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Abstract

A so-called Critical Transition occurs when a small change in the input of a sy-

stem leads to a large and rapid response. One class of Critical Transitions can

be related to the phenomenon known in the theory of dynamical systems as a

bifurcation, where a small parameter perturbation leads to a change in the set of

attractors of the system. Another class of Critical Transitions are those induced

by noisy increments, where the system switches randomly between coexisting at-

tractors. In this thesis we study bifurcation- and noise-induced Critical Transitions

applied to a variety of models in finance and economy.

Firstly, we focus on a simple model for the bubbles and crashes observed in

stock prices. The bubbles appear for certain values of the sensitivity of the price

based on past prices, however, not always as a Critical Transition. Incorporating

noise to the system gives rise to additional log-periodic structures which precede

a crash. Based on the centre manifold theory we introduce a method for predicting

when a bubble in this system can collapse.

The second part of this thesis discusses traders’ opinion dynamics captured

by a recent model which is designed as an extension of a mean-field Ising model.

It turns out that for a particular strength of contrarian attitudes, the traders behave

chaotically. We present several scenarios of transitions through bifurcation curves

giving the scenarios a market interpretation.

Lastly, we propose a dynamical model where noise-induced transitions in a

double-well potential stand for a company shifting from a healthy state to a de-

faulted state. The model aims to simulate a simple economy with multiple in-

terconnected companies. We introduce several ways to model the coupling bet-

ween agents and compare one of the introduced models with an already existing

doubly-stochastic model. The main objective is to capture joint defaults of compa-

nies in a continuous-time dynamical system and to build a framework for further

studies on systemic and individual risk.
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Structure of the thesis

In Chapter 1 we list basic mathematical notions which appear throughout this

thesis as well as mention several applications of critical transitions in financial

models.

In Chapter 2 we explore a stock-bond model of Yukalov et al. [1] stating new

findings on its relevance and discover noise-induced structures.

Chapter 3 introduces a method of predicting the time of a crash in the model

in Chapter 2. This method, which can potentially be applied to a broad class

of dynamical systems, is based on the centre manifold reduction and we test it

against Monte Carlo methods.

In Chapter 4 we study an extension of mean-field Ising model applied to tra-

ders’ decisions. We discover a rich set of bifurcations, which we interpret in terms

of a variety of market scenarios.

In Chapter 5 we introduce a double-well coupled system to mimic statistics of

companies’ defaults. We analyse what kind of phenomena can lead to cascading

bankruptcies and how the dependence there can be modelled with copulas.

Each of the Chapters 2-5 has a separate introduction and discussion sections.

The aim of this structure is to enable the reader to study each of the chapters as

an independent piece of work. We recommend to read the chapters in the order

they appear in the thesis, however, this should not be necessary. The thesis

concludes with a general discussion (Chapter 6), which puts together the findings

presented in Chapters 2-5.
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Chapter 1

General introduction

A Critical Transition is generally understood as a large and sudden change of

the observed state of a system given a small change in the input of a system

or a change in the conditions [2]. This phenomenon is often associated with an

attractor vanishing as a parameter varies, leading to a jump to another attrac-

tor. This association generalises ideas developed in catastrophe theory [3] to

dynamical systems that are not necessarily driven by a potential as bifurcation-

induced transitions and can be thought of as an application of bifurcation theory

[4]. However, the concept of Critical Transitions can also be extended to include

transitions caused by noise-induced jumps between different attractors and rate-

induced phenomena where the speed at which parameters vary leads the system

to change state [5].

Critical Transitions have been applied to many different scientific fields for in-

stance to ecology [6] or climate science [7] and were able to explain a variety of

underlying mechanisms. However, in finance and economics the ‘true’ mecha-

nisms are highly variable because they depend on human decisions and regula-

tion which can affect the market and indeed its structure. Despite the fact that

the underlying structures are highly volatile, there exist many simplistic theories

which aim to explain market movements with linear models. For example, general

equilibrium theory [8, 9] itself is nonlinear, however in applications the analysis is

usually restricted to a neighbourhood of an equilibrium. There, the market sim-

ply follows an equilibrium with a linear response to perturbations. Nevertheless,

linear models cannot be used to justify the spontaneous appearance of bubbles

and crashes [10]. In this thesis we use nonlinear models and the mathematical
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CHAPTER 1. GENERAL INTRODUCTION

theory of Critical Transitions to try and explain these phenomena. We explore

both bifurcation- and noise-induced Critical Transitions in several models origina-

ting from finance and economics.

The goal of this chapter is to introduce some of the mathematical background

needed to understand the ideas presented in this thesis. We present some basics

of dynamical systems and bifurcation theory, temporal discretisation schemes as

well as continuation methods. Moreover, we discuss solutions of stochastic dif-

ferential equations and provide numerical schemes for these. At the end of this

chapter, we point to some examples of applications of Critical Transitions in fi-

nance and economics.

1.1 Deterministic dynamical systems

A dynamical system is a mathematical formulation of a rule which describes how

a system evolves in time [11]. There are many ways to model such evolution

with deterministic rules. In this thesis, we will use ordinary differential equations

and iterated maps. While constructing a dynamical system to model certain real

phenomena one often incorporates parameters. The selection of parameters can

drastically change the dynamics of the system. This is related to the concept

of a bifurcation, which we explain in Sec. 1.2. Common observed dynamics is

convergence to a steady state or periodic oscillations, some systems however

can exhibit more complicated behaviour such as chaos, which we introduce in

Sec. 1.2.4.

Usually, the analytical approach to dynamical systems is not possible, as most

nonlinear ordinary differential equations cannot be solved analytically. This has

led to development of a wide range of numerical schemes which allow computers

to approximate the solutions. The analysis of parameter dependence of solutions

is even more complicated. Algorithms (continuation methods) have been develo-

ped to numerically appriximate this parameter dependence: see Sec. 1.3.

The world of deterministic dynamical systems includes continuous-time sys-

tems and discrete-time systems. The dynamics in continuous time we describe

with ordinary differential equations (ODEs) in the form

dx(t)
dt

= f (t, x(t)) (1.1)
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1.1. DETERMINISTIC DYNAMICAL SYSTEMS

where f (t, x) : R × RK → RK for K ∈ Z+. We will consider f to be sufficiently

smooth (Lipschitz-continuous) [12, Chapter 1], which implies that the ODE initial

value problem has a well-defined and unique solution. In Eq. (1.1) x represents

the vector of state (phase) variables and t represents time. Often, instead of dx(t)
dt

we write ẋ.

If the function f does not depend on time, the ODE (1.1) is called autonomous,

otherwise, it is called non-autonomous. Throughout the thesis we will constrain

the analysis of ODEs mainly to autonomous cases.

Systems with discrete time specify a rule describing how the system proceeds

from one point in time to the next. This can be characterised as a map which is a

function of the current time t and state of the system x(t) whose value is the new

state of the system at time t + 1:

x(t + 1) = m (t, x(t)) (1.2)

where m(t, x) : Z × RK → RK for K ∈ Z+.

The Equation (1.2) is called a difference equation, and, similarly to the case

for ODEs, difference equations are called autonomous if the function m does

not depend on time. The relation (1.2) is sometimes written as x 7→ m(t, x) (or

x 7→ m(x) when the function m does not depend on t).

Definition 1.1.1 (Evolution operator [4, Sec. 1.1.3]). For given time t ∈ T a map

ϕt : X 7→ X defined in the state space X transforms some state xs ∈ X at time s

into state xs+t ∈ X at time s + t as follows:

xs+t = ϕtxs. (1.3)

The map ϕt is called an evolution operator. Moreover, ϕ0 = Id and ϕt ◦ ϕs = ϕt+s for

all t, s ∈ T .

In continuous-time (for T = R) the family {ϕt}t∈R is called a flow. In discrete-time

ϕt = mt = m(m(...)) (t-times) denotes the t-th iterate of a map m (T = Z if the map m

is invertible, otherwise T = N).

Note that an autonomous ODE on X has solutions that can be viewed as a

continuous time flow on X.

For a given flow or map the most basic way of graphically representing the
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(A)

0 10 20 30
-1

1 (B)

-1 1
-1

1

Figure 1.1: Sample representation of the dynamics of a damped pendulum shown (A)
as a time series plot and (B) in phase space. Green denotes a fixed point and the arrow
shows the direction in which the state of the system evolves with increasing time.

dynamics is a time series plot. For a chosen initial condition one simply shows its

orbit (i.e. evolution in time) in a diagram where the X-axis represents the time and

Y-axis the variable (phase) – see Fig. 1.1A. Another way is to show the trajectory

in phase diagrams, where the axes represent the state variables (Fig.1.1B).

In Fig. 1.1B note that the trajectory converges to a point in phase space. This

is an example of an attracting fixed point (equilibrium). Fixed points and periodic

orbits are core objects appearing in studies of dynamical systems. The formal

definitions of fixed points and periodic orbits are given below.

Definition 1.1.2 (Fixed point [12, Def. 1.6]).

1. For flows – a point is a fixed point of a flow ϕ if and only if ϕ(x, t) = x for all t.

2. For maps – a point is a fixed point of a map m if and only if m(x) = x.

Definition 1.1.3 (Periodic point and periodic orbit [12, Def. 1.7]).

1. For flows – a point x is periodic of (minimal) period T > 0 if and only if

ϕ(x, t + T ) = ϕ(x, t) for all t and ϕ(x, t + s) , ϕ(x, t) for all 0 < s < T .

2. For maps – a point x is periodic of (minimal) period N = 1, 2, 3, ... if and only

if mN(x) = x and mn(x) , x for all 0 < n < N.

The orbit of a periodic point is called a periodic orbit.

A common way to relate specific flows to maps is to consider a Poincaré map

or a stroboscopic map. The former is a map which takes a snapshot of the conti-

nuous system every time the trajectory crosses a certain section in phase space
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1.1. DETERMINISTIC DYNAMICAL SYSTEMS

[13, Sec. 10.1]. The latter is a map which takes a snapshot of the continuous dy-

namics every fixed time T [14] and is a useful simplification for studying periodic

phenomena.

An important property of dynamical systems that allows to understand stability

and bifurcations of fixed points is hyperbolicity.

Definition 1.1.4 (Hyperbolic fixed point).

1. For flows [12, Def. 4.6] – a hyperbolic fixed point is an equilibrium where the

eigenvalues of the Jacobian have no real parts equal to zero.

2. For maps [13, Sec. 1.4] – a hyperbolic fixed point is a fixed point where the

eigenvalues of the Jacobian do not lie on the unit circle.

There are several concepts of stability, the most significant being the following

one.

Definition 1.1.5 (Asymptotic stability [12, Def. 2.3]).

1. For flows – a fixed point x is asymptotically stable if and only if both the

following conditions apply:

• the fixed point x is Lyapunov stable:

∀ε > 0∃δ > 0∀y : |x − y| < δ =⇒ |ϕ(x, t) − ϕ(y, t)| < ε∀t ≥ 0,

• the fixed point x is quasi-asymptotically stable:

∃δ > 0∀y : |x − y| < δ =⇒ |ϕ(x, t) − ϕ(y, t)| → 0 as t → ∞ .

2. For maps – a fixed point x is asymptotically stable if and only if both of the

following conditions apply:

• the fixed point x is Lyapunov stable:

∀ε > 0∃δ > 0∀y : |x − y| < δ =⇒ |mn(x) − mn(y)| < ε∀n ≥ 0,

• the fixed point x is quasi-asymptotically stable:

∃δ > 0∀y : |x − y| < δ =⇒ |mn(x) − mn(y)| → 0 as n→ ∞ .

The definition of stability presented above is often not straightforward to verify.

However, one can use a definition of stability which is based on the eigenvalues of

the Jacobian at the fixed point. Namely, a hyperbolic fixed point is linearly stable

(resp. strictly linearly unstable) if:
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1. for flows – all the eigenvalues of a fixed point have real parts less than 0

(resp. greater than 0) [12, Def. 4.8],

2. for maps – all the eigenvalues of a fixed point are inside (resp. outside) the

unit circle [13, Sec. 1.4].

If a fixed point is linearly stable then it is asymptotically stable – see [12, The-

orem 2.13]. We will call a stable fixed point a sink, strictly unstable a source, and,

if a hyperbolic point is not a sink nor a source, it is called a saddle [12, Def. 4.8].

Note that a saddle point is an unstable (i.e. not stable) fixed point. Moreover, if

at a source or a sink the eigenvalues have imaginary parts equal to zero, such a

point is called a node. Otherwise, it is called a focus.

Fixed points and periodic orbits are examples of sets that have another impor-

tant feature which may help to predict future states of a system: if a point starts in

such a set, its evolution is restricted to this set. This property is called invariance

[12, Def. 1.8] and plays a big role in simplifying or decoupling the dynamics in the

neighbourhood of fixed points.

Following [13, Sec. 3.1], let us define three subspaces for a given fixed point

in Rn:
E s = span{e1, ..., es}

Eu = span{es+1, ..., es+u} (s + u + c = n)

Ec = span{es+u+1, ..., es+u+c}

(1.4)

where {e1, ..., es} are (generalised) eigenvectors corresponding to eigenvalues with

negative real parts, {es+1, ..., es+u} are (generalised) eigenvectors corresponding to

eigenvalues with positive real parts and {es+u+1, ..., es+u+c} are (generalised) eigen-

vectors corresponding to eigenvalues with real parts equal to zero (i.e. the Jaco-

bian in the fixed point is singular). In discrete systems, instead of the condition that

the real parts of eigenvalues are less/equal/greater than zero, one considers if the

eigenvalues lie inside/on/outside of the unit circle, respectively [13, Sec. 3.3]. The

subspace E s is called the stable subspace/eigenspace, Eu is called the unstable

subspace/eigenspace and Ec is called the centre subspace/eigenspace.

As mentioned earlier, sinks, saddles and sources are hyperbolic points, and,

following the construction of Ec and the Def. 1.1.4, for hyperbolic points the centre

subspace is dimensionless.

The subspaces E s, Eu and Ec show only the stable, unstable and centre directi-
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ons in the fixed point, they are not invariant manifolds. The existence of (local)

invariant manifolds is given by the following theorem.

Theorem 1.1.6 (Centre Manifold Theorem for Flows [15, Theorem 3.2.1]). Let f

be a Cr vector field on Rn, f (0) = 0 and the (generalised) eigenspaces E s, Eu and

Ec around the fixed point 0 are as given in Eq. (1.4). Then:

• there exists a Cr s-dimensional stable invariant manifold W s tangent to E s at

0,

• there exists a Cr u-dimensional unstable invariant manifold Wu tangent to Eu

at 0,

• there exists a Cr−1 c-dimensional centre (local) invariant manifold Wc tangent

to Ec at 0.

The stable and unstable manifolds W s and Wu specified above are unique, the

centre manifold Wc does not need to be.

Remark 1.1.7. An interesting phenomenon can arise for saddle objects. As some

of the eigenvectors of a saddle are stable and some are unstable, there is a

possibility for existence of an orbit which is contained in both stable and unstable

manifolds of the fixed point. It means that there can be an orbit which for time

t → ∞ and t → −∞ has the same limiting fixed point. This orbit is called a

homoclinic orbit [12, Chapter 12].

Moreover, locally near the fixed point in Theorem 1.1.6, one can show [16] that

there are coordinates xs, xu, xc such that


ẋs = Asxs + fs(xs, xu, xc)

ẋu = Auxu + fu(xs, xu, xc)

ẋc = Acxc + fc(xs, xu, xc)

(1.5)

for some functions fs, fu, fc with no nonlinear part [15, Eq. (3.2.43)]. Then, the

decoupled system can be simplified in the neighbourhood of a fixed point for

instance by analysing only the dynamics on the centre manifold. This method

is called centre manifold reduction. In order to perform it, one writes xs or xu in

terms of the centre variable xc and evaluates the flow on the centre manifold.
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An example of a study of the dynamics on the centre manifold can be found in

Sec. 3.3.

In many parametrised systems the centre manifold of an equilibrium will be

nontrivial (i.e. such that the equilibrium is not hyperbolic) only for isolated sets

of parameters. This change in hyperbolicity is associated with a bifurcation of

equilibria, which we discuss, together with several other types of bifurcations, in

the next section.

1.2 Bifurcations and chaos for flows and maps

In this section we will consider autonomous ODEs and autonomous maps allo-

wing a smooth variation of parameter(s). It means that a continuous-time system

can be written as
dx(t)

dt
= f (x(t), p) (1.6)

and the discrete-time system as

x(t) 7→ m(x, p) (1.7)

where x represents the vector of state variables and p is the vector of parameters.

When a parameter is varied, the behaviour of a dynamical system can change.

If there exists a homeomorphism which maps the orbits in the system before the

change of parameters to the orbits after the change, it means that there was no

qualitative change of behaviour of the dynamical system. In such case one says

that the two phase portraits and the two dynamical systems – before and after

the parameter variation – are topologically equivalent [4, Sec. 2.1]. On the other

hand, the appearance of phase portraits which are not topologically equivalent

under a parameter change is called a bifurcation [4, Sec. 2.3]. In other words, a

bifurcation is a qualitative change of behaviour of the dynamical system under a

parameter change.

An example of a qualitative change in phase portraits is appearance of the

centre manifold around a fixed point. In this case, for some parameter value pc a

fixed point is not hyperbolic as there exists a centre manifold of dimension greater

or equal to 1. Yet, for another value of that parameter arbitrarily close to pc the
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fixed point is hyperbolic and therefore the centre manifold is dimensionless. The

conclusion is that there must be a bifurcation in pc as the two phase portraits are

not topologically equivalent, because the centre manifold cannot be mapped to

another manifold around the hyperbolic equilibrium. In general, the bifurcations

of fixed points (i.e. local bifurcations) can occur only for parameter values where

a fixed point is not hyperbolic [12, Chapter 8]. Hence, following Def. 1.1.4, to

analyse local bifurcations it is enough to study the eigenvalues of the fixed points.

A bifurcation specifies only the difference between two phase portraits in terms

of topological equivalence, hence different dynamical systems can undergo the

same bifurcations. A ‘simplest form’ of a dynamical system of the same equiva-

lence class of a bifurcation is called a (topological) normal form [4, Def. 2.16].

The ‘simplest form’ is a subjective term, thus for a given bifurcation there can be

several common normal forms.

When one of the parameters is changed it is useful to present graphically how

certain invariant objects vary for different parameter values. It is often done using

(phase-parameter) bifurcation diagrams where the horizontal axis represents the

parameter values and the vertical axis shows the phase values. If more parame-

ters are varied at once, the bifurcations are visualised in two-parameter bifurca-

tion diagrams where the state variables are not shown at all – only the information

which bifurcations occur for which parameter values is presented. It is a useful

method especially while presenting codimension-two bifurcations, i.e. where two

parameters need to be varied for the bifurcation to occur. See Chapters 2–5 for a

variety of bifurcation diagrams.

Below we describe several local and global bifurcations which appear throug-

hout this thesis and provide the normal forms for local bifurcations. Moreover, we

discuss their relevance to Critical Transitions based on the classification of bifur-

cations proposed in [17]: (i) safe – there is no jump between the attractors as

well as no discontinuous change of their size, (ii) explosive – the existing attractor

changes its size or form discontinuously, but the new attractor includes the old

one, (iii) dangerous – the attractor disappears and causes a jump to another re-

mote attractor. Categories (ii) and (iii) can be understood as a Critical Transition.

The bifurcations below are grouped separately for flows and maps. We will

use λ or λ1 and λ2 to denote the eigenvalues at the point of bifurcation and in all

cases the bifurcating fixed point of the system (1.6) or (1.7) is at x = 0 and p = 0.
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1.2.1 Bifurcations for flows – local bifurcations

1. Saddle-node bifurcation (also called a fold or limit point)

Normal form [4, Sec. 3.2]:

ẋ = x2 + p. (1.8)

Description: a bifurcation of two equilibria (a saddle and a node), which

collide and disappear.

Eigenvalue at the bifurcation point: λ = 0.

Critical Transition: YES (dangerous bifurcation).

Remark 1.2.1. A clarification on the name of this bifurcation is needed here.

In a 1-dimensional system, there is no such object as a saddle and the

actual collision at fold point is sink-source. In the N-dimensional (with N ≥ 3)

system, the actual collision can be saddle-saddle, but for the reduced 2-

dimensional system at the bifurcation point it is still saddle-node.

2. Pitchfork bifurcation

Normal form [12, Sec. 8.5]:

ẋ = px ± x3. (1.9)

Description: at the bifurcation point one equilibrium splits into three. For

two of the new equilibria the stability of eigenvectors is the same as for the

equilibrium before the bifurcation. The third one differs in stability of one

eigenvector. For example, if a one-dimensional sink undergoes a pitchfork

bifurcation, after the bifurcation there will be two sinks and one source.

Eigenvalue at the bifurcation point: λ = 0.

Critical Transition: NO for supercritical pitchfork (i.e. a stable point splits into

three), YES (dangerous bifurcation) for subcritical pitchfork (i.e. an unstable

point splits into three).

3. Transcritical bifurcation

Normal form [12, Sec. 8.4]:

ẋ = px − x2. (1.10)

Description: two equilibria meet at a bifurcation point. After the bifurcation

both equilibria still exist, but they swap the stability.

Eigenvalue at the bifurcation point: λ = 0.

28



1.2. BIFURCATIONS AND CHAOS FOR FLOWS AND MAPS

Critical Transition: possible, depends on the exact shape of equilibria curves

(either a safe bifurcation or a dangerous bifurcation). The two possibilities

for a dangerous transcritical bifurcation are: the increasing stable branch

lies above the increasing unstable branch, or, the decreasing stable branch

lies below the decreasing unstable branch. A diagram of the latter can be

found in [18, Fig. 2.8a].

4. (Andronov-)Hopf bifurcation

Normal form [12, Sec. 8.8]:


ẋ1 = p1x1 − p2x2 ± x1(x2

1 + x2
2)

ẋ2 = p2x1 + p1x2 ± x2(x2
1 + x2

2)
. (1.11)

Description: at this bifurcation two of the eigendirections change their sta-

bility and a periodic orbit surrounding the equilibrium appears. In the 2-

dimensional case, only sinks and sources can undergo a Hopf bifurcation.

In higher dimensions it can happen also for saddles and then a saddle-

periodic orbit appears.

Real parts of eigenvalues at the bifurcation point: <(λ1) = <(λ2) = 0.

Critical Transition: NO for supercritical Hopf (the periodic orbit is stable),

YES (dangerous bifurcation) for subcritical Hopf (the periodic orbit is unsta-

ble).

5. Cusp bifurcation

Normal form [4, Sec. 8.2]:

ẋ = p1 + p2x ± x3. (1.12)

Description: it is a codimension-two bifurcation where two fold curves meet.

Eigenvalue at the bifurcation point: λ = 0.

6. Bogdanov-Takens bifurcation (also called double-zero eigenvalue bifurcation)

Normal form [4, Sec. 8.4]:


ẋ1 = x2

ẋ2 = p1 + p2x1 + x2
1 ± x1x2.

(1.13)
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Description: it is a codimension-two bifurcation where a fold curve meets a

Hopf bifurcation curve.

Eigenvalues at the bifurcation point: λ1 = λ2 = 0.

1.2.2 Bifurcation for maps – local bifurcations

1. Saddle-node bifurcation

Normal form (see [4, Sec. 4.2] or [13, Sec. 21.1A]):

x 7→ p + x ± x2. (1.14)

Description: a saddle fixed point collides with a node and both disappear.

Eigenvalue at the bifurcation point: λ = 1.

Critical Transition: YES (dangerous bifurcation).

2. Pitchfork bifurcation

Normal form [13, Sec. 21.1C]:

x 7→ x + px ± x3. (1.15)

Description: the bifurcation occurs at p = 0 where one fixed point splits into

three. For two of the new fixed points the stability of eigenvectors is the

same as for the fixed point before the bifurcation. The third one differs in

stability of one eigenvector. For example, if a one-dimensional sink underg-

oes a pitchfork bifurcation, after the bifurcation there will be two sinks and

one source.

Eigenvalue at the bifurcation point: λ = 1.

Critical Transition: NO for supercritical pitchfork, YES (dangerous bifurca-

tion) for subcritical pitchfork.

3. Transcritical bifurcation

Normal form [13, Sec. 21.1B]:

x 7→ x + px ± x2. (1.16)

Description: two equilibria meet at a bifurcation point. After the bifurcation
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both equilibria still exist, but they swap the stability.

Eigenvalue at the bifurcation point: λ = 1.

Critical Transition: possible depending on the exact shape of equilibria cur-

ves (either a safe bifurcation or a dangerous bifurcation).

4. Period-doubling bifurcation (also known as flip bifurcation)

Normal form (see [4, Sec. 4.4] or [13, Sec. 21.2]):

x 7→ −x − px + x3. (1.17)

Description: a fixed point (i.e. period-1 point) or a periodic point doubles its

period at the bifurcation point. This bifurcation can occur also in continuous

systems, but only for periodic orbits.

Eigenvalue at the bifurcation point: λ = −1.

Critical Transition: NO for supercritical flip (stable point doubles its period),

YES (dangerous bifurcation) for subcritical flip (unstable point doubles its

period).

5. Neimark-Sacker bifurcation

Normal form [4, Sec. 4.6]:

 x1

x2

 7→ (1 + α)

 cos θ − sin θ

sin θ cos θ


 x1

x2

 +

+
(
x2

1 + x2
2

)  cos θ − sin θ

sin θ cos θ


 a −b

b a


 x1

x2


. (1.18)

For an alternative normal form see [13, Sec. 21.3].

Description: periodic or quasi-periodic oscillations appear and the point

changes its stability. This bifurcation is analogous to Hopf for flows, the

complex conjugate eigenvalues cross the unit circle.

Eigenvalues at the bifurcation point: |λ1| = |λ2| = 1.

Critical Transition: NO for supercritical Neimark-Sacker bifurcation (stable

oscillations), YES (dangerous bifurcation) for subcritical Neimark-Sacker bi-

furcation (unstable oscillations).

Remark 1.2.2. Adding higher order terms (for instance O(||x||4)) to the right-

hand side of Eq. (1.18) leads to a system which would exhibit qualitatively
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different behaviour than the system (1.18) near the bifurcation. In an exten-

ded system there could be observed infinitely many periodic orbits (stable

and unstable) and saddle-node collisions of these within a tiny parameter

variation. Hence, one cannot call the form (1.18) a normal form of the

Neimark-Sacker bifurcation generically, however, it describes in a simple

way the key phenomenon: a creation of a periodic orbit from a point in a

discrete dynamical system.

A local bifurcation of Eq. (1.6) at x = xc and p = pc is accompanied with

appearance of a non-zero dimensional centre manifold of xc at pc. In order to

understand changes with parameter, the system Eq. (1.6) can be extended by a

trivial ODE for the parameter (see for instance [19, Example 2.]) to obtain:


ẋ = f (x, p)

ṗ = 0
. (1.19)

In this system the centre manifold of (xc, pc) has one more dimension than in

Eq. (1.6), hence it is called an extended centre manifold. A consequence of such

an extension is that the solutions of the system Eq. (1.19) on a centre manifold

depend on p. Therefore, one can approximate analytically the solutions not only

at the bifurcation for the original system given by Eq. (1.6), but also the dynamics

as it varies with p. We use the analysis of a flow on an extended centre manifold

in Sec. 3.3.

1.2.3 Bifurcations for flows – global bifurcations

Not every bifurcation happens locally. For instance, appearance of a homoclinic

orbit (see Remark 1.1.7) does not change the phase portrait in the vicinity a fixed

point. This is an example of a global bifurcation. In this thesis we mention only

two global bifurcations, which are listed below.

1. Homoclinic bifurcation

Description: it is a global bifurcation where a periodic orbit collides with sta-

ble and unstable manifolds of a saddle and a homoclinic orbit appears. The

homoclinic orbit exists only at the bifurcation point and after the bifurcation

the periodic orbit disappears [11, Sec. 8.4].
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Critical Transition: YES (dangerous bifurcation) if the periodic orbit before

the bifurcation is stable, NO if the fixed point inside the periodic orbit is sta-

ble.

2. Saddle-node on invariant circle

Description: a saddle collides with a node and both disappear whereas a

periodic orbit (an invariant circle) appears. This global bifurcation is also

called saddle-node homoclinic bifurcation [4, Sec. 7.1.1] or infinite-period

bifurcation [11, Sec. 8.4].

Critical Transition: YES (explosive bifurcation).

1.2.4 Chaos

All the bifurcations described in Sections 1.2.1-1.2.3 affect two types of invariant

sets: fixed points and periodic (or quasi-periodic) orbits. However, there is another

important type of invariant set: a chaotic attractor, on which we will come across in

Chapter 4. In order to explain chaotic behaviour, we use the definition of Lyapunov

exponent presented below.

Definition 1.2.3 (Lyapunov exponent [20, Eq. (1.10)]). Lyapunov exponent λ is

the exponential rate of separation of trajectories on an invariant manifold given by

λ(x0, δx) = lim
t→∞

1
t

ln
∣∣∣(Dϕt(x0)

)
δx

∣∣∣ (1.20)

where δx indicates the direction of perturbation, D denotes the Jacobian, |·| stands

for any vector norm and x0 is an initial condition.

For computational purposes in this thesis we find the Lyapunov exponents

using the numerical method given in [21].

Lyapunov exponents depend in principle on the choice of initial point x0 and

direction δx. However, it is typical that for points x0 in a given basin of attraction

and almost every δx the Lyapunov exponents are the same. Near to a stable fixed

point the trajectories converge to each other, hence, as Lyapunov exponent re-

presents the separation rate between two neighbouring trajectories, it is negative

for these types of attractors [11, Sec. 10.5]. Moreover, every periodic orbit of an

autonomous system has a zero Lyapunov exponent associated with phase shift

33



CHAPTER 1. GENERAL INTRODUCTION

along the orbit. If the periodic orbit is stable then all other Lyapunov exponents

are less than zero.

If the Lyapunov exponent is positive, but a given orbit is bounded in phase

space, the attractor to which the trajectory converges is called chaotic [11, Sec. 10.5].

Following [12, Chapter 11], chaos can be understood as an aperiodic and boun-

ded behaviour in a deterministic system that exhibits sensitive dependence on

initial conditions (i.e. every two solutions which start arbitrarily close to each ot-

her get separated from each other). The main feature of deterministic systems

exhibiting chaotic behaviour is that it is impossible to predict the evolution of state

variables in the long run if there is even a tiny uncertainty about the initial condi-

tion.

1.3 Numerical schemes and continuation methods

for deterministic systems

It is usually not possible to find an explicit analytical solutions of a set of nonlinear

ODEs for a specific initial condition. For this reason we must turn to numerical

approximation methods of the solutions. The simplest approximation scheme is

called Euler’s method, where given a previous step xn the next one is approxima-

ted by xn+1 = xn + h f (tn, xn) for some small h = tn+1 − tn > 0. However, because

of the fact that Euler’s method is often not very precise, throughout this thesis we

use a different approximation scheme, which is outlined below.

Numerical scheme 1 (4th order Runge-Kutta scheme [22, Sec. 6.10]). The 4th

order Runge-Kutta numerical scheme for N points discrete in time and step-size

h = ti+1 − ti is the following:

xn+1 = xn +
h
6

(V1 + 2V2 + 2V3 + V4) (1.21)

where V1 = f (tn, xn), V2 = f (tn + h
2 , xn + h

2V1), V3 = f (tn + h
2 , xn + h

2V2) and V4 =

f (tn + h, xn + hV3) with initial condition x0 = x(0) and n = 0, 1, ...,N − 1.

The precision of this approximation depends on h and it increases with decre-

asing h. For practical purposes though, one cannot use too low values of h as it
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Figure 1.2: Graphical representation of pseudo-arclength continuation (Scheme 2). The
predictor based on Euler scheme performed from point yi is denoted by zi. The corrected
point yi+1 represents the intersection of equilibria curve and the hyperplane S orthogonal
to the vector −−→yizi.

can lead to numerical errors. We will further use 4th order Runge-Kutta scheme

with h = 10−6.

If, instead of trajectories, we are interested in invariant sets and their bifurca-

tions, we can use numerical continuation methods to approximately locate such

solutions and find their bifurcations. A very common scheme is called pseudo-

arclength continuation and it is implemented in continuation software XPPAUT [23]

we use in the next chapters for continuation.

Numerical scheme 2 (Pseudo-arclength continuation [4, Sec. 10.2.1]). Pseudo-

arclength continuation is a method to continue solutions and it proceeds as fol-

lows:

1. Make a predictor zi as in Euler’s integration scheme in extended space (va-

riables+parameter) from step yi.

2. Correct the guess using Newton-Raphson solving scheme to yi+1 on a hy-

perplane S orthogonal to the vector attached in the predictor and connecting

the initial point and the predictor.

The schematic representation of this algorithm is provided in Fig. 1.2.

1.4 Stochastic differential equations

Sometimes, a purely deterministic model cannot explain features of a real system:

this is especially the case if there is time-varying randomness in the system or
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within the inputs to the system. In such a case it may be more appropriate to

construct a model in the form of a stochastic differential equation (SDE) which

describes the behaviour of a system with the deterministic and stochastic forcing

as follows:

dxt = f (t, xt) dt + F (t, xt) dWt (1.22)

with initial value x0. Function f : R × RK → RK is called the drift whereas function

F : R×RK → RK×L is called diffusion, K ∈ Z. dWt is L-dimensional Wiener process.

The solution xt of the SDE (1.22) satisfies a stochastic integral equation

xt = x0 +

∫ t

0
f (s, xs)ds +

∫ t

0
F(s, xs)dWs, (1.23)

where we use the Itô representation of the integral
∫ t

0
·dWs. For more details on

Itô integrals and other types of stochastic integrals see for instance [24].

In contrary to deterministic equations, the stochastic equations do not have

unique solutions, but they have infinitely many solutions that depend not only

on F and the initial condition, but also on the particular noise path Wt. Although

there is no unique trajectory satisfying Eq. (1.22), it is still possible to extract some

statistics of solutions for example by simulating an ensemble of trajectories with

a set of ‘typical’ noise paths.

There is a big variety of approximation schemes for SDEs and one of the

measures used to classify them is the order of strong convergence. Following

[25, Eq. (9.6.2)], a time discrete approximation Yδ with a step size δ is called

strongly convergent to an Itô process X at time t if limδ→0 E(|Xt − Yδ(t)|) = 0.

Furthermore, strong schemes can be compared by their order of convergence.

An approximation Yδ is strongly convergent with order γ > 0 at time t if there exists

C > 0 not dependent on δ and δ0 such that for every δ ∈ (0, δ0)

E(|XT − Y |) ≤ Cδγ. (1.24)

The simplest strong time discrete approximation is Euler-Maruyama scheme

and it has order of convergence γ = 0.5.

Numerical scheme 3 (Euler-Maruyama approximation [25, Sec. 9.1]). The Euler-
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Maruyama stochastic approximation for N points discrete in time is the following:

xn+1 = xn + f (tn, xn)(tn+1 − tn) + F(tn, xn)(Wtn+1 −Wtn) (1.25)

with initial condition x0 and n = 0, 1, ...,N − 1.

Because of its simplicity and thus low runtime, we use Euler-Maruyama scheme

whenever we need to simulate large number of samples. In order to be consis-

tent, for exploring certain features of individual paths we present our results given

the same approximation scheme, but we also check if the results hold for a higher

order scheme. For this purpose we use Milstein scheme, which is a strong time

discrete approximation of order of convergence γ = 1. This scheme is presented

below for F returning a square diagonal matrix of size K × K.

Numerical scheme 4 (Milstein scheme with diagonal noise (K = L) [25, Sec. 10.3]).

For k-th component of xt = [x1
t , ..., x

K
t ] we have

xk
n+1 = xk

n + f k · (tn+1 − tn) + Fk,k ·
(
Wk

tn+1
−Wk

tn

)
+

Fk,k

2
∂Fk,k

∂xk

((
Wk

tn+1
−Wk

tn

)
− (tn+1 − tn)

)
.

(1.26)

For readability in the statement above we have suppressed dependence on (t, xt)

in f k and Fk,k.

Milstein scheme is computationally heavy for systems with more complicated

than diagonal noise as at every time-step it computes multiple integrals of the

form
∫ tn+1

tn
· · ·

∫ s2

tn
dW1

s1
· · · dWL

sL
[25, Eq. (10.3.5)]. Therefore, if more than one Wie-

ner process affects a single variable, one should consider correlating them (for

instance with Cholesky decomposition) while keeping the diagonal form of the

diffusion term F.

1.5 Critical Transitions in nonlinear models applied

to finance and economics

As the last section of the introduction we will cover some of the applications of

Critical Transitions (CT) focusing on finance and economics.

Bifurcation-induced transitions as a mathematical concept can be traced back

to 1960s and 1970s to the work of Thom and Zeeman on catastrophe theory – the
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branch of mathematics which relates to multistability and bifurcations in nonlinear

deterministic systems defined by potential flows. Smale in his comprehensive

review from 1978 [26] pointed out that however there were intuitions that cata-

strophe theory should be applicable to a variety of scientific fields, no data-based

approach was presented at that time. Later, the concepts developed in cata-

strophe theory were popularised as tipping points mostly due to the book ‘The

Tipping Point’ (2000) by Gladwell [27] in which the author suggested three key

characteristics of a tipping point from networks perspective: i) contagiousness

(the change is spreaded very quickly among the nodes), ii) little causes having

big effects, iii) an instantaneous and dramatic response. Interestingly, in this book

there was no recollection of the work by Thom and Zeeman, even though it dis-

cussed very similar phenomena as catastrophe theory, but from case-study point

of view. Next, the two complementing theories were linked together in the book

‘Critical Transitions in Nature and Society’ [2] and now the term tipping point is

used interchangeably with the term Critical Transition.

It is worth mentioning that the characteristic i) of a tipping point, contagious-

ness, in the theory of Critical Transitions is often replaced by positive feedback,

especially when discussing simple systems which can tip. One example of such

simple systems is a boat which has two stable states – standing straight or being

completely upside down [2]. If the wind becomes too strong or the load beco-

mes too large, this boat can tip over. When thinking of the load weight as of a

parameter, there is some critical value of the weight below which the boat will

not turn upside down, whereas for a small increase of this weight it can tip. The

positive feedback causes the tipping to accelerate just after passing the unstable

steady state. This is an example of a Critical Transition since ‘little causes have

big effects’ and the ‘response is instantaneous and dramatic’ despite no ‘contagi-

ousness’.

Given the description of a Critical Transition, which says that a CT is a large

and rapid change of the observed state of a system given a small change of

conditions, the Critical Transitions are not confined to bifurcation-induced only.

For instance, if tiny noisy increments lead to a jump from one attractor to another,

this transition is called noise-induced tipping/CT. This approach is often illustrated

as stochastic jumps between wells in a potential system (as in Chapter 5).

Another type of Critical Transition occurs if a deterministic system does not tip
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for an infinitely small change of conditions, whereas it does tip if this change is

quick enough. This class of tipping is called rate-induced tipping/CT. The clas-

sification into bifurcation-, noise- and rate-induced tipping has been suggested

in [5], however there might be another classes of Critical Transitions which have

not been described yet. In this thesis we focus mainly on bifurcation- and noise-

induced Critical Transitions applied to finance and economics – as far as we know

there has not been designed any model which would justify usage of rate-induced

Critical Transitions in these areas yet, however we discuss potential usage of such

type of CT in General discussion.

1.5.1 Bubbles and crashes – what are they?

Applications of Critical Transitions in finance and economics focus mainly on ex-

plaining or predicting crashes, but what are those and how are they determined?

For instance, Wikipedia (as on 9.07.2018) does not give a precise definition of a

crash at all: “A stock market crash is a sudden dramatic decline of stock prices

across a significant cross-section of a stock market, resulting in a significant loss

of paper wealth.” Sudden, dramatic, significant – one can see that from the mat-

hematical point of view this definition is not useful as it is not quantitative at all.

Others try to give a more quantitative description: according to [28], crash is an

instantaneous financial event usually identified with a large decrease of value of

an index or a stock. Definition of large decrease is still fuzzy, so some quantify

a crash for instance as at least 15% correction of market value of an asset or

index in three weeks period [29]. Of course, there can be much smaller and rapid

movements which would intuitively be identified as crashes and would not fit the

former definition, as for example the 2010 Flash Crash [30]. Another interesting

concept of what a crash is was developed in a series of papers by Johansen and

Sornette [31–34]. The authors point out that crashes, i.e. extreme market draw-

downs, are outliers (often referred to as ‘dragon-kings’ [35]) which do not belong

to the same distributions as small and intermediate losses.

Another phenomenon related to crashes is a financial bubble – it can be un-

derstood as either a price which grows super-exponentially [29, 36], or as a diffe-

rence between the market price and the fundamental price [37]. The fundamental

price is a pure value of an asset without addition of any speculation-driven incre-
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Figure 1.3: Two examples of crashes. (A) Dot-com bubble and a crash afterwards
(CISCO Systems), (B) the 2010 Flash Crash (6th May 2010) with a negative bubble
preceding the crash (Procter & Gamble).

ment, but it is only a theoretical concept, which might not be observable in reality

[38]. A different approach to bubbles was presented recently in [39] – a market

price process has a bubble when it deviates from an efficient market hypothe-

sis (i.e. the price mirrors all the available information and no earnings can be

done basing ones trading only on advantage in knowledge [28]). In this approach

the authors model separately the pre-drawdown bubble (as a possibly explosive

process which does not need to follow the efficient market hypothesis) and the

drawdown as a correction to the fundamental price efficient market. This kind

of inefficient bubbles could be observed for instance during a super-exponential

acceleration of prices which is followed by a crash.

The latter definition fits well the study we present in Chapter 3 where we ap-

proximate an arising bubble with a function exhibiting a finite-time singularity at

some predicted time of a crash.

Importantly, all the aforementioned definitions of bubbles do not mean that a

bubble always ends with a crash [37], and that a crash does need to be preceded

by a bubble. Furthermore, the bubbles could be as well positive as negative and

they could occur on timescales of significantly different magnitudes (see Fig. 1.3).

In the following sections we will cover several models where bifurcation theory

or Critical Transitions in dynamical systems framework are applied to finance and

economy.

1.5.2 Zeeman (1974)

The first model explaining crashes as Critical Transitions was presented by Zee-

man [40]. The author models the dynamics of some generic stock index I assu-

ming that İ > 0 represents the bull market and İ < 0 the bear market. The main
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Figure 1.4: Classic introductory example of the idea of a critical transition where a small
parameter shift leads to a large response in the variable with application as presented in
[40]. (A) Small parameter change→ small response, (B) small parameter change→ large
response (crash/? – the author does not elaborate on the jump opposite to the crash),
(C) 3-D representation. One can notice the change of regimes between the one where
no rapid change occurs and regime with a jump.

variable is the derivative of I, namely J = İ. Moreover, the dynamics is governed

by two group of investors – fundamentalists (F) and chartists (C). Fundamenta-

lists base their investments on the economic factors and follow the dynamics of an

underlying fundamental value of the index. On the other hand, chartists (also cal-

led trend followers) think that the market trend will not change – they tend to buy

an asset when the price grows believing it will grow even further. The manifold of

equilibria (called also slow manifold) in this model is given by

J3 − (C −C0)J − F = 0 (1.27)

where C, C0 and F practically play a role of parameters. For some values of C, one

can observe in the plane (J, F) that there is no bifurcation and J changes gradually

depending on F. In another regime of C the variable J can fall down rapidly under

a small variation of F due to a fold bifurcation. Bringing back F to the state from

before the jump does not make the system jump back – much bigger change is

needed. This kind of behaviour is known as hysteresis or hysteresis loop. See

Fig. 1.4 for a graphical explanation.

The interpretation of the results is that for a small number of chartists the mar-

ket moves smoothly from bull regime to bear regime in response to the number

of fundamentalists. On the other hand, for larger values of chartists the market

under the variation of number of fundamentalists can crash and jump from one

attractor to another.
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1.5.3 Lux (1995)

The deterministic model presented in [41] explains the nonlinearities and positive

feedbacks observed in the markets by the notion of herding among the traders.

This concept assumes that the traders tend to follow other traders especially when

there is lack of sufficient information. The model by Lux [41] is thought to be one

of the first models of bubbles and crashes based on the herding of traders. Accor-

ding to its author, investors’ opinions about the future price change with certain

probability which depends on the amount of positive or negative beliefs among

others. It is described as a kind of ‘contagion’ in beliefs within uninformed tra-

ders. The model uses simple transition probabilities between groups of traders

who believe that the price will go up or down. Lux assumes that the spread of be-

liefs is transported in both directions, but with different strength depending mainly

on the amount of positive and negative opinions. The obtained system describes

coupled continuous dynamics of spread of news between traders and the asset

price formation. In such system, due to the bifurcations, there can exist one, two

or three equilibria and, in some cases and certain initial conditions, the system

converges to a stable periodic orbits and bubbles (understood here as the price

which exceeds the fundamental price). Moreover, Lux sees the switches between

positive and negative opinions in the way that Zeeman did for price variation,

namely, as Critical Transitions from one attractor to another resulting from a fold

bifurcation [40]. Lux’s dynamical system is a Van der Pol oscillator with large dam-

ping term (see [42]). The factor that causes the nonlinearities is the heterogeneity

among the traders.

1.5.4 Brock and Hommes (1998)

The model by Brock and Hommes [43] describes price dynamics in the case

in which traders can choose to invest in either a risky or a risk-free asset. The

investors have heterogenus beliefs on what can happen to the price. The realised

returns depend on stochastic dividends, hence the traders can decide to buy

more or less risky assets relying on their strategy (which can be quantified by

some measure of fitness). Moreover, the speed of switching between strategies

is governed by the main parameter β, which is called the intensity of choice – for

infinite β everybody uses the same fittest strategy and for β = 0 the strategies are
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chosen evenly.

The authors study several scenarios with traders of the following types:

• rational agents who possess perfect knowledge on the future price;

• fundamentalists who believe that the price will come back to the fundamen-

tal value;

• trend chasers who believe that the trend will not change (they can be bia-

sed);

• contrarians who believe that the trend will revert (they can be biased);

• purely biased traders who do not follow the trend and only believe that the

fundamental value is different than the (unknown to them) true one.

The scenarios are divided by the composition of different types of traders on

the market:

1. rational agents versus (un-biased) trend chasers:

the full knowledge of rational agents is driving the price to an equilibrium.

The equilibrium is either the fundamental price for smaller values of β, or one

of two non-zero equilibria (due to a pitchfork bifurcation) for larger values of

β;

2. fundamentalists versus trend chasers:

the model for some values of β produces oscillations which are very similar

to the time series presented in Fig. 1.3A and can be understood as repeti-

tive bubbles and crashes. Due to the influence of noise, negative bubbles

are also possible. Moreover, for larger values of β chaotic behaviour is ob-

served;

3. fundamentalists versus contrarians:

for small values of β all the trajectories are attracted to a unique stable equi-

librium. Increasing β leads at first to the Hopf bifurcation and then to a

period-doubling cascade ending with chaotic behaviour;

4. fundamentalists versus positively biased versus negatively biased traders:

the increase of β leads from an equilibrium through a Hopf bifurcation and

several period-doubling bifurcations to (quasi-)periodic behaviour;
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5. fundamentalists versus unbiased trend chasers versus trend chasers with

positive bias versus trend chasers with negative bias:

no additional phenomenon is observed in this scenario. There is a Hopf

bifurcation and chaotic behaviour in certain parameter regimes.

Finally, the authors identified the following causative relationship between the

presence of certain types of traders and the occurring bifurcation:

• trend chaser→ pitchfork bifurcation,

• contrarian→ period doubling bifurcation,

• opposite biased beliefs→ Hopf bifurcation.

It is worth noticing that most of the above bifurcations are not bifurcation-

induced Critical Transitions; only the emergence of a chaotic attractor in points 2,

3 and 5 is. However, in the model presented in [43] the stochastic fluctuations lead

to jumps between attractors and to the occurrence of bubbles even in the non-

bubble regimes. Both of these phenomena can be classified as noise-induced

Critical Transitions.

1.5.5 Yukalov, Sornette and Yukalova (2009)

In order to account for the significant amount of random fluctuations (noise / sto-

chasticity) observed in financial data, it is common to use SDE models for finan-

cial processes (see Sec. 1.4). The paper [44] presents a model describing the

relative price of a single asset (x) and its trend (y). Relative price of an asset is

defined as the difference between the log-price and the fundamental log-price,

which is a logarithmic version of one of the definitions of the bubble price presen-

ted in Sec. 1.5.1. The state variables are given by the following equations:


dx = ydt + σdW

dy = f (x, y, t)dt + σ′dW ′

(1.28)

where W and W ′ are two independent Wiener processes.

By making a few assumptions and simplifications of f (Taylor expansion, ad-

ditivity, symmetry and self-similar first-order exponential approximation) and neg-

lecting the influence of σ′ comparing to the deterministic trend, the system (1.28)
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is transformed into:
dx = ydt + σdW

dy
dt = αx + βy + Ax3 exp(− x2

µ2 ) + By3 exp(− y2

λ2 )
. (1.29)

The interpretation of parameters in Eq. (1.29) is the following:

• α – strength of mean reversing (α < 0), or strength of speculative behaviour

leading to appearance of bubbles (α > 0);

• β < 0 – market friction;

• A – collective behaviour; correction of mispricing for A < 0, or further specu-

lation away from equilibrium for A > 0;

• µ – measure of uncertainty in the fundamental value (µ small means that the

investors are well informed). It tempers the nonlinear term in order to avoid

finite-time singularities;

• B – speculative trading behaviour, if B > 0 the investors believe that the

trend will be preserved;

• λ – liberalisation: “the larger it is, the easier are the changes of mispricing

drift” [44].

Similarly to [41, 45–47], herding and speculative behaviour in this model is the

largest source of nonlinear feedback. After an analysis of many different scena-

rios (i.e. different sets of parameters) the crucial observation is that the noise

increments cause a Critical Transition from an equilibrium to a stable periodic

orbit which is identified as a business cycle. Moreover, (stochastically blurred)

basins of attraction in the model (1.29) are larger for stable cycles than for stable

equilibria. It means that an asset price should spend more time following a cycle

than staying close to an equilibrium.

1.5.6 Tramontana, Westerhoff and Gardini (2010)

Tramontana, Westerhoff and Gardini in [47] model the market as a step-by-step

system. In every iteration the price is recalculated using a certain algorithm and
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log-price is created every time by a market maker equation as a sum of previous

log-price and the demand of different types of investors:

Pt+1 = Pt + DC1
t + DC2

t + DF1
t + DF2

t . (1.30)

In that system there are four types of traders. Two of them, C1 and C2, are char-

tists, who believe in market trend in a very simple way – they want to buy an asset

when the market price exceeds the fundamental price, which is assumed to be

known. The chartists are split into two groups: C1 – those who always trade a

constant volume of an asset, and C2 – those who scale their demand to the dif-

ference between the market price and the fundamental price. The other type of

traders are fundamentalists and they are split into two groups (F1 and F2) similarly

as chartists, however, fundamentalists’ beliefs are completely opposite – they be-

lieve that the price will go eventually back to the fundamental one. To account for

speculations the orders can be of different sizes for the price above and below

the fundamental, hence the map (1.30) can be discontinuous in 0.

Similarly to [43], the article [47] presents a spectrum of scenarios given exis-

tence of some groups of traders only. It studies four simplified cases of demand

creation:

1. presence of chartists C1 and fundamentalists F1 causes the convergence of

the price to the fundamental price or divergence of prices to infinity;

2. presence of chartists C2 and fundamentalists F2 leads to either the conver-

gence to the fundamental price or convergence to (quasi-)periodic and very

regular oscillations;

3. all types of investors coexist and #C1 >#F1 and #F2 >#C2 – the dynamics is

either chaotic exhibiting irregular bubbles and crashes or explodes to infinity.

The shift from the region with chaos to the divergent region can happen for

an infinitely small change of a parameter (i.e. it is a Critical Transition);

4. coexistence of all types of investors and #F1 �#C1 and #C2 �#F2 leads to

bistability between a fixed point and chaotic dynamics. In the chaotic regime

the market shifts irregularly from bear to bull market.
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1.5.7 Bischi et al. (2006)

Some models are designed just to mimic the price and demand dynamics, but

other also describe the evolution of the expected asset price. Bischi et al. [45]

present a completely different view on the market than Tramontana et al. [47].

They do not base any study on the concept of fundamental price nor they divide

the traders into chartists and fundamentalists. In [45] the authors assume, that

all of the traders are differentiated only by stochastic terms. The final price is

determined from the demand which accounts for all the beliefs and decisions

and, based on the law of large numbers, it leads to a deterministic model:


ωt+1 = tanh

[
β · J(|qt|) · ωt − β · qt

]
qt+1 = (1 − ρ)qt + f (ωt)

, (1.31)

where ω is the average of all decisions to buy (+1) or sell (−1) and qt = pt − p̄t is

the difference between the current price and the expected price.

The main analysis presented in [45] studies the behaviour of fixed points and

possible trajectories. It is found that for the system (1.31) there might be i) one

stable fixed point, ii) two stable and one unstable fixed points, iii) unstable focus

with a stable periodic orbit around it (possibly bubbles). The identified bifurcations

are supercritical pitchfork and supercritical Neimark-Sacker, what means that in

the deterministic approach in this model no Critical Transition is possible. On the

other hand, for the regime with two stable fixed points noise-induced transitions

are possible if the system is stochastically forced. It is worth noting that in the

regime i) the different values of initial demand ω0 can lead to different fixed points

of price pt because the expected price p̄t is not a fixed value.

Interestingly, a very similar mathematical formulation of averaged opinion dy-

namics was presented in [48]:


st+1 = tanh(a · st + b · Ht)

Ht+1 = θ · Ht + (1 − θ)st

, (1.32)

however in this case the second variable, H, is interpreted as a measure of mo-

mentum of the opinion dynamics. We perform a bifurcation study of the mo-

del (1.32) in Chapter 4.
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1.5.8 Discussion

As presented above, there has been a lot of effort put in modelling bubbles and

crashes with bifurcation-induced phenomena. The three main types of invari-

ant sets which seem to be crucial in financial dynamical models are: i) a fixed

point identified with the fundamental price, ii) stable (quasi-)periodic oscillations

identified with bubbles and crashes, iii) chaotic attractors. The bubbles in the afo-

rementioned models appear due to parameter change through supercritical Hopf

or supercritical Neimark-Sacker bifurcations, which we do not interpret as Critical

Transitions. However, some of the models explain rapid shifts in the market as a

saddle-node bifurcation. In Sec. 1.2 there was mentioned one more bifurcation

which leads to creation of a stable periodic orbit – a SNIC bifurcation which indeed

is a Critical Transition. An example of a system with this bifurcation is presented

in Chapter 2.

Some of the bifurcations occurring in the quoted dynamical systems are not

Critical Transitions, but they cause bistability. It means that adding noise to the

system can make the system tip from one attractor to another. Moreover, if the sy-

stem is close to a bifurcation which will cause appearance of periodic behaviour,

but does not exhibit bubbles and crashes in the deterministic framework, introdu-

cing noise will actually blur the bifurcation boundaries and allow the periodic-like

phenomena to occur even in the non-crash regime in the parameter space.
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Chapter 2

Modelling bubbles and crashes with

a stock-bond dynamical system

We analyse the behaviour of a nonlinear model of coupled stock and bond prices

exhibiting periodically collapsing bubbles. By using the formalism of dynamical

system theory, we explain what drives the bubbles and how foreshocks or afters-

hocks are generated. A dynamical phase space representation of that system

coupled with standard multiplicative noise rationalises the log-periodic power law

singularity pattern documented in many historical financial bubbles.

This chapter, together with Chapter 3, presents the study described in the

article [Damian Smug, Peter Ashwin and Didier Sornette. "Predicting Finan-

cial Market Crashes Using Ghost Singularities" (2018). PLoS ONE 13(3):

e0195265].

2.1 Introduction and literature review

Forecasting market behaviour has been a topic of general interest for hundreds

of years. At the same time, given the complexity of financial markets, mathe-

matical models have been limited to explore in a rather fragmented way some

of the many mechanisms and dynamics at play in the real world. Following the

review presented in Sec. 1.5, there are models exploring the impact of the dyn-

amics between traders (see e.g. [41, 45, 47, 49–51]), other models attempt to

capture the effects of feedbacks between financial information and investment

strategies using various stochastic nonlinear processes (see e.g. [1, 37, 44, 52]).
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These references can be conceptually linked to the pioneering work of [43, 53–57]

describing the dynamical behaviour of heterogeneous markets with many trader

types using dynamical system concepts, including limit cycles as the large type

limit of interaction agents, bifurcation routes to instability and strange attractors

in evolutionary financial market models. This variety suggests that the concepts

and methods of complex dynamical systems could be useful in the area of finan-

cial markets. A certain type of nonlinearity is of particular interest due to its large

impact in generating what are arguably the most visible deviations from normally

(quasi-)efficient financial markets, namely financial bubbles. During financial bub-

bles, positive feedback mechanisms give rise to the so-called super-exponential

acceleration of prices [29, 58–60], followed by the burst of the bubble in large dra-

wdowns [31, 32, 34], i.e. crashes. A parsimonious representation of this super-

exponential dynamics takes the form of finite-time singularity models [61–65].

In this chapter we revisit the model of coupled stock and bond prices introdu-

ced by [1], which exhibits periodically collapsing bubbles in a certain domain of

the parameter space.

The chapter is constructed as follows. In Section 2.2, we explain the con-

struction of the model and build basic intuitions on the bubbles and crashes for

the deterministic version. Furthermore, in Sec. 2.3, we investigate thoroughly the

parameter space explaining which kind of bifurcations one should expect and how

exactly the bubbles emerge. Next, in Sec. 2.4, we present a short analytical study

of scaling laws governing the period and the amplitude of the bubbles in certain

limits. Section 2.5 introduces stochastic extension of the main system in a form of

SDE and then, in Sec. 2.6 we justify dynamically several stylised facts observed

in financial markets. Section 2.7 concludes.

2.2 Nonlinear dynamical system of stocks and bonds

In this section, we recall the dynamical system of [1] and provide dynamical expla-

nations for a variety of market events. We also point out the existing bifurcations

and how the system responds to parameter shifts. The latter will be quantified

in the neighbourhood of bifurcation lines. The system is extended into a version

with multiplicative noise to model stochastic price fluctuations.
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Figure 2.1: Schematic diagram showing the feedback loops governing the prices x(t)
and z(t) for the model (2.1) of [1]. An increasing bond price means mechanically a lower
interest rate and thus a lower borrowing cost, which favours further stock price increase
(term e−bxz with b > 0). A large stock price leads to a reaction of the central bank to
increase the interest rates and thus decrease the bond price (term e−gx with g < 0). A
larger stock price is also assumed to feedback positively on itself (term e−bxz with b > 0).

A dynamical system of a coupled pair of one bond and one asset is introduced

in [1]: 
ẋ = x − x2 · e−bxz

ż = z − z2 · e−gx
. (2.1)

The system is designed from a self-financing portfolio and links the price of

an asset/stock (x) with the price of a bond (z), the latter quantifying the cost of

borrowing. As can be observed later, the amplitude of variations of z is too large

to be directly interpreted as a real bond price and one can treat z as the investors

confidence for further growth of stock market. Although qualitatively the bond

price is positively correlated with the confidence, we keep to an analysis of the

model presented in [1] and leave its generalisation to future work.

Parameter b > 0 stands for the sensitivity of the fundamental asset price on

asset and bond prices, while parameter g < 0 is the sensitivity of the fundamental

bond price to asset prices. The scheme of feedback loops governing the equilibria

of these two variables is presented in Fig. 2.1 and is more thoroughly explained by

[1]. One can think of the terms e−bxz and e−gx as quantifying the amplitudes of the

forces that tend to push the prices back to their fundamental values. Depending

on the parameters in system (2.1), three different scenarios can be observed for

the same initial conditions: convergence to a stable fixed point, divergence to in-

finity (only for g > 0) or convergence to a stable periodic orbit. In the following, we

classify the different bifurcations exhibited by system (2.1), making more precise

and extending the analysis of [1]. We shall focus on the nonlinear periodic orbits

as their properties make them reasonable candidates to represent bubbles and

crashes in real financial markets.

Definition of bubbles: We shall call ‘bubble’ each transient part of a periodic
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orbit during which the price x accelerates in a super-exponential fashion, and

which is followed by a fast correction. In the deterministic version (2.1) of the

model, these bubble regimes occur only for certain periodic orbits. The bubbles

are thus occurring periodically, hence the title of ‘periodically collapsing bubbles’

in [1].

2.3 Bifurcations of fixed points and periodic orbits

In a macroscopic view of the two parameter plane for the system (2.1), one can

observe two lines of bifurcations of fixed points – saddle-node and Hopf [1], which

are presented in Fig. 2.2A. However, taking a closer look at the region where these

two lines meet, it turns out that it is not a single point, but a set of points where

bifurcations of codimension-two occur (more information on the appearance of

these codimension-two bifurcations can be found in [66–69]). From an economic

point of view, this means that a very small change in the market conditions can

move the system from a stable regime to one with regular bubbles and crashes.

When the sensitivity of the stock price b grows, then the term e−bxz decays and

thus the systems moves further away from the underlying logistic behaviour with

attraction to a stable equilibrium. At a certain point, the influence coming from the

term e−bxz is weak enough to hold the stock price static and as a result consecutive

periodic bubbles can be observed. A different feedback is observed for g < 0

growing. In this situation the term e−gx decreases and hence the z term is less

influenced by dynamics of x. However, if stock price rises high enough, it will

compensate for small |g|, what consecutively will affect the bond price and lead

to the collapse of stock price allowing z to rise again and so on in an oscillatory

manner. Of course, the boundaries between different regimes will be smoothed

out somewhat when a stochastic component is added (see e.g. [18]).

After tracking certain bifurcation paths varying b with fixed g, we have noticed

that the bubbles are not necessarily born from a Hopf bifurcation, but some arise

after having at first an infinite period. Two cases must thus be considered:

1. The saddle is always present. The periodic orbit grows until it hits the saddle

and the homoclinic connecting orbit appears (see Sec. 1.2.3). For one pa-

rameter value, the stable and unstable separatrix of the saddle are con-
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Figure 2.2: (A) Two-parameter bifurcation diagram, (B) zoom-in on the marked rectangle
in panel. (A). The dotted lines represent certain bifurcation paths, which are shown in
Fig. 2.3. BT means Bogdanov-Takens point. Bifurcations are computed using XPPAUT
[23].

nected. To refer to this situation, we will use the abbreviation HX. Following

Sec. 1.2.3, this bifurcation is a Critical Transition, because the system under

infinitely small change of parameter jumps to another attractor.

2. The other possibility is that a periodic orbit is born from a collision of a saddle

and a node, which makes both equilibria disappear. The set of parameters

for which the collisions occur forms a saddle-node invariant circle (denoted

SNIC). Following Sec. 1.2.3, this bifurcation can be considered as a Critical

Transition, because the system under infinitely small change of parameter

starts to follow much larger attractor.

The HX bifurcation line was tracked in the two-parameter plane by following an

orbit of large period, whereas the SNIC coincides with a saddle-node branch. In

Fig. 2.2B, both lines are indicated.

In order to show how changes of parameter affect the stability of the fixed

points and of the periodic orbits, Fig. 2.3 presents a set of bifurcation diagrams

where chosen paths for different values of g are shown to determine the bifur-

cation order. The selected parameter values exhaust all the possible situations.

Note that the periodic orbits always emerge if either a saddle collides with a stable

node or via a Hopf bifurcation.

In the system (2.1) there are also two points where codimension-two bifur-

cation occurs. One of them is the Bogdanov-Takens point (further information

can be found in Sec. 1.2.1). For the Bogdanov-Takens point, the Jacobian has a
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Figure 2.3: Phase-parameter bifurcation diagrams for fixed g < 0, (A) g = −0.067, periodic
orbits appear when a saddle collides with a sink, (B) g = −0.071, periodic orbits appear
via a Hopf bifurcation, exist until a homoclinic bifurcation occurs and then appear again
when a saddle collides with a sink (further analysis of the periods for that situation is
presented in Section 2.4), (C) g = −0.072, periodic orbits emerge from a Hopf bifurcation
point, which occurs between two fold bifurcations, (D) g = −0.074, the fold bifurcations are
approaching each other, (E) g = −0.076, only the Hopf bifurcation remains, from which
periodic orbits appear.

double-zero eigenvalue, hence it is possible to derive the analytical coordinates

for that point, which are the following:



x∗BT = e2 ≈ 7.389

z∗BT = e−
1
2 ≈ 0.6065

bBT = 2e−
3
2 ≈ 0.4463

gBT = −1
2e−2 ≈ −0.06767

. (2.2)

The second codimension-two bifurcation point is a cusp (see Sec. 1.2.1). The

analytical values of its coordinates are as follows:



x∗cusp = e
1+
√

5
2 ≈ 5.043

z∗cusp = e
√

5−3
2 ≈ 0.6825

bcusp = 1+
√

5
2 e1−

√
5 ≈ 0.4701

gcusp =
√

5−3
2 e−

1+
√

5
2 ≈ −0.07574

. (2.3)
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2.4 Analysis of scaling laws governing the period

and the amplitude of the bubbles

The scaling laws governing the period and the amplitude help to quantify some

properties of the system. They may be useful, for instance, to localise a given real

system in the parameter plane. Moreover, knowledge of the scaling law governing

the period of a bubble could help to distinguish in practice which bifurcation is

approached. A numerical study of the period and amplitude of bubbles in the

vicinity of certain singularity lines is documented in [1]. In here we present a

confirmation of their result.

2.4.1 Period

As defined in Section 2.2, a necessary condition for a bubble to occur is the

presence of a periodic orbit (in the deterministic version (2.1) of the dynamical sy-

stem). We find that oscillations are born in Hopf bifurcation and remain until a HX

bifurcation, then they appear again in a SNIC. Following the literature [11, 70], we

conclude that the result in [1] is correct in terms of the period only in certain para-

meter regimes, namely in the neigbourhood of SNIC bifurcation. In the bifurcation

diagram 2.3B, there are two disjoint intervals where bubbles occur. The authors

of [1] did not locate the homoclinic bifurcation. These two situations are governed

by different scaling laws depending on the distance from the bifurcation:

1. approaching HX (see [70]) for 0 < ∆ = bhx − b � 1:

fhx(∆) = c · | ln(∆)| , (2.4)

2. approaching SNIC (see [11, Ex. 4.3.1]) for 0 < ∆ = b − bsnic � 1:

fsnic(∆) = c · ∆−1/2 . (2.5)

In the second case, adding higher order terms gives actually a better fit.

Fig. 2.4 shows good agreement of these approximations and the simulated data.
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Figure 2.4: Analysis of the orbit’s periods for g2 = −0.071 as in Fig. 2.3B. (A) Scenario 1
of approaching HX (left series of dots) and scenario 2 of approaching SNIC (right series
of dots fitted by expression (2.5)); (B) Scenario 1 of approaching HX: logarithmic trans-
formation of the distance from the bifurcation point approximated by a linear function.

2.4.2 Amplitude

The numerical analysis of an amplitude of the bubbles in [1] relies on the observa-

tion that the relation ln(amplitude)
ln |g| is asymptotically linear. Our analytical study below

confirms such a result not for the amplitude, but for the unstable equilibrium inside

the stable periodic orbit. However, we are able to transfer this result to amplitude

by numerical observation that the relation of the stock price at the unstable equi-

librium to the amplitude converges to a constant. In order to determine how high

can a bubble rise, let us first find a lower bound for the amplitude. Let xmax be

the maximal value of x and xeq be a non-trivial equilibrium point – both marked in

Fig. 2.5. Obviously, xmax > xeq.

We can obtain the parameter g depending on xeq and b at the crosspoint of the

nullclines: 
0 = xeq − x2

eq · e
−bxeqz

0 = z − z2 · e−gxeq

. (2.6)
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which yields 
xeq = ebxeqz

z = egxeq

, (2.7)

and thus

|g| =
ln(bxeq) − ln(ln(xeq))

xeq
. (2.8)

As xeq → ∞, |g| → 0+.

What is more,

∀ε > 0 ∃x̂ ∀xeq > x̂
c1

x1+ε
eq
6 |g| 6

c2

x1−ε
eq

, (2.9)

where c1 and c2 are some positive constants. We will use the notation |g| ∼ 1
xeq

to

represent the relation (2.9). Translating the previous statement for xeq, we obtain

xeq ∼
1
|g|
. (2.10)

From the numerical calculations presented in Fig. 2.6, we conclude that

xmax

xeq
−−−−→
g→0−

c , (2.11)

where c ∈ [1, 2) is a constant. The data points for xmax
xeq

shown in Fig. 2.6 can be

fitted very well by the function

xmax

xeq
(g) =

1
(− log10 |g|)α

+ 1 , (2.12)

where for α = 0.8328, R2 = 0.9991. It implies that c = 1.

Finally, from (2.10) and (2.12), we deduce that

xmax =
xmax

xeq
· xeq ∼ 1 ·

1
|g|

=
1
|g|
. (2.13)

2.5 Stochastic dynamical system of stocks and bonds

In order to investigate the extent to which the classification of the different regimes

of the deterministic system (2.1) informs us on the behaviour of prices in the

presence of a stochastic component we analyse an SDE version of (2.1) with
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trajectory. Parameters are b = 0.5 and g = −0.01. As g → 0−, the nullcline for z shifts to
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multiplicative noise. Specifically, we study the following system of SDEs:


dx =

(
x − x2 · e−bxz

)
dt + σx x dW (1)

t

dz =
(
z − z2 · e−gx

)
dt + σz z dW (2)

t .

(2.14)

The two new terms σx x dW (1)
t and σz z dW (2)

t correspond to the standard multiplica-

tive proportional stochastic components of financial price models. For b, g→ +∞,

the two nonlinear terms vanish, and the system (2.14) reduces to two standard

geometric Brownian motions (GBM). Nevertheless, in the system we analyse, the

natural value of g resides in the interval (−∞, 0). Making |g| small (g → 0−) cor-

responds to decreasing the sensitivity of bond price on stocks. Further growth

of g above 0 means that the sensitivity is actually inverted and g → +∞ should

be understood as not large sensitivity, but an inverted way with which the stocks

have an impact on the bonds. Moreover, g → +∞ implies that z grows exponen-

tially towards infinity and thus e−bxz → 0. Then, for larger times the stock price

decouples from the bond price and even for small fixed positive values of b the

GBM for x can be recovered. It is important to notice, that both b → ∞ and b = 0

lead to such decoupling, but in the latter case x is bounded since the deterministic

part is a pure logistic equation in x. The z dependence for b > 0 thus amounts to

decreasing the impact of the bound, in other words, increases the bound for the

price x.

Here, the volatilities σx and σz are constant and the two Wiener processes

dW (1)
t and dW (2)

t are correlated with a constant correlation coefficient of 0.5. This

value is justified as, according to [71], correlations between postwar returns in

stock and bond prices were around 0.4 in the U.S. and around 0.6 in the U.K.

However, during bubbles and crashes, correlations tend to vary a lot [72–74],

hence it would be interesting to investigate the impact of regime switches in the

amplitude of the correlation coefficient. We leave this for a future work.

In our simulations, we analyse the stochastic dynamics close to the saddle-

node bifurcation at an arbitrarily chosen point b = 0.42 and g = −0.04. We use the

empirical evidence that the daily standard deviation for stock prices (resp. bond

prices) is of the order of a few percent, say 3% (resp. a few basis point, i.e. a

few hundreds of a percent, say 0.05%). Taking the reduced time unit of our model

to correspond to approximately three months of the real world, this yields that
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Figure 2.7: Sample bubbles generated with system (2.14) with various noise levels for
the same realisations of the random increments dW (1)

t and dW(2)
t . The parameters are

b = 0.42, g = −0.04, Corr
(
W(1)

t ,W(2)
t

)
= 50%, initial conditions: x0 = 2, z0 = 0.3, (A) σx = 0.0,

σz = 0.00, (B) σx = 0.2, σz = 0.01, (C) σx = 0.4, σz = 0.01, (D) σx = 0.6, σz = 0.01.

reasonable values of σx should lie in the interval [0.2, 0.6] and of σz in the interval

[0, 0.01].

The values of σx could be retrieved in another way as well. Assuming that

the typical standard deviation in the GBM model of stock prices with daily time

units is approximately of order 10−4 (say 0.0004) and one time unit in our model is

around 100 days, rescaling the variance proportionally to the time we obtain the

new value of σ̄ =
√

100 · 0.0004 = 0.004 and the GBM can be written in the new

time units as dp = µpdt + σ̄pdWt. If we take the drift coefficient µ to be of order 1%

in 100 days (around 3% in a year), we obtain dp = 0.01 · pdt + 0.004 · pdWt and the

proportion for stock price σ̄
µ

= 0.4 is the same as in the model (2.14) with σx
1 = 0.4.

Fig. 2.7 shows four trajectories obtained by numerical integration of (2.14) for

different levels of noise (different values of σx and σz). The first observation is

that the stochastic system also exhibits recurring bubbles with qualitatively similar

shapes to the deterministic case. However, rather than being precisely periodic,

one can observe some variability in the waiting times between them. This can be

rationalised by viewing stochastic innovations as providing effective changes of

initial conditions along the price paths. Stochasticity also introduces randomness

in the amplitude of the bubbles, some being smaller and others larger than in the

deterministic periodic case. Another interesting observation is that, as the noise

amplitude increases, bubbles are accompanied by ‘foreshocks’ and ‘aftershocks’,

namely significant price activities before and after a main price peak. These

qualitative observations will be explained thoroughly in Section 2.6.
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2.6 Dynamical bubble – genesis

In order to rationalise the qualitative properties illustrated in Fig. 2.7, let us study

an arising bubble in phase space instead of in the time domain. The way a bubble

grows or deflates can be driven by a variety of forces that can be investigated

conveniently in phase space. The phase diagrams of Fig. 2.8B and Fig. 2.8D

present the crucial drivers of bubbles, which are now listed.

• Nullclines (the curves where either ẋ = 0 or ż = 0) and their intersection –

unstable fixed point. As the nullcline for x (red curve) is the most important

for the stock price dynamics, to ensure the clarity of the graphical represen-

tation, the nullcline for z is not included. When the trajectory lies close to

the nullcline for x, the dynamics of the stock price becomes almost entirely

driven by the stochastic component. Close to the equilibrium fixed point (red

dot) or in the neighbourhood where the equilibria collided (x ≈ 0, z ≈ 0.9),

the deterministic trend of the bond price disappears as well.

• Deterministic bubble path to which the stochastic trajectories are attracted

(blue bold curve). The system evolves clockwise and the density of dots

represents the inverse of the speed of the representative point (one dot is

plotted every fixed time period). For small x, the price changes happen at

a much slower pace than for higher values of x and the largest speed is

reached when x collapses in what can be termed as a crash.

• Other sample deterministic trajectories, marked in light blue, help under-

standing the future evolution of the system. Every trajectory spirals cloc-

kwise, some of them prematurely abort the bubble, whereas other trajecto-

ries approach the bubble much further from the equilibrium ghost point and

will be instantly directed to take the loop around.

These terms are useful in explaining what really drives the development of each

specific bubble. In the presence of noise, there are various patterns occurring in

the system, which in turn capture several stylised facts observed in real financial

markets. Let us focus on the three main stages of the development of a bubble.

The numbers in curly brackets stand for certain situations presented in Fig. 2.8.

Foreshocks. When a bubble begins, stochastic fluctuations can push the

trajectory above or below its underlying deterministic version. If x happens to be
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Figure 2.8: Schematic representation showing different phases and outcomes of sto-
chastic bubbles for (2.14) with b = 0.42, g = −0.04, σx = 0.6, σz = 0.0. The bold blue line
represents a deterministic stable orbit with blue dots at fixed time intervals. (A) and (B)
Foreshocks {1/2} and {3/4} preceding the main crash {5/6} are clearly visible. The time
intervals between the consecutive local peaks and corrections decrease as a result of at
least two factors: first, until around z = 0.2, the price x accelerates making it prone to
take a time consuming detour for smaller x {2} that becomes less impactful compared to
when x is larger {4}. (C) and (D) The noise can push the dynamics to enter the region
where deterministic forces drag trajectories back to the region of small x, thus aborting
the bubble {7} before it fully develops. The same kind of behaviour for higher x levels can
shorten the life of a bubble in the regime close to the unstable fixed point where the price
dynamics can oscillate temporarily before the main crash {8}.
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pushed down intensively in a small time period, the dynamics may be driven back

and terminate the bubble, leading to the abortion of the main loop – see point {7}

in Figs. 2.8C and 2.8D. The shape of the deterministic vector field shows that,

for smaller values of x, the burgeoning bubble trajectory can be pushed back to

the ghost fixed point (x = 0, z = 0.9) with relatively smaller levels of noise (the

bubble aborts). For other trajectories tracking the deterministic bold blue line,

much larger levels of noise are needed to push the price along such a detour,

unless the system approaches the end of bubble or the unstable equilibrium when

the deterministic force will gradually make x decrease.

On the other hand, the dynamics of x can withdraw partially, spiral out and

create another bubble again {2}. The latter situation can occur several times {2,4}

before the main crash {6} happens. Moreover, the higher the level of x, the quicker

the progression along the underlying deterministic bubble path. As x increases,

the price trajectory becomes influenced by underlying deterministic trajectories

spiralling out that changes in shape, compared to the phase space region for

smaller x’s. The higher x is, the smaller can be a partial detour away from the de-

terministic trajectory. As the noise is multiplicative, the same Wiener increments

give larger variations of x as the dynamics evolves, so that more structures can

be observed along the bubble growth. Faster evolution leads to a decrease in

the time intervals between the consecutive price peaks. For instance, when price

peaks are observed in phase space for x = 10, x = 20 and x = 30, in time space

the latter two will be closer to each other than the first two.

All those factors add up and lead to the birth of smaller structures with acce-

lerating periodicity preceding the end of the bubble and the start of the main

crash. These patterns are reminiscent of those observed in real financial bub-

bles, in particular the joint acceleration of price and of price oscillations captured

by the log-periodic power law singularity model (i.e. if taken the logarithm of the

time remaining to the occurence of a singularity, the oscillations are periodic)

[28, 61, 75, 76]. To support this observation we produce Lomb-periodograms

(Fig. 2.9) of the trajectories presented in Fig. 2.8 (for more information on log-

periodicity see [33, 77, 78]). A Lomb-periodogram is a common way of analysing

the spectrum of a signal with unevenly sampled time series, hence it is a more

general tool than a Fast Fourier Transform. For a short introduction to Lomb-

periodograms see for instance [79, Sec. 13.8].
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Figure 2.9: Lomb-periodograms for the trajectories presented in Fig. 2.8. The selection
of tc is done through scanning different possible values between the maximum of the time
series until the end of sample and then by picking the one giving the highest peak in the
Lomb-periodogram. (A) The optimised tc = 3.46, which is in the middle of the deflating
bubble, (B) the optimised tc = 13.26, which is the top of the bubble. In the second case
the sample was shortened so it begins at time 11.5, when the bubble starts to develop.

The spectral analysis is performed on the residuals R(t) of the logarithmic

series ln(x(t)) as a function of the variable ln(tc − t) optimised for the highest peak

in the Lomb-periodogram with respect to tc. The residuals are obtained through a

transformation given in Equation (18) from [75]:

R(t) =
ln(x(t)) − A − B(tc − t)β

C(tc − t)β
(2.15)

with A = 10, B = 1.0, C = 0.76, β = 0.10 for the series presented in Fig. 2.9A

and A = 4.5, B = 1.0, C = 0.34, β = 0.44 for the series presented in Fig. 2.9B.

In both diagrams one can spot a clear peak characterising the most common log

frequencies which suggests the presence of log-periodicity.

The peaks presented in Fig. 2.9 at frequencies around 0.1 − 0.3 correspond

to remains of the slow trend over the whole time interval of analysis. The peaks

at f1 ≈ 0.9 in Fig. 2.9A and f2 ≈ 1.3 in Fig. 2.9B are the signal associated with

genuine log-periodicity. The corresponding angular frequencies are ω1 = 2π f1 ≈

5.7 and ω2 = 2π f2 ≈ 8.2, whereas the preferred scaling ratios are λ1 := e1/ f1 ≈ 3.0

in the first case and λ2 := e1/ f2 ≈ 2.2 in the second one. λ1 and λ2 quantify the ratio

between the shrinking intervals defined by successive price peaks. The results

are not sensitive to the method for selecting the critical time tc. Picking tc close

to the maximum of the price results in basically the same position of the second

peak close to f = 1, only the size of the peak changes somewhat.

It is important to mention how our findings relate to actual empirical results.

As a benchmark we take the research presented in [78]. It is an interesting obser-
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vation to note that the series shown in Fig. 2.9A visually very well matches most

of the real data based Lomb-periodograms from [78]. The scaling we obtained in

the first case is however slightly larger – 3.0 compared to 2.0. We expect that va-

rying the parameters b and σx can influence the log-frequency of the foreshocks.

The first parameter governs the periodicity of the bubbles (see Equations (2.4)

and (2.5)) whereas the second one should be large enough for the foreshocks

to appear (as presented in Fig. 2.7), however, we leave detailed testing of this

hypothesis for further work. In the second Lomb-periodogram (Fig. 2.9B), one

can observe two major peaks – it means that the low frequencies in residuals

were not perfectly removed. This series can be compared to the outlying NAS-

DAQ100 in Fig. 11 from the aforementioned paper. In fact, the frequency of the

peak corresponding to the log-periodicity well matches the data presented in [78]

– 2.2 versus 2.0.

Main crash. The stochastic component modulates the growth of the amplitude

of each bubble. Small excursions outwards of a deterministic bubble speed up

the evolution and are multiplied by the nonlinear forces (see the furthest right

part of the deterministic trajectory in Fig. 2.8B). This can lead to a rapid crash

without any preliminary small corrections. On the other hand, if the trajectory

gets pushed inwards by stochastic innovations, it enters the region with a smaller

influence from the underlying deterministic dynamics, which can then generate

aftershocks.

Aftershocks. The aftershocks are purely noisy structures occurring close to

the unstable fixed point. The trajectory can wobble around the nullcline or an

equilibrium point for an extended period of time. This could be interpreted as a

market hesitating on whether to accept that the price has peaked and is due for a

correction or a crash, or rather developing some wishful thinking that this is just a

temporary consolidation before a new rally starts. Adding noise also in the bond

price dynamics can lead to augmenting the variety of consecutive aftershocks.

2.7 Conclusions

Revisiting the nonlinear model of coupled stock and bond prices exhibiting perio-

dically collapsing bubbles recently proposed by [1], we have been able to prove
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and document a number of novel important properties. We have extended the

previous analysis of [1] concerning the classification of a set of bifurcations in

the two-parameter space of this model, organised by codimension-two cusp and

Bogdanov-Takens points. We have also confirmed analytically the numerical re-

sults concerning the bubble amplitude scaling as 1/|g| as a function of the para-

meter g quantifying the sensitivity of the fundamental bond price to asset prices,

when it approaches 0 from below. Moreover, following [11, 70], we conclude

that there are two bifurcation paths along which a periodic orbit has its period

diverging, which are associated with two different scaling laws: depending on the

distance ∆ = |p − pbi f | from the bifurcation line, the period diverges as | ln ∆| for an

homoclinic bifurcation or as ∆−
1
2 for a saddle-node invariant circle, which are both

present in the studied system.

Using a detailed phase space representation and spectral analysis, we have

been able to characterise the forces controlling the bubble growth and deflation

in the presence of stochastic multiplicative noise. We found that the characte-

ristics of the acceleration of the dynamics in phase space and the shape of the

deterministic vector field are two major causes of the price patterns resembling

the log-periodic power law singularity structures observed in real financial prices.
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Chapter 3

Ghosts of finite-time singularities –

from derivation to application

This chapter presents an extension of the study of the stock-bond dynamical sy-

stem given by Eq. (2.1) in Chapter 2. We extract the underlying finite-time singu-

larities close to the saddle-node bifurcation and use the associated trajectories to

develop a method to predict the bubble collapses.

This chapter, together with Chapter 2, presents the study described in the

article [Damian Smug, Peter Ashwin and Didier Sornette. "Predicting Finan-

cial Market Crashes Using Ghost Singularities" (2018). PLoS ONE 13(3):

e0195265].

3.1 Brief introduction

The concept of ghosts of singularities emerges from studying stable periodic so-

lutions in the neighbourhood of a saddle-node bifurcation. We realised that, even

if the trajectory close to the saddle-node point can be well approximated by a

truncated normal form, further away, the differences might become infinitely large

(for instance, if the periodic orbit stays bounded and the normal form approxima-

tion exhibits a blow up in finite time), but the period can still be well estimated.

In general, we will use the notion of ghosts of finite-time singularities to describe

the rapid changes in periodic solutions of the exact family, for which the truncated

normal form (approximating family) leads to real finite-time singularities that are

not observable in the original system. A key insight is that, even if we cannot ap-
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proximate the exact shape of the periodic function, we are able to obtain another

piece of information that is almost as important – its periodicity. We show that the

knowledge about the period of oscillations can indeed help to forecast the time of

a crash.

First, in Sec. 3.2, we show how the notion of a ghost of a finite-time singularity

can be applied for a simple nonlinear ODE and then, in Sec 3.3, we provide more

sophisticated analysis of approximating the trajectories in the stock-bond system.

We develop our formalism and technique to provide credible predictions of the

stock price falls in the deterministic case. Furthermore, we perform several tests

and fits in order to determine how exactly the approximation should be parame-

trised (Sections 3.4 and 3.5). We then test the forecasting skill of this method

on different stochastic price realisations and compare with Monte Carlo simula-

tions of the full system – Sec. 3.6. Remarkably, the approximate normal form is

significantly more precise and less biased. Moreover, the method of ghosts of

singularities is less sensitive to the noise realisation, thus providing more robust

forecasts. We finish this chapter with concluding remarks in Sec. 3.7.

3.2 A simple example

We start with an example explaining what we call ghosts of finite-time singulari-

ties. We present a study of an ODE known as the theta model for a spiking neuron

[80, Eq. (3.6)]. We consider the following simplified system with one parameter λ:

θ̇ = 1 − cos(θ) + λ . (3.1)

The solution of the equation (3.1) with λ > 0 can be found explicitly, choosing a

continuous branch of arctan for:

θ(t) = 2 arctan

 √λ2 + 2λ
λ + 2

tan

t
√
λ2

4
+
λ

2
+ const.

 (3.2)

where the constant term is determined by the initial condition. On the other hand,

one can look for the normal form of the saddle-node bifurcation, which is ẋ = x2+λ.

68



3.2. A SIMPLE EXAMPLE

Such a form is easily obtained by a Taylor expansion of the cosine function,

cos(θ) = 1 −
θ2

2
+ O(θ4) , (3.3)

and the ODE (3.1) can be approximated by

θ̇ =
θ2

2
+ λ (3.4)

with the explicit solution

θ(t) =
√

2λ tan

t √λ

2
+ const.

 . (3.5)

This solution exhibits a singular behaviour for the times tn such that tn
√
λ/2 +

const. = (2n + 1)π/2 becomes an odd multiple of π/2. In contrast, the exact so-

lution (3.2) does not have such a divergence, with θ remaining finite at all times.

Rather than showing a divergence at these times tn, θ slows down close to the

neighbourhood where the equilibria collided and accelerates further away. Close

to these times tn but not too close such that tan
(
t
√
λ/2 + const.

)
is sufficiently smal-

ler than 1 so that one can expand the arctan to equal its argument, and neglecting

terms of order λ2 compared to λ and terms of order λ compared to 1, then the ex-

act solution (3.2) reduces to the solution (3.5) of the approximating normal form.

This shows that the approximate solution shadows the true trajectory very close

to the singular times tn. We refer to the acceleration of the true dynamics as the

ghost of the singularity exhibited by the underlying normal form approximating it.

In equation (3.5), the constant term plays an important role. If the initial condi-

tion in the original system (3.1) is not directly observable (for instance it might be

out of the stable periodic orbit), the constant term in (3.5) can be used to obtain

reliable estimates of the time of the next ghost singularity.

We assume that λ > 0, hence the system exhibits periodic behaviour – see

Fig. 3.1. From equations (3.2) and (3.5), it is a simple calculation to obtain the

periods, which are not identical due to the differences in the argument of the

tangent function. But, the smaller the absolute value of λ, the smaller is the

difference in periodicity and the more accurate the predictions obtained from the

normal form approximation (3.4) of the full system (3.1). We conclude that the
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approximation of the true solution leads to a good estimation of the period even if

its amplitude does not match that of the original system. This result can be used

to make predictions on the future state of the system with no need for simulations.

It is important to mention that in the model (3.1) the dynamics is described on

a circle. For graphical convenience in Fig. 3.1 we present θ in the arbitrary interval

[−π, π] and align the instant of the largest change of θ with the singularity time. Ne-

vertheless, for any other choice of the interval used for graphical explanation, the

singularities of the red curve will match the highest variation of the true solution.

This is caused by the fact that both the approximating and the original solution

spend most of the time close to the remainder of the equilibria and perform only a

very short, and thus quick, detour. It hints, that our result is generic with respect

to other approximating forms in the same equivalence class for a bifurcation as

long as they produce periodic behaviour, whereas the original bifurcation is not

only a saddle-node collision, but actually a SNIC (see Sec. 1.2.3).

(A)

λ<0 λ=0 λ>0

(B)
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Figure 3.1: Example of ghosts of finite-time singularities and real finite-time singularities.
(A) Schematic bifurcation diagram of the flow of system (3.1). For λ < 0, there are
two equilibria – one stable (black) and one unstable (white), for λ = 0, a saddle-node
bifurcation occurs and for λ > 0 (if we allow discontinuities in the solutions), one can
observe periodic orbits between −π and π. In the two-dimensional case, discontinuities
are not necessary to obtain a periodic behaviour. Panels (B) and (C) show the sample
solutions for systems (3.1) and (3.4). The blue curve is the original accurate solution of
the full dynamics, where no finite-singularity occurs. The red one is the approximation
based on the saddle-node normal form. In the solution based on normal form, there are
finite-time singularities whereas, in the original one, bubbles and crashes are bounded.
The jump behaviour exhibited by the exact solution of the full system is called the ghost
of the singularity associated with the normal form approximation. Parameter values are:
(B) λ = 0.01 and (C) λ = 0.2.
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3.3 Centre manifold expansion for an emerging bub-

ble

This section, similarly to the previous one, provides analytical derivation of the

bubble trajectory in the vicinity of a SNIC bifurcation in the system (2.1) from the

previous chapter, namely:


ẋ = x − x2 · e−bxz

ż = z − z2 · e−gx
. (3.6)

In order to find a good approximate function of the price dynamics x(t) of a bubble,

we calculate x(t) for parameters close to the upper saddle-node branch shown in

Fig. 2.2A. On the upper part of the saddle-node curve, let us consider parameters

(b∗, g∗) and the corresponding non-trivial equilibrium point (x∗, z∗). We fix b∗ and

vary only parameter g, so instead of (3.6), we consider the following system:


ẋ = x − x2e−b∗xz

ż = z − z2e−(g∗+δ)x .

(3.7)

Next, we move the system to the origin so that the equilibrium point is placed at

(0, 0): 

X = x − x∗

Z = z − z∗

b = b∗

g = g∗ + δ

(3.8)

and, by taking into account the derivative dδ
dt , we obtain


Ẋ

Ż

δ̇

 =


(X + x∗) − (X + x∗)2e−b∗(X+x∗)(Z+z∗)

(Z + z∗) − (Z + z∗)2e−(g∗+δ)(X+x∗)

0

 =


F(X,Z, δ)

G(X,Z, δ)

0

 . (3.9)
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The Jacobian in the equilibrium point is

J := J(X,Z, δ)
∣∣∣∣∣
(0,0,0)

=


∂F
∂X

∂F
∂Z 0

∂G
∂X

∂G
∂Z

∂G
∂δ

0 0 0


(0,0,0)

(∗)
=


p1 p2 0

p3
p2 p3

p1
p4

0 0 0

 , (3.10)

where the substitution (∗) is performed in order to simplify the notations for the

saddle-node equilibrium point where the Jacobian

 ∂F
∂X

∂F
∂Z

∂G
∂X

∂G
∂Z

 is singular. J has

eigenvalues (λc, λs, λc) =

(
0, p2

1+p2 p3

p1
, 0

)
and the eigenvectors for the two first eigen-

values are

vc1 =


−

p2
p1

1

0

 and vs =


p1
p3

1

0

 . (3.11)

For the third eigenvalue λc, we need to find the generalised eigenvector vc2

Jvc2 = vc1 =⇒ J2vc2 = Jvc1 = 0 , (3.12)

hence, we calculate the eigenvectors of J2 for the eigenvalue λc. One is of course

vc1 and the other is

vc2 =


−

p2 p4

p2
1+p2 p3

0

1

 . (3.13)

In the vector basis P := (vc1 , vs, vc2), new coordinates can be obtained by the follo-

wing transformation


X

Z

δ

 = P


U

V

δ

 =


−

p2
p1

p1
p3
−

p2 p4

p2
1+p2 p3

1 1 0

0 0 1




U

V

δ

 (3.14)

and on the other hand


U

V

δ

 = P−1


X

Z

δ

 =


−

p1 p3

p2
1+p2 p3

p2
1

p2
1+p2 p3

−
p1 p2 p3 p4

(p2
1+p2 p3)2

p1 p3

p2
1+p2 p3

p2 p3

p2
1+p2 p3

−
p1 p2 p3 p4

(p2
1+p2 p3)2

0 0 1




X

Z

δ

 . (3.15)
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Hence, in the new coordinates, the dynamical system becomes


U̇

V̇

δ̇

 =


dU(X,Z)

dt

dV(X,Z)
dt

0

 =


(P−1)11Ẋ + (P−1)12Ż

(P−1)21Ẋ + (P−1)22Ż

0

 . (3.16)

Using the multivariate Taylor expansion for U̇, V̇ and δ̇ at the point (0, 0, 0), we

obtain 
U̇

V̇

δ̇

 =


0 0 µ1

0 µ2 0

0 0 0




U

V

δ

 +

+


a1U2 + a2UV + a3Uδ + a4V2 + a5Vδ + a6δ

2

b1U2 + b2UV + b3Uδ + b4V2 + b5Vδ + b6δ
2

0

 ,
(3.17)

where the coefficients µi (for i ∈ {1, 2}), ai and bi (for i ∈ {1, ..., 6}) are known. It

is important to mention that the Jacobian of the system (3.17) has two vanishing

eigenvalues and forms a Jordan normal form with separated centre (Uc, δc) and

stable (Vs) parts.

The flow on the stable manifold can be approximated by

Vs(Uc, δc) = αU2
c + βUcδc + γδ2

c , (3.18)

hence

V̇s(Uc, δc) =
∂Vs

∂Uc
U̇c +

∂Vs

∂δc
δ̇c = (2αUc + βδc)U̇c . (3.19)

In order to determine α, β and γ we need to compare coefficients in V̇s(Uc, δc) and

V̇(Uc, δc):

µ2Vs + b1U2
c + b2UcVs + b3Ucδc + b4V2

s + b5Vsδc + b6δ
2
c =

= (2αUc + βδc)(µ1δc + a1U2
c + a2UcVs + a3Ucδc + a4V2

s + a5Vsδc + a6δ
2
c)

(3.20)

When inserting (3.18) into (3.20), it is enough to compare the coefficients up
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to quadratic terms:

U2
cU2
cU2
c : µ2α + b1 = 0 =⇒ α = −

b1

µ2

UcδcUcδcUcδc : µ2β + b3 = 2αµ1 =⇒ β = −
2b1µ1 + b3µ2

µ2
2

δ2
cδ
2
cδ
2
c : µ2γ + b6 = βµ1 =⇒ γ = −

2b1µ
2
1 + b3µ1µ2 + b6µ

2
2

µ3
2

.

(3.21)

Finally, in order to obtain the flow on the centre manifold, we insert (3.18) with

determined coefficients (3.21) into U̇ (3.17):

U̇c = f (Uc, δc) = µ1δc + a1U2
c + a2Uc(αU2

c + βUcδc + γδ2
c) + a3Ucδc+

+a4(αU2
c + βUcδc + γδ2

c)2 + a5(αU2
c + βUcδc + γδ2

c)δc + a6δ
2
c =

= µ1δc + a6δ
2
c + γa5δ

3
c + γ2a4δ

4
c + Uc(a3δc + a2γδ

2
c + a5βδ

2
c + 2a4βγδ

3
c)+

+U2
c (a1 + a2βδc + a5αδc + 2a4αγδ

2
c + a4β

2δ2
c) + U3

c (a2α + 2a4αβδc) + U4
c a4α

2 .

(3.22)

In order to approximate the function describing the time dependence of the

price of an arising bubble, we integrate U̇c:

dUc

dt
= f (Uc, δc) =⇒

dUc

f (Uc, δc)
= dt =⇒

∫
1

f (Uc, δc)
dUc =

∫
dt + const.

(3.23)

hence ∫
1

f (Uc, δc)
dUc = t + const. . (3.24)

Without dropping higher order terms, it might not be possible to obtain Uc

explicitly, hence we assume, that δc = ε and as Uc is expected to vary faster than

the parameter, we take Uc = Uc0

√
ε + O(ε). Then, for the function f , we truncate

all terms of order higher than O(ε), hence f (Uc, δc) = µ1δc + a1U2
c + O

(
δ

3
2
c

)
. From

Equation (3.24), using the simplified form of f , we obtain

1√
a1µ1δc + O

(
δ

3
2
c

) arctan


√√ a1

µ1δc + O
(
δ

3
2
c

)Uc

 = t + const. , (3.25)

which gives

Uc =

√
µ1δc

a1
tan

(
t
√

a1µ1δc + const.
)

+ O
(
δ

3
2
c

)
. (3.26)
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The error term is found by Taylor expansion of tangent function close to the equi-

librium as its argument, i.e. tan(x) ≈ x for small x.

Inserting (3.26) into (3.18) leads to

Vs = αU2
c + βUcδc + γδ2

c =

= α

√µ1δc

a1
tan

(
t
√

a1µ1δc + const.
)2

+ β

√µ1δc

a1
tan

(
t
√

a1µ1δc + const.
) δc + γδ2

c + O
(
δ

5
2
c

)
=

= γδ2
c + βδ

3
2
c

√
µ1

a1
tan

(
t
√

a1µ1δc + const.
)

+ αδc
µ1

a1
tan2

(
t
√

a1µ1δc + const.
)

+ O
(
δ

5
2
c

)
.

(3.27)

Then, from (3.14), (3.26) and (3.27) one obtains

X = −
p2

p1
Uc +

p1

p3
Vs −

p2 p4

p2
1 + p2 p3

δc =
p1

p3
γδ2

c −
p2 p4

p2
1 + p2 p3

δc+

+

 p1β
√
µ1δ

3
2
c
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√
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√
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(
t
√
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)
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p1αµ1δc
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√
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)
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2
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p2 p4
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√
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+ O
(
δ

3
2
c

)
,

(3.28)

where all parameters in the above expression are known. Finally, we need to

shift back X by the position of the equilibrium according to (3.8): x = X + x∗.

3.4 Fitting parameters of the approximated form of

a bubble

The detailed analysis from the previous section leads to the final form

xapp(t) = A + B tan(C(t − D)) + E tan2(C(t − D)), (3.29)

where all parameters but D are given explicitly in terms of b and g. The parameter

D cannot be computed in the same way as the others, since it determines the

movable singularity of xapp(t). Such singularities are at positions that strictly de-

pend on the initial condition of the system – see for instance [81]. Hence, given a

certain trajectory the parameter D needs to be found by means of curve fitting.

Obviously, one could simply skip the analytical approach of Sec. 3.3 and fit all
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the parameters A–E. However, in such an approach one needs to find a proper

slope (governed by parameters B and E) and, more importantly, the period (go-

verned by the parameter C) of the function (3.29). Losing the information about

the period means that we actually lose information about the timescales of occu-

rences of bubbles that was coming from the approximating normal form in the

neigbourhood of a bifurcation.

In order to validate numerically the approximate form (3.29) we choose two

sets of parameters b and g in the vicinity of the saddle-node branch. For these

values we simulate trajectories of a stable periodic orbit in the system (3.6) and we

extract only the increasing part of variable x. Then, we align the function (3.29)

to the simulated series. Parameters A, B, C and E for each set of b and g are

obtained directly from the Eq. (3.28). However, in order to provide greater flex-

ibility in the fitting scheme and to approach the fact that the trajectories have a

tendency to progress very slowly for low values of x, we allow in the fitting pro-

cedures a vertical correction. It means that we allow to fit the parameter A as

well. We denote it in Table 3.1 by A∗. The curve fitting procedure is performed

in GraphPad Prism 7 (Nonlinear Regression; least squares fitting method; quan-

tification of goodness-of-fit based on R square) and its results are presented in

Tab. 3.1.

b g A A∗A∗A∗ B C DDD E

0.4 −0.029 3.042 2.977 0.1744 0.02637 62.03 −0.5416 · 10−3

0.38 −0.0117 2.819 2.812 0.03683 0.006325 251.8 −0.8509 · 10−5

Table 3.1: Parameters for the best fits of the functions family (3.29) to the numerical
solutions. Parameter A∗ replaces A as explained in the text. Only the parameters marked
in bold were fitted.

The two fits are presented in Fig. 3.2 where we show the mean square error

of fit in terms of the distance from the underlying saddle-node equilibrium. The

neighbourhood of the saddle-node equilibrium is where the trajectories spend the

most time.

The exceptionally low value of parameter E in Tab. 3.1 suggests that it might

be worth to drop the higher order term in the function (3.29) and analyse the

approximation of the form:

x̂app(t) = A + B tan(C(t − D)) . (3.30)
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Figure 3.2: Comparison of the MSE (mean squared error) for (3.29) and (3.30) as a
function of the distance from the saddle-node equilibrium, with the percentage of time that
the asset price spends within that distance for (A) b = 0.4, g = −0.029 and (B) b = 0.38,
g = −0.0117. From the diagram one can deduce that application of vertical correction can
decrease the error of the fitted function significantly in some cases but not always. The
percentage of time that the asset price spends within a certain distance (bottom panels
of (A) and (B)) suggests that the system resides far from an equilibrium only during a
very short period. On the other hand, this period is extremely important as it is the time
when the bubbles arise and collapse. Comparison of the blue and red curves implies that
even though close to the equilibrium tan2 gives small MSE, further on it is outperformed
by the simplified function (tan) and that function with a vertical correction is used for the
predictions presented in Section 3.2.

Because in Fig. 3.2A the vertical correction incorporated in the fitting of (3.29)

significantly improved the goodness-of-fit, we allow to fit parameter A in (3.30) as

well. The parameters for the function x̂app(t) are presented in Tab. 3.2 and were

obtained in the same way as these for the form with higher order term.

Both the tangent function (3.30) and the formula (3.29) with the quadratic term

provide good fits to the bubble price in the close neighbourhood of the equilibrium.

One can see that formula (3.29) gives a very small error close to the equilibrium

point, however, the error increases much faster than for the tangent function (3.30)

when moving further from the equilibrium. This means that, in order to approx-

imate the trajectory the best results would be obtained by using (3.29) close to

the saddle-node equilibrium and then switch to (3.30) further away. However, for
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b g AAA B C DDD

0.4 −0.029 2.991 0.1744 0.02637 62.07
0.38 −0.0117 2.855 0.03683 0.006325 251.3

Table 3.2: Parameters for the best fits of the functions family (3.30) to numerical solutions.
The parameters marked in bold – A and D were found by fitting method, whereas the
parameters B and C are obtained through (3.28).

simplicity, we restrict to the usage of the approximation given by Eq. (3.30) only.

In the analysis outlined above the functions were fitted to the full bubble tra-

jectory, however, in order to make use of the approximated form we need to verify

how well the tangent function (3.30) can actually perform predictions of the crash

time. We denote by tc the crash time (i.e. the ghost of finite-time singularity)

observed in the trajectory, whereas tp denotes the predicted time of a crash (the

real singularity) calculated from some given sample within the time interval [t1, t2].

This sample is treated as current knowledge, whereas t2 is understood as current

time. From the tangent function (3.30) it is straightforward to find tp. Knowing that

tan(π2 + kπ) = ∞, tp is determined by the condition C(tp − D) = π
2 + kπ, which gives

tp(t2) = inf
{
π/2 + kπ

C
+ D > t2 : k ∈ N

}
. (3.31)

In Fig. 3.3 we illustrate a sample application of the method of predicting ghosts

of finite-time singularities in the deterministic system (3.6).

3.5 Selection of the optimal window length

Before one applies the above results, there is one more parameter to determine

– the window length w of the time series to which the function (3.30) is fitted. It

is important to realise that one should not use the whole price history, but only

the rather recent one when the price starts to accelerate and a bubble develops.

Before that, the price is close to its ghost equilibrium fixed point and is mostly

exhibiting a random walk. Moreover, as the function (3.30) exhibits periodic finite-

time singularities, when one wants to predict the next singularity, including the

previous one in the analysis will be highly disruptive to the search algorithm (in

our case: Levenberg-Marquardt). The simple solution to avoid such situation is to

bound the window length from above, for instance to 70% of the fitted function’s
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Figure 3.3: Sample application of the ghosts of finite-time singularities in the deterministic
system (3.6) for parameters b = 0.42 and g = −0.04. (A) Presentation of one fit (thin red
line) for a small sample set representing current knowledge (bold red) up to ‘present’ time
t2 = 8 (solid black line) compared with the true price trajectory (grey). The predicted
time of the crash (i.e. where the finite-time singularity occurs in (3.30) – indicated by
the dashed black line) is very close to the peak of the bubble and therefore provides an
accurate forecast. (B) Time tp of the predicted crash (red) as a function of the ‘present’
time t2 compared with the exact crash time tc. We apply here a sliding window of arbitrary
length w = 3. Section 3.5 explains the methodology that we follow to choose the optimal
window length. When the bubble starts to grow rapidly (around t = 30), the predicted
crash time tc decreases towards the ‘present’ time t2 and, as t2 increases, tp remains close
to t2 as can be seen by the line tp = t2 (solid black). The price acceleration thus tends to
induce the calibration to believe that the crash is looming, exaggerating the imminence
of the danger. (C) Accuracy of crash prediction measured by 1 − |tc − tp|/|tc − t2|. The
prediction accuracy is remarkably high already very far from the crash, and does not
improve significantly over most of the lifetime of the bubble. However, when time passes
30, the accuracy deteriorates dramatically. It is caused by the fact that the predictions are
based on the normal form truncation close to the equilibrium. This is not the case after
time 30 when the system grows exponentially.

period and to check several initial guesses picking the one with the least mean

square error or the smallest predicted time of a crash following the final (i.e. ‘pre-

sent’) time t2 of the sample. In our computation, the second criterion is used, as

our objective is to predict the singular time tp of the bubble collapse.

On the other hand, the window length cannot be too small as even a tiny

perturbation would cause tp to vary significantly and the outcome would not be

reliable anymore. In order to avoid any a priori bias, we propose to scan both

window lengths w and end of sample time t2 on 100 randomly generated bubbles.

Afterwards, for each time window, the prediction error is quantified as |tp−tc |
|t2−tc |

, with

the top and bottom 10% cases being put aside to remove outliers and ensure
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Figure 3.4: Dependence of the prediction error |tc−tp |

|tc−t2 |
as a function of window size w and

end t2 of window. (A) For σx = 0.2, the optimal window length is around 10 – i.e. where the
error values are the lowest. (B) For σx = 0.4, the optimal window length is around 15. The
parameters of the model are b = 0.42, g = −0.04, σz = 0.01, δ(W (1)

t ,W(2)
t ) = 50%. For both

selected window sizes, the error just before the time of a crash tc does not significantly
differ in comparison to larger w and, moreover, the smaller w is, the faster the system
responds to new information. There is thus a trade-off between responsive adaptation of
the fits and error size.

robust results, and the rest is averaged. The procedure maps one prediction

error value to each pair (w, t2). Fig. 3.4 presents the final results.

Based on Fig. 3.4, for the following simulations presented in the next Section 3.6,

we will use window size w = 10 for σx = 0.2 and w = 15 for σx = 0.4. For these

selected values of w, the prediction errors are the smallest over the widest range

of window size w and window ends t2, making the results robust.

3.6 Application of ghosts of finite-time singulari-

ties to simulated data

When all parameters are estimated, we can finally determine how the methodo-

logy of ghosts of finite-time singularities can work in practice. Firstly, we generate

a single trajectory with a sufficiently long price history preceding a crash from the

SDE model (2.14) studied in the previous chapter:


dx =

(
x − x2 · e−bxz

)
dt + σx x dW (1)

t

dz =
(
z − z2 · e−gx

)
dt + σz z dW (2)

t .

(3.32)

80



3.6. APPLICATION OF GHOSTS OF FINITE-TIME SINGULARITIES TO SIMULATED DATA

The variable x is shown as the grey line in Fig. 3.5 with its scale given on the left-

hand side vertical axis. The knowledge of the model parameters, as determined

in Sec. 3.3, gives explicitly the period and the slope of the tangent function (3.30)

used to approximate the emerging bubbles.
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Figure 3.5: Test of the methodology using the ghosts of finite-time singularities in com-
parison with Monte Carlo method. (A) and (B) correspond to two different realizations of
the price process for σx = 0.2 and σz = 0.01, (C) corresponds to one realisation generated
with σx = 0.4 and σz = 0.01. The stochastic price trajectory is plotted (grey line) with its
scale given on the left-hand side vertical axis. The scale of the crash time predictions is
given by the right-hand side vertical axis. The symbols ‘x’ stand for the predicted time tp,
using the history from time t − w until time t to perform the calibration with the singular
model. The criteria used to select the window size w for different noise amplitudes are
given in Section 3.5.

Then, based on the considerations presented in Section 3.5, the size of the

sliding window of analysis is chosen. For σx = 0.2, it is w = 10, hence the first

prediction (or calibration) is done at time t2 = 10, which allows us to take into

account the history in the window t ∈ [0, 10]. This initial window is shown as a

bold grey line close the horizontal axis in Fig. 3.5. The corresponding predicted

crash time tp(t2 = 10,w = 10) is indicated by the first black ‘x’ marker (with its scale

given on the right-hand side vertical axis). Thereafter, the calibration window

is shifted, while keeping its size fixed, which mimics the passing of time as the

bubble develops and we accumulate data to perform real-time forecasts, while

removing data of the far away past. Implementing this procedure gives us the

evolution of tp as a function of ‘present’ time t2, offered as a forecast for the real
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time tc of the crash. We continue the procedure until t2 approaches close to the

true tc.

The forecasts obtained by using the tangent function (3.30) are compared with

those of the following Monte Carlo scheme using the exact equations (3.32). We

integrate 500 trajectories with the known exact parameters and initiated in the

current state (xt, zt), and record the time tMC,i
p (i = 1, ..., 500) of the first crash that

appears in each trajectory. Operationally, we define a crash by the occurrence of

a maximum of a bubble that rose above 50% and then collapsed to a value below

20% of the underlying deterministic stable bubble that would exist for the same

parameter values. For the selected level of noise, this criterion has been found

to be very reliable. Then, the forecast tMC
p is the median value of the all crash

times tMC,i
p over this population of 500 price trajectories (green line in Fig. 3.5).

The ensemble tMC,i
p (i = 1, ..., 500) also allows us to give the inter-quartile interval

of confidence (the light green band in Fig. 3.5).

To determine the influence of the amplitude of the noise process on the quality

of the forecasts, we present two different outcomes for the same noise value

σx = 0.2 (Fig. 3.5A-B) and one for σx = 0.4 (Fig. 3.5C). It is noteworthy that

these diagrams differ significantly. In the first case (Fig. 3.5A), the price trajectory

happens to be very regular, and the predictions are found to be very accurate

over a large time interval. For the second price realisation (Fig. 3.5B) that exhibits

stochastic foreshocks, the forecasts are more unstable, as a result of the influence

of disjoint local attractors in the parameter space. The disappearance of one

of them with the lowest tp leads visually to a discontinuous transition towards a

different state around time t = 17. On the other hand, the forecasts are definitely

closer to the true tc than the Monte Carlo scheme. One can also note that the

forecasts become visually excellent when t2 passes the value 20 beyond which the

price starts its characteristic bubble acceleration. However, following Fig. 3.3C,

this phenomena is often accompanied by low accuracy of prediction.

For the higher level of noise (Fig. 3.5C), two regimes can be observed. First,

tp steadily increases as a function of t2. Then, around t2 = 20, one can observe a

quick decreasing phase, which is caused by a sudden escalation of the variable

x. This suggests that the method of ghosts of finite-time singularities provides

a cautious approach as it quickly reacts to variable changes while being on the

conservative side with tp in general smaller than the true tc. In contrast, the Monte
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Carlo forecast errs towards larger values up to t2 = 20 and then converges quickly

to the correct value.

The diagrams in Fig. 3.5 suggest that the Monte Carlo method tends to ove-

restimate the crash time, however, this is not a correct interpretation. The sto-

chastically forced system (3.32) tends to spend significant amount of time in the

close neighbourhood of the remainder of the equilibrium, and thus extracting time

series with a bubble and some history beforehand is in a way biasing the experi-

ment. On the other hand, our approach will always claim that a crash will occur in

a certain time which, by the construction of our predictor, is lower than the period

of the tangent function (3.30). Hence, we suggest to interpret tp as a measure of

risk for a certain time series rather than an exact crash time.

In summary, it is remarkable that the method of ghosts of singularities pro-

vides in general a better forecast than the full integration of the true dynamical

stochastic equation. By reducing the complexity and focusing on the key ingre-

dient underlying the forecast skill, namely the time to the bubble, the method of

ghosts of singularities seems to be less sensitive to idiosyncratic noise realisati-

ons, thus providing more robust forecasts. This can be interpreted as a kind of

effective coarse-graining of the dynamical equations, a process that, when done

intelligently, has been shown in the past to improve predictability [82–85].

3.7 Conclusions

We have provided an analysis to show how dramatic shifts in a stochastically

forced dynamical system can be predicted. By expanding the system in the neig-

hbourhood of the saddle-node bifurcation, we obtained a function that approxima-

tes an arising bubble. This function exhibits finite-time singularities and, therefore,

it cannot be used to predict the precise system state far from the equilibrium tra-

jectory. Nevertheless, its periodicity still matches well that of the original system.

This property gives a simple tool to predict when the system is going to crash.

We have shown by considering a few realisations of the stochastic price pro-

cess how the idiosyncratic occurrence of noise innovations and increasing volati-

lity impact the performance of the predictions. We have introduced the notion of

‘ghosts of finite-time singularities’, based on a normal form approximating the true
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dynamics and which exhibits a finite-time singularity while the true system does

not. But it turns out that the time of the peak of the bubble in the true system is

very well approximated by the singularity time of the approximating normal form.

Hence, the peak of the bubble can be viewed as a kind of ‘ghost’ of the finite-time

singularity expressed in the approximating normal form. It turns out that this con-

cept is very useful to predict the time of crashes by estimating the remaining time

to the end of an evolving bubble, using the approximated normal form valid close

to a bifurcation point.

Finally, we have tested the forecasting skill of the method of ‘ghosts of finite-

time singularities’ on different stochastic price realisations, in comparison with

the full integration of the true dynamical stochastic equation. Remarkably, we

have found that the former is significantly more precise and less biased than the

construction of many scenarios built on the full integration of the exact stochastic

differential equations. The mechanism underlying this augmented performance

has been argued to result from a reduction of complexity that focuses on the key

ingredient underlying the forecast skill, namely a ghost singular behaviour, which

leads to a smaller sensitivity to idiosyncratic noise realisations, thus providing

more robust forecasts.

84



Chapter 4

A generalised mean-field Ising

model with a rich set of bifurcations

In this chapter we present an analysis of an extended version of the dynamical

mean-field Ising model. Instead of classical physical representation of spins and

external magnetic field, the model describes traders’ opinion dynamics [48]. The

external field is endogenised to represent a smoothed moving average of the

past state variable. This model captures in a simple set-up the interplay between

instantaneous social imitation and past trends in social coordinations. We show

the existence of a rich set of bifurcations as a function of the two parameters

quantifying the relative importance of instantaneous versus past social opinions

on the formation of the next value of the state variable. Moreover, we present

thorough analysis of chaotic behaviour, which is exhibited in certain parameter

regimes. Finally, we examine several transitions through bifurcation curves and

study how they could be understood as specific market scenarios. We find that

the amplitude of the corrections needed to recover from a crisis and to push the

system back to “normal” is often significantly larger than the strength of the causes

that led to the crisis itself.

This chapter is based on the article [Damian Smug, Didier Sornette and Peter

Ashwin. "A Generalized 2D-Dynamical Mean-Field Ising Model with a Rich

Set of Bifurcations (Inspired and Applied to Financial Crises)" (2018). Inter-

national Journal of Bifurcation and Chaos 28(4)].
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4.1 Introduction

The Ising model and its mean-field version have a time-honored history in eco-

nomics, sociology and finance, since its introduction as a mathematical model

of ferromagnetism in statistical mechanics in 1920. Rather than magnetic spins

related via Heisenberg interactions, the spins represent agents who have several

options and decide to adopt one of them according to a combination of inputs in-

volving their own idiosyncratic judgments (akin to thermal noise in physics), exter-

nal news (similar to the external magnetic field) and social influences (analogous

to the spin-spin exchange interaction). A large set of economic models can be

mapped onto various versions of the Ising model to account for social influence in

individual decisions. And the Ising model is one of the simplest models describing

the competition between the ordering force of imitation or contagion and the dis-

ordering impact of private information or idiosyncratic noise. It is sufficiently rich

to exhibit complex behaviours, such as phase transitions (bifurcations) and spon-

taneous symmetry breaking [86]. Since decision making and social interactions

are two of the most important ingredients of social organisation, it is thus natural

that the Ising model and its extensions to understand social organisation have

blossomed over many decades (see e.g. [55, 87–101]).

Motivated by its applications to financial markets, we study an extended ver-

sion of the dynamical mean-field equation of the Ising model in which the external

(magnetic or news) field is endogenised to represent a smoothed moving average

of the past state variable. This new model stands for a simplification of the inter-

play between instantaneous social imitation and past trends in social coordinati-

ons [102–105]. We show the existence of a rich set of bifurcations as a function of

the two parameters quantifying the relative importance of immediate versus past

social opinions on the formation of the next value of the state variable. Moreo-

ver, we identify where one can find chaos in the 3-D parameter space. Finally,

we explore how the parameter shifts through certain bifurcation curves lead to

variations in the behaviour of the system.

The chapter is organised as follows. The next section recalls the equation

and main properties of the standard mean-field Ising model. Section 4.3 intro-

duces the extended mean-field Ising model, which takes the form of two cou-

pled discrete equations. In Sec. 4.4, we analyse bifurcations in the extended
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system and, in Sec. 4.5, we compare the behaviour to the original 1-D system.

Section 4.6 presents where one can find chaotic behaviour in the extended sy-

stem. Section 4.7 covers certain scenarios of market passages through when

parameters are change from one regime to another. Section 4.8 concludes.

4.2 Dynamical version of the standard mean-field

Ising model

The standard mean-field equation of the Ising model can be written as

s = tanh[β(s + H)] , (4.1)

where s is the the average state variable (mean spin or magnetisation) of a given

representative agent and H is the external influence (magnetic field). In financial

applications, s can represent the traders’ opinions whether to buy or sell and H

is the impact of incoming news on their decisions. Parameter β quantifies the

strength of the social imitation between agents (or, originally, the inverse tempe-

rature). Expression (4.1) describes the value of the average opinion s as being

determined by the sum of the external influence H and of an effective impact

exerted by the other surrounding agents, themselves adopting on average the

same opinion s. The average state variable s is thus the solution of the implicit

Equation (4.1), which has two control parameters β and H.

In a dynamical context, one can generalise Eq. (4.1) into a recurrence equation

describing how the collective opinion evolves, when influenced by external news

and its past state [48]:

st+1 = tanh[β(st + H)] , (4.2)

Then, the fixed points of the map (4.2) are solutions of the implicit Equation (4.1).

Fig. 4.1 presents how the fixed points of the map (4.2) vary when the parameters

H and β change. In the symmetric case for H = 0 (Fig. 4.1A and Fig. 4.1B),

there is a pitchfork bifurcation at β = 1, hence, when the system passes that

point, a symmetry breaking occurs (assuming tiny noise in the system or slightly

asymmetric initial conditions). However, the pitchfork bifurcation is structurally

unstable with respect to the second control parameter H: for non-zero H, saddle-
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node bifurcations occur instead (see Fig. 4.1C and Fig. 4.1D). The system has

thus always either one or three fixed points. In the latter situation, two out of three

fixed points are always stable and for β = 1 and H = 0 one can observe a cusp

(Fig. 4.1E).
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Figure 4.1: The map (4.2) st+1 = tanh[β(st + H)] and its bifurcation diagrams for different
values of the coupling strength β and external field H. (A) H = 0. Depending on β the
shape of the map changes. Higher values of β increase the curvature of the map giving
birth to two new fixed points at β = 1. The schematic curves are plotted for β = 0.5 (red)
and β = 2.5 (blue). (B) Bifurcation diagram for H = 0 with a pitchfork bifurcation at β = 1.
(C) β = 2.5. Depending on H the function is moved horizontally. For β > 1 such a shift
can make some of the fixed points disappear in a saddle-node bifurcation. The curves
are plotted for H = −0.2 (blue) and H = 0.4 (red). (D) Bifurcation diagram for β = 2.5.
For a set of parameters there are three fixed points, but if the external field is too strong
(in absolute value), two of the fixed points disappear in a saddle-node bifurcation. (E)
Bifurcations in two-parameter plane. For H = 0 and β = 1 there is a cusp.
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4.3 Extended mean-field Ising model

The map (4.2) is generalised by introducing a dynamics on the field H. In the

standard model (4.2) H is considered to be exogenous, and is taken to represent

the influence of outside news on the opinion or decision s(t) of the typical agent.

Motivated by models of financial price dynamics [48, 103], we propose to interpret

H as a measure of momentum of the opinion dynamics. To reduce the dynamics

to the arguably simplest model without the need for specifying the price evolution,

one can consider that the opinion dynamics momentum is an approximate proxy

for the price momentum included in the asset price dynamics of Ref. [103]. Let

us recall that the logic of the initial model [103] is that so-called noise traders or

technical analysts come to their investment decisions based on the information

they gather from the opinion of their fellow noise traders and on their measure of

the strength of the price trends. Trend-following or momentum investing is indeed

a widely used class of investment strategies (see e.g. [106–108]). The influence

of the decisions of other investors is captured by the term βst in Eq. (4.2). The

momentum of the social opinion mirroring the trend of the price is embodied in the

H term, which is assumed to be given by the following auto-regressive dynamics

Ht+1 = θ · Ht + (1 − θ) · st , where θ ∈ [0, 1) . (4.3)

Equation (4.3) defines Ht as the exponential moving average of approximately

nθ ' 1/(1 − θ) previous opinion states {st−1, st−2, ..., st−nθ}. For θ = 0, Eq. (4.3)

gives Ht+1 = st, corresponding to a one-step memory. For θ → 1−, the memory

becomes infinite (with Ht+1 = Ht = H0) and the initial momentum value H0 is

always remembered.

Putting Eq. (4.3) together with Eq. (4.2) yields the dynamical system that we

study in this chapter, namely


st+1 = tanh(a · st + b · Ht)

Ht+1 = θ · Ht + (1 − θ)st

, (4.4)

where st is the opinion (positive – buy, negative – sell) of the representative in-

vestor and Ht is its momentum. For θ = 0, this system reduces to the dynamical

mean-field Ising model (4.2) for a = b = β. For notational convenience, we will
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refer to the 2D-map (4.4) as M, such that {st+1,Ht+1} = M({st,Ht}).

In the standard mean-field equation (4.1), and by extension in the map (4.2),

the parameters a and b are usually taken positive, corresponding respectively to

so-called ‘ferromagnetic’ interactions (or positive feedback and imitation in the so-

cial context) and a positive organising effect of the external influence H. Negative

values of a should not be interpreted as ‘antiferromagnetic’ interactions, since the

later refer to a propensity to take a spin value opposite to that of the neighbour,

which is different from a tendency to take the sign at the next time step that is

the opposite of the sign at the previous time step. Instead, a negative value of

a in Eq. (4.4) can be interpreted as a contrarian behaviour tending to correct at

the next time step what can be perceived as a dangerous consensus. Such a

mechanism was identified and explored by Corcos et al. [49] in a simpler 1D-map

describing the proportion of ‘bullish’ agents in the population of investors. The

rational for negative values of a is thus that investors may become worried when

the consensus is too large, which may signal an exuberant unsustainable bub-

ble. In response, these investors may decide to become contrarians and change

their decision. If the representative agent adopts this stance, this will give oscil-

latory dynamics as well as deterministically chaotic behaviours, as we document

in details below. Similarly, negative values of parameter b can be rationalised by

such a contrarian response, but now built on a longer time scale according to the

sensitivity to a growing trend.

4.4 Bifurcations for fixed θ

Let us explore the transitions that can be observed in the system (4.4) for certain

fixed values of 0 < θ < 1. The Jacobian J and its eigenvalues λ1 and λ2 are

J =

 a b

1 − θ θ

 (4.5)

and

λ1,2 =
a + θ ±

√
(a − θ)2 + 4b(1 − θ)

2
. (4.6)
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4.4.1 Codimension-one bifurcations

The following bifurcations of codimension-one can be classified.

1. Bifurcations of the fixed point (0, 0):

• A pitchfork bifurcation occurs when one of the eigenvalues is equal to

1 (marked with the black solid line in the two-parameter bifurcation dia-

gram in Fig. 4.2 and with the black surface in Fig. 4.3). The bifurcation

occurs for a obeying the following dependence as a function of b and θ:

a(b, θ) = −b + 1 . (4.7)

• Period doubling (flip) occurs when one of the eigenvalues is equal to -1

(marked as the red solid line in the two-parameter bifurcation diagram

in Fig. 4.2 and as the red surface in Fig. 4.3). The bifurcation occurs

for a obeying the following dependence as a function of b and θ:

a(b, θ) = b
1 − θ
1 + θ

− 1 . (4.8)

• Neimark-Sacker bifurcation occurs when both eigenvalues lie on the

unit circle and have equal real parts (marked as a green solid line below

the black one in Fig. 4.2 and with the green surface in Fig. 4.3). The

bifurcation occurs for a obeying the following dependence as a function

of b and θ:

a(b, θ) =
1 + b(1 − θ)

θ
. (4.9)

2. Bifurcations of non-zero fixed points (there is no available analytical expres-

sion):

• Period doubling (as previously; marked with light blue line in Fig. 4.2).

• Neimark-Sacker bifurcation (as previously; marked with green solid line

above the black one in Fig. 4.2).

3. Bifurcations of period-2 fixed points (no explicit analytical expression):

• Pitchfork bifurcation occurs when the period-2 fixed point has one ei-

genvalue equal to 1 under the twice iterated map M(M(·)). It is mar-
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ked with the blue solid line in the two-parameter bifurcation diagrams

(Fig. 4.2).

• Neimark-Sacker bifurcation (as previously but for the second iterate of

the map M, namelyM(M(·))).

Figure 4.4 presents bifurcation diagrams for one value of θ = 0.99 and three

different values of b, namely 3, 1 and −1. In all the cases for large values of a there

are stable non-trivial fixed points (black solid) and, for small values of a, there are

stable period 2 points (red solid). Depending on b, the transition between those

states occurs in a variety of ways. For b = 3 (Fig. 4.4A) while varying a, the

following bifurcations occur (order from left to right): pitchfork giving rise to two

new unstable fixed points; period doubling of unstable fixed points; pitchfork of

period 2 fixed points; period doubling of unstable trivial fixed point. The region of

bistability between flipping (jumping from one to another period 2 fixed point) and

non-zero fixed points is shown in gray shade. Decreasing b to 1 (Fig. 4.4B) shifts

linearly the pitchfork bifurcation to the right in terms of a (see Eq. (4.7)), whereas

the flip remains practically in the same position (1−θ
1+θ
≈ 0 in Eq. (4.8)). This leads

to ‘untying’ the characteristic 8-shaped curve and leaves only bifurcations of the

trivial fixed point. For b becoming sufficiently negative (here: b = −1 in Fig. 4.4C),

additional phenomena occur. At a ≈ 1, there is a Neimark-Sacker bifurcation that

destabilises the trivial fixed point giving rise to stable oscillations. The oscillations

disappear due to a sequence of bifurcations in a tiny region in parameter space

(for more information see: Chapter 7 in [15]). Bistability can be found there as

well, but the region is so narrow as to be invisible. Interestingly, the switches

between attractors here can be considered as Critical Transitions, however it is

not clearly visible in Fig. 4.4. This is due to the fact that the system’s reaction is

slower than the variation of parameter.

4.4.2 Codimension-two bifurcations

For the two-dimensional discrete system (4.4), codimension-two bifurcations occur

if |λ1| = |λ2| = 1. This implies that there are three possible bifurcations and all of

them can be parametrised in terms of θ:
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Figure 4.2: Bifurcation diagrams of system (4.4) in the two-parameter plane {a, b} for
three fixed values of θ. (A) θ = 0.99, (B) θ = 0.50, (C) θ = 0.00. Besides all the bifurcation
curves, the black dashed line represent the case a = b = β ≥ 0, corresponding to the
original 1D-map (4.2). Similarly to the situation shown in Fig. 4.1B, a pitchfork bifurcation
also occurs here, but for β = 0.5 (instead of β = 1), due to the contribution of the momen-
tum term in (4.4). Scanning all possible values of a and b, a variety of behaviours can
be classified. All the diagrams for different values of θ are qualitatively similar. As can
be deduced from Eq. (4.7), θ does not influence the position of the pitchfork bifurcations
at all. The other two bifurcations (period doubling – red, Neimark-Sacker – green) of the
trivial fixed points move as θ varies. For the singular case of θ = 1, these bifurcation
lines become parallel. The domain in white represents the existence of only one attractor,
which is the trivial equilibrium.
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Figure 4.3: Scan of the values of θ for codimension-one and codimension-two bifurca-
tions of the fixed point (0, 0). The surfaces in black, red and green correspond to the
boundaries for the pitchfork, flip and Neimark-Sacker bifurcatioins, respectively.
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Figure 4.4: Phase-parameter bifurcation diagrams for θ = 0.99. The solid lines stand for
stable points and dashed for unstable. The colours black, red and green represent fixed
points, period-2 fixed points and oscillatory or quasi-oscillatory behaviour, respectively.
(A) b = 3, (B) b = 1 and (C) b = −1.
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1. λ1 = λ2 = 1 (pitchfork + Neimark-Sacker; green points in Fig. 4.3):

a = −θ + 2, b = θ − 1 . (4.10)

2. λ1 = 1 and λ2 = −1 (pitchfork + flip; red points in Fig. 4.3):

a = −θ, b = θ + 1 . (4.11)

3. λ1 = λ2 = −1 (flip + Neimark-Sacker; green points with red face colour in

Fig. 4.3):

a = −θ − 2, b =
(θ + 1)2

θ − 1
. (4.12)

We present the curves where codimension-two bifurcations occur as bold

points both in Fig. 4.2 and also in the 3-dimensional plane {a, b, θ} in Fig. 4.3.

Figure 4.3 visualises additionally codimension-one bifurcations for which the ana-

lytical form exists. One can notice that for θ = 0 codimension-two bifurcations

occur one close to each other, whereas for θ → 1 one of those bifurcations is

shifted towards infinity.

4.5 Comparison between extended and original mean-

field Ising models

The crucial question to be answered at this point is how the behaviour of the

extended system actually varies from what was observed in the original Ising

mean-field model. If a = b = β ≥ 0 the 2-dimensional system, independently of θ,

exhibits a bifurcation at β = 0.5. In contrast to the system (4.2) and its pitchfork in

β = 1, adding the equation for Ht+1 in (4.4) makes the bifurcation occur for a value

β twice smaller. This is caused by the fact that, around the stable fixed point (0, 0),

we can use the approximation st ≈ Ht and retrieve st+1 = tanh[2β(st + 0)].

If the system (4.4) is constrained to the physical interpretation of the para-

meters, i.e. a > 0 and b > 0, and if the memory parameter θ is less than 1,

there always exists a region where the period-2 solutions arise. This follows from

Eq. (4.8): a(b, θ) = b1−θ
1+θ
− 1, which governs the position of the flip bifurcation. Ob-

viously, for any given positive θ < 1, the term 1−θ
1+θ

is positive as well. Therefore,
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Figure 4.5: Value of b for a = 0 on the dark blue curve representing pitchfork bifurca-
tions to period-2 fixed points depending on θ. The selected points represent where the
bistability occurs in the regime b > 0. The diagram says that for every θ < 1 there occurs
bistability in the physically justified region (a > 0, b > 0). Of course, for θ near 1, this region
might not be accessible as b needs to be very large. For lower values of θ, the parameter
b decreases gradually to 0. This means that the lower the memory coefficient, the lower
parameter b needs to be to obtain bistability in the physical region of positive parameters
a and b.

one can find a sufficiently large b such that b1−θ
1+θ

> 1, hence there always will exist

a > 0 where period-2 points exist. Nevertheless, this does not mean that those

periodic points are directly observable as they are not stable until the pitchfork of

period-2 point occurs. This bifurcation is marked with dark blue colour in Fig. 4.2

but also occurs at the right boundary of the shaded interval in Fig. 4.4A. When the

period-2 points stabilise, one can observe that, for different initial conditions, the

system might behave differently – it might either converge to a single fixed point

(positive or negative one) or to a flipping behaviour (see Figs. 4.6A and 4.6B).

Numerical simulations show that, even for θ very close to 1, the curve of

period-2 fixed point pitchfork bifurcation (dark blue line in Fig. 4.2) crosses the

line a = 0. We present in Fig. 4.5 the values of b when a crosses 0 for certain

values of θ.

To sum up what was stated above, we would like to underline that, for different

values of a > 0 and b > 0, only three types of attractors are possible:

• trivial equilibrium,

• non-trivial fixed point (positive and negative),

• period-2 fixed points.

If we allow a and b to take values from the whole R2, the system may exhibit

a much broader variety of behaviours. There is for instance a set of parameters
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Figure 4.6: Time series for different initial conditions and θ = 0. (A) and (B) a = 1, b = 3.
Initial conditions: (A) in red: s0 = −0.1 and H0 = 0.1, in blue: s0 = 0.1 and H0 = −0.1, (B) in
red: s0 = 0.5 and H0 = −0.5, in blue: s0 = −0.5 and H0 = 0.5. (C) and (D) a = 3.3, b = −2.
Initial conditions: (C) in red: s0 = −0.05 and H0 = −0.05, in blue: s0 = 0.05 and H0 = 0.05,
(D) in red: s0 = −0.99 and H0 = −0.99, in blue: s0 = 0.99 and H0 = 0.99.

for which oscillations occur (see the green filled area in Fig. 4.2). The region

of existence of oscillations intersects with the region where the non-trivial stable

solutions exist (see Figs. 4.6C and 4.6D). We do not explore it further here, but

some of the oscillations can be quasi-periodic, while other stay strictly periodic.

We have observed periodic behaviour for periods between 3 and 8 (we assume

that higher periodicity is also possible), and even chaotic behaviour. The latter is

analysed further in Sec. 4.6.

4.6 Chaos

This section presents several tests to show where in parameter space chaos ex-

ists and what kind of attractors can be expected in system (4.4).

In order to better understand the bifurcations present in the system, we show

scans of the largest Lyapunov exponent for several values of θ, computed by

examining the growth of solutions of the variational equation for a typical initial

condition and perturbation vector. The result is presented in Fig. 4.7: blue denotes

negative and red denotes positive exponents. For a > 0 and b > 0 we find no
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(A)

(B)

(C)

Figure 4.7: Largest Lyapunov exponent, rescaled by 1
1−θ . (A) θ = 0.99, (B) θ = 0.50

and (C) θ = 0.00. The parameters are chosen so to correspond with Fig. 4.2. For θ =

0.99 (panel (A)) there is no region with chaotic behaviour, the sporadic light red dots
in the bottom right-hand side of the plot are caused by quasi-periodic behaviour and
cannot be interpreted as chaos. In panel (B) one can observe a region with potentially
chaotic behaviour, moreover, in panels (B) and (C) there are characteristic Arnold tongues
corresponding to period locking.
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Figure 4.8: Bifurcation diagrams illustrating multistability and chaotic behaviour in the
system (4.4). For both panels, the parameters are a = −4.17 and θ = 0.5. (A) Bifurca-
tion diagram of system (4.4). In red and blue are marked attractors to which the system
converges when increasing b and initiated in (−0.5, 0.5) and in (0.5,−0.5) respectively. Si-
milarly, for decreasing b, we use green and red colours. One can deduce that chaotic
behaviour is possible within several intervals (b around −10, around −8.75 and around
−8.55). For other values of b, the system converges to periodic or quasiperiodic oscillati-
ons. For b = −9, there are two period-3 orbits coexistent with a chaotic attractor, whereas
for b = −9.5 one can observe two separated period-24 orbits. In between, there is a triple
cascade of period-doubling bifurcations. (B) The largest of the two Lyapunov exponents
for the blue attractor in (A). Occurences of Lyapunov exponent λ > 0 confirm that one can
expect chaos for b ≈ −10, b ≈ −9, b ≈ −8.77 and for b ≈ −8.53.

chaos, but for some negative values of a or b, more interesting behaviours occur.

The diagrams in Fig. 4.7 clearly show many features of the bifurcation diagrams in

Fig. 4.2 – in particular the lines of bifurcation of stable attractors. The bifurcations

of unstable attractors are however not visible. Note that in order to compensate

for the slow dynamics as θ → 1, we normalise the exponent by (1 − θ).

In Fig. 4.7A (θ = 0.99) the slightly visible light red dots scattered in the right

part of the diagram correspond to quasi-periodic behaviour, much more iterations

taken into computation of Lyapunov exponent will allow the dots to actually vanish.

For θ = 0.00 (Fig. 4.7C), we have been unable to identify any trace of chaos within

the selected parameter values. Analysis of Fig. 4.7B (θ = 0.5) suggests that the

parameter domain a ∈ (−5,−3) and b ∈ (−10,−8) may be the most favorable to find

chaotic behaviour. Therefore, we explore this region more thoroughly.

For example, let us fix a = −4.17 and θ = 0.5. These parameters are chosen so

as to obtain several regions of chaotic behaviour while scanning b. Figure 4.8A

illustrates the attractors as the s component against parameter b. To generate

this kind of diagram, we start with two initial conditions {−0.5, 0.5} and {0.5,−0.5}
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(A) (B)

(C)

Figure 4.9: Examples of chaotic attractors for a = −4.17 and θ = 0.5: (A) shows four
stable chaotic attractors for b = −10, (B) shows a single chaotic attractor (red) stable with
two period-three orbits (blue, black) for b = −9, and (C) shows bistability between a single
chaotic (blue) and periodic (red) attractor for b = −8.53. The colours correspond to the
colours in Fig. 4.8A. Observe the characteristic folding of the chaotic attractors.

for b = −10.3 and iterate the system 400 times. Then, we discard the first one

hundred points and plot the last 300 points. For the next value of b, namely

−10.29, we use as the initial condition the final state of the system after those

400 iterates. The procedure is repeated until b = −8.3. The attractors obtained

in this scheme are plotted in black and blue. Moreover, we perform identically,

starting with the same initial conditions and decreasing b from −8.3 to −10.3. The

attractors are then plotted in green and red. It is visible that changing the direction

of the scan helps to discover different attractors and the systems is multi-stable

or at least bistable in the vast part of the diagram – up to b ≈ −8.5.

For all the attractors, we investigate again the Lyapunov exponent to identify

where exactly the chaotic attractors can be expected (see Fig. 4.8B). Indeed,

there are several regions with a positive exponent. We select some of them and

plot the attractors in phase space {s,H} in Fig. 4.9. The methodology explained

above obviously does not provide all the attractors, what can be instantly spotted

in Fig. 4.9A, where two minor attractors are marked.

The attractors in Fig. 4.9B and Fig. 4.9C are more interesting. When zoomed-

in on the tip of the attractor, we can clearly see the characteristic chaotic folding.

This allows us to conclude that, indeed, chaotic behaviour is possible in the dyn-

amics of noise traders’ opinion.

To provide basic intuitions about the system’s behaviour in the chaotic regi-
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(A)

(B)

(C)

(D)

(E)

(F)

Figure 4.10: Chaotic trajectories corresponding to the attractors presented in Fig. 4.9.
(A) s variable taken in the blue region in Fig. 4.9A, (B) H variable taken in the blue region
in Fig. 4.9A, (C) s variable taken in the blue region in Fig. 4.9B, (D) H variable taken in the
blue region in Fig. 4.9B, (E) s variable taken in the blue region in Fig. 4.9C, (F) H variable
taken in the blue region in Fig. 4.9C.

mes, we include Fig. 4.10 with time series of s and H for some of the attractors

presented in Fig. 4.9. The colours of the time series correspond to the colours

denoting the chaotic attractors.

4.7 Market passages through a bifurcation

This section presents how parameter changes can influence the noise traders’

behaviour. We analyse four scenarios of parameter shifts across certain bifurca-

tion curves. To keep it simple, we vary only parameter a fixing b and θ. One can

interpret the linearly shifted parameter as an extension of the system (4.4) taking
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the form: 
st+1 = tanh(at · st + b · Ht)

Ht+1 = θ · Ht + (1 − θ)st

at+1 = at + k

, (4.13)

where k is a fixed value.

Let us analyse four scenarios:

1. Market passage through flip and Neimark-Sacker bifurcation (Fig. 4.11A,

k = 0.04). This scenario begins with a situation where the traders have

mixed stable opinions whose average is st = 0. Let us then pick an average

memory length (θ = 0.5) and contrarian attitudes (a = −1 and b = −2) repre-

senting for instance mindsets after a recent financial draw-down. This is a

regime with only one stable state. If the market conditions change in terms

of parameter a (for instance to a more contrarian stance – a = −3, or to a

highly imitating behaviour – a = 3), the traders’ opinions are destabilised

and the variables start to flip or oscillate. Two important observations can

be made at this point:

• if the market conditions change because of reasons which are difficult

to track, it might be not possible to determine which way the parameter

a should be changed to revert to the original state;

• a transition back to the nominal state st = 0 requires a larger shift of a

than the original one. For instance, if a shift occurs from a fixed point

with a = 1 to a = 3 (blue trajectory), oscillations appear. A backward

transition to a state without oscillations (red trajectory) requires shifting

the parameter much further than just to 1, namely as far as a = −1. A

similar behaviour exists when decreasing a from a = −2 to a = −3 (red

trajectory) and then increasing a (blue trajectory) to −1. This might be

confused with a hysteresis loop, but this is actually a bifurcation delay

that arises often in fast-slow dynamical systems (see for instance [109]

or [110]).

2. Market passage to a chaotic regime (Fig. 4.11B, k = 0.04). When the

system is in a highly contrarian flipping state (θ = 0.5, a = −4, b = −6),
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certain parameter changes might lead to a transition to a chaotic regime.

Then, instead of switching opinions at every step, the behaviour of traders

cannot be predicted, which might lead to an undesired market behaviour.

Nevertheless, there is some remaining regularity in the sense that in the

chaotic regime one can observe that the transition from a positive to a ne-

gative opinion state and vice versa occurs at least once per three steps. The

bifurcation delay is not significant in this scenario, after 3-4 iterations when

moving leftwards through bifurcation line the system retrieves its flipping

behaviour.

3. Market passage into the rapid oscillations regime (Fig. 4.11C, k = 0.004).

Similarly to the first scenario, the transition through a Neimark-Sacker bifur-

cation of the trivial fixed point exhibits a bifurcation delay. Moreover, the

oscillations become very rapid and not symmetric (see Chapter 3 in [48]),

which corresponds to large market price changes such as during bubbles

and crashes. Decreasing parameter a can lead to accelerating oscillations

(such as those described by the so-called log-periodic power law singula-

rity (LPPLS) models presented for instance in [28, 61, 75, 76]). On the

other hand, the system can pass through another Neimark-Sacker bifurca-

tion (this time of non-zero fixed points) and stabilise on a non-trivial positive

or negative fixed point. The way the system settles down on one of the fixed

points is very sensitive to the current opinion value. This means that if the

market opinion varies quickly it is prone to settle easily to either a bullish or

a bearish market, depending not only on the parameter value a, but also on

the transition time. This may lead to market unpredictability even if all of the

parameters were known precisely.

4. Switching through a bistable region (Fig. 4.11D, k = 0.04). The last sce-

nario we present is a passage across four bifurcation curves, but actually

only two of them change the behaviour of the system. Those are the flip of

non-zero fixed points and the pitchfork of period-2 fixed points. The region

in the middle is bistable as in Fig. 4.4A. The behaviour of the system is in

essence a mixture of three components: a) bifurcation delay as in scena-

rio 1, b) sensitivity of settling down as in scenario 3, and c) hysteresis in

response (see for instance the saddle-node case in [4]). Component c) is
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Figure 4.11: Linear passages through bifurcations as described by the system (4.13).
Initial values are taken in the neighbourhood of an attractor corresponding to the parame-
ter a given by the leftmost value in each diagram. Parameter a is increased at each time
iteration by a certain fixed value k, leading to the dynamics for the order parameter repre-
sented by the blue curve. The red curve is generated by decreasing a from the rightmost
value. (A) θ = 0.50, a ∈ [−3, 5], b = −2, k = 0.04, (B) θ = 0.50, a ∈ [−4,−2], b = −6, k = 0.04,
(C) θ = 0.99, a ∈ [0, 6], b = −2, k = 0.004, (D) θ = 0.99, a ∈ [−3, 0], b = 3, k = 0.04. Black
vertical lines represent where do the bifurcations occur.

caused by the existing bistability. Namely, for lower values of a, the system

jumps up and down. After the second black line in Fig. 4.11D, it slowly con-

verges to a fixed point. On the way back, it starts to flip very slowly when

the system passes the left black line. This hysteresis in behaviour results

in a much larger delay than observed in scenario 1. Also, if the system is

on the fixed point in the bistable region and a is decreased far enough, in

order to retrieve the fixed point, reverting the parameter to its original state

might not be sufficient to suppress the flipping. This means that if there is

a small change which destabilises the market, simply reverting the change

might not be enough to stabilise the system again and thus much larger

interventions might be needed.

4.8 Conclusions

We have introduced and analysed in details an extended two-dimensional dyna-

mical version of the mean-field Ising model. Inspired by the dynamics of social
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imitation in financial markets involving fast imitation and slower trend following,

the traders’ opinion dynamics is modelled as the interplay between instantaneous

social imitation and past trends in social coordinations. The standard magnetic

field in the Ising model is re-interpreted and endogenised as a smoothed moving

average of the past state opinion variable.

We have shown the existence of a rich set of bifurcations as a function of

the two parameters a and b quantifying the relative importance of instantaneous

versus past social opinions on the formation of the next value of the state varia-

ble. The dependence as a function of a third parameter θ controlling the memory

length over the past states has also been dissected. We have presented a tho-

rough analysis of the existence of chaotic behaviour, present in certain parameter

regimes. Finally, we have examined four scenarios in which a slow change of a

control parameter induces transitions through bifurcation boundaries. These sce-

narios have been offered as possible simplified models of change of regimes in

financial markets. One important lesson is that, due to the phenomenon of de-

layed bifurcations often associated with fast-slow dynamical systems as well as

of possible hysteresis, the amplitude of the corrections needed to recover from a

crisis and to push the system back to ‘normal’ may be significantly larger than the

strength of the causes that led to the crisis itself. In other terms, this is a quantita-

tive reminder that ‘prevention is better than cure’, at least in this conceptual model

of financial market opinion dynamics.
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Chapter 5

Modelling joint defaults of

companies

In this chapter we present ideas on how to model the dynamics and joint collap-

ses of companies (or financial institutions) and the contagion in financial networks

through double-well potential dynamical systems with noise-induced Critical Tran-

sitions. We introduce several simple models in which the health of a company is

described as the state of a particle in a double-well potential system. The sto-

chastic shocks can push a company to the bankruptcy state and lead to further

bankruptcy cascades. We involve the contagion between companies by adapting

the shape of the potential landscape and thus making it easier to default given

others defaulted shortly beforehand.

5.1 Introduction

The financial crisis of 2007-2008 highlighted the interdependence between insti-

tutions in financial networks, which can lead to shock propagation or contagion of

financial problems. The crisis showed that the underlying financial network struc-

ture had not been fully understood. Institutions focused on independently mini-

mising individual risks, however, many did not take into account that the assets

which are not in their portfolios can also influence them in indirect ways [111].

For instance, if a British bank does not have any asset in the Spanish housing

market, it does not mean they are resilient to a housing crisis in Spain. The cause

of this susceptibility is that the assets owned by the British bank can be issued by
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an agent who invests in Spanish markets. Thus, a company aiming to minimise

idiosyncratic risks should not only watch if the issuers of the assets they own are

diversified, but also should monitor the issuers of assets these issuers own. In

short, a single player should observe a much broader part of the market than it

may initially seem to be necessary and they might be susceptible to a contagion

of bankruptcies which starts in a sector they do not have direct links to. Many

studies showed that even though high connectedness of financial networks may

enhance individual stability, at the same time it can allow quicker shock propaga-

tion making the whole system less stable – see for example [112–115].

Since the crisis of 2007-2008 the number of studies focussed on modelling the

systemic risk and spread of defaults has increased dramatically. An early attempt

to capture financial contagion can be traced back to Allen and Gale (2000) [116],

who present a probability based model and conclude that highly connected mar-

kets are preferred from the perspective of individual robustness. Watts (2002)

[117] showed that randomly induced cascades in highly connected networks are

harder to predict and that sparse networks are as stable as their most connected

nodes. Interestingly, during a crisis some of the nodes may become more cen-

tral than they were earlier and this can make their bankruptcy unexpectedly more

problematic than predicted beforehand [118]. Caccioli et al. [115] point out that

in order to avoid crises there are three key objectives: understand, predict and

control. The reference [115] argues that there is still not enough understanding of

large financial systems.

In order to comprehend the problem of joint defaults we employ a continuous-

time potential landscape model. Application of potential systems in finance has

been performed for instance by Bouchaud and Cont [119], who modelled drawdo-

wns as exponentially rare noise-induced transitions in a one-dimensional system

with one stable and one unstable equilibrium. In their model the drawdowns were

described by a particle escaping over the potential barrier. We try to capture

companies’ health a bit differently – by a potential system with two stable equili-

bria: the entirely healthy state and the bankrupt state. The general n-dimensional

model is constructed as follows:

dxn(t) =
[
f (xn(t); ppp) + h(xn(t), xxx(t);βββ)

]
dt + σndWn(t), (5.1)
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where xn denotes the health of n-th agent and f (x, p) = −
∂V(x,p)
∂x stands for the

dynamics in a quartic potential landscape V when no other agent is involved.

Function h couples the state variables given the full variables vector xxx = (x1, ..., xn)

and a coupling matrix βββ ∈ Rn×n. The parameter vector ppp describes the curvature of

the potential landscape as well as the height of the barrier that one needs to cross

in order to default. In this framework the height of the barrier can be understood

as the rating of a company – the lower it is, the easier to go bankrupt. For the sake

of simplicity we keep the barrier height fixed in time and identical for all agents,

however, it could follow a random discrete process – see an example of a discrete

model of ratings during bankruptcy cascades in [120].

Ashwin et al. [121, 122] analysed a simple two-dimensional model which be-

longs to the family (5.1) with h(x1, xxx, βββ) = β(x2 − x1) and vice versa for x2. In their

model the two stable equilibria are described as the quiescent state (in our case:

healthy state) and the active state (in our case: bankrupt state). In such a model

with positive coupling (β > 0) if one of the particles tips from the quiescent to the

active state, the other particle becomes more vulnerable to random shocks and

thus it is more likely to tip as well. Depending on β there are three possible regi-

mes of coupling: weak coupling, slow domino and fast domino. We explain what

are the characteristics of these three regimes in Sec. 5.3.1. In all of the models

we suggest the weak coupling and slow domino effect can be observed – see the

phase portraits for the model given by Eq. (5.11) where we describe graphically

the three regimes. In the models introduced in Sec. 5.3 fast domino can also

occur.

A different approach to model joint defaults was presented in [123], where the

company’s default intensity follows a CIR process and can be identified with a

mean-reversing particle in a single-well potential. The default occurs when the

intensity integrated over time exceeds threshold that is exponentially distributed

and different for each agent. At the time of default other (not defaulted) agents

undergo a shock that increases their default intensity by certain fixed value. The

mean reversal property forces a gradual decrease of the default intensity to the

mean. We will formulate this model in Sec. 5.5 and treat it as a benchmark for

our studies.

In this chapter we present a study of several models which are meant to cap-

ture joint collapses of coupled agents. We begin in Sec. 5.2 by formulating the
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double-well system for a single company. Then, in Sec. 5.3 we introduce two

simple models with linear and quadratic coupling. The drawback of these models

is that an occurrence of a default affects others thereafter. This is not a realistic

scenario, thus, in Sec. 5.4, we introduce a model where the contagion delay is

captured by an additional response variable that allows recovery to a background

default rate. In Sec. 5.5 we revisit a model by Giesecke et al. [123] and use it to

benchmark our results. Finally, we summarise our results in Sec. 5.6.

5.2 Dynamics of a single company in the potential

landscape

We model the behaviour of companies using an intuitive mathematical description

of a potential landscape. In the uncoupled case we start from the following SDE:

dx(t) = f (x(t); ppp) dt + F (x(t)) dWt = −V ′ (x(t); ppp) dt + σdWt , (5.2)

where:

• x(t) is the health of a company (can for instance be understood as Equity
Assets );

• σ is the noise strength;

• V stands for the function describing the potential landscape, which can be

understood as summarising market conditions. We require two stable equi-

libria: the right-hand side well represents the healthy state whereas the left-

hand side well denotes the defaulted state – see Fig. 5.1. The unstable

equilibrium is called the risky state. In this formulation the transition to the

left well can occur because of noise increments or due to the change of

conditions ppp (i.e. after a saddle-node bifurcation of healthy state and risky

state).

An exact form of the potential landscape parametrised with ppp = [H, ωr, ωh] is

obtained assuming four conditions:

1. Without loss of generality, the defaulted state is assumed to be xd = 0 and

V(x) has there a stationary point: V(xd) = V ′(xd) = 0.
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Figure 5.1: The potential landscape for a single company describing the four presuppo-
sed conditions. The healthy state is denoted by the residence in the right-hand side well
whereas defaulting is equivalent to falling down to xd = 0.

2. Two other equilibria (unstable risky state xr and stable healthy state xh) are

parametrised by the curvatures ω2
r := −V ′′(xr) > 0 and ω2

h := V ′′(xh) > 0.

3. The barrier height between the risky and the healthy equilibria is given by

the parameter H := V(xr) − V(xh) > 0.

4. The potential is polynomial of lowest possible order.

We assume that xd = 0 is an absorbing boundary, i.e. if the health of a com-

pany decreases to xd, it is treated as defaulted and will stay in xd there forever.

The curvature ω2
h is interpreted as the rigidity of the economy which causes the

business cycles to last on average 4 years, whereas ω2
r quantifies the resilience

of a healthy company to perturbations. Barrier height H can be understood as

quantification of rating category. In a multi-dimensional model the heterogeneous

agents can be distinguished primarily by their rating and thus have different values

of H.

In this chapter we analyse the phenomena that occur in the suggested mo-

dels, we do not perform any parameter tuning. Nevertheless, the construction

of V allows to find the parameter values given the frequencies of defaults obser-

ved in real data. A comprehensive report of occurrences of defaults grouped by

companies’ rating is prepared yearly by S&P [124]. The probabilities of defaults

we obtain in the system (5.2) can be calculated using the Kramer’s formula for

escape rates [125]:

r ≈
ωhωr

2π
exp

(
−

2H
σ2

)
. (5.3)

The conditions 1–4 uniquely determine all the coefficients of the quartic po-
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tential form:

V(x) = a4
x4

4
+ a3

x3

3
+ a2

x2

2
+ a1x + a0 , (5.4)

and its derivative

f (x) := −V ′(x) = −(a4x3 + a3x2 + a2x + a1) . (5.5)

Condition 1 sets V(0) = 0 and V ′(0) = 0, thus a1 = 0 and a0 = 0. The para-

metrisation in Conditions 2 and 3 is enough to determine a4, a3 and a2 explicitly in

terms of ω2
r , ω

2
h and H. The correspondence is the following:


a4 = 1

12H (ω2
h − ω

2
r )(ω2

h + ω2
r )

a3 = − 1
2
√

3H
(ω2

h + ω2
r )3/2

a2 =
ω2

hω
2
r

ω2
h−ω

2
r

. (5.6)

In order to observe V with two stable equilibria, the coefficient a4 needs to be

larger than 0, hence ωh > ωr and thus a3 < 0 and a2 > 0.

Finally, the three equilibria can be written explicitly in terms of H, ω2
h and ω2

r :

• trivial stable equilibrium (default state):

xd = 0 , (5.7)

• the unstable equilibrium (risky state):

xr(H, ωh, ωr) =
2
√

3Hω2
r

(ω2
h − ω

2
r )

√
ω2

h + ω2
r

, (5.8)

• the stable non-trivial equilibrium (healthy state):

xh(H, ωh, ωr) =
2
√

3Hω2
h

(ω2
h − ω

2
r )

√
ω2

h + ω2
r

. (5.9)

5.3 Simple models with coupling

In this section we introduce two simple coupled models to understand some basic

effects of default contagion. The suggested models come from the family (5.1),
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which, given the form of the potential landscape from the previous section, is

transformed into: 
dx1 =

[
−V ′(x1; ppp) − βx1h(x2)

]
dt + σdW1

dx2 =
[
−V ′(x2; ppp) − βx2h(x1)

]
dt + σdW2

, (5.10)

where β denotes the strength of coupling and ppp = (H, ω2
h, ω

2
r ). The positive im-

pact (β > 0) means that the companies cooperate and if one defaults, the other

is negatively affected. Conversely, β < 0 means competition – if for instance two

companies work in the same area, one can take over the market after the other

has defaulted. If we consider two layers of firms (for instance suppliers and re-

ceivers) in a multi-dimensional model, it is straightforward to introduce intralayer

competition and interlayer cooperation. In this thesis we will assume the reaction

function h is a nonincreasing function of xi. However, to address positive aspects

of competition one could allow the reaction function to increase for values bet-

ween xr and xh. This construction would mean that in the world of competing

firms the reaction would be positive either during a default or while being healthy,

whereas the least influence would be transferred around the risky state. The mo-

del given by Eq. (5.10) assumes that the more healthy a company is, the more

impacted by other’s actions it gets, i.e. the more one has, the easier it is to lose a

certain part of it.

Note that we do not include any kind of systemic risk common to all the compa-

nies although this can be achieved through correlating the Brownian increments.

5.3.1 Linear coupling

In the easiest version of the model we can consider a system where the response

of one company to another’s behaviour is linear. It can be obtained by simply

setting in Eq. (5.10) h(x) = −x:


dx1 =

[
−V ′(x1; ppp) + βx1x2

]
dt + σdW1

dx2 =
[
−V ′(x2; ppp) + βx2x1

]
dt + σdW2

. (5.11)

In this model for different values of coupling parameter β different routes of

joint escapes can be observed. Following [121], we can distinguish three regimes
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how the first escape (i.e. the first transition from healthy to default state) can

influence the route of the second escape:

1. weak coupling: the escape of company A skews slightly the potential for

the company B, however the company B can stay for an exponentially long

time in a stable state that is lower than the initial healthy state xh. Noisy

increments are the only factor that can cause the second escape;

2. slow domino: the escape of company A skews the potential for the company

B strongly enough that the escape of B will occur even with no further noise.

In the joint potential it means that the state where one company is in the he-

althy state and the other in a defaulted state does not exist any more due

to a saddle-node bifurcation. There is one saddle close to x1-axis and one

close to x2-axis and the most probable route between (healthy,healthy) state

and (defaulted,defaulted) state leads through those saddles with a symme-

tric hilltop between them. The asymmetric detour through the saddle causes

the delay between escapes. Hence the name slow domino;

3. fast domino: for β large enough the two saddles collide with a source in

a pitchfork bifurcation (hilltop) leaving only a symmetrically located saddle

and two sinks. The preferred escape from (healthy,healthy) state to (defaul-

ted,defaulted) state leads through the remaining saddle, what means that

the escapes are happening almost at the same time. Hence the term fast

domino is used.

In Fig. 5.2 we present the bifurcation diagram β vs. x∗1 (the equilibria of the first

variable) and in Fig. 5.3 the phase portraits for the deterministic version of the

model (5.11). If we assume that the particles are pushed around by small ampli-

tude Brownian increments then noise-induced transitions can occur. Most likely,

this kind of transition occurs through a saddle [121]. From this set of diagrams

one can deduce, that:

• strong negative coupling (strong competition) can lead to only one company

surviving for exponentially long time whereas the second one most likely

defaults immediately;

• positive coupling shifts the stable equilibrium further from the origin, which
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Figure 5.2: Bifurcation diagram for the model (5.11). Note that there is one more region
between R1 and R2. In there a saddle-(stable)node bifurcation is immediately followed
by a pitchfork of the saddle into two saddles and one source, however, for clarity, as the
region is very narrow, we do not mark it here. Parameters of V are: H = 5, ω2

h = 10 and
ω2

r = 6.

means that the waiting time for a noise-induced transition increases compa-

red to the uncoupled case;

• in the weak coupling regime (R2), after the first company defaults the other

is likely stay in the sink on an axis OX or OY for some additional time;

• when the coupling becomes stronger (regions R3 and R4), we can observe

slow domino effects;

• for even stronger coupling (R5), the saddles close to the origin merge with

a source in a pitchfork bifurcation and only one symmetric saddle remains.

The companies will very likely default simultaneously (fast domino).

The simplicity of the model (5.11) allows for complete understanding of the

dynamics governing the trajectories and gives good ideas and intuitions of what

behaviour one can expect from companies moving in a coupled potential. Howe-

ver, the model has three very big disadvantages. As the coupling is active all the

time, in the strong competition regime the model does not allow for existence of

two players (see the phase portrait in Fig. 5.3A). Moreover, for positive coupling

term, the (healthy,healthy) equilibrium can be shifted very far away from the origin
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(A) (B)

(C) (D)

(E) (F)

Figure 5.3: Phase portraits for the model (5.11). The regions mentioned below as R1-
R5 correspond to the areas in Fig. 5.2. Note that we include two different portraits in
R2. Green dots represent sinks, blue triangles saddles and red squares sources. (A)
R1, β = −0.6: high competition, at least one of the companies is forced by deterministic
dynamics to default; (B) R2, β = 0: no coupling (weak coupling regime), defaults are
independent; (C) R2, β = 1.5: weak coupling, default of one increases the default rate of
the other; (D) R3, β = 4: slow domino effect – joint escape most likely through saddles on
OX or OY; (E) R4, β = 5.5: slow domino effect – joint escape most likely through saddles
with both positive variables; (F) R5, β = 6.5: fast domino effect – joint escape through a
symmetrically positioned saddle. Parameters of V are: H = 5, ω2

h = 10 and ω2
r = 6.
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meaning a significant (exponential) decrease of the probability of default. Finally,

for positive coupling the positive feedback loops bring the system even further

from the origin. To prevent this kind of behaviour, the next iteration of the model

will suppress the influence from company A to B if the company A is in a healthy

state.

5.3.2 Quadratic coupling with an activation threshold

The second model we introduce manages the main problem observed in the pre-

vious model, i.e. that in the healthy state highly cooperating companies are very

resilient to any shocks. In order to address this we introduce an activation thres-

hold of the coupling in the critical point xc, such that if the state variable x is greater

than xc, the coupling function h(x) = 0. Moreover, we alter the coupling from li-

near to quadratic, so that the obtained deterministic system is a gradient system

in some regions of the (x1, x2)-plane, namely in {(x1, x2) : (x1 ≥ xc ∧ x2 ≥ xc) ∨ (x1 ≤

xc ∧ x2 ≤ xc) ∨ x1 ≡ 0 ∨ x2 ≡ 0} and symmetric outside of these regions. This

is enough to be sure that the system will not exhibit any unwanted deterministic

oscillatory behaviour, as for instance default-healthy oscillations.

Moreover, for the quadratic coupling, when one company passes the critical

state xc, it becomes quickly problematic for the other. The function h is of the form

h(x; xc) = max
(
0, 1 −

(
x
xc

)2
)

– see Fig. 5.4 for a graphical representation of coupling

in this model. The final form of this model is the following:


dx1 =

[
−V ′(x1; ppp) − βx1 max

(
0, 1 −

(
x2
xc

)2
)]

dt + σdW1

dx2 =

[
−V ′(x2; ppp) − βx2 max

(
0, 1 −

(
x1
xc

)2
)]

dt + σdW2

. (5.12)
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Figure 5.4: Quadratic coupling with the activation threshold in model (5.12). (A) β > 0,
(B) β < 0.

We explore what kind of behaviour one can observe in this formulae through

bifurcation diagrams presented in Fig. 5.5. For the sake of simplicity we fix ω2
r = 6,
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ω2
h = 10 and H = 5, nevertheless we expect very similar bifurcation diagrams for

any combination of ω2
r , ω

2
h and H assuming that H > 0 and ω2

h > ω
2
r .

It turns out that for any value of xc we can observe a Critical Transition (saddle-

node bifurcation) at β = 1. Thus, β < 1 denotes the weak coupling regime and

domino effects are possible only for β > 1. Depending on the critical value xc

the system can undergo a smooth pitchfork bifurcation leading from the slow-

domino regime to the fast-domino regime. This transition is not a Critical Tran-

sition though. If xc < xr, i.e. the coupling is activated below the hilltop of the

potential, there will always exist a sink and two neighbouring saddles and hence

only slow domino is possible. For larger values of of xc, fast domino can happen

depending on the value of β.

Interestingly, because the map h(x) is not smooth, for β large enough there can

be observed an immediate change in the system under the variation of parameter

xc. Just before the bifurcation (xc ≤ xr) there exist two saddles and a source in

the configuration identical to the uncoupled case, marked by the big blue triangle

in Fig. 5.5A. However, for an infinitesimally small increase of xc over xr the three

equilibria disappear in a non-smooth pitchfork bifurcation with no earlier shift of

equilibria towards each other. The instantaneous nature of this process induces

that this bifurcation can be classified as a Critical Transition between slow and

fast domino regimes despite that the smooth pitchfork is not a CT. Presumably,

incorporating a smooth coupling instead of the suggested one would solve the

problem, nevertheless, the obtained system probably would not be a gradient

one.

The largest drawback of the suggested model is that one companies’ health

is deteriorated forever after the other company defaults and that we can observe

non-smooth transitions when varying some of the parameters. A study of an

extended model which does not exhibit these features is presented in the next

section.

5.4 An improved model with adaptation

In the previous section we suggested two simple models of health of coupled

companies. The system (5.11) has an undesired property that even for slightly
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Figure 5.5: Diagrams for the model (5.12). (A) A schematic phase portrait of the un-
coupled model (β = 0). Red ellipses denote the points which undergo a saddle-node
bifurcation (green circle – sink, blue triangle – saddle) and the big blue triangle marks
the points which undergo a pitchfork bifurcation (two saddles and a source). (B) Two-
parameter bifurcation diagram, the red line denotes the saddle-node bifurcation, whereas
the blue line denotes the pitchfork bifurcation. Because the coupling function h(x) is not
smooth there is a non-smooth pitchfork bifurcation at xc = xr for β > 3 – marked with
cyan line. (C) Phase-parameter bifurcation diagram for xc = xr, (D) phase-parameter
bifurcation diagram for xc = xh. Parameters of V are: H = 5, ω2

h = 10 and ω2
r = 6.

positive coupling the default times are increasing exponentially in comparison to

the uncoupled case. We removed this feature by introducing the coupling acti-

vation threshold in the model (5.12), however, the suggested coupling function

induced a non-smooth transition between the slow and fast domino regimes. Ne-

vertheless, the drawback of both models is the fixed and infinite dependence of

the health of a company on a previous default. Half-life time a default exhibits an

impact on default rate is estimated to be around three months [126], hence the

observed drawback cannot be removed by simply adding a threshold where the

coupling switches off.

This section introduces a model which addresses the aforementioned pro-

blems. We extend the application of the potential landscape from the previous

models by adding an adaptation variable for each company. This variable expres-

ses an adaptive response of a company to other players behaviour. We start from

a two-player, and thus four-dimensional, model.
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5.4.1 Two-player model

The suggested model is the following:



dx1 = (−V ′(x1; ppp) − c1x1) dt + σdW1

dx2 = (−V ′(x2; ppp) − c2x2) dt + σdW2

dc1 =
(

1
τ

(βg(x2; ppp) − c1)
)

dt

dc2 =
(

1
τ

(βg(x1; ppp) − c2)
)

dt

. (5.13)

The variables ci express the adaptation of company i through a response

function g(x, ·), which we require to be continuous, g(xd) = g(xh) = 0. The pa-

rameter τi specifies the response time to the current market situation. It means

that for a lower value of τ a company is strongly affected by another’s default,

however, after a default it recovers faster to the pre-default state.

The simplest form of the function g which fulfils the above prerequisites is the

following:

g(x; ppp) =


0 for x ≤ xdr or x ≥ xrh ,

2 x−xdr
xrh−xdr

for x ∈
(
xdr,

xdr+xrh
2

)
,

−2 x−xrh
xrh−xdr

for x ∈
(

xdr+xrh
2 , xrh

)
,

(5.14)

where xdr is the location between xd and xr where the response switches off and a

company is treated by other as defaulted. Analogously, xrh is a value between xr

and xh that indicates the state where one is assumed to be in trouble and affects

the other company. Interestingly, if we fix xrh = xr the function g causes the lowest

lag in transmission of negative influence between a defaulting company and the

remaining one for xdr = 1
2 xd + 1

2 xr. We presume that this is caused by an interplay

between the relatively small distance of the maximum of the function g to xr and

the relatively wide activation zone. However, in order to avoid the non-smooth

transitions observed in the model (5.12), we fix xrh slightly above xr, namely we

set xrh = 9
10 xr + 1

10 xh. This accounts for speculations about a company which is not

in the defaulting stage yet, but is close to the risky state. Because the location

of the three equilibria depends on the potential V, the function g depends on the

parameters of the potential ppp = (H, ω2
h, ω

2
r ) as well. We will call activation zone the

interval where the function g is positive. We present the function g in terms of the

120



5.4. AN IMPROVED MODEL WITH ADAPTATION

location of activation zone compared to the potential in Fig. 5.6.
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Figure 5.6: Coupling function g(x) compared to the potential landscape V(x). The influ-
ence of the function g is the strongest if xdr is around the middle between xd and xr. On
the other hand, obviously, the larger xrh, the earlier the coupling is switched on and hence
the greater influence. We decided to take xdr as the midpoint of the interval [xd, xr] and
xrh in the 10% of the interval [xr, xh]. Parameters of V are: H = 5, ω2

h = 10 and ω2
r = 6.

In the deterministic case we have ẋi = −V ′(xi; ppp) − cixi, thus the effective po-

tential (i.e. the potential modified by the coupling) is the following:

Ṽ(xi; ppp) = V(xi; ppp) +
1
2

cix2
i . (5.15)

The effective potential Ṽ can be described analogously to the original one V by

the parameters H̃, ω̃2
h and ω̃2

r , and thus by the location of equilibria x̃r and x̃h.

Note that the effective potential has an equilibrium in xd. Increasing ci shifts the

positive equilibria x̃r and x̃h towards each other making it easier to observe noise-

induced transitions. In some cases (for coupling parameter β large enough or for

xi residing for a long time in the zone where the function g is positive) x̃r and x̃h

collide and disappear in a saddle-node bifurcation, which implies that a company

should follow a (slow-)domino route to a default. On the one hand, after some

time this bifurcation can be reversed and two equilibria reappear, and thus, if the

gap between the two bifurcations is (time-wise) short enough, the tipping might

not occur and the variable can track x̃h again. On the other hand, if the gap

is large enough, the trajectory is likely to tip. We have presented these three

scenarios in Fig. 5.7 together with the values of ci assuming that one variable

has no stochastic input (i.e. σ2 = 0). It shows how the coupling actually modifies

the effective potential. When the attractors vanish and before they reappear the

Kramer’s rate of escape given by Eq. (5.3) does not exist (is infinite), however

there might be no tipping observed.

If we assume the noisy input in the red trajectory (σ2 = σ1), the second com-
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Figure 5.7: Different modes showing the behaviour of the effective equilibrium in the
model with adaptation (5.13). The left panels (A), (C) and (E) present the behaviour of
the two main variables x1 (noisy, thick blue) and x2 (noiseless, thick red) in the varying
potential. The thinner lines represent the healthy (solid lines) and the risky state (dashed
lines) for the uncoupled potential (black), and effective potential Ṽ (blue and red for x1
and x2, respectively). The panels (B), (D) and (F) show the values of variables c1 (blue)
and c2 (red). The parameters are: ω2

r = 6, ω2
h = 10, H = 5, τ = 2, σ1 = 2, σ2 = 0, (A) and

(B) β = 8, (C) and (D) β = 12, (E) and (F) β = 16.
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pany will default in finite time. Following [18], we classify the causes of such a

default as:

• diffusion-dominated escape (possible in Fig. 5.7A),

• noise-drift balanced regime (possible in Fig. 5.7C),

• drift-dominated escape (Fig. 5.7E).

5.4.2 N-player model

The N-dimensional model we introduce in this section is an extension of the 2-

dimensional model given by Eq. (5.13). We analyse a homogeneous model, i.e.

we assume that the companies affect each other in the same way and all the

parameters of the potential, noise strength and the response τ are equal for all

the companies. The mathematical formulation is the following:
dxi = (−V ′(xi; ppp) − cixi) dt + σdWi

dci = 1
τ

(
β

N−1

∑
j,i

g(x j; ppp) − ci

)
dt

. (5.16)

The only difference from the model (5.13) is in the term g(·)
N−1 which stands for the

influence g(x j; ppp) coming from the company j that is distributed evenly among all

the other companies.

In this chapter we treat β as a single value. However, by replacing β
∑
j,i

g(x j; ppp)

with
∑
j,i

B j,ig(x j; ppp) one can study a network defined by coupling weight matrix B.

For instance, this formulation would allow modelling of supply chains where some

companies cooperate with their suppliers/receivers and compete against others

with similar products.

The N-dimensional model exhibits the same behaviour from a single company

perspective as the 2-dimensional version. However, this extension allows to ob-

serve how the contagion between the players propagates. In Fig. 5.8 we present a

sample diagram for 10 companies where one can see how the coupling changes

the potential and how ci varies during cumulation of default events.

In Fig. 5.8A and 5.8B there are shown the paths obtained from exactly the

same process (with the same noise realisations) differed by the values of β (β = 0
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Figure 5.8: A single realisation of the model with adaptation (5.16) with N = 10 players.
(A) and (B) are the sample paths in the uncoupled (β = 0) and coupled (β = 40) cases,
respectively. In red we mark the equilibria xh and xr of the effective potential given the
average c̄ = 1

N
∑

ci. (C) values of ci and an average c̄ (marked in bold red) for β = 40, (D)
barrier height H̃ in the averaged potential Ṽ = V(x) + 1

2 c̄x2 for β = 40. (E) Kramer’s escape
rate given by Eq. (5.3) with the red one being based on c̄ for β = 40. The sudden fall of
the rate for very small values of H̃ is caused by the significant flattening of the potential
and thus the curvatures in the nominator of the Kramer’s escape rate (5.3) become tiny.
It does not mean though that the true rate of escape is small there, the Kramer’s rate is
not valid for such small H̃ any more. Parameters of V are: H = 5, ω2

h = 10 and ω2
r = 6.
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in the first one and β = 40 in the second one). It is clearly visible that the trajec-

tories jump through the barrier much easier around time t = 8 when the equilibria

approach each other. The cascade begins when the first trajectory enters deeply

the activation zone of the function g and the coupling switches on making it easier

to tip.

In Fig. 5.8C we present the time series of the variables ci. There is a rise of ci

starting just after the first trajectory enters the grey zone and cumulating up until

time around 8 when the rate of escape is the largest. Then, ci decrease gradually

together. By bold red we present the average c̄ which is further used to find the

mean escape height H̃.

In Fig. 5.8D we show the barrier height of the potential and H̃ for the effective

‘mean’ potential Ṽ = V(x) + 1
2 c̄x2. What can be misleading, around time t = 7.5

the equilibria in Fig. 5.8B are quite far away, however the components used to

compute the mean Kramer’s escape rate given by Eq. (5.3) – height H̃ and the

curvatures ω̃2
h and ω̃2

r – are almost equal to zero. Note that for very small values

of H̃ the actual rate of escape in Fig. 5.8E actually drops. It is caused by the

significantly flat potential so that the curvatures in the nominator of the fraction in

Kramer’s escape rate become tiny. Obviously, it is easy to default there, but this

fact is not captured by the escape rate – the Kramer’s approximation formula is

not valid in the regime where the noise level is small in comparison to the potential

barrier H [127, Sec. XIII.6].

5.5 Benchmarking our results

In this section we benchmark the model with adaptation (5.13) against a different

model presented in the literature. We have decided on the doubly-stochastic

dynamical model introduced in 2013 by Giesecke et al. [123].

5.5.1 A doubly-stochastic model of intensity of defaults

This model describes the intensity (i.e. rate) of defaults of companies. If the

accumulated intensity is larger than some randomly distributed value, the com-

pany is assumed to be defaulted. The companies are interconnected through two

components: common risk factor and influence of previous defaults. The intensity
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λn(t) is governed by the following N-dimensional SDE with n ∈ {1, ...,N}:

dλn(t) = −αn

(
λn(t) − λ̄n

)
dt + σn

√
λn(t)dWn(t) + βS

nλn(t)dX(t) + βC
n dL(t) (5.17)

with some initial condition λn(0) = λo,n.

The components of the system (5.17) are as follows:

• independent dynamics governed by a Cox-Ingersoll-Ross process

− αn

(
λn(t) − λ̄n

)
dt + σn

√
λn(t)dWn(t) (5.18)

with a collection of independent Brownian motions Wn(t) and parameters αn,

λ̄n and σn;

• systematic risk factor

βS
nλn(t)dX(t) (5.19)

where βS
n is a parameter and Xt is described by a general SDE

dX(t) = b0 (X(t)) dt + σ0 (X(t)) dV(t) (5.20)

with some initial condition X0 = xo and Brownian motion V(t) independent

of Wn(t). Dynamics of X(t) could be governed for instance by Ornstein-

Uhlenbeck process;

• contagion term

βC
n dL(t) (5.21)

with a parameter βC
n and

L(t) =
1
N

N∑
n=1

1{τn≤t} (5.22)

being a counting process with an increment equal to 1/N at the moment τn

of a default. Formally,

τn = inf
{

t ≥ 0 :
∫ t

0
λn(s)ds ≥ εn

}
(5.23)

with εn being i.i.d. from a standard exponential distribution. The formula

describes the default as a first moment when the accumulated over time
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intensity reaches the value of εn.

We present a sample four-dimensional realisation of the process of intensity

given by Eq. (5.17) in Fig. 5.9.
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Figure 5.9: Example of time series generated with the (homogeneous) model of default
intensity (5.17) with 4 companies. The parameters are as in Fig. 1 in [128]: σn = 0.9,
αn = 4, λn(0) = λ̄n = 0.5, βC

n = 2, βS
n = 1. The systematic risk’s dynamics are governed by

dX(t) = 2(1 − X(t))dt + dW(t) with initial condition X(0) = 1.

Because εn are distributed independently, the domino effects might not be

present in a low dimensional version of this model at all – the distribution of default

times for small N is close to the exponential distribution. For instance, if in 2-

dimensional system ε1 = 0.1 and ε2 = 2, there is expected a long delay between

the two defaults. On the other hand, if ε1 = ε2, the defaults are expected to happen

one by another, and this feature is caused mainly not due to the contagion. Of

course, the coupling parameter βC
n can be used to intensify the feedback between

companies and thus to trigger the default clustering in large portfolios [123].

The important property of the model of intensity (5.17) is that in the absence

of noise and lack of coupling every company will default after an exponentially

long waiting time. The same distribution of defaults is expected in the uncoupled

model with adaptation variable (5.16). However, in the model with adaptation the

escapes are noise-induced. Let us compare these two models starting with a

simple analysis of the default times.

5.5.2 Comparison of models

Firstly, we compare the models with adaptation (5.13) and the model of inten-

sity (5.17) by the distributions of escapes. For this purpose, we examine the first
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and the second default in a two-dimensional system. Following [121], τi denotes

the i-th default observed in the system.

We examine the models with no coupling as well as three cases with positive

coupling. We found out that for β = 5 in (5.13) and βC = 2 in (5.17) the models have

similar ratio of the mean of the second escape to the mean of the first escape (i.e.

τ2/τ1), namely 1.68 and 1.57, respectively. Hence, we will compare the histograms

for these values of coupling, twice as low and twice as large coupling strength,

however, we are aware that the correspondence βC in (5.17) to β in (5.13) is not

necessarily linear. The histograms of escapes are presented in Fig. 5.10.

The histograms suggest that the two models are qualitatively similar for some

values of β and βC. In the regimes with no coupling (Fig. 5.10A and Fig. 5.10B)

or low coupling (Fig. 5.10C and Fig. 5.10D) there is much higher concentration

of first escapes (τ1) close to 0 in the model of intensity. Although the two mo-

dels exhibit different timescales, it does not change the qualitative behaviour. In

the medium coupling regime (Fig. 5.10E and Fig. 5.10F) the two corresponding

histograms are indeed very similar, however this is not the case for even higher

coupling (Fig. 5.10G and Fig. 5.10H).

Examining all the histograms implies that the models can exhibit similar statis-

tics of escapes, however the correspondence βC to β is indeed not linear. Adjus-

ting the parameters of the models, especially decreasing the parameter λ̄n, would

cause the models to be quantitatively comparable, nevertheless at this point we

do not perform such a study. Because the diagrams for β = 5 and βC = 2 are

alike, we will use this strengths of coupling and fix all the other parameters as in

Fig. 5.10 to compare the joint defaults in these models through copulas.

5.5.3 Escape time dependency copulas

As the second comparison measure we decided to use a more sophisticated

approach. Instead of looking at the escape times separately, we explore their

joint distributions. For this task we employ multivariate probability distribution

framework know as copulas. For an introduction to copulas see for instance [129–

131].

The main reason to use copulas in financial modelling is to capture the depen-

dence between financial assets to provide risk management and hedging stra-
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Figure 5.10: Histograms of escape times in 1000 simulated series from the model with
adaptation (5.13) (left-hand side panels) against the model of intensity (5.17) (right-hand
side panels) for corresponding coupling strength. (A) β = 0, (B) βC = 0, (C) β = 2.5, (D)
βC = 1, (E) β = 5, (F) βC = 2, (G) β = 10, (H) βC = 4. The parameters of the model (5.13)
are: H = 5, ω2

h = 10, ω2
r = 6, xdr = 1

2 (xd, xr), xrh = 9
10 xr + 1

10 xh, τ = 2, σ = 1.5. The
parameters of the model (5.17) are the same as in Fig. 5.9 except the coupling parameter
βC.
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tegies. Copulas offer a ‘complete and unique description of the dependence

structure’ between assets with no need to compute marginal distributions [132,

Chapter 3] and they quantify the relation between variables not only with a single-

numbered measure (as for instance the correlation coefficient does), but with a

distribution which describes such a relation in a much higher detail. The main

focus of application of copulas in finance was put on measuring the relation of

return rates of assets [132], nevertheless, there have been attempts to apply the

copulas to model the statistics of financial defaults [133].

The most commonly applied copulas are Gaussian and Student’s copula [132],

however, as we do not have any preassumptions on the dependence of the es-

capes in the models (5.13) and (5.17), we perform numerical studies of a wide

selection of copulas with their survival versions. This is carried out in R [134] using

the package copula (version 0.999-18) [135]. The fitting method we use is ba-

sed on maximum pseudo-likelihood estimator, whereas the optimisation method

of our choice is Neldear-Mead. We do not provide the formulas for each copula

as they can be found either in the functions included in the package or in the afo-

rementioned literature. The p-values of the fits of these copulas are presented in

Table 5.1.

Contrary to the previous study we do not analyse the i-th escapes, but the

escapes of i-th player, which, following [121], we denote by τ(i). Because in the

previous section the two histograms were qualitatively similar for β = 5 in (5.13)

and βC = 2 in (5.17), we use these strengths of coupling further in this section.

The other parameters are kept the same as for the study presented in Fig. 5.10

For the model (5.13) we have found one copula (i.e. Tawn survival copula with

p-value over 9%) which can model well the interdependence of simulated escapes

– that copula could possibly mimic our model in terms of escape distributions. The

survival modification is used in applications where one studies lifetimes of objects

in some populations [130]. For the model (5.17) none of the copulas we tried

match the simulations. Interestingly, for the model of intensity the second largest

p-value is observed for the Tawn survival copula, however it is much less than

5%. The fits of Tawn (standard and survival) copula to the simulated data coming

from the two models are shown in Fig. 5.11. The way of finding the distribution of

the data given the Tawn copula is presented below.

The escape times in the uncoupled double-well potential system are distri-
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Model (5.13) Model (5.17)
Copula Survival Dep. par. p-value [%] Dep. par. p-value [%]

A-M-H NO 0.42 0.05 0.51 0.05
Clayton NO 0.17 0.35 0.22 0.05
Frank NO 0.86 0.15 1.12 0.05
Gumbel NO 1.06 0.05 1.11 0.05
Joe NO 1.04 0.05 1.12 0.05
Normal NO 0.13 0.05 0.17 0.05
t NO 0.14 0.05 0.18 0.05
Galambos NO 0.25 0.05 0.32 0.05
Tawn NO 0.18 0.05 0.30 0.05
F-G-M NO 0.40 0.05 0.47 0.05
Plackett NO 1.56 0.05 1.84 0.05
A-M-H YES 0.34 0.05 0.43 0.05
Clayton YES 0.08 0.05 0.15 0.65
Frank YES 0.86 0.05 1.12 0.05
Gumbel YES 1.10 1.65 1.13 0.05
Joe YES 1.14 0.25 1.18 0.05
Normal YES 0.13 0.05 0.17 0.05
t YES 0.14 0.05 0.18 0.05
Galambos YES 0.31 0.05 0.35 0.05
Tawn YES 0.28 9.249.249.24 0.33 0.25
F-G-M YES 0.40 0.05 0.47 0.05
Plackett YES 1.56 0.05 1.84 0.05

Table 5.1: Dependence parameters and the p-values of the fitted copulas. The copulas
were fitted to the simulated data from the model with adaptation (5.13) and the model of
intensity (5.17). Green colour denotes the p-value that is above 5%. There is only one
case where the hypothesis that the data can be simulated using a certain copula cannot
be rejected.
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Figure 5.11: Tawn copula fitted to the ranked simulated data. The blue lines mark the
quantile lines at levels 0.1, 0.3, 0.5, 0.7 and 0.9 for the empirical copula, whereas the red
lines stand for the respective level lines of the fitted copula. (A) Tawn copula fitted to the
simulated data from the model (5.13). The copula is far from matching the data, p-value
= 0.0005. (B) Tawn survival copula fitted to the simulated data from the model (5.13).
The copula well matches the data, the p-value = 0.0924 and the dependence parameter
α = 0.28. (C) Tawn copula fitted to the simulated data from the model (5.17). The copula
is far from matching the data, p-value = 0.0005. (D) Tawn survival copula fitted to the
simulated data from the model (5.17). The copula well matches the data visually, however
p-value = 0.0025.
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buted exponentially, hence we assume that the marginal cumulative distribution

functions are exponential as well. Although we are aware that the data might not

be strictly exponential, we treat this distribution as the first approximation. The

assumed distribution of escapes is thus the following:

FX

(
τ(1)

)
= 1 − e−λτ

(1)
and FY

(
τ(2)

)
= 1 − e−λτ

(2)
, (5.24)

whilst the survival functions (F̄X(x) = 1 − FX(x)) are:

F̄X

(
τ(1)

)
= e−λτ

(1)
and F̄Y

(
τ(2)

)
= e−λτ

(2)
. (5.25)

The Tawn copula is the function linking the pseudo-observations u ∈ [0, 1] and

v ∈ [0, 1] (outputs from FX and FY) as

C(u, v) = uv · exp
(
−
α log(u) log(v)

log(uv)

)
(5.26)

with the dependence parameter α ∈ [0, 1] where α = 0 means independence.

Furthermore, the joint distribution in terms of copula function is given by

H(x, y) = C
(
FX(x), FY(y)

)
. (5.27)

As the copula of our choice is the survival modification, we need to consider

the Tawn survival copula function Ĉ(·, ·):

Ĉ(u, v) = u+v−1+C(1−u, 1−v) = u+v−1+(1−u)(1−v) exp
(
−
α log(1 − u) log(1 − v)

log ((1 − u)(1 − v))

)
(5.28)

and the joint distribution of escapes is not given by Eq. (5.27), but by:

H
(
τ(1), τ(2)

)
= Ĉ

(
FX(τ(1)), FY(τ(2))

)
= FX(τ(1)) + FY(τ(2)) − 1+

+
(
1 − FX(τ(1))

) (
1 − FY(τ(2))

)
exp

(
−α log(1 − FX(τ(1))) log(1 − FY(τ(2)))

log
(
(1 − FX(τ(1)))(1 − FY(τ(2)))

) )
=

= 1 − F̄X(τ(1)) − F̄Y(τ(2)) + F̄X(τ(1))F̄Y(τ(2)) exp
(
−α log(F̄X(τ(1))) log(F̄Y(τ(2)))

log(F̄X(τ(1))F̄Y(τ(2)))

)
=
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= 1 − e−λτ
(1)
− e−λτ

(2)
+ e−λτ

(1)
e−λτ

(2)
exp

−α log(e−λτ
(1)

) log(e−λτ
(2)

)
log(e−λτ(1)e−λτ(2))

 =

= 1 − e−λτ
(1)
− e−λτ

(2)
+ e−λτ

(1)
e−λτ

(2)
exp

(
αλτ(1)τ(2)

τ(1) + τ(2)

)
.

(5.29)

Knowing the joint distribution there are two ways to reproduce the data, namely

to simulate the data with no need to integrate the ODEs (5.13):

1. generate the dependent pseudo-observations from the given copula and

map them into R+ through inverse functions of (5.24),

2. generate τ(2) from the distribution (5.24) and then simulate τ(1) given τ(2) from

the conditional distribution H
(
τ(1)

∣∣∣τ(2)
)
.

Describing β in terms of copula dependence parameter can make it easier to

calibrate the model given the real data. From Fig. 5.12 we can conclude that the

Tawn survival copula parameter α depends linearly on the coupling strength β.
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Figure 5.12: Tawn survival copula parameter α in terms of the coupling strength β.

5.6 Conclusions

In this chapter we introduced three different models of joint defaults of companies

with systems based on the potential landscape. In this framework we identify the

right-hand side well with the healthy state of a company, whereas the left-hand

side well denotes the bankrupt state. In the suggested models the defaults occur

primarily as noise-induced transitions, however, due to the saddle-node collision

caused by the coupling, the deterministic forcing can drive the defaults as well.

We found that the two simple models exhibit several drawbacks. In the first

model the coupling was affecting the other company all the time and hence for
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the positive coupling the defaults were happening very rarely in comparison to the

uncoupled case. In order to address this issue we introduced an activation thres-

hold in a way that one company would affect the others only while residing in the

left-hand side well and thus defaulting. Although the second model did not exhi-

bit the problem with extremely rare defaults, it turned out that in this system the

transitions between slow and fast domino regimes could appear in a non-smooth

pitchfork bifurcation. Furthermore, in both of these simple models the influence

of a defaulted company affects every other company for all future times. In order

to make the model more realistic we address the aforementioned problems by

adding an adaptation variable for each company. The adaptation variable is used

to transfer smoothly the influence of a company while it is defaulting and then to

decrease the influence gradually once the company has reached its default state.

The effect of the coupling during a default is to skew the potential landscape such

that the two positive equilibria (the risky state and the healthy state) move towards

each other making it more likely for others to tip. Interestingly, in this model the

defaults are a mixture of noise-, bifurcation- and rate-induced transitions.

In order to test if the outcome of the model with adaptation is reasonable we

compare it to a model already existing in the literature and introduced in [123].

Based on the histograms of escape times we conclude that these two models

can exhibit similar marginal statistics of escapes, however, the correspondence

of the coupling strength is presumably not linear. Finally, it turns out that even

though the histograms for selected strength of coupling look qualitatively similar,

this does not imply that the joint distributions of escapes for the two models also

agree. We analysed if any common copula would fit the escapes in the two-

dimensional models. The copula that well matches the data simulated from model

with adaptation is the Tawn survival copula, however, we did not find any copula

which would fit the escapes simulated by the model of intensity introduced in

[123].

We conclude that these two models are qualitatively similar when it comes to

the marginal distribution of defaults, while the joint distributions of the first and the

second escape in these models are different.
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Chapter 6

General discussion

In this thesis we analysed several dynamical models applied to finance and eco-

nomy. The models span a variety of financial sectors: stock and bond prices, tra-

ders’ opinion dynamics and contagion within defaulting companies. It was shown

that the Critical Transitions can be present in all examples investigated and we

should be aware that a small change in conditions can lead to a rapid and difficult

to reverse change in the output no matter if it concerns prices or defaults.

In Chapter 2 we studied a dynamical model of stock and bond prices introdu-

ced in [1]. We analysed scaling laws of the amplitude and the period of collapsing

bubbles for certain limiting cases. Moreover, we gave a phase space descrip-

tion of how exactly a bubble is born and how foreshocks and aftershocks can

arise. We showed that this model can exhibit noise-driven log-periodic oscillati-

ons for some parameter values. It might be a valuable experiment to see if the

log-periodic oscillations are present not only for a small set of parameters, but for

all cases where a deterministically driven bubble is possible. Furthermore, for the

selected choice of parameters the frequencies observed in reality do not match

exactly the frequencies in the model and we expect that varying the sensitivity of

stock price and the noise strength could let us tune the model to the data analysed

in [78].

The noise smooths the bifurcation curves, hence the oscillations in a stochas-

tic system are observed even if no oscillations exist in the deterministic system.

Thus, a different study could examine if this model can simulate intrinsic and ex-

trinsic crashes. Namely, the externally caused crashes could depend just on the

multiplicative noise, whereas the internally caused crashes are a result of the de-

137



CHAPTER 6. GENERAL DISCUSSION

terministic dynamics only. One could explore if such crashes differ in nature, for

instance to see what the slope of an arising bubble and the speed of a crash

would be for the different causes.

Chapter 3 looks at the model studied in Chapter 2 from a different perspective.

We assume that the stochastic system is close to the saddle-node bifurcation and

look for a way to predict when a crash will happen. By analysis of solutions on

the centre manifold we find the approximate function of an inflating bubble. This

approximation features finite-time singularities and the time of the singularity is

used as a predictor of when a bubble explodes. The observed explosion of a

bubble is treated as a ghost of the real finite-time singularity present only in the

approximation.

This model is relatively simple as it idealises the economy to only two objects:

stocks and bonds. In order to make it more realistic we could consider expanding

the dimensions of the stock variable x to represent a market with several different

risky assets. The risky assets can be coupled for instance by correlating the noisy

increments Wt. It would be interesting to examine if any patterns of cascading

downfalls of stocks can resemble the output of that model.

In an extended version, as well as in these basic two-dimensional models

there is one big step needed to be done to make it more applicable, namely,

finding the realistic values of parameters. They represent sensitivities of assets

on past prices, which is not directly observable. Hence, it might be worthwhile

to find the values of parameters based on data, for instance by the method of

Kalman filtering taking x as a certain major stock index and y as a bond price

from the same market. The stock price needs to be detrended in order to obtain a

stationary process, whereas the bond price z should be rescaled, as the variation

of z is much higher in the model than in reality – for instance, in Fig. 2.8 z oscillates

between 0.1 and 0.9.

On the other hand, without any prior knowledge of sensitivities, the method of

ghosts of finite-time singularities could be applied by simple curve fitting of all four

parameters of the tangent function. In both of the scenarios (with and without any

information on sensitivities) the approximated time to the jump can be understood

as a measure of intrinsic risk.

Another issue, which is of high concern, is not only to predict but also to control
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bubbles [136], for instance a market maker may wish to control the risks by taking

certain actions. Without a reliable prediction of the sudden end of a bubble the

control might be very expensive or even impossible. According to [37] not every

bubble is of the same type. For some types of bubbles even if we predict a fall of

prices in advance, it might not be possible to suppress the bubble early enough

and avoid a crash anyway.

In Chapter 4 we analysed an extended two-dimensional dynamical version of

the mean-field Ising model. This model presented in [48] is loosely based on

social imitation in financial markets involving fast imitation and slower trend follo-

wing. The main variable represents traders’ opinions on an asset, whereas the

other variable is incorporated as a moving average of past opinions and reinjected

into the main variable.

The model was used to describe several market scenarios which are obtai-

ned when a parameter passes a bifurcation curve. It would be an interesting

experiment to see if this model could be used to predict real market changes by

confronting it with data about traders’ decisions. Interestingly, for some parame-

ter values chaotic behaviour was observed. We find it unlikely that the chaos in

the low dimensional model is reproduced in detail by any market data, however

it does hint that some apparent stochasticity may be due to nonlinear imitation

behaviour.

In Chapter 5 we tried to capture contagion of defaults among companies by

development of some new models of different complexity. All of the introduced

models were based on a double-well potential system, where the wells represent

healthy and default states. In order to reproduce a key property of mean reversion

of the default rate after another company defaults we introduce a variable which

stands for the adaptive response towards others’ problems.

We explored different escape scenarios and found that the defaults can be

a mixture of bifurcation-, noise- and rate-induced transitions. Furthermore, we

compared statistics of defaults with a doubly-stochastic model of default intensity

introduced in [123]. We found that even though the marginal distributions of the

first and the second escape are qualitatively similar, fitting copulas to the simula-

ted data suggests that the joint distributions of the two models are different. We

showed that for coupling parameter small enough Tawn survival copula can well
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match the data coming from our model, whereas for the data simulated with the

model of intensity we did not fit well any common copula.

When discussing the joint probabilities of escapes in the two-dimensional mo-

del we assumed that the marginal distributions are exponential. This is only an

approximation and might not be the case for higher dimensional processes. Mo-

reover, even if in an uncoupled case the time of the first escape (which is equal to

the minimum of the times of escape) is distributed exponentially, then in a coupled

system it does not need to be distributed so. This is caused by the fact that one

player can be influenced negatively by another one, even if the other one does

not default, but only undergoes temporary problems. This phenomenon should

slightly accelerate the first escape making it not necessarily distributed exponen-

tially.

An extension of the suggested model (5.16) could be made by introducing he-

terogeneous coupling within an ecosystem of companies. This would involve the

creation of a layered network where different layers of producers and consumers

positively or negatively affect each other depending on whether they cooperate

or compete. For example, producers within the same market would compete

with each other, but cooperate with consumers. Such a modification would al-

low tracking of shock propagation in a heterogeneous network similar to [137],

however in a continuous-time framework.

The final aim of the models in Chapter 5 could be to explore how a policy or

a regulatory scheme could control the systemic risk within an economy, and, for

example, to use this approach to understand precisely which interactions most

affect the systemic risk and how to regulate this. Although more and stronger

connections between companies lead to higher stability of single nodes, the entire

network becomes more fragile. Hence, it would be crucial to look for some optimal

interdependence of nodes to account both for the systemic as well as individual

stability.

When it comes to the broader scope of applications of dynamical systems, an

interesting concept to study is to determine dynamically how a crash happens to

be often more dramatic than a long drawdown. Using dynamical systems forma-

lism, it may be possible to model crashes affecting single stocks, companies or

agents as rate-induced transitions. The conditions during a crash change quickly
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enough that the agents that are not secured well enough are defaulting, whereas

some of them would possibly survive if a global change was not as quick.

Finally, given the emergence of high frequency trading methods it would be in-

teresting to apply fast-slow dynamical systems to understand the effects of times-

cale separation between manually requested transactions and the transactions

initiated automatically by computer algorithms.

It is impossible to altogether avoid crashes caused by major external events,

however, if they are caused by minor external events this comes into the remit

of Critical Transitions. In this thesis we investigated several dynamical systems

where the rapid market movements are indeed caused by Critical Transitions and

thus can be interpreted as a result of intrinsic dynamics. Such dynamical models

can help understand, and potentially provide tools to minimise, any negative in-

fluence of Critical Transitions, for instance by providing a better understanding of

systemic risk.
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