant is homogeneous between the electrodes, so
the first term in Eq. G2 can be neglected and only the sec-
ond term (electrostriction) remains. In addition, since the
Clausius-Mossotti relation can be used for a non-polar liquid
such as 4He29, the second term of Eq. G2 can be simplified.
Hence, the pressure difference between the region outside the
electrodes (Ed = 0) and the region between the electrode
(Ed 6= 0) is given by

∆Pstrict =
ε0
6

(εr − 1)(εr + 2)E2
d . (G3)

As the electric field is increased, this pressure difference in-
duces a flow from the channels towards the cavity. On the
other hand, the electrostatic force induces a deflection of the
cavity walls, which generates an increase of pressure in the
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FIG. 10. Displacement of the superfluid mass y induced by the elec-
trostatic drive (red line) and the electrostrictive drive (blue line) as
a function of the stiffness of the glass plates. In our geometry, the
superfluid nanoresonator is mainly electrostatically driven.

cavity and a flow from the cavity toward the channels. These
two effects are competing and, depending on the geometry of
the nanofluidic structure, one can make an electrostatically or
electrostrictively driven resonator.

We now compare these two driving terms for our geometry.
Off resonance, the electrostatic force induces a change in the
cavity height given by

x =
Fstat

kplate
(G4)

so the displacement of the effective superfluid mass in the
channels is

ystat =
Fstat

kplate

ρ

ρs

Aplate

2a1

(
1 + a1

a2

) . (G5)

On the other hand, the electrostriction induces a displacement
of the superfluid mass in the channels given by

ystrict = −χVcav∆Pstrict
ρ

ρs

1

2a1

(
1 + a1

a2

) , (G6)

which can be rewritten

ystrict = −Fstrict

kHe

ρ

ρs

Aplate

2a1

(
1 + a1

a2

) , (G7)

with Fstrict = Aplate∆Pstrict. To find the dominant effect,
one can write

ystrict

ystat
=
Fstrict

Fstat

kplate

kHe
(G8)

and when Σ = kplate/kHe ∼ 0.1, as for our geometry, we
have

ystrict

ystat
'
Aplate

ε0
6 (εr − 1)(εr + 2)E2

d
1
2ε0εrAeleE2

d

0.1. (G9)

this work

FIG. 11. Magnitude of the four forces acting on the superfluid
nanomechanical resonator as a function of the gap heff between the
electrodes for Vd = 1 V. There is an electrostatic force Fstat (red
line), an electrostrictive force Fstrict (blue line), an electromagnetic
Casimir force FEM

Cas (green line), and a critical Casimir force F crit
Cas

(black line).

For our geometry, this leads to ystat > 100ystrict. As a re-
sult, in our experiment the resonator is mainly driven by the
electrostatic force applied on the cavity walls. However, one
can possibly obtain an electrostrictively driven resonator by
increasing the stiffness of the plates, which can be done by re-
ducing the cavity radius or increasing the thickness of the cav-
ity glass walls. We show (Fig. 10) the displacement induced
by the electrostatic and electrostrictive drive as function of the
stiffness of the glass plates.

Finally, other forces acting on the glass plate can drive
the superfluid nanomechanical resonator. There is an attrac-
tive electromagnetic Casimir force50 between the electrodes,
which is given by

FEM
Cas =

π2

240

~c
h4

eff

Aele (G10)

with ~ Planck’s constant and c the speed of light. This force
results from the confinement of the electromagnetic field vac-
uum fluctuations. Its magnitude is usually too small to be de-
tected on the macroscopic scale, but it becomes non-negligible
in nano/microstructures, as pointed out by Chan et al.51. There
is also a critical Casimir force given by

F crit
Cas =

2kBTλ
h3

eff

Aplate, (G11)

at T = Tλ. This force arises from the confinement of the order
parameter fluctuations spectrum near the critical point (Tλ)52.
We show in Fig. 11 the magnitude of these forces driving the
superfluid nanomechanical resonator as a function of the gap
between the electrodes. By lowering the drive voltage, we
decrease the magnitude of the electrostatic and electrostric-
tive forces with respect to the Casimir forces. The electro-
magnetic Casimir force is nearly independent of temperature
near Tλ but the critical Casimir force is strongly temperature



10

dependent and is nonzero only near Tλ where its magnitude
is given by Eq. G11. It may be possible to realize a direct
measurement of the critical Casimir force in liquid 4He near
Tλ by measuring the deflection of the plates if their stiffness
is small enough. For example, using a standard capacitance
bridge one can measure the capacitance with a resolution of
δC/C = 10−8, which means a resolution on the deflection of
the same amount x/heff = 10−8. The force sensitivity of our
device is given by Fmin = kplateheff10−8 ' 180 nN.

This force sensitivity can be increased by reducing the gap
between the electrodes and reducing the plate stiffness. As an
example, with heff ∼ 100 nm and the same stiffness kplate,
one can already have a force sensitivity (F0 ∼ 10 nN) high
enough to probe the critical Casimir force (F critCas ∼ 1 µN).

An exhaustive summary of forces should include the dis-
sipative and reactive forces induced by the thermal effects in
superfluid 4He flows, as mentioned by Backhaus et al.23,24
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