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Abstract:  We report on the thermo-mechanical and thermal tuning properties of curved-mirror Fabry-Perot resonators, fabricated by 

the guided assembly of circular delamination buckles within a multilayer a-Si/SiO2 stack.  Analytical models for temperature 

dependence, effective spring constants, and mechanical mode frequencies are described and shown to be in good agreement with 

experimental results.  The cavities exhibit mode volumes as small as ~103, reflectance-limited finesse ~3x103, and mechanical 

resonance frequencies in the MHz range.  Monolithic cavity arrays of this type might be of interest for applications in sensing, cavity 

quantum electrodynamics, and optomechanics. 
OCIS codes:    (120.2230) Fabry-Perot; (130.3120) Integrated optics devices; (230.5750) Resonators. 
 

1. Introduction 

On-chip, high-finesse Fabry-Perot (FP) cavity arrays are of 

interest for lab-on-a-chip [1] and optomechanical [2] sensing 

systems.  Compelling applications can also be found in the field of 

cavity quantum electrodynamics (CQED), where a major topic is 

the strong coupling between atoms and photons in an optical 

resonant cavity [3].  Optical cavities could potentially be the 

nodes within a ‘quantum internet’ [4-5], with information carried 

by single photons whose quantum state is manipulated at the 

nodes by interactions with atoms [6-7]. 

Although there are alternatives [3], the FP cavity is the 

prototypical structure for CQED [4-7].  To facilitate strong 

coupling (i.e. coherent interactions) between light and matter, the 

cavity should satisfy several key requirements [4,8-11]: (i) it 

should provide access to an air (or vacuum) core, so that atoms 

can be placed and trapped in the region of high photon density, 

(ii) it should have high finesse (F ) and quality factor (Q), so that 

the decay rate of the cavity mode is small, (iii) it should have a 

small optical mode waist and volume, so that the atom-photon 

energy exchange rate is high, and (iv) it should be tunable so that 

the cavity can be brought into resonance with the atomic emitter.  

In addition, cavities should be sufficiently robust to survive and 

operate at low temperatures and in vacuum, and (where 

applicable) should exhibit high mechanical resonance frequencies 

[11].  It is anticipated that a quantum network will require 

arrays of tunable microcavities on a single chip [4,11-12]. 

Macroscopic curved mirror cavities with F > 105 but relatively 

large mode volume were reported more than 10 years ago [13].  

Micro-machining techniques such as CO2 laser ablation [8], 

focused-ion-beam (FIB) milling [10], and dry etching [14] have 

been studied in an effort to reduce size and enhance scalability.  

Often, one or both mirrors are formed on the end of an optical 

fiber [8], which provides a convenient means for light coupling.  F 

~ 105 and mode volumes as small as ~ 40 m3 have been 

achieved [9].  However, serial manufacturing approaches inhibit 

scalability, and fully monolithic integration strategies remain 

elusive [15-16].  Efforts towards the construction of high-finesse 

Fabry-Perot cavity arrays on a chip [10,15], particularly with 

individually tunable cavities [11], are at an early stage. 

In a recent paper [17], we described curved-mirror, FP 

microcavities fabricated using a MEMS-like, thin film buckling 

technique.  With this approach, the roughness of the mirror 

surfaces is determined mainly by deposition processes, rather 

than by a micro-machining process.  Moreover, owing to their 

stress-driven self-assembly, the cavities exhibit an uncommon 

degree of morphological and optical predictability, including 

reflectance-limited finesse and textbook manifestations of 

Laguerre-Gaussian and Hermite-Gaussian modes.  The 

technique enables straightforward fabrication of on-chip arrays, 

and the cavity size can be varied (within limits) through 

lithographic feature control.  As shown below, a fundamental 

mode volume as small as ~103 has been realized.  Since the 

buckled mirror is essentially a flexible plate, the cavities can be 

mechanically tuned and have potential for use in the study of 

optomechanics [2]. 

Understanding the thermal and mechanical properties [18] of 

the buckled microcavities is a prerequisite for the applications 

mentioned above.  In the following, we describe the thermal 

dependence of the cavity resonance, which can be attributed 

primarily to the coupling between in-plane stress and out-of-

plane deflection of the buckled mirror.  We also describe the 

vibrational characteristics of the buckled mirrors, including 

mechanical resonance frequencies and effective spring constants.  

Approximate analytical theories are shown to be in good 

agreement with experimental observations. 

2. Morphology of the buckled cavities 

The buckled microcavities are essentially half-symmetric Fabry-

Perot resonators (see Fig. 1), and their fabrication and optical 

properties were described previously [17].  Within a certain range 
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of base diameters (2a), the profile of the buckled mirror is well 

approximated as a spherical dome segment (i.e. a shallow 

spherical shell).  However, the exact shape is determined 

primarily by elastic buckling mechanics, influenced by secondary 

factors such as plastic deformation and relaxation of compressive 

stress over time.  Assuming purely elastic deformation and 

perfectly clamped boundary conditions, the fundamental 

(axisymmetric) buckling profile for a circular delamination buckle 

can be expressed [19]: 

   ,7129.02871.0)( 0 rJr    (1) 

where  is the vertical deflection, r is the radial coordinate 

(normalized to a),  is the peak height of the buckle (see Section 3 

below), J0 is the Bessel function of first kind and order zero, and 

= 3.8317. 
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Fig. 1. (a) A microscope image showing two adjacent domes, one with 150 

m diameter and the other with 200 m diameter. (b) Schematic 

illustration of a buckled dome microcavity in cross-section.  The waist 

diameter of the fundamental optical mode (2w0) is typically much less 

than the diameter of the dome base (2a).  The upper buckled mirror is a 

flexible plate with quasi-clamped boundaries, and its movement is subject 

to an effective spring constant Keff.. 

Figures 2(a) and 2(b) show the experimental cross-sectional 

profiles of typical 100 and 200 m diameter cavities, compared to 

the shapes predicted for a dome and for a clamped, elastic buckle.  

The experimental profiles were obtained using an optical 

profilometer (Zygo NewView 5000).  The dome and buckle 

models were normalized to the experimentally determined peak 

height in each case.  For the dome model, curves are shown for 

two curvatures: RT is the curvature estimated from a fit near the 

top of the buckled mirror [17], while RD is the curvature for a 

dome that spans the same base diameter as the actual buckle.  

As illustrated by the data shown, the profile of smaller cavities is 

closer to the predictions of the elastic buckling theory while the 

profile of larger cavities is more dome-like.  Generally speaking, 

the experimental profiles are intermediate with respect to the 

dome and buckle models. 

Deviation from elastic behavior is not unusual for thin film 

delamination buckles [20]; plastic deformation near the 

boundaries can occur, and the assumption of clamped boundaries 

is often too simplistic.  Nevertheless, using the measured pre-

buckling compressive stress for the multilayer mirrors ( ~ 180 

MPa) in the elastic buckling model (see Eq. (3) below), good 

agreement between predicted and measured peak buckle heights 

was verified (see Fig. 2(c)). 
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Fig. 2. (a) Experimental cross-sectional profile (blue solid line) for a typical 

100 m diameter cavity is compared to predictions based on a spherical 

dome assumption (green dashed lines) and a clamped circular buckle 

assumption (red dotted line).  For the dome model, curves are shown for 

two different radii of curvature, as explained in the main text.  (b) As in 

part (a), except for a typical 200 m diameter cavity. (c) A plot of the peak 

buckle height versus base radius is shown.  The red curve is the prediction 

of the elastic buckling model, assuming pre-buckling compressive stress of 

180 MPa and the effective medium parameters shown in Table 1.  The 

blue symbols are average values measured for cavities of varying base 

radius. 

Given the complex shape of the cavities, an exact treatment of 

their mechanical properties would require numerical 

simulations.  Here, we aim instead to estimate the main 

parameters of interest (mechanical resonance frequencies, spring 

constants, etc.) by employing analytical approximations.  This 

provides significant insight while not obscuring the essential 

features.  We invoke results from the literature on both shallow 

spherical shells (the terms ‘shell’ and ‘dome’ are used 

interchangeably in the following) and buckled circular plates.  

Encouragingly, predictions from both models are in good mutual 

agreement, and also show good agreement with experimental 

observations. 

In keeping with an approximate approach, we treat the 

buckled mirror as a single plate characterized by effective-

medium parameters (see Table 1).  The mirror is a 4-period 

quarter-wave stack (QWS) with a half-wave amorphous Si (a-Si) 

capping layer, deposited by magnetron sputtering [17].  It has 

total thickness h ~1.6 m and is ~37% a-Si and ~63% SiO2 by 

volume.  As is well known, thin films show significant variation 

in their thermal and elastic properties depending on deposition 



details.  This is particularly the case for Young’s modulus and the 

coefficient of thermal expansion (CTE), both of which play central 

roles in the analyses below.  For these quantities, we based the 

effective medium parameters on values reported in the literature 

for similar a-Si (e.g. E ~ 80 GPa [20],  ~ 4.5×10-6 [21]) and SiO2 

(e.g. E ~ 60 GPa,  ~ 3.1×10-6 [22]) thin films.  The other 

parameters in Table 1 were estimated from widely reported 

[23,24] values for SiO2 and amorphous or polycrystalline Si thin 

films. 

Table 1. Effective medium parameters assumed for the buckled mirrors. 

 Thickness Density 
Young’s 

modulus 

Poisson’s 

ratio 

Thermal 

expansion 

coefficient 

Symbol h (m) (kg m-3) E (GPa)  (K-1) 

Value 1.6 2240 70 0.2 3.6x10-6 

3. Optical and thermal tuning properties 

In a previous study [17], the optical properties of cavities with 

base diameters in the 200 to 400 m range were reported.  For 

the applications discussed above, cavities with even smaller 

dimensions (and mode volumes) are desirable.   Consider the 100 

m diameter domes, which have peak height  ~ 2.4 m and 

radius of curvature RT ~ 270 m.  In the paraxial approximation, 

the beam waist (radius) for the fundamental mode of the half-

symmetric cavity can be approximated as [8]: 

  ,
4/1

0 RLw 


       (2) 

where L is the effective cavity length, R is the radius of curvature 

for the curved mirror, and L << R was assumed.  Here, L =  + 

2dP, where dP is the phase penetration depth into the dielectric 

mirrors [25].  For operation near the stop-band center 

wavelength ( ~ 1.55 m here), L ~  + (/2){1/(nH-nL)} [13], where 

nH and nL are the refractive indices of the high and low index 

layers.  Using nH = 3.6 and nL =1.5 gives dP  ~ 200 nm and L ~ 2.8 

m.  Due to their high index contrast, the phase penetration 

depth is relatively small for these mirrors.  Using R =RT (since 

the mode is confined to the central portion of the curved mirror), 

Eq. (2) then produces w0 ~ 3.7 m. 
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Fig. 3. (a) An image of the fundamental mode for a 100 m diameter cavity 

is shown.  The white dotted line indicates the dome boundary. (b) A plot of 

the transverse intensity profile for the fundamental mode from part (a) is 

shown.  The 1/e2 mode waist radius is ~4.5 m. 

To experimentally assess the mode size, a tunable laser 

(Santec TSL-320) was coupled to the cavity using a tapered 

lensed fiber (Oz Optics) with nominal focal spot diameter ~10 

m.  The laser was tuned to the frequency of a fundamental 

resonance, in order to isolate and image the TEM00 mode of the 

cavity [17].  Fig. 3(a) shows the mode field image captured using 

an infrared camera, and Fig. 3(b) shows a transverse intensity 

profile extracted from such an image.  From the 1/e2 intensity 

points, an experimental mode waist w0 ~ 4.5 m was estimated.  

This is in good agreement with the prediction above, especially 

given the limited pixel resolution of the camera images.  For the 

standing-wave field associated with the TEM00 mode, the 

effective mode volume can be approximated as V0 ~ (/4)w0 
2L [8].  

For the 100 m diameter cavityV0 ~ 103; similar wavelength-

scaled values have been reported for visible-band cavities [3,8-

10,16]. 

The optical linewidth was studied using the tunable laser and 

a calibrated photodetector.  It is worth noting that laser power 

was set low (<< 100 W) for all measurements described here, to 

avoid significant heating of the mirrors by laser absorption.  At 

higher powers, we observed clear signatures of photo-thermal 

bistability and hysteresis [26].  Fig. 4(a) shows a typical 

fundamental resonance line for a 100 m diameter cavity, with 

an input laser power of ~ 3 W.  The experimental linewidth 

(~0.16 nm) corresponds to Q ~ 9600 and finesse F ~ Q /m ~ 3200, 

where m = 3 is the longitudinal mode order for the cavity.  This is 

in excellent agreement with the reflectance-limited finesse we 

reported for larger cavities with the same mirrors [17]. 
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Fig. 4. (a) Experimental linewidth plots are shown for the fundamental 

resonance of a 100 m dome, at 23.8 °C (circles) and 25 °C (diamonds). (b) 

The plot shows the variation in the fundamental resonance wavelength 

with temperature, revealing a red-shift /T ~1 nm/K.  Blue symbols are 

experimental data points and red line is a linear fit to the data. 

A unique feature of buckled structures is that in-plane stress is 

directly coupled with out-of-plane deflection [24,27-28].  We have 

previously developed and experimentally verified a model for the 

thermal tuning of straight-sided (Euler) delamination buckles 

[28], where out-of-plane deflection is driven by the difference in 

CTE between the buckled feature and the substrate.  For a 

clamped circular plate, the critical buckling stress is given by [19] 

C = 1.2235[E/(1-2)](h/a)2, where E is Young’s modulus,  is 

Poisson’s ratio, and h and a are the thickness and radius of the 

plate.  When compressive stress exceeds C (within limits), the 

plate buckles with an axisymmetric profile (see Eq. (1)) and peak 

height: 

,196.1
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
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
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
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
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C

h


   (3) 

where  is the biaxial compressive stress and  = 0.2 was 

assumed.  For a pre-existing circular buckle, an analogous 

treatment to that found in [28] leads to an estimate of the change 

in peak height with temperature: 

  ,180.0
2










 a

T
  (4) 

where  is the difference in CTE between the buckled plate (i.e. 

the mirror) and the silicon substrate (Si ~ 2.5×10-6) and  is the 



initial peak height.  For example, using  ~ 1.1×10-6, Eq. (4) 

predicts /T ~ 1.1 nm/K for a = 50 m and  = 2.4 m.  

Moreover, using /T ~ (/)/T), it follows that /T ~ 0.7 

nm/K is predicted for the 100 m diameter domes. 

To corroborate this theory, samples were mounted on a 

thermo-electric cooler and scanned at various temperatures 

using either the optical profilometer to determine height changes 

or the tunable laser to determine changes in the spectrum.  

While the two types of measurements were in good general 

agreement, the spectral scans were more consistent and 

repeatable.  As shown in Fig. 4(b) for a typical 100 m diameter 

cavity, a red-shift of the resonant wavelength (/T ~ 1 nm/K) 

was observed, in good agreement with the theoretical prediction.  

Uncertainty in the CTE of the buckled mirror is probably the 

main source of residual discrepancy.  Similar levels of agreement 

were found for the other cavity sizes. 

The temperature dependence provides a convenient tuning 

mechanism, and integrated heater electrodes might even be 

feasible.  However, this dependence could also be detrimental in 

some cases.  For example, some CQED applications require 

resonance wavelength stability on the order of 1 pm [11], 

implying the need for a rather challenging temperature stability 

of ~ 0.001 K for the present cavities.  This could be mitigated by 

matching the CTE of the mirror and substrate [23], and using an 

alternative (e.g. electrostatic) tuning mechanism. 

4. Mechanical and dynamic properties 

In order to exploit the buckled microcavities as sensors or 

optomechanical elements, a basic understanding of their 

mechanical and dynamical properties is required.  This can be 

accomplished by employing a ‘thermo-mechanical calibration’ 

technique [18], where the random motion of a structure is 

extracted from the noise of a nominally steady-state signal.  

Here, the steady-state signal is the cavity transmittance at fixed 

laser detuning [16], and measurements of the noise on this signal 

yield the mechanical resonance frequencies n for the upper 

(deformable) mirror.  Within the limits of a classic harmonic 

oscillator model applied to each mode, these frequencies are 

related to the effective spring constant and mass of the mirror as 

n = (Keff,n/meff,n)1/2.  Furthermore, the mean-square amplitude of 

the fluctuations in mirror position (for a given mode) can be 

estimated by invoking the equipartition-of-energy theorem 

[18,26]: 

,)(
,

2
,

2

neff

B

nneff

B
n

K

Tk

m

Tk
ta 


   (5) 

where kB is the Boltzmann constant.  In the following, we 

describe analytical approximations for the resonance frequencies 

and effective spring constants of the buckled mirror.  These are 

corroborated by experimental results. 

4.1. Vibrational resonance frequencies 

As mentioned, the buckled mirror is analogous to a shallow 

spherical shell [27], so that analytical treatments from the 

theories of shells and plates are useful.  The natural vibrational 

frequencies of a thin, flat, and clamped circular plate are well 

known [29], and can be expressed as P,n = P,n(1/a2)(D/(h))1/2, 

where D = Eh3/(12(1-2)) is the flexural rigidity of the plate and 

tabulated values of P,n are available (e.g. P,1 = 10.216, P,2 = 

21.261, P,3 = 34.877, etc. [29]).  Soedel [30] showed that the 

natural frequencies for a shallow shell (i.e. a dome) can be 

estimated from those of the equivalent plate with the same 

projected boundary dimensions: 

,)( 22
,, SnPnS RE      (6) 

where RS is the shell radius of curvature.  Consider for example 

the 200 m diameter domes, and let RS ~ RT = 0.57 mm, justified 

by the excellent fit to the dome model in that case (see Fig. 2(b)).  

Using the effective medium parameters from Table 1, these 

equations predict fP,1 = 430 kHz and fS,1 = 1.6 MHz.  We found 

that Eq. (6) provides accurate predictions of the lowest-order 

mechanical resonance frequency (especially for the larger 

cavities, as evidenced below), but is less accurate for the higher-

order modes.  This might be due to the fact that the fundamental 

(axi-symmetric) vibrational mode is most closely aligned with the 

central, spherical portion of the buckle.  Furthermore, the shell 

formula neglects residual stress in the buckled plate [12]. 

An alternative approach is derived from the literature on the 

vibration of buckled structures [24,31].  For a symmetrically 

buckled structure, the resonance frequency of the lowest-order 

(i.e. symmetric) vibrational mode can be estimated as [32]: 

  ,121,1,  CPB     (7) 

where  is the pre-buckling biaxial stress, C is the critical 

buckling stress (see Eq. (3)), and P,1 is the fundamental 

resonance frequency for the stress-free and flat plate from above.  

Encouragingly, Eq. (7) produces good agreement with the 

numerical results for a buckled circular plate reported by 

Williams et al. [31].  For the 200 m diameter buckle C ~ 22.8 

MPa and (using  ~ 180 MPa as above) Eq. (7) predicts fB,1 = 1.6 

MHz, in good agreement with both the shell-based prediction and 

the experimental observations below. 

As discussed above, experimental resonance frequencies can 

be obtained by observing the random thermo-mechanical motion 

of the buckled domes.  We used a “tuned-to-slope” technique, 

similar to that used in other studies [16,37].  The frequency of a 

tunable laser was slightly detuned from an optical resonance, 

nominally at the point of maximum slope of the transmission.  

Random thermal motion of the buckled mirror changes the cavity 

length, shifts the optical resonance frequency, and hence changes 

the transmission through the structure.  The time-dependent 

transmittance of the dome was captured and digitized using a 

high-speed analog to digital converter.  This data was 

subsequently Fourier transformed and averaged to increase the 

signal to noise ratio. 

Figure 5(a) shows a typical data set extracted from a 100 m 

diameter dome in air and at room temperature.  The set of peaks 

was fit to a series of Lorentz oscillator displacement spectral 

densities, using thermomechanical calibration techniques 

described elsewhere [18].  For example, the fit of the fundamental 

resonance line is shown in the plot.  Note that the mechanical Q 

(e.g. Q ~ 75 for the lowest-order mode in the case shown) is 

undoubtedly affected by squeeze-film damping and viscous 

damping due to collisions with air molecules [26].  It would be 

interesting to perform similar measurements in vacuum, and 

possibly at low temperature, but this is left for future work. 

As shown in Fig. 5(b), the positions of the lowest-order 

vibrational modes were generally in excellent agreement with 

the theoretical predictions.  For the shell model (Eq. (6)), we used 

RS = RT  as the best estimate of the actual plate curvature.  RT ~ 



0.27, 043, 0.57, and 0.75 mm was experimentally estimated for 

the 100, 150, 200, and 250 m diameter cavities, respectively.  

Except for the smallest cavities, this resulted in very good 

agreement between Eq. (6) and experimental data.  On the other 

hand, the buckle model (Eq. (7)) produced reasonable agreement 

with experimental observations for all cavities studied. 
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Fig. 5. (a) Mechanical spectrum arising from thermal noise, captured from 

a typical 100 m diameter microcavity.  S2
XX (red solid line) is the 

displacement spectral density of the measured time-domain signal [18].  

The blue dashed line is a Lorentzian fit.  (b) A plot of the fundamental 

mechanical resonance frequency versus radius of the cavity base is shown.  

The blue symbols are experimental data points; at least 3 of each size were 

measured, but data points overlap in some cases. 

It is worth reiterating that these measurements were 

performed under ambient pressure, which introduces significant 

viscous damping of the mechanical motion.  Moreover, relatively 

small-amplitude thermo-mechanical motion is predicted by Eq. 

(5) (given the relatively high effective spring constant of the 

present mirrors, discussed below).  A numerical treatment of the 

buckled domes (not shown) confirmed that the low-order 

mechanical modes have similar wave-functions to those of the 

equivalent flat plate [29], implying that the optical and 

mechanical modes are characterized by a high degree of spatial 

overlap in these cavities.  Thus, high optomechanical coupling 

coefficients are anticipated. 

4.2. Effective stiffness (spring constants) 

As per Eq. (5), thermo-mechanical calibration requires, in 

addition to the resonance frequencies, knowledge of the effective 

masses or spring constants [18].  The effective spring constant is 

also needed when assessing bistability and related effects [26].  It 

is important to note that Keff,n (as well as the effective mass of a 

given mode) will vary depending on how it is defined [18].  

Moreover, deflection (and thus spring constant) will generally 

depend on the distributed nature of the load.  Here, we will use 

the definition Keff = F/, where  is the deflection of the buckle 

at its midpoint and F is the applied force.  Note that we have 

dropped the subscript ‘n’, because the approximate theories 

presented below are not tailored or restricted to a specific 

vibrational mode. 

Some forces of interest, such as the radiation pressure 

associated with the fundamental optical mode, are essentially 

concentrated (point) loads, while others, such as the photo-

thermal force associated with changes in buckle temperature, are 

more closely approximated as distributed loads.  Intuitively, we 

can expect a larger deflection (i.e. lower effective spring constant) 

if the force is concentrated near the center of the buckle.  In the 

following, we discuss various approximations for the effective 

spring constant Keff, and label them as KI,J.  Here the subscript I 
refers to the use of a shell (I=S) or buckle (I=B) model, and the 

subscript J refers to the assumption of a concentrated point (J=P) 

or uniformly distributed (J=U) load. 

We first consider the concentrated load, and model the buckled 

mirror as a shallow shell.  In this case, and for small deflections, 

an effective spring constant can be derived from the work by 

Lukasiewicz [33]: 

       ,
rke11112 2

2

2

,

w
ww

R

Eh
K

S

PS





   (8) 

where w = w1/l, w1 is the radius of the circularly symmetric, 

concentrated load applied to the center of the shell, and l is a 

characteristic length for the shell: 

  .1124 2 hRl S     (9) 

Furthermore, ker  ́ is the first derivative of the Kelvin-real 

function [34].  Note that Eq. (8) does not contain the base radius 

a; this is because, for a load concentrated near the apex and for 

small deflections, the central deflection of the shell is 

approximately independent of the boundary conditions.  Consider 

for example a 200 m diameter cavity, and the case where w1 = 

w0 ~ 5 m (i.e. the approximate size of the fundamental optical 

cavity mode [17]).  This would describe the situation in which the 

mirror is deflected by radiation pressure forces.  Using RS ~ RT = 

0.57 mm (since the bending occurs primarily near the central 

part of the buckle in this case) and the other parameters from 

above, then l ~ 16.4 m, w ~ 0.3, and KS,P ~ 800 N m-1. 

Given the approximate nature of the shell analogy, it is useful 

to corroborate this result using the buckling literature.  For a 

circular buckle, and in the limit of small deflections by a point 

load, an effective spring constant can be approximated from the 

numerical results of Jensen [35] (see Fig. 8 of that manuscript): 
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which produces KB,P ~ 1000 N m-1 for the 200 m cavity, in 

reasonable agreement with KS,P. 

Of greater interest here is the response to a distributed force 

(i.e. F = Pa2, where P is a uniform pressure) such as the thermal 

Langevin force that drives thermo-mechanical motion.  As 

mentioned, a higher effective spring constant is anticipated in 

this case, and this is supported by results from the literature on 

delamination buckles.  In the limit of small deflections, the 

deflection for a point-loaded circular buckle is four times that for 

a uniformly loaded buckle [19].  It follows that KB,U ~ 4KB,P ~4000 

N m-1 should be a reasonable approximation for the 200 m 

cavity. 

As above, we seek to corroborate this result by considering the 

literature on shallow spherical shells.  From the work by Jones 



[36], an effective spring constant for a uniformly loaded shell can 

be derived: 
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It is somewhat problematic to define the radius of curvature for 

the real structures, as discussed in Section 2.  However, it is 

reasonable to use RS ~ RD in Eq. (11), because of the strong 

dependence on the dome radius a.  For the 200 m dome cavity 

with RD = 0.82 mm, we find KS,U ~ 4800 N m-1, which is in good 

agreement with the buckle estimate.  As shown in Table 2, Eq. 

(11) predicts that KS,U is fairly insensitive to the cavity size for the 

structures studied.  These cavities are quite rigid in comparison 

to many MEMS-based cavities [11], and thus should suffer less 

from thermally induced degradation of the optical finesse [26]. 

Table 2. Estimated spring constants and effective masses 

Base 

diameter 

(m) 

mB 

(ng) 

RD 

(mm) 

KS,U 

(N/m) 
meff,1/mB 

100 28 0.52 4.7x103 0.56 

150 63 0.64 5.0x103 0.47 

200 113 0.82 4.8x103 0.42 

250 176 1.02 4.7x103 0.40 

These estimates are expected to be correct to first-order only, 

especially since the shell and buckle models do not exactly 

describe the real structures.  Nevertheless, the experimental data 

on the fundamental resonance frequencies suggests that the 

approximations are reasonable, as follows.  Combining 1 and 

KS,U produces an estimate for the effective mass of the 

fundamental vibrational mode: meff,1 ~ KS,U /1 
2.  For example, 

using the data from Fig. 5 and Table 2 produces meff,1 ~ 48 ng for 

the 200 m cavity.  The buckled mirror has a total mass mB ~ 

113 ng in that case, and the ratio meff,1/mB ~ 0.42 is quite 

reasonable for the fundamental vibrational mode of a circular 

plate [18].  As shown in Table 2, similarly reasonable results 

were obtained for the other cavity sizes.  A more precise 

numerical analysis, and a more detailed experimental study of 

cavity stiffness, is left for future work. 

5. Discussion and Conclusions 

The buckled dome microcavities can be fabricated in large arrays, 

and might provide an interesting platform for sensing, CQED, 

and optomechanical coupling studies [1-3].  The mode volume 

and finesse demonstrated above are well within the ranges 

required to achieve strong coupling in CQED experiments [8,11].  

Moreover, the finesse of the cavities might be increased by 

reducing the absorption loss in the mirrors, for example by using 

hydrogenated amorphous silicon for the high index layers.  It 

should be noted that most CQED studies to date use Rb atoms 

and operate in the 700-800 nm wavelength range.  In principle, it 

should be possible to fabricate compatible buckled microcavities 

using alternative mirrors based on SiO2/TiO2 or SiO2/Ta2O5.  The 

development of such a process, including control over adhesion 

and stress in these material systems, would be an interesting 

avenue for future study. 

For many of the applications mentioned, it is necessary to 

incorporate ‘open access’ to the hollow cavity of the nominally 

enclosed buckle.  It might be possible to incorporate this 

functionality directly into the buckling process by creating an on-

chip network of intersecting hollow channels and microcavities 

[17].  However, a simpler alternative might be to machine 

‘micropores’ or ‘nanopores’ directly through the upper mirror 

using a technique such as focused-ion-beam milling [38].  We 

hope to explore these options in future work. 
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