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A single-column model of the dry, shear-free, convective boundary layer is presented

in which non-local transports by coherent structures such as thermals are represented

by the partitioning of the fluid into two components, updraught and environment,

each with a full set of prognostic dynamical equations. Local eddy diffusive trans-

port and entrainment and detrainment are represented by parametrizations similar to

those used in eddy diffusivity mass flux schemes. The inclusion of vertical diffu-

sion of the vertical velocity is shown to be important for suppressing an instability

inherent in the governing equations. A semi-implicit semi-Lagrangian numerical

solution method is presented and shown to be stable for large acoustic and diffusive

Courant numbers, though it becomes unstable for large advective Courant numbers.

The solutions are able to capture key physical features of the dry convective bound-

ary layer. Some of the numerical challenges posed by sharp features in the solution

are discussed, and areas where the model could be improved are highlighted.
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1 INTRODUCTION

Motivated by current challenges in representing cumulus con-

vection in weather and climate models (e.g. Holloway et al.,
2014; Gross et al., 2018), Thuburn et al. (2018) recently pro-

posed an approach in which a full set of prognostic equations

for density, momentum, potential temperature, and moisture

is used for the resolved-scale average dynamics of convective

updaughts, as well as for their environment. (Downdraughts

and multiple classes of convective updraught can also be

included with their own prognostic equations.) The result-

ing governing equations resemble those used in modelling

multi-phase flows (e.g. Drew, 1983; Städtke, 2007), so we

call this approach the “multi-fluid” approach. An attractive

and novel feature of the multi-fluid approach is that, in a

numerical model, it allows the resolved-scale average dynam-

ics and transport of the convective updraughts to be handled

by the dynamical core. Processes such as entrainment, how-

ever, must still be parametrized. In order for the multi-fluid

approach to be practically useful, suitable numerical solution

methods must be developed. Also, suitable schemes must be

formulated for the subfilter-scale fluxes and for the sources

and sinks of each type of fluid that represent processes such

as entrainment and detrainment. This paper presents a first

step in this direction in the form of a two-fluid single-column

model of the dry convective boundary layer.

The multi-fluid governing equations can be derived sys-

tematically by conditional filtering. The idea is analogous

to the filtering procedure used to derive the equations of

large-eddy simulation (LES) but, in addition, it makes use

of a set of quasi-Lagrangian fluid labels to pick out differ-

ent regions of the fluid, for example convective updraughts

and their environment. At any point in the fluid exactly one

of the labels takes the value 1 while the rest are 0. Mul-

tiplying one of the dynamical equations (e.g. the mass or

momentum equation) by one of these labels before apply-

ing a spatial filter gives the corresponding equation for the

filter-scale average of the fluid component picked out by that
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label. The resulting equations include terms representing the

effects of subfilter-scale fluxes as well as terms represent-

ing the relabelling of fluid parcels. Thuburn et al. (2018)

provide a detailed derivation of the conditionally filtered

equations and discuss the relationship between relabelling

and entrainment/detrainment. Thuburn and Vallis (2018) have

documented the conservation properties of the multi-fluid

equations and shown that they possess physically reason-

able normal modes, thus giving some confidence that the

multi-fluid equations do provide a physically sound basis on

which to model convective flows.

Under suitable approximations the multi-fluid governing

equations reduce to those for a typical mass flux con-

vection scheme (Thuburn et al., 2018). They also include

subfilter-scale terms that could account for local turbulent

transports such as those commonly modelled by a down-

gradient eddy diffusion in the boundary layer. Thus, the

multi-fluid equations have clear conceptual links to existing

widely used approaches. At the same time, one of the attrac-

tions of the multi-fluid approach is the possibility that, in

a numerical model, the dynamics of convective updraughts

and downdraughts could be handled by the dynamical core,

leaving only smaller-scale processes such as entrainment and

detrainment, local turbulent fluxes, and microphysics to be

parametrized. Such an approach would be a significant depar-

ture from current practice, and would shift the traditional,

but artificial, distinction in weather and climate modelling

between “physics” and “dynamics.” By allowing the dynami-

cal core to handle the resolved-scale dynamics of convection,

the multi-fluid approach has the potential to overcome sev-

eral limitations of conventional convection parametrization

schemes. For example, a dynamical memory of the state of

convection (e.g. Plant and Craig, 2008), including cold pools

(e.g. Grandpeix and Lafore, 2010), would be included in a nat-

ural way, convective systems could propagate to neighbouring

grid columns without having to switch off and reform (e.g.

Grandpeix and Lafore, 2010), and compensating subsidence

would not be parametrized in the convecting grid column (e.g.

Krueger, 2001; Kuell et al., 2007) but could occur where

required by the dynamical equations.

In order to realize this potential of the multi-fluid approach,

it is necessary to develop suitable forms of the parametrized

terms, along with suitable numerical methods for solving

the governing equations, and to show that they capture the

relevant physical processes. The aim of this paper is to docu-

ment an initial step in that development process for a simple,

but non-trivial, single-column problem and so demonstrate a

proof of concept for the multi-fluid approach.

For our purpose it is appropriate to start with the simplest

relevant problem: a single-column two-fluid model of the

dry convective boundary layer. In the convective bound-

ary layer, there is a significant contribution to the vertical

potential temperature transport from large coherent eddies

or thermals, which is up the mean gradient in the upper

half of the boundary layer. This transport and the resulting

mean potential temperature structure cannot be accurately

modelled only by a downgradient eddy diffusion (e.g. Holt-

slag and Boville, 1993); the ability of the two-fluid model

to capture this non-local and upgradient transport will be a

valuable test of the approach. Also, beginning with the dry

convective boundary-layer case allows us to take advantage

of the close conceptual similarity between the two-fluid

model and the eddy diffusivity mass flux (EDMF) model

of Soares et al. (2004) and Siebesma et al. (2007). In both

models local turbulent eddy fluxes are represented in terms

of an eddy diffusivity. In the EDMF model, non-local fluxes

are represented by a steady entraining plume mass flux

scheme, while in the two-fluid model they are represented by

the second, convecting, fluid. Thus, we are able to adopt or

adapt the parametrizations of a number of processes from the

EDMF approach for use in the two-fluid approach. The con-

ceptual similarity of the multi-fluid and EDMF approaches

is further emphasized by the recent extension of the EDMF

approach by Tan et al. (2018) to include prognostic equations

for updraught properties; their model is then essentially a

two-fluid anelastic model.

For the moist convective boundary layer, EDMF schemes

have been extended to allow multiple categories of updraught

(Neggers et al., 2009; Sušelj et al., 2012). In the dry case,

however, a single updraught appears to be sufficient. For

this reason we limit ourselves here to two fluid partitions

in the multi-fluid scheme. By restricting attention to a dry

single-column model, the dynamical and numerical issues are

simpler than in three dimensions and we avoid the complica-

tions associated with moist processes. Nevertheless, there are

still some non-trivial issues to address and valuable lessons

to be learned, as discussed below. The governing equations

for the dry single-column two-fluid model are presented and

discussed in Section 2.

Note that we should not expect the two-fluid model to

outperform the EDMF model on this test problem. The

eddy turnover time (a few minutes) is much shorter than

the time-scale of evolution of the boundary-layer mean

fields (hours), so the dynamical memory of the convective

updraughts in the two-fluid model will provide no advantage.

Also, in this single-column case, compensating subsidence

must necessarily occur in the same grid column, and there

can be no propagation of convection to neighbouring grid

columns. Thus, if the two-fluid model can produce similar

results to EDMF, then such an outcome may be regarded as

an initial proof of concept and demonstration of feasibility of

the multi-fluid approach.

The EDMF scheme of Siebesma et al. (2007) is formu-

lated in such a way that the volume fraction or area fraction

of updraughts is never used explicitly. In the multi-fluid

approach, the volume fraction of updraughts is part of the

solution, and suitable values of updraught volume fraction

and vertical velocity are crucial for obtaining adequate mass

fluxes and convective transports. Section 3 discusses the

determination of a suitable profile of updraught volume
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fraction, as well as the calibration of entrained and detrained

values of vertical velocity and potential temperature.

Since the eventual intended application of the multi-fluid

approach is in weather and climate models, we use numer-

ical methods for the resolved-scale dynamics based on

the ENDGame dynamical core (Wood et al., 2014) used

operationally in the Met Office Unified Model. It is a

semi-implicit semi-Lagrangian scheme, which should pro-

vide a stable treatment of fast waves and advection with long

time steps. Since vertical eddy diffusion and entrainment and

detrainment are all fast processes on the scales of interest, the

time integration scheme is extended to give an implicit treat-

ment of these terms fully coupled to the dynamics. The details

are provided in Section 4.

Some sample results are presented in Section 5, showing

that the model captures key physical features of the dry con-

vective boundary layer. A valuable test of the well-posedness

of a model or parametrization scheme and its numerical

solution is that its solution should converge with increasing

resolution. Section 5 also discusses the convergence of the

two-fluid boundary-layer model. Section 6 summarizes the

conclusions and discusses some areas where further develop-

ment could improve the model.

2 GOVERNING EQUATIONS

The governing equations are based on the conditionally fil-

tered compressible Euler equations, as given by Thuburn

et al. (2018). They are restricted to a single column, so that

the horizontal velocity vanishes and the solution is inde-

pendent of the horizonal coordinates. There are n = 2

fluid components, i = 2 representing the convecting or

updraught fluid component and i = 1 representing the rest

of the fluid. The governing equations then reduce to the

following.

2∑
i=1

𝜎i = 1, (1)

𝜕

𝜕t
(𝜎i𝜌i) +

𝜕

𝜕z
(𝜎i𝜌iwi) =

∑
j≠i

(
ij −ji

)
, (2)

Di𝜃i

Dt
= 1

𝜎i𝜌i

[∑
j≠i

{
ij

(
𝜃ij−𝜃i

)
−ji

(
𝜃ji−𝜃i

)}
− 𝜕

𝜕z
F𝜃i

SF

]
,

(3)

Diwi

Dt
+ cp𝜃i

𝜕Π
𝜕z

+ 𝜕Φ
𝜕z

= 1

𝜎i𝜌i

[∑
j≠i

{
ij

(
ŵij−wi

)
− ji

(
ŵji−wi

)}
− 𝜕

𝜕z
Fwi

SF
−di

]
, (4)

Π(1−𝜅)∕𝜅 − R
p0

𝜌i𝜃i = 0. (5)

Here, 𝜎i is the filter-scale volume fraction of fluid compo-

nent i, and Equation 1 represents the fact that the volume

fractions of the different fluid components must sum to

unity. Equation 2 expresses conservation of mass, with

𝜌i the filter-scale density of fluid component i, and wi
the filter-scale vertical velocity of fluid component i. The

prognostic thermodynamic variable is chosen to be the

potential temperature 𝜃 rather than the entropy 𝜂 to retain

a similarity to ENDGame. Neglecting diabatic heating, the

filter-scale potential temperature 𝜃i satisfies Equation 3,

where Di∕Dt = 𝜕∕𝜕t + wi𝜕∕𝜕z means the ‘material’ rate of

change following fluid i, and F𝜃i
SF

is the subfilter-scale flux of

𝜃 within fluid component i. The vertical momentum equation

is Equation 4. In the pressure gradient term Π = (p∕p0)𝜅 is

the Exner pressure, where p0 = 105 Pa is a constant reference

pressure and 𝜅 = R∕cp, with R the gas constant for dry air

and cp the specific heat capacity at constant pressure. The

gravitational acceleration is 𝜕Φ∕𝜕z, where Φ is the geopo-

tential, and Fwi
SF

is the subfilter-scale flux of w within fluid

component i. The terms di allow for the fact that the net pres-

sure gradient force on fluid i is not exactly cp𝜃i𝜕Π∕𝜕z but also

includes mutual pressure forces (typically a “drag”) between

fluids 1 and 2 as well as other subfilter-scale pressure vari-

ations. Conservation of momentum requires
∑

i di = 0. In

order to write Equation 4, a perfect gas equation of state

Equation 5 has been assumed, and, as is usually done,

some subfilter-scale contributions to Equation 5 have been

neglected. The thermodynamic equation and momentum

equation are written in advective form in anticipation of a

semi-Lagrangian discretization, again as in ENDGame.

In order to represent entrainment and detrainment, fluid

parcels are relabelled. This relabelling appears in the condi-

tionally filtered equations as the term ij, the local rate at

which fluid component j is relabelled as fluid component i;
thus 21 is the entrainment rate and 12 is the detrainment

rate, both expressed as mass per unit volume per unit time.

The fluid that is relabelled carries its potential temperature 𝜃ij
and its vertical velocity ŵij with it, thus affecting the budgets

of potential temperature and vertical momentum for both flu-

ids. Thuburn et al. (2018) give a full derivation and further

discussion; also see Section 2.3.

Note that the two fluid components share the same Exner

pressure field Π. This formulation has several important con-

sequences (Thuburn and Vallis, 2018; Thuburn et al., 2018):

the number of equations matches the number of unknowns;

the pressure may be interpreted as a Lagrange multiplier asso-

ciated with the constraint Equation 1; and inter-fluid acoustic

modes are filtered so that the linearized equations possess

physically reasonable normal modes. The Exner pressure Π
may be diagnosed from the prognostic variables 𝜎i𝜌i and 𝜃i
by taking 𝜎i times Equation 5 and summing over i:

Π =

(
R
p0

∑
i
𝜎i𝜌i𝜃i

)𝜅∕(1−𝜅)

, (6)

after which 𝜌i is obtained by back-substitution in Equation 5

and 𝜎i = (𝜎i𝜌i)∕𝜌i.

We have chosen to work with a fully compressible govern-

ing equation set, rather than make a Boussinesq or anelastic
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approximation, because modern high-resolution weather pre-

diction models are increasingly based on fully compressible

governing equations. Consequently, the numerical methods

used must stably handle acoustic waves even at very high

acoustic wave Courant numbers (Section 4).

The terms on the right-hand sides of Equations 2–4 must be

parametrized. The parametrizations used here, and discussed

in the following subsections, are mostly based on those in

the literature on EDMF schemes. However, it is highly desir-

able that a model should be based on a well-posed set of

differential equations (Cullen et al., 2001; Arakawa and Wu,

2013), distinct from the numerical methods used to solve

those equations, so that it makes sense to talk about “the exact

solution” of the differential equations, and convergence of a

numerical solution to the exact solution (Williamson, 2008).

Guided by this principle, some of the parametrized terms have

been modified; see also the discussion in Section 6.

2.1 Boundary-layer depth and vertical velocity scale

Following Soares et al. (2004), Siebesma et al. (2007),

Neggers (2009) and Neggers et al. (2009), several of

the parametrized terms are specified in terms of the

boundary-layer depth z∗ and an associated convective vertical

velocity scale w∗. A method is therefore required to diagnose

the boundary-layer depth. Following these authors, we take z∗
to be the height at which the updraught velocity goes to zero.

The convective vertical velocity scale is given by w∗ =
(gz∗Q∗∕𝜃00)1∕3, where Q∗ is the surface potential tempera-

ture flux and 𝜃00 = 300 K is a characteristic surface potential

temperature. In the present work Q∗ is a specified constant.

2.2 Vertical diffusion coefficient

As in the EDMF approach, the local subfilter-scale flux of

potential temperature F𝜃i
SF

is represented by a downgradient

eddy diffusive flux. Here the eddy diffusive fluxes are applied

separately in both the environment and updraught fluid com-

ponents, rather than to the mean fluid potential temperature.

For simplicity, and to aid comparison with previous work, the

same diffusion coefficent is used in the updraught and the

environment.

Soares et al. (2004), Siebesma et al. (2007), Neggers (2009)

and Neggers et al. (2009) use a specified vertical profile of

eddy diffusivity, based on Holtslag (1998),

K = z∗w∗k

{(
u∗

w∗

)3

+ 39k̃z

}1∕3

z̃(1 − z̃)2, (7)

where u∗ is the friction velocity, k = 0.4 is von Kármán’s con-

stant, and z̃ = min(z∕z∗, 1) is the height normalized by the

boundary-layer depth. The upper bound of 1 on z̃ is a conve-

nient way to impose zero diffusion above the boundary layer.

Following Siebesma et al. (2007), we consider the shear-free

case and so take the background horizontal velocity to be zero

and set u∗ = 0.

To ensure that the diffusivity remains non-zero and the

potential temperature gradient remains finite at the surface,

we follow the standard approach of including a roughness

length z0, leading to a modified definition of z̃:

z̃ = min

(
z + z0

z∗ + z0

, 1

)
. (8)

The numerical experiments discussed below use z0 = 0.1 m.

The specified potential temperature flux Q∗ is imposed as

the bottom boundary condition for the potential temperature

diffusion in both fluids.

Our initial implementation included vertical eddy diffusion

only on the potential temperature fields 𝜃1 and 𝜃2. However,

it was found that the numerical solutions often became unsta-

ble, even when additional numerical damping mechanisms

were included. Subsequent analysis (Appendix A) revealed

that the two-fluid equations with unequal basic state flow in

the two fluids are subject to a Kelvin–Helmholtz-like instabil-

ity; this is an inherent instability of the continuous governing

equations, not a numerical instability. The stability analysis

suggests that the inclusion of a sufficiently strong vertical dif-

fusion on w, parametrizing the effects of the Fwi
SF

terms, would

stabilize the flow, at least for small enough vertical wave-

lengths. Therefore, we include vertical diffusion of w1 and w2

as well as 𝜃1 and 𝜃2. We use the same profile of the vertical

diffusion coefficient (Equation 7) for w as for 𝜃. The vertical

diffusion of w uses the bottom boundary condition wi = 0 in

both fluids.

2.3 Entrainment and detrainment

Mass flux schemes are known to be particlularly sensitive

to the parametrization of entrainment and detrainment (e.g.

Romps, 2016, and references therein). EDMF schemes for

the convective boundary layer have used a variety of forms

for the fractional entrainment per unit depth 𝜀, including a

constant value (Angevine, 2005), a specified function of nor-

malized depth (Soares et al., 2004; Siebesma et al., 2007),

a rate inversely proportional to updraught speed (Neggers

et al., 2009), and a rate inversely proportional to a diagnosed

turbulence length-scale (Witek et al., 2011b).

Many EDMF schemes prescribe the vertical profile of

mass flux or of updraught volume fraction within the bound-

ary layer or subcloud layer. When this is done, the vertical

profile of detrainment is implied by the updraught mass bud-

get and so does not need to be explicitly parametrized. The

scheme of Angevine (2005) and Angevine et al. (2010) is

one example that does explicitly parametrize detrainment;

the fractional detrainment rate per unit depth 𝛿 is a simple

profile of z which, in the absence of condensation, peaks at

the boundary-layer top.

In the two-fluid model we do not prescribe either the

mass flux profile or the updraught volume fraction profile;

they both emerge as part of the solution. Therefore we are

obliged to parametrize both entrainment and detrainment. The
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governing Equations 2–4 are expressed in terms of the abso-

lute entrainment rate 21 and detrainment rate 12 per unit

time rather than the fractional entrainment and detrainment

rate per unit depth. The ij are related to 𝜀 and 𝛿 by

21 = 𝜀M, (9)

12 = 𝛿M, (10)

where

M = 𝜎2𝜌2w2 (11)

is the updraught mass flux.1

Entrainment and detrainment rates are notoriously diffi-

cult to infer directly from high-resolution LES, partly because

they depend critically on how air is labelled as belonging

to updraught or environment (e.g. Romps, 2010; Dawe and

Austin, 2013; Yeo and Romps, 2013). Entrainment rates may

also be estimated indirectly from LES using a bulk plume

model
𝜕𝜓2

𝜕z
≈ 𝜀(𝜓 − 𝜓2), (12)

where 𝜓 is some materially conserved scalar. However,

a number of approximations are involved in Equation 12,

including statistical steadiness of the flow, small updraught

volume fraction, and the assumption that the value of 𝜓 in

the entrained air is equal to the horizontal mean 𝜓 . Romps

(2010) argues that this method systematically underestimates

the actual entrainment.

In the present work, the entrainment and detrainment rates

are expressed in terms of corresponding time-scales 𝜏ij,

ij =
𝜎i𝜎j𝜌ij

𝜏ij
, (13)

where 𝜌ij is the density of the relabelled air. This form is

convenient for the approximate linearization of the equations

needed for their semi-implicit time integration (Section 4).

For simplicity we take 𝜌ij = 𝜌j. Combining Equation 13 with

9 and 11 and noting that 𝜌1 ≈ 𝜌2 and 𝜎1 ≈ 1 gives

1

𝜏21

≈ w2 𝜀, (14)

allowing previously published formulations for 𝜀 to be

adapted for the two-fluid model. Here we use a form based on

that used by Cheinet (2003):

𝜀 = max

(
w∗

z∗w2

,
c𝜀
z

)
, (15)

where c𝜀 = 0.4 is a dimensionless constant, so that

1

𝜏21

= 1

𝜏∗
max

(
1, c𝜀

z∗
z

w2

w∗

)
. (16)

In practice we have found it helpful for capturing an ini-

tial spin-up from rest to define the inverse time-scale 1∕𝜏∗
by w2 max∕z∗, where w2 max is the maximum speed in the

updraught profile, rather than the more obvious w∗∕z∗; this

1 Note that here M is defined in terms of the absolute updraught velocity w2

rather than a perturbation from the mean ascent, as is often done.

has the effect of reducing the entrainment rate during the first

few minutes, but makes little difference thereafter.

There are fewer studies or data on which to base a

parametrization of detrainment for the dry convective bound-

ary layer. A crucial aspect of any such parametrization is that

it must provide enough detrainment near the top of the bound-

ary layer to detrain all of the air arriving in updraughts and so

prevent the build-up of a large volume fraction of fluid 2 at the

boundary-layer top. Siebesma et al. (2007) use a prescribed

mass flux profile

M = 0.33w∗

(
z
z∗

)1∕3(
1 − z

z∗

)1∕2

, (17)

implying

𝜀 − 𝛿 = 1

M
𝜕M
𝜕z

= 1

3

1

z
− 1

2

1

z∗ − z
, (18)

and suggesting

𝛿 ≈ 1

2

1

z∗ − z
. (19)

Based on LES results, Rio et al. (2010) propose a parametriza-

tion in which air is detrained when it becomes negatively

buoyant, with the detrainment rate increasing strongly as the

updraught slows:

𝛿 ∼ max

(
0,− b

w2
2

)
, (20)

where b is the updraught buoyancy. In this formulation the

detrainment rate peaks very strongly at the top of the bound-

ary layer.

In practice we have found that a combination of

Equations 19 and 20, slightly modified and with tuned coef-

ficients, works well. The contribution given by Equation 19

helps to maintain a suitable mass flux profile in the mid-

boundary layer, while the contribution given by Equation 20

prevents a build-up of fluid 2 at the boundary-layer top.

Expressing the resulting detrainment profile in terms of a

detrainment time-scale gives

1

𝜏12

= w2𝛿 =
c𝛿
𝜏∗

w̃
(1.001−z∕z∗)

+max

(
0,− 2b

w∗w̃

)
, (21)

where w̃ = max(0.01,w2∕w∗) and c𝛿 = 0.7 is a dimension-

less constant, with buoyancy defined as b = g(𝜃2 − 𝜃1)∕𝜃00.

The factor 1.001 in the denominator of the first term and

the bounding of w̃ away from zero are needed to avoid a

singularity in the detrainment rate at z = z∗.

It is common in the literature to use different entrainment

rates for different variables. For example, if 𝜀 is taken to be

the entrainment rate for potential temperature, then Angevine

(2005) uses 2𝜀 as the entrainment rate for vertical velocity

while Siebesma et al. (2007) and Neggers et al. (2009) use

0.5𝜀 as the entrainment rate for vertical velocity. This prac-

tice is defensible, and even natural, if the entrainment rate

is defined by an equation like 12. However, the multi-fluid

equations are based on the intuitive idea that the entrainment

rate is a rate of relabelling of fluid mass. In this context it is not
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permitted, and does not make sense, to have different entrain-

ment rates for different variables. Instead, the multi-fluid

framework permits the properties of the entrained air 𝜃21 and

ŵ21 to differ from those of the environmental air 𝜃1 and w1 ≈
0. Similar comments apply to detrainment. Here we take the

properties of the entrained air to be linear combinations of the

mean properties of the updraught and environment air:

𝜃ij = b𝜃i𝜃j + (1 − b𝜃i)𝜃i, (22)

ŵij = bwi wj + (1 − bwi)wi, (23)

where i = 1, 2 and j = 3 − i. For entrainment of w, we take

bw2
= 0.5 and for detrainment bw1

= 1. These choices are

justified by studies of the vertical momentum budgets of

updraughts (e.g. Sherwood et al., 2013; Romps and Charn,

2015), which suggest that the entrainment of vertical momen-

tum is smaller than would be predicted based on entrainment

of stationary environmental air. Use of Lagrangian particles to

estimate entrainment and detrainment in our own LES results

(Section 3) also supports the choice bw2
≈ 0.5 and bw1

≈ 1.

Finally, with this choice, entrainment has approximately the

same effect on the vertical momentum budget as the entrain-

ment of stationary environmental air at a rate 0.5𝜀, as used by

Siebesma et al. (2007) and based on their LES results and a

bulk plume model. For 𝜃 we set b𝜃2
= 1 and b𝜃1

= 1. Our LES

results (Section 3) suggest values of b𝜃i closer to 0.5. How-

ever, this choice led to excessively large updraught potential

temperatures and updraught advective potential tempera-

ture fluxes; the model responded by moving the potential

temperature minimum downward to an unrealistic height

z∕z∗ ≈ 0.2 in order for the diffusive potential temperature

flux to compensate for the excessive advective flux.

2.4 Updraught-base properties

In the mass flux approach, some scheme is needed to specify

the properties at the base of the updraught. In the literature

on EDMF schemes, the updraught base value 𝜙u of some

materially conserved variable 𝜙 is typically specified as

𝜙u = 𝜙 + 𝛽w′𝜙′|s
W

, (24)

where an overbar indicates the grid cell horizontal mean and

w′𝜙′|s is the surface flux of 𝜙. There is considerable variation

in the values used for the turbulent velocity scale W, which

may be set to w∗ (Angevine, 2005; Neggers et al., 2009; Sušelj

et al., 2012), to an estimate of the subgrid standard deviation

of w at the lowest model level (Siebesma et al., 2007), or to

the square root of the subgrid turbulent kinetic energy (TKE;

Soares et al., 2004; Witek et al., 2011b). The values of the

dimensionless scaling factor 𝛽 range from 0 to 10. There is

also considerable variation in the value used for the updraught

base vertical velocity, which may be set to some constant mul-

tiple of w∗ (Angevine, 2005; Sušelj et al., 2012), to some

constant multiple of the subgrid standard deviation of w at the

lowest model level (Neggers et al., 2009), or to zero (Witek

et al., 2011b; Tan et al., 2018).

In the two-fluid model, we must specify the volume fraction

or mass fraction of fluid 2 at the lower boundary as well as

the updraught properties. In practice the mass fraction must

be specified in the lowest model layer, where it is set to

𝜎2 = 0.12. (25)

This choice is based on values used in EDMF schemes

and estimated from LES (Section 3), followed by tuning to

improve the agreement between the two-fluid model and LES

results.

Following Equation 24 with parameters similar to those

used by Siebesma et al. (2007), we impose

𝜃2 = 𝜃1 + 𝛽
w′𝜃′|s

W
(26)

with 𝛽 = 1.5 (𝛽 ≈ 𝛽∕𝜎1) and W given by sw, the subgrid

standard deviation of w,

sw

w∗
≈ 1.3

{(
u∗

w∗

)3

+ 0.6̃z

}1∕3(
1 − z̃ 2

)1∕2
, (27)

(Holtslag and Moeng, 1991) evaluated at the lowest model

layer. Once again the inclusion of the roughness length in z̃
avoids a singularity at z = 0 when u∗ = 0, as assumed here.

These updraught-base properties are imposed by modify-

ing the entrainment and detrainment terms for 𝜎1𝜌1, 𝜎2𝜌2, 𝜃1,

and 𝜃2 in the lowest model layer so as to force these quan-

tities to satisfy Equations 25 and 26 while conserving the

mean mass 𝜌 = 𝜎1𝜌1 + 𝜎2𝜌2 and potential temperature con-

tent 𝜌𝜃
∗
= 𝜎1𝜌1𝜃1 + 𝜎2𝜌2𝜃2, where the notation

∗
indicates

a mass-weighted mean.

As noted by Thuburn et al. (2018), conserving the total

potential temperature content has the advantage of also con-

serving the total internal energy and preserving the pressure

(Equation 5). No adjustment is made to w1 or w2, since both

are zero at the bottom boundary. Imposing Equations 25 and

26 at the updraught base can be interpreted as a sorting of the

subgrid PDF to assign the most buoyant fraction of the fluid

to fluid 2, anticipating that the dynamics will then cause it to

ascend in an updraught.

2.5 Pressure drag

Taking a horizontal mean (again indicated by an overbar) of

the flux form of the vertical momentum equation, before con-

ditional filtering, and neglecting transience of the mean state,

leads to

𝜕

𝜕z
(𝜌w2) +

𝜕p′

𝜕z
= 0 (28)

(Schumann and Moeng, 1991), where here p′ is the depar-

ture of the pressure from a profile in hydrostatic balance

with 𝜌. Schumann and Moeng (1991) conclude that the

non-hydrostatic pressure gradient accelerates rising thermals

in the lower half of the convective boundary layer and decel-

erates them in the upper half. The LES results of Siebesma

et al. (2007) show that the square of the updraught vertical
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velocity is roughly proportional to the vertical velocity vari-

ance, and they use this, in conjunction with Equation 28, to

parametrize the effect of the non-hydrostatic pressure on the

updraught vertical momentum.

Here we do not include such a contribution to the updraught

momentum equation for the following reason. Re-expressing

Equation 4 in flux form, summing over i using Equation 32

below, and neglecting transience gives

𝜕

𝜕z

(∑
i
𝜎i𝜌iw2

i + Fwi
SF

)
+ cp𝜌𝜃

∗ 𝜕Π′

𝜕z
= 0, (29)

where Π′ is the departure of Π from a profile in hydrostatic

balance with 𝜃
∗
. Equation 29 is the two-fluid model analogue

of Equation 28, and shows that the effects of the horizontal

mean non-hydrostatic pressure are explicitly resolved in the

two-fluid model and so do not need to be parametrized. We

have confirmed that the balance expressed by Equation 29

holds in our numerical solutions, with the Fwi
SF

terms providing

a relatively small contribution.

LES experiments (Romps and Charn, 2015) have shown

that a pressure perturbation dipole typically exists across

individual buoyant thermals that opposes their upward accel-

eration. Such a drag is not captured explicitly by Equation 29

and so must be parametrized via the di terms in Equation 4.

Romps and Charn show that their data are consistent with a

drag given approximately by

0.22
w2

2

R
, (30)

where the thermals are approximated as spherical with radius

R. If the thermal radius is assumed proportional to z∗ within

the dry convective boundary layer, then these results suggest

that the drag can be parametrized by taking

d2 = 𝛾𝜎2𝜌2

w2
2

z∗
(31)

and, for momentum conservation,

d1 = −d2. (32)

The experiments discussed below use 𝛾 = 1.

3 UPDRAUGHT, ENTRAINMENT AND
DETRAINMENT PROPERTIES

An important factor in the performance of the two-fluid

model is the simulated profile of 𝜎2, the volume fraction of

convecting fluid. It has a strong influence on the non-local

contribution to the transport and hence on the resulting

boundary-layer potential temperature profile as well as the

boundary-layer-top entrainment flux.

Observations of the convective boundary layer (e.g. Young,

1988; Miao et al., 2006, and references therein) suggest that

the fractional coverage of large coherent updraughts or ther-

mals is of the order 10–20% or more, though the diagnosis is

very sensitive to how updraughts are defined.

Siebesma et al. (2007) used updraught fractions of

0.01, 0.03 and 0.05 to diagnose updraught properties from

their LESs to calibrate their EDMF scheme. However, the

updraught fraction implied by the prescribed mass flux pro-

file used in their EDMF scheme is significantly larger. Several

EDMF schemes (Soares et al., 2004; Witek et al., 2011b;

2011a) use a constant updraught volume fraction in the

boundary layer of order 0.1.

Updraught volume fraction and other properties can be

diagnosed from LES of the convective boundary layer, but

again the calculation is sensitive to how updraughts are

defined. Couvreux et al. (2010) propose a sampling criterion

that captures well the updraughts from the surface to the top

of the convective boundary layer. A passive but decaying

tracer is released at the surface; throughout the boundary

layer, air with positive vertical velocity and with tracer mix-

ing ratio greater than the mean plus one standard deviation

at that height is labelled as updraught air. They found an

updraught fractional coverage decreasing slightly with height

from 0.2 to 0.13.

Given this uncertainty in the fractional coverage of

updraughts, we also estimated values from our own incom-

pressible Boussinesq LES. The case studied is case 1 of

Siebesma et al. (2007). It has an initial potential temperature

profile 𝜃(z) = (297.2 − 1.95 × 10−3z)K (with z in metres),

and a constant surface potential temperature flux Q∗ =
0.06 Km/s is applied so that a convective boundary layer

grows gradually into the stable background. The domain

size is 4.8 km × 4.8 km horizontally and 3 km deep, and

the horizontal and vertical grid spacings are 25 and 10 m,

respectively. Updraught fractions (and other properties) were

estimated following the method of Couvreux et al. (2010).

The profile of updraught fraction estimated in this way, aver-

aged over the sixth hour of simulation, is plotted in Figure 1a,

and is in the range suggested by earlier studies. The updraught

vertical velocity and mass flux are also shown for comparison

with the results of the two-fluid model below.

Figure 2 shows updraught and downdraught values of 𝜃

and w, along with values for entrained and detrained air.

The entrained and detrained values are estimated as the aver-

age values on Lagrangian particles that change their label

from environment to updraught or vice versa. The estimated

entrained value ŵ21 is roughly mid-way between w1 and w2,

while the detrained values ŵ12 are close to w2. This result

gives some support for the values of bwi chosen in Section 2.3.

For potential temperature both the entrained values 𝜃21 and

detrained values 𝜃12 are roughly mid-way between 𝜃1 and

𝜃2. As noted in Section 2.3, values of b𝜃i based on these

estimates do not give good results in the two-fluid model.

A likely explanation for this discrepancy is as follows. The

Lagrangian particle method is known to suffer from excessive

switching of particle labels between updraught and environ-

ment (e.g. Yeo and Romps, 2013) leading to larger estimates

for entrainment and detrainment rates than other methods.



8 THUBURN ET AL.

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

σ2

z 
/ z

*

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

w2 / w*

z 
/ z

*

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

σ2 w2 / w*

z 
/ z

*

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

(d) (e) (f)

σ2

z 
/ z

*

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

w2 / w*

z 
/ z

*

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

σ2 w2 / w*

z 
/ z

*

FIGURE 1 (a)–(c) Updraught properties versus normalized height estimated from LES using the method of Couvreux et al. (2010). (a) Updraught fraction,

(b) normalized updraught vertical velocity w2∕w∗ and (c) normalized updraught mass flux 𝜎2w2∕w∗. (d)–(f) show corresponding fields from the two-fluid

single-column model. (f) also shows the prescribed mass flux profile (Equation 17) used by Siebesma et al. (2007) (dashed curve)
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FIGURE 2 (a) Potential temperature values in environment 𝜃1 (blue solid),

updraught 𝜃2 (red solid), entrained 𝜃21 (blue dashed) and detrained 𝜃12 (red

dashed). (b) Vertical velocity values in environment w1 (blue solid),

updraught w2 (red solid), entrained ŵ21 (blue dashed) and detrained ŵ12 (red

dashed)

The entrainment and detrainment rates diagnosed in this way

in our LES are indeed significantly larger, especially in the

middle of the boundary layer, than those parametrized in the

two-fluid model. These large label-switching rates will also

bias the values of 𝜃 diagnosed from the LES towards less

extreme values.

Further details and results from this work will be discussed

at length elsewhere.

4 NUMERICAL METHODS

The governing equations are solved using a semi-implicit,

semi-Lagrangian solution method. This choice was intended

to provide a stable treatment of fast waves such as acoustic

waves, and to permit large vertical advective Courant numbers

so that the time step would not be restricted by the ver-

tical velocity in strong updraughts. Also, the scheme used

resembles a one-dimensional version of the ENDGame

scheme (Wood et al., 2014) used operationally at the Met

Office, which should facilitate the adoption of the multi-fluid

approach if it proves successful.

The staggering of variables on the grid is a generalization of

the Charney and Phillips (1953) grid, with 𝜃i and wi staggered

relative to 𝜎i𝜌i and Π.

The semi-implicit, semi-Lagrangian discretization of

Equations 2–4 may be written concisely in the form

L𝜌i =  (R𝜌i ), (33)

L𝜃i = (R𝜃i), (34)

Lwi = (Rwi). (35)

Here, R𝜌i comprises the terms in the mass continuity equation

for fluid i that depend only on the (known) variables at time

step n, while L𝜌i comprises the terms that depend only on

the (unknown) variables at time step n + 1. Analogous def-

initions apply for the 𝜃 and w equations. The operator 

represents transport by standard semi-Lagrangian advection.

In our initial experiments we found that semi-Lagrangian

interpolation of 𝜎i𝜌i led to very large conservation errors (𝜎i𝜌i
is much less smooth than 𝜌i itself); therefore instead we use a

one-dimensional version of the conservative large-time-step

advection scheme SLICE (Zerroukat et al., 2009), indicated

by the operator  . Like a standard semi-Lagrangian scheme,
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SLICE works by computing departure points for trajectories

that arrive at grid points, but it achieves conservation by

remapping cell integrals of the advected quantity rather than

interpolating point values.

In more detail, the terms in Equations 33–35 are given by

L𝜌i =
[
𝜎i𝜌i − 𝛼𝜌iΔt

(
ij −ji

)]n+1
, (36)

R𝜌i =
[
𝜎i𝜌i + 𝛽𝜌iΔt

(
ij −ji

)]n
, (37)

L𝜃i =
[
𝜃i −

Δt
𝜎i𝜌i

𝜕

𝜕z

(
𝜎i𝜌iK𝜃i

𝜕𝜃i

𝜕z

)
−
𝛼𝜃iΔt
𝜎i𝜌i

{
ijb𝜃i(𝜃j−𝜃i) −ji(1−b𝜃j)(𝜃j−𝜃i)

}]n+1

, (38)

R𝜃i =
[
𝜃i +

𝛽𝜃iΔt
𝜎i𝜌i

{
ijb𝜃i(𝜃j−𝜃i) −ji(1−b𝜃j)(𝜃j−𝜃i)

}]n

,

(39)

Lwi =
[

wi −
Δt
𝜎i𝜌i

𝜕

𝜕z

(
𝜎i𝜌iKwi

𝜕wi

𝜕z

)
+𝛼wiΔt

(
cp𝜃i

𝜕Π
𝜕z

+ 𝜕Φ
𝜕z

)
−
𝛼wiΔt
𝜎i𝜌i

{
ijbwi(wj−wi) −ji(1−bwj)(wj−wi) − di

}]n+1

,

(40)

Rwi =
[

wi − 𝛽wiΔt
(

cp𝜃i
𝜕Π
𝜕z

+ 𝜕Φ
𝜕z

)
+
𝛽wiΔt
𝜎i𝜌i

{
ijbwi(wj−wi) −ji(1−bwj)(wj−wi) −di

}]n

.

(41)

These equations apply for i = 1, 2, with j = 3−i. Superscripts

n and n + 1 indicate time steps, and the 𝛼 and 𝛽 = 1 − 𝛼

coefficients are off-centring parameters for the semi-implicit

time scheme. The numerical experiments discussed below use

𝛼 = 0.65. All vertical derivatives are evaluated using centred

finite differences.

Note that vertical diffusion is a fast process, so for stability

we treat it with a backward time step. To improve the balance

between diffusion and other processes, the diffusion contri-

bution is fully coupled to the semi-implicit semi-Lagrangian

stepping of other terms, not treated in a time-split way.

Entrainment and detrainment are also fast processes. They are

treated in a semi-implicit semi-Lagrangian way with the same

off-centring weights as the dynamical terms in the equations;

in this way entrainment and detrainment are sampled at the

beginning and end of each air parcel trajectory.

In order to solve Equations 33–35, a quasi-Newton method

is used. This is essentially a Newton method (e.g. Press

et al., 1988) in which the Jacobian is approximated, and in

which the linear system that results at each iteration is not

solved exactly. After some number l of Newton iterations,

Equations 33–35 will not be satisfied exactly, but there will

be some residuals given by

Q𝜌i =  (l)(R𝜌i ) − L(l)
𝜌i
, (42)

Q𝜃i = (l)(R𝜃i) − L(l)
𝜃i
, (43)

Qwi = (l)(Rwi) − L(l)
wi
, (44)

where the superscripts on the L terms and  and  operators

indicate that they are evaluated using the iteration l estimates

for the fields at step n + 1.

The Newton method seeks increments (indicated by a

prime) to the estimated step n + 1 values, designed to reduce

the residuals, by solving the linear system

𝜌i

(
(𝜎i𝜌i)′, 𝜎′i ,w

′
i
)
= −Q𝜌i , (45)

𝜃i

(
𝜃′i ,w

′
i
)
= −Q𝜃i , (46)

wi

(
𝜃′i ,w

′
i ,Π

′) = −Qwi , (47)(
1 − 𝜅
𝜅

) Π′

Π
=
𝜌′i
𝜌i

+
𝜃′i
𝜃i
, (48)∑

i
𝜎′i = 0. (49)

Here, 𝜌i , 𝜃i , wi are approximate linearizations of the

right-hand sides of Equations 42–44 (Appendix B).

Using Equation 46 to eliminate 𝜃′i from Equation 47 leads

to an equation of the form

i(w′
i) + i(Π′) = wi , (50)

where the i are tridiagonal operators that include contri-

butions from the diffusion of wi, and the i are weighted

finite-difference gradient operators. Using Equations 46, 48

and 49 to eliminate 𝜃′i , 𝜌
′
i and 𝜎′i from Equation 45 gives an

equation of the form(
1 − 𝜅
𝜅

) Π′

Π
+1(w′

1
) +2(w′

2
) = Π, (51)

where the i are modified finite-difference divergence oper-

ators. The right-hand side terms wi and Π are functions of

the residuals Q𝜌i , Q𝜃i , Qwi .

In the absence of the diffusion terms, the tridiagonal i
operator in Equation 50 reduces to multiplication by a coeffi-

cent; in that case the w′
i can be eliminated from Equations 50,

51 to leave an equation for the single unknown Π′ that has

the same structure as a one-dimensional version of a standard

semi-implicit Helmholtz problem (e.g. Wood et al., 2014).

In discrete form this takes the form of a tridiagonal system,

for which Gaussian elimination gives an efficient numerical

solution. In our case, however, the w-diffusion terms must be

included in the linearization. Then no further analytical elim-

ination is possible, and the coupled system Equations 50, 51

must be solved numerically. With the unknowns w′
i and Π′

ordered according to their height, Equations 50 and 51 form a

heptadiagonal system, which again can be solved directly by

Gaussian elimination.

Once w′
i andΠ′ are found, the other increments are found by

back-substitution. All of the estimates for the step n+ 1 prog-

nostic variables are then updated: for a generic variable 𝜑,

𝜑(l+1) = 𝜑(l) + 𝜑′. (52)

Provided the Newton iterations converge, the updated

variables approach the solution of the nonlinear system

Equations 33–35 and 6. Note that all variables or coefficients

labelled as being at time level n + 1, including K,  and
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d, are updated at each iteration; there are no “lagged” or

“frozen” coefficients. Four Newton iterations are used for all

the results shown below.

Some other relevant numerical details are as follows.

Seeking quasi-steady solutions of the continuous governing

equations for z0 ≪ z ≪ z∗ yields the well-known convective

boundary-layer results that wi should scale like z1∕3 while 𝜃i
and 𝜃2 − 𝜃1 should scale like z−1∕3. To improve the accuracy

of the advection of these fields, the semi-Lagrangian inter-

polation of Rwi is done in a stretched coordinate z1 = z1∕3

while the semi-Lagrangian interpolation of R𝜃i is done

in a stretched coordinate z2 = z−1∕3

0
− (z + z0)−1∕3. Cubic

Lagrange interpolation is used, dropping to linear interpo-

lation for departure points in the lowest and highest model

layers. The semi-Lagrangian departure point calculation is

also done in terms of a stretched coordinate z3 = z2∕3, and

vertical interpolation of w2 to compute the entrainment rate

is done in the z1 coordinate.

Conservation of the mass integral of 𝜃 is crucial for the

correct growth of the boundary layer. The diffusion of 𝜃 is

discretized in space in a way that conserves the integral. How-

ever, the semi-Lagrangian advection is not conservative, so a

simple post hoc conservation fixer is applied.

In order to ensure a smooth time evolution of z∗ and the

quantities that depend on it, z∗ must be allowed to take values

in between w-levels. Similar to the method used by Siebesma

et al. (2007), we take z∗ to be the height at which a linear

extrapolation of w2
2

goes to zero.

5 EXAMPLE RESULTS

5.1 Physical aspects

Figures 1d–f, 3, 4 and 5 show some example results from

the two-fluid single-column model. The test case is again

based on case 1 of Siebesma et al. (2007), with the same

initial potential temperature profile and surface potential tem-

perature flux. The governing equations are now fully com-

pressible rather than Boussinesq or anelastic. The domain is

2400 m deep discretized on a uniform 20 m grid with a 6 s

time step.

Figure 3 shows a sequence of vertical profiles of the mean

potential temperature 𝜃
∗

at the initial time and after 1.5, 3.5,

5.5 and 7.5 hr from the single-column model and, for com-

parison, from the LES. The boundary-layer depth grows at a

realistic rate. There is a superadiabatic layer near the surface,

a strong inversion at the boundary-layer top, and a well-mixed

layer in between with a potential temperature minimum near

the middle of the boundary layer. The single-column results

agree well with those from EDMF schemes (e.g. Siebesma

et al., 2007). They are also similar to those from LES, except

that the boundary-layer top inversion is unrealistically sharp;

this excessively sharp inversion is common in EDMF schemes

too (e.g. Siebesma et al., 2007; Witek et al., 2011b) and
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FIGURE 3 Vertical profiles of 𝜃
∗

after 0, 1.5, 3.5, 5.5 and 7.5 hr (a) from

LES and (b) from the two-fluid single-column model

suggests that improvements to parametrized terms near the

boundary-layer top may be needed.

Figure 4 shows the vertical profiles of 𝜃
∗

and 𝜃2 after

8 hr, relative to the minimum value of 𝜃
∗

and scaled using

𝜃∗ ≡ Q∗∕w∗. Again the results are very similar to those of

EDMF schemes (e.g. Siebesma et al., 2007). The updraught

is positively buoyant up to z ≈ 0.9z∗; above this the

updraught becomes negatively buoyant, contributing to the

boundary-layer top entrainment flux. The updraught potential

temperature profile is almost identical at 20 m resolution and

5 m resolution. However, the height of the minimum in the

mean potential temperature profile is lower at finer resolution.

Figure 1d–f shows scaled vertical profiles of 𝜎2, w2, and

𝜎2w2 after 8 hr. The updraught fraction 𝜎2 is fairly uniform at

around 0.15, decreasing quickly to zero at the boundary-layer

top. The updraught vertical velocity and mass flux profiles are

very similar to the LES results shown in panels (b)–(c). The

mass flux profile is also very close to the prescribed profile

used by Siebesma et al. (2007) (dashed curve in (f)).

Figure 5 shows two contributions to the potential

temperature flux: the local eddy diffusive contribution∑
i 𝜎i𝜌iKi𝜕𝜃i∕𝜕z, and a resolved advective contribution∑
i 𝜎i𝜌iwi(𝜃i − 𝜃

∗
), along with their sum. The sum decreases

linearly with height, consistent with a uniform heating rate,

from Q∗ at the surface to zero at a height of about 0.9z∗. In

the lowest part of the boundary layer, the resolved transport

contribution increases with finer vertical resolution, and this

increase is compensated by a reduced eddy diffusive con-

tribution. Above 0.9z∗ the net transport reaches a minimum

– (the negative of) the entrainment flux – of about −0.1Q∗
before returning to zero at z = z∗. This entrainment flux

is consistent with values seen in LES. Note, however, that

its magnitude fluctuates considerably as the boundary-layer

top moves between model levels (Figure 5c) – another
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indication of the need to improve parametrized terms near the

boundary-layer top. These fluctuations do become smaller

at finer spatial resolution. The profiles of eddy diffusive and

resolved transport contributions are similar to the eddy dif-

fusive and mass flux transport contributions seen in EDMF

schemes and diagnosed from LES.

There is one further contribution to the potential temper-

ature transport not shown in Figure 5, namely that due to

the mean ascent: (
∑

i 𝜎i𝜌iwi)𝜃
∗
. In Boussinesq and anelas-

tic models this contribution vanishes identically. However,

for the fully compressible system used here, heating of the

boundary layer causes expansion leading to a mean ascent

that peaks at the boundary-layer top. The resulting potential

temperature transport has a peak value of about 0.5Q∗ at the

boundary-layer top.

5.2 Numerical aspects

For the run presented above, the advective, acoustic, and

diffusive Courant numbers at the end of the simulation are

respectively cad = max(w2)Δt∕Δz = 0.47, cac = csΔt∕Δz ≈
100, and cdiff = max(K)Δt∕Δz2 = 3.5, where cs ≈
350 m/s is the sound speed. For the convergence test discussed

below cad and cac are kept roughly independent of resolution

while cdiff roughly doubles with each halving of Δz, reach-

ing around 30 on the finest grid. Thus, the numerical method

presented in Section 4 can stably handle large acoustic and

diffusive Courant numbers. However, despite the use of a

semi-Lagrangian advection scheme, we found that the model

became unstable when we attempted to increase the advective

Courant number beyond 1. The symptoms of the instability

suggest that it may be an acoustic mode, whose propagation is

drastically slowed by the semi-implicit time stepping, coupled

to advection by w1 and w2. However, a more complete under-

standing and a solution have so far eluded us. A numerical

method stable for large advective Courant numbers is desir-

able in order that a model time step is not constrained by the

presence of strong updraughts.

Despite solving a fully compressible equation set at very

high acoustic Courant number, we found that the solution
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TABLE 1 Convergence of some key diagnostics with increasing resolution

𝚫z 𝚫t z∗ Minimum 𝜽2 Maximum w2 Maximum 𝝈2w2 z(min𝜽
∗
) t(ent flx)

(m) (s) (m) (K) (m/s) (m/s) (m) (hr)

2.5 0.75 1515 299.89 1.62 0.301 412.5 0.92

5 1.5 1513 299.89 1.61 0.291 470 0.75

10 3 1501 299.88 1.59 0.276 540 ≈0.6

20 6 1495 299.87 1.58 0.257 620 ≈0.4

40 12 1471 299.85 1.53 0.232 720 ≈0.4

z(min 𝜃
∗
) is the height of the minimum in 𝜃

∗
.

t(ent flx) is the time at which a non-zero boundary-layer-top entrainment flux is first established.

All diagnostics except t(ent flx) are taken at the end of an 8 hr run.

above the top of the boundary layer remains remarkably qui-

escent and noise-free, even as z∗ approaches the model lid. We

suspect that this good behaviour is related to the form and dis-

cretization of the entrainment and detrainment terms, which

conserve the mass integral of 𝜃 in each model layer and so

preserve the pressure there.

Because of the sharp curvature of the potential temperature

profile near the ground, the advective potential temperature

tendencies at the first 𝜃 level above the ground are very large

and very sensitive to the details of the advection scheme.

The resulting errors have a significant effect on the updraught

properties and hence on the solution throughout the bound-

ary layer. For example, we experimented with linear, cubic

Lagrange, and cubic spline interpolation, each using either z
or z2 as the coordinate, and found differences in updraught

fraction, updraught w, and normalized mean potential temper-

ature of order 10%.

On a closely related point, the growth of the boundary layer

is linked to the budget of potential temperature, so accurate

conservation of potential temperature is important. However,

the semi-Lagrangian advection used for R𝜃i is not inherently

conservative, so a numerical fixer is used to restore the correct

mass integral after advection. Numerous conservation fixers

have been proposed in the literature, including simple glob-

ally uniform additive or multiplicative factors, as well as more

sophisticated schemes (e.g. Zerroukat and Allen, 2015). We

found that our numerical solutions were very sensitive to the

exact form of the fixer used, often giving spurious kinks in the

profile of 𝜃2 or potential temperature flux. We obtained best

results when the conservation fixer was applied entirely to the

first 𝜃 level above the ground. This is consistent with the fact,

noted above, that the errors in advection of 𝜃 are dominated by

the first level above the ground. Including this conservation

fixer also greatly reduced the sensitivity of the solution to the

choice of advection scheme for 𝜃.

To test the well-posedness of the two-fluid model and the

ability of the numerical methods to solve it, we investigated

the convergence of the solution with increasing resolution.

Table 1 shows the time and space resolutions used along with

a selection of key diagnostics. The finest resolution run was

also used as a reference solution allowing errors to be esti-

mated at coarser resolutions (Figure 6; also Figures 4 and 5).
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FIGURE 6 Errors versus resolution after 8 hr estimated relative to a

reference run with Δz = 2.5 m, Δt = 0.75 s: (a) vertical velocity errors (m/s)

and (b) potential temperature errors (K). Open circles indicate fluid 1,

crosses indicate fluid 2, dashed lines indicate root mean square errors, and

solid lines indicate maximum errors

Many diagnostics, such as z∗, minimum 𝜃2, maximum w2,

and the root mean square errors, show a clear convergence

with increasing resolution. However, the maximum in 𝜎2w2

and the height of the minimum in 𝜃
∗

appear to be converg-

ing rather slowly, if at all. These two quantities are related,

since a larger mass flux produces a larger advective poten-

tial temperature transport and leads to a minimum 𝜃
∗

at a

lower height. We have found the 𝜎2 profile, and hence 𝜎2w2

and z(min 𝜃
∗
), to be sensitive to both the parametrizations and

the details of the numerics near the bottom boundary. The

slow convergence of these diagnostics, despite the modifica-

tions to numerics already introduced in Section 4, suggests the

need for an improved and perhaps quite different numerical

handling of the near-singularities at the bottom boundary.

For comparison, in the LES the normalized height of the

mean potential temperature minimum z(min 𝜃
∗
)∕z∗ is quite

variable in time, for example varying between 0.28 and 0.44

over a couple of hours. Because the middle part of the bound-

ary layer is very well mixed, very small changes in the mean

potential temperature are enough to significantly change the

height of its minimum. It is not clear whether this variability

indicates sampling errors due to the finite LES domain size, or

a genuine physical variability. In either case, the LES results

for this diagnostic do not provide a robust reference value for

the single-column model results.
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Some diagnostics do not show a convergence with increas-

ing resolution, particularly the maximum errors in w2 and 𝜃2,

and the time at which a clear entrainment flux is first estab-

lished t(ent flx). The maximum errors in w2 and 𝜃2 reflect

the fact that the solutions for w2 and 𝜃2 are discontinuous at

z = z∗, so that even a small error in z∗ implies a finite error

in w2 and 𝜃2. The initial penetration of the updraught above

its level of neutral buoyancy to establish an entrainment flux

appears to be very sensitive to the details of the numerical

handling of advection, diffusion, and detrainment near z = z∗.

Small changes to the profile of diffusivity, such as allowing

it to vanish just above z∗ rather than exactly at z∗, or small

changes to the factors 1.001 in Equation 21 or 0.01 in the

definition of w̃, can lead to quite different behaviour. A fur-

ther issue is that simply diagnosing z∗ becomes problematic if

the w2 profile is noisy. Our preferred approach for future work

would be to avoid parametrizations that depend explicitly on

a diagnosed boundary-layer height z∗. We anticipate that an

eddy diffusivity derived from a TKE (e.g. Angevine, 2005;

Witek et al., 2011a; Sušelj et al., 2012; Tan et al., 2018) will

lead to better convergence with resolution.

6 CONCLUSIONS AND DISCUSSION

We have presented a two-fluid single-column model for the

dry, shear-free, convective boundary layer in which non-local

transports by coherent structures such as thermals are repre-

sented by the partitioning of the fluid into two components,

updraught and environment, each with a full set of prognos-

tic dynamical equations. Local eddy diffusive transport and

entrainment and detrainment are represented by parametriza-

tions similar to those used in EDMF schemes. A semi-implicit

semi-Lagrangian numerical solution method is presented and

shown to provide stable solutions for large acoustic and dif-

fusive Courant numbers, though it becomes unstable for large

advective Courant numbers.

In many aspects the solutions obtained are similar to those

obtained with EDMF schemes. In particular, they are able to

capture the countergradient potential temperature transport in

the upper half of the boundary layer, the location of the mean

potential temperature minimum in the middle of the boundary

layer, and the occurrence of a boundary-layer top entrainment

flux of order 0.1 times the surface potential temperature flux.

The work has highlighted several valuable lessons to be

borne in mind for future development. One lesson concerns

the need to include vertical diffusion of w in order to con-

trol an inherent Kelvin–Helmholtz-like instability of the

two-fluid governing equations. It would be interesting to

explore whether this instability could usefully be linked to the

TKE budget and hence to the parametrization of eddy diffu-

sivity and perhaps to entrainment and detrainment. Another

lesson concerns the importance of conservation of mass

and potential temperature for obtaining accurate numerical

solutions.

We strongly advocate testing the convergence with resolu-

tion of any proposed parametrization (as well as testing at the

proposed operational resolution) as a means of disentangling

the properties of the underlying mathematical model from

those of the particular numerical implementation (and any

numerical “fixes” needed to make it work). Our results, espe-

cially those of the convergence test, have highlighted several

areas where further understanding or development is needed.

First, there are several issues related to the use of

parametrizations that depend explicitly on a diagnosed

boundary-layer height z∗. The method used here to diagnose

z∗ can be vulnerable to noise in the w2 profile. Moreover,

the parametrizations described in Section 2 result in the dif-

fusivity being identically zero above z∗ and the detrainment

rate blowing up at z∗, while the advective form of the w and

𝜃 equations means that their numerical advective tendencies

are identically zero at any level where w = 0. As a conse-

quence, the solutions for w2 and 𝜃2 are discontinuous at z = z∗
and the inversion in 𝜃

∗
is unrealistically sharp, while the

initial penetration of the updraught above its level of neutral

buoyancy to establish an entrainment flux is very sensitive to

resolution. A further point is that the parametrizations used

here would be unsuitable for the moist case, in which some

fraction of the updraught should be permitted to penetrate

above the boundary-layer top to form cumulus cloud. For

future work we propose to investigate parametrizations that

do not depend explicitly on z∗ and which produce smoother,

more realistic solutions.

Second, the solutions for both wi and 𝜃i vary sharply near

the ground. This impacts the numerical solution in several

ways, including the calculation of semi-Lagrangian departure

points and the interpolation of advected fields to those depar-

ture points, the calculation of gradients in diffusion terms,

and the vertical interpolation of fields between w-levels and

𝜌-levels. Unlike the rather artificial singular behaviour near

the top of the boundary layer, which might be ameliorated

by alternative parametrizations, this near-singular behaviour

near the ground appears to be inherent to the mathematical

description of the convecting boundary layer (e.g. Holtslag

and Nieuwstadt, 1986; Troen and Mahrt, 1986; Holtslag and

Moeng, 1991). Numerical methods can often be adapted to

better handle singularities if the form of the singularity is

known. The well-known convective boundary-layer scaling

of w and 𝜃 near the ground motivated our introduction of the

stretched coordinates z1, z2 and z3 in Section 4. This introduc-

tion led to some improvements, and we were able to obtain

wi profiles that scale like z1∕3. However, we were not able

to obtain the correct scaling for 𝜃i. A complicating factor is

that the entrainment source term added to 𝜃i before advec-

tion scales in a different way from 𝜃i itself. A related point

is that, while semi-Lagrangian schemes give excellent accu-

racy when the Lagrangian time-scale is long, as is typical of

the free atmosphere, they can be much less accurate when

the Eulerian time-scale is long and a quasi-steady balance

between strong source terms and advection is required, as
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here. Since these numerical errors near the ground affect the

updraught properties and hence the solution throughout the

boundary layer, it would be desirable to develop improved

numerical schemes that can accurately capture the solution

near the ground.

Finally, as mentioned above, despite the use of

semi-implicit semi-Lagrangian numerics, the solution

becomes unstable for large advective Courant numbers.

Because updraught vertical velocities are typically much

larger than grid-cell mean vertical velocities, using the

multi-fluid approach in a weather or climate model with

the numerical method described here would require a sig-

nificant reduction in time-step size compared with current

approaches. Therefore it would be desirable to understand

the mechanism of this instability and to develop an improved

numerical method that is more stable.

Despite these areas in need of further work, the results

indicate that the multi-fluid approach can capture some of

the essential physics of a convecting fluid. Therefore we are

encouraged to extend the approach to two and three dimen-

sions and to include moist processes in order to investigate

whether the potential benefits of the approach mentioned in

Section 1 can indeed be realized.
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APPENDICES

A. TWO-FLUID
KELVIN–HELMHOLTZ-LIKE INSTABILITY

It has proved challenging to obtain numerical solutions of

the multi-fluid equations. Such problems are familiar from

attempts to solve similar equation sets in engineering applica-

tions, and have been linked to the fact that (in the absence of

their right-hand sides) the equations are ill-posed in the sense

of possessing complex characteristic speeds (e.g. Stewart and

Wendroff, 1984).

Another manifestation of this “ill-posedness” is that a sim-

ple basic state with uniform but different velocities in the

two fluids is unstable. Here we demonstrate this instability in

the simplest possible scenario: a one-dimensional, two-fluid,

incompressible flow. The governing equations are then∑
i
𝜎i = 1, (A1)

Di𝜎i

Dt
+ 𝜎i

𝜕wi

𝜕z
= 0, (A2)

Diwi

Dt
+
𝜕p
𝜕z

= 0. (A3)

Introduce a steady basic state with constant volume frac-

tions 𝜎0
i and velocities Wi, where 𝜎0

1
+ 𝜎0

2
= 1. Small pertur-

bations to this basic state satisfy the linearized equations∑
i
𝜎i = 0, (A4)(
𝜕

𝜕t
+ Wi

𝜕

𝜕z

)
𝜎i + 𝜎0

i
𝜕wi

𝜕z
= 0, (A5)(

𝜕

𝜕t
+ Wi

𝜕

𝜕z

)
wi +

𝜕p
𝜕z

= 0. (A6)

Seeking solutions proportional to ei(mz−𝜔t) and eliminating

unknowns leads to the dispersion relation

𝜔

m
=
(
𝜎0

1
W2 + 𝜎0

2
W1

)
± i

√
𝜎0

1
𝜎0

2
(W2 − W1). (A7)

The frequency 𝜔 is real if one of 𝜎0
i vanishes or if W1 =

W2; in all other cases the basic state is unstable. The growth

rate is proportional to the wavenumber m and to the velocity

difference |W2 − W1|.
Recall now that Equations A1–A3 describe the dynamics of

a conditionally filtered system. There are infinitely many pos-

sible pre-filtered states that would give the same conditionally

filtered basic state. One obvious choice is a two-dimensional

(x, z) basic state (where the filter is an average in x) in which

u = 0 and w is a function only of x, taking only the values W1

and W2 in alternating layers of width D1 and D2, respectively,

where D1∕D2 = 𝜎0
1
∕𝜎0

2
. For such a state, all of the right-hand

side terms in the conditionally filtered governing equations

would indeed be zero, at least initially. It is well known

that such a state would be unstable to Kelvin–Helmholtz

instability. It is reasonable to conjecture, therefore, that the

instability found in the two-fluid model is a conditionally

filtered representation of this Kelvin–Helmholtz instability.

To support this conjecture we carried out a stability analysis

of this two-dimensional state. The analysis follows standard

methods (e.g. Drazin and Reid, 1981) so the details are omit-

ted. We consider the limit mDi → 0; this is the relevant limit

for comparison with the two-fluid model, since the wave-

length 2𝜋∕m is resolved but the width Di is subfilter-scale.

Then, identifying Di∕(D1 + D2) with 𝜎0
i , the dispersion rela-

tion is found to be

𝜔

m
=
⎧⎪⎨⎪⎩
(
𝜎0

1
W1 + 𝜎0

2
W2

)
± i

√
𝜎0

1
𝜎0

2
(W2 − W1) or(

𝜎0
2
W1 + 𝜎0

1
W2

)
± i

√
𝜎0

1
𝜎0

2
(W2 − W1).

(A8)

Both pairs of solutions have the same growth rates as

predicted by the two-fluid model, in particular the same

dependence on the shear |W1 − W2|, the volume fractions

𝜎0
i , and the wavenumber m. The second pair of solutions

also has the same propagation speed as predicted by the

two-fluid model. The two-fluid model does not have enough

degrees of freedom to capture the first pair of solutions.
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Interestingly, the solutions captured by the two-fluid model

have the property that, when one of the volume fractions is

small, the propagation speed approaches the basic state veloc-

ity of the smaller fluid fraction. Thus, the two-fluid model is

remarkably successful at capturing some key aspects of this

Kelvin–Helmholtz instability.

For the two-dimensional instability considered here, the

flow would quickly become turbulent; then the subfilter-scale

fluxes and pressure terms on the right-hand side of

Equations 1–4, which were omitted in Equations A1–A3,

would no longer be negligible.

As a thought experiment, one can also consider a dry con-

vective boundary layer that is statistically homogeneous in the

horizontal. A conditionally filtered description of such a flow

(where the filter could be a horizontal mean) would evolve

slowly, and not show the kind of dramatic transience predicted

by Equations A1–A3 and A7. Clearly the subfilter-scale

terms, and perhaps the relabelling terms, must be playing a

crucial role in stabilizing the conditionally filtered equations.

We therefore argue that the subfilter-scale terms are an indis-

pensible part of the multi-fluid equations, and that useful

solutions cannot be expected if they are omitted.

A mutual drag between fluid components could be expected

to provide some damping of the two-fluid instability. How-

ever, the form given by Equations 31–32, which is inde-

pendent of the vertical scale of any perturbations, is unable

to control the instability, whose growth rate is proportional

to vertical wavenumber. Similarly, entrainment of 𝜃 or w
as in Section 2.3 provides only scale-independent damping

and cannot control the instability. Subfilter-scale fluxes of

potential temperature, parametrized, for example, as a vertical

diffusion, are also unable to control the instability. (Consider

the case of uniform potential temperature, when such fluxes

would have no effect.) However, subfilter-scale fluxes of ver-

tical velocity, parametrized as a vertical diffusion, would

preferentially damp the smallest vertical scales. Moreover, a

comparison of the damping rate based on Equation 7 with the

growth rate given by Equation A7 indicates that such a dif-

fusion of vertical velocity would be sufficient to control the

instability on scales smaller than the boundary-layer depth z∗.

This argument motivates our inclusion of a vertical diffusion

on wi in Section 2.2.

B. APPROXIMATE LINEARIZATION OF
EQUATIONS 33–35

A full linearization of Equations 33–35, with the left- and

right-hand sides given by Equations 36–41, would include

a number of less stiff terms that are not crucial to the

convergence of the Newton iterations, but which would make

analytical elimination of unknowns infeasible. Therefore we

neglect several of the less stiff terms. Note that R𝜌i , R𝜃i , and

Rwi depend only on the known time step n fields, so the

only increments involved in the linearization of the right-hand

sides of Equations 33–35 are the w′
i arising through the

semi-Lagrangian departure point calculation.

For the left-hand sides of Equations 45–47, we use

𝜌i = −Δt
2

𝜕

𝜕z
(
w′

iR𝜌i

)
− (𝜎i𝜌i)′

+𝛼𝜌iΔt
[

1

𝜏ij

{
𝜎i(𝜎j𝜌j)′+𝜎′i (𝜎j𝜌j)

}
− 1

𝜏ji

{
𝜎j(𝜎i𝜌i)′+𝜎′j (𝜎i𝜌i)

}]
,

(A9)

𝜃i = −Δt
2

w′
i
𝜕R𝜃i

𝜕z

− 𝜃′i

[
1 − 𝛼𝜃iΔt

{
− 1

𝜏ij

𝜎j𝜌j

𝜎i
b𝜃i +

1

𝜏ji
𝜎j(1 − b𝜃j)

}]
− Δt
𝜎i𝜌i

𝜕

𝜕z

(
𝜎i𝜌iK𝜃i

𝜕𝜃′i
𝜕z

)
, (A10)

wi = −Δt
2

w′
i
𝜕Rwi

𝜕z
− 𝛼wiΔtcp

(
𝜃i
𝜕Π′

𝜕z
+ 𝜃′i

𝜕Π
𝜕z

)
− w′

i

[
1 − 𝛼wiΔt

{
− 1

𝜏ij

𝜎j𝜌j

𝜎i
bwi+

1

𝜏ji
𝜎j
(
1 − bwj

)}]
− Δt
𝜎i𝜌i

𝜕

𝜕z

(
𝜎i𝜌iKwi

𝜕w′
i

𝜕z

)
. (A11)

The values used for R𝜌i are those diagnosed at depar-

ture cell boundaries within the SLICE scheme. The values

of 𝜕R𝜃i∕𝜕z and 𝜕Rwi∕𝜕z are estimates diagnosed within the

semi-Lagrangian interpolation of departure point values.
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