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Abstract

A bootstrap methodology, first proposed in a restricted form by Kapetanios and Papail-

ias (2011), suitable for use with stationary and nonstationary fractionally integrated

time series is further developed in this paper. The resampling algorithm involves

estimating the degree of fractional integration, applying the fractional differencing op-

erator, resampling the resulting approximation to the underlying short memory series

and, finally, cumulating to obtain a resample of the original fractionally integrated

process. While a similar approach based on differencing has been independently pro-

posed in the literature for stationary fractionally integrated processes using the sieve

bootstrap by Poskitt, Grose and Martin (2015), we extend it to allow for general boot-

strap schemes including blockwise bootstraps. Further, we show that it can also be

validly used for nonstationary fractionally integrated processes. We establish asymp-

totic validity results for the general method and provide simulation evidence which

highlights a number of favourable aspects of its finite sample performance, relative to

other commonly used bootstrap methods.
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1 Introduction

Since the seminal paper by Efron (1979), the bootstrap has rapidly increased in popularity.

Initial developments in the bootstrap literature assumed the sample observations to be in-

dependent and identically distributed (i.i.d.) and implementation proceeded by randomly

resampling single observations with replacement. This approach is, however, inappropriate

when dealing with dependent samples. The dependence pattern in the original data is highly

unlikely to be preserved and, hence, the bootstrap resamples do not, in general, replicate the

key properties of the original series. Consequently, an extensive literature has developed on

the use of bootstrap methods for weakly autocorrelated (short memory) series; see, among

others, Carlstein (1986), Künsch (1989), Kreiss (1992), Politis and Romano (1992), Politis

and Romano (1994) and Bühlmann (1997).

Within the literature two main approaches have been developed for applying bootstrap

methods to weakly autocorrelated data: namely, block bootstrap methods and residual-based

resampling methods. The idea underlying all block bootstrap approaches is to resample

blocks of temporally contiguous observations rather than resampling single observations.

For a weakly autocorrelated process the blocks of observations should be approximately

independent in large samples and the joint distribution of the variables in different blocks

should be approximately the same across blocks. A variety of different block resampling

methods has been proposed; among other aspects, the blocks can be non-overlapping or

moving, and they can have fixed or variable block length. Block structure optimality and

data-driven block length analysis are further considered by Hall, Horowitz and Jing (1995),

Bühlmann and Künsch (1999), Politis and White (2004) and Patton, Politis and White

(2009), among others. In contrast, residual-based bootstrap approaches are based on the

principle of estimating a model and obtaining the residuals. A residual resampling device

can be obtained, for example, using i.i.d. random resampling. The estimated parameters

from the model fitted to the original data and the residual resample are then used to generate

the corresponding resample of the original series.

The above methods were developed for weakly autocorrelated series. In the case of

processes which exhibit long range dependence, Lahiri (1993) shows that the block bootstrap

is not in general valid even when large block lengths are used.1 The residual-based approach,

referred to as a sieve autoregressive bootstrap, which obtains the residuals from fitting a

long autoregression to the data, is asymptotically valid for fractionally integrated processes

whose order of integration is less than one-half (the usual weak stationarity boundary). For

relevant such methods in the time domain see, for example, Kapetanios and Psaradakis

(2006), Kapetanios (2010), Poskitt (2008) and Poskitt, Grose and Martin (2015).

1Kim and Nordman (2011) consider the application of block bootstrap-based methods for approximating
the sample mean. The resampling is performed on the original long memory series and the normalised
bootstrap sample mean is inflated by a factor which depends on the block length and the long memory
parameter. This method cannot, however, be used in approximating the distribution of other statistics.
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In light of these issues, it is important to develop further bootstrap methods which are

asymptotically valid for series which display long range dependence. In this paper we consider

an approach to resampling which allows the practitioner to validly implement blockwise and

residual-based bootstrap methods designed for weakly autocorrelated with, possibly nonsta-

tionary, fractionally integrated series. The procedure can be summarised as follows. Suppose

we have a fractionally integrated series. We first use a consistent method to estimate the frac-

tional integration parameter for the series in hand. We then apply the fractional differencing

operator appropriate to this estimated parameter, to deliver an approximately short memory

series. Established block or residual-based resampling methods are then implemented on this

series. Finally, the fractional cumulating operator is applied to the resampled series, using

the estimate of the fractional integration parameter obtained from the data. This yields

the corresponding resample of the original data. Bootstrap approximations to the distri-

bution of statistics formed from the original data can then be obtained in the usual way.

We detail the asymptotic validity of this approach for both stationary and nonstationary

fractionally integrated processes. The finite sample performance of our proposed bootstrap

procedures is evaluated using a statistic based on the unconditional mean (for stationary

fractionally integrated series) and a statistic based on the fractional exponent. We compare

it to other widely used block and residual-based bootstrap methods, both where the latter

are asymptotically valid and where they are not.

It should at this point be acknowledged that the idea of “pre-filtering” the time series by

fractional differencing based on an estimate of fractional integration parameter is not new

to the literature. Kapetanios (2010), Kapetanios and Papailias (2011), Papailias and Dias

(2015) and Poskitt, Grose and Martin (2015) have all previously adopted this approach in

various contexts. In particular, the research in this paper extends the work of Kapetanios

and Papailias (2011), and supplements Poskitt, Grose and Martin (2015) by establishing

the asymptotic validity of this resampling method when used in conjunction with general

bootstrap methodologies, including block bootstrap approaches, for both stationary and

nonstationary fractionally integrated series.

The remainder of the paper is organised as follows. Section 2 introduces the fractionally

integrated model and the assumptions we will work under, and briefly reviews some semipara-

metric estimation methods for this model. Here we also review the block, sieve autoregressive

and spectral-density-driven bootstrap approaches. Section 3 presents the proposed gener-

alised bootstrap methodology for fractionally integrated series and establishes its asymptotic

validity. Section 4 details the results of our simulation experiments into the finite sample

behaviour of our approach, relative to existing methods, for the case of bootstrapping a

statistic based on the unconditional mean and a statistic based on the fractional exponent.

Section 5 concludes. Supporting material, including a proof of our main theoretical result,

details of our simulation methodology and additional simulation results, is contained in an

accompanying on-line supplementary appendix.
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2 Preliminaries

2.1 Fractional Integration and Semiparametric Estimation

We consider the fractionally integrated process Yt generated by,

Yt = ∆−d+ ut, t = 1, 2, ..., (1)

where the operator ∆−d+ , for a generic variable yt, is given by ∆−d+ := ∆−dytI(t ≥ 1) =∑t−1
n=0 πn(d)yt−n, I(·) denoting the indicator function and πn(d) := Γ(n+d)

Γ(d)Γ(n+1)
= d(d+1)...(d+n−1)

n!

the coefficients in the binomial expansion of (1−z)−d. To ensure that Yt is uniquely integrated

of order d, denoted I(d), we need to define ut in (1) to be a short memory, or I(0), process.

This we do by assuming that ut satisfies the following assumption.

Assumption 1. The shocks ut are generated according to the infinite-order moving average

[MA], ut = εt +
∑∞

j=1 cjεt−j, which satisfies the following conditions:

(a) The MA polynomial C (z) := 1 +
∑∞

j=1 cjz
j is such that C(z) 6= 0, |z| ≤ 1, and∑∞

j=1 j |cj| <∞.

(b) The innovation process εt is ergodic and is such that E(εt|Ft−1) = 0 and E(ε2
t |Ft−1) =

σ2
ε > 0, where Ft denotes the σ-algebra of events determined by εs, s ≤ t. Furthermore,

E(ε4
t ) <∞.

Remark 1. Assumption 1 ensures that ut is an I(0) series driven by martingale difference

innovations. Under Assumption 1, ut possesses a spectral density which is both finite and

bounded away from zero everywhere in the interval [0, π]. This rules out the possibility of any

root at unity in C(z) cancelling with (1−z)d, and so Yt is an I(d) process within a wide class

of linear processes, including the popular ARFIMA family of models. Under Assumption 1,

ut also admits the Autoregressive [AR] representation ut =
∑∞

j=1 αjut−j+εt with
∑∞

j=1 |αj| <
∞. Assumption 1 is standard in the sieve autoregressive bootstrap literature and we have

therefore chosen to adopt this as our base assumption on ut. However, for the other possible

bootstrap methods discussed in Section 2.2, additional regularity conditions may be needed

on ut to ensure bootstrap validity; we will direct the reader to relevant papers for the precise

conditions needed, rather than reproducing them here. ♦

Remark 2. The model in (1) is of so-called “Type II” fractional integration. This type

allows the same definition to be valid for any value of the fractional parameter, d, and

therefore allows for both weakly stationary and nonstationary time series. ♦

A great many papers have appeared in the literature addressing parametric and semipara-

metric estimation of the parameters of fractionally integrated models. Maximum likelihood
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and pseudo-maximum likelihood approaches are developed in, among others, Fox and Taqqu

(1986), Sowell (1992), Hosoya (1997) Robinson (2006), Johansen and Nielsen (2010), Hualde

and Robinson (2011), Johansen and Nielsen (2012), Nielsen (2015), Johansen and Nielsen

(2016) and Cavaliere, Nielsen and Taylor (2017), among others. Geweke and Porter-Hudak

(1983) first considered the semiparametric estimation of the long memory parameter in the

frequency domain. Further work on semiparametric estimation has been developed in, among

others, Robinson (1995), Andrews and Sun (2004), Nielsen (2005), Shimotsu and Phillips

(2005), Shimotsu and Phillips (2006), Abadir, Distaso and Giraitis (2007), Haldrup and

Nielsen (2007), Frederiksen and Nielsen (2008) and Frederiksen, Nielsen and Nielsen (2012);

see also Nielsen and Frederiksen (2005) for a review of estimation methods for fractionally

integrated models.

For our purposes we require an estimate of the long memory parameter, d, in (1) which

is consistent without the need to specify a parametric model for the short memory process,

ut. To this end, we therefore focus our attention on the semiparametric estimation methods

of Robinson (1995) and Shimotsu and Phillips (2005). Each of these estimators solves a

minimisation problem of the form d̂ := argd∈[d1,d2] minR (d) , where d1 and d2 are the lower

and upper bounds of the values for d such that −∞ < d1 < d2 <∞ and R (·) is the relevant

objective function.

Consider the time series Yt with t = 1, 2, ..., T observations. Following Robinson (1995),

the Local Whittle (LW ) estimator of d is obtained by minimising the objective function,

RLW (d) := log

[
1

m

m∑
j=1

ω2d
j I (ωj)

]
− 2d

1

m

m∑
j=1

logωj, (2)

with respect to d, where ωj := (2πj) /T for j = 1, 2, ..., T and I(ωj) is the periodogram,

defined as I(ωj) := 1
2πT

∣∣∣∑T
j=1 Yte

iωjt
∣∣∣2.

Shimotsu and Phillips (2005) propose the Exact Local Whittle (ELW ) estimator which

uses a “corrected” discrete Fourier transform of the series. The relevant objective function

is now given by,

RELW (d) := log

[
1

m

m∑
j=1

I∆d
+Yt

(ωj)

]
− 2d

1

m

m∑
j=1

logωj, (3)

where I∆d
+Yt

(ωj) is the periodogram of the differenced series, ∆d
+Yt.

Assumptions A1 to A4 of Robinson (1995) and Assumptions 1 to 5 of Shimotsu and

Phillips (2005) are required for consistency of the LW and ELW estimators, respectively.

Under Assumptions A1 to A4 in Robinson (1995), d ∈ [d1, d2], yt is invertible and might

not be strictly stationary and the bandwidth, m, tends to infinity but at a slower rate than

T . LW is consistent in the stationary region, while the asymptotic theory is discontinuous
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at d = 3
4

and d = 1 and the estimator is inconsistent when d > 1. Assumptions 1 to 5 of

Shimotsu and Phillips (2005) are analogous to Assumptions A1 to A4 in Robinson (1995);

however Shimotsu and Phillips (2005) impose a stronger assumption on the rate of m and

restrict the permissible values such that d2 − d1 ≤ 9
2
. In Section 3 we introduce a high level

assumption concerning the consistency of the estimator of d which therefore entails that the

required regularity conditions for consistency hold for a given estimator of d.

Remark 3. The model in (1) imposes the unconditional mean of Yt to be zero. In practice,

one might want to allow for the possibility that Yt has a non-zero unconditional mean. This

can be done through generalising (1) to include a constant, viz,

Yt = µ+ ∆−d+ ut, t = 1, 2, ... . (4)

Robinson (1995) discusses the case where Yt is generated according to (4), noting that there is

no need to correct the periodogram of Yt for the unknown mean, provided m < 1
2
T , and that

here the LW estimator of d will still be consistent for d ∈
(
−1

2
, 1
)
. In the case of the ELW

estimator, Shimotsu (2010) suggests estimating µ by the sample mean, Y = T−1
∑T

t=1 Yt,

and to use the resulting de-meaned data when calculating the right member of (3). The

resulting ELW estimator is consistent for d ∈
(
−1

2
, 1
)

and also asymptotically normal for

d ∈
(
−1

2
, 3

4

)
. However, as d increases, the magnitude of the estimation error, Y −µ, increases.

For d ≥ 1
2
, Y is not a consistent estimator of µ and diverges. In such cases, Shimotsu (2010)

suggests the use of the first observation as an estimate for µ; that is, µ̂ := Y1. In this case,

ELW is consistent for d ≥ 1
2

and asymptotically normal for d ∈ [1
2
, 2). Shimotsu (2010)

suggests the James-Stein-type estimator of µ given by,

µ̂ (d) := w(d)Y + (1− w(d))Y1, (5)

where w(d) is a twice continuously differentiable weight function such that w(d) = 1 for

d ≤ 1
2

and w(d) = 0 for d ≥ 3
4
, and to use Yt − µ̂ (d) in calculating the periodograms in the

objective function of ELW in (3). ♦

Remark 4. Johansen and Nielsen (2016) investigate the effect that initialisation (cf.

Remark 2) has on the parametric estimation of nonstationary fractionally integrated time

series. Taking a process Yt generated according to (4) they conduct the thought experiment

that it exists from a point in time (−N0 + 1) but we start to observe the series only from a

later time, say t = 1, onwards. They propose splitting the sample into two parts: (i) pseudo-

initial values, 1,...,N , and (ii) pseudo-observed values N + 1,...,N + T . Then they mitigate

the effect of the unobserved initial values by estimating the model using N + 1,...,N + T

conditional on 1,...,N . They find that the estimation of the parameter µ picks up the effect

of the initial values even for the choice N = 0, in which case Y1 = µ+ u1. ♦
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2.2 Resampling Procedures

In this section we briefly review a number of bootstrap algorithms used in the literature

with weakly autocorrelated time series; these will be considered in the rest of this paper. In

particular, we describe the sieve autoregressive bootstrap of Kreiss (1992) and Bühlmann

(1997), the moving blocks bootstrap of Künsch (1989), the stationary bootstrap of Poli-

tis and Romano (1994), and the spectral-density-driven bootstrap of Krampe, Kreiss and

Paparoditis (2018).

For the purposes of the discussion in this section we detail the algorithms for the case

where the are directly applied to Yt where this is a weakly autocorrelated process; i.e. such

that d = 0 in (1). The probability law characterising the data-generating mechanism is de-

noted by P{Y1,...,YT }. We consider the statistic of interest ST = ST (Y1, .., YT ) where FST (s) is

the distribution function of ST under P{Y1,...,YT }. Throughout this paper we assume that the

corresponding limiting distribution of ST , say FS∞(s), is continuous. Bootstrap procedures

are used to approximate FST (s) by approximating P{Y1,...,YT }. Further details on these boot-

strap procedures, including the precise regularity conditions on the weakly autocorrelated

process under consideration and the class of statistics they can be validly applied to under

those regularity conditions, can be found in, inter alia, Kreiss (1992), Bühlmann (1997),

Künsch (1989), Politis and Romano (1994), and Krampe, Kreiss and Paparoditis (2018), to

whom we direct the reader for further details. Extensions of the sieve bootstrap approach

to allow for wild rather than i.i.d. resampling can also be found in the recent paper by

Fragkeskou and Paparoditis (2018). In Section 3, we subsequently propose a generalised

methodology which allows these bootstrap procedures to be applied to Yt when d 6= 0,

provided the regularity conditions are met by the process ut in (1).

2.2.1 Sieve Autoregressive Bootstrap

The sieve autoregressive (AR) bootstrap was introduced by Kreiss (1992) and further anal-

ysed by Bühlmann (1997). Consider the weakly autocorrelated process given by Yt in

(1) with d = 0. Under Assumption 1, Yt admits the infinite-order AR representation,

Yt =
∑∞

j=1 αjYt−j +ut, where
∑∞

j=1 |αj| <∞; for more details see, among others, Bühlmann

(1997), Kreiss, Paparoditis and Politis (2011), and Fragkeskou and Paparoditis (2018).

The sieve bootstrap approximates this infinite order AR by a truncated AR whose order

is allowed to increase with the sample size. The sieve AR bootstrap algorithm is as follows.

Algorithm 1.

Step 1. Given the data Yt, t = 1, ..., T , calculate the statistic of interest ST = ST (Y1, .., YT ).

Using ordinary least squares [OLS] calculate the AR parameter estimates from fitting

an h-th order AR, denoted AR(h), approximation to Yt, and let those estimates be

denoted by α̂ := (α̂1, ..., α̂h)
′.

6



Step 2. Define the corresponding residuals,

ût := Yt −
h∑
j=1

α̂jYt−j, (6)

and the associated residual variance estimate, σ̂2
h. Using ût, calculate the standardised

residuals,

ũt :=
ût − u
su

, (7)

where u and su denote the sample mean and standard deviation of ût, respectively.

Step 3. Let I1, ..., IT be i.i.d. random variables with discrete uniform distribution on {1, ..., T}.
Then, construct a random sample with replacement from ũt denoted by ũ∗ := (ũ∗1, ..., ũ

∗
T )′ =

(ũI1 , ..., ũIT )′.

Step 4. The sieve AR bootstrap data observations are generated via the recursion,

Y ∗t =
h∑
j=1

α̂jY
∗
t−j + σ̂hũ

∗
t , (8)

initialised at Y ∗1−j = Yτ−j+1, j = 1, ..., h where τ has a discrete uniform distribution on

{h, ..., T}.

Step 5. Next, based on the bootstrap sample data, compute S∗T = ST (Y ∗1 , .., Y
∗
T ), the bootstrap

analogue of ST .

Step 6. Repeat Steps 3 to 5, to construct B independent bootstrap samples and bootstrap statis-

tics, denoted Y ∗l,T and S∗l,T , l = 1, ..., B, respectively, and collect S∗B,T :=
(
S∗1,T , ..., S

∗
B,T

)′
.

Approximate FST (s) by the bootstrap distribution function,

F S∗B,T
(s) =

1

B

B∑
l=1

I(S∗B,T ≤ s).

Remark 5. The distribution of S∗T under the probability law induced by the bootstrap,

P{Y ∗1 ,..,Y ∗T }, should mimic that of ST under P{Y1,...,YT } and, therefore, FS∗T (s) should approxi-

mate FST (s) reasonably well provided that P{Y1,...,YT } is in some sense close to P{Y ∗1 ,..,Y ∗T }. As

explained in Poskitt (2008), the analytical determination of FS∗T (s) is generally intractable

but, using the Glivenko-Cantelli theorem, F S∗B,T
(s) converges to FS∗T (s) almost surely (a.s.)

as B →∞ uniformly in s. Consequently, for a sufficiently large number of bootstrap draws,

B, we can approximate FS∗T (s) arbitrarily closely and anticipate that F S∗B,T
(s) also approxi-

mates FST (s) closely, provided that FS∗T (s) is sufficiently close to FST (s). ♦
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Remark 6. The autoregressive order h used in Step 1 of Algorithm 1 needs to grow with

the sample size T , such that the residuals ût are approximately uncorrelated. Bühlmann

(1997) suggests selecting h using Akaike’s Information Criterion (AIC). Poskitt, Grose and

Martin (2015) also adopt AIC selection of h using a maximum lag length of H =
⌊
(log T )2⌋,

where b·c denotes the integer part of its argument. ♦

Remark 7. Fragkeskou and Paparoditis (2018) propose an alternative to the i.i.d. resam-

pling scheme used in Step 3 of Algorithm 1, whereby a wild bootstrap is used. This can allow

for the presence of unconditional heteroscedasticity in ut. In this case the standardisation

in (7) is no longer needed. See Cavaliere, Nielsen and Taylor (2017) for recent application of

wild bootstrap methods in long memory time series. ♦

Remark 8. Although designed for the short memory case where d = 0 in (1), Kapetanios

and Psaradakis (2006), Poskitt (2008) and Poskitt, Grose and Martin (2015), show that the

sieve AR bootstrap, outlined in Algorithm 1, when applied directly to Yt retains asymptotic

validity, provided h satisfies the conditions outlined in Remark 6, even when |d| < 1
2
. How-

ever, it is not asymptotically valid for d ≥ 1
2
. ♦

2.2.2 Block Resampling

An alternative bootstrap approach which can account for the presence of weak dependence

in the data is the block bootstrap. Blocks of observations of weakly autocorrelated processes

should be constructed such that they are approximately independent and the joint distribu-

tion of the variables in different blocks should be almost the same. The main difficulty we

face here is the choice of an optimal block size which guarantees the above properties. This

can be achieved using data-driven methods such as those developed in Hall, Horowitz and

Jing (1995), Politis and White (2004) and Patton, Politis and White (2009).

Consider the weakly autocorrelated process, Yt with d = 0, and a choice for the block size,

b. In addition to Assumption 1, we need to assume that Yt is strictly stationary; see, e.g.,

Politis and Romano (1994). We consider the following two block bootstrap methodologies:

Moving Block Bootstrap [MBB]: Given the data Yt, t = 1, ..., T , calculate the statistic

of interest ST = ST (Y1, .., YT ). The MBB of Künsch (1989) divides (Y1, ...., YT )′ into M

overlapping blocks of b observations, with M := T −b+1. Denote the collection of blocks by

{B1, ..., BM} and let I1, ..., IT/b be i.i.d. random variables with discrete uniform distribution

on {1, ...,M}. A MBB resample for Yt is then obtained with replacement from the collection

of blocks, Y ∗t :=
(
BI1 , ..., BIT/b

)′
. Repeating this procedure, we construct B independent

bootstrap samples and bootstrap statistics, denoted Y ∗l,T and S∗l,T , l = 1, ..., B, respectively,
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and collect S∗B,T :=
(
S∗1,T , ..., S

∗
B,T

)′
. Approximate FST (s) by the bootstrap distribution

function F S∗B,T
(s) = 1

B

∑B
l=1 I(S∗B,T ≤ s).

Stationary Block Bootstrap [SBB]: Given the data Yt, t = 1, ..., T , calculate the statistic

of interest ST = ST (Y1, .., YT ). The SBB of Politis and Romano (1994) differs from the

MBB in that it uses a random block length for b. Let L1, L2, ... be a sequence of geomet-

rically distributed i.i.d. random variables, so that the probability of the event {Li = η} is

(1− p)η−1 for η = 1, 2, ... and p is a fixed number in [0, 1]. Denote the collection of blocks

by {BL1 , BL2 , ...}. The indicator Lη denotes the length of the relevant block. Let I1, I2, ... be

a sequence of i.i.d. variables which have discrete uniform distributions on {1, ..., T}. Then,

a SBB resample for Yt is obtained by random draws with replacement from the collection

of blocks, Y ∗t := (BL1 BL2 , ..., )
′ until t = T . Repeating this procedure, we construct B

independent bootstrap samples and bootstrap statistics, denoted Y ∗l,T and S∗l,T , l = 1, ..., B,

respectively, and collect S∗B,T :=
(
S∗1,T , ..., S

∗
B,T

)′
. Approximate FST (s) by the bootstrap

distribution function F S∗B,T
(s) = 1

B

∑B
l=1 I(S∗B,T ≤ s).

Remark 9. We refer the reader to Künsch (1989) and Politis and Romano (1994) for the

precise regularity conditions needed for the application of the MBB and SBB, respectively.

Depending on the choice of the bootstrap method and the statistic of interest, additional

restrictions on ut over and above those imposed by Assumption 1 may be necessary. For

example, for the case of the SBB Politis and Romano (1994) show that ut needs to be strictly

stationary and α-mixing with coefficients of size −3(6 + δ)/δ for δ > 0 when the statistic of

interest is the mean; see Theorems 1 and 2 and Remark 4 in Politis and Romano (1994). ♦

Remark 10. Kim and Nordman (2011) (henceforth KN) suggest a direct application of the

usual block bootstraps in long memory series in order to approximate the distribution of the

mean. They consider the fractional noise model; hence in (1) they let ut be i.i.d. variables

with zero mean and finite variance and allow |d| < 1
2

but not d ≥ 1
2
. They then apply MBB

in the usual way. Disregarding the presence of long memory, they split the sample into blocks

and randomly resample from these blocks. In order for the resample to successfully mimic

the true mean, they “inflate” the statistic multiplying it by bd. This methodology, however,

cannot be generalised to other statistics and cannot be applied, in general, in nonstationary

long memory series; see KN for further details. ♦

2.2.3 Spectral-Density-Driven Bootstrap

The sieve and block bootstraps procedures outlined above are both carried out in the time

domain. We also consider the spectral-density-driven bootstrap (SDDB) of Krampe, Kreiss
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and Paparoditis (2018). We next provide a brief description of the algorithm. We refer the

reader to Krampe, Kreiss and Paparoditis (2018) for further technical details.

Consider the MA(∞) representation of the weakly autocorrelated process Yt in (1) with

d = 0,

Yt = εt +
∞∑
j=1

cjεt−j,

and consider an estimator f̂Y of the spectral density of Yt, fY ; see Krampe, Kreiss and

Paparoditis (2018) for precise conditions placed on the estimator of fY . Given the statistic

of interest ST = ST (Y1, .., YT ) evaluated using the original data, the SDDB consists of the

following steps.

Algorithm 2.

Step 1. Compute the Fourier coefficients of log
(
f̂Y

)
given by,

âk :=
1

2π

2π∫
0

log
{
f̂Y (ω)

}
e−ikωdω

for k = 0, 1, 2, ...

Step 2. Let σ̂2
a := 2πeâ0 and compute the coefficients ĉk using,

ĉk+1 =
k∑
j=0

(
1− j
k + 1

)
âk+1−j ĉj

for k = 0, 1, 2, ... and starting value ĉ0 = 1.

Step 3. Generate i.i.d. pseudo-innovations (ε∗1, ...., ε
∗
T )′ with mean 0 and variance σ̂2

a.

Step 4. Generate the pseudo-time series (Y ∗1 , ...., Y
∗
T )′ obtained by,

Y ∗t =
∞∑
j=0

ĉjε
∗
t−j, for t = 1, 2, ..., T .

Step 5. Next, using the bootstrap data from Step 4, compute S∗T = ST (Y ∗1 , .., Y
∗
T ), the bootstrap

analogue of ST .

Step 6. Repeat Steps 3 to 5, to construct B independent bootstrap samples and bootstrap statis-

tics, denoted Y ∗l,T and S∗l,T , l = 1, ..., B, respectively, and collect S∗B,T :=
(
S∗1,T , ..., S

∗
B,T

)′
.

Approximate FST (s) by the bootstrap distribution function F S∗B,T
(s) = 1

B

∑B
l=1 I(S∗B,T ≤

s).
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Remark 11. Algorithm 2 can be modified to use the estimated AR representation instead

of the MA representation. In the accompanying on-line supplementary appendix, we discuss

how the SDDB using the MA, as well as the AR representations, is implemented in our

experiments; for more details see Section 3.1 in Krampe, Kreiss and Paparoditis (2018). ♦

3 The Fractional Differencing Bootstrap

In the previous section, we discussed the well-known sieve AR bootstrap, together with the

MBB, SBB and SDDB methods for the special case where Yt in (1) is a weakly autocorrelated

process such that d = 0. If we restrict |d| < 1
2
, then the sieve AR bootstrap can be

validly applied to the original series Yt; see Poskitt (2008). This partially solves the problem

of resampling stationary fractionally integrated processes. However, block bootstraps still

cannot be used and, furthermore, when there is increased persistence in the series, i.e. d

approaches or exceeds the 1
2

value, the finite sample performance of the sieve AR bootstrap

deteriorates; see Figure 1(iv) in Poskitt, Grose and Martin (2015). Poskitt, Grose and

Martin (2015) suggest that filtering the original series using an estimate of d can improve the

performance of the sieve AR bootstraps; see Figure 3(iv) in Poskitt, Grose and Martin (2015).

Nonetheless, the issues of (i) resampling nonstationary fractionally integrated processes (d ≥
1
2
), and (ii) applying block bootstraps in stationary and nonstationary fractionally integrated

processes still remain.

Remark 12. In an analogous fashion to Remark 4 in Shimotsu and Phillips (2005), we can

also define fractionally integrated processes as,

Yt :=

{
∆−d+ ut, d ∈ (−∞, 1

2
),∑t

k=1 Zk, Zt := ∆1−d
+ ut, d ∈ [1

2
, 3

2
),

(9)

with extensions for larger values of d so that Yt (or its higher-order) difference is station-

ary. This “difference-and-add-back” approach corresponds to the “unconditional fractional

model” discussed in Johansen and Nielsen (2016). Using this definition, we can partially

solve the problem of resampling nonstationary fractionally integrated processes because the

sieve AR bootstrap can be applied directly to Yt or its higher-order difference. This is also

discussed in Poskitt, Grose and Martin (2015). However, other types of bootstrap, such as

block resampling, still cannot be used, since the underlying series is not weakly autocorre-

lated. ♦

In a similar fashion to the “difference-and-add-back” approach, we propose a generalised

bootstrap methodology which allows bootstrap methods designed for weakly autocorrelated

series to be validly implemented for both stationary and nonstationary long memory series.
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The proposed methodology does not require any range restrictions on d provided that an

estimator of d can be found which satisfies the following assumption.

Assumption 2. Suppose that Yt is generated by (1), and let Assumption 1 hold. Then,

we assume that there exists an estimator, d̂, of the true fractional integration parameter, d,

which satisfies the condition that V ar(d̂− d) = o(1).

Remark 13. Assumption 2 is rather general and does not specify any particular method

for estimating d. In our context, obvious candidates are the LW and ELW estimators

discussed in Section 2. For consistency, the bandwidth, m, used for the LW estimator must

satisfy the condition that 1
m

+ m
T
→ 0 as T →∞, while for ELW the required rate on m is

that 1
m

+ m(logm)
1
2

T
+ log T

mγ
→ 0 as T →∞, for any γ > 0. For ELW the range of permissible

values in the optimisation in (3) is such that d2 − d1 ≤ 9
2
, although note that this does not

restrict the value of d itself. The full set of required conditions for consistency are given

in Assumptions A1 to A4 of Robinson (1995) for the LW estimator and in Assumptions 1

to 5 of Shimotsu and Phillips (2005) for the ELW estimator. Under the above conditions,

Assumption 2 holds for both LW and ELW estimators of d, although in the case of LW it

is important to note that this estimator is consistent for d < 1 alone. ♦

The Fractional Differencing bootstrap procedure (FDB) we propose in this paper is now

detailed in Algorithm 3.

Algorithm 3.

Step 1. Given the data Yt, t = 1, ..., T , calculate the statistic of interest ST = ST (Y1, .., YT ).

Step 2. Obtain an estimate, d̂, of the long memory parameter, d, satisfying Assumption 2.

Step 3. [Differencing] Filter Yt using the fractional differencing operator, ∆d̂
+, to obtain,

ût := ∆d̂
+Yt.

Step 4. [Resampling] Apply any asymptotically valid bootstrap method for weakly autocorrelated

series to obtain a resample from ût, denoted by û∗t .

Step 5. [Cumulation] Apply the fractional cumulating operator, ∆−d̂+ , to û∗t and obtain the cor-

responding fractionally integrated resampled data,

Y ∗t := ∆−d̂+ û∗t .

Step 6. Calculate S∗T = ST (Y ∗1 , .., Y
∗
T ) which is the bootstrap analogue of ST .
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Step 7. Repeat Steps 4 to 6, to construct B independent bootstrap samples and bootstrap statis-

tics, denoted Y ∗l,T and S∗l,T , l = 1, ..., B, respectively, and collect S∗B,T :=
(
S∗1,T , ..., S

∗
B,T

)′
.

Approximate FST (s) by the bootstrap distribution function F S∗B,T
(s) = 1

B

∑B
l=1 I(S∗B,T ≤

s).

The idea behind the proposed bootstrap methodology detailed in Algorithm 3 is that,

under Assumptions 1 and 2, in Step 4 we resample from the fractionally differenced series,

ût, which, given the consistency of d̂, is an approximately weakly dependent, I(0), series,

rather than from the levels data Yt. We then obtain the corresponding fractionally integrated

resample in Step 5. This allows the use of bootstrap methods in Step 4 originally designed to

be applied to weakly autocorrelated series. In particular, we can apply any of the sieve AR

bootstrap, MBB, SBB, SDDB approaches in Step 4 of Algorithm 3. In doing so we follow the

steps for those resampling methods exactly as described in the algorithms of Section 2. These

bootstrap methods are valid, provided that the regularity conditions stated in the original

papers, and discussed in Section 2, hold for the I(0) series, ut, in (1). The approach detailed

in Algorithm 3 can therefore accommodate both stationary and nonstationary fractionally

integrated processes, although it should be noted that for the nonstationary case, d ≥ 1/2 in

(1), the class of statistics which can be validly bootstrapped using Algorithm 3 is reduced, as

discussed below. It is important to recognise that our aim in this paper is to provide a general

framework for resampling long memory time series which retains the large sample properties

that would be obtained using the same resampling method applied directly to a weakly

autocorrelated series with the necessary regularity conditions imposed on the underlying

shocks, ut.

As mentioned in the Introduction, this paper is not the first to discuss the use of the

“differencing” technique based on an estimate of the fractional integration parameter em-

ployed in Algorithm 3. Kapetanios (2010), Kapetanios and Papailias (2011), Papailias and

Dias (2015) and Poskitt, Grose and Martin (2015) also apply the same method in time series

analysis and forecasting. Algorithm 3 extends the work in Kapetanios and Papailias (2011)

and shares some similarities with Poskitt, Grose and Martin (2015) who investigate the case

of the sieve AR bootstrap. However, we further generalise Poskitt, Grose and Martin (2015)

in two aspects: (i) we allow the application of any valid bootstrap for weakly autocorrelated

series, including block bootstraps and bootstraps in the frequency domain, and (ii) we do

not restrict the value of the long memory parameter, accommodating both stationary and

nonstationary series.

A natural question arises about the nature of the statistics under consideration. In what

follows, we can apply our approach to statistics which satisfy the following assumption.

Assumption 3. Suppose that Yt is generated by (1) and let Assumption 2 hold. Define

Y T := (Y1, ..., YT )′ and let the corresponding bootstrap sample, obtained according to Al-

gorithm 3, be denoted by Y ∗T := (Y ∗1 , ..., Y
∗
T )′. Furthermore, let N be a compact subset
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of RT . Then for all Y T , Y
∗
T ∈ N there exists a family of Borel-measurable functions

Bt : RT × RT → [0,∞), satisfying:

lim
T→∞

supT−1

T∑
t=1

E
[
E∗
[
Bt (Y T ,Y

∗
T )2]] <∞,

for which,

‖ST − S∗T‖
2 ≤ T−(1+max{0,d− 1

2
})

T∑
t=1

Bt (Y T ,Y
∗
T ) |Yt − Y ∗t | . (10)

where E [·] and E∗ [·] denote the expectations with respect to PY T
and PY ∗T , respectively, ST

is the statistic calculated on the original data and S∗T the bootstrap statistic calculated using

the bootstrap data obtained using d̂ for both differencing and cumulation (Steps 3 and 5 in

Algorithm 3).

Remark 14. For d < 1
2

Assumption 3 coincides with Assumption 4 of Poskitt (2008). In

this case an upper bound of T−1
∑T

t=1 Bt (Y T ,Y
∗
T )2 |Yt − Y ∗t | in (10) suffices. Where Yt is

nonstationary, this upper bound must be strengthened because the term |Yt − Y ∗t | needs to

be scaled by T−max{0,d− 1
2
} for it to be bounded when d > 1

2
. Therefore, for 0 ≤ d ≤ 1

2
,

T−max{0,d− 1
2
} = 1 and so the upper bound in (10) coincides with that given in Assumption

4 of Poskitt (2008). Where d > 1
2
, the scale factor applied to the right member of (10) is,

therefore, strengthened from T−1 to T−
1
2
−d. ♦

Remark 15. As discussed in Remark 14, Assumption 3 coincides with Assumption 4 of

Poskitt (2008) when d < 1
2
. In this case Assumption 3 therefore places exactly the same

restrictions on the class of statistics which may be considered as are imposed by Assumption

4 of Poskitt (2008). Lemma 1 of Poskitt (2008) therefore also applies here and characterises

the class of statistics allowed. As discussed in Poskitt (2008), these include the sample mean,

sample autocorrelations, sample autocovariances and sample partial autocorrelations. The

expansions needed to establish the normality of the semiparametric LW and ELW estimates

of d discussed in Section 2.1, indicate that Lemma 1 of Poskitt (2008) also holds for these

statistics, as the estimators are differentiable functions of sums of functions of observed

data with continuous partial derivatives; see Equation (4.2) in Robinson (1995) for the LW

estimator and Equation (54) in Shimotsu and Phillips (2005) for the ELW estimator. The

conditions imposed by Assumption 3 where d ≥ 1
2

are considerably stronger, however, and

no longer allow for statistics such as the sample variance and sample autocorrelations, but

do still allow for the LW and ELW estimates although these would of course need to be

such that they satisfy the regularity conditions ensuring consistency, discussed in Section 2.1.

Such restrictions on the class of statistics allowed is not unique to the methods we discuss in

this paper, and similar restrictions apply in general in the fractionally integrated literature

on the class of statistics upon which asymptotically valid inference can be conducted when
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d ≥ 1
2
. One commonly suggested solution in the literature where it is thought that d > 1

2
,

is first to difference the data and then conduct inference on the resulting differenced series.

The same approach could be taken here and, provided d < 3
2
, only Assumption 4 of Poskitt

(2008) would then need to be satisfied in the differenced series. ♦

Remark 16. Assumption 3 requires that Y ∗T is obtained using Algorithm 3. It is im-

portant to recognise that Step 4 of Algorithm 3 requires that a bootstrap method which

is asymptotically valid for use with weakly autocorrelated series is employed. Any of the

methods outlined in Section 2.2 can therefore be used, provided the regularity conditions

referred to there are met. Specific statements regarding asymptotic behaviour will depend

on the bootstrap method being applied to the underlying weakly autocorrelated series and

the particular statistic of interest. ♦

We now state our main theorem concerning the large sample validity of the FDB method

described in Algorithm 3. A general proof of the result, which covers any of the bootstrap

resampling schemes discussed in Section 2.2 and statistics that satisfy Assumption 3, is

provided in the accompanying on-line supplementary appendix.

Theorem 1. Let η (FX , FY ) denote the Mallows metric for the distance between two prob-

ability distributions FX and FY , defined as inf
{
E ‖X − Y ‖2} 1

2 , where the infimum is taken

over all square integrable random variables X and Y in R with marginal distributions FX

and FY . Consider any statistic ST which satisfies Assumption 3 and which has a continuous

limiting distribution. Then, with probability one,

η
(
FS∗T , FST

)
→ 0 as T →∞,

where FST is the distribution function of ST under P{Y1,...,YT } and FS∗T is the distribution of

S∗T under P{Y ∗1 ,...,Y ∗T }.

Remark 17. For a discussion regarding the properties of η (FX , FY ) see Bickel and Freed-

man (1981) and Remark 1 of Poskitt (2008). As in Poskitt (2008), from the triangular in-

equality we have η
(
F S∗B,T

, FST

)
≤ η

(
F S∗B,T

, FS∗T

)
+η
(
FS∗T , FST

)
. Because η

(
F S∗B,T

, FS∗T

)
→

0 a.s. (Lemma 8.4 in Bickel and Freedman (1981)), it follows from Theorem 1 that η
(
F S∗B,T

, FST

)
→

0 a.s. This validates the use of bootstrap in the scenarios considered in this paper. ♦

Remark 18. Theorem 1 relies on the assumption that the limiting distribution of the

statistic of interest, ST , is continuous. This rules out degenerate cases, an obvious example

being where the statistic of interest was inappropriately scaled in the sample size, T , such

that ST was of op(1); the result in Theorem 1 would not be informative in such cases. Where

d < 1
2
, the sample mean, sample autocorrelations, and the semiparametric LW and ELW
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estimates of d all satisfy the conditions imposed by Theorem 1, given that they possess

asymptotic normal distributions; see Theorem 8 in Hosking (1996) for the normality of

the sample mean, Theorem 2 in Robinson (1995) for the normality of the LW estimate

and Theorem 2.2 in Shimotsu and Phillips (2005) for the normality of the ELW estimate.

Where d ≥ 1
2
, statistics such as the sample mean and sample autocorrelations do not satisfy

the requirements of Theorem 1; see again the discussion in Remark 15. However, the LW

estimate is still covered by Theorem 1 for d < 1 (excluding d = 3
4
), as is the ELW estimate

for any value of d; see again the discussion in Section 2.1. ♦

Remark 19. In the bootstrap literature a conventional way to establish bootstrap consis-

tency for weakly autocorrelated processes is to show that the following result holds:

sup
x
|Px∗ (S∗ > x)− Px (S > x)| = op(1). (11)

The use of Mallows’ distance in our context, as is also done in Poskitt (2008), can be justified

by Lemma 8.3 (b) of Bickel and Freedman (1981) which states that Mallows convergence is

equivalent to convergence in distribution and the existence of second moments for the statistic

of interest. Since convergence in distribution in the original and bootstrap probability space

implies (11) by Pólya’s theorem, we obtain a link between Mallows convergence and the

general I(0) bootstrap literature. ♦

4 Simulations

4.1 Implementation

As discussed in Remark 3, the model in (1) assumes that the unconditional mean of Yt is

known to be zero. However, in practice it is more reasonable to take the unconditional mean

to be unknown and model Yt according to (4). The standard bootstrap algorithms discussed

in Section 2 and the FDB Algorithm 3 of Section 3 should therefore be modified accordingly

to allow for the estimation of µ. The modified algorithm, Algorithm 4, which we use in the

simulation experiments reported here, is detailed in the accompanying on-line supplementary

appendix. All experiments are based on B = 199 bootstrap draws and R = 1000 Monte

Carlo repetitions.2 We report results for two statistics based on the mean and the fractional

2All simulations were performed in R using the rnorm() random number generator, along with the
arima.sim() and ar.ols() routines. The fractionally integrated series were generated using the fracdiff() rou-
tine of Jensen and Nielsen (2014), available from http://www.econ.queensu.ca/faculty/mon/software/.
For computing the MBB procedures the tsbootstrap() routine from the tseries R package was used. The
b.star() routine from the np R package was used to compute the optimal data-dependent block length of Pat-
ton, Politis and White (2009). Additional code from Krampe, Kreiss and Paparoditis (2018) available from
https://www.tu-braunschweig.de/Medien-DB/stochastik/code-snippet sddb.txt and Shimotsu and
Phillips (2005) available from http://shimotsu.web.fc2.com/Site/Matlab Codes.html was also used.
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differencing parameter of Yt. Our aim is to evaluate the finite sample accuracy of the FDB

estimate of the distribution of the statistic under consideration and to what extent, if any, it

improves upon the finite sample properties of the standard bootstrap methods from Section

2. The statistics we consider are given by,

SµT := T
1
2
−d (Y − µ) and SdT := m

1
2

(
d̂− d

)
, (12)

where Y denotes the sample mean of Yt. Analogously, their bootstrap counterparts are,

Sµ∗T := T
1
2
−d̂
(
Y
∗ − Y

)
and S d̂∗T := m

1
2

(
d̂∗ − d̂

)
(13)

where Y
∗

and d̂∗ denote the sample mean and estimated long memory parameter (the latter

using the same estimator as for the original data) calculated from the bootstrap data. We

report empirical 90% coverage rates using the relevant bootstrap quantiles for each statistic,

q∗0.05 and q∗0.95, where q∗α denotes the 100α% bootstrap empirical quantile.

Our simulation DGP for Yt is the ARFIMA (1, d, 1) model given by Yt = µ + ∆−d+ ut,

t = 1, 2, ..., T, setting µ = 0 in the DGP without loss of generality. Results are reported

for samples of size T = 120 and T = 500. As mentioned above, we account for µ in

the estimation of d, applying LW and ELW to the demeaned series Yt − µ̂ (d), with

µ̂ (d) as defined in (5). The bandwidth m used in connection with these estimators was

chosen according to the popular rule-of-thumb m :=
⌊
T 1/2

⌋
. Results are reported for

d ∈ {0, 0.15, 0.25, 0.35, 0.45, 0.49, 0.75}, with d = 0.75 omitted in the case of the results

for bootstrapping the mean because the sample mean does not provide a consistent estimate

of µ in this case. The disturbances ut were generated according to the ARMA(1, 1) process,

ut = φut−1 + εt + θεt−1 with ε ∼ NIID(0, 1) and ut = εt = 0, t ≤ 0. Results are reported for

φ ∈ {0, 0.8,−0.8} and θ ∈ {0, 0.8,−0.8}. By including: (i) a large positive value of φ, and

(ii) a large negative value of θ, in the range of simulation DGPs considered we have included

cases where: (i) there are two separate sources of significant persistence in the time series

arising through both positive fractional integration, d > 0, and relatively high persistence

in the underlying weakly autocorrelated series, and (ii) we have a positively fractionally

integrated process driven by large negative moving average shocks. Both of these scenarios

are known to be extremely challenging from the perspective of obtaining reliable inference

in finite samples, for both bootstrap and asymptotic-based methods.

The bootstrap procedures we include are:

• The MBB and SBB methods applied directly to the original series using the following

block length choices: b1 := T 1/5, b2 := T 1/4 and b3 := T 1/3, as suggested by Hall,

Horowitz and Jing (1995) Additionally, we also use a data-dependent block length,

denoted by b∗, of the form given in Patton, Politis and White (2009). We will use b∗

for both SBB and MBB.
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• The KN versions of the MBB and SBB methods applied directly to the original series

using the following block length choices: b4 := 1
2
T 1/2, b5 := T 1/2 and b6 := 2T 1/2, as

suggested by KN.

• The SDDB method using both the AR and MA representations.

• The sieve AR bootstrap method with two choices for h: (i) using AIC with a maximum

lag order of H :=
⌊
(log T )2⌋, and (ii) h = H which therefore results in a fixed-length

long autoregressive order.

• The FDB versions of the MBB, SBB, SDDB using either the AR or MA represen-

tation, and sieve AR bootstrap methods.

Algorithm 5 in the accompanying on-line supplementary appendix provides technical

details concerning the simulation design and the calculation of coverage rates. We implement

Algorithms 4 and 5 using the LW and ELW estimates of d in all experiments. In the

interests of space, we present results relating only to the ELW estimate in Tables 1 to 10.

The results relating to LW are qualitatively similar and are reported in the accompanying

on-line supplementary appendix.3

4.2 Empirical Coverage Rates for SµT

First, we consider the ARFIMA(0, d, 0) case where φ = θ = 0. Here, we observe from the

results in the top panel of Table 1 that the application of various bootstraps on levels data,

including the sieve AR bootstrap which is valid for long memory series, does not in general

yield empirical coverage rates close to the nominal 0.90 level. For d = 0 and T = 120 using

ELW we see that SDDBMA has the highest coverage rate, among the bootstrap methods

considered, of 0.784, while SieveH has the lowest coverage rate of 0.599. The performance

of each of the bootstrap methods deteriorates further for d > 0. The KN modification to the

block bootstraps can be seen to yield improvements to empirical coverage rates. Looking at

the middle panel of Table 1, we see that the b5 block choice returns coverage rates for both

MBB and SBB in the range of 0.832–0.874 in the smaller sample size T = 120, with further

improvements for the larger sample size, T = 500.

The results in the bottom panel of Table 1 relate to our proposed FDB methods. Improve-

ments in empirical coverage rates are seen using the FDB method for all of the bootstrap

methods considered across all DGPs. For T = 120, we observe that the best coverage rates

for the MBB using the FDB, taken across the range of values of d considered, is MBBFDB
b1

3It is easily verified that the statistics reported in our simulations satisfy the regularity conditions imposed
by Assumption 3; see the discussion in Remark 15. With the exception of LW for d = 0.75, these statistics
also all have continuous limiting distributions as required by Theorem 1 across the DGPs we consider; see
the discussion in Remark 18. We have nonetheless chosen to retain LW for d = 0.75 in the full set of results
reported in the supplementary appendix for reasons of comparison for the interested reader.
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which delivers coverage rates in the range of 0.823–0.870. Compared to the best performing

MBB applied to the levels data, MBBb∗ , we see that there is therefore a very significant

improvement in the lower bound of the range of coverage rates from 0.460 to 0.860 displayed

by the latter across d. The best performing SBB using the FDB is SBBFDB
b1

which displays

empirical coverage rates in the range of 0.805–0.859. Comparing it to the best SBB method

applied directly to the levels data, SBBb∗ , we see that this constitutes an increase of 0.345 in

the lower bound seen for the range of coverage rates of the latter which is 0.458–0.783. More-

over, the FDB method also improves the coverage rates of both SDDBMA and SDDBAR.

The range of empirical coverage rates when SDDBMA and SDDBAR are applied directly to

levels data is 0.473–0.783 and 0.527–0.784, respectively, across d. The corresponding FDB

versions provide improved coverage rates in the range of 0.827–0.869 and 0.825–0.872 for

SDDBFDB
MA and SDDBFDB

AR , respectively. The FDB method also improves on the coverage

rate of the sieve bootstrap methods. For example, the empirical coverage rates for SieveAIC

and SieveFDBAIC , taken across all of the reported cases for T = 120, lie in the range 0.397–0.682

and 0.644–0.847, respectively.

Similar improvements are also seen to be delivered by the FDB method for the larger

sample size, T = 500. In particular, the best performing MBB, MBBb∗ , has coverage rates

in the range of 0.384–0.800 and the best SBB, SBBb∗ , has coverage rates in the range of

0.389–0.800. The corresponding FDB variants, MBBFDB
b∗ and SBBFDB

b∗ , have empirical

coverage rates in the range of 0.825–0.876 and 0.819–0.875, respectively. Comparing MBBb∗

and SBBb∗ to the best performing FDB variants, which are MBBFDB
b1

and SBBFDB
b1

, we

see that there are further improvements in performance, with both FDBs yielding coverage

rates in the range 0.832–0.877 across d. SDDBFDB
MA and SDDBFDB

AR also improve on the

standard SDDBMA and SDDBAR increasing the empirical coverage rates from the range of

0.466–0.803 and 0.515–0.799, respectively, to 0.833–0.885 and 0.836–0.885, respectively. The

SieveAIC bootstrap which has coverage rates in the range of 0.415–0.782 is also improved by

the FDB. In particular, SieveFDBAIC offers coverage rates in the range of 0.813–0.844.

Consider next the results for the persistent ARFIMA(1, d, 0) case where φ = 0.8 reported

in Table 2. In relation to the results in Table 1, empirical coverage rates are significantly

decreased for all approaches with none delivering close to the nominal 0.90 level. This is

not unexpected as ut is approaching the degree of persistence shown by a unit root process

which creates two sources of difficulty: (i) the semiparametric estimation of d deteriorates,

which will affect all of the bootstrap methods, and (ii) the underlying (approximately) short

memory process displays a strong pattern of persistence (recall that, other than the sieve, the

bootstrap resampling methods are valid for weak dependence alone). The KN modification

seems now to work only for MBBKN
b6

with d = 0.25 and d = 0.35 and for the larger

sample size considered. These results are also not particularly robust; we see that when d

is small, there is a downward bias in the empirical coverage rates, while for larger values of

d the coverage rates display an upward bias. Applying the FDB certainly improves on the
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standard bootstrap methods, but still fails to deliver empirical coverage rates close to the

nominal level. For example, for T = 500, the best performing MBB is MBBb∗ with coverage

rates in the range of 0.173–0.438 across all d, while the corresponding FDB, MBBFDB
b∗ , has

improved coverage rates in the range of 0.564–0.590. Similarly, SBBb∗ is improved using

SBBFDB
b∗ with coverage rates improving from 0.186–0.436 to 0.550–0.586. SDDBFDB

MA and

SDDBFDB
AR also improve on the standard SDDBMA and SDDBAR methods with empirical

coverage rates improving from 0.219–0.464 and 0.363–0.516, respectively, to 0.595–0.631

and 0.586–0.620 respectively. SieveAIC is also improved by SieveFDBAIC with coverage rates

increasing from the range 0.261–0.443 to 0.607–0.645 across all d.

Next, consider the ARFIMA(1, d, 0) case with φ = −0.8. The results in Table 3 show

that there are KN bootstrap variants which yield satisfactory results across all choices of d,

even for T = 120. However, it is important to note that, for this DGP, the choice of the block

length results in bootstraps with an upward bias in their coverage rates, as seen for example

with MBBKN
b6

for d ≥ 0.45. The FDB variants also provide accurate coverage rates across

most cases. As before, we can still find block bootstrap variants, e.g., MBBFDB
b1

, which

display an upward bias as with the KN variants. However it is important to note the impact

of the block length. In particular, we see that MBBFDB
b1

has coverage rates in the range of

0.969–0.987, but MBBFDB
b∗ shows coverage rates closer to the nominal level in the range of

0.858–0.884, across all d. For T = 500, the best performing MBB, across all d, is MBBb∗

when directly applied to the original levels data with coverage rates in the range of 0.417–

0.842. The best performing FDB variant is MBBFDB
b3

which has improved coverage rates

in the range of 0.902–0.94 across all d. SDDBFDB
MA and SDDBFDB

AR improve the standard

SDDBMA and SDDBAR increasing their coverage rates from 0.452–0.822 and 0.544–0.818,

respectively, to 0.805–0.865 and 0.805–0.863, respectively. SieveAIC is also improved by

SieveFDBAIC with coverage rates increasing from the range of 0.446–0.787 to 0.839–0.864 across

all d.

Consider next the ARFIMA(0, d, 1) case. For θ = 0.8, the results in Table 4 show that

the KN block bootstraps using b5 and b6 yield accurate coverage rates across all DGPs for

both sample sizes. For FDB variants, we see that the larger sample size generally improves

the coverage rates, which now are in the range of 0.764-0.888 across all d. For example, for

T = 500, SDDBMA, SDDBAR and SieveAIC have coverage rates in the range of 0.495–0.804,

0.554–0.808 and 0.510–0.776, respectively. FDB improves the coverage rates of these to the

ranges 0.812–0.888, 0.820–0.886 and 0.810–0.843, respectively. For θ = −0.8, the results in

Table 5 highlight a tendency to upward bias across all the bootstrap methods considered.

Moreover, for T = 500 almost all of the block bootstrap methods exceed the nominal 0.90

coverage rate. This is the case even for d = 0, indicating that the block bootstraps do

not accurately capture the dynamics of the series. SDDBFDB
MA and SDDBFDB

AR improve on

the coverage rates of the standard SDDBMA and SDDBAR increasing these from 0.665–

0.906 and 0.675–0.938, respectively, to 0.900–0.927 and 0.899–0.930, respectively. SieveAIC
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is also improved by SieveFDBAIC with coverage rates improving from the range 0.741–0.960 to

0.895–0.967 across all d.

4.3 Coverage Rates for SdT

Consider first the results for the ARFIMA(0, d, 0) case reported in Table 6. Here we see,

as expected, that the direct application of bootstraps to the levels data does not yield

accurate coverage rates. This holds across all bootstrap variants for T = 120, including

the sieve AR bootstrap which, it must be recalled, is asymptotically valid for stationary

long memory series. To illustrate, MBBb∗ has coverage rates in the range 0.571–0.655

and SBBb∗ in the range 0.591–0.655 across all d. The FDB is seen to improve these with

MBBFDB
b∗ and SBBFDB

b∗ having empirical coverage rates in the ranges 0.806–0.875 and

0.816–0.874, respectively. Moreover, the best FDB variants of the MBB and SBB meth-

ods are MBBFDB
b1

and SBBFDB
b1

which display coverage rates in the range 0.829–0.894

and 0.815–0.884, respectively. SDDBMA, SDDBAR and SieveAIC have coverage rates in

the ranges 0.581–0.863, 0.577–0.772 and 0.528–0.613, respectively. The corresponding FDB

variants improve these with SDDBFDB
MA , SDDBFDB

AR and SieveFDBAIC having empirical cov-

erage rates in the ranges 0.819–0.886, 0.819–0.887 and 0.714–0.786, respectively. For the

larger sample, T = 500, we see that SDDBMA and SDDBAR return coverage rates closer to

the nominal value for d ∈ {0.35, 0.45, 0.49, 0.75}. Also, SieveH has good coverage rates for

d ∈ {0.15, 0.25, 0.35, 0.45, 0.49}. Moreover, the FDB approach improves the coverage rates

of SDDBMA, SDDBAR and SieveH from the range 0.526–0.892, 0.523–0.861, 0.731–0.894

to 0.839–0.902, 0.837–0.904 and 0.797–0.839, respectively.

Table 7 reports the coverage rates for the persistent ARFIMA(1, d, 0) case with φ = 0.8.

Here we see that none of the bootstrap variants applied directly to the original series returns

coverage rates close to the nominal 0.90 value. In particular, the largest coverage rate we

have across both sample sizes and all methods is 0.736. FDB improves most bootstraps, most

evidently so for the larger sample size. For T = 500, MBBb3 and SBBb3 have very poor

empirical coverage rates in the range of 0.003–0.361 and 0.012–0.389, respectively, across all

d. The FDB method very significantly improves these rates with MBBFDB
b3

and SBBFDB
b3

having coverage rates in the range 0.652–0.720 and 0.635–0.717, respectively. Moreover,

SDDBMA, SDDBAR and SieveAIC have empirical coverage rates in the range 0.455–0.642,

0.427–0.648 and 0.435–0.572, respectively, across all d, with the FDB improving these to

0.635–0.725, 0.653–0.723 and 0.598–0.678, respectively.

Tables 8 and 9 present the results forARFIMA(1, d, 0) with φ = −0.8 andARFIMA(0, d, 1),

with θ = 0.8, respectively. In both tables we see that bootstrapping the original series di-

rectly yields unsatisfactory results for most methods. Particularly in Table 8, we see that for

ARFIMA(1, d, 0) with φ = −0.8, only SieveH for T = 500 has coverage rates in the range

of 0.765–0.851, which are relatively close to the nominal 0.90 value, particularly for d ≥ 0.35.
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For ARFIMA(0, d, 1), with θ = 0.8, in Table 9, we see that SieveH provides coverage rates

in the range 0.504–0.904 using the larger sample.

The FDB approach improves coverage rates for all of the bootstraps. Using the FDB, we

see in Table 8 that for T = 120, the best coverage rates for MBB are given by MBBFDB
b2

and are in the range 0.846–0.906 and for SBB are given by SBBFDB
b2

and are in the range

0.858–0.898. For T = 500 the best MBB and SBB are MBBFDB
b2

and SBBFDB
b1

with

coverage rates in the range 0.881–0.900 and 0.862–0.888, respectively, across d.

Similarly, in Table 9 we see that for T = 120, MBBFDB
b2

has coverage rates in the range

of 0.801–0.899. In the larger sample, these rates change to 0.850–0.904. We also see that

the FDB improves the other bootstrap variants as well. In particular, we see that in the

smaller sample of T = 120, application of SDDBMA, SDDBAR and SieveAIC directly to the

original levels data yield coverage rates in the range 0.595–0.836, 0.594–0.810, 0.604–0.707,

respectively, across all d. FDB improves these coverage rates to 0.775–0.861, 0.772–0.867

and 0.673–0.756 respectively. In the larger sample, SDDBMA, SDDBAR and SieveAIC have

coverage rates in the range of 0.559–0.886, 0.495–0.836 and 0.678–0.860, respectively. FDB

improves these rates to 0.831–0.877, 0.830–0.876 and 0.779–0.812, respectively.

Finally, Table 10 presents the results for ARFIMA(0, d, 1), with θ = −0.8. As for the

results in Table 7, we again see that most of the bootstrap methods do not return accurate

coverage rates when they are applied directly to the original levels data. The FDB method

is seen to improve the empirical coverage rates of all bootstraps by more than 30% (on

average across all DGPs). For T = 500, we note from Table 10 that the application of

MBBb∗ , SBBb∗ , SDDBMA and SieveAIC directly to original levels data delivers coverage

rates in the range 0.503–0.789, 0.518–0.810, 0.524–0.739 and 0.387–0.599, respectively, across

all d. MBBFDB
b∗ , SBBFDB

b∗ , SDDBFDB
MA and SieveFDBAIC improve the coverage rate range to

0.701–0.743, 0.685–0.735, 0.688–0.714, 0.686–0.721 and 0.659–0.729, respectively.

We conclude this section by providing some recommendations based on our simulation

results. As discussed above, we deliberately included in our study a number of DGPs known

to be extremely challenging from the perspective of obtaining reliable inference in finite sam-

ples. Our simulation results indicate that the FDB method yields significant improvements

in empirical bootstrap coverage rates (compared with the corresponding standard bootstrap

methods applied to the levels of the data) in these cases while also performing very well

for less challenging DGPs. Overall, we would recommend the FDB method paired with the

SDDB (MA or AR) bootstrap, SINCE this appears to deliver the most reliable performance

among the methods considered.
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5 Conclusions

In this paper we have discussed a fractional differencing-based bootstrap methodology. The

idea underlying this approach is simple, intuitive and applicable to both stationary and

nonstationary fractionally integrated series. In the first step one estimates the fractional

integration parameter using any consistent estimation method. One then obtains an ap-

proximately short memory series by applying the fractional differencing operator based on

this estimate to the data. One then implements any valid block or residual-based resampling

method on this fractionally differenced series. One next applies the fractional cumulating op-

erator, based again on the estimate for the fractional integration parameter from the original

data, to form the fractionally integrated bootstrap counterpart data. The material in this

paper extends the original work on the fractional differencing bootstrap in Kapetanios and

Papailias (2011) and shares some similarities with Poskitt, Grose and Martin (2015), who

investigate the case of the sieve bootstrap for stationary fractionally integrated processes.

Our contribution to the literature has been to provide a more general framework which

can be applied to both stationary and nonstationary fractionally integrated processes, and to

show that this can be used with any valid bootstrap resampling method. The finite sample

performance of the fractional differencing bootstrap was demonstrated in a series of simula-

tion experiments. Two statistics were considered: the first based on the unconditional mean

of the fractionally integrated process, and the second based on the fractional exponent. The

simulation evidence suggested that the proposed methodology can offer significant improve-

ments in empirical bootstrap coverage rates for both of these statistics to the corresponding

standard bootstrap methods applied to the levels of the data.
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Tables

ARFIMA(0, d, 0), SµT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0 0.15 0.25 0.35 0.45 0.49
MBBb1 0.779 0.676 0.555 0.482 0.377 0.361 0.801 0.609 0.468 0.331 0.255 0.191
MBBb2 0.778 0.673 0.552 0.482 0.370 0.366 0.804 0.635 0.508 0.360 0.291 0.235
MBBb3 0.779 0.696 0.589 0.519 0.413 0.414 0.804 0.658 0.535 0.396 0.325 0.269
MBBb∗ 0.781 0.676 0.571 0.533 0.460 0.466 0.800 0.643 0.568 0.479 0.448 0.389
SBBb1 0.776 0.685 0.562 0.490 0.390 0.391 0.803 0.625 0.489 0.353 0.276 0.221
SBBb2 0.783 0.684 0.567 0.501 0.398 0.390 0.806 0.646 0.523 0.390 0.324 0.276
SBBb3 0.782 0.696 0.590 0.523 0.428 0.426 0.807 0.667 0.547 0.431 0.371 0.308
SBBb∗ 0.783 0.671 0.579 0.537 0.460 0.458 0.802 0.645 0.586 0.490 0.451 0.399
SDDBMA 0.783 0.659 0.568 0.527 0.473 0.481 0.803 0.620 0.566 0.512 0.501 0.466
SDDBAR 0.784 0.650 0.569 0.552 0.527 0.544 0.799 0.617 0.567 0.515 0.547 0.547
SieveAIC 0.682 0.588 0.520 0.462 0.397 0.414 0.782 0.637 0.567 0.474 0.451 0.415
SieveH 0.599 0.548 0.502 0.457 0.428 0.416 0.756 0.679 0.624 0.556 0.552 0.557
MBBKN

b4
0.821 0.785 0.731 0.706 0.649 0.657 0.847 0.794 0.744 0.696 0.713 0.695

MBBKN
b5

0.842 0.853 0.832 0.867 0.855 0.874 0.849 0.860 0.863 0.875 0.921 0.918
MBBKN

b6
0.827 0.880 0.889 0.946 0.965 0.975 0.841 0.906 0.950 0.973 0.992 0.998

SBBKN
b4

0.823 0.786 0.733 0.707 0.673 0.675 0.836 0.804 0.772 0.739 0.759 0.757
SBBKN

b5
0.836 0.838 0.834 0.851 0.852 0.867 0.856 0.876 0.882 0.901 0.934 0.939

SBBKN
b6

0.809 0.854 0.883 0.929 0.947 0.960 0.841 0.912 0.944 0.970 0.990 0.997

MBBFDB
b1

0.870 0.870 0.860 0.860 0.826 0.823 0.877 0.877 0.855 0.843 0.857 0.832
MBBFDB

b2
0.864 0.868 0.851 0.850 0.821 0.824 0.859 0.878 0.853 0.841 0.841 0.832

MBBFDB
b3

0.853 0.858 0.839 0.849 0.812 0.816 0.867 0.872 0.848 0.820 0.828 0.824
MBBFDB

b∗ 0.856 0.859 0.847 0.844 0.801 0.817 0.868 0.876 0.847 0.834 0.840 0.825
SBBFDB

b1
0.861 0.863 0.841 0.847 0.817 0.816 0.861 0.874 0.859 0.845 0.846 0.832

SBBFDB
b2

0.853 0.862 0.855 0.851 0.811 0.818 0.865 0.875 0.850 0.825 0.835 0.823
SBBFDB

b3
0.843 0.850 0.837 0.840 0.797 0.794 0.857 0.865 0.837 0.818 0.824 0.815

SBBFDB
b∗ 0.859 0.855 0.841 0.834 0.797 0.805 0.867 0.875 0.844 0.827 0.831 0.819

SDDBFDB
MA 0.861 0.869 0.858 0.852 0.827 0.827 0.876 0.885 0.862 0.835 0.846 0.833

SDDBFDB
AR 0.866 0.872 0.860 0.848 0.828 0.825 0.879 0.885 0.866 0.843 0.850 0.836

SieveFDBAIC 0.644 0.733 0.771 0.818 0.817 0.847 0.813 0.843 0.830 0.821 0.844 0.831
SieveFDBH 0.505 0.602 0.647 0.686 0.730 0.769 0.751 0.792 0.775 0.767 0.793 0.778

Table 1: Empirical Coverage Rates for SµT using ARFIMA(0, d, 0) DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(1, d, 0), φ = 0.8, SµT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0 0.15 0.25 0.35 0.45 0.49
MBBb1 0.134 0.082 0.076 0.058 0.074 0.058 0.312 0.200 0.152 0.110 0.094 0.076
MBBb2 0.138 0.083 0.077 0.059 0.073 0.059 0.351 0.235 0.189 0.142 0.106 0.097
MBBb3 0.162 0.096 0.090 0.069 0.091 0.071 0.390 0.267 0.218 0.165 0.127 0.117
MBBb∗ 0.170 0.110 0.107 0.090 0.109 0.093 0.438 0.340 0.270 0.227 0.189 0.173
SBBb1 0.151 0.087 0.083 0.066 0.088 0.066 0.336 0.226 0.184 0.136 0.110 0.092
SBBb2 0.152 0.086 0.087 0.065 0.086 0.066 0.380 0.258 0.209 0.158 0.122 0.115
SBBb3 0.162 0.103 0.095 0.073 0.102 0.076 0.401 0.283 0.230 0.182 0.146 0.128
SBBb∗ 0.170 0.109 0.106 0.088 0.106 0.096 0.436 0.336 0.277 0.225 0.196 0.186
SDDBMA 0.191 0.123 0.122 0.105 0.124 0.117 0.464 0.366 0.308 0.265 0.234 0.219
SDDBAR 0.225 0.273 0.365 0.513 0.628 0.663 0.467 0.374 0.363 0.383 0.459 0.516
SieveAIC 0.147 0.103 0.102 0.097 0.132 0.123 0.443 0.353 0.306 0.282 0.261 0.276
SieveH 0.130 0.101 0.119 0.141 0.184 0.176 0.408 0.362 0.408 0.452 0.527 0.588
MBBKN

b4
0.227 0.190 0.181 0.184 0.206 0.187 0.520 0.495 0.460 0.457 0.442 0.453

MBBKN
b5

0.349 0.357 0.372 0.404 0.458 0.440 0.604 0.627 0.638 0.684 0.725 0.746
MBBKN

b6
0.444 0.506 0.576 0.663 0.775 0.781 0.662 0.763 0.821 0.914 0.953 0.959

SBBKN
b4

0.245 0.200 0.193 0.203 0.237 0.210 0.535 0.516 0.493 0.498 0.515 0.514
SBBKN

b5
0.331 0.321 0.366 0.404 0.464 0.435 0.592 0.650 0.650 0.714 0.758 0.780

SBBKN
b6

0.419 0.451 0.531 0.591 0.716 0.719 0.635 0.742 0.811 0.900 0.935 0.949

MBBFDB
b1

0.306 0.283 0.283 0.292 0.308 0.285 0.452 0.470 0.456 0.451 0.431 0.448
MBBFDB

b2
0.308 0.278 0.282 0.293 0.310 0.283 0.524 0.525 0.505 0.511 0.501 0.500

MBBFDB
b3

0.323 0.303 0.307 0.317 0.334 0.316 0.567 0.573 0.545 0.562 0.544 0.551
MBBFDB

b∗ 0.319 0.293 0.311 0.305 0.337 0.308 0.590 0.587 0.568 0.575 0.564 0.579
SBBFDB

b1
0.309 0.285 0.284 0.293 0.316 0.296 0.498 0.505 0.486 0.497 0.473 0.477

SBBFDB
b2

0.312 0.286 0.278 0.301 0.310 0.297 0.538 0.550 0.527 0.534 0.522 0.534
SBBFDB

b3
0.321 0.294 0.285 0.309 0.326 0.308 0.575 0.575 0.550 0.561 0.546 0.549

SBBFDB
b∗ 0.317 0.291 0.286 0.304 0.325 0.301 0.574 0.586 0.564 0.571 0.550 0.560

SDDBFDB
MA 0.334 0.311 0.306 0.324 0.331 0.326 0.631 0.620 0.595 0.607 0.591 0.598

SDDBFDB
AR 0.346 0.317 0.303 0.331 0.338 0.326 0.620 0.615 0.597 0.612 0.586 0.606

SieveFDBAIC 0.317 0.322 0.346 0.371 0.424 0.411 0.612 0.623 0.607 0.645 0.624 0.635
SieveFDBH 0.229 0.221 0.250 0.281 0.324 0.322 0.516 0.540 0.529 0.547 0.540 0.558

Table 2: Empirical Coverage Rates for SµT using ARFIMA(1, d, 0), φ = 0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(1, d, 0), φ = −0.8, SµT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0 0.15 0.25 0.35 0.45 0.49
MBBb1 0.929 0.803 0.716 0.580 0.478 0.437 0.935 0.738 0.581 0.414 0.295 0.258
MBBb2 0.930 0.801 0.716 0.582 0.476 0.439 0.896 0.710 0.572 0.417 0.309 0.276
MBBb3 0.891 0.768 0.704 0.583 0.494 0.458 0.858 0.675 0.561 0.443 0.333 0.313
MBBb∗ 0.840 0.746 0.696 0.576 0.523 0.494 0.842 0.696 0.601 0.504 0.442 0.417
SBBb1 0.922 0.789 0.719 0.587 0.491 0.453 0.928 0.728 0.587 0.420 0.313 0.278
SBBb2 0.924 0.790 0.710 0.578 0.489 0.448 0.892 0.706 0.581 0.438 0.339 0.309
SBBb3 0.897 0.771 0.702 0.588 0.512 0.471 0.878 0.699 0.594 0.472 0.371 0.347
SBBb∗ 0.859 0.767 0.711 0.598 0.535 0.507 0.858 0.720 0.616 0.522 0.459 0.430
SDDBMA 0.827 0.741 0.692 0.599 0.554 0.511 0.822 0.702 0.620 0.513 0.452 0.454
SDDBAR 0.837 0.761 0.714 0.631 0.606 0.599 0.818 0.699 0.617 0.544 0.611 0.621
SieveAIC 0.753 0.627 0.596 0.492 0.462 0.444 0.787 0.650 0.602 0.494 0.457 0.446
SieveH 0.729 0.621 0.575 0.498 0.451 0.426 0.789 0.692 0.636 0.574 0.532 0.536
MBBKN

b4
0.935 0.853 0.837 0.758 0.736 0.688 0.895 0.835 0.791 0.765 0.721 0.730

MBBKN
b5

0.910 0.890 0.885 0.884 0.900 0.898 0.888 0.886 0.888 0.901 0.918 0.928
MBBKN

b6
0.868 0.891 0.925 0.949 0.973 0.972 0.872 0.930 0.956 0.976 0.993 0.998

SBBKN
b4

0.939 0.855 0.840 0.766 0.760 0.722 0.910 0.852 0.809 0.789 0.759 0.791
SBBKN

b5
0.920 0.880 0.891 0.881 0.897 0.897 0.895 0.904 0.892 0.921 0.933 0.943

SBBKN
b6

0.885 0.900 0.928 0.943 0.967 0.968 0.877 0.931 0.948 0.986 0.988 0.993

MBBFDB
b1

0.969 0.978 0.987 0.977 0.984 0.985 0.991 0.995 0.983 0.992 0.991 0.983
MBBFDB

b2
0.966 0.981 0.987 0.982 0.983 0.981 0.978 0.972 0.966 0.976 0.960 0.955

MBBFDB
b3

0.948 0.962 0.966 0.955 0.961 0.948 0.932 0.940 0.914 0.927 0.914 0.902
MBBFDB

b∗ 0.860 0.865 0.884 0.870 0.868 0.858 0.877 0.894 0.862 0.862 0.848 0.848
SBBFDB

b1
0.964 0.977 0.984 0.974 0.977 0.978 0.988 0.987 0.976 0.986 0.978 0.976

SBBFDB
b2

0.969 0.977 0.979 0.974 0.984 0.980 0.970 0.965 0.954 0.967 0.953 0.951
SBBFDB

b3
0.951 0.957 0.965 0.955 0.959 0.954 0.951 0.952 0.932 0.937 0.923 0.918

SBBFDB
b∗ 0.894 0.876 0.893 0.874 0.887 0.878 0.883 0.895 0.862 0.861 0.846 0.849

SDDBFDB
MA 0.845 0.817 0.852 0.817 0.839 0.812 0.855 0.865 0.836 0.834 0.805 0.819

SDDBFDB
AR 0.863 0.841 0.872 0.831 0.852 0.827 0.863 0.858 0.840 0.825 0.805 0.809

SieveFDBAIC 0.659 0.755 0.813 0.849 0.907 0.912 0.839 0.864 0.864 0.856 0.853 0.849
SieveFDBH 0.604 0.737 0.798 0.822 0.893 0.900 0.793 0.837 0.835 0.836 0.826 0.844

Table 3: Empirical Coverage Rates for SµT using ARFIMA(1, d, 0), φ = −0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0, d, 1), θ = 0.8, SµT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0 0.15 0.25 0.35 0.45 0.49
MBBb1 0.717 0.615 0.481 0.430 0.370 0.336 0.776 0.594 0.479 0.320 0.261 0.231
MBBb2 0.724 0.621 0.486 0.433 0.366 0.334 0.787 0.629 0.515 0.362 0.295 0.269
MBBb3 0.729 0.639 0.514 0.461 0.406 0.384 0.788 0.644 0.556 0.391 0.328 0.307
MBBb∗ 0.713 0.642 0.530 0.489 0.449 0.433 0.786 0.662 0.603 0.488 0.449 0.423
SBBb1 0.712 0.619 0.489 0.439 0.387 0.358 0.777 0.609 0.497 0.338 0.278 0.251
SBBb2 0.718 0.621 0.491 0.446 0.388 0.360 0.790 0.632 0.546 0.387 0.321 0.306
SBBb3 0.715 0.641 0.513 0.471 0.416 0.399 0.795 0.659 0.575 0.427 0.361 0.340
SBBb∗ 0.721 0.643 0.526 0.490 0.444 0.437 0.786 0.672 0.611 0.488 0.453 0.432
SDDBMA 0.736 0.649 0.541 0.516 0.476 0.476 0.804 0.660 0.626 0.538 0.513 0.495
SDDBAR 0.736 0.650 0.557 0.540 0.522 0.534 0.808 0.666 0.627 0.554 0.579 0.596
SieveAIC 0.618 0.550 0.479 0.461 0.445 0.432 0.766 0.677 0.625 0.528 0.519 0.510
SieveH 0.577 0.546 0.441 0.439 0.463 0.453 0.761 0.685 0.652 0.613 0.636 0.667
MBBKN

b4
0.771 0.741 0.691 0.649 0.630 0.630 0.837 0.818 0.777 0.731 0.729 0.723

MBBKN
b5

0.800 0.832 0.816 0.837 0.869 0.860 0.848 0.882 0.875 0.891 0.924 0.922
MBBKN

b6
0.795 0.875 0.897 0.929 0.966 0.956 0.850 0.923 0.947 0.975 0.996 0.995

SBBKN
b4

0.765 0.740 0.688 0.669 0.644 0.652 0.844 0.825 0.794 0.764 0.777 0.772
SBBKN

b5
0.799 0.811 0.806 0.815 0.866 0.859 0.855 0.886 0.885 0.914 0.934 0.936

SBBKN
b6

0.772 0.850 0.861 0.908 0.946 0.954 0.842 0.922 0.938 0.977 0.993 0.996

MBBFDB
b1

0.804 0.829 0.799 0.798 0.784 0.775 0.848 0.859 0.853 0.817 0.813 0.795
MBBFDB

b2
0.806 0.818 0.801 0.795 0.799 0.773 0.859 0.876 0.846 0.825 0.820 0.806

MBBFDB
b3

0.798 0.821 0.801 0.797 0.792 0.776 0.862 0.872 0.850 0.828 0.829 0.808
MBBFDB

b∗ 0.791 0.822 0.793 0.790 0.778 0.770 0.849 0.870 0.849 0.831 0.823 0.799
SBBFDB

b1
0.793 0.815 0.784 0.787 0.775 0.767 0.839 0.864 0.845 0.815 0.815 0.797

SBBFDB
b2

0.797 0.800 0.789 0.783 0.779 0.764 0.860 0.874 0.851 0.823 0.827 0.807
SBBFDB

b3
0.790 0.817 0.781 0.778 0.780 0.768 0.858 0.869 0.847 0.819 0.819 0.797

SBBFDB
b∗ 0.779 0.806 0.770 0.770 0.756 0.755 0.853 0.869 0.847 0.813 0.820 0.793

SDDBFDB
MA 0.823 0.838 0.798 0.794 0.800 0.784 0.870 0.888 0.873 0.840 0.835 0.812

SDDBFDB
AR 0.829 0.839 0.811 0.800 0.799 0.788 0.868 0.886 0.868 0.846 0.845 0.820

SieveFDBAIC 0.568 0.663 0.681 0.750 0.777 0.806 0.806 0.843 0.839 0.812 0.814 0.810
SieveFDBH 0.509 0.594 0.606 0.666 0.723 0.742 0.764 0.789 0.804 0.792 0.794 0.771

Table 4: Empirical Coverage Rates for SµT using ARFIMA(0, d, 1), θ = 0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0, d, 1), θ = −0.8, SµT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0 0.15 0.25 0.35 0.45 0.49
MBBb1 0.999 0.996 0.986 0.985 0.963 0.947 0.999 0.997 0.956 0.889 0.749 0.715
MBBb2 0.999 0.997 0.986 0.985 0.960 0.947 0.999 0.990 0.935 0.859 0.731 0.694
MBBb3 0.998 0.991 0.984 0.978 0.956 0.943 0.991 0.984 0.917 0.851 0.725 0.706
MBBb∗ 0.979 0.972 0.966 0.964 0.958 0.948 0.966 0.955 0.894 0.848 0.732 0.708
SBBb1 0.998 0.997 0.986 0.985 0.963 0.952 0.999 0.996 0.955 0.892 0.751 0.722
SBBb2 0.999 0.997 0.988 0.986 0.959 0.954 0.999 0.992 0.936 0.873 0.742 0.724
SBBb3 0.998 0.995 0.984 0.979 0.958 0.946 0.992 0.986 0.931 0.863 0.750 0.731
SBBb∗ 0.995 0.987 0.973 0.974 0.961 0.949 0.977 0.967 0.904 0.876 0.761 0.734
SDDBMA 0.987 0.972 0.963 0.962 0.951 0.936 0.906 0.939 0.891 0.828 0.700 0.665
SDDBAR 0.986 0.971 0.960 0.962 0.949 0.936 0.902 0.938 0.888 0.826 0.703 0.675
SieveAIC 0.986 0.968 0.951 0.933 0.911 0.909 0.960 0.929 0.858 0.810 0.741 0.747
SieveH 0.985 0.964 0.950 0.928 0.910 0.919 0.957 0.945 0.877 0.882 0.836 0.837
MBBKN

b4
0.999 0.997 0.995 0.995 0.989 0.984 0.998 0.995 0.978 0.962 0.943 0.941

MBBKN
b5

0.996 0.991 0.997 0.998 0.995 0.994 0.989 0.995 0.987 0.984 0.986 0.985
MBBKN

b6
0.972 0.971 0.983 0.985 0.991 0.995 0.971 0.994 0.988 0.998 0.999 0.999

SBBKN
b4

0.999 0.997 0.997 0.997 0.992 0.989 0.997 0.996 0.981 0.979 0.961 0.957
SBBKN

b5
0.999 0.997 0.998 0.998 0.997 0.996 0.995 0.996 0.990 0.995 0.991 0.992

SBBKN
b6

0.999 0.997 0.999 1.000 1.000 0.999 0.990 0.996 0.994 0.997 1.000 1.000

MBBFDB
b1

0.933 0.964 0.958 0.976 0.981 0.983 0.992 1.000 0.999 1.000 1.000 1.000
MBBFDB

b2
0.933 0.956 0.953 0.974 0.983 0.984 0.991 0.999 0.998 1.000 1.000 1.000

MBBFDB
b3

0.914 0.960 0.947 0.981 0.984 0.985 0.987 0.997 0.999 1.000 0.999 1.000
MBBFDB

b∗ 0.885 0.932 0.934 0.961 0.979 0.975 0.951 0.988 0.971 0.978 0.970 0.963
SBBFDB

b1
0.945 0.964 0.962 0.978 0.982 0.985 0.995 1.000 0.998 1.000 1.000 1.000

SBBFDB
b2

0.948 0.964 0.960 0.978 0.982 0.987 0.995 1.000 0.999 1.000 1.000 1.000
SBBFDB

b3
0.941 0.963 0.958 0.980 0.985 0.987 0.991 0.999 0.999 1.000 0.999 1.000

SBBFDB
b∗ 0.930 0.958 0.954 0.983 0.984 0.984 0.967 0.994 0.978 0.982 0.968 0.969

SDDBFDB
MA 0.902 0.939 0.930 0.952 0.965 0.941 0.911 0.927 0.920 0.907 0.909 0.900

SDDBFDB
AR 0.906 0.949 0.937 0.950 0.967 0.943 0.916 0.930 0.917 0.908 0.909 0.899

SieveFDBAIC 0.589 0.693 0.746 0.834 0.876 0.905 0.895 0.963 0.955 0.967 0.958 0.963
SieveFDBH 0.570 0.659 0.713 0.802 0.855 0.882 0.897 0.959 0.947 0.964 0.949 0.959

Table 5: Empirical Coverage Rates for SµT using ARFIMA(0, d, 1), θ = −0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0, d, 0), SdT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0.75 0 0.15 0.25 0.35 0.45 0.49 0.75
MBBb1 0.612 0.576 0.532 0.466 0.381 0.376 0.167 0.579 0.511 0.412 0.314 0.193 0.134 0.031
MBBb2 0.613 0.588 0.543 0.468 0.390 0.377 0.167 0.580 0.518 0.420 0.328 0.209 0.145 0.030
MBBb3 0.629 0.602 0.561 0.498 0.435 0.423 0.217 0.581 0.537 0.435 0.345 0.236 0.158 0.042
MBBb∗ 0.612 0.581 0.571 0.591 0.624 0.655 0.635 0.586 0.539 0.551 0.660 0.684 0.671 0.614
SBBb1 0.633 0.606 0.568 0.516 0.444 0.431 0.227 0.579 0.525 0.430 0.333 0.218 0.159 0.040
SBBb2 0.630 0.611 0.568 0.511 0.448 0.437 0.230 0.606 0.551 0.471 0.389 0.273 0.207 0.069
SBBb3 0.654 0.646 0.619 0.574 0.531 0.516 0.345 0.618 0.588 0.520 0.445 0.361 0.288 0.122
SBBb∗ 0.624 0.591 0.611 0.624 0.649 0.655 0.623 0.589 0.568 0.626 0.697 0.699 0.666 0.618
SDDBMA 0.610 0.587 0.581 0.638 0.759 0.817 0.863 0.578 0.526 0.553 0.809 0.892 0.871 0.811
SDDBAR 0.620 0.586 0.577 0.624 0.722 0.772 0.719 0.585 0.523 0.543 0.815 0.861 0.834 0.551
SieveAIC 0.534 0.531 0.528 0.533 0.543 0.565 0.613 0.583 0.555 0.582 0.658 0.689 0.717 0.756
SieveH 0.654 0.676 0.662 0.697 0.692 0.692 0.668 0.774 0.818 0.846 0.877 0.894 0.885 0.731
MBBFDB

b1
0.877 0.886 0.883 0.878 0.886 0.894 0.829 0.876 0.866 0.896 0.900 0.875 0.883 0.844

MBBFDB
b2

0.868 0.892 0.883 0.872 0.878 0.889 0.826 0.858 0.862 0.890 0.900 0.872 0.885 0.847
MBBFDB

b3
0.843 0.858 0.851 0.844 0.859 0.872 0.804 0.840 0.839 0.873 0.877 0.851 0.868 0.836

MBBFDB
b∗ 0.850 0.875 0.866 0.856 0.861 0.869 0.806 0.840 0.839 0.854 0.885 0.860 0.873 0.827

SBBFDB
b1

0.863 0.871 0.871 0.871 0.874 0.884 0.815 0.869 0.850 0.883 0.896 0.865 0.877 0.837
SBBFDB

b2
0.868 0.883 0.871 0.864 0.875 0.883 0.821 0.855 0.835 0.863 0.885 0.852 0.875 0.823

SBBFDB
b3

0.857 0.858 0.854 0.853 0.862 0.867 0.808 0.836 0.834 0.857 0.876 0.849 0.867 0.824
SBBFDB

b∗ 0.853 0.874 0.864 0.858 0.859 0.873 0.816 0.838 0.833 0.866 0.871 0.859 0.870 0.835
SDDBFDB

MA 0.876 0.886 0.884 0.870 0.874 0.876 0.819 0.871 0.853 0.880 0.902 0.876 0.890 0.839
SDDBFDB

AR 0.870 0.887 0.879 0.863 0.872 0.875 0.819 0.870 0.858 0.890 0.904 0.878 0.889 0.837
SieveFDBAIC 0.739 0.760 0.780 0.764 0.776 0.786 0.714 0.804 0.807 0.831 0.854 0.828 0.851 0.809
SieveFDBH 0.678 0.686 0.690 0.702 0.702 0.700 0.641 0.799 0.824 0.834 0.839 0.832 0.815 0.797

Table 6: Empirical Coverage Rates for SdT using ARFIMA(0, d, 0) DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.

32



ARFIMA(1, d, 0), φ = 0.8, SdT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0.75 0 0.15 0.25 0.35 0.45 0.49 0.75
MBBb1 0.172 0.093 0.069 0.048 0.032 0.034 0.008 0.315 0.187 0.114 0.067 0.024 0.014 0.001
MBBb2 0.162 0.096 0.069 0.048 0.037 0.037 0.008 0.328 0.195 0.119 0.071 0.028 0.016 0.001
MBBb3 0.192 0.116 0.087 0.060 0.047 0.046 0.012 0.361 0.234 0.138 0.081 0.037 0.029 0.003
MBBb∗ 0.215 0.162 0.146 0.134 0.136 0.136 0.142 0.419 0.370 0.334 0.316 0.295 0.287 0.182
SBBb1 0.180 0.113 0.084 0.067 0.051 0.048 0.014 0.331 0.213 0.127 0.081 0.033 0.024 0.002
SBBb2 0.187 0.110 0.087 0.063 0.052 0.045 0.012 0.367 0.249 0.158 0.093 0.055 0.039 0.005
SBBb3 0.202 0.133 0.101 0.080 0.074 0.068 0.024 0.389 0.292 0.193 0.131 0.086 0.066 0.012
SBBb∗ 0.213 0.167 0.148 0.138 0.146 0.132 0.113 0.428 0.392 0.338 0.320 0.299 0.300 0.190
SDDBMA 0.247 0.293 0.328 0.374 0.404 0.417 0.461 0.455 0.582 0.597 0.614 0.642 0.637 0.584
SDDBAR 0.272 0.385 0.466 0.525 0.538 0.574 0.605 0.461 0.585 0.616 0.648 0.617 0.589 0.427
SieveAIC 0.189 0.154 0.137 0.160 0.166 0.152 0.157 0.448 0.474 0.492 0.521 0.572 0.570 0.435
SieveH 0.212 0.214 0.264 0.267 0.304 0.287 0.251 0.482 0.608 0.666 0.647 0.632 0.601 0.348
MBBFDB

b1
0.398 0.399 0.393 0.440 0.448 0.417 0.383 0.626 0.671 0.683 0.670 0.685 0.691 0.617

MBBFDB
b2

0.385 0.400 0.402 0.443 0.442 0.420 0.376 0.642 0.692 0.688 0.692 0.696 0.699 0.619
MBBFDB

b3
0.431 0.428 0.430 0.467 0.460 0.437 0.399 0.668 0.700 0.713 0.712 0.720 0.712 0.652

MBBFDB
b∗ 0.422 0.425 0.435 0.471 0.463 0.436 0.399 0.670 0.716 0.735 0.716 0.736 0.713 0.643

SBBFDB
b1

0.397 0.409 0.411 0.455 0.442 0.423 0.385 0.652 0.689 0.697 0.693 0.704 0.692 0.625
SBBFDB

b2
0.397 0.402 0.399 0.447 0.449 0.415 0.385 0.656 0.691 0.694 0.705 0.719 0.700 0.628

SBBFDB
b3

0.382 0.385 0.403 0.431 0.432 0.417 0.381 0.642 0.695 0.707 0.695 0.717 0.695 0.635
SBBFDB

b∗ 0.392 0.396 0.402 0.437 0.431 0.403 0.389 0.635 0.684 0.689 0.685 0.706 0.685 0.621
SDDBFDB

MA 0.400 0.404 0.413 0.441 0.451 0.419 0.394 0.673 0.711 0.715 0.712 0.725 0.720 0.635
SDDBFDB

AR 0.394 0.395 0.399 0.450 0.443 0.423 0.398 0.682 0.713 0.713 0.723 0.719 0.709 0.653
SieveFDBAIC 0.278 0.292 0.263 0.307 0.325 0.305 0.284 0.635 0.677 0.678 0.675 0.675 0.663 0.598
SieveFDBH 0.190 0.170 0.162 0.202 0.211 0.220 0.224 0.488 0.508 0.521 0.530 0.534 0.506 0.514

Table 7: Empirical Coverage Rates for SdT using ARFIMA(1, d, 0), φ = 0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(1, d, 0), φ = −0.8, SdT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0.75 0 0.15 0.25 0.35 0.45 0.49 0.75
MBBb1 0.626 0.629 0.583 0.518 0.452 0.402 0.210 0.600 0.529 0.404 0.344 0.217 0.187 0.030
MBBb2 0.624 0.622 0.579 0.518 0.449 0.411 0.209 0.602 0.523 0.403 0.356 0.213 0.188 0.037
MBBb3 0.622 0.635 0.600 0.550 0.482 0.454 0.264 0.606 0.525 0.412 0.364 0.242 0.207 0.048
MBBb∗ 0.704 0.648 0.620 0.615 0.621 0.622 0.670 0.667 0.566 0.532 0.597 0.666 0.662 0.638
SBBb1 0.639 0.628 0.591 0.523 0.482 0.437 0.271 0.605 0.517 0.399 0.356 0.230 0.193 0.040
SBBb2 0.637 0.626 0.586 0.525 0.473 0.445 0.287 0.602 0.537 0.426 0.396 0.286 0.246 0.066
SBBb3 0.659 0.639 0.633 0.587 0.551 0.523 0.408 0.621 0.565 0.477 0.460 0.380 0.333 0.122
SBBb∗ 0.695 0.664 0.654 0.642 0.649 0.632 0.655 0.676 0.617 0.594 0.649 0.698 0.663 0.658
SDDBMA 0.724 0.734 0.716 0.727 0.755 0.749 0.806 0.672 0.657 0.593 0.653 0.738 0.781 0.853
SDDBAR 0.677 0.689 0.664 0.683 0.680 0.677 0.531 0.658 0.651 0.590 0.649 0.671 0.698 0.514
SieveAIC 0.561 0.572 0.572 0.565 0.591 0.599 0.640 0.589 0.561 0.535 0.637 0.730 0.718 0.810
SieveH 0.658 0.655 0.662 0.665 0.694 0.708 0.714 0.765 0.799 0.791 0.835 0.851 0.851 0.842
MBBFDB

b1
0.912 0.904 0.882 0.904 0.897 0.900 0.842 0.882 0.904 0.884 0.907 0.901 0.891 0.873

MBBFDB
b2

0.905 0.909 0.890 0.906 0.900 0.902 0.846 0.882 0.898 0.886 0.900 0.895 0.881 0.884
MBBFDB

b3
0.890 0.892 0.864 0.897 0.892 0.886 0.826 0.830 0.855 0.826 0.856 0.858 0.842 0.851

MBBFDB
b∗ 0.840 0.817 0.824 0.832 0.846 0.854 0.811 0.818 0.838 0.823 0.843 0.854 0.825 0.849

SBBFDB
b1

0.887 0.881 0.870 0.893 0.891 0.894 0.848 0.862 0.888 0.874 0.897 0.885 0.877 0.878
SBBFDB

b2
0.889 0.885 0.868 0.895 0.898 0.898 0.858 0.864 0.873 0.873 0.875 0.886 0.856 0.873

SBBFDB
b3

0.875 0.875 0.859 0.887 0.887 0.871 0.827 0.835 0.875 0.855 0.875 0.873 0.858 0.857
SBBFDB

b∗ 0.850 0.835 0.830 0.841 0.844 0.842 0.814 0.827 0.836 0.832 0.852 0.838 0.826 0.846
SDDBFDB

MA 0.803 0.789 0.787 0.793 0.794 0.811 0.754 0.785 0.792 0.786 0.820 0.812 0.772 0.828
SDDBFDB

AR 0.760 0.739 0.745 0.768 0.750 0.762 0.708 0.779 0.799 0.777 0.811 0.825 0.775 0.821
SieveFDBAIC 0.786 0.788 0.767 0.780 0.769 0.772 0.700 0.822 0.840 0.818 0.835 0.839 0.813 0.846
SieveFDBH 0.757 0.750 0.731 0.750 0.750 0.742 0.675 0.862 0.854 0.831 0.844 0.840 0.813 0.814

Table 8: Empirical Coverage Rates for SdT using ARFIMA(1, d, 0), φ = −0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0, d, 1), θ = 0.8, SdT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0.75 0 0.15 0.25 0.35 0.45 0.49 0.75
MBBb1 0.583 0.540 0.489 0.452 0.379 0.329 0.152 0.565 0.545 0.420 0.282 0.180 0.158 0.022
MBBb2 0.574 0.547 0.491 0.453 0.379 0.327 0.148 0.569 0.544 0.422 0.288 0.198 0.171 0.027
MBBb3 0.595 0.564 0.525 0.499 0.431 0.377 0.203 0.582 0.554 0.450 0.318 0.212 0.189 0.038
MBBb∗ 0.594 0.583 0.590 0.637 0.641 0.629 0.577 0.563 0.591 0.609 0.645 0.694 0.681 0.573
SBBb1 0.605 0.575 0.530 0.506 0.441 0.399 0.220 0.570 0.553 0.444 0.294 0.205 0.181 0.033
SBBb2 0.605 0.579 0.523 0.500 0.435 0.402 0.215 0.578 0.589 0.479 0.345 0.261 0.222 0.053
SBBb3 0.635 0.622 0.579 0.581 0.509 0.480 0.318 0.602 0.607 0.524 0.421 0.344 0.307 0.108
SBBb∗ 0.610 0.614 0.619 0.663 0.660 0.636 0.584 0.576 0.634 0.662 0.676 0.685 0.695 0.587
SDDBMA 0.595 0.594 0.637 0.736 0.795 0.836 0.830 0.559 0.580 0.688 0.837 0.883 0.886 0.798
SDDBAR 0.594 0.588 0.636 0.739 0.800 0.810 0.681 0.579 0.577 0.702 0.822 0.836 0.829 0.495
SieveAIC 0.592 0.611 0.624 0.662 0.669 0.653 0.564 0.635 0.702 0.722 0.764 0.852 0.860 0.678
SieveH 0.649 0.642 0.666 0.672 0.707 0.691 0.604 0.793 0.853 0.868 0.878 0.904 0.896 0.663
MBBFDB

b1
0.862 0.868 0.879 0.867 0.894 0.883 0.802 0.864 0.889 0.884 0.891 0.895 0.904 0.850

MBBFDB
b2

0.861 0.872 0.886 0.878 0.899 0.872 0.801 0.856 0.887 0.882 0.880 0.878 0.896 0.847
MBBFDB

b3
0.836 0.837 0.858 0.835 0.872 0.854 0.779 0.845 0.863 0.869 0.861 0.855 0.879 0.824

MBBFDB
b∗ 0.838 0.839 0.848 0.841 0.859 0.848 0.770 0.830 0.853 0.853 0.855 0.864 0.869 0.823

SBBFDB
b1

0.843 0.858 0.872 0.850 0.885 0.863 0.788 0.859 0.876 0.881 0.873 0.885 0.890 0.830
SBBFDB

b2
0.849 0.855 0.865 0.855 0.880 0.860 0.776 0.845 0.876 0.870 0.862 0.868 0.881 0.829

SBBFDB
b3

0.828 0.836 0.852 0.838 0.864 0.850 0.785 0.828 0.863 0.845 0.845 0.864 0.862 0.822
SBBFDB

b∗ 0.839 0.846 0.853 0.842 0.851 0.861 0.771 0.842 0.860 0.864 0.852 0.857 0.875 0.818
SDDBFDB

MA 0.836 0.836 0.843 0.836 0.861 0.856 0.775 0.845 0.864 0.864 0.861 0.864 0.877 0.831
SDDBFDB

AR 0.832 0.841 0.845 0.834 0.867 0.863 0.772 0.843 0.865 0.860 0.862 0.867 0.876 0.830
SieveFDBAIC 0.710 0.711 0.737 0.749 0.756 0.737 0.673 0.786 0.812 0.799 0.783 0.809 0.812 0.779
SieveFDBH 0.659 0.658 0.681 0.690 0.711 0.688 0.609 0.818 0.851 0.841 0.825 0.832 0.850 0.792

Table 9: Empirical Coverage Rates for SdT using ARFIMA(0, d, 1), θ = 0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0, d, 1), θ = −0.8, SdT

Bootstrap \ d

ELW
T = 120 T = 500

0 0.15 0.25 0.35 0.45 0.49 0.75 0 0.15 0.25 0.35 0.45 0.49 0.75
MBBb1 0.203 0.315 0.383 0.461 0.518 0.549 0.608 0.344 0.531 0.612 0.596 0.528 0.499 0.189
MBBb2 0.203 0.315 0.375 0.460 0.524 0.565 0.614 0.347 0.531 0.601 0.594 0.531 0.501 0.195
MBBb3 0.235 0.342 0.398 0.479 0.533 0.576 0.643 0.372 0.549 0.613 0.606 0.536 0.526 0.224
MBBb∗ 0.369 0.466 0.472 0.524 0.552 0.588 0.687 0.503 0.619 0.672 0.669 0.573 0.525 0.789
SBBb1 0.203 0.311 0.370 0.466 0.524 0.575 0.643 0.342 0.523 0.596 0.598 0.540 0.511 0.209
SBBb2 0.204 0.315 0.373 0.456 0.527 0.568 0.647 0.351 0.532 0.611 0.613 0.571 0.547 0.288
SBBb3 0.243 0.337 0.403 0.483 0.541 0.596 0.686 0.370 0.553 0.632 0.648 0.623 0.604 0.441
SBBb∗ 0.338 0.418 0.469 0.515 0.554 0.579 0.695 0.518 0.603 0.689 0.696 0.668 0.604 0.810
SDDBMA 0.454 0.477 0.446 0.490 0.543 0.555 0.672 0.524 0.574 0.604 0.590 0.525 0.494 0.739
SDDBAR 0.462 0.470 0.448 0.492 0.531 0.562 0.648 0.519 0.566 0.599 0.594 0.525 0.507 0.387
SieveAIC 0.205 0.279 0.310 0.387 0.410 0.435 0.594 0.410 0.542 0.612 0.636 0.709 0.730 0.687
SieveH 0.338 0.378 0.361 0.408 0.423 0.412 0.468 0.586 0.659 0.654 0.676 0.666 0.657 0.661
MBBFDB

b1
0.548 0.592 0.592 0.593 0.573 0.576 0.542 0.744 0.736 0.762 0.736 0.718 0.714 0.722

MBBFDB
b2

0.542 0.578 0.589 0.582 0.573 0.586 0.549 0.761 0.730 0.756 0.749 0.746 0.711 0.733
MBBFDB

b3
0.543 0.604 0.596 0.618 0.591 0.618 0.576 0.751 0.760 0.769 0.768 0.756 0.756 0.732

MBBFDB
b∗ 0.525 0.583 0.574 0.581 0.582 0.603 0.569 0.724 0.723 0.735 0.743 0.721 0.701 0.707

SBBFDB
b1

0.530 0.576 0.583 0.600 0.570 0.596 0.560 0.741 0.735 0.744 0.733 0.719 0.716 0.723
SBBFDB

b2
0.536 0.581 0.574 0.584 0.580 0.582 0.560 0.761 0.740 0.768 0.743 0.738 0.723 0.714

SBBFDB
b3

0.535 0.587 0.597 0.601 0.602 0.604 0.569 0.752 0.737 0.762 0.740 0.739 0.736 0.730
SBBFDB

b∗ 0.528 0.589 0.567 0.592 0.589 0.603 0.561 0.722 0.718 0.735 0.733 0.722 0.701 0.685
SDDBFDB

MA 0.504 0.562 0.536 0.560 0.557 0.549 0.524 0.688 0.704 0.714 0.713 0.713 0.692 0.688
SDDBFDB

AR 0.514 0.553 0.538 0.565 0.554 0.556 0.516 0.702 0.701 0.721 0.715 0.717 0.699 0.686
SieveFDBAIC 0.382 0.409 0.405 0.409 0.401 0.398 0.347 0.715 0.711 0.729 0.704 0.691 0.684 0.659
SieveFDBH 0.370 0.424 0.393 0.426 0.431 0.409 0.344 0.669 0.676 0.665 0.667 0.643 0.640 0.617

Table 10: Empirical Coverage Rates for SdT using ARFIMA(0, d, 1), θ = −0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods

outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.
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A.1 Introduction

This supplement to our paper “A Generalised Fractional Differencing Bootstrap for Long

Memory Processes” has four sections. The first section contains a proof of Theorem 1. The

second section contains the modification of Algorithm 3 needed to allow for an unknown

mean in the data. The third section provides additional computational details showing how

we conducted the simulation experiments reported in the paper and how we implemented

the bootstrap procedures. The final section contains additional simulation results. Equation

references (A.n) for n ≥ 1 refer to equations in this supplementary appendix and other

equation references are to the main paper. An additional reference is included at the end of

the supplement.

A.2 Proof of Theorem 1

Our proof shares some similarities with the treatment of Wright (1995) and is presented

below. In particular, as in Wright (1995), we want to show that operations in the underlying

I(0) series can be translated to I(d) space provided that a consistent estimator of d is used.

Below, we sketch our proof before providing formal details.

1. Let Yt be as in (1) and X∗t be obtained by the FDB using the true value of d in

the differencing and cumulation steps of Algorithm 3. We first must show that the

distribution of a statistic based on Yt and the distribution of the same statistic based

on X∗t , are asymptotically equal.

2. Next, let Y ∗t be constructed similarly to X∗t using Algorithm 3, but d̂ is used for the

differencing and cumulation in Steps 3 and 5 of the algorithm. d̂ is obtained using

an estimator which satisfies Assumption 2. We must show that the distribution of a

statistic based on X∗t and the same statistic based on Y ∗t , are asymptotically equal.

The mapping from the original data to the bootstrap should be a function of d. In

other words, bootstrapping in the short memory space should not be stochastic; i.e. if

we were to resample with replacement the short memory series, we should do it in the

same way for X∗t and Y ∗t – the only difference should be the use of d and d̂. Therefore,

the two statistics differ only because d̂ and d differ, but as d̂ converges to d so should

the distribution of the statistics. We further subdivide this step into two by specifying

that in one step, d̂ is used for differencing and d for cumulation and the reverse for the

other step.

In summary, to proceed with the proof of Theorem 1 we consider the following series.

• Yt is the original fractionally integrated series, described in (1). Yt is I (d) and we

calculate the statistic ST = ST (Y1, .., YT ) which satisfies Assumption 3.
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• X∗t is the FDB resample in the theoretical case where d is known and used in the

differencing and cumulation steps of Algorithm 3. X∗t is I (d) and we calculate the

statistic S
∗(d,d)
T = ST (X∗1 , .., X

∗
T ).

• Y ∗t is the FDB resample exactly as described in Algorithm 3, using d̂ for differencing

and cumulation. d̂ is obtained using an estimator which satisfies Assumption 2 and Y ∗t

is I (d). Using Y ∗t we calculate the statistic S
∗(d̂,d̂)
T = ST (Y ∗1 , .., Y

∗
T ).

• Finally, H∗t is the FDB resample using d̂ for differencing and d for cumulation. H∗t is

I
(

2d− d̂
)

and we calculate the statistic S
∗(d̂,d)
T = ST (H∗1 , .., H

∗
T ).

Denote the distribution of the statistic under PYT
by FST and F

S
∗(d,d)
T

, F
S
∗(d̂,d̂)
T

and F
S
∗(d̂,d)
T

are corresponding approximations to the true distribution of the statistic under PX∗t , PY∗t

and PH∗t respectively.

In what follows we use the operator ∆d
+, which is the inverse of ∆−d+ in (1), defined

for a generic variable yt as ∆d
+ := ∆dytI(t ≥ 1) =

∑t−1
n=0 αn(d)yt−n where I(·) denotes the

indicator function and αn(d) := Γ(n−d)
Γ(−d)Γ(n+1)

denotes the coefficients in the binomial expansion

of (1− z)d.

Proof. Using Assumption 3 we have that,{
η

(
F
S
∗(d̂,d̂)
T

, FST

)}2

≤
{
η

(
F
S
∗(d̂,d̂)
T

, F
S
∗(d,d)
T

)}2

+
{
η
(
F
S
∗(d,d)
T

, FST

)}2

≤
{
η

(
F
S
∗(d̂,d̂)
T

, F
S
∗(d̂,d)
T

)}2

+

{
η

(
F
S
∗(d̂,d)
T

, F
S
∗(d,d)
T

)}2

+
{
η
(
F
S
∗(d,d)
T

, FST

)}2

. (A.1)

The last term of the right hand side of the above is straightforward, since the true d is used.

Therefore, for valid short memory bootstrap methods, η
(
F
S
∗(d,d)
T

, FST

)
= op (1). We focus

on the first and second terms. From the definition of Mallows metric, using Assumption 3

and applying the Cauchy-Schwartz inequality twice we have,

{
η

(
F
S
∗(d̂,d̂)
T

, F
S
∗(d̂,d)
T

)}2

≤ E

[
E∗

[∥∥∥∥S∗(d̂,d̂)T − S∗(d̂,d)T

∥∥∥∥2
]]

≤

{
T−1

T∑
t=1

E
[
E∗
[
(Bt (H∗T ,Y

∗
T ))2]]}{T−(1+max{0,d− 1

2
})

T∑
t=1

E
[
E∗
[
(H∗t − Y ∗t )2]]}

≤

{
lim
T→∞

supT−1

T∑
t=1

E
[
E∗
[
(Bt (H∗T ,Y

∗
T ))2]]}{T−(1+max{0,d− 1

2
})

T∑
t=1

E
[
E∗
[
(H∗t − Y ∗t )2]]}

=

{
lim
T→∞

supT−1

T∑
t=1

E
[
E∗
[
(Bt (H∗T ,Y

∗
T ))2]]}{ lim

T→∞
supT−(1+max{0,d− 1

2
})

T∑
t=1

E
[
E∗
[
(H∗t − Y ∗t )2]]} .
(A.2)
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Given that there exists a function Bt (H∗T ,Y
∗
T ) such that the first limit is finite, we are

interested in the last term of the right hand side of the above. Hence, we need to prove that,

lim
T→∞

supT−(1+max{0,d− 1
2
})

T∑
t=1

E
[
E∗
[
(H∗t − Y ∗t )2]] = 0. (A.3)

Using (1) we have that,

H∗t = ∆−d+ u∗t and Y ∗t = ∆−d̂+ u∗t ,

where u∗t is the resampled I(0) process. Following similar steps to those in Wright (1995),

T−max{0,d− 1
2
} (H∗t − Y ∗t ) = T−max{0,d− 1

2
}
(

∆−d+ u∗t −∆−d̂+ u∗t

)
=

T−max{0,d− 1
2
}

(
(1− L)−d

t−1∑
j=1

αj

(
d̂− d

)
u∗t−j

)
=

T−max{0,d− 1
2
}

(
(1− L)−d

((
d̂− d

) t−1∑
j=1

α′j

(
d̂− d

)
u∗t−j +

(
d̂− d

)2
t−1∑
j=1

α′′j

(
d̂− d

)
u∗t−j

))
,

(A.4)

since,

αj

(
d̂− d

)
=
(
d̂− d

)
α′j

(
d̂− d

)
+
(
d̂− d

)2

α′′j

(
d̂− d

)
, (A.5)

where α′j and α′′j denote the first and second derivative of αj (·) respectively. Using (A.3)

and (A.4), it suffices to prove that

lim
T→∞

sup
T∑
t=1

E

[
E∗

[((
d̂− d

) t−1∑
j=1

α′j

(
d̂− d

)
u∗t−j

+
(
d̂− d

)2
t−1∑
j=1

α′′j

(
d̂− d

)
u∗t−j

)2
 = 0. (A.6)

Under Assumption 2, the variance of
(
d̂− d

)
goes to zero as T →∞,

lim
T→∞

supE

[
E∗
[(
d̂− d

)2
]]

= 0, (A.7)

see for example Robinson (1995) and Shimotsu and Phillips (2006). The first limit of (A.6)
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can be written as

lim
T→∞

sup
T∑
t=1

E

E∗
((d̂− d) t−1∑

j=1

α′j

(
d̂− d

)
u∗t−j

)2


≤
{

lim
T→∞

supE

[
E∗
[(
d̂− d

)2
]]} lim

T→∞
sup

T∑
t=1

E

E∗
( t−1∑

j=1

α′j

(
d̂− d

)
u∗t−j

)2


(A.8)

where the second limit is finite. Using (A.7) and (A.8), (A.6) is proved.

Similarly,

{
η

(
F
S
∗(d̂,d)
T

, F
S
∗(d,d)
T

)}2

≤ E

[
E∗

[∥∥∥∥S∗(d̂,d)T − S∗(d,d)
T

∥∥∥∥2
]]
≤ (A.9)

{
T−1

T∑
t=1

E
[
E∗
[
(Bt (X∗T ,H

∗
T ))2]]}{T−(1+max{0,d− 1

2
})

T∑
t=1

E
[
E∗
[
(X∗t −H∗t )2]]}

≤

{
lim
T→∞

supT−1

T∑
t=1

E
[
E∗
[
(Bt (X∗T ,H

∗
T ))2]]}{T−(1+max{0,d− 1

2
})

T∑
t=1

E
[
E∗
[
(X∗t −H∗t )2]]}

≤

{
lim
T→∞

supT−1

T∑
t=1

E
[
E∗
[
(Bt (X∗T ,H

∗
T ))2]]}{ lim

T→∞
supT−(1+max{0,d− 1

2
})

T∑
t=1

E
[
E∗
[
(X∗t −H∗t )2]]} ,

and hence we need to prove that,

lim
T→∞

supT−(1+max{0,d− 1
2
})

T∑
t=1

E
[
E∗
[
(X∗t −H∗t )2]] = 0. (A.10)

which can be proven similarly to the result in (A.3), completing the proof.
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A.3 Modification of Algorithm 3 to Allow for an Un-

known Mean

Algorithm 4.

Step 1. Given the data Yt, t = 1, ..., T , calculate the statistic of interest ST = ST (Y1, .., YT ).

Step 2. Estimate µ using (5) and construct the demeaned series, Yt := Yt − µ̂ (d).

Step 3. Based on Yt, obtain an estimate, d̂, of the long memory parameter, d, which satisfies

Assumption 2.

Step 4. [Differencing] Filter Yt using the fractional differencing operator, ∆d̂
+, and obtain,

ût := ∆d̂
+Yt.

Step 5. [Resampling] Apply any asymptotically valid bootstrap for weakly autocorrelated series,

as described separately below, and obtain a resample for ût, denoted by û∗t .

(a) Sieve AR Bootstrap

i. Fit an AR(h) to ût, let those estimates be denoted by ϕ̂ := (ϕ̂1, ..., ϕ̂h)
′, and

evaluate the corresponding residuals ε̂t := (ût − u) −
∑h

j=1 ϕ̂j (ût−j − u) and

the associated residual variance estimate, σ̂2
hε. u denotes the sample mean of

ût.

ii. Using ε̂t, calculate the standardised residuals, ε̃t := ε̂t−ε
sε

,where ε and sε denote

the sample mean and standard deviation of ε̂t, respectively.

iii. Construct a random sample with replacement for ε̃t denoted by ε̃∗ := (ε̃∗1, ..., ε̃
∗
T )
′
=

(ε̃I1 , ..., ε̃IT )′ with I1, ..., IT being i.i.d. random variables with discrete uniform

distribution on {1, ..., T}. Alternatively one could use the wild bootstrap in

place of the i.i.d. resampling scheme.

iv. The sieve AR bootstrap data observations are generated via the recursion,

û∗t = u+
h∑
j=1

ϕ̂j
(
û∗t−j − u

)
+ σ̂hε ε̃

∗
t ,

initialised at û∗1−j = ûτ−j+1, j = 1, ..., h where τ has the discrete uniform

distribution on {h, ..., T}.

(b) MBB

i. Construct the de-meaned series of ût, defined as vt := (û1−u, ...., ûT−u)′, and

divide it into M overlapping blocks of b observations, with M := T − b + 1.
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Denote the collection of blocks by {B1, ..., BM} and let I1, ..., IT/b be i.i.d.

random variables with discrete uniform distribution on {1, ...,M}.

ii. A MBB resample for vt is then obtained with replacement from the collection

of blocks, v∗t :=
(
BI1 , ..., BIT/b

)′
.

iii. Obtain the corresponding resample for ût as,

û∗t = v∗t + u.

(c) SBB

i. Construct the de-meaned series of ût, defined as vt := (û1 − u, ...., ûT − u)′.

SBB uses a random block length for b. Let L1, L2, ... be a sequence of i.i.d.

random variables having geometric distribution, so that the probability of the

event {Li = η} is (1− p)η−1 for η = 1, 2, ... and p is a fixed number in [0, 1].

Denote the collection of blocks by {BL1 , BL2 , ...}. The indicator Lη denotes

the length of the relevant block. Let I1, I2, ... be a sequence of i.i.d. variables

which have discrete uniform distribution on {1, ..., T}.

ii. A SBB resample for vt is obtained by random draws with replacement from

the collection of blocks, v∗t := (BL1 BL2 , ..., )
′ until t = T .

iii. Obtain the corresponding resample for ût as,

û∗t = v∗t + u.

(d) SDDB-MA

i. Consider the MA representation of ut, ut = εt +
∑∞

j=1 cjεt−j, and the spectral

density of ut, fu. Obtain an estimate of fu using ût denoted by f̂û.

ii. Compute the Fourier coefficients of log
(
f̂û

)
given by âk := 1

2π

2π∫
0

log
{
f̂û (ω)

}
e−ikωdω

for k = 0, 1, 2, ...

iii. Let σ̂2
a := 2πeâ0 and compute the coefficients ĉk, using ĉk+1 =

∑k
j=0

(
1−j
k+1

)
âk+1−j ĉj

for k = 0, 1, 2, ... and starting value ĉ0 = 1.

iv. Generate i.i.d. pseudo-innovations (ε∗1, ...., ε
∗
T )′ with mean 0 and variance σ̂2

a.

v. Generate the pseudo-time series (û∗1, ...., û
∗
T )′ obtained by,

û∗t = u+
∞∑
j=0

ĉjε
∗
t−j.

(e) SDDB-AR

i. Consider the AR representation of ut, ut =
∑∞

j=1 bjut−j + εt,
∑∞

j=1 |bj| <∞,

6



and the spectral density of ut, fu. Obtain an estimate of fu using ût denoted

by f̂û.

ii. Compute the Fourier coefficients of log
(
f̂û

)
given by âk := 1

2π

2π∫
0

log
{
f̂û (ω)

}
e−ikωdω

for k = 0, 1, 2, ...

iii. Let σ̂2
a := 2πeâ0 and compute the coefficients b̂k, using the recursive formula

starting with b̂0 = −1 and b̂k+1 = −
∑k

j=0

(
1−j
k+1

)
âk+1−j b̂j for k = 0, 1, 2, ... .

iv. Generate i.i.d. pseudo-innovations (ε∗1, ...., ε
∗
T )′ with mean 0 and variance σ̂2

a.

v. Generate the pseudo-time series (û∗1, ...., û
∗
T )′ obtained by,

û∗t = u+
t−1∑
j=1

b̂j
(
û∗t−j − u

)
+ ε∗t .

Step 6. [Cumulation]Apply the fractional cumulating operator ∆−d̂+ to û∗t and obtain the re-

sampled data Y∗t = ∆−d̂+ û∗t . Finally, the corresponding resample to the original data is

obtained by,

Y ∗t := µ̂ (d) + Y∗t .

Step 7. Calculate S∗T = ST (Y ∗1 , .., Y
∗
T ) which is the bootstrap analogue to ST .

Step 8. Repeat Steps 5 to 7, to construct B independent bootstrap samples and bootstrap statis-

tics, denoted Y ∗l,T and S∗l,T , l = 1, ..., B, respectively, and collect S∗B,T :=
(
S∗1,T , ..., S

∗
B,T

)′
.

Approximate FST (s) by the bootstrap distribution function F S∗B,T
(s) = 1

B

∑B
l=1 I(S∗B,T ≤

s).

A.4 Simulation Algorithm and Coverage Rates

Below we outline how we conduct the simulation experiments and implement the bootstrap

procedures.

Algorithm 5.

Step 1. For the ith simulation, with i = 1, 2, ..., R and R = 1000, generate sample data for ut,

t = 1, 2, ...T , which follows an ARMA(p, q) model with standard normal innovations;

the starting value is always set to be u1 = 0. The settings for T , p and q are as

described in the main text.

Step 2. Then, apply the inverse of the Fast Fractional Difference (FFD), introduced by Jensen

and Nielsen (2014), and generate Yt = µ+ ∆−d+ ut setting µ = 0. Therefore,

Yt := ∆−d+ ut.

7



The values of d considered are as given in the main text. Calculate the statistic of

interest ST = ST (Y1, .., YT ).

Step 3. Construct B = 199 bootstrap resamples for Yt, denoted by Y ∗l,T , l = 1, ..., B, using two

approaches:

(a) Ignoring the presence of long memory and applying the sieve AR bootstrap, MBB,

SBB, SDDB using the MA or AR representation directly to Yt; exactly as dis-

cussed in Algorithm 4. The AR order, h, for the sieve is obtained: (i) using AIC

with maximum order H :=
⌊
(log T )2⌋, and (ii) setting h =

⌊
(log T )2⌋. The latter

is h = 23 for T = 120 and h = 39 for T = 500. We use OLS to estimate the AR

parameters in the sieve bootstrap.

(b) Employing FDB and applying Algorithm 4; in fractional differencing and cumula-

tion steps we use the FFD and its inverse. We obtain d̂ using LW or ELW with

m = 11 and m = 22 for T = 120 and T = 500, respectively.

Step 4. Then, calculate the statistic of interest and obtain S∗l,T , l = 1, ..., B, collecting S∗B,T :=(
S∗1,T , ..., S

∗
B,T

)′
. It should be noted here that for KN, MBB and SBB bootstraps, one

must use the bootstrap samples as calculated in Step 3a above, inflating S∗B,T by bd̂.

Then, calculate the q∗0.05 and q∗0.95 quantiles of S∗B,T . Finally, calculate Ci which takes

the value 1 if q∗0.05 ≤ ST ≤ q∗0.95 and 0 otherwise.

Step 5. Repeat steps (1) to (4) above for all i = 1, 2, ..., R simulations.

Step 6. Report the simulated bootstrap coverage rate for ST defined as CR :=
∑R
i=1 Ci
R

.
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A.5 Full Set of Simulation Results
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