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Abstract

This paper deals with the design of a robust sliding mode observer for dynamic state estimation applied to synchronous
generators in power systems. Assuming only the frequency deviation of the generator is measured via Phasor Measurement Units
(PMUs), we use a robust sliding mode estimation technique to dynamically reconstruct the rotor angle and the transient voltage.
The adopted estimation technique is insensitive to matched bounded uncertainties affecting the dynamics of the synchronous
generator. A stability analysis and tuning rules for the observer are also provided. Numerical simulations confirm the validity of
the approach.

Index Terms
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I. INTRODUCTION

THe area of power systems is facing new challenges due to the rapid development of novel heterogeneous renewable
energy based sources and increasing power demands [1]. Supervisory Control And Data Acquisition (SCADA) has been

the traditional state estimation technique widely used during the last few decades. This method is based on a steady-state model
of the power system and it is characterized by both a slow updating speed (in the order of seconds), and non-synchronous
information about the network [2].

More recently, Phasor Measurement Unit (PMU)-based wide-area measurement systems have been proposed to overcome the
drawbacks of the SCADA approach [3]. PMUs provide synchronized and faster measurements of real-time voltages, currents
and frequency in each area of a power network. By using information gathered by PMUs, it is possible to design more accurate,
robust and dynamic state estimators to enhance the monitoring of the power network [4]. In this paper, the word dynamic
estimation refers to the ability of these estimators, in a power network context, to reconstruct the generator rotor angle, speed
deviation, and transient voltage, in addition to the static states of voltage magnitude and voltage phase angle (see, e.g., [5]).

Many papers have proposed Extended Kalman Filter (EKF)-based dynamic state estimators. For example, in [4], a detailed
model of an equivalent generator has been used for the EKF design, and the only unknown input was the excitation voltage
of the rotor. In [6] (which can be considered as the continuation of [4]), local and wide-area EKF-based estimation has been
proposed. The estimation technique is shown to be robust with respect to two unknown inputs (i.e. the excitation voltage of
the rotor and the mechanical torque), and to model parameter variations. Three outputs, frequency, and electrical active and
reactive power flows, are required for the proposed estimation strategy. In [5], an EKF has been used with application to a
2-axis-fourth-order state space model of a single generator connected to the grid. More recently, to tackle model uncertainties,
derivative-free Kalman Filtering has been adopted in a decentralized fashion [7]. The proposed approach requires voltage and
phase measurements to be treated as inputs. In [8], a H∞ Extended Kalman filter (HEKF) has been proposed with bounded
uncertainties such as variations in generator reactances, noise and input disturbances.

Sliding mode-based state estimation can be used to dynamically and robustly reconstruct the unmeasured states of a dynamical
system [9]. The main advantages of the sliding mode approach are total insensitivity with respect to bounded uncertainties
appearing in the matched channel of the system under observation, and finite-time convergence to zero of the output estimation
error [9]. In [10] a first order sliding mode observer has been adopted to estimate the solar array current, measuring only the
DC link capacitor voltage, and modeling the device as a Linear Time Invariant (LTI) disturbed system. In [11] and [12] state
observers have been designed with application to a nonlinear model of Ćuk converters. In [13] an adaptive gain second order
sliding mode observer has been employed to reconstruct the unmeasured capacitor voltage for power converters, measuring
only the load current and ensuring robustness with respect to model uncertainties. In [14], by measuring the battery terminal
voltage, a sliding mode observer has been employed to track time-varying model parameters of lithium-ion batteries, i.e., the
so-called “state-of-health”. In [15] a super-twisting sliding mode observer has been employed to estimate the speed of a DC
motor, modeled as an LTI system.
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Figure 1. A schematic of a synchronous generator together with the proposed sliding mode observer.

In [16] and [17], a distributed sliding mode observer-based architecture has been adopted to dynamically reconstruct frequency
deviation and load voltage phase angles in power systems. In [18], higher order sliding mode observers have been used to
reconstruct frequency deviation and power governor variation for a network of thermal power plants. In [19], an observer-based
sliding mode control scheme for a single synchronous generator has been proposed to regulate both the speed and voltage of
the machine. A nonlinear observer has been employed to estimate excitation and voltage fluxes (the unmeasured state variables)
and mechanical torque (the unknown input). Finally, in [20], a multi-variable sliding mode observer has been designed to detect
and reconstruct load alterations in a power network, modeled in linear explicit Differential Algebraic Equations (DAEs) form.

Main Contribution: The main contribution of the present paper is the use of a recently proposed sliding mode observer to
reconstruct the rotor angle and quadratic-axis transient voltage for synchronous generators in power systems. In [16], [17], and
[20], a simplified generator model has been used, neglecting the voltage dynamics. In contrast to the previous approaches, here a
nonlinear model accounting for the transient voltage dynamics is adopted. Similar to [6], both excitation voltage and mechanical
torque are treated as unknown (bounded) input disturbances. Also similar to [6], [14], and [13] unknown nonlinearities affect the
dynamics of the system under observation. However in contrast to [6], in which three outputs (frequency, electrical active and
reactive power flows) are required to perform robust dynamic state estimation, in the present paper, only a single measurement
output is required, i.e. the frequency deviation, thus reducing the number of required sensors. Specifically, in the proposed
approach the synchronous generator is assumed to have nonlinear dynamics around its nominal (stable) working point. We
use a sliding mode observer to dynamically reconstruct both the rotor angle and the transient voltage. A proof of stability of
the proposed observer is discussed in detail, which makes use of a Lyapunov function technique. Tuning rules for the design
constants of the observer are also derived. Numerical simulations are provided to assess the proposed estimation technique.

Structure of the Paper: The rest of the paper is structured as follows. Section II describes the adopted dynamical model
of a synchronous generator and introduces the assumptions instrumental for the observer design. Section III presents in detail
the design of the sliding mode observer. In Section IV simulation test cases are provided to assess the proposed estimation
scheme. Section V concludes the paper.

Notation: The following (standard) notation is adopted throughout the manuscript. For a state variable x(t), x̂(t) denotes
its estimate. For a given matrix X , XT is its transpose. The expression col(x,y) denotes the column vector [x y]T . The symbol
Ia denotes an Identity Matrix of appropriate dimensions. 0ab ∈ Ra×b denotes a matrix with all zero entries. The expression
sign(·) denotes the signum function. Finally, ‖·‖ denotes the Euclidean norm. Table I shows a list of adopted symbols. The
last column in Table I specifies the numerical values instrumental to Section IV. Figure 1 shows a schematic of a synchronous
generator coupled with the proposed sliding mode observer.

II. SYNCHRONOUS GENERATOR MODEL DESCRIPTION

The so-called third order synchronous generator model is widely used to develop control and monitoring strategies in power
systems [3], [21]. This comprises three nonlinear differential equations:

δ̇ (t) = ω0∆ω(t)

ėq(t) = 1
Td0

(
E f (t)− eq(t)−

(
xd− x′d

) eq(t)−V (t)cos(δ (t))
x′d

)
∆ω̇(t) = 1

J

(
Tm(t)− V (t)

x′d
eq(t)sin(δ (t))− V 2(t)

2

(
1
xq
− 1

x′d

)
sin
(
2δ (t)

)
−D∆ω(t)

)
y(t) = ∆ω(t).


(1)



Table I
LIST OF SYMBOLS AND VARIABLES USED IN THE PAPER.

Symbol Meaning Value
δ (t) (rad) rotor angle 0.59

∆ω(t) (p.u.) frequency deviation 0.00
V (t) (p.u.) terminal bus voltage 1.02

E f (t) (p.u.) excitation voltage 2.29
ed(t) (p.u.) d-axis transient voltage 0.70
eq(t) (p.u.) q-axis transient voltage 0.84
Tm(t) (p.u.) mechanical input torque 0.80

ω0 (rad/s) frequency nominal value 120π

D (p.u.) damping factor 0.05
J (p.u.) inertia constant 10.00
Td0 (s) d-circuit time constant 0.13

xd (p.u.) d-axis reactance 2.06
xq (p.u.) q-axis reactance 1.21
x′d (p.u.) d-axis transient reactance 0.37

Assumption 1 Given the constant (nominal) input signals T m, E f , V , there exists an asymptotically stable equilibrium point
for the nonlinear system (1). The corresponding constant (nominal) state variables are

(
δ ,eq,∆ω = 0

)
.

With Assumption 1, the external inputs can be represented as follows V (t) = V +∆V (t), E f (t) = E +∆E f (t), Tm(t) = T m +
∆Tm(t), where ∆V (t), ∆E f (t), ∆Tm(t) represent time varying perturbations around the nominal values. Only ∆V (t) is assumed
to be known. For fixed inputs T m, E f , V , it is possible to represent (1) as a combination of linear and nonlinear terms as
follows:

Ẋ1(t) = A1X1(t)+A2X2(t)+G1(X1(t),∆V (t))+g1(E f (t))

Ẋ2(t) = A3X1(t)+A4X2(t)+G2(X1(t),∆V (t))+g2(U(t))

y(t) = X2(t) =CX(t). (2)

where X(t) = col(X1(t), X2(t)), and the components X1(t) = col(δ (t), eq(t)) , X2(t) = ∆ω(t); C =
[
0 0 1

]
; G1(·), G2(·),

g1(·), and g2(·) are properly defined functions, and U(t) = col(∆Tm(t), ∆E f (t), ∆V (t)). Only ∆ω(t) is measured via the PMUs
[3]. The states δ (t) and eq(t) have to be estimated for the purpose of enhancing the monitoring of the synchronous generator.
Matrix A, which represents the Jacobian matrix of the nonlinear system (1) about an equilibrium point

(
δ ,eq,∆ω = 0

)
, can

be partitioned as follows

A =

[
A1 A2
A3 A4

]
(3)

where A1 ∈ R2×2, A2 ∈ R2×1, A3 ∈ R1×2, and A4 ∈ R1×1.

Assumption 2 It is assumed that G1(·), G2(·), and therefore G(·) = col(G1(·),G2(·)) are Lipschitz functions with respect to
X1(t). Define LG1 , LG2 , LG as the Lipschitz constants of G1(·), G2(·), and G(·), respectively. It is assumed that g1(·), g2(·),
and therefore g(·) = col(g1(·),g2(·)) are unknown bounded inputs, with known positive upper bounds on their norms ∆g1 , ∆g2 ,
and ∆g, respectively.

The explicit expression for matrix A associate with (2) can be shown to be

A =


0 0 ω0

−V sinδ (xd−x′d)
Td0x′d

−xd
Td0x′d

0

− V
Jx′d

(
V x′d−xq

xq
cos2δ + eq cosδ

)
−V sin(δ )

Jx′d
−D

J

 (4)

which is Hurwitz, since the equilibrium point
(

δ ,eq,∆ω = 0
)

is asymptotically stable. It is possible to determine the Observ-

ability Matrix MO associated with the pair (A,C) in (2). For the conditions V = 0, δ = 0, and eq =V
(
xq− x′d

)
/xd , det(MO) = 0,

i.e. MO is not full rank and hence the system is not observable. However, V = 0 and δ = 0 are unacceptable (voltage magnitude
and rotor angle cannot be equal to zero at steady state [3]), whereas eq = V

(
xq− x′d

)
/xd can be acceptable by substituting

numerical values in Table I. Recalling the fact that the equilibrium point
(

δ ,eq,∆ω = 0
)

is locally asymptotically stable,
although det(MO) = 0, the pair (A,C) will be detectable.



III. SLIDING MODE OBSERVER DESIGN

In this section, a robust sliding mode observer is designed in order to estimate the unmeasured state variables. Since (A,C)
is detectable, it follows that there exists a matrix L such that A−LC is stable. (Note that A is assumed stable, so the trivial
choice L = 0 can be adopted.) For any Q > 0 the Lyapunov Equation [22]

(A−LC)T P+P(A−LC) =−Q, (5)

has a unique symmetric positive definite solution P� 0. Consistent to (3), the matrix P can be partitioned as follows

P =

[
P1 P2
PT

2 P3

]
(6)

where P1 ∈R2×2, P2 ∈R2×1 and P3 ∈R1×1. Consider a linear change of coordinates Z(t) = col(Z1(t), Z2(t)), T X(t) for the
dynamical system (2), where the matrix T is defined as

T ,

[
I2 P−1

1 P2
012 I1

]
(7)

The change of coordinate is required to obtain a canonical form of the system dynamics for the observer design, in which
(A1 +P−1

1 P2A3) is Hurwitz, exploiting ideas from [23]. The matrix Ã = TAT−1 is given by

Ã =

 A1 +P−1
1 P2A3 A2−A1P−1

1 P2
+P−1

1 P2
(
A4−A3P−1

1 P2
)

A3 A4−A3P−1
1 P2

 (8)

Consistent with (3), Ã can also be partitioned into four sub-matrices as follows:

Ã =

[
Ã1 Ã2
Ã3 Ã4

]
(9)

Following [23], by making use of the partition in (9), the system of equations in (2) can be written as

Ż1(t) = Ã1Z1(t)+ Ã2Z2(t)+G1(Z(t),∆V (t))+g1(E f (t))+P−1
1 P2 (G2(Z(t),∆V (t))+g2 (U(t)))

Ż2(t) = Ã3Z1(t)+ Ã4Z2(t)+G2(Z(t),∆V (t))+g2 (U(t))

y(t) = Z2(t).

 (10)

Let the dynamical observer for (10) be:

˙̂Z1(t) = Ã1Ẑ1(t)+ Ã2Z2(t)+G1(Ẑ(t),∆V (t))+P−1
1 P2

(
G2(Ẑ(t),∆V (t))

)
˙̂Z2(t) = Ã3Ẑ1(t)+ Ã4Ẑ2(t)+G2(Ẑ(t),∆V (t))+ν(t)

ŷ(t) = Ẑ2(t)

ν(t) =
(∥∥Ã4

∥∥∥∥ey(t)
∥∥+ρ

)
sign(ey(t))


(11)

where Ẑ1(t) is the estimate of Z1(t), Ẑ2(t) is the estimate of Z2(t), ρ is a positive design constant, and ν(t) is a discontinous
injection term depending on the output observation error ey(t) , Z2(t)− Ẑ2(t). The error system dynamics can be obtained
subtracting (11) from (10). Specifically, by defining e1(t), Z1(t)− Ẑ1(t), it follows that

ė1(t) = Ã1e1(t)+ [I2 P−1
1 P2]

(
G(Z(t),∆V (t))−G(Ẑ(t),∆V (t))+g(U(t))

)
(12a)

ėy(t) = Ã3e1(t)+G2(Z(t),∆V (t))−G2(Ẑ(t),∆V (t))+g2 (U(t))− v(t). (12b)

Associate with (12a)-(12b), the following sliding surface:

S =
{
(e1(t),ey(t)) |ey(t) = 0

}
. (13)

The following proposition, which represents the main theoretical key-finding of the present paper, will now be proven.

Proposition 1 Given Assumptions 1-2, the error dynamics (12a)-(12b) satisfy the following: i) ‖e1(t)‖ remains bounded ∀t ≥ 0,
i.e. ‖e1(t)‖ ≤ β , where β is a positive constant. ii) The point e1 = 0 is an asymptotically stable equilibrium point for the system
(12a) if g(U(t)) = 0 and

λmin (Q1)> 2‖[P1 P2]‖LG. (14)



iii) System (12a)-(12b) is driven to the sliding surface (13) in a finite time if the design constant ρ in ν(t) is chosen such that

ρ >
(∥∥Ã3

∥∥+LG2

)
β +∆g2 +η , (15)

where η is a positive constant.

Proof: i) The generic solution of differential equation (12a) is

e1(t) = exp
{

Ã1t
}

e1(0)+
∫ t

0

(
exp
{

Ã1(t− τ)
} (

[I2 P−1
1 P2]

(
G(Z(τ),∆V (τ))−G

(
Ẑ(τ),∆V (τ)

)
+g(U(τ))

)
dτ, (16)

in which Ã1 is Hurwitz. Given the linear change of coordinates (7), it is obvious that G(·) is Lipschitz function with respect
to Z(t), and there exist positive constants a0 and c0 such that [23]

‖e1(t)‖ ≤ c0exp{−a0t}‖e1(0)‖+
∫ t

0
c0exp{−a0(t− τ)}‖[I2 P−1

1 P2]‖
(
LG‖e1(τ)‖+∆g

)
dτ. (17)

Multiplying both sides of (17) by exp{a0t},

exp{a0t}‖e1(t)‖ ≤ c0

(
‖e1(0)‖+LG‖[I2 P−1

1 P2]‖
∫ t

0
exp{a0τ)}‖e1(τ)‖dτ

)
+

c0

a0
∆g‖[I2 P−1

1 P2]‖(exp{a0t}−1) .(18)

By making use of the Grownwall-Bellman Inequality [23], if

y(t)≤ λ (t)+
∫ t

0
µ(τ)y(τ)dτ (19a)

then

y(t)≤ λ (t)+
∫ t

0
λ (τ)µ(τ)exp

{∫ t

τ

µ(s)ds
}

dτ. (19b)

Exploiting the structure of equation (18), if

y(t) , exp{a0t}‖e1(t)‖
µ , c0LG‖[I2 P−1

1 P2]‖

λ (t) , c0 ‖e1(0)‖+
c0

a0
∆g‖[I2 P−1

1 P2]‖(exp{a0t}−1) ,

then (18) has the form of (19a). Then from (19b), and after straightforward algebraic manipulations, one obtains

‖e1(t)‖ ≤ c0 ‖e1(0)‖exp{(µ−a0) t}+ c0

a0
∆g‖[I2 P−1

1 P2]‖(1− exp{−a0t})

+
c2

0
a0

∆gµ

(exp{−a0t}
µ

+
1

(a0−µ)
− exp{(µ−a0) t} 1

µ (a0−µ)

)
. (20)

From (20) it is apparent that

‖e1(t)‖ ≤ β , ∀t ≥ 0, if µ = c0LG‖[I2 P−1
1 P2]‖< a0, (21)

which proves i).

Remark 1 Note that [23] considers the special case when ∆g = 0. A theoretical novelty of the proposed approach, compared
to [23], is that the term ‖e1(t)‖ remains bounded even in the presence of time varying bounded unknown inputs.

ii) To prove the asymptotic stability of the point e1 = 0, as in [23], the Lyapunov function Ve1 = e1(t)T P1e1(t) is chosen.
The time derivative of Ve1 yields

V̇e1 = e1(t)T (P1Ã1 + ÃT
1 P1
)

e1(t)+2e1(t)T [P1 P2]
(

G(Z(t),∆V (t))−G(Ẑ(t),∆V (t))
)
. (22)

In [23] it has been shown that P1Ã1+ ÃT
1 P1 =−Q1. Then, according to Assumption 2, the following inequalities can be obtained

V̇e1 ≤ −(λmin (Q1)+2‖[P1 P2]‖LG)‖e1(t)‖2 . (23)

It follows V̇e1 is strictly negative if

λmin (Q1)> 2‖[P1 P2]‖LG, (24)

which proves ii).



iii) From (12b), it follows

ey(t)T ėy(t)=ey(t)T
(

Ã3e1(t)+ Ã4ey(t)+G2(Z(t),∆V (t))

−G2(Z(t),∆V (t))+g2 (U(t))− v(t)
)

ey(t). (25)

By making use again of Assumption 2, the following inequalities can be obtained

ey(t)T ėy(t) ≤
((
||Ã3||+LG2

)
||e1(t)||+∆g2 −ρ

)
||ey(t)||

≤
((
||Ã3||+LG2

)
β +∆g2 −ρ

)
||ey(t)||. (26)

The reachability condition [9] is fulfilled if

ρ >
(∥∥Ã3

∥∥+LG2

)
β +∆g2 +η , (27)

which guarantees reaching of the sliding surface and proves iii).
Note that condition ey(t) = 0 is reached in a finite time tr which is upper-bounded as follows [9]:

tr <
2
∥∥ey(0)

∥∥
η

. (28)

In order to evaluate the performance of the sliding mode estimation scheme, it is possible to define the following performance
metric E(t)

E(t),
∫ t

tr

∥∥ey(τ)
∥∥dτ, (29)

where tr is the time instant at which the sliding motion ey(t) = 0 occurs. According to the theoretical developments in this
section, it is expected that E(t) is almost zero. This will be shown in simulation environment in Section IV.

Remark 2 Suppose that a differentiable band-limited measurement noise ψ(t) affects the output of the system (10) as y(t) =
Z2(t)+ψ(t). In this situation the output estimation error becomes ey(t), Z2(t)+ψ(t)− Ẑ2(t). Thus, measurement noise affects
the proposed observer in (11) (specifically, signals y(t) and ν(t) are affected). By exploiting (12a)-(12b), it is apparent that the
effect of the noise can be incorporated as part of the unknown bounded input g(U(t)), by reasonably increasing the value for
∆g in Assumption 2. Therefore, part i) of Proposition 1 still holds, thus preserving the bounded features of ‖e1(t)‖. As for part
iii), the sliding motion ey(t) = 0 still takes place in a finite time. However, as stated above, ey(t) is affected by the measurement
noise. By defining the noise-free output error as follows ěy(t) , Z2(t)− Ẑ2(t), one has in a finite time Ẑ2(t) = Z2(t)+ψ(t),
analogously to [24].

IV. NUMERICAL TEST CASES

In this section numerical test cases are provided in order to assess the proposed sliding mode observer. A single synchronous
generator connected to the grid is considered. The model parameters are shown in Table I (base power 1000 (MVA)) together
with the nominal equilibrium values for both the state variables and input signals. The simulation time horizon was set equal
to 10 (s) and the synchronous generator was modeled in the Matlab-Simulink R2017b environment by using the Ode1-Euler
solver with an integration step size τ = 1×10−4 seconds. The (Hurwitz) Jacobian Matrix A in (4) evaluated for the equilibrium
data in Table I is

A =

 0 0 377.000
−20.100 −42.830 0
−0.180 −0.160 −0.005

 (30)

For the Lyapunov Equation (5), matrix Q = I3, and the gain matrix L is L =
[
376.0877 −173.7180 −0.0124

]T
. The unique

symmetric positive definite solution P is given by

P =

10.8153 −7.2107 −0.5481
−7.2107 19.2845 3.9179
−0.5481 3.9179 0.9121

 (31)

The design constant ρ = 0.5. Computing the value of matrix T as in (7), matrix Ã for the implementation of the observer (11)
is obtained as follows:

Ã = TAT−1 =

 −0.020 −0.017 377.000
−20.125 −42.866 −0.001
−0.180 −0.160 −0.005

 (32)
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Figure 2. Scenario 1, from the top: time evolution of the rotor angle and its estimates; time evolution of the frequency deviation and its estimates; time
evolution of the q-axis transient voltage and its estimates.

Figure 3. Scenario 2, from the top: time evolution of the rotor angle and its estimates; time evolution of the frequency deviation and its estimates; time
evolution of the q-axis transient voltage and its estimates



Table II
PERFORMANCE METRIC E(T ) IN (29) AS A FUNCTIONS OF THE VARIANCE σ2 OF THE NOISE ψ(t), T = 10 SECONDS, (µ p.u.) =(1e−6 p.u.), SCENARIO 1

σ2 0.00 0.02 0.04 0.06 0.08 0.10 (p.u.)2

E(T ) 225 509 883 1259 1637 2026 (µ p.u.)

Two scenarios are considered:
1) Scenario 1, during which a step variation of 0.1 (p.u.) takes place in the armature voltage. This means that E f (t) =

2.29+0.1 · step(t−2). Note that this scenario has also been considered in [4].
2) Scenario 2, during which the mechanical input torque is time-varying. Specifically:

Tm(t) =


0.8 0 < t ≤ 2
0.8+0.05 · (t−2) 2 < t ≤ 4
0.9 4 < t ≤ 10

Note that both the input disturbances in the two scenario are unknown by the observer. For the two scenarios, three estimation
schemes are considered. Specifically, if x is a state variables, x̂SM denotes its estimate via the sliding mode observer in a
measurement noise-free condition, x̂n−SM is used for the estimate obtained via a sliding mode observer with measurement
noise, while x̂n−EFK is used for the estimate from an Extended Kalman Filter (EKF) with measurement noise. The variance
of the measurement noise is chosen as in [4] to be equal to σ2 = 0.1. From the analysis of Figures 2-3, one can conclude that
the proposed sliding mode estimation scheme can profitably estimate the unmeasured state variables in the noise free case,
but also in presence of measurement disturbances. It is apparent that the EKF attenuates better than sliding mode observer
the effect of the measurement noise as shown in Figure 3. However, the EKF performance can degradate in the presence of
unknown inputs affecting the system. The evolution of the performance metric E(T ) in (29) as function of the variance of the
measurement noise σ2 is almost linear, as shown in in Table II.

V. CONCLUSION

In this paper, a robust sliding mode observer has been designed for dynamic state estimation applied to synchronous generators
in power systems. In contrast to the widely used EKF, the sliding mode-based estimation technique applied in this framework
is revealed to be robust and totally insensitive to unknown bounded matched uncertainties and requires only one measurement
output. The stability properties and the tuning rules of the observer are also provided. Numerical simulations have been used
to assess our approach.
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