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Abstract
We propose a categorical time-varying coefficient translog cost function, where each coefficient is expressed as a
nonparametric function of a categorical time variable, thereby allowing each time period to have its own set of coefficients.
Our application to U.S. electricity firms reveals that this model offers two major advantages over the traditional time trend
representation of technical change: (1) it is capable of producing estimates of productivity growth that closely track those
obtained using the Törnqvist approximation to the Divisia index; and (2) it can solve a well-known problem commonly
referred to as “the problem of trending elasticities”.
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1 Introduction

Productivity and technical change have long been of interest
to economists. Beginning with Tinbergen (1942), econo-
mists have used a time trend in economic functions (e.g.,
production functions or their dual representations such as
cost functions) to represent the rate at which new technol-
ogy is introduced into the production unit. Specifically, the
time trend approach usually involves adding a linear term in
the time trend, a quadratic term in the time trend, and/or
interactions of the time trend with factor input prices or
outputs to a fixed coefficient economic function. Given
estimation of the economic function, technical change (thus
productivity growth) can then be readily expressed in terms
of the estimated coefficients of the economic function, e.g.,
by taking the derivative of the economic function with

respect to the time trend. Due to its empirical tractability,
this approach has enjoyed considerable popularity since its
introduction, and in fact it remains the dominant econo-
metric approach to productivity measurement.

Despite its popularity, the time trend approach has two
major drawbacks. First, it “produces a smooth, slowly
changing characterization of the pace of technical change”
(Baltagi and Griffin, 1988). This pattern of technical change
is not supported by the evidence from index number
approaches to calculating rates of technical change. For
example, Baltagi and Griffin (1988), using the Divisia
productivity index, found that productivity growth in the U.
S. electricity industry showed considerable variability
across time periods. Feng and Serletis (2008), using the
Fisher productivity index, found that productivity growth in
the U.S. manufacturing industry varied substantially from
year to year. In addition, the smooth, slowly changing
pattern of technical change obtained using the time trend
approach is also inconsistent with findings in the investment
literature (Cooper et al., 1999; Abel and Eberly, 1994) that
suggest new technology adoptions occur in a “lumpy”
fashion with discrete jumps. Hall and Mairesse (1995) also
argued that disembodied technical change in practice
includes “any errors in the price deflators common across
firms, or other macro influences which may affect measured
outputs and inputs”, and thus could not be smooth over
time. Diewert and Wales (1992) argued against the standard
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time trend approach, because the single linear time trend
approach “frequently does not fit the data well” and “rates
of technical progress rarely remain even approximately
constant”. Fox (1998) also argued that “there is no reason to
expect, a priori, that technical progress enters each equation
in a linear fashion”.

Second, the time trend approach often suffers from a
built-in problem—“the problem of trending elasticities”.
This problem was first noted by Diewert and Lawrence
(2002) in the context of the standard time-trend normalized
quadratic (NQ) profit function. Specifically, Diewert and
Lawrence (2002) found that the price elasticities produced
by this functional form often exhibited little variation over
time, and further showed that this was mainly because the
coefficients for the quadratic terms in input and output
prices, on which price elasticities depend, were constant
over time. Unfortunately, this problem is not confined to the
NQ functional form. Taking for example the standard time-
trend translog cost function to be examined in this paper,
the price elasticity of demand for input i with respect to
input price j is calculated as ηij= βij/si+ sj− δij, where βij is
the coefficient for the quadratic term in log input prices, si
(sj) is the cost share of input i (j), and δij= 1 if i= j and 0
otherwise. As can be seen, δij is a constant, and si and sj are
cost shares that do not vary much for some industries
(Diewert and Lawrence, 2002; Feng and Serletis, 2008). If
βij is also restricted to be constant over time, then price
elasticities (i.e., ηij’s) will inevitably show little temporal
variation.

To overcome the first drawback, Baltagi and Griffin
(1988) proposed an innovative procedure, which involves
first replacing linear and quadratic terms in the time trend in
the standard translog cost function with a general index of
technical change, and then estimating the index by use of a
set of time-specific dummies and their interactions with
input prices and output quantities. This procedure offers
numerous advantages over the time trend approach, among
which a major one is that it is capable of producing esti-
mates of productivity growth that closely track the
“observed” productivity growth represented by the Divisia
productivity index. While not discussed in their paper, this
procedure still has the problem of trending elasticities,
because the coefficients for the quadratic terms in log input
prices in the translog cost function (i.e., βij discussed above)
remain constant over time.

The purpose of this paper is to propose a new procedure
to simultaneously overcome the two drawbacks inherent in
the standard time trend approach. Specifically, we propose a
categorical time-varying coefficient translog cost function,
whose primary feature is that each of its coefficients is
expressed as a nonparametric function of a categorical time
variable (which consists of T time points or T categories,
where T is the total number of discrete time periods). The

advantage of this feature is that it allows each time period to
have its own set of coefficients and thus its own cost
function. In other words, the new cost function has time-
specific coefficients, thus enabling one to model production
technology in a time-specific manner. To see this clearly, let
tc= 1, 2,…, T denote the categorical time variable, y denote
a vector of outputs, and w denote a vector of input prices,
then the categorical time-varying coefficient cost function
can be written as Ctc (y, w), where the superscript tc= 1, 2,
…, T is used to indicate that the coefficients of the cost
function differs across time periods1. In contrast, all the
coefficients are restricted to be constant over time in stan-
dard time trend models. To distinguish the categorical time-
varying coefficient translog cost function from the standard
time trend translog cost function, we refer to the former as
“the categorical time-varying coefficient model” and the
latter as “the standard time trend model”.

The formulation of the categorical time-varying coeffi-
cient model is inspired by recent econometric advances in
varying-coefficient models (Fan and Zhang, 1999; Fan and
Zhang, 2008; Gao and Phillips, 2013), particularly in
categorical varying coefficient models (Li et al., 2013). The
main feature of varying-coefficient models is that their
regression coefficients are not set to be constants but are
allowed to evolve with certain characteristics (covariates).
Because these models allow the exploration of dynamic
features that may exist in the data set (Fan and Zhang 2008),
they have received increasing attention in different areas of
economics, such as monetary policy (Primiceri, 2005) and
growth theory (Durlauf et al., 2001). However, to the best of
our knowledge, this is the first study that uses a varying-
coefficient model to model technical change and price
elasticities.

The categorical time-varying coefficient model has two
advantages. First, it is capable of producing estimates of
productivity growth that closely track the Törnqvist discrete
approximation to the Divisia productivity index (hereafter
“the discrete Divisia index”). Index numbers (such as the
discrete Divisia and Fisher indexes) are widely used as
benchmarks to check the accuracy of productivity estimates
obtained from econometric models (Baltagi and Griffin,
1988; Feng and Serletis, 2008). There are two reasons for
this. First, these indexes are simple and transparent. As
pointed out by Good et al. (1997), these indexes “embody
less stringent assumptions than are required by econometric
models” and thus “provide valuable checks on the results of
those (econometric) models”. Hulten (2001) also recom-
mended that researchers “exploit the relative simplicity and

1 We also estimate a time-varying coefficient translog cost function,
where the time variable is treated as a continuous variable. However,
we find that this treatment results in less accurate estimates of technical
change.

118 Journal of Productivity Analysis (2018) 50:117–138



transparency of these indexes to serve as a benchmark for
interpreting the more complicated results of the parametric
(econometric) approach”. Second, these indexes, particu-
larly the Divisia and Fisher indexes, satisfy many desirable
statistical properties such as constant quantities, time
reversal, and proportionality (Dean, et al. 1996). In this
paper, we follow Baltagi and Griffin (1988) and use the
discrete Divisia index as a benchmark to evaluate pro-
ductivity estimates obtained from our model.

We apply the categorical time-varying coefficient model
to a panel of 81electricity firms in the U.S. over the period
1986–1998. We find that the productivity estimates
obtained from the new model show considerable year-to-
year variation. Particularly, we compare the productivity
estimates obtained from the new model and those con-
structed from the discrete Divisia index and find that the
former estimates closely track the latter ones, suggesting
that the new model is capable of producing estimates of
productivity growth with accuracy comparable to the dis-
crete Divisia index. In addition, we find that our pro-
ductivity estimates also closely track those obtained using
the general index of technical change of Baltagi and Griffin
(1988), further confirming the ability of the new model to
closely track well-known productivity indexes. In contrast,
we find that the standard time trend model yields only a
smoothed version of the discrete Divisia index. Moreover,
we find that the standard time trend model results in a
misleading conclusion regarding the relative importance of
technical change and scale effects.

Second, the categorical time-varying coefficient model is
capable of producing price elasticities that show consider-
able year-to-year variations, as indicated by our empirical
results. This is not surprising because all the coefficients of
this new model, including βij on which all price elasticities
are based, are allowed to vary from time period to time
period. In contrast, we find that the standard time trend
model generates price elasticities that show little temporal
variations. Due to the importance and wide applications of
price elasticities, this latter advantage should be of interest
to economists in many fields, such as energy economics,
public economics, international economics, and labor eco-
nomics (Hochman et al., 2010; Farrell and Walker, 1999).

The rest of the paper is organized as follows. Section 2
provides a brief summary of two approaches to estimating
technical change—the econometric approach and the index
number approach. Section 3 presents three competing econo-
metric methods for estimating technical change and price
elasticities: the standard time trend model, the categorical time-
varying coefficient model, and the Baltagi and Griffin (1988)
model. Section 4 discusses the estimation procedure for the
categorical time-varying coefficient model. Section 5 deals with
data issues. Section 6 compares the empirical results of the
three models. Section 7 concludes the paper.

2 Overview of index number and
econometric approaches to measuring
technical change

Generally, there are four approaches to measuring technical
change: the growth accounting approach, the index number
approach, the nonparametric frontier approach, and the
econometric approach (see, for example, Hulten, 2001). In
this section we focus on the two approaches that are related
to this paper: the index number approach and the econo-
metric approach.

2.1 Index number approach

In general, a total factor productivity growth (TFPG) index
is defined as the growth in outputs not attributable to the
growth in inputs. An advantage of index numbers is that
they “embody less stringent assumptions than are required
by econometric models” and thus “provide valuable checks
on the results of those (econometric) models” (Good et al.
1997). For example, Baltagi and Griffin (1988) used a
Divisia productivity index as a benchmark to evaluate
productivity estimates obtained from the general index of
technical change. In this paper, we follow Baltagi and
Griffin (1988) and use a Divisia productivity index to
evaluate productivity estimates obtained from our catego-
rical time-varying coefficient model. Therefore, in what
follows we provide an overview of Divisia productivity
indexes.

Solow (1957) was the first to propose a Divisia TFPG
index. Specifically, he began with an aggregate production
function with a Hicksian neutral shift parameter and con-
stant returns to scale. Assuming each input is paid the value
of its marginal product, Solow (1957) showed that a Divisia
TFPG index based on this production function was calcu-
lated as output growth minus observed cost-share-weighted
input growth. Later, Jorgenson and Griliches (1967) gen-
eralized this index to a multiple-output framework and
showed that a Divisia TFPG index based on a multiple
output production function was calculated as the observed
revenue-share-weighted output growth rate minus the
observed cost-share-weighted input growth rate. Formally,

TFPG ¼
XM
m¼1

~sm _ym �
XN
n¼1

sn _xn; ð1Þ

where ym is output m (m= 1, 2, …, M); xn (n= 1, 2, …, N)
is input n; a dot over a variable indicates the percentage
growth of that variable (i.e., _y ¼ d lny=dt); ~sm is the
observed revenue share for output m; and sn is the observed
cost share for input n.

While having enjoyed considerable popularity, these two
indexes are restricted in the sense that they are obtained
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under perfect competition and constant returns to scale.
Noting this problem, Denny et al. (1981) replaced the
observed revenue shares with cost elasticity shares, result-
ing in an index that is valid in the presence of imperfect
competition and increasing returns to scale. Specifically,
Denny et al. (1981) assumed that the underlying production
process of a cost-minimizing productive firm was repre-
sented by the following cost function

C tð Þ ¼ w′x ¼ C y;w; tð Þ;
where C is total cost; w= (w1, …, wN)′ is an N × 1 vector of
input prices; x= (x1, …, xN)′ is an N × 1 input vector; y=
(y1, …, yM)′ is an M × 1 output vector; and t is a time trend.

Denny et al. (1981) showed that the conceptually correct
expression for TFPG for the cost-minimizing firm was

TFPG¼ � _C � PM
m¼1

ϵm
ϵ _y� PN

n¼1
sn _wn

� �
¼ PM

m¼1

ϵm
ϵ _y� PN

n¼1
sn _xn;

ð2Þ

where ϵm ¼ ∂ lnC(y, w, t)/∂ ln ym is the elasticity of the cost

function with respect to output m, and ϵ ¼PM
j¼1 ϵm is the

reciprocal of local returns to scale. The TFPG index defined
in Eq. [2] has been either widely used or discussed in the
literature (see, for example, Jorgenson, 1991).

The continuous-time Divisia TFPG indexes given in Eqs.
[1] and [2] must be approximated by reasonable discrete-
time approximations as data do not come in continuous-
time form. As is well known, the Törnqvist approximation
to the Divisia index is “exact” if the production/cost func-
tion has the translog form. In other words, the Törnqvist
index is not an approximation at all, but is actually exact
under right conditions. In addition, because the translog
production function is a second order approximation to
other production/cost functions, the discrete-time Törnqvist
index is a sensible choice even if the underlying true
functional form is not a translog (see, for example, Hulten,
2001). The continuous-time Divisia TFPG index given in
Eq. [1] can be approximated by the following discrete-time
Törnqvist index (Fuss, 1994):

TFPG¼ PM
m¼1

1
2 ~sm;t þ ~sm;t�1
� �

Δ lnym

�PN
n¼1

1
2 sn;t þ sn;t�1
� �

Δ lnxn:

ð3Þ

With respect to the continuous-time Divisia TFPG index
in Eq. [2], it can be approximated by the following discrete-

time Törnqvist index (Fuss, 1994):

TFPG ¼
XM
m¼1

1
2

ϵm;t
ϵt

þ ϵm;t�1

ϵt�1

� �
Δ lnym �

XN
n¼1

1
2

sn;t þ sn;t�1
� �

Δ lnxn:

ð4Þ

In this paper, we follow Baltagi and Griffin (1988) and
use Eq. [3] as a benchmark to compare productivity esti-
mates obtained using the categorical time-varying coeffi-
cient model with those obtained using the standard time
trend model. This is because Eq. [3] does not require
econometric specification and estimation of technology. In
contrast, Eq. [4], while theoretically correct, involves the
specification and estimation of a cost function to obtain
estimates of elasticities of cost with respect to output. This
means that TFPG estimates obtained using Eq. [4] may vary
considerably depending on how the cost function is speci-
fied and estimated, making Eq. [4] less suitable as a
benchmark.

2.2 Econometric approach

The econometric approach to productivity measurement
involves estimating the parameters of an economic function
—a production, cost, or profit function. Productivity growth
can then be expressed in terms of the estimated parameters
of the economic function. Compared with the index number
approach, this approach has three advantages. First, it
avoids the need to impose the marginal productivity con-
ditions that are required by the Solow (1957) and Jorgenson
and Griliches (1967) TFPG indexes. Second, it gives a full
representation of the technology such that the estimated
parameters can be used not only in the calculation of pro-
ductivity but also in the calculation of substitution elasti-
cities and scale parameters. Third, noncompetitive pricing
behavior, nonconstant returns, and factor-augmenting
technical change can be accommodated to help “explain”
the sources of productivity (Hulten, 2001).

The dominant econometric approach is the standard time
trend approach, which involves using a time trend in cost or
production functions to represent the rate at which new
technology is introduced into the production unit. While
this approach has enjoyed considerable popularity since its
inception by Tinbergen (1942), no theoretical justification
exists for the use of the time trend to proxy technical
change. In fact, this approach produces a smooth, slowly
changing characterization of the pace of technical change
(Baltagi and Griffin, 1988), which is neither supported by
the evidence from index number approaches to calculating
rates of technical change, nor consistent with findings that
suggest production technology proceeds in a “lumpy”
fashion with discrete jumps.
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Dissatisfaction with the standard time trend approach has
led researchers to propose different techniques to overcome
the problem associated with the standard time trend
approach. For example, Baltagi and Griffin (1988) proposed
an innovative procedure that involves the use of time-
specific dummies and their interactions with input prices
and output quantities. In this paper, we approach the pro-
blem from a different perspective—we approach the pro-
blem via the coefficients. More specifically, we allow the
coefficients of our model (the categorical time-varying
coefficient model) to potentially vary over time by expres-
sing each coefficient as a nonparametric function of a
categorical time variable. This flexible treatment allows
each time period to have its own set of coefficients and thus
its own cost function, which in turn leads to two major
advantages: (1) our model is capable of producing estimates
of productivity growth that closely track those obtained
using the Divisia productivity index, and (2) our model is
capable of overcoming the well-known “trending elasticities
problem”. In the following section we will explain the
categorical time-varying coefficient model in more details.

3 Model specifications

In this section, we specify the standard time trend model
and the categorical time-varying coefficient model respec-
tively. While the focus of this study is on the comparison
between the standard time trend model and the categorical
time-varying coefficient model, it would also be of interest
to compare the latter model with the Baltagi and Griffin
(1988) model. Therefore, we also specify the Baltagi and
Griffin (1988) model at the end of this section.

3.1 The standard time trend model

The standard time trend model is written as

lnC y;w; tð Þ ¼ PK
k¼2

~λkDk þ α0 þ
PN
i¼1

αi lnwi þ
PM
j¼1

γj lnyj þ τt

þ 1
2

PN
i¼1

PN
n¼1

βin lnwi lnwn þ 1
2

PM
j¼1

PM
m¼1

γ�jm lnyj lnym þ 1
2 δt

2

þ PN
i¼1

PM
j¼1

ψ ij lnwi lnyj þ
PN
i¼1

ϕit lnwi þ
PM
j¼1

φjt lnyj;

ð5Þ

where C is total cost; w= (w1, …, wN)′ is an N × 1 vector of
variable input prices; y= (y1, …, yM)′ is an M × 1 output
vector; t is a time trend; K is the number of firms; Dk (k= 2,
…, K) are firm-specific dummies; and ~λk (k= 2, …, K) are
the corresponding coefficients for the dummies. The usual
symmetry restrictions require βin= βni (i, n= 1, …, N) and
γ�jm ¼ γ�mj (j, m= 1, …, M). Moreover, homogeneity of

degree one in input prices implies the following restrictions:

XN
i¼1

αi ¼ 1;
XN
i¼1

βin ¼
XN
n¼1

βni ¼
XN
i¼1

ψ ij ¼
XN
i¼1

ϕi ¼ 0:

ð6Þ
Although we could estimate Eq. [5] directly, efficiency

gains can be realized by estimating Eq. [5] together with its
cost share equations2, which can be obtained by applying
Shephard’s lemma to the cost function Eq. [5]:

si ¼ wixi
C

¼ αi þ
XN
n¼1

βin lnwn þ
XM
j¼1

ψ ij lnyj þ ϕit; i ¼ 1; � � � ;N;

ð7Þ

where si is the cost share for input i. It is worth noting that
the parameters αi, βin, ψij, and ϕi are common across the
system of equations.

Given the estimated parameters from Eqs. [5] and [7].
Technical change can be computed as follows:

TC ¼ � ∂ lnC y;w; tð Þ
∂t

¼ � τ þ δt þ
XN
i¼1

ϕi lnwi þ
XM
j¼1

φj lnyj

 !
:

Total factor productivity growth can then be computed as in
Baltagi and Griffin (1988) and Fuss (1994)

TFPG ¼ TCþ 1�
XM
j¼1

ϵcyj

 !
_y; ð8Þ

where for j= 1, 2, …, M,

ϵcyj ¼
∂ lnC y;w; tð Þ

∂ lnyj
¼ γj þ

XM
m¼1

γ�jm lnym þ
XN
i¼1

ψ ij lnwi þ φjt

is the cost elasticity of the jth output, and _y=PM
j¼1 ϵcyj=

PM
j¼1 ϵcyj

� �
_yj is the cost-elasticity-share

weighted growth rate of outputs. According to Eq. [8],
productivity growth can be decomposed into two compo-
nents: technical change (TC) and scale effects (

1�PM
j¼1 ϵcyj

� �
_y). The latter component is positive

2 Because the shares in Eq. [7] sum to unity, the random disturbances
corresponding to the share equations sum to zero, thus yielding a
singular covariance matrix of errors. Barten (1969) has shown that full
information maximum likelihood estimates of the parameters can be
obtained by arbitrarily deleting any one equation. Alternatively, this
problem can also be avoided by normalizing the cost and input prices
by one of input prices such that only N−1 share equations are left
(Griffiths et al., 2000).
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(negative) in the presence of increasing (decreasing) returns
to scale.

3.2 The categorical time-varying coefficient model

Our categorical time-varying coefficient model involves
specifying each coefficient of the standard translog cost
function (without the usual time trend) as a nonparametric
function of a categorical time variable:

lnCtc y;wð Þ ¼ PK
k¼2

λkDk þ α0 tcð Þ þPN
i¼1

αi tcð Þlnwi þ
PM
j¼1

γj t
cð Þlnyj

þ 1
2

PN
i¼1

PN
n¼1

βin tcð Þlnwi lnwn þ 1
2

PM
j¼1

PM
m¼1

γ�jm tcð Þlnyj lnym

þ PN
i¼1

PM
j¼1

ψ ij t
cð Þlnwi lnyj;

ð9Þ

where tc is the categorical time variable (which consists of T
time points or T categories); Ctc (y, w) is the cost function for
period tc; Dk (k= 2, …, K) are firm-specific dummies; and
λk are the corresponding parameters, which are assumed to
be constant over time. Symmetry requires βin(t

c)= βni(t
c) (i,

n= 1, …, N) and γ�jm tcð Þ= γ�mj t
cð Þ (j, m= 1, …, M). Linear

homogeneity in w implies

XN
i¼1

αi t
cð Þ ¼ 1;

XN
i¼1

βin tcð Þ ¼
XN
n¼1

βni t
cð Þ ¼

XN
i¼1

ψ ij t
cð Þ ¼

XN
i¼1

ϕi t
cð Þ ¼ 0:

ð10Þ

Applying Shephard’s lemma to the cost function Eq. [9]
yields the following cost share equations:

st
c

i ¼ wixi
C ¼ αi tcð Þ þ PN

n¼1
βin tcð Þlnwn þ

PM
j¼1

ψ ij t
cð Þlnyj;

i ¼ 1; � � � ;N:
ð11Þ

Note that the parameters αi(t
c), βin(t

c), and ψij(t
c) are

common across the cost system.
Noting that tc is a categorical variable, technical change

from period t− 1 to t is computed as:

TCt�1;t ¼ � 1
2 lnCtc yt

c�1;wtc�1
� �� lnCtc�1 yt

c�1;wtc�1
� �� 	


þ lnCtc yt
c
;wtc

� �� lnCtc�1 yt
c
;wtc

� �� 	�
;

where yt
c
(wtc ) is the output (input price) vector for period tc,

and yt
c�1 (wtc�1) is the output (input price) vector for the

previous period. Given estimation of TC, the total factor
productivity growth can be computed as

TFPG ¼ TCþ 1�
XM
j¼1

ϵt
c

cyj

 !
_y; ð12Þ

where, for j= 1, 2, …, M, the cost elasticity of the jth
output, ϵt

c

cyj
, is

ϵt
c

cyj
¼ ∂ lnCtc y;wð Þ

∂ lnyj
¼ γ tcð Þ þ

XM
m¼1

γ�jm tcð Þlnym þ
XN
i¼1

ψ ij t
cð Þlnwi

ð13Þ

As in the case of the standard time trend model, Eq. [12]
suggests that productivity growth can be decomposed into
two components: technical change (TC) and scale effects

1�PM
j¼1 ϵ

tc
cyj

� �
_y

� �
.

The categorical time-varying coefficient model is similar
in spirit to the smooth coefficient estimators of systems of
equations proposed by Orbe et al. (2003) and Henderson
et al. (2015). Specifically, Orbe et al. (2003) estimated a
varying-coefficient SUR (seemingly unrelated regressions)
system, but their coefficients are treated as functions of a
continuous time variable (as opposed to discrete), while
Henderson et al. (2015) estimated a varying-coefficient
translog cost system, but their smooth coefficients depend
on a different, continuous variable (i.e., bank size).

3.3 The Baltagi and Griffin (1988) model

The Baltagi and Griffin (1988) model is written as

lnC y;w; tð Þ ¼ PK
k¼2

λkDk þ α0 þ AðtÞ þPN
i¼1

αi lnwi þ
PM
j¼1

γj lnyj

þ 1
2

PN
i¼1

PN
n¼1

βin lnwi lnwn þ 1
2

PM
j¼1

PM
m¼1

γ�jm lnyj lnym

þ PN
i¼1

PM
j¼1

ψ ij lnwi lnyj þ
PN
i¼1

ϕiA tð Þlnwi þ
PM
j¼1

φjA tð Þlnyj;

ð14Þ

where λk (k= 2, …, K) are the coefficients for the firm-
specific dummies. The same symmetry and linear homo-
geneity restrictions are imposed on Eq. [14] as in the case of
the standard time trend model.

Applying Shephard’s lemma to the cost function Eq. [14]
yields the following cost share equations:

si ¼ αi þ
XN
n¼1

βin lnwn þ
XM
j¼1

ψ ij lnyj þ ϕiA tð Þ; i ¼ 1; � � � ;N;

ð15Þ
As in Baltagi and Griffin (1988), Eqs. [14] and [15] are

estimated by replacing A(t) with time-specific dummies. A
(t)’s can then be recovered in the same way as in Baltagi
and Griffin (1988) (see Eqs. (12a)–(12c) in Baltagi and
Griffin (1988) for more details). With the estimates of A
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(t)’s, technical change can be calculated as follows

TC¼ AðtÞ � Aðt � 1Þ þP
i
ϕi AðtÞ � Aðt � 1Þ½ �lnwi

þP
j
φj AðtÞ � Aðt � 1Þ½ �lnyi:

ð16Þ
Total factor productivity growth can then be computed as
follows

TFPG ¼ TCþ 1�
XM
j¼1

ϵcyj

 !
_y; ð17Þ

where the cost elasticity of the jth output is defined as

ϵcyj ¼
∂ lnC y;w; tð Þ

∂ lnyj
¼ γj þ

XM
m¼1

γ�jm lnym þ
XN
i¼1

ψ ij lnwi þ φjA tð Þ:

4 Semiparametric estimation

In this section we detail the semiparametric estimation
procedure for the categorical time-varying coefficient model
(i.e., Eqs. [9]–[11]). In doing so, we draw on recent
advances in semiparametric estimation for categorical
varying coefficient models (Li et al., 2013). For the standard
time trend model (Eqs. [5]–[7], its estimation procedures
have been widely documented in the traditional factor
demand literature (Barten, 1969; Christensen and Green
1976) and thus is not discussed in this paper.

Before proceeding to the semiparametric estimation
procedure, we first impose the linear homogeneity restric-
tions in Eq. [10]. This is done by normalizing the cost and
input prices in Eqs. [9] and [11] by one of the input prices
(say, wN)

ln Ctc y;wð Þ
wN

¼ PK
k¼2

λkDk þ α0 tcð Þ þ PN�1

i¼1
αi tcð Þln wi

wN
þPM

j¼1
γj t

cð Þlnyj

þ 1
2

PN�1

i¼1

PN�1

n¼1
βin tcð Þln wi

wN
ln wn

wN
þ 1

2

PM
j¼1

PM
m¼1

γ�jm tcð Þlnyjlnym

þ PN�1

i¼1

PM
j¼1

ψ ij t
cð Þln wi

wN
lnyj;

ð18Þ

and

si ¼ αi tcð Þ þ PN�1

n¼1
βin tcð Þln wn

wN
þPM

j¼1
ψ ij t

cð Þlnyj;

i ¼ 1; � � � ;N � 1:

ð19Þ

This normalization method has been widely used to impose
linear homogeneity property on economic functions (Grif-
fiths et al., 2000).

Equations [18] and [19] can then be combined to form a
system of N equations that, upon appending idiosyncratic
error terms, takes the common seemingly unrelated
regression (SUR) form. In estimating this SUR system, we
follow the spirit of Bai (2009) and use an iteration scheme,
where each iteration involves two steps: 1) given the time-
invariant coefficients for the firm-specific dummy variables
(i.e., λk, k= 2, …, K), we compute the time-varying coef-
ficients for the non-dummy variables (i.e., α0(t

c), αi(t
c), γj

(tc), βin(t
c), γ�jm tcð Þ, and ψij(t

c)) using the semiparametric
estimation procedure developed by Li et al. (2013); and 2)
given the time-varying coefficients, compute the time-
invariant coefficients. As pointed out by Bai (2009), this
iteration scheme is very robust and has an excellent con-
vergence property. Considering that the second step is
straightforward, we elaborate on the first step in what
follows.

The SUR system in the first step is subject to many cross-
equation restrictions implied by Shephard’s lemma. Speci-
fically, as can be seen from Eq. [18], the coefficients αi(t

c),
βin(t

c), and ψij(t
c) are common across the cost and share

equations. To allow for such equality restrictions, we follow
Wooldridge (2010, p.188) and Cameron and Trivedi (2005,
p. 210) and redefine the regressors and coefficients given in
Eqs. [18] and [19] so that the SUR system in the first step
can be estimated by the method of least squares. Specifi-
cally, we first define the dependent variable vector and the
disturbance vector. Let ql be an N × 1 vector representing
the dependent variables associated with the lth observation

with the first element being (ln
Ctc

l y;wð Þ
wlN

−
PK

k¼2 λ̂kDlk)

and the second to the last element being the N− 1 shares
(i.e., sl,i, i= 1,…, N− 1), and ul= (ul1,…, ulN)′ be an N × 1
disturbance vector, whose variance-covariance matrix is
Σ= E(ulu′l|Xl). We then define regressors and coefficients
equation by equation. For the normalized cost equation, let

Xl1 be a 1� N2þM2þ2MNþMþN
2 vector representing all the

non-dummy regressors in the normalized cost function (i.e.,
Eq. [18]): X(tc) be the corresponding coefficients, i.e., all
coefficients for non-dummy variables in Eq. [18]. The first
equation of the N equation system can be written as

ql1 ¼ Xl1β tcð Þ þ ul1:

For the first normalized share equation, we still use β(tc) as
our redefined coefficient vector. However, the regressor
vector, Xl2, is redefined in such a way that Xl2β(t

c) is equal
to the right hand side of the first normalized share equation.
Formally, Xl2= (0, 1, 0NþM�2, ln

wl2
wlN

; ¼ ; lnwl;N�1

wlN
, 0N2�5Nþ12

0
,

lnwl1
wlN

, 0
N�2þMðMþ1Þ

2

, lnyl1, 0N−2,…, ln ylM, 0N−2), where 0p is
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a 1 × p vector of zeros. Thus, the second equation of the N-
equation system can be written as

ql2 ¼ Xl2β tcð Þ þ ul2:

The ith (i= 2, 3, …, N− 1) normalized share equation can
be redefined in a similar manner. Stacking all the N
equations associated with the lth (l= 1, ⋯, KT) observation
in the data set yields:

ql ¼ Xlβ tcð Þ þ ul; ð20Þ
The entire system of equations associated with the KT

observations can then be written as

q1

..

.

qKT

2664
3775 ¼

X1

..

.

XKT

2664
3775β tcð Þ þ

u1

..

.

uKT

2664
3775; ð21Þ

which can be written more compactly as

q ¼ Xβ tcð Þ þ q; ð22Þ
where q and u are NKT × 1 vectors and X is a NKT �
N2þM2þ2MNþMþN

2 matrix. The NKT × 1 disturbance vector u
has the following variance-covariance matrix: Ω= E(uu′)
= IKT⊗Σ, where IKT is an identity matrix of dimension KT.

Following Li et al. (2013) and Henderson et al. (2015),
we estimate the nonparametric categorical time-varying
coefficient functions (β(tc)) by a kernel-based nonparametric
method. Specifically, the least-squares estimator of β(tc) in
Eq. [22] is the solution to

0 ¼ X′L tcð Þ1=2Ω�1L tcð Þ1=2 q� Xβ tcð Þ½ �; ð23Þ

where L(tc) is a NKT × NKT kernel diagonal matrix with the
ith (i= 1, 2, …, NKT) diagonal element defined as in Li
et al. (2013)3

l tci ; t
c; λ

� � ¼ 1; when tci ¼ tc

λ; when tci ≠t
c

�
; ð24Þ

where λ is a smoothing parameter4. The range of λ is from 0
to 1. λ= 0 leads to an indicator function, while λ= 1 gives a
uniform weight function. Equation [24] indicates that when
estimating β(tc), the kernel-based estimation method allows

“borrowing” information from periods other than tc. It also
indicates that when estimating β(tc), observations in period
tc are given more weights than observations in other
periods.

Solving for β(tc) in Eq. [23] leads to the estimator

bβ tcð Þ ¼ X′L tcð Þ1=2Ω�1L tcð Þ1=2X
h i�1

X′L tcð Þ1=2Ω�1L tcð Þ1=2q;
ð25Þ

where the error covariance matrix Ω, as in the case of the
standard feasible generalized least squares (FGLS) method
for SUR models (Wooldridge, 2010 p.176), can be
estimated by using the consistent system estimator which
ignores the information in the variance-covariance matrix
(i.e., by setting Ω= INKT). In this case, Eq. [25] reduces to

bβ tcð Þ ¼ X′L tcð ÞX½ ��1X′L tcð Þq: ð26Þ

Using Eq. [26], we can obtain the N × 1 vector of resi-
duals associated with the lth observation as
~ul ¼ ql � Xl

eβ tcð Þ= ~ul1; ~ul2; ¼ ; ~ulN½ �′. The estimate of the
variance covariance matrix is given by cP ¼ 1

KT

PKT
l¼1 ~ul~u

′
l,

and hence we can construct our estimator of Ω.
The choice of the smoothing parameter λ is crucial.

When λ= 0, our estimator is equivalent to estimating T
independent cost functions with one for each period,
whereas when λ= 1, eβ tcð Þ becomes unrelated to tc, implying
that the coefficients are constant over time. When choosing
λ, we follow Li et al. (2013) and minimize the following
least squares cross-validation:

CV λð Þ ¼ 1
NKT

XNKT
j¼1

gj � zjbβ�j tcj

� �h i2
;

where gj is the jth row of q, zj is the jth row of X, and the
leave-one-out estimates of the time-varying coefficients is
expressed as

bβ�j tcj

� �
¼ X′

�jL�j tcj

� �1=2
Ω�1

�j L�j tcj

� �1=2
X�j

� ��1

X′
�jL�j tcj

� �1=2
Ω�1

�j L�j tcj

� �1=2
q�j

and the notation −j implies that the jth row is removed from
Ω, L(tc), X and q.

5 Data

Our data was provided by Kumbhakar and Tsionas (2011)
and consisted of annual time-series data for 81 privately
investor-owned electric utilities in the United States over
the period 1986–1998. The choice of U.S. electric utilities is
particularly relevant considering the numerous studies of
productivity in this industry.

3 We also estimate the time-varying coefficient model (i.e., Eqs. [9]–
[11]), where the time variable (tc) is treated as an ordered discrete
variable. However, we find that this treatment results in less accurate
estimates of technical change. A possible reason is that in our parti-
cular case, the values (i.e., 1, 2, …, T) of the time variable are used
only as labels for cost functions of different time periods. Thus, the
time variable should be treated as unordered rather than ordered.
4 As in Li et al. (2013), we consider the case where K (the number of
cross-sectional units) is large and T is small.
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With regard to the specification of outputs and inputs,
one output is specified (i.e., M= 1) and represented by net
steam electric power generation in megawatt-hours, which
is defined as the amount of power produced using fossil-fuel
fired boilers to produce steam for turbine generators during
a given period of time. On the input side, three inputs are
specified (i.e., N= 3): the aggregate of labor and main-
tenance, fuels, and capital stocks. The aggregate price of
labor and maintenance is a cost-share weighted price for
labor and maintenance. The price of labor is a company-
wide average wage rate. The price of maintenance and other
supplies is a price index of electrical supplies from the
Bureau of Labor Statistics. The weight is calculated from
the labor cost share of nonfuel variable costs for those
utilities with entirely steam power production. Quantities of
labor and maintenance equal the aggregate costs of labor
and maintenance divided by a cost-share weighted price for
labor and maintenance. The price of fuel aggregate is a
Törnqvist price index of fuels (i.e., coal, oil, gas). The fuel
quantities are calculated by dividing the fuel expenses by
the Törnqvist price of fuel aggregate. The values of capital
stocks are calculated by the valuation of base and peak load
capacity at replacement cost to estimate capital stocks in a
base year and then updating it in the subsequent years based
upon the value of additions and retirements to steam power
plant. The price of capital is the yield of the firm’s latest
issue of long-term debt adjusted for appreciation and
depreciation of the capital good using the Christensen and
Jorgenson (1970) cost of capital formula.

6 Empirical results

In this section, we compare empirical results among the three
models, namely, the categorical time-varying coefficient
model, the standard time trend model, and the Baltagi and
Griffin (1988) model. We estimate the three models sepa-
rately for the electric utilities, and report the estimated para-
meters and their associated standard errors in Tables 1–3. As
can be seen from Table 1, the point estimates of the coeffi-
cients for the categorical time-varying coefficient model vary
considerably over time. Taking α1 for example, its point
estimate varies markedly from 0.120 to 0.614.

With regard to the smoothing parameter (λ) for the
categorical time-varying coefficient model, its estimate is
pretty close to zero (0.039), indicating that the categorical
time variable, tc, has a strong impact on the coefficients of
the model. It is also indicative of an estimator that is close to
the pure frequency estimator, where T independent cost
systems are estimated with one for each period. The small
bandwidth could be due to the fact that least-squares cross-
validation tends to select a relatively small bandwidth
(undersmoothing) (Chu et al. 2017). In our case where a

geometric discrete kernel is used, the small bandwidth could
also be an artifact of the selection mechanism, rather than
the appropriate amount of smoothing (Rajagopalan and
Lall, 1995). Having said that, we find that the estimates of
productivity growth and technical change produced by the
categorical time-varying coefficient model (presented in
Subsections 6.2 and 6.3) are very close to those produced
by the fully parametric Baltagi and Griffin (1988) model,
whose results do not depend on bandwidth. This finding
suggests indirectly that undersmoothing may not be a big
issue in this paper.

We check monotonicity and curvature for each of the
three models. Monotonicity requires that the first-order
derivatives of the cost function, which correspond to input
demands, be nonnegative. Curvature requires that the cost
function be a concave function of prices or, equivalently,
that the Hessian matrix of the cost function be negative
semidefinite (see Serletis and Feng, 2015). We find that
monotonicity is satisfied for every observation for each
model. However, concavity violations are observed for 149
of the 1053 observations in the standard time trend model,
for all observations in the Baltagi and Griffin (1988)
model5, and for 340 of the 1053 observations in the cate-
gorical time-varying coefficient model. A possible reason
for the large number of violations in the three models is that
some electric utilities may not be cost minimizers
throughout the sample period. Specifically, until the mid-
1990s electric utilities in the U.S. typically operated as
state-regulated monopolies under the jurisdiction of reg-
ulatory commissions in each state. Because of asymmetric
information between these regulatory bodies and producers,
effort-averse managers may engage in inefficient activities,
resulting in possible deviations from cost-minimization

5 For the Baltagi and Griffin model, we find that the violation of
concavity occurs in the demands for capital and fuel: their own-price
elasticities are positive. Specifically, we find that 29.0 percent of the
violations occur because the own-price elasticity of capital are posi-
tive, 3.9 percent of the violations occur because the own-price elasti-
city of fuel are positive, and 67.1 percent of the violations occur
because both of the two own-price elasticities are positive. In addition,
we find that compared with those obtained from the standard time
approach, the own-price elasticities of capital and fuel obtained using
the Baltagi and Griffin approach are very small in absolute value with
many near zero. A likely reason is as follows: the use of time dummies
explains most of the variation in demand for capital (or fuel), leaving
little of the variation explained by capital (or fuel) price (w) and the
output (y). This explains why compared with those obtained from the
standard time approach, the own-price elasticities of capital and fuel
obtained using the Baltagi and Griffin approach are very small in
absolute value. It also explains why some of the own-price elasticities
of capital and fuel even change their signs, becoming positive. This
reasoning is consistent with that of Nakamura (1990), who also finds
that introduction of dummy variables into a generalized Leontief cost
function results in concavity being violated at all sample points.
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(Fabrizio et al., 2007). These distortions may be amplified
because electric power rates were set by the asymmetrically
informed regulatory bodies (Laffont and Tirole, 1993;
Fabrizio et al., 2007).

6.1 Comparison of the categorical time-varying
coefficient model and the standard time trend
model

Note that the standard time trend model is a special case of
the categorical time-varying coefficient model when the
coefficient functions of the latter model reduces to con-
stants. This fact enables us to formally compare these two
models using the parameter constancy test in Li and Racine
(2010). To this end, we first rewrite the standard time trend
model as follows:

lnC y;w; tð Þ ¼ PK
k¼2

~λkDk þ α0 þ τt þ 1
2 δt

2
� �þPN

i¼1
αi þ ϕitð Þlnwi

þ PM
j¼1

γi þ ϕitð Þlnyj þ 1
2

PN
i¼1

PN
n¼1

βin lnwi lnwn

þ 1
2

PM
j¼1

PM
m¼1

γ�jm lnyj lnym þPN
i¼1

PM
j¼1

ψ ij lnwi lnyj:

ð27Þ

If we treat α0 þ τt þ 1
2δt

2
� �

in Eq. [27] as the coefficient for
the constant term, (αi+ ϕit) as the coefficient for ln wi, and

(γi+ ϕit) as the coefficient for ln yj, then a comparison of
Eq. [27] with the categorical time-varying coefficient model
in Eq. [9] reveals that the former model is a special case of
the latter model at t= tc= 1, 2, …, T. More specifically, let
θ0(t

c) denote the vector of coefficients of Eq. [27] at period
tc and θ(tc) denote the vector of coefficients of the
categorical time-varying coefficient model at the same
period, then θ(tc) nests θ0(t

c) as a special parametric case.
Thus, it would be of interest to test if θ(tc) is of the
parametric form θ0(t

c) at t= tc= 1, 2, …, T. If yes, we
should therefore estimate the standard time trend model,
because correctly specified parametric models are relatively
more efficient than their semiparametric counterparts.
Otherwise, we should estimate the semiparametric catego-
rical time-varying coefficient model, because misspecified
parametric models will lead to inconsistent results.

Table 2 Parameter estimates for the standard time trend model

Parameter Estimate Standard error

α0 12.040 1.881

α1 0.370 0.069

α2 −0.140 0.122

α3 0.769 0.159

γ1 −0.458 0.238

τ −0.044 0.001

β11 0.014 0.010

β12 −0.053 0.012

β13 0.039 0.014

β22 0.204 0.026

β23 −0.151 0.028

β33 0.112 0.035

γ11 0.063 0.015

δ 0.001 0.000

ψ11 −0.008 0.003

ψ21 0.026 0.005

ψ31 −0.018 0.007

ϕ1 0.001 0.001

ϕ2 0.001 0.002

ϕ3 −0.002 0.002

φ1 0.001 0.001

Table 3 Parameter estimates for the Baltagi and Griffin (1988) model

Parameter Estimate Standard error

α0 12.549 2.624

α1 0.307 0.098

α2 −0.300 0.099

α3 0.993 0.109

γ1 −0.455 0.336

β11 0.012 0.015

β12 −0.027 0.013

β13 0.016 0.012

β22 0.234 0.023

β23 −0.207 0.014

β33 0.191 0.025

ψ11 −0.008 0.004

ψ21 0.023 0.004

ψ31 −0.015 0.013

ϕ1 −0.063 0.090

ϕ2 −0.019 0.078

ϕ3 0.082 0.090

θ 0.012 0.084

A(2) −0.064 0.081

A(3) −0.051 0.067

A(4) −0.092 0.114

A(5) −0.157 0.191

A(6) −0.117 0.144

A(7) −0.119 0.147

A(8) −0.101 0.124

A(9) −0.135 0.165

A(10) −0.166 0.203

A(11) −0.213 0.261

A(12) −0.194 0.237

A(13) −0.162 0.199

Source: Baltagi and Griffin (1988)
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When conducting the test, we employ the parameter
constancy test in Li and Racine (2010). Specifically, we
formulate the null hypothesis as follows: H0 : Pr(θ(t

c)= θ0
(tc))= 1, i.e., the probability of θ(tc) being equal to θ0(t

c) is
one. Following Li and Racine (2010), we use a modified
version of the sum of squared differencesPT

tc¼1 θ̂ tcð Þ � θ̂0 tcð Þ� 	
′ θ̂ tcð Þ � θ̂0 tcð Þ� 	� �

as our test statis-
tics. Here, a hat (∧) indicates a parameter estimate. As
shown in Li and Racine (2010), the test statistic follows a
standard normal distribution. Since the test statistics is
notationally complicated, we omit it here to save space.
Interested readers are referred to Eq. [27] and Theorem 4.1
of Li and Racine (2010, p. 1617) for the test statistics and its
distribution respectively. In our particular case, the test
statistic is 6.667 with an associated p–value of approxi-
mately zero; hence we reject the null that the general non-
parametric coefficient function θ(tc) is of the parametric
form θ0(t

c).
We would like to point out at this point that while semi-

parametric or nonparametric models in general offers
additional flexibility in comparison with parametric models,
this comes at the cost of potential overparameterization
because of the large effective number of parameters
required. This is a particular concern if the sample size is
small. In our case, the effective number of parameters for
the semi-parametric categorical time-varying coefficient
model is 676, higher than the number of the parameters in
the standard time trend model Eq. [25] and that in the
Baltagi and Griffin (1988) model Eq. [30]. This relatively
higher number of parameters, together with our relatively
small sample size, results in wide confidence intervals for
some of the time-specific parameters and price elasticities in
Table 1 and Figs. 5-13. Therefore, we would like to warn
the reader that the categorical time-varying coefficient

model does require a large sample size (especially a large
number of firms) in order to avoid wide confidence
intervals.

6.2 Estimates of total factor productivity

In this subsection, we compare the performance of the three
models in terms of their ability to estimate total factor
productivity growth. In doing so, we compute four industry-
level TFPG indexes with the first one based on the standard
time model (denoted by TFPGTime), the second one based
on the categorical time-varying coefficient model (denoted
by TFPGCTC), the third one based on the Baltagi and Griffin
(1988) model (denoted by TFPGBG), and the fourth one
based on the discrete Divisia TFPG index (denoted by
TFPGDivisia). Specifically, TFPGTime is obtained by first
computing utility-level total factor productivity growth
using Eq. [8] and then computing an industry-level index as
an average of the 81 utility-level TFPG estimates.
TFPGCTC, TFPGBG and TFPGDivisia are obtained in a similar
way but by using Eqs. [12], [17], and [3], respectively. As
discussed in the Introduction, TFPGDivisia is used here as a
benchmark for assessing TFPGTime, TFPGBG and TFPGCTC,
because the discrete Divisia index does not require direct
estimation of the underlying technology, satisfies many
desirable statistical properties, and also is widely used by
major statistical agencies around the world (see, for exam-
ple, Good et al. 1997; Dean et al. 1996; Hulten, 2001). We
also construct 95% confidence intervals for TFPGCTC using
1000 bootstrap replications.

Figure 1 plots TFPGTime, TFPGBG, TFPGCTC, and
TFPGDivisia over the sample period. To avoid graphical
clutter, the 95% bootstrap confidence intervals for TFPGCTC

are plotted in Fig. 2. We first compare TFPGTime and
TFPGDivisia. As can be seen from Fig. 1, TFPGTime shows
much less variation than TFPGDivisia and is roughly a
smoothed version of TFPGDivisia. To better observe this, we
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Fig. 1 Estimates of productivity growth

6 See Hurvich et al. (1998) for details on how to calcualte the effective
number of parameters for a varying coefficient model.
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first examine the temporal pattern of the benchmark series,
TFPGDivisia. Roughly speaking, the series TFPGDivisia can be
divided into five segments: 1987–1988, 1988–1989, 1989–

1993, 1993–1996, and 1996–1998, with the first, third and
fifth segments representing three productivity slowdowns
and the second and fourth segments representing two
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Fig. 2 95% Confidence intervals for productivity growth estimated from the categorical time-varying model
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Categorical Time-varying Coefficient
Time Trend
Baltagi and Griffin (1988)

The do�ed lines show 95% bootstrap confidence intervals 

year

elas�city

Fig. 7 Estimates of elasticity of demand for labor with respect to the price of capital
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Fig. 8 Estimates of elasticity of demand for fuel with respect to the price of labor
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Fig. 9 Estimates of own elasticity of fuel
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productivity resurgences. More specifically, in the first
segment it decreases significantly from 8.37% in 1987 to
0.98% in 1988; in the second segment it rebounds from
0.98% in 1988 to 6.08% in 1989; in the third segment it
declines substantially from 6.08% in 1989 to −3.14% in
1993; in the fourth segment it rebounds from −3.14% in
1993 to 3.68% in 1996; and in the last segment it drops
sharply from 3.68% in 1996 to −3.78% in 1998. Turning
now to TFPGTime, we see that for each of the five
TFPGDivisia segments, TFPGTime passes close by the mean of
the segment. Considering the third segment as an example,
the TFPGTime series crosses this segment at a point where
TFPG is approximately 0, which is close to the mean
(0.0006) of this segment. This suggests that the series
TFPGTime can be regarded as being obtained by linking the
means of the five segments. In this sense, TFPGTime is
roughly a smoothed version of TFPGDivisia.

Turning to TFPGBG and TFPGCTC, we see from Fig. 1
that both indexes track TFPGDivisia very closely, dropping in
1988, 1991, 1993, 1995, 1998 and rising in 1989, 1994,
1996. Thus, compared with the standard time trend model,
both the categorical time-varying coefficient model and the
Baltagi and Griffin (1988) model are capable of producing
productivity estimates that closely track the discrete Divisia
index.

To quantify the performance of TFPGTime, TFPGBG, and
TFPGCTC, we calculate the mean squared error (MSE) for
each of them: MSE= 1

T

PT
t¼1 TcFPGt � TFPGDivisia

t

� �2
,

where TcFPGt stands for an estimate of industry-level TFPG
for period t (e.g., TFPGCTC

t , TFPGBG, or TFPGTime
t ). Our

results show that TFPGCTC has an MSE of 0.016%,
TFPGBG has a slightly higher MSE of 0.021%, whereas
TFPGTime has a much higher MSE of 0.067%. This con-
firms that both the categorical time-varying coefficient
model and the Baltagi and Griffin (1988) model track more

closely with the discrete Divisia index than does the stan-
dard time trend model.

We would like to point out here that in general one
should not prefer one parametric model over another
because the former can produce productivity estimates
closer to those produced by a non-parametric model7. This
is because endogeneity in general cannot be easily addres-
sed in most nonparametric models, whereas it can be easily
addressed in parametric models. For example, productivity
estimates obtained from a DEA non-parametric model in
general cannot be used as a standard for evaluating para-
metric models that do treat endogeneity, because most DEA
non-parametric models cannot handle endogeneity. For the
same reason, Törnqvist productivity estimates in general
cannot be used as a standard to compare parametric models
that treat endogeneity. In our case, however, both the
categorical time-varying coefficient cost function and the
Törnqvist index are based on prices and output, which can
be considered to be exogenous under the assumption of cost
minimization. However, if a distance function were esti-
mated then endogeneity would have to be dealt with.

6.3 Decomposition of total factor productivity into
technical change and scale effects

An interesting question to ask at this point is: what causes
the lack of variation in TFPGTime? To answer this question,
we decompose each of the three TFPG indexes, TFPGTime,
TFPGBG, and TFPGCTC, into two components: technical
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Fig. 11 Estimates of elasticity of demand for capital with respect to the price of labor

7 We would like to thank a referee for pointing this out.
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change and scale effects8. For notational clarity, let TCTime

(SCTime) denote technical change (scale effects) obtained
using the standard time trend model, TCBG (SCBG) denote
technical change (scale effects) obtained using the Baltagi
and Griffin (1988) model, and TCCTC (SCCTC) denote
technical change (scale effects) obtained using the catego-
rical time-varying coefficient model. Figure 3 presents the
estimates of SCTime, SCBG, and SCCTC. Looking at this
figure, we see that SCTime, SCBG, and SCCTC closely track
each other, with the latter two almost coinciding. This
suggests that SCTime, SCBG, and SCCTC show a similar
degree of variation, which in turn implies that scale effects
cannot lead to the lack of variation in TFPGTime.

Fig. 4 presents the estimates of TCTime, TCBG, and
TCCTC. As can be seen, TCBG and TCCTC closely track each

other, both showing large year-to-year variation. In contrast,
TCTime declines in a linear fashion over the sample period,
suggesting that it is the lack of variability in TCTime that
leads to the lack of variation in TFPGTime. In fact, TCTime is
roughly a smoothed version of TCCTC. To see this, we
follow Feng and Serletis (2008) and obtain a smoothed
TCCTC series by regressing the raw TCCTC series on firm
dummies and a continuous time trend, calculating the fitted
values, and aggregating across individual electric utilities.
The smoothed TCCTC is also plotted in Fig. 4. As can be
seen, TCTime evolves in a similar pattern as the smoothed
TCCTC, confirming that TCTime is roughly a smoothed ver-
sion of TCCTC. In fact, TCTime is also a smoothed version of
TCBG. However, to avoid graphical clutter, we do not plot
the smoothed version of TCBG.

It is worth noting here that as bandwidth (λ) increases,
one would expect TCTime and TCCTC to converge. Particu-
larly, when bandwidth approaches one, there will be little
difference between TCTime and TCCTC, because in the case
the categorical time-varying coefficient model reduces to
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8 In this paper we assume that firms are technically and allocatively
efficient to avoid the Greene’s problem (Greene, 1980). This
assumption can also facilitate comparison of rempirical results
between our model and the Baltagi and Griffin (1988) model, since the
same assumption is also made in the latter model.
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the standard time trend model. When bandwidth approaches
zero (as in our case), there will be a large difference
between TCTime and TCCTC.

It would be of interest to discuss possible reasons for the
large variation in technical change found with the catego-
rical time-varying coefficient model. Before that, we
emphasize the following two points. First, the estimates of
technical change produced by the well-known Baltagi and
Griffin (1988) model also show a similar, large year-to-year
variation, providing support for the large variation in tech-
nical change found with the categorical time-varying coef-
ficient model. Second, in practice technical change not only
includes technological change, but also captures effects of
other factors that shift the cost frontier such as regulatory
changes, improvements in input quality, and organizational
innovations (see, for example, Griliches, 1994; Hulten,
2001).

In our case, the estimates of technical change produced
by the categorical time-varying coefficient model (i.e.,
TCCTC in Fig. 4) reveal two pronounced temporal changes:
a technical change slowdown between 1991–1993 and a
technical change resurgence in the post-1993 period. The
resurgence is likely to be caused by the deregulation of the
electric industry, which began with the Energy Policy Act
of 19929. This deregulation is well documented to reduce
costs and improve technical efficiencies in investor owned
utilities in restructured states. For example, using annual
plant-level data for large fossil-fueled generating plants
owned by US electric utilities over the period 1985–1999,
Fabrizio et al. (2007) find that investor owned plants in
restructuring regimes reduced their labor and non-fuel
operating expenses by 6 to 12 percent relative to govern-
ment- and cooperatively owned plants that were largely
insulated from restructuring incentives. In addition, pre-
vious studies find that the deregulation reduced costs and
improved technical efficiencies in investor owned utilities in
non-restructured states as well. For example, Fabrizio et al.
(2007, p. 1266) find that “even IOUs in nonrestructuring
regimes improved their input use to a large extent, perhaps
in response to latent threats of increased competition and
restructuring.” Rungsuriyawiboon and Stefanou (2007, p.
233) also find that the deregulation of the electricity
industry resulted in “an increase of allocative and technical
efficiencies of variable inputs for both electric utilities
located in and outside states with a deregulation plan”,
although “electric utilities located in states with a dereg-
ulation plan have higher increases of average technical
efficiency of variable in puts than those located outside
states with a deregulation plan.” These findings suggest that
the deregulation increased the technical efficiency of

investor owned utilities in both restructured and non-
restructured states, and thus is a likely cause of the technical
change resurgence in the post-1993 period.

With regard to the technical change slowdown in early
1990s, it is likely due to the Clean Air Act Amendments
(CAAA) of 1990, which established a sulfur dioxide (SO2)
allowance trading program intended to cut nationwide
emissions of SO2 by 50 percent below 1980 levels by the
year 2000. The program was implemented in two stages:
Phase I (starting January 1, 1995) and Phase II (starting
January 1, 2000). In Phase I, half the total reductions were
required by January 1, 1995, largely by requiring 110
electric power generating plants to cut sulfur dioxide
emission rates to 2.5 lbs/million British thermal units
(mmBtu). According to The U.S. Department of Energy
(1997), Phase I utilities, which accounted for 62 percent of
total SO2 emissions of the industry in 1990, reduced their
SO2 emissions by 45.4% between 1990 and 1995. This
significant reduction in SO2 emissions was achieved by
using methods such as switching to expensive lower-sulfur
coal, installing flue gas desulfurization equipment, and
retiring units (U.S. Department of Energy 1997).
Obviously, all these emission-reducing methods increased
the operating costs of the utilities for a given level of output
and thus possibly lowered their technical change in early
1990s. Again, this is because in practice technical change
not only includes technological change, but also captures
effects of other factors that shift the cost frontier.

6.4 Estimates of price elasticities

As discussed in the Introduction, the standard normalized
quadratic (NQ) functional form suffers “the problem of
trending elasticities”, that is, the price elasticities pro-
duced by this functional form often exhibit little variation
over time. This problem raises an intriguing question: Do
the three competing translog models in the present paper
suffer the same problem? Figs. 5−13 present the estimates
of own price elasticity of labor (η11), elasticity of demand
for labor with respect to the price of fuel (η12), elasticity of
demand for labor with respect to the price of capital (η13),
elasticity of demand for fuel with respect to the price of
labor (η21), own price elasticity of fuel (η22), elasticity of
demand for fuel with respect to the price of capital (η23),
elasticity of demand for capital with respect to the price of
labor (η31), elasticity of demand for capital with respect to
the price of fuel (η32), and own price elasticity of capital
(η33). For each model, firm-level estimates of price elas-
ticity of demand for input i with respect to input price n
are calculated as

ηin ¼ βin=si þ sn � δin; ð28Þ
9 For a detailed discussion on the deregulation and restructuring of the
the electricity sector in the U.S., see Borenstein and Bushnell (2015).
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where βin is the coefficient for ln wi ln wn, si (sn) is the cost
share of input i (n), and δin= 1 if i= n and 0 otherwise.
These firm-level estimates are then aggregated to produce
industry-level estimates of price elasticities. In each figure,
the solid line shows the estimates obtained from the
categorical time-varying coefficient model and the dotted
lines show the associated 95% bootstrap confidence
intervals. The dashed line shows the estimates obtained
from the standard time trend model. The dashdotted line
shows the estimates obtained from the Baltagi and Griffin
(1988) model.

Looking at the industry-level estimates of the own elas-
ticity of labor demand implied by the standard time trend
model (i.e., ηTime

11 ) in Fig. 5, we see that it varies within an
very narrow range between −0.7510 and −0.7398. This
result is not surprising. As can be seen from Eq. (28), δin is a
constant, while si and sn are cost shares that do not vary
much in practice, especially over a short period of time. If
the coefficient, βin, is also restricted to be a constant over
time as in the standard time trend translog cost function,
then ηin is doomed to show little variation. Thus, as with the
standard normalized quadratic functional form, the standard
translog functional form suffers a similar problem (i.e.,
lacking variation in price elasticities), due largely to the
time-invariant nature of βin.

Turning to the industry-level estimates of the own elas-
ticity of labor demand implied by the Baltagi and Griffin
(1988) model (denoted by ηBG11 ) in Fig. 5, we see that ηBG11
almost coincides with ηTime

11 , showing little variation over
the sample period. This finding is not surprising, because
although the use of time dummies enables the Baltagi and
Griffin (1988) model to track the Divisia index closely, it
still does not allow βin, on which the price elasticities are
based, to vary over time. Specifically, as in the case of the
standard time trend model, the price elasticity of demand for
input i with respect to input price n in the Baltagi and
Griffin (1988) model is also calculated as

ηin ¼ βin=si þ sn � δin;

where βin is the coefficient for ln wi ln wn, si (sn) is the cost
share of input i (n), and δin= 1 if i= n and 0 otherwise. As
can be seen from this expression, the constantness of βin,
together with the facts that δin is a constant and that si and sn
do not vary much in practice, implies that the estimates of
price elasticities based on the Baltagi and Griffin (1988)
model are bound to show little variation.

Turing lastly to the industry-level estimates of the own
elasticity of labor demand implied by the categorical time-
varying coefficient model (i.e., ηCTC11 ) in Fig. 5, we see that it
shows more year-to-year variation. Specifically, it starts at
−0.8550 in 1986, rises to −0.7612 in 1987, remains at
roughly the same value in 1988, drops to −0.8128 in 1989,

rebounds to −0.7463 in 1990, falls to −0.8032 in 1991,
rises to −0.6042 in 1993, falls to −0.6955 in 1994,
rebounds to −0.6249 in 1995, and falls to −1.0217 in 1998.
The finding that ηCTC11 shows much more variation is not
surprising, because β11 is no longer a constant in the cate-
gorical time-varying coefficient model. Instead, it varies
from time period to time period, thus allowing η11 to vary
from one period to another even when δ11 is a constant and
s1 does not vary much. More specifically, β11 is a non-
parametric function of the categorical time variable (tc) and
thus is very flexible with respect to time. This flexible
treatment allows β11 to vary over time, which in turn allows
price elasticities (i.e., η11) to vary over time.

It is worth noting that in Fig. 5 the elasticity estimates
obtained from the standard time trend model (i.e., ηTime

11 ) fall
into the 95% bootstrap confidence intervals for those
obtained from the categorical time-varying coefficient
model (i.e., ηCTC11 ). There are two possible reasons why this
happens. First, as can be seen from the figure, the dashed
line representing ηTime

11 is roughly a smoothed version of the
solid line representing ηCTC11 , making it very likely that the
former line falls into the 95% confidence intervals asso-
ciated with the latter line. Second, as noted above, the
categorical time-varying coefficient model requires a large
number of observations for each period (i.e., a large number
of firms) in order to obtain tight elasticity confidence
intervals. In our case, however, we have only 81 observa-
tions (firms) for each period, which may not be large
enough to produce tight elasticity confidence intervals.
Therefore, we would like to warn the reader again that the
categorical time-varying coefficient model does require a
large sample size (especially a large number of firms) in
order to avoid wide confidence intervals.

It would be of interest to discuss why the price elasti-
cities varied substantially over time. Before that, note that
this is not the first study that attempts to correct the problem
of trending elasticities inherent in locally flexible functional
forms. For example, Diewert and Lawrence (2002) noted
that the normalized quadratic (NQ) function suffered from
this problem because the substitution matrix of this function
was constant over time. To solve this problem, they allowed
the substitution matrix to change over time by setting the
matrix equal to a weighted average of a matrix C (which
characterizes substitution possibilities at the beginning of
the sample period) and a matrix D (which characterizes
substitution possibilities at the end of the sample period). In
other words, they allowed the NQ function to be flexible at
two points (the first sample point and the last) instead of the
usual one point. By applying this modified NQ model to
Australian aggregate data between 1967–1997, Diewert and
Lawrence (2002) found that some of their price elasticities
showed large year-to-year variations.
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Turning back to our case, the large variations in the price
elasticities are not surprising, considering that the restruc-
turing of the U.S. electric power industry in 1990s has been
described as “one of the largest single industrial reorgani-
zations in the history of the world” (Kwoka, 2008). This
restructuring changed the production process of the electric
utilities in many ways. First, many vertically integrated
electric utilities sold some or all of their generating plants to
non-utility producers, thereby dissolving the structure tra-
ditionally relied upon to capture economies of coordination
among vertical stages of electricity production (Kwoka,
2002; Wolfram, 2005; Borenstein and Bushnell, 2015).
Second, electric utilities transitioned from a cost-of-service
regulation model, in which they were compensated based
upon average production cost, to a market-based pricing
model, under which these assets earned a market price for
the output they were able to produce (Borenstein and
Bushnell, 2015). This transition changed another important
aspect of the production process—input mix (Wolfram,
2005). Specifically, as is well known, a major problem with
the cost-of -service regulation model is that firms regulated
in this manner tend to engage in excessive amounts of
capital accumulation in order to expand the volume of their
profits, thus resulting in inefficiently high capital-labor
ratios. For example, studies find that during 1970s and
1980s, some utilities invested in nuclear power plants that
far exceeded their budgets (Wolfram, 2005). However,
utilities under the market-based pricing model are less likely
to engage in capital over-accumulation and more likely to
choose an input mix that minimizes their total costs at
prevailing input prices (Wolfram, 2005). Third, facilities
incorporating new technologies, which were smaller and
more efficient than existing large facilities employed by
utilities, prompted nonutility producers to enter the com-
petitive power market. According to The U.S. Department
of Energy (DOE, 1996, p. 38), “No longer is it necessary to
build a 1,000 megawatt generating plant to exploit econo-
mies of scale”, because new technologies such as aero-
derivative gas turbines could be efficient at scales as small
as 10 megawatts. These new technologies met the needs of
nonutilities and enabled them “to generate electricity more
cheaply than the total (regulatory) costs of many utilities
that now use previously developed fossil-fueled or nuclear-
fueled technologies” (DOE, 1996, p. 35).

All the changes in production process discussed above
could potentially affect price elasticities. For example, using a
1992–2000 panel of 34 US major investor-owned electric
utilities, Granderson and Forsund (2014) found that the shift
from cost-of -service regulation to competition significantly
changed own input price elasticities of demand for labor and
fuel. Here, we would like to point out that restructuring
initiatives progressed at different paces in different states. This

implies that the changes in price elasticities were likely to last
for a considerable amount of time as shown in Figs. 5–13.

7 Conclusion

The econometric approach to productivity measurement
literature has long been dominated by the time trend
approach. Despite its popularity, this approach has two
major drawbacks. First, it produces a smooth, slowly
changing characterization of the pace of technical change.
This pattern of technical change is neither supported by the
evidence from index number approaches to calculating rates
of technical change, nor consistent with findings in the
investment literature that suggest technologies are intro-
duced in a “lumpy” fashion with discrete jumps. Second, it
suffers the problem of trending elasticities.

To overcome the two drawbacks associated with the
standard time trend approach, we propose in the present
paper a categorical time-varying coefficient translog cost
function. The main feature of this model is that each of its
coefficients is expressed as a nonparametric function of a
categorical time variable (which consists of T time points or
T categories, where T is the total number of discrete time
periods), thus allowing each time period to have its own set
of coefficients and cost function. In this sense, the time-
varying feature of the new cost function relaxes the
restrictive implicit assumption underlying the standard time
trend models that all sample years have to share the set of
coefficients, thus making the new cost function a more
general representation of production technology. Our tech-
nique requires panel data on firms within the same industry
to allow the coefficients to differ across time periods.

We apply the categorical time-varying coefficient model
to a sample of 81 electric utilities in the United States over
the period 1986–1998. We find that the categorical time-
varying coefficient model is capable of producing estimates
of productivity growth that closely track those obtained
using the Divisia productivity index. In contrast, the stan-
dard time trend model produces estimates of technical
change that is only a smoothed version of those implied by
the Divisia productivity index. We also find that the cate-
gorical time-varying coefficient model free of the problem
of trending elasticities. Specifically, we find the price elas-
ticities produced by the model show considerable year-to-
year variations, whereas those produced by the standard
time trend model or by Baltagi and Griffin (1988) model
vary within very narrow ranges. Considering the importance
and wide applications of price elasticities, this latter
advantage should be of interest to applied economists in
many fields.
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