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Abstract

A bootstrap methodology, first proposed in a restricted form by Kapetanios and Papail-
ias (2011), suitable for use with stationary and nonstationary fractionally integrated
time series is further developed in this paper. The resampling algorithm involves
estimating the degree of fractional integration, applying the fractional differencing op-
erator, resampling the resulting approximation to the underlying short memory series
and, finally, cumulating to obtain a resample of the original fractionally integrated
process. While a similar approach based on differencing has been independently pro-
posed in the literature for stationary fractionally integrated processes using the sieve
bootstrap by Poskitt, Grose and Martin (2015), we extend it to allow for general boot-
strap schemes including blockwise bootstraps. Further, we show that it can also be
validly used for nonstationary fractionally integrated processes. We establish asymp-
totic validity results for the general method and provide simulation evidence which
highlights a number of favourable aspects of its finite sample performance, relative to

other commonly used bootstrap methods.
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1 Introduction

Since the seminal paper by Efron (1979), the bootstrap has rapidly increased in popularity.
Initial developments in the bootstrap literature assumed the sample observations to be in-
dependent and identically distributed (i.i.d.) and implementation proceeded by randomly
resampling single observations with replacement. This approach is, however, inappropriate
when dealing with dependent samples. The dependence pattern in the original data is highly
unlikely to be preserved and, hence, the bootstrap resamples do not, in general, replicate the
key properties of the original series. Consequently, an extensive literature has developed on
the use of bootstrap methods for weakly autocorrelated (short memory) series; see, among
others, Carlstein (1986), Kiinsch (1989), Kreiss (1992), Politis and Romano (1992), Politis
and Romano (1994) and Bithlmann (1997).

Within the literature two main approaches have been developed for applying bootstrap
methods to weakly autocorrelated data: namely, block bootstrap methods and residual-based
resampling methods. The idea underlying all block bootstrap approaches is to resample
blocks of temporally contiguous observations rather than resampling single observations.
For a weakly autocorrelated process the blocks of observations should be approximately
independent in large samples and the joint distribution of the variables in different blocks
should be approximately the same across blocks. A variety of different block resampling
methods has been proposed; among other aspects, the blocks can be non-overlapping or
moving, and they can have fixed or variable block length. Block structure optimality and
data-driven block length analysis are further considered by Hall, Horowitz and Jing (1995),
Biihlmann and Kiinsch (1999), Politis and White (2004) and Patton, Politis and White
(2009), among others. In contrast, residual-based bootstrap approaches are based on the
principle of estimating a model and obtaining the residuals. A residual resampling device
can be obtained, for example, using i.i.d. random resampling. The estimated parameters
from the model fitted to the original data and the residual resample are then used to generate
the corresponding resample of the original series.

The above methods were developed for weakly autocorrelated series. In the case of
processes which exhibit long range dependence, Lahiri (1993) shows that the block bootstrap
is not in general valid even when large block lengths are used.! The residual-based approach,
referred to as a sieve autoregressive bootstrap, which obtains the residuals from fitting a
long autoregression to the data, is asymptotically valid for fractionally integrated processes
whose order of integration is less than one-half (the usual weak stationarity boundary). For
relevant such methods in the time domain see, for example, Kapetanios and Psaradakis
(2006), Kapetanios (2010), Poskitt (2008) and Poskitt, Grose and Martin (2015).

Kim and Nordman (2011) consider the application of block bootstrap-based methods for approximating
the sample mean. The resampling is performed on the original long memory series and the normalised
bootstrap sample mean is inflated by a factor which depends on the block length and the long memory
parameter. This method cannot, however, be used in approximating the distribution of other statistics.



In light of these issues, it is important to develop further bootstrap methods which are
asymptotically valid for series which display long range dependence. In this paper we consider
an approach to resampling which allows the practitioner to validly implement blockwise and
residual-based bootstrap methods designed for weakly autocorrelated with, possibly nonsta-
tionary, fractionally integrated series. The procedure can be summarised as follows. Suppose
we have a fractionally integrated series. We first use a consistent method to estimate the frac-
tional integration parameter for the series in hand. We then apply the fractional differencing
operator appropriate to this estimated parameter, to deliver an approximately short memory
series. Established block or residual-based resampling methods are then implemented on this
series. Finally, the fractional cumulating operator is applied to the resampled series, using
the estimate of the fractional integration parameter obtained from the data. This yields
the corresponding resample of the original data. Bootstrap approximations to the distri-
bution of statistics formed from the original data can then be obtained in the usual way.
We detail the asymptotic validity of this approach for both stationary and nonstationary
fractionally integrated processes. The finite sample performance of our proposed bootstrap
procedures is evaluated using a statistic based on the unconditional mean (for stationary
fractionally integrated series) and a statistic based on the fractional exponent. We compare
it to other widely used block and residual-based bootstrap methods, both where the latter
are asymptotically valid and where they are not.

It should at this point be acknowledged that the idea of “pre-filtering” the time series by
fractional differencing based on an estimate of fractional integration parameter is not new
to the literature. Kapetanios (2010), Kapetanios and Papailias (2011), Papailias and Dias
(2015) and Poskitt, Grose and Martin (2015) have all previously adopted this approach in
various contexts. In particular, the research in this paper extends the work of Kapetanios
and Papailias (2011), and supplements Poskitt, Grose and Martin (2015) by establishing
the asymptotic validity of this resampling method when used in conjunction with general
bootstrap methodologies, including block bootstrap approaches, for both stationary and
nonstationary fractionally integrated series.

The remainder of the paper is organised as follows. Section 2 introduces the fractionally
integrated model and the assumptions we will work under, and briefly reviews some semipara-
metric estimation methods for this model. Here we also review the block, sieve autoregressive
and spectral-density-driven bootstrap approaches. Section 3 presents the proposed gener-
alised bootstrap methodology for fractionally integrated series and establishes its asymptotic
validity. Section 4 details the results of our simulation experiments into the finite sample
behaviour of our approach, relative to existing methods, for the case of bootstrapping a
statistic based on the unconditional mean and a statistic based on the fractional exponent.
Section 5 concludes. Supporting material, including a proof of our main theoretical result,
details of our simulation methodology and additional simulation results, is contained in an

accompanying on-line supplementary appendix.



2 Preliminaries

2.1 Fractional Integration and Semiparametric Estimation

We consider the fractionally integrated process Y; generated by,
V=A%, t=1,2, .., (1)

where the operator Ajrd, for a generic variable 1, is given by Ajrd = A7yt > 1) =

S Tn(d)yi—n, 1(-) denoting the indicator function and ,(d) := F(l;)(?z;wﬁl) = d(dﬂ)“ﬁ(!d%_l)

the coefficients in the binomial expansion of (1—z)~%. To ensure that Y; is uniquely integrated

of order d, denoted I(d), we need to define u; in (1) to be a short memory, or I(0), process.

This we do by assuming that u, satisfies the following assumption.

Assumption 1. The shocks u; are generated according to the infinite-order moving average
[MA], wy = e, + 372, cjerj, which satisfies the following conditions:

(a) The MA polynomial C'(2) = 1+ 372 ¢;27 is such that C(z) # 0, |z| < 1, and

Z;ilj |¢j| < 0.

(b) The innovation process €, is ergodic and is such that E(g;|Fy_1) = 0 and E(e?|F;,_1) =
02 > 0, where Fy denotes the o-algebra of events determined by €, s < t. Furthermore,
E(g}) < <.

Remark 1. Assumption 1 ensures that u,; is an 1(0) series driven by martingale difference
innovations. Under Assumption 1, u; possesses a spectral density which is both finite and
bounded away from zero everywhere in the interval [0, 7]. This rules out the possibility of any
root at unity in C(z) cancelling with (1 —2)%, and so Y; is an I(d) process within a wide class
of linear processes, including the popular ARFIMA family of models. Under Assumption 1,
u; also admits the Autoregressive [AR] representation u; = 7 | ajuy—j+e; with 3 22 | o] <
o0o. Assumption 1 is standard in the sieve autoregressive bootstrap literature and we have
therefore chosen to adopt this as our base assumption on u;. However, for the other possible
bootstrap methods discussed in Section 2.2, additional regularity conditions may be needed
on u; to ensure bootstrap validity; we will direct the reader to relevant papers for the precise

conditions needed, rather than reproducing them here. &

Remark 2. The model in (1) is of so-called “Type II” fractional integration. This type
allows the same definition to be valid for any value of the fractional parameter, d, and

therefore allows for both weakly stationary and nonstationary time series. &

A great many papers have appeared in the literature addressing parametric and semipara-

metric estimation of the parameters of fractionally integrated models. Maximum likelihood



and pseudo-maximum likelihood approaches are developed in, among others, Fox and Taqqu
(1986), Sowell (1992), Hosoya (1997) Robinson (2006), Johansen and Nielsen (2010), Hualde
and Robinson (2011), Johansen and Nielsen (2012), Nielsen (2015), Johansen and Nielsen
(2016) and Cavaliere, Nielsen and Taylor (2017), among others. Geweke and Porter-Hudak
(1983) first considered the semiparametric estimation of the long memory parameter in the
frequency domain. Further work on semiparametric estimation has been developed in, among
others, Robinson (1995), Andrews and Sun (2004), Nielsen (2005), Shimotsu and Phillips
(2005), Shimotsu and Phillips (2006), Abadir, Distaso and Giraitis (2007), Haldrup and
Nielsen (2007), Frederiksen and Nielsen (2008) and Frederiksen, Nielsen and Nielsen (2012);
see also Nielsen and Frederiksen (2005) for a review of estimation methods for fractionally
integrated models.

For our purposes we require an estimate of the long memory parameter, d, in (1) which
is consistent without the need to specify a parametric model for the short memory process,
uy. To this end, we therefore focus our attention on the semiparametric estimation methods
of Robinson (1995) and Shimotsu and Phillips (2005). Each of these estimators solves a
minimisation problem of the form d := arg e(a, 4, Min K (d) , where d; and dy are the lower
and upper bounds of the values for d such that —oco < d; < dy < 0o and R (+) is the relevant
objective function.

Consider the time series Y; with ¢ = 1,2, ..., T observations. Following Robinson (1995),
the Local Whittle (LW) estimator of d is obtained by minimising the objective function,

R™ (d log[ Zw2dl w; ] —2d— Zlogw], (2)

with respect to d, where w; := (27j) /T for j = 1,2,...,T and I(w,) is the periodogram,
defined as I(w;) := 57 ‘Zle Yteiwﬂt‘2

Shimotsu and Phillips (2005) propose the Exact Local Whittle (ELWW) estimator which
uses a “corrected” discrete Fourier transform of the series. The relevant objective function

is now given by,

1 m
RV (d) := log [ ZIMY ny ] - QdEZIngj, (3)
j=1

where Iya v, (wj) is the periodogram of the differenced series, A1Y;.

Assumptions Al to A4 of Robinson (1995) and Assumptions 1 to 5 of Shimotsu and
Phillips (2005) are required for consistency of the LW and ELW estimators, respectively.
Under Assumptions Al to A4 in Robinson (1995), d € [d,ds], y: is invertible and might
not be strictly stationary and the bandwidth, m, tends to infinity but at a slower rate than

T. LW is consistent in the stationary region, while the asymptotic theory is discontinuous



at d = % and d = 1 and the estimator is inconsistent when d > 1. Assumptions 1 to 5 of
Shimotsu and Phillips (2005) are analogous to Assumptions Al to A4 in Robinson (1995);
however Shimotsu and Phillips (2005) impose a stronger assumption on the rate of m and
restrict the permissible values such that dy — d; < g. In Section 3 we introduce a high level
assumption concerning the consistency of the estimator of d which therefore entails that the

required regularity conditions for consistency hold for a given estimator of d.

Remark 3. The model in (1) imposes the unconditional mean of Y; to be zero. In practice,
one might want to allow for the possibility that Y; has a non-zero unconditional mean. This

can be done through generalising (1) to include a constant, viz,
Vi=p+ AT, t=1,2,... (4)

Robinson (1995) discusses the case where Y; is generated according to (4), noting that there is
no need to correct the periodogram of Y; for the unknown mean, provided m < %T, and that
here the LW estimator of d will still be consistent for d € (—%, 1). In the case of the ELW
estimator, Shimotsu (2010) suggests estimating p by the sample mean, ¥ = T~} Zthl Y;,

and to use the resulting de-meaned data when calculating the right member of (3). The

_1

27
de (—%, %) However, as d increases, the magnitude of the estimation error, Y — y, increases.
For d > %, Y is not a consistent estimator of x4 and diverges. In such cases, Shimotsu (2010)

resulting LW estimator is consistent for d € ( 1) and also asymptotically normal for

suggests the use of the first observation as an estimate for u; that is, 7 := Y. In this case,

ELW is consistent for d > 3 and asymptotically normal for d € [3,2). Shimotsu (2010)

suggests the James-Stein-type estimator of p given by,
fi(d) = w(d)Y + (1 — w(d))Y1, (5)

where w(d) is a twice continuously differentiable weight function such that w(d) = 1 for
d <1 and w(d) =0for d > 2, and to use Y; — 7i(d) in calculating the periodograms in the
objective function of ELW in (3). &

Remark 4. Johansen and Nielsen (2016) investigate the effect that initialisation (cf.
Remark 2) has on the parametric estimation of nonstationary fractionally integrated time
series. Taking a process Y; generated according to (4) they conduct the thought experiment
that it exists from a point in time (—Np + 1) but we start to observe the series only from a
later time, say t = 1, onwards. They propose splitting the sample into two parts: (i) pseudo-
initial values, 1,...,N, and (ii) pseudo-observed values N + 1,...,N + T'. Then they mitigate
the effect of the unobserved initial values by estimating the model using N + 1,...N + T
conditional on 1,...,N. They find that the estimation of the parameter u picks up the effect

of the initial values even for the choice N = 0, in which case Y} = 4 . &



2.2 Resampling Procedures

In this section we briefly review a number of bootstrap algorithms used in the literature
with weakly autocorrelated time series; these will be considered in the rest of this paper. In
particular, we describe the sieve autoregressive bootstrap of Kreiss (1992) and Bithlmann
(1997), the moving blocks bootstrap of Kiinsch (1989), the stationary bootstrap of Poli-
tis and Romano (1994), and the spectral-density-driven bootstrap of Krampe, Kreiss and
Paparoditis (2018).

For the purposes of the discussion in this section we detail the algorithms for the case
where the are directly applied to Y; where this is a weakly autocorrelated process; i.e. such
that d = 0 in (1). The probability law characterising the data-generating mechanism is de-
noted by Pry,,.. vy} We consider the statistic of interest Sy = Sy (Y1, .., Yr) where Fg, (s) is
the distribution function of Sy under Pyy, . y;y. Throughout this paper we assume that the
corresponding limiting distribution of Sy, say Fs_(s), is continuous. Bootstrap procedures
are used to approximate F, (s) by approximating P(y,, . v,}. Further details on these boot-
strap procedures, including the precise regularity conditions on the weakly autocorrelated
process under consideration and the class of statistics they can be validly applied to under
those regularity conditions, can be found in, inter alia, Kreiss (1992), Bithlmann (1997),
Kiinsch (1989), Politis and Romano (1994), and Krampe, Kreiss and Paparoditis (2018), to
whom we direct the reader for further details. Extensions of the sieve bootstrap approach
to allow for wild rather than i.i.d. resampling can also be found in the recent paper by
Fragkeskou and Paparoditis (2018). In Section 3, we subsequently propose a generalised
methodology which allows these bootstrap procedures to be applied to Y; when d # 0,

provided the regularity conditions are met by the process u; in (1).

2.2.1 Sieve Autoregressive Bootstrap

The sieve autoregressive (AR) bootstrap was introduced by Kreiss (1992) and further anal-
ysed by Biithlmann (1997). Consider the weakly autocorrelated process given by Y; in
(1) with d = 0. Under Assumption 1, Y; admits the infinite-order AR representation,
Yi =300 Y +ug, where 377 |a| < oo; for more details see, among others, Bithlmann
(1997), Kreiss, Paparoditis and Politis (2011), and Fragkeskou and Paparoditis (2018).
The sieve bootstrap approximates this infinite order AR by a truncated AR whose order

is allowed to increase with the sample size. The sieve AR bootstrap algorithm is as follows.

Algorithm 1.

Step 1. Given the data Yy, t = 1,...,T, calculate the statistic of interest St = Sy (Y1, ..,Yr).
Using ordinary least squares [OLS] calculate the AR parameter estimates from fitting
an h-th order AR, denoted AR(h), approximation to Y;, and let those estimates be

denoted by @ = (Qy, ..., Q).



Step 2. Define the corresponding residuals,

h
U=Y, - > aYi, (6)

Jj=1

and the associated residual variance estimate, Ei. Using uy, calculate the standardised

restduals,
~ U — U
Ut = L y (7)

Su

where w and sy denote the sample mean and standard deviation of u;, respectively.

Step 3. Let Iy, ..., I7 be i.i.d. random variables with discrete uniform distribution on {1,...,T}.

Then, construct a random sample with replacement from U, denoted by u* := (U}, ..., %) =

(Urys s gy )

Step 4. The sieve AR bootstrap data observations are generated via the recursion,

h
Y, = Z ;Y + oniy, (8)
j=1
initialised at Yy ; =Y. _j11, j = 1,...,h where T has a discrete uniform distribution on

{h,..,T}.

Step 5. Neat, based on the bootstrap sample data, compute Sy = St (Yy",..,Y]), the bootstrap

analogue of St.

Step 6. Repeat Steps 3 to 5, to construct B independent bootstrap samples and bootstrap statis-
tics, denoted Y;'r and Sfr, | =1, ..., B, respectively, and collect S 1 = ( LT s g}T)’.

Approzimate Fs,.(s) by the bootstrap distribution function,

1 B

Fg; (s) = = > I(Spp <s).

=1

Remark 5. The distribution of S} under the probability law induced by the bootstrap,
Piyy,.vzy, should mimic that of Sy under Py, .. v,y and, therefore, Fs: (s) should approxi-
mate Fg_.(s) reasonably well provided that Pivi,...vp) 1s in some sense close to P{yl*,“’yjf}. As
explained in Poskitt (2008), the analytical determination of Fj: (s) is generally intractable
but, using the Glivenko-Cantelli theorem, F's: (s) converges to Fg: (s) almost surely (a.s.)
as B — oo uniformly in s. Consequently, for aysufﬁciently large number of bootstrap draws,
B, we can approximate Fj: (s) arbitrarily closely and anticipate that FS]*B’T(S) also approxi-

mates Fs, (s) closely, provided that Fj: (s) is sufficiently close to F,.(s). &



Remark 6. The autoregressive order h used in Step 1 of Algorithm 1 needs to grow with
the sample size T', such that the residuals u; are approximately uncorrelated. Biihlmann
(1997) suggests selecting h using Akaike’s Information Criterion (AIC). Poskitt, Grose and
Martin (2015) also adopt AIC selection of h using a maximum lag length of H = | (log T)QJ,

where |-| denotes the integer part of its argument. &

Remark 7. Fragkeskou and Paparoditis (2018) propose an alternative to the i.i.d. resam-
pling scheme used in Step 3 of Algorithm 1, whereby a wild bootstrap is used. This can allow
for the presence of unconditional heteroscedasticity in u;. In this case the standardisation
in (7) is no longer needed. See Cavaliere, Nielsen and Taylor (2017) for recent application of

wild bootstrap methods in long memory time series. &

Remark 8. Although designed for the short memory case where d = 0 in (1), Kapetanios
and Psaradakis (2006), Poskitt (2008) and Poskitt, Grose and Martin (2015), show that the
sieve AR bootstrap, outlined in Algorithm 1, when applied directly to Y; retains asymptotic
validity, provided h satisfies the conditions outlined in Remark 6, even when |d| < % How-

ever, it is not asymptotically valid for d > % &

2.2.2 Block Resampling

An alternative bootstrap approach which can account for the presence of weak dependence
in the data is the block bootstrap. Blocks of observations of weakly autocorrelated processes
should be constructed such that they are approximately independent and the joint distribu-
tion of the variables in different blocks should be almost the same. The main difficulty we
face here is the choice of an optimal block size which guarantees the above properties. This
can be achieved using data-driven methods such as those developed in Hall, Horowitz and
Jing (1995), Politis and White (2004) and Patton, Politis and White (2009).

Consider the weakly autocorrelated process, Y; with d = 0, and a choice for the block size,
b. In addition to Assumption 1, we need to assume that Y; is strictly stationary; see, e.g.,

Politis and Romano (1994). We consider the following two block bootstrap methodologies:

Moving Block Bootstrap [MBB]: Given the data Y;, t = 1,...,7T, calculate the statistic
of interest Sy = Sr (Y1,..,Yr). The MBB of Kiinsch (1989) divides (Yi,...., Yr)" into M
overlapping blocks of b observations, with M := T —b+ 1. Denote the collection of blocks by
{Bi,..., By} and let Iy, ..., Iy, be ii.d. random variables with discrete uniform distribution
on{l,...,M}. A MBB resample /for Y, is then obtained with replacement from the collection
of blocks, Y;* := (Bh, ..., By, /b> . Repeating this procedure, we construct B independent

bootstrap samples and bootstrap statistics, denoted Y% and Sj'r, | = 1, ..., B, respectively,



and collect Sp = ( 17 ...,SET)/. Approximate Fg,(s) by the bootstrap distribution

function Fig; (s) = =37, I(Shr < s).

Stationary Block Bootstrap [SBB]: Given the data Y;, t = 1,..., T, calculate the statistic
of interest S = St (Y1,..,Yr). The SBB of Politis and Romano (1994) differs from the
MBB in that it uses a random block length for b. Let Lq, Lo, ... be a sequence of geomet-
rically distributed i.i.d. random variables, so that the probability of the event {L;, = n} is
(1-— p)”_1 for n = 1,2,... and p is a fixed number in [0, 1]. Denote the collection of blocks
by {Br,, Br,, ...}. The indicator L, denotes the length of the relevant block. Let I, I5, ... be
a sequence of i.i.d. variables which have discrete uniform distributions on {1,...,7}. Then,
a SBB resample for Y; is obtained by random draws with replacement from the collection
of blocks, Y;* := (By, Br,,...,) until ¢ = T. Repeating this procedure, we construct B
independent bootstrap samples and bootstrap statistics, denoted Y} and Sjp, [ =1,..., B,
respectively, and collect Sp, = ( e ...,SET)/. Approximate Fs,.(s) by the bootstrap

distribution function FSE o(8) = % Zlel I(Spr <s).

Remark 9. We refer the reader to Kiinsch (1989) and Politis and Romano (1994) for the
precise regularity conditions needed for the application of the MBB and SBB, respectively.
Depending on the choice of the bootstrap method and the statistic of interest, additional
restrictions on u; over and above those imposed by Assumption 1 may be necessary. For
example, for the case of the SBB Politis and Romano (1994) show that u,; needs to be strictly
stationary and a-mixing with coefficients of size —3(6 + 0)/d for § > 0 when the statistic of

interest is the mean; see Theorems 1 and 2 and Remark 4 in Politis and Romano (1994). {

Remark 10. Kim and Nordman (2011) (henceforth KN) suggest a direct application of the
usual block bootstraps in long memory series in order to approximate the distribution of the
mean. They consider the fractional noise model; hence in (1) they let u; be i.i.d. variables
with zero mean and finite variance and allow |d| < % but not d > % They then apply M BB
in the usual way. Disregarding the presence of long memory, they split the sample into blocks
and randomly resample from these blocks. In order for the resample to successfully mimic
the true mean, they “inflate” the statistic multiplying it by b%. This methodology, however,
cannot be generalised to other statistics and cannot be applied, in general, in nonstationary

long memory series; see KN for further details. &

2.2.3 Spectral-Density-Driven Bootstrap

The sieve and block bootstraps procedures outlined above are both carried out in the time

domain. We also consider the spectral-density-driven bootstrap (SDDB) of Krampe, Kreiss



and Paparoditis (2018). We next provide a brief description of the algorithm. We refer the
reader to Krampe, Kreiss and Paparoditis (2018) for further technical details.

Consider the M A(oco) representation of the weakly autocorrelated process Y; in (1) with
d=0,

00
Y;g =& + g Ci€t—j,

j=1

and consider an estimator fy of the spectral density of Y;, fy; see Krampe, Kreiss and
Paparoditis (2018) for precise conditions placed on the estimator of fy. Given the statistic
of interest S = St (Y1, .., Yr) evaluated using the original data, the SDDB consists of the

following steps.
Algorithm 2.

Step 1. Compute the Fourier coefficients of log (]/t\y) given by,

27
~ 1 ~ 4
ay = %/log {fy (w)} e~k du
0
fork=0,1,2,...
Step 2. Let 52 = 2me® and compute the coefficients T, using,

k ,
~ L=\~ .
Cht1 = g (k—+1> Af+1-5C;

Jj=0

for k=0,1,2,... and starting value ¢y = 1.

2

a’

Step 3. Generate i.i.d. pseudo-innovations (7, ....,ekx) with mean 0 and variance &

Step 4. Generate the pseudo-time series (Y, ....,Y7)" obtained by,
Y, = Zﬁjs:_j, fort=1,2,...,T.
§=0

Step 5. Next, using the bootstrap data from Step 4, compute S5 = Sy (Y[, .., Y}), the bootstrap

analogue of St.

Step 6. Repeat Steps 3 to 5, to construct B independent bootstrap samples and bootstrap statis-
tics, denoted Y;'r and Sfr, | =1, ..., B, respectively, and collect S 1 := ( 1T s gyT)’.
Approzimate Fg_(s) by the bootstrap distribution function Fgy (s) = & S LI B <

S).

10



Remark 11. Algorithm 2 can be modified to use the estimated AR representation instead
of the MA representation. In the accompanying on-line supplementary appendix, we discuss
how the SDDB using the MA, as well as the AR representations, is implemented in our

experiments; for more details see Section 3.1 in Krampe, Kreiss and Paparoditis (2018).

3 The Fractional Differencing Bootstrap

In the previous section, we discussed the well-known sieve AR bootstrap, together with the

MBB, SBB and SDDB methods for the special case where Y; in (1) is a weakly autocorrelated

1
29

validly applied to the original series Y;; see Poskitt (2008). This partially solves the problem

process such that d = 0. If we restrict |d| < then the sieve AR bootstrap can be
of resampling stationary fractionally integrated processes. However, block bootstraps still
cannot be used and, furthermore, when there is increased persistence in the series, i.e. d
approaches or exceeds the % value, the finite sample performance of the sieve AR bootstrap
deteriorates; see Figure 1(iv) in Poskitt, Grose and Martin (2015). Poskitt, Grose and
Martin (2015) suggest that filtering the original series using an estimate of d can improve the
performance of the sieve AR bootstraps; see Figure 3(iv) in Poskitt, Grose and Martin (2015).

Nonetheless, the issues of (i) resampling nonstationary fractionally integrated processes (d >

1
2

processes still remain.

), and (ii) applying block bootstraps in stationary and nonstationary fractionally integrated

Remark 12. In an analogous fashion to Remark 4 in Shimotsu and Phillips (2005), we can

also define fractionally integrated processes as,

Y; — { A—T-dutv de (_007 %)7 (9)

ZZ:I Zk? Zy = A}i-_duh de [%’ %)7

with extensions for larger values of d so that Y; (or its higher-order) difference is station-
ary. This “difference-and-add-back” approach corresponds to the “unconditional fractional
model” discussed in Johansen and Nielsen (2016). Using this definition, we can partially
solve the problem of resampling nonstationary fractionally integrated processes because the
sieve AR bootstrap can be applied directly to Y; or its higher-order difference. This is also
discussed in Poskitt, Grose and Martin (2015). However, other types of bootstrap, such as
block resampling, still cannot be used, since the underlying series is not weakly autocorre-
lated. &

In a similar fashion to the “difference-and-add-back” approach, we propose a generalised
bootstrap methodology which allows bootstrap methods designed for weakly autocorrelated

series to be validly implemented for both stationary and nonstationary long memory series.
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The proposed methodology does not require any range restrictions on d provided that an

estimator of d can be found which satisfies the following assumption.

Assumption 2. Suppose that Y; is generated by (1), and let Assumption 1 hold. Then,
we assume that there exists an estimator, c;l\, of the true fractional integration parameter, d,
which satisfies the condition that Var(c?— d) =o(1).

Remark 13. Assumption 2 is rather general and does not specify any particular method
for estimating d. In our context, obvious candidates are the LW and ELW estimators
discussed in Section 2. For consistency, the bandwidth, m, used for the LW estimator must

satisfy the condition that % + 7 — 0 as T'— oo, while for LW the required rate on m is

1
that L + milogm)® 4 18T _, ) a5 T — oo, for any v > 0. For ELW the range of permissible

T mY

values in the optimisation in (3) is such that dy — dy < %, although note that this does not

restrict the value of d itself. The full set of required conditions for consistency are given
in Assumptions Al to A4 of Robinson (1995) for the LW estimator and in Assumptions 1
to 5 of Shimotsu and Phillips (2005) for the ELW estimator. Under the above conditions,
Assumption 2 holds for both LW and ELW estimators of d, although in the case of LW it

is important to note that this estimator is consistent for d < 1 alone. &

The Fractional Differencing bootstrap procedure (FDB) we propose in this paper is now
detailed in Algorithm 3.

Algorithm 3.
Step 1. Given the data Yy, t = 1,...,T, calculate the statistic of interest St = St (Y1, .., Yr).
Step 2. Obtain an estimate, c/i\, of the long memory parameter, d, satisfying Assumption 2.

Step 3. [Differencing] Filter Y; using the fractional differencing operator, Afl;, to obtain,
/?It = Ain

Step 4. [Resampling] Apply any asymptotically valid bootstrap method for weakly autocorrelated

series to obtain a resample from uy, denoted by uy .

Step 5. [Cumulation] Apply the fractional cumulating operator, A;E, to u; and obtain the cor-

responding fractionally integrated resampled data,
Y= AT

Step 6. Calculate S5 = Sr (Y], .., Y}) which is the bootstrap analogue of St.

12



Step 7. Repeat Steps 4 to 6, to construct B independent bootstrap samples and bootstrap statis-
tics, denoted Y;'r and Si, 1 =1, ..., B, respectively, and collect S 1 1= ( LT s E,T)/'
Approzimate Fs,(s) by the bootstrap distribution function Fs: (s) = % P I(Spr <

S).

The idea behind the proposed bootstrap methodology detailed in Algorithm 3 is that,
under Assumptions 1 and 2, in Step 4 we resample from the fractionally differenced series,
U, which, given the consistency of cz, is an approximately weakly dependent, (0), series,
rather than from the levels data Y;. We then obtain the corresponding fractionally integrated
resample in Step 5. This allows the use of bootstrap methods in Step 4 originally designed to
be applied to weakly autocorrelated series. In particular, we can apply any of the sieve AR
bootstrap, MBB, SBB, SDDB approaches in Step 4 of Algorithm 3. In doing so we follow the
steps for those resampling methods exactly as described in the algorithms of Section 2. These
bootstrap methods are valid, provided that the regularity conditions stated in the original
papers, and discussed in Section 2, hold for the I(0) series, u, in (1). The approach detailed
in Algorithm 3 can therefore accommodate both stationary and nonstationary fractionally
integrated processes, although it should be noted that for the nonstationary case, d > 1/2 in
(1), the class of statistics which can be validly bootstrapped using Algorithm 3 is reduced, as
discussed below. It is important to recognise that our aim in this paper is to provide a general
framework for resampling long memory time series which retains the large sample properties
that would be obtained using the same resampling method applied directly to a weakly
autocorrelated series with the necessary regularity conditions imposed on the underlying
shocks, u;.

As mentioned in the Introduction, this paper is not the first to discuss the use of the
“differencing” technique based on an estimate of the fractional integration parameter em-
ployed in Algorithm 3. Kapetanios (2010), Kapetanios and Papailias (2011), Papailias and
Dias (2015) and Poskitt, Grose and Martin (2015) also apply the same method in time series
analysis and forecasting. Algorithm 3 extends the work in Kapetanios and Papailias (2011)
and shares some similarities with Poskitt, Grose and Martin (2015) who investigate the case
of the sieve AR bootstrap. However, we further generalise Poskitt, Grose and Martin (2015)
in two aspects: (i) we allow the application of any valid bootstrap for weakly autocorrelated
series, including block bootstraps and bootstraps in the frequency domain, and (ii) we do
not restrict the value of the long memory parameter, accommodating both stationary and
nonstationary series.

A natural question arises about the nature of the statistics under consideration. In what

follows, we can apply our approach to statistics which satisfy the following assumption.

Assumption 3. Suppose that Y; is generated by (1) and let Assumption 2 hold. Define
Yo = (Yi,...Y7) and let the corresponding bootstrap sample, obtained according to Al-
gorithm 3, be denoted by Y. = (Yl*,...,YT*)/. Furthermore, let N be a compact subset
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of RT. Then for all Yy, Y3 € N there exists a family of Borel-measurable functions
B; : RT x RT — [0, 00), satisfying:

hm sup T~ ZE “[B:(Yr,Y7) ]] 00,

t=1

for which,
T
|1S7 — S3||? < T-(max{0d-3}) Z (Y7, Y75) Y - Y/ (10)

where E[] and E* [] denote the expectations with respect to Py, and Py, respectively, St
15 the statistic calculated on the original data and Si. the bootstrap statistic calculated using
the bootstrap data obtained using d for both differencing and cumulation (Steps 3 and 5 in
Algorithm 3).

Remark 14. For d < % Assumption 3 coincides with Assumption 4 of Poskitt (2008). In
this case an upper bound of T-' 37 B, (Y1, Y35)?|Y; — Y;*| in (10) suffices. Where Y} is
nonstationary, this upper bound must be strengthened because the term |Y; — Y;*| needs to
be scaled by T~ max{0.d=3} for it to be bounded when d > % Therefore, for 0 < d < %,
2} = 1 and so the upper bound in (10) coincides with that given in Assumption
4 of Poskitt (2008). Where d > £, the scale factor applied to the right member of (10) is,

therefore, strengthened from T to 724, o

T- max{0,d—

Remark 15. As discussed in Remark 14, Assumption 3 coincides with Assumption 4 of
1

Poskitt (2008) when d < 3. In this case Assumption 3 therefore places exactly the same
restrictions on the class of statistics which may be considered as are imposed by Assumption
4 of Poskitt (2008). Lemma 1 of Poskitt (2008) therefore also applies here and characterises
the class of statistics allowed. As discussed in Poskitt (2008), these include the sample mean,
sample autocorrelations, sample autocovariances and sample partial autocorrelations. The
expansions needed to establish the normality of the semiparametric LW and E LW estimates
of d discussed in Section 2.1, indicate that Lemma 1 of Poskitt (2008) also holds for these
statistics, as the estimators are differentiable functions of sums of functions of observed
data with continuous partial derivatives; see Equation (4.2) in Robinson (1995) for the LW
estimator and Equation (54) in Shimotsu and Phillips (2005) for the ELW estimator. The
conditions imposed by Assumption 3 where d > % are considerably stronger, however, and
no longer allow for statistics such as the sample variance and sample autocorrelations, but
do still allow for the LW and ELW estimates although these would of course need to be
such that they satisfy the regularity conditions ensuring consistency, discussed in Section 2.1.
Such restrictions on the class of statistics allowed is not unique to the methods we discuss in
this paper, and similar restrictions apply in general in the fractionally integrated literature

on the class of statistics upon which asymptotically valid inference can be conducted when
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d> % One commonly suggested solution in the literature where it is thought that d > %,
is first to difference the data and then conduct inference on the resulting differenced series.
The same approach could be taken here and, provided d < %, only Assumption 4 of Poskitt
(2008) would then need to be satisfied in the differenced series. &

Remark 16. Assumption 3 requires that Y7 is obtained using Algorithm 3. It is im-
portant to recognise that Step 4 of Algorithm 3 requires that a bootstrap method which
is asymptotically valid for use with weakly autocorrelated series is employed. Any of the
methods outlined in Section 2.2 can therefore be used, provided the regularity conditions
referred to there are met. Specific statements regarding asymptotic behaviour will depend
on the bootstrap method being applied to the underlying weakly autocorrelated series and

the particular statistic of interest. &

We now state our main theorem concerning the large sample validity of the FDB method
described in Algorithm 3. A general proof of the result, which covers any of the bootstrap
resampling schemes discussed in Section 2.2 and statistics that satisfy Assumption 3, is

provided in the accompanying on-line supplementary appendix.

Theorem 1. Let n(Fx, Fy) denote the Mallows metric for t{Le distance between two prob-
ability distributions Fx and Fy, defined as inf { E || X — Y|]2}§, where the infimum is taken
over all square integrable random variables X and Y in R with marginal distributions F'x
and Fy . Consider any statistic St which satisfies Assumption 8 and which has a continuous

limiting distribution. Then, with probability one,
n (Fs;,FST) — 0 asT — oo,

where Fg,. is the distribution function of St under Py, . vy and Fs: s the distribution of

St under P{yl*,m,y;}.

Remark 17. For a discussion regarding the properties of n (Fx, Fy) see Bickel and Freed-
man (1981) and Remark 1 of Poskitt (2008). As in Poskitt (2008), from the triangular in-
equality we have n <F5E o FST) <n (FSE o FS;> +n (Fs}, FST). Because n (FSE o FS%> —
0 a.s. (Lemma 8.4 in Bickel and Freedman (1981)), it follows from Theorem 1 that n (Fsg - FST> —

0 a.s. This validates the use of bootstrap in the scenarios considered in this paper. &

Remark 18. Theorem 1 relies on the assumption that the limiting distribution of the
statistic of interest, S, is continuous. This rules out degenerate cases, an obvious example
being where the statistic of interest was inappropriately scaled in the sample size, T', such
that St was of 0,(1); the result in Theorem 1 would not be informative in such cases. Where

d < %, the sample mean, sample autocorrelations, and the semiparametric LW and ELW
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estimates of d all satisfy the conditions imposed by Theorem 1, given that they possess
asymptotic normal distributions; see Theorem 8 in Hosking (1996) for the normality of
the sample mean, Theorem 2 in Robinson (1995) for the normality of the LW estimate
and Theorem 2.2 in Shimotsu and Phillips (2005) for the normality of the ELW estimate.
Where d > %, statistics such as the sample mean and sample autocorrelations do not satisfy
the requirements of Theorem 1; see again the discussion in Remark 15. However, the LW
estimate is still covered by Theorem 1 for d < 1 (excluding d = %), as is the ELWW estimate

for any value of d; see again the discussion in Section 2.1. O

Remark 19. In the bootstrap literature a conventional way to establish bootstrap consis-

tency for weakly autocorrelated processes is to show that the following result holds:
sup | P+ (5™ > ) — Po (S > )| = 0p(1). (11)

The use of Mallows’ distance in our context, as is also done in Poskitt (2008), can be justified
by Lemma 8.3 (b) of Bickel and Freedman (1981) which states that Mallows convergence is
equivalent to convergence in distribution and the existence of second moments for the statistic
of interest. Since convergence in distribution in the original and bootstrap probability space
implies (11) by Pdlya’s theorem, we obtain a link between Mallows convergence and the

general I(0) bootstrap literature. O

4 Simulations

4.1 Implementation

As discussed in Remark 3, the model in (1) assumes that the unconditional mean of Y; is
known to be zero. However, in practice it is more reasonable to take the unconditional mean
to be unknown and model Y; according to (4). The standard bootstrap algorithms discussed
in Section 2 and the FDB Algorithm 3 of Section 3 should therefore be modified accordingly
to allow for the estimation of y. The modified algorithm, Algorithm 4, which we use in the
simulation experiments reported here, is detailed in the accompanying on-line supplementary
appendix. All experiments are based on B = 199 bootstrap draws and R = 1000 Monte

Carlo repetitions.? We report results for two statistics based on the mean and the fractional

2All simulations were performed in R using the rnorm() random number generator, along with the
arima.sim() and ar.ols() routines. The fractionally integrated series were generated using the fracdiff() rou-
tine of Jensen and Nielsen (2014), available from http://www.econ.queensu.ca/faculty/mon/software/.
For computing the MBB procedures the tsbootstrap() routine from the tseries R package was used. The
b.star() routine from the np R package was used to compute the optimal data-dependent block length of Pat-
ton, Politis and White (2009). Additional code from Krampe, Kreiss and Paparoditis (2018) available from
https://www.tu-braunschweig.de/Medien-DB/stochastik/code-snippet_sddb.txt and Shimotsu and
Phillips (2005) available from http://shimotsu.web.fc2.com/Site/Matlab_Codes.html was also used.
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differencing parameter of Y;. Our aim is to evaluate the finite sample accuracy of the FDB
estimate of the distribution of the statistic under consideration and to what extent, if any, it
improves upon the finite sample properties of the standard bootstrap methods from Section

2. The statistics we consider are given by,
Sk = T2~ (Y — p) and S := me <c/1\— d> : (12)
where Y denotes the sample mean of ;. Analogously, their bootstrap counterparts are,
SE = T4 <7* — 7) and S&Z* ‘= m? (c?* — c/i\) (13)

where Y and d* denote the sample mean and estimated long memory parameter (the latter
using the same estimator as for the original data) calculated from the bootstrap data. We
report empirical 90% coverage rates using the relevant bootstrap quantiles for each statistic,
45 05 and ¢ o5, where g% denotes the 100a% bootstrap empirical quantile.

Our simulation DGP for Y; is the ARFIMA (1,d,1) model given by V; = u + A%,
t =1,2,...,T, setting u = 0 in the DGP without loss of generality. Results are reported
for samples of size T" = 120 and T" = 500. As mentioned above, we account for u in
the estimation of d, applying LW and ELW to the demeaned series Y; — ji(d), with
i (d) as defined in (5). The bandwidth m used in connection with these estimators was
chosen according to the popular rule-of-thumb m := |T%/2|. Results are reported for
d € {0,0.15,0.25,0.35,0.45,0.49,0.75}, with d = 0.75 omitted in the case of the results
for bootstrapping the mean because the sample mean does not provide a consistent estimate
of w in this case. The disturbances u; were generated according to the ARM A(1, 1) process,
up = Quy_1 +e4+0e,1 withe ~ NIID(0,1) and u; = ¢, = 0, t < 0. Results are reported for
¢ € {0,0.8,—0.8} and ¢ € {0,0.8,—0.8}. By including: (i) a large positive value of ¢, and
(ii) a large negative value of 6, in the range of simulation DGPs considered we have included
cases where: (i) there are two separate sources of significant persistence in the time series
arising through both positive fractional integration, d > 0, and relatively high persistence
in the underlying weakly autocorrelated series, and (ii) we have a positively fractionally
integrated process driven by large negative moving average shocks. Both of these scenarios
are known to be extremely challenging from the perspective of obtaining reliable inference
in finite samples, for both bootstrap and asymptotic-based methods.

The bootstrap procedures we include are:

e The M BB and SBB methods applied directly to the original series using the following
block length choices: by := TY5, by := TY* and by := T3, as suggested by Hall,
Horowitz and Jing (1995) Additionally, we also use a data-dependent block length,
denoted by b*, of the form given in Patton, Politis and White (2009). We will use b*
for both SBB and M BB.
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e The KN versions of the M BB and S BB methods applied directly to the original series
using the following block length choices: by := $TV2, by := T'/? and b := 2T"/2, as
suggested by KN.

e The SDDB method using both the AR and MA representations.

e The sieve AR bootstrap method with two choices for h: (i) using AIC with a maximum
lag order of H := L(log T)QJ, and (ii) h = H which therefore results in a fixed-length

long autoregressive order.

e The FDB versions of the M BB, SBB, SDDB using either the AR or MA represen-

tation, and sieve AR bootstrap methods.

Algorithm 5 in the accompanying on-line supplementary appendix provides technical
details concerning the simulation design and the calculation of coverage rates. We implement
Algorithms 4 and 5 using the LW and ELW estimates of d in all experiments. In the
interests of space, we present results relating only to the E LW estimate in Tables 1 to 10.
The results relating to LW are qualitatively similar and are reported in the accompanying

on-line supplementary appendix.?

4.2 Empirical Coverage Rates for S

First, we consider the ARFIMA(0,d,0) case where ¢ = 6§ = 0. Here, we observe from the
results in the top panel of Table 1 that the application of various bootstraps on levels data,
including the sieve AR bootstrap which is valid for long memory series, does not in general
yield empirical coverage rates close to the nominal 0.90 level. For d = 0 and T" = 120 using
ELW we see that SDD B4 has the highest coverage rate, among the bootstrap methods
considered, of 0.784, while Sievey has the lowest coverage rate of 0.599. The performance
of each of the bootstrap methods deteriorates further for d > 0. The KN modification to the
block bootstraps can be seen to yield improvements to empirical coverage rates. Looking at
the middle panel of Table 1, we see that the b5 block choice returns coverage rates for both
MBB and SBB in the range of 0.832-0.874 in the smaller sample size T" = 120, with further
improvements for the larger sample size, T = 500.

The results in the bottom panel of Table 1 relate to our proposed FDB methods. Improve-
ments in empirical coverage rates are seen using the FDB method for all of the bootstrap
methods considered across all DGPs. For T' = 120, we observe that the best coverage rates
for the M BB using the FDB, taken across the range of values of d considered, is M BB} PP

31t is easily verified that the statistics reported in our simulations satisfy the regularity conditions imposed
by Assumption 3; see the discussion in Remark 15. With the exception of LW for d = 0.75, these statistics
also all have continuous limiting distributions as required by Theorem 1 across the DGPs we consider; see
the discussion in Remark 18. We have nonetheless chosen to retain LW for d = 0.75 in the full set of results
reported in the supplementary appendix for reasons of comparison for the interested reader.
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which delivers coverage rates in the range of 0.823-0.870. Compared to the best performing
M BB applied to the levels data, M BBy, we see that there is therefore a very significant
improvement in the lower bound of the range of coverage rates from 0.460 to 0.860 displayed
by the latter across d. The best performing SBB using the FDB is SBB[P” which displays
empirical coverage rates in the range of 0.805-0.859. Comparing it to the best SBB method
applied directly to the levels data, SB By, we see that this constitutes an increase of 0.345 in
the lower bound seen for the range of coverage rates of the latter which is 0.458-0.783. More-
over, the FDB method also improves the coverage rates of both SDD B4 and SDDByg.
The range of empirical coverage rates when SDD By, 4 and SDDB 4 are applied directly to
levels data is 0.473-0.783 and 0.527-0.784, respectively, across d. The corresponding FDB
versions provide improved coverage rates in the range of 0.827-0.869 and 0.825-0.872 for
SDDBIEB and SDDBYEB | respectively. The FDB method also improves on the coverage
rate of the sieve bootstrap methods. For example, the empirical coverage rates for Sievearc
and Sievell BB taken across all of the reported cases for T' = 120, lie in the range 0.397-0.682
and 0.644-0.847, respectively.

Similar improvements are also seen to be delivered by the FDB method for the larger
sample size, T' = 500. In particular, the best performing M BB, M B By, has coverage rates
in the range of 0.384-0.800 and the best SBB, SBB«, has coverage rates in the range of
0.389-0.800. The corresponding FDB variants, M BBEPB and SBBEPP | have empirical
coverage rates in the range of 0.825-0.876 and 0.819-0.875, respectively. Comparing M B By
and SBBy- to the best performing FDB variants, which are MBB}'P? and SBB[P?, we
see that there are further improvements in performance, with both FDBs yielding coverage
rates in the range 0.832-0.877 across d. SDDBLEE and SDDBLE? also improve on the
standard SDDBy;4 and SDD B 4 increasing the empirical coverage rates from the range of
0.466—-0.803 and 0.515-0.799, respectively, to 0.833—0.885 and 0.836—0.885, respectively. The
Stevearc bootstrap which has coverage rates in the range of 0.415-0.782 is also improved by
the FDB. In particular, Sievel2F offers coverage rates in the range of 0.813-0.844.

Consider next the results for the persistent ARFIM A(1,d,0) case where ¢ = 0.8 reported
in Table 2. In relation to the results in Table 1, empirical coverage rates are significantly
decreased for all approaches with none delivering close to the nominal 0.90 level. This is
not unexpected as u; is approaching the degree of persistence shown by a unit root process
which creates two sources of difficulty: (i) the semiparametric estimation of d deteriorates,
which will affect all of the bootstrap methods, and (ii) the underlying (approximately) short
memory process displays a strong pattern of persistence (recall that, other than the sieve, the
bootstrap resampling methods are valid for weak dependence alone). The KN modification
seems now to work only for MBB,ng with d = 0.25 and d = 0.35 and for the larger
sample size considered. These results are also not particularly robust; we see that when d
is small, there is a downward bias in the empirical coverage rates, while for larger values of

d the coverage rates display an upward bias. Applying the FDB certainly improves on the
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standard bootstrap methods, but still fails to deliver empirical coverage rates close to the
nominal level. For example, for T' = 500, the best performing M BB is M B By~ with coverage
rates in the range of 0.173-0.438 across all d, while the corresponding FDB, M BBLPE | has
improved coverage rates in the range of 0.564-0.590. Similarly, SB DB is improved using
SBBEPE with coverage rates improving from 0.186-0.436 to 0.550-0.586. SDDBYEE and
SDDBYEB also improve on the standard SDD By 4 and SDD B g methods with empirical
coverage rates improving from 0.219-0.464 and 0.363-0.516, respectively, to 0.595-0.631
and 0.586-0.620 respectively. Sievearc is also improved by Sieve[RP with coverage rates
increasing from the range 0.261-0.443 to 0.607-0.645 across all d.

Next, consider the ARFIMA(1,d,0) case with ¢ = —0.8. The results in Table 3 show
that there are KN bootstrap variants which yield satisfactory results across all choices of d,
even for T" = 120. However, it is important to note that, for this DGP, the choice of the block
length results in bootstraps with an upward bias in their coverage rates, as seen for example
with M BB,{EN for d > 0.45. The FDB variants also provide accurate coverage rates across
most cases. As before, we can still find block bootstrap variants, e.g., M BBIfI DB which
display an upward bias as with the KN variants. However it is important to note the impact
of the block length. In particular, we see that M BB;U1 DB has coverage rates in the range of
0.969-0.987, but M BB}PE shows coverage rates closer to the nominal level in the range of
0.858-0.884, across all d. For T' = 500, the best performing M BB, across all d, is M BB
when directly applied to the original levels data with coverage rates in the range of 0.417—
0.842. The best performing FDB variant is M BB[P” which has improved coverage rates
in the range of 0.902-0.94 across all d. SDDBYPP and SDDB4EP improve the standard
SDDBy; s and SDD B4R increasing their coverage rates from 0.452-0.822 and 0.544-0.818,
respectively, to 0.805-0.865 and 0.805-0.863, respectively. Sievesrc is also improved by

SieveI BB with coverage rates increasing from the range of 0.446-0.787 to 0.839-0.864 across

all d.

Consider next the ARFIMA(0,d, 1) case. For § = 0.8, the results in Table 4 show that
the KN block bootstraps using b5 and bg yield accurate coverage rates across all DGPs for
both sample sizes. For FDB variants, we see that the larger sample size generally improves
the coverage rates, which now are in the range of 0.764-0.888 across all d. For example, for
T =500, SDDBa, SDDB s and Sievez;c have coverage rates in the range of 0.495-0.804,
0.554-0.808 and 0.510-0.776, respectively. FDB improves the coverage rates of these to the
ranges 0.812—0.888, 0.820-0.886 and 0.810-0.843, respectively. For = —0.8, the results in
Table 5 highlight a tendency to upward bias across all the bootstrap methods considered.
Moreover, for 7" = 500 almost all of the block bootstrap methods exceed the nominal 0.90
coverage rate. This is the case even for d = 0, indicating that the block bootstraps do
not accurately capture the dynamics of the series. SDDBLHP and SDDBLEP improve on
the coverage rates of the standard SDDBy;4 and SDDB g increasing these from 0.665—
0.906 and 0.675-0.938, respectively, to 0.900-0.927 and 0.899-0.930, respectively. Sievey;o
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is also improved by Sieve /% with coverage rates improving from the range 0.741-0.960 to

0.895-0.967 across all d.

4.3 Coverage Rates for 54

Consider first the results for the ARFIMA(0,d,0) case reported in Table 6. Here we see,
as expected, that the direct application of bootstraps to the levels data does not yield
accurate coverage rates. This holds across all bootstrap variants for 7" = 120, including
the sieve AR bootstrap which, it must be recalled, is asymptotically valid for stationary
long memory series. To illustrate, M BBy, has coverage rates in the range 0.571-0.655
and SBBy in the range 0.591-0.655 across all d. The FDB is seen to improve these with
MBBEPE and SBBEPP having empirical coverage rates in the ranges 0.806-0.875 and
0.816-0.874, respectively. Moreover, the best FDB variants of the M BB and SBB meth-
ods are MBB['PP and SBB["”” which display coverage rates in the range 0.829-0.894
and 0.815-0.884, respectively. SDDBy 4, SDDB,g and Sievearc have coverage rates in
the ranges 0.581-0.863, 0.577-0.772 and 0.528-0.613, respectively. The corresponding FDB
variants improve these with SDDBIEP SDDBIRE and Sieve, PP having empirical cov-
erage rates in the ranges 0.819-0.886, 0.819-0.887 and 0.714-0.786, respectively. For the
larger sample, T = 500, we see that SDDBy;4 and SDD B g return coverage rates closer to
the nominal value for d € {0.35,0.45,0.49,0.75}. Also, Sievey has good coverage rates for
d € {0.15,0.25,0.35,0.45,0.49}. Moreover, the FDB approach improves the coverage rates
of SDDBya, SDDByg and Sievey from the range 0.526-0.892, 0.523-0.861, 0.731-0.894
to 0.839-0.902, 0.837-0.904 and 0.797-0.839, respectively.

Table 7 reports the coverage rates for the persistent ARFIMA(1,d,0) case with ¢ = 0.8.
Here we see that none of the bootstrap variants applied directly to the original series returns
coverage rates close to the nominal 0.90 value. In particular, the largest coverage rate we
have across both sample sizes and all methods is 0.736. FDB improves most bootstraps, most
evidently so for the larger sample size. For T' = 500, M BB, and SBDB,, have very poor
empirical coverage rates in the range of 0.003-0.361 and 0.012-0.389, respectively, across all
d. The FDB method very significantly improves these rates with M BB/ P? and SBB]”"
having coverage rates in the range 0.652-0.720 and 0.635-0.717, respectively. Moreover,
SDDBya, SDDB g and Sieve ¢ have empirical coverage rates in the range 0.455-0.642,
0.427-0.648 and 0.435-0.572, respectively, across all d, with the FDB improving these to
0.635-0.725, 0.653-0.723 and 0.598-0.678, respectively.

Tables 8 and 9 present the results for ARFIMA(1,d,0) with ¢ = —0.8 and ARFIM A(0,d, 1),
with 6 = 0.8, respectively. In both tables we see that bootstrapping the original series di-
rectly yields unsatisfactory results for most methods. Particularly in Table 8, we see that for
ARFIMA(1,d,0) with ¢ = —0.8, only Sievey for T'= 500 has coverage rates in the range
of 0.765-0.851, which are relatively close to the nominal 0.90 value, particularly for d > 0.35.
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For ARFIMA(0,d, 1), with # = 0.8, in Table 9, we see that Sievey provides coverage rates
in the range 0.504-0.904 using the larger sample.

The FDB approach improves coverage rates for all of the bootstraps. Using the FDB, we
see in Table 8 that for T' = 120, the best coverage rates for M BB are given by M BB} "P
and are in the range 0.846-0.906 and for SBB are given by SBBlf;DB and are in the range
0.858-0.898. For T' = 500 the best M BB and SBB are MBB{;DB and SBB{IDB with
coverage rates in the range 0.881-0.900 and 0.862-0.888, respectively, across d.

Similarly, in Table 9 we see that for T = 120, M BB[P? has coverage rates in the range
of 0.801-0.899. In the larger sample, these rates change to 0.850-0.904. We also see that
the FFDB improves the other bootstrap variants as well. In particular, we see that in the
smaller sample of T = 120, application of SDD B4, SDDB g and Sieve 4;¢ directly to the
original levels data yield coverage rates in the range 0.595-0.836, 0.594-0.810, 0.604-0.707,
respectively, across all d. FDB improves these coverage rates to 0.775-0.861, 0.772-0.867
and 0.673-0.756 respectively. In the larger sample, SDD B4, SDDB sr and Sieve ;¢ have
coverage rates in the range of 0.559-0.886, 0.495-0.836 and 0.678-0.860, respectively. FDB
improves these rates to 0.831-0.877, 0.830-0.876 and 0.779-0.812, respectively.

Finally, Table 10 presents the results for ARFIMA(0,d, 1), with § = —0.8. As for the
results in Table 7, we again see that most of the bootstrap methods do not return accurate
coverage rates when they are applied directly to the original levels data. The FDB method
is seen to improve the empirical coverage rates of all bootstraps by more than 30% (on
average across all DGPs). For T = 500, we note from Table 10 that the application of
MBBy-, SBBy-, SDDB)j;4 and Stevey;c directly to original levels data delivers coverage
rates in the range 0.503-0.789, 0.518-0.810, 0.524-0.739 and 0.387-0.599, respectively, across
all d. MBB}EPE SBBEPBE SDDBIDP and SieveiBP improve the coverage rate range to

0.701-0.743, 0.685-0.735, 0.688-0.714, 0.686-0.721 and 0.659-0.729, respectively.

We conclude this section by providing some recommendations based on our simulation
results. As discussed above, we deliberately included in our study a number of DGPs known
to be extremely challenging from the perspective of obtaining reliable inference in finite sam-
ples. Our simulation results indicate that the FDB method yields significant improvements
in empirical bootstrap coverage rates (compared with the corresponding standard bootstrap
methods applied to the levels of the data) in these cases while also performing very well
for less challenging DGPs. Overall, we would recommend the FDB method paired with the
SDDB (MA or AR) bootstrap, SINCE this appears to deliver the most reliable performance

among the methods considered.
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5 Conclusions

In this paper we have discussed a fractional differencing-based bootstrap methodology. The
idea underlying this approach is simple, intuitive and applicable to both stationary and
nonstationary fractionally integrated series. In the first step one estimates the fractional
integration parameter using any consistent estimation method. One then obtains an ap-
proximately short memory series by applying the fractional differencing operator based on
this estimate to the data. One then implements any valid block or residual-based resampling
method on this fractionally differenced series. One next applies the fractional cumulating op-
erator, based again on the estimate for the fractional integration parameter from the original
data, to form the fractionally integrated bootstrap counterpart data. The material in this
paper extends the original work on the fractional differencing bootstrap in Kapetanios and
Papailias (2011) and shares some similarities with Poskitt, Grose and Martin (2015), who
investigate the case of the sieve bootstrap for stationary fractionally integrated processes.
Our contribution to the literature has been to provide a more general framework which
can be applied to both stationary and nonstationary fractionally integrated processes, and to
show that this can be used with any valid bootstrap resampling method. The finite sample
performance of the fractional differencing bootstrap was demonstrated in a series of simula-
tion experiments. Two statistics were considered: the first based on the unconditional mean
of the fractionally integrated process, and the second based on the fractional exponent. The
simulation evidence suggested that the proposed methodology can offer significant improve-
ments in empirical bootstrap coverage rates for both of these statistics to the corresponding

standard bootstrap methods applied to the levels of the data.
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Tables

ARFIMA(0,d,0), Sk
ELW
T = 120 T = 500
Bootstrap \ d 45915 0.25 0.35 045 049| 0 0.15 0.25 0.35 0.45 0.49
MBB,, 0.779 0.676 0.555 0.482 0.377 0.361 | 0.801 0.609 0.468 0.331 0.255 0.191
MBB,, 0.778 0.673 0.552 0.482 0.370 0.366 | 0.804 0.635 0.508 0.360 0.291 0.235
MBB,, 0.779 0.696 0.589 0.519 0.413 0.414 | 0.804 0.658 0.535 0.396 0.325 0.269
M BB,- 0.781 0.676 0.571 0.533 0.460 0.466 | 0.800 0.643 0.568 0.479 0.448 0.389
SBBy, 0.776 0.685 0.562 0.490 0.390 0.391 | 0.803 0.625 0.489 0.353 0.276 0.221
SBB,, 0.783 0.684 0.567 0.501 0.398 0.390 | 0.806 0.646 0.523 0.390 0.324 0.276
SBB,, 0.782 0.696 0.590 0.523 0.428 0.426 | 0.807 0.667 0.547 0.431 0.371 0.308
SBBy- 0.783 0.671 0.579 0.537 0.460 0.458 | 0.802 0.645 0.586 0.490 0.451 0.399
SDDBa 0.783 0.659 0.568 0.527 0.473 0.481 | 0.803 0.620 0.566 0.512 0.501 0.466
SDDBagr 0.784 0.650 0.569 0.552 0.527 0.544 | 0.799 0.617 0.567 0.515 0.547 0.547
Sievearc 0.682 0.588 0.520 0.462 0.397 0.414 | 0.782 0.637 0.567 0.474 0.451 0.415
Sievey 0.599 0.548 0.502 0.457 0.428 0.416 | 0.756 0.679 0.624 0.556 0.552 0.557
MBBEN 0.821 0.785 0.731 0.706 0.649 0.657 | 0.847 0.794 0.744 0.696 0.713 0.695
MBBEN 0.842 0.853 0.832 0.867 0.855 0.874 | 0.849 0.860 0.863 0.875 0.921 0.918
MBBEN 0.827 0.880 0.889 0.946 0.965 0.975 | 0.841 0.906 0.950 0.973 0.992 0.998
SBBJEN 0.823 0.786 0.733 0.707 0.673 0.675 | 0.836 0.804 0.772 0.739 0.759 0.757
SBBJEN 0.836 0.838 0.834 0.851 0.852 0.867 | 0.856 0.876 0.882 0.901 0.934 0.939
SBBJN 0.809 0.854 0.883 0.929 0.947 0.960 | 0.841 0.912 0.944 0.970 0.990 0.997
MBBFPE 0.870 0.870 0.860 0.860 0.826 0.823 | 0.877 0.877 0.855 0.843 0.857 0.832
MBBfPE 0.864 0.868 0.851 0.850 0.821 0.824 | 0.859 0.878 0.853 0.841 0.841 0.832
MBB{PE 0.853 0.858 0.839 0.849 0.812 0.816 | 0.867 0.872 0.848 0.820 0.828 0.824
MBB/}.PB 0.856 0.859 0.847 0.844 0.801 0.817 | 0.868 0.876 0.847 0.834 0.840 0.825
SBB[PB 0.861 0.863 0.841 0.847 0.817 0.816 | 0.861 0.874 0.859 0.845 0.846 0.832
SBB{PE 0.853 0.862 0.855 0.851 0.811 0.818 | 0.865 0.875 0.850 0.825 0.835 0.823
SBB['PB 0.843 0.850 0.837 0.840 0.797 0.794 | 0.857 0.865 0.837 0.818 0.824 0.815
SBBEDPE 0.859 0.855 0.841 0.834 0.797 0.805 | 0.867 0.875 0.844 0.827 0.831 0.819
SDDBIPE 0.861 0.869 0.858 0.852 0.827 0.827 | 0.876 0.885 0.862 0.835 0.846 0.833
SDDBEDE 0.866 0.872 0.860 0.848 0.828 0.825 | 0.879 0.885 0.866 0.843 0.850 0.836
Sievef DB 0.644 0.733 0.771 0.818 0.817 0.847 | 0.813 0.843 0.830 0.821 0.844 0.831
Sievel PP 0.505 0.602 0.647 0.686 0.730 0.769 | 0.751 0.792 0.775 0.767 0.793 0.778

Table 1: Empirical Coverage Rates for Sk using ARFIMA(0,d,0) DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(1,d,0), ¢ = 0.8, S¥
ELW
T = 120 T = 500
Bootstrap \ d 3515 0.25 0.35 0.45 049 | 0 0.5 0.25 0.35 0.45 0.49
MBB,, 0.134 0.082 0.076 0.058 0.074 0.058 | 0.312 0.200 0.152 0.110 0.094 0.076
MBB,, 0.138 0.083 0.077 0.059 0.073 0.059 | 0.351 0.235 0.189 0.142 0.106 0.097
MBB,, 0.162 0.096 0.090 0.069 0.091 0.071 | 0.390 0.267 0.218 0.165 0.127 0.117
M BB, 0.170 0.110 0.107 0.090 0.109 0.093 | 0.438 0.340 0.270 0.227 0.189 0.173
SBB,, 0.151 0.087 0.083 0.066 0.088 0.066 | 0.336 0.226 0.184 0.136 0.110 0.092
SBB,, 0.152 0.086 0.087 0.065 0.086 0.066 | 0.380 0.258 0.209 0.158 0.122 0.115
SBB,, 0.162 0.103 0.095 0.073 0.102 0.076 | 0.401 0.283 0.230 0.182 0.146 0.128
SBB;- 0.170 0.109 0.106 0.088 0.106 0.096 | 0.436 0.336 0.277 0.225 0.196 0.186
SDDBja 0.191 0.123 0.122 0.105 0.124 0.117 | 0.464 0.366 0.308 0.265 0.234 0.219
SDDBr 0.225 0.273 0.365 0.513 0.628 0.663 | 0.467 0.374 0.363 0.383 0.459 0.516
Sievearc 0.147 0.103 0.102 0.097 0.132 0.123 | 0.443 0.353 0.306 0.282 0.261 0.276
Siever 0.130 0.101 0.119 0.141 0.184 0.176 | 0.408 0.362 0.408 0.452 0.527 0.588
MBBEN 0.227 0.190 0.181 0.184 0.206 0.187 | 0.520 0.495 0.460 0.457 0.442 0.453
MBBEN 0.349 0.357 0.372 0.404 0.458 0.440 | 0.604 0.627 0.638 0.684 0.725 0.746
MBBEN 0.444 0.506 0.576 0.663 0.775 0.781 | 0.662 0.763 0.821 0.914 0.953 0.959
SBBEN 0.245 0.200 0.193 0.203 0.237 0.210 | 0.535 0.516 0.493 0.498 0.515 0.514
SBBJEN 0.331 0.321 0.366 0.404 0.464 0.435|0.592 0.650 0.650 0.714 0.758 0.780
SBBKN 0.419 0.451 0.531 0.591 0.716 0.719 | 0.635 0.742 0.811 0.900 0.935 0.949
MBBFDB 0.306 0.283 0.283 0.292 0.308 0.285 | 0.452 0.470 0.456 0.451 0.431 0.448
MBBFDB 0.308 0.278 0.282 0.293 0.310 0.283 | 0.524 0.525 0.505 0.511 0.501 0.500
MBBFDB 0.323 0.303 0.307 0.317 0.334 0.316 | 0.567 0.573 0.545 0.562 0.544 0.551
MBBFDB 0.319 0.293 0.311 0.305 0.337 0.308 | 0.590 0.587 0.568 0.575 0.564 0.579
SBBFIDB 0.309 0.285 0.284 0.293 0.316 0.296 | 0.498 0.505 0.486 0.497 0.473 0.477
SBB[DPSB 0.312 0.286 0.278 0.301 0.310 0.297 | 0.538 0.550 0.527 0.534 0.522 0.534
SBB/['PB 0.321 0.294 0.285 0.309 0.326 0.308 | 0.575 0.575 0.550 0.561 0.546 0.549
SBBEDPE 0.317 0.291 0.286 0.304 0.325 0.301 | 0.574 0.586 0.564 0.571 0.550 0.560
SDDBIPE 0.334 0.311 0.306 0.324 0.331 0.326 | 0.631 0.620 0.595 0.607 0.591 0.598
SDDBDE 0.346 0.317 0.303 0.331 0.338 0.326 | 0.620 0.615 0.597 0.612 0.586 0.606
SievefDE 0.317 0.322 0.346 0.371 0.424 0.411 | 0.612 0.623 0.607 0.645 0.624 0.635
Sievel PB 0.229 0.221 0.250 0.281 0.324 0.322 | 0.516 0.540 0.529 0.547 0.540 0.558

Table 2: Empirical Coverage Rates for Sk using ARFIMA(1,d,0), ¢ = 0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(1,d,0), ¢ = —0.8, S¥
ELW
T = 120 T = 500
Bootstrap \ d 3515 0.25 0.35 0.45 049 | 0 0.5 0.25 0.35 0.45 0.49
MBB,, 0.920 0.803 0.716 0.580 0.478 0.437 | 0.935 0.738 0.581 0.414 0.295 0.258
MBB,, 0.930 0.801 0.716 0.582 0.476 0.439 | 0.896 0.710 0.572 0.417 0.309 0.276
MBB,, 0.891 0.768 0.704 0.583 0.494 0.458 | 0.858 0.675 0.561 0.443 0.333 0.313
M BB, 0.840 0.746 0.696 0.576 0.523 0.494 | 0.842 0.696 0.601 0.504 0.442 0.417
SBB,, 0.922 0.789 0.719 0.587 0.491 0.453 | 0.928 0.728 0.587 0.420 0.313 0.278
SBB,, 0.924 0.790 0.710 0.578 0.489 0.448 | 0.892 0.706 0.581 0.438 0.339 0.309
SBB,, 0.897 0.771 0.702 0.588 0.512 0.471 | 0.878 0.699 0.594 0.472 0.371 0.347
SBB;- 0.859 0.767 0.711 0.598 0.535 0.507 | 0.858 0.720 0.616 0.522 0.459 0.430
SDDBja 0.827 0.741 0.692 0.599 0.554 0.511 | 0.822 0.702 0.620 0.513 0.452 0.454
SDDBagr 0.837 0.761 0.714 0.631 0.606 0.599 | 0.818 0.699 0.617 0.544 0.611 0.621
Sievearc 0.753 0.627 0.596 0.492 0.462 0.444 | 0.787 0.650 0.602 0.494 0.457 0.446
Sievey 0.729 0.621 0.575 0.498 0.451 0.426 | 0.789 0.692 0.636 0.574 0.532 0.536
MBBEN 0.935 0.853 0.837 0.758 0.736 0.688 | 0.895 0.835 0.791 0.765 0.721 0.730
MBBEN 0.910 0.890 0.885 0.884 0.900 0.898 | 0.888 0.886 0.888 0.901 0.918 0.928
MBBEN 0.868 0.891 0.925 0.949 0.973 0.972 | 0.872 0.930 0.956 0.976 0.993 0.998
SBBEN 0.939 0.855 0.840 0.766 0.760 0.722|0.910 0.852 0.809 0.789 0.759 0.791
SBBJEN 0.920 0.880 0.891 0.881 0.897 0.897 | 0.895 0.904 0.892 0.921 0.933 0.943
SBBKN 0.885 0.900 0.928 0.943 0.967 0.968 | 0.877 0.931 0.948 0.986 0.988 0.993
MBBFDB 0.969 0.978 0.987 0.977 0.984 0.985 | 0.991 0.995 0.983 0.992 0.991 0.983
MBBFDB 0.966 0.981 0.987 0.982 0.983 0.981 | 0.978 0.972 0.966 0.976 0.960 0.955
MBBFDB 0.948 0.962 0.966 0.955 0.961 0.948 | 0.932 0.940 0.914 0.927 0.914 0.902
MBBFDB 0.860 0.865 0.884 0.870 0.868 0.858 | 0.877 0.894 0.862 0.862 0.848 0.848
SBBFIDB 0.964 0.977 0.984 0.974 0.977 0.978 | 0.988 0.987 0.976 0.986 0.978 0.976
SBB[DPSB 0.969 0.977 0.979 0.974 0.984 0.980 | 0.970 0.965 0.954 0.967 0.953 0.951
SBB/['PB 0.951 0.957 0.965 0.955 0.959 0.954 | 0.951 0.952 0.932 0.937 0.923 0.918
SBBEDPE 0.894 0.876 0.893 0.874 0.887 0.878 | 0.883 0.895 0.862 0.861 0.846 0.849
SDDBIPE 0.845 0.817 0.852 0.817 0.839 0.812 | 0.855 0.865 0.836 0.834 0.805 0.819
SDDBDE 0.863 0.841 0.872 0.831 0.852 0.827 | 0.863 0.858 0.840 0.825 0.805 0.809
SievefDE 0.659 0.755 0.813 0.849 0.907 0.912 | 0.839 0.864 0.864 0.856 0.853 0.849
Sievel PB 0.604 0.737 0.798 0.822 0.893 0.900 | 0.793 0.837 0.835 0.836 0.826 0.844

Table 3: Empirical Coverage Rates for Sk using ARFIMA(1,d,0), ¢ = —0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0,d,1), 6 = 0.8, S%
ELW
T = 120 T = 500
Bootstrap \ d 3515 0.25 0.35 0.45 049 | 0 0.5 0.25 0.35 0.45 0.49
MBB,, 0.717 0.615 0.481 0.430 0.370 0.336 | 0.776 0.594 0.479 0.320 0.261 0.231
MBB,, 0.724 0.621 0.486 0.433 0.366 0.334 | 0.787 0.629 0.515 0.362 0.295 0.269
MBB,, 0.720 0.639 0.514 0.461 0.406 0.384 | 0.788 0.644 0.556 0.391 0.328 0.307
M BB, 0.713 0.642 0.530 0.489 0.449 0.433 | 0.786 0.662 0.603 0.488 0.449 0.423
SBB,, 0.712 0.619 0.489 0.439 0.387 0.358 | 0.777 0.609 0.497 0.338 0.278 0.251
SBB,, 0.718 0.621 0.491 0.446 0.388 0.360 | 0.790 0.632 0.546 0.387 0.321 0.306
SBB,, 0.715 0.641 0.513 0.471 0.416 0.399 | 0.795 0.659 0.575 0.427 0.361 0.340
SBB;- 0.721 0.643 0.526 0.490 0.444 0.437 | 0.786 0.672 0.611 0.488 0.453 0.432
SDDBja 0.736  0.649 0.541 0.516 0.476 0.476 | 0.804 0.660 0.626 0.538 0.513 0.495
SDDBagr 0.736  0.650 0.557 0.540 0.522 0.534 | 0.808 0.666 0.627 0.554 0.579 0.596
Sievearc 0.618 0.550 0.479 0.461 0.445 0.432 | 0.766 0.677 0.625 0.528 0.519 0.510
Sievey 0.577 0.546 0.441 0.439 0.463 0.453 | 0.761 0.685 0.652 0.613 0.636 0.667
MBBEN 0.771 0.741 0.691 0.649 0.630 0.630 | 0.837 0.818 0.777 0.731 0.729 0.723
MBBEN 0.800 0.832 0.816 0.837 0.869 0.860 | 0.848 0.882 0.875 0.891 0.924 0.922
MBBEN 0.795 0.875 0.897 0.929 0.966 0.956 | 0.850 0.923 0.947 0.975 0.996 0.995
SBBEN 0.765 0.740 0.688 0.669 0.644 0.652 | 0.844 0.825 0.794 0.764 0.777 0.772
SBBJEN 0.799 0.811 0.806 0.815 0.866 0.859 | 0.855 0.886 0.885 0.914 0.934 0.936
SBBKN 0.772 0.850 0.861 0.908 0.946 0.954 | 0.842 0.922 0.938 0.977 0.993 0.996
MBBFDB 0.804 0.829 0.799 0.798 0.784 0.775 | 0.848 0.859 0.853 0.817 0.813 0.795
MBBFDB 0.806 0.818 0.801 0.795 0.799 0.773 | 0.859 0.876 0.846 0.825 0.820 0.806
MBBFDB 0.798 0.821 0.801 0.797 0.792 0.776 | 0.862 0.872 0.850 0.828 0.829 0.808
MBBFDB 0.791 0.822 0.793 0.790 0.778 0.770 | 0.849 0.870 0.849 0.831 0.823 0.799
SBBFIDB 0.793 0.815 0.784 0.787 0.775 0.767 | 0.839 0.864 0.845 0.815 0.815 0.797
SBB[DPSB 0.797 0.800 0.789 0.783 0.779 0.764 | 0.860 0.874 0.851 0.823 0.827 0.807
SBB/['PB 0.790 0.817 0.781 0.778 0.780 0.768 | 0.858 0.869 0.847 0.819 0.819 0.797
SBBEDPE 0.779 0.806 0.770 0.770 0.756 0.755 | 0.853 0.869 0.847 0.813 0.820 0.793
SDDBIPE 0.823 0.838 0.798 0.794 0.800 0.784 | 0.870 0.888 0.873 0.840 0.835 0.812
SDDBDE 0.829 0.839 0.811 0.800 0.799 0.788 | 0.868 0.886 0.868 0.846 0.845 0.820
SievefDE 0.568 0.663 0.681 0.750 0.777 0.806 | 0.806 0.843 0.839 0.812 0.814 0.810
Sievel PB 0.509 0.594 0.606 0.666 0.723 0.742 | 0.764 0.789 0.804 0.792 0.794 0.771

Table 4: Empirical Coverage Rates for Sk using ARFIMA(0,d, 1), 6 = 0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0,d,1), 6 = —0.8, S%
ELW
T = 120 T = 500
Bootstrap \ d 3515 0.25 0.35 0.45 049 | 0 0.5 0.25 0.35 0.45 0.49
MBB,, 0.999 0.996 0.986 0.985 0.963 0.947 | 0.999 0.997 0.956 0.889 0.749 0.715
MBB,, 0.999 0.997 0.986 0.985 0.960 0.947 | 0.999 0.990 0.935 0.859 0.731 0.694
MBB,, 0.998 0.991 0.984 0.978 0.956 0.943 | 0.991 0.984 0.917 0.851 0.725 0.706
M BB, 0.979 0.972 0.966 0.964 0.958 0.948 | 0.966 0.955 0.894 0.848 0.732 0.708
SBB,, 0.998 0.997 0.986 0.985 0.963 0.952 | 0.999 0.996 0.955 0.892 0.751 0.722
SBB,, 0.999 0.997 0.988 0.986 0.959 0.954 | 0.999 0.992 0.936 0.873 0.742 0.724
SBB,, 0.998 0.995 0.984 0.979 0.958 0.946 | 0.992 0.986 0.931 0.863 0.750 0.731
SBB;- 0.995 0.987 0.973 0.974 0.961 0.949 | 0.977 0.967 0.904 0.876 0.761 0.734
SDDBja 0.987 0.972 0.963 0.962 0.951 0.936 | 0.906 0.939 0.891 0.828 0.700 0.665
SDDBagr 0.986 0.971 0.960 0.962 0.949 0.936 | 0.902 0.938 0.888 0.826 0.703 0.675
Sievearc 0.986 0.968 0.951 0.933 0.911 0.909 | 0.960 0.929 0.858 0.810 0.741 0.747
Sievey 0.985 0.964 0.950 0.928 0.910 0.919 | 0.957 0.945 0.877 0.882 0.836 0.837
MBBEN 0.999 0.997 0.995 0.995 0.989 0.984 [ 0.998 0.995 0.978 0.962 0.943 0.941
MBBEN 0.996 0.991 0.997 0.998 0.995 0.994 | 0.989 0.995 0.987 0.984 0.986 0.985
MBBEN 0.972 0.971 0.983 0.985 0.991 0.995 | 0.971 0.994 0.988 0.998 0.999 0.999
SBBEN 0.999 0.997 0.997 0.997 0.992 0.989 | 0.997 0.996 0.981 0.979 0.961 0.957
SBBJEN 0.999 0.997 0.998 0.998 0.997 0.996 | 0.995 0.996 0.990 0.995 0.991 0.992
SBBKN 0.999 0.997 0.999 1.000 1.000 0.999 | 0.990 0.996 0.994 0.997 1.000 1.000
MBBFDB 0.933 0.964 0.958 0.976 0.981 0.983 | 0.992 1.000 0.999 1.000 1.000 1.000
MBBFDB 0.933 0.956 0.953 0.974 0.983 0.984 | 0.991 0.999 0.998 1.000 1.000 1.000
MBBFDB 0.914 0.960 0.947 0.981 0.984 0.985 | 0.987 0.997 0.999 1.000 0.999 1.000
MBBFDB 0.885 0.932 0.934 0.961 0.979 0.975 | 0.951 0.988 0.971 0.978 0.970 0.963
SBBFIDB 0.945 0.964 0.962 0.978 0.982 0.985 | 0.995 1.000 0.998 1.000 1.000 1.000
SBB[DPSB 0.948 0.964 0.960 0.978 0.982 0.987 | 0.995 1.000 0.999 1.000 1.000 1.000
SBB/['PB 0.941 0.963 0.958 0.980 0.985 0.987 | 0.991 0.999 0.999 1.000 0.999 1.000
SBBEDPE 0.930 0.958 0.954 0.983 0.984 0.984 | 0.967 0.994 0.978 0.982 0.968 0.969
SDDBIPE 0.902 0.939 0.930 0.952 0.965 0.941 | 0.911 0.927 0.920 0.907 0.909 0.900
SDDBDE 0.906 0.949 0.937 0.950 0.967 0.943 | 0.916 0.930 0.917 0.908 0.909 0.899
SievefDE 0.580 0.693 0.746 0.834 0.876 0.905 | 0.895 0.963 0.955 0.967 0.958 0.963
Sievel PB 0.570 0.659 0.713 0.802 0.855 0.882 | 0.897 0.959 0.947 0.964 0.949 0.959

Table 5: Empirical Coverage Rates for Sk using ARFIMA(0,d,1), § = —0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The middle panel shows
the coverage rates for block bootstraps applying the KN methodology. The bottom panel

shows the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0,d,0), S¢
ELW
T =120 T = 500
Bootstrap \ d 5515 0.25 0.35 045 049 075| 0 0.i5 025 0.35 045 0.49 0.75
MBB,, 0.612 0.576 0.532 0.466 0.381 0.376 0.167 | 0.579 0.511 0.412 0.314 0.193 0.134 0.031
MBB,, 0.613 0.588 0.543 0.468 0.390 0.377 0.167 | 0.580 0.518 0.420 0.328 0.209 0.145 0.030
M BB, 0.629 0.602 0.561 0.498 0.435 0.423 0.217 | 0.581 0.537 0.435 0.345 0.236 0.158 0.042
M BBy 0.612 0.581 0.571 0.591 0.624 0.655 0.635 | 0.586 0.539 0.551 0.660 0.684 0.671 0.614
SBBy, 0.633 0.606 0.568 0.516 0.444 0.431 0.227 | 0.579 0.525 0.430 0.333 0.218 0.159 0.040
SBB,, 0.630 0.611 0.568 0.511 0.448 0.437 0.230 | 0.606 0.551 0.471 0.389 0.273 0.207 0.069
SBB,, 0.654 0.646 0.619 0.574 0.531 0.516 0.345 | 0.618 0.588 0.520 0.445 0.361 0.288 0.122
S BB,- 0.624 0.591 0.611 0.624 0.649 0.655 0.623 | 0.589 0.568 0.626 0.697 0.699 0.666 0.618
SDDBjpa 0.610 0.587 0.581 0.638 0.759 0.817 0.863 | 0.578 0.526 0.553 0.809 0.892 0.871 0.811
SDDB g 0.620 0.586 0.577 0.624 0.722 0.772 0.719 | 0.585 0.523 0.543 0.815 0.861 0.834 0.551
Sievearc 0.534 0.531 0.528 0.533 0.543 0.565 0.613 | 0.583 0.555 0.582 0.658 0.689 0.717 0.756
Sievey 0.654 0.676 0.662 0.697 0.692 0.692 0.668 | 0.774 0.818 0.846 0.877 0.894 0.885 0.731
MBB[PB 0.877 0.886 0.883 0.878 0.886 0.894 0.829 | 0.876 0.866 0.896 0.900 0.875 0.883 0.844
MBB}PB 0.868 0.892 0.883 0.872 0.878 0.889 0.826 | 0.858 0.862 0.890 0.900 0.872 0.885 0.847
MBBEPE 0.843 0.858 0.851 0.844 0.859 0.872 0.804 | 0.840 0.839 0.873 0.877 0.851 0.868 0.836
MBBﬁDB 0.850 0.875 0.866 0.856 0.861 0.869 0.806 | 0.840 0.839 0.854 0.885 0.860 0.873 0.827
SBB[ PP 0.863 0.871 0.871 0.871 0.874 0.884 0.815|0.869 0.850 0.883 0.896 0.865 0.877 0.837
SBBfPE 0.868 0.883 0.871 0.864 0.875 0.883 0.821 | 0.855 0.835 0.863 0.885 0.852 0.875 0.823
SBB{P" 0.857 0.858 0.854 0.853 0.862 0.867 0.808 | 0.836 0.834 0.857 0.876 0.849 0.867 0.824
SBBLPE 0.853 0.874 0.864 0.858 0.859 0.873 0.816 | 0.838 0.833 0.866 0.871 0.859 0.870 0.835
SDDBIDE 0.876 0.886 0.884 0.870 0.874 0.876 0.819 | 0.871 0.853 0.880 0.902 0.876 0.890 0.839
SDDBELE 0.870 0.887 0.879 0.863 0.872 0.875 0.819 | 0.870 0.858 0.890 0.904 0.878 0.889 0.837
Sievef DB 0.739 0.760 0.780 0.764 0.776 0.786 0.714 | 0.804 0.807 0.831 0.854 0.828 0.851 0.809
SievefPB 0.678 0.686 0.690 0.702 0.702 0.700 0.641 | 0.799 0.824 0.834 0.839 0.832 0.815 0.797

Table 6: Empirical Coverage Rates for S% using ARFIMA(0,d,0) DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(1,d,0), ¢ = 0.8, S2
ELW
T = 120 T = 500
Bootstrap \ d 5515 0.25 0.35 045 049 075| 0 0.i5 025 0.35 045 0.49 0.75
MBB,, 0.172 0.093 0.069 0.048 0.032 0.034 0.008 | 0.315 0.187 0.114 0.067 0.024 0.014 0.001
MBB,, 0.162 0.096 0.069 0.048 0.037 0.037 0.008 | 0.328 0.195 0.119 0.071 0.028 0.016 0.001
MBB,, 0.192 0.116 0.087 0.060 0.047 0.046 0.012 | 0.361 0.234 0.138 0.081 0.037 0.029 0.003
M BBy- 0215 0.162 0.146 0.134 0.136 0.136 0.142 | 0.419 0.370 0.334 0.316 0.295 0.287 0.182
SBB,, 0.180 0.113 0.084 0.067 0.051 0.048 0.014 | 0.331 0.213 0.127 0.081 0.033 0.024 0.002
SBB,, 0.187 0.110 0.087 0.063 0.052 0.045 0.012 | 0.367 0.249 0.158 0.093 0.055 0.039 0.005
SBB,, 0.202 0.133 0.101 0.080 0.074 0.068 0.024 | 0.389 0.292 0.193 0.131 0.086 0.066 0.012
S BBy 0.213 0.167 0.148 0.138 0.146 0.132 0.113 ] 0.428 0.392 0.338 0.320 0.299 0.300 0.190
SDDBa 0.247 0.293 0.328 0.374 0.404 0417 0.461 | 0.455 0.582 0.597 0.614 0.642 0.637 0.584
SDDB g 0.272 0.385 0.466 0.525 0.538 0.574 0.605 | 0.461 0.585 0.616 0.648 0.617 0.589 0.427
Sievearc 0.189 0.154 0.137 0.160 0.166 0.152 0.157 | 0.448 0.474 0.492 0.521 0.572 0.570 0.435
Siever 0212 0.214 0.264 0.267 0.304 0.287 0.251 | 0.482 0.608 0.666 0.647 0.632 0.601 0.348
MBB[PE 0.398 0.399 0.393 0.440 0.448 0.417 0.383]0.626 0.671 0.683 0.670 0.685 0.691 0.617
MBB[PE 0.385 0.400 0.402 0.443 0.442 0.420 0.376 | 0.642 0.692 0.688 0.692 0.696 0.699 0.619
M BBFPE 0.431 0.428 0.430 0.467 0.460 0.437 0.399 | 0.668 0.700 0.713 0.712 0.720 0.712 0.652
MBB,ffDB 0.422 0425 0435 0471 0.463 0436 0.399 | 0.670 0.716 0.735 0.716 0.736 0.713 0.643
SBB[PB 0.397 0.409 0.411 0.455 0.442 0.423 0.385 | 0.652 0.689 0.697 0.693 0.704 0.692 0.625
SBB}PE 0.397 0.402 0.399 0.447 0.449 0.415 0.385 | 0.656 0.691 0.694 0.705 0.719 0.700 0.628
SBB/[P" 0.382 0.385 0.403 0.431 0.432 0417 0.381 ] 0.642 0.695 0.707 0.695 0.717 0.695 0.635
SBB[PE 0.392 0.396 0.402 0.437 0.431 0.403 0.389 | 0.635 0.684 0.689 0.685 0.706 0.685 0.621
SDDBEPE 0.400 0.404 0.413 0.441 0.451 0.419 0.394 | 0.673 0.711 0.715 0.712 0.725 0.720 0.635
SDDBEDE 0.394 0.395 0.399 0.450 0.443 0.423 0.398 | 0.682 0.713 0.713 0.723 0.719 0.709 0.653
Sievef DB 0.278 0.292 0.263 0.307 0.325 0.305 0.284 | 0.635 0.677 0.678 0.675 0.675 0.663 0.598
Sievel PB 0.190 0.170 0.162 0.202 0.211 0.220 0.224 | 0.488 0.508 0.521 0.530 0.534 0.506 0.514

Table 7: Empirical Coverage Rates for S using ARFIMA(1,d,0), ¢ = 0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.

33



ARFIMA(1,d,0), ¢ = —0.8, S%
ELW
T =120 T = 500
Bootstrap \ d 5515 0.25 0.35 045 049 075| 0 0.i5 025 0.35 045 0.49 0.75
MBB,, 0.626 0.629 0.583 0.518 0.452 0.402 0.210 | 0.600 0.529 0.404 0.344 0.217 0.187 0.030
MBB,, 0.624 0.622 0.579 0.518 0.449 0.411 0.209 | 0.602 0.523 0.403 0.356 0.213 0.188 0.037
MBB,, 0.622 0.635 0.600 0.550 0.482 0.454 0.264 | 0.606 0.525 0.412 0.364 0.242 0.207 0.048
M BBy 0.704 0.648 0.620 0.615 0.621 0.622 0.670 | 0.667 0.566 0.532 0.597 0.666 0.662 0.638
SBB,, 0.639 0.628 0.591 0.523 0.482 0.437 0.271 | 0.605 0.517 0.399 0.356 0.230 0.193 0.040
SBB,, 0.637 0.626 0.586 0.525 0.473 0.445 0.287 | 0.602 0.537 0.426 0.396 0.286 0.246 0.066
SBB,, 0.659 0.639 0.633 0.587 0.551 0.523 0.408 | 0.621 0.565 0.477 0.460 0.380 0.333 0.122
S BB,- 0.695 0.664 0.654 0.642 0.649 0.632 0.655 | 0.676 0.617 0.594 0.649 0.698 0.663 0.658
SDDBjpa 0.724 0.734 0.716 0.727 0.755 0.749 0.806 | 0.672 0.657 0.593 0.653 0.738 0.781 0.853
SDDB g 0.677 0.689 0.664 0.683 0.680 0.677 0.531 | 0.658 0.651 0.590 0.649 0.671 0.698 0.514
Sievearc 0.561 0.572 0.572 0.565 0.591 0.599 0.640 | 0.589 0.561 0.535 0.637 0.730 0.718 0.810
Sievey 0.658 0.655 0.662 0.665 0.694 0.708 0.714 | 0.765 0.799 0.791 0.835 0.851 0.851 0.842
MBB[PB 0.912 0.904 0.882 0.904 0.897 0.900 0.842 | 0.882 0.904 0.884 0.907 0.901 0.891 0.873
MBB}PB 0.905 0.909 0.890 0.906 0.900 0.902 0.846 | 0.882 0.898 0.886 0.900 0.895 0.881 0.884
MBBEPE 0.890 0.892 0.864 0.897 0.892 0.886 0.826 | 0.830 0.855 0.826 0.856 0.858 0.842 0.851
MBBﬁDB 0.840 0.817 0.824 0.832 0.846 0.854 0.811 | 0.818 0.838 0.823 0.843 0.854 0.825 0.849
SBB[ PP 0.887 0.881 0.870 0.893 0.891 0.894 0.848 | 0.862 0.888 0.874 0.897 0.885 0.877 0.878
SBBfPE 0.889 0.885 0.868 0.895 0.898 0.898 0.858 | 0.864 0.873 0.873 0.875 0.886 0.856 0.873
SBB{P" 0.875 0.875 0.859 0.887 0.887 0.871 0.827 | 0.835 0.875 0.855 0.875 0.873 0.858 0.857
SBBLPE 0.850 0.835 0.830 0.841 0.844 0.842 0.814 | 0.827 0.836 0.832 0.852 0.838 0.826 0.846
SDDBIDE 0.803 0.789 0.787 0.793 0.794 0.811 0.754 | 0.785 0.792 0.786 0.820 0.812 0.772 0.828
SDDBELE 0.760 0.739 0.745 0.768 0.750 0.762 0.708 | 0.779 0.799 0.777 0.811 0.825 0.775 0.821
Sievef DB 0.786 0.788 0.767 0.780 0.769 0.772 0.700 | 0.822 0.840 0.818 0.835 0.839 0.813 0.846
SievefPB 0.757 0.750 0.731 0.750 0.750 0.742 0.675 | 0.862 0.854 0.831 0.844 0.840 0.813 0.814

Table 8: Empirical Coverage Rates for S% using ARFIMA(1,d,0), ¢ = —0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0,d,1), 0 = 0.8, S%
ELW
T = 120 T = 500
Bootstrap \ d 5515 0.25 0.35 045 049 075| 0 0.i5 025 0.35 045 0.49 0.75
MBB,, 0.583 0.540 0.480 0.452 0.379 0.320 0.152 | 0.565 0.545 0.420 0.282 0.180 0.158 0.022
MBB,, 0.574 0.547 0.491 0.453 0.379 0.327 0.148 | 0.569 0.544 0.422 0.288 0.198 0.171 0.027
MBB,, 0.595 0.564 0.525 0.499 0.431 0.377 0.203 | 0.582 0.554 0.450 0.318 0.212 0.189 0.038
M BBy- 0.594 0.583 0.590 0.637 0.641 0.629 0.577 | 0.563 0.591 0.609 0.645 0.694 0.681 0.573
SBB,, 0.605 0.575 0.530 0.506 0.441 0.399 0.220 | 0.570 0.553 0.444 0.294 0.205 0.181 0.033
SBB,, 0.605 0.579 0.523 0.500 0.435 0.402 0.215| 0.578 0.589 0.479 0.345 0.261 0.222 0.053
SBB,, 0.635 0.622 0.579 0.581 0.509 0.480 0.318 | 0.602 0.607 0.524 0.421 0.344 0.307 0.108
S BBy 0.610 0.614 0.619 0.663 0.660 0.636 0.584 | 0.576 0.634 0.662 0.676 0.685 0.695 0.587
SDDBa 0.595 0.594 0.637 0.736 0.795 0.836 0.830 | 0.559 0.580 0.688 0.837 0.883 0.886 0.798
SDDB g 0.594 0.588 0.636 0.739 0.800 0.810 0.681 | 0.579 0.577 0.702 0.822 0.836 0.829 0.495
Sievearc 0.592 0.611 0.624 0.662 0.669 0.653 0.564 | 0.635 0.702 0.722 0.764 0.852 0.860 0.678
Sievey 0.649 0.642 0.666 0.672 0.707 0.691 0.604 | 0.793 0.853 0.868 0.878 0.904 0.896 0.663
MBB[PE 0.862 0.868 0.879 0.867 0.804 0.883 0.802 | 0.864 0.889 0.884 0.891 0.895 0.904 0.850
MBB[PE 0.861 0.872 0.886 0.878 0.899 0.872 0.801 | 0.856 0.887 0.882 0.880 0.878 0.896 0.847
M BBFPE 0.836  0.837 0.858 0.835 0.872 0.854 0.779 | 0.845 0.863 0.869 0.861 0.855 0.879 0.824
MBB,ffDB 0.838 0.839 0.848 0.841 0.859 0.848 0.770 | 0.830 0.853 0.853 0.855 0.864 0.869 0.823
SBB[PB 0.843 0.858 0.872 0.850 0.885 0.863 0.788 | 0.859 0.876 0.881 0.873 0.885 0.890 0.830
SBB}PE 0.849 0.855 0.865 0.855 0.880 0.860 0.776 | 0.845 0.876 0.870 0.862 0.868 0.881 0.829
SBB/[P" 0.828 0.836 0.852 0.838 0.864 0.850 0.785 | 0.828 0.863 0.845 0.845 0.864 0.862 0.822
SBB[PE 0.839 0.846 0.853 0.842 0.851 0.861 0.771|0.842 0.860 0.864 0.852 0.857 0.875 0.818
SDDBEPE 0.836  0.836 0.843 0.836 0.861 0.856 0.775|0.845 0.864 0.864 0.861 0.864 0.877 0.831
SDDBEDE 0.832 0.841 0.845 0.834 0.867 0.863 0.772 | 0.843 0.865 0.860 0.862 0.867 0.876 0.830
Sievef DB 0.710 0.711 0.737 0.749 0.756 0.737 0.673 | 0.786 0.812 0.799 0.783 0.809 0.812 0.779
Sievel PB 0.659 0.658 0.681 0.690 0.711 0.688 0.609 | 0.818 0.851 0.841 0.825 0.832 0.850 0.792

Table 9: Empirical Coverage Rates for S% using ARFIMA(0,d, 1), § = 0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.
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ARFIMA(0,d,1), 6 = —0.8, S%
ELW
T = 120 T = 500
Bootstrap \ d 5515 0.25 0.35 045 049 075| 0 0.i5 025 0.35 045 0.49 0.75
MBB,, 0.203 0.315 0.383 0.461 0.518 0.549 0.608 | 0.344 0.531 0.612 0.596 0.528 0.499 0.189
MBB,, 0.203 0.315 0.375 0.460 0.524 0.565 0.614 | 0.347 0.531 0.601 0.594 0.531 0.501 0.195
MBB,, 0.235 0.342 0.398 0.479 0.533 0.576 0.643 | 0.372 0.549 0.613 0.606 0.536 0.526 0.224
M BBy- 0.369 0.466 0.472 0.524 0.552 0.588 0.687 | 0.503 0.619 0.672 0.669 0.573 0.525 0.789
SBB,, 0.203 0.311 0.370 0.466 0.524 0.575 0.643 | 0.342 0.523 0.596 0.598 0.540 0.511 0.209
SBB,, 0.204 0.315 0.373 0.456 0.527 0.568 0.647 | 0.351 0.532 0.611 0.613 0.571 0.547 0.288
SBB,, 0.243 0.337 0.403 0.483 0.541 0.596 0.686 | 0.370 0.553 0.632 0.648 0.623 0.604 0.441
S BBy 0.338 0.418 0.469 0.515 0.554 0.579 0.695 | 0.518 0.603 0.689 0.696 0.668 0.604 0.810
SDDBa 0.454 0477 0.446 0.490 0.543 0.555 0.672 | 0.524 0.574 0.604 0.590 0.525 0.494 0.739
SDDBg 0.462 0470 0.448 0.492 0.531 0.562 0.648 | 0.519 0.566 0.599 0.594 0.525 0.507 0.387
Sievearc 0.205 0.279 0.310 0.387 0.410 0.435 0.594 | 0.410 0.542 0.612 0.636 0.709 0.730 0.687
Sievey 0.338 0.378 0.361 0.408 0.423 0.412 0.468 | 0.586 0.659 0.654 0.676 0.666 0.657 0.661
MBB[PE 0.548 0.592 0.592 0.593 0.573 0.576 0.542 ] 0.744 0.736 0.762 0.736 0.718 0.714 0.722
MBB[PE 0.542 0.578 0.589 0.582 0.573 0.586 0.549 | 0.761 0.730 0.756 0.749 0.746 0.711 0.733
M BBFPE 0.543 0.604 0.596 0.618 0.591 0.618 0.576 | 0.751 0.760 0.769 0.768 0.756 0.756 0.732
MBBﬁDB 0.525 0.583 0.574 0.581 0.582 0.603 0.569 | 0.724 0.723 0.735 0.743 0.721 0.701 0.707
SBB[PB 0.530 0.576 0.583 0.600 0.570 0.596 0.560 | 0.741 0.735 0.744 0.733 0.719 0.716 0.723
SBB}PE 0.536  0.581 0.574 0.584 0.580 0.582 0.560 | 0.761 0.740 0.768 0.743 0.738 0.723 0.714
SBB/[P" 0.535 0.587 0.597 0.601 0.602 0.604 0.569 | 0.752 0.737 0.762 0.740 0.739 0.736 0.730
SBB[PE 0.528 0.589 0.567 0.592 0.589 0.603 0.561 | 0.722 0.718 0.735 0.733 0.722 0.701 0.685
SDDBEPE 0.504 0.562 0.536 0.560 0.557 0.549 0.524 | 0.688 0.704 0.714 0.713 0.713 0.692 0.688
SDDBEDE 0.514 0.553 0.538 0.565 0.554 0.556 0.516 | 0.702 0.701 0.721 0.715 0.717 0.699 0.686
Sievef DB 0.382 0.409 0.405 0.409 0.401 0.398 0.347 | 0.715 0.711 0.729 0.704 0.691 0.684 0.659
Sievel PB 0.370 0.424 0.393 0.426 0.431 0.409 0.344 | 0.669 0.676 0.665 0.667 0.643 0.640 0.617

Table 10: Empirical Coverage Rates for S¢ using ARFIMA(0,d, 1), § = —0.8 DGPs.
Notes: The top panel of the table shows the coverage rates for the bootstrap methods
outlined in Section 2 directly applied to the original levels series. The bottom panel shows
the coverage rates for the bootstrap methods using the suggested FDB methodology.
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A.1 Introduction

This supplement to our paper “A Generalised Fractional Differencing Bootstrap for Long
Memory Processes” has four sections. The first section contains a proof of Theorem 1. The
second section contains the modification of Algorithm 3 needed to allow for an unknown
mean in the data. The third section provides additional computational details showing how
we conducted the simulation experiments reported in the paper and how we implemented
the bootstrap procedures. The final section contains additional simulation results. Equation
references (A.n) for n > 1 refer to equations in this supplementary appendix and other
equation references are to the main paper. An additional reference is included at the end of

the supplement.

A.2 Proof of Theorem 1

Our proof shares some similarities with the treatment of Wright (1995) and is presented
below. In particular, as in Wright (1995), we want to show that operations in the underlying
1(0) series can be translated to I(d) space provided that a consistent estimator of d is used.

Below, we sketch our proof before providing formal details.

1. Let Y; be as in (1) and X; be obtained by the FDB using the true value of d in
the differencing and cumulation steps of Algorithm 3. We first must show that the
distribution of a statistic based on Y; and the distribution of the same statistic based

on X}, are asymptotically equal.

2. Next, let Y,* be constructed similarly to X; using Algorithm 3, but d is used for the
differencing and cumulation in Steps 3 and 5 of the algorithm. d is obtained using
an estimator which satisfies Assumption 2. We must show that the distribution of a
statistic based on X; and the same statistic based on Y;*, are asymptotically equal.
The mapping from the original data to the bootstrap should be a function of d. In
other words, bootstrapping in the short memory space should not be stochastic; i.e. if
we were to resample with replacement the short memory series, we should do it in the
same way for X} and Y;* — the only difference should be the use of d and d. Therefore,
the two statistics differ only because d and d differ, but as d converges to d so should
the distribution of the statistics. We further subdivide this step into two by specifying
that in one step, d is used for differencing and d for cumulation and the reverse for the

other step.
In summary, to proceed with the proof of Theorem 1 we consider the following series.

e Y, is the original fractionally integrated series, described in (1). Y; is I (d) and we

calculate the statistic S = Sz (Y1, .., Yr) which satisfies Assumption 3.

1



e X/ is the FDB resample in the theoretical case where d is known and used in the
differencing and cumulation steps of Algorithm 3. X/ is I (d) and we calculate the
statistic Si*? = Sy (X7, .., X3).

e Y/ is the FDB resample exactly as described in Algorithm 3, using d for differencing

and cumulation. d is obtained using an estimator which satisfies Assumption 2 and Y}*

is I (d). Using Y,* we calculate the statistic S;(d’@ = S (Y7, .., Y]).

e Finally, H; is the FDB resample using d for differencing and d for cumulation. H; is
I <2d - j) and we calculate the statistic Sr_*p(d’d> = Sr(Hy,..,H}).

Denote the distribution of the statistic under Py, by Fg, and F (@) FS;@ 7 and FS;@ d)
are corresponding approximations to the true distribution of the statistic under Px:, Py
and Pp; respectively.

In what follows we use the operator A¢ ¢, which is the inverse of Ajrd in (1), defined

for a generic variable y; as AL := AdyI(t > 1) = S0 an(d)y;_n, where I(-) denotes the
T'(n—d)

m denotes the coefficients in the binomial expansion

indicator function and a,(d) :=
of (1 —z)%.

Proof. Using Assumption 3 we have that,

2 2 2
{77 (FS;(E@a FST) } S {77 (FS;(J@a FS;(d,d)) } + {77 (FS;(d,d), FST)}
2 2 2
< {7] (FS;@@ , FS;@(I)) } + {77 (FS;(g’d), FS;(d,d)> } + {77 (FS;(d,d), FST> } . (A.1)

The last term of the right hand side of the above is straightforward, since the true d is used.
Therefore, for valid short memory bootstrap methods, n (F (), FST> = 0, (1). We focus
T

on the first and second terms. From the definition of Mallows metric, using Assumption 3
and applying the Cauchy-Schwartz inequality twice we have,
* [i\,d * &\,d
g [||5: _ gt

2 2
r(Fgen Fygen) } <8 ||| ”

{T liE Bt H;,Y*)) H} {T 1+max{0d—f} iE Y*) H}

t=1

< {TlgxgosupTIZE [E* [(B (H*T,Y*T))QH} {T Um0 N p [ -Y) H}

t=1

T
— {711_{1010 supT*l ZE [E* [(Bt (H},Y;))QH} { lim sup T~ (14+max{0,d—1}) ZE [E

T—o00
t=1 t=1

(A.2)

—Y:)QH}-



Given that there exists a function B, (H7,Y7) such that the first limit is finite, we are

interested in the last term of the right hand side of the above. Hence, we need to prove that,

T
lim sup 7~ 03D N" g (B (17 - ¥7)?]] = 0. (A.3)

T—o00
t=1

Using (1) we have that,
Hf = A7%; and Yy = AL,

where u; is the resampled I(0) process. Following similar steps to those in Wright (1995),

T max{07d—%} (H,;k _ }/;*) - T maX{O,d—%} <A;du>tk . A;dAu:> —

t—1

j=1
om0 (0 () S (T )iy (1) S (7)1, ) ).

Jj=1 Jj=1
(A.4)

~

since, )

aj (d-d) = (d-d) o (d-d) + (d-d) af (1~ d), (A.5)
where o and o denote the first and second derivative of a; (-) respectively. Using (A.3)
and (A.4), it suffices to prove that

Yli_rélosup tiE E* ((c?— d) ::1 o <c/l\— d> u;_;
. 2
+(a- d)Q:Z:;a;’ (a-d) u;f_j) ~0 (A.6)

Under Assumption 2, the variance of (c/i\ — d) goes to zero as T — 00,

lim sup [E {(3— d>2H —0, (A7)

see for example Robinson (1995) and Shimotsu and Phillips (2006). The first limit of (A.6)



can be written as

T t—1 2
i Y5 (5| (7 ) oo (- ) )
T—o0 1 =
) T t—1 2
<< lim sup E | E* <c?— d) lim supz E* o, <c?— d) s
- U oo T j=1 ’ ti]

where the second limit is finite. Using (A.7) and (A.8), (A.6) is proved.

Similarly,
2 2
{77 (FS;(ad) y FS;(d,d)) } S E ]] S (AQ)

{T—l XT: E [E* [(Bt (X;7 H;))QH } {T—(l-‘rmax{O,d—é}) XT: E [E* [(Xt* _ Ht*)2ﬂ }

t=1 t=1

E*

< { lim SupT—l ZE [E* [(Bt (X;, H’}:))ZH} {T_(l-‘rmax{O,d—é}) ZE [E* [(Xt* _ H:)QH}

T—o0
= t=1

a T
é {jll_{rolo SupT_l ZE [E* [(Bt (X}, H;))zﬂ} {Th_{go SupT—(H—maX{O,d—% )ZE [E* [(X: _ H;)Q:H } ’

t=1 t=1

and hence we need to prove that,

T
lim sup 70043 N " g [ (X7 - H;)*]) = 0. (A.10)

t=1

which can be proven similarly to the result in (A.3), completing the proof.



A.3 Modification of Algorithm 3 to Allow for an Un-

known Mean

Algorithm 4.
Step 1. Given the data Yy, t = 1,..., T, calculate the statistic of interest St = St (Y1, .., Yr).
Step 2. Estimate p using (5) and construct the demeaned series, Yy :=Y; — ji (d).

Step 3. Based on ), obtain an estimate, cz of the long memory parameter, d, which satisfies

Assumption 2.

Step 4. [Differencing] Filter YV using the fractional differencing operator, Afl;, and obtain,
ﬂt = Af,lryt

Step 5. [Resampling] Apply any asymptotically valid bootstrap for weakly autocorrelated series,

as described separately below, and obtain a resample for uy, denoted by uy.

(a) Sieve AR Bootstrap

i. Fit an AR(h) to Uy, let those estimates be denoted by  := (3y,...,%,)", and
evaluate the corresponding residuals € = (U — ) — Z;LZI 9, (Uy—j —u) and
the associated residual variance estimate, 526. u denotes the sample mean of
Us.

__ Et—¢F

it. Using &, calculate the standardised residuals, €y := ,where € and sz denote

Sg

the sample mean and standard deviation of €;, respectively.

ii. Construct a random sample with replacement for €, denoted by &* := (5, ....55) =
(1, ...,E[T)/ with Iy, ..., I being i.i.d. random variables with discrete uniform
distribution on {1,...,T}. Alternatively one could use the wild bootstrap in

place of the i.i.d. resampling scheme.

. The sieve AR bootstrap data observations are generated via the recursion,

j=1
initialised at uy_; = U, jy1, j = 1,...,h where T has the discrete uniform
distribution on {h,...,T}.
(b) MBB
i. Construct the de-meaned series of Uy, defined as vy :== (U1 —, ...., ur—u)’, and

divide it into M overlapping blocks of b observations, with M =T — b+ 1.



Denote the collection of blocks by {Bi,..., By} and let Iy, ..., Iy be ii.d.
random variables with discrete uniform distribution on {1,...,M}.

it. A M BB resample for v; is then obtained with replacement from the collection
of blocks, vf 1= (BII, ...,BIT/b)/.

iti. Obtain the corresponding resample for u; as,

~x

J— * Yl
Uy = v, + u.

(c) SBB

i. Construct the de-meaned series of uy, defined as vy :== (U3 — W, ..., ur — u)’.
SBB uses a random block length for b. Let Ly, Lo, ... be a sequence of i.i.d.
random variables having geometric distribution, so that the probability of the
event {L; =n} is (1—p)"" forn=1,2,... and p is a fived number in [0, 1].
Denote the collection of blocks by {Byr,, Br,,...}. The indicator L, denotes
the length of the relevant block. Let Iy, I, ... be a sequence of i.1.d. variables

which have discrete uniform distribution on {1,...,T}.

it. A SBB resample for v, is obtained by random draws with replacement from
the collection of blocks, v := (Br, Br,,...,) untilt =T.

iti. Obtain the corresponding resample for u; as,
=
Uy = v, + u.

(d) SDDB-MA

1. Consider the MA representation of u;, u; = €4+ Z;’il cj€i—j, and the spectral

density of ug, f,. Obtain an estimate of f, using u; denoted by fz.

2
it. Compute the Fourier coefficients of log (fg) given by ay, := %/ log { Ag (w)} e~k dw
0
fork=0,1,2,...
3. Let 5§ = 27e® and compute the coefficients Ty, using Cip1 = Z?:o (%) Qkt1—5Cj
for k=0,1,2,... and starting value ¢y = 1.
w. Generate i.i.d. pseudo-innovations (€%, ....,&%) with mean 0 and variance .

/

v. Generate the pseudo-time series (U3, ....,us)" obtained by,

(e) SDDB-AR

i. Consider the AR representation of ug, uy = D72 bjupj +e4, 77, bj] < 00,

6



Step 0.

Step 7.

Step 8.

and the spectral density of us, f,. Obtain an estimate of f, using u; denoted

by fa.
2
i1. Compute the Fourier coefficients of log (fa) given by ay, := Qi/ fa _“de
0
fork=20,1,2, ...

1. Let 32 = 2me® and compute the coefficients /b\k, usz'ng the recursive formula
starting with /50 =—1 and Ekﬂ = — Zk (k+1) Qpt1— Jb fork=0,1,2,.
iv. Generate i.i.d. pseudo-innovations (7, ....,e%4)" with mean 0 and variance O'i.

v. Generate the pseudo-time series (U3, ....,uwr) obtained by,
—1
Z + £

umutation/App e Jractional cumulating operator —d o uy and obtain the re-
Cumulation]A lyth tional lating tor A7 to W and obtain th

d A*

sampled data Y} = Finally, the corresponding resample to the original data is
obtained by,

Yy = () + Y
Calculate S5 = St (YY", .., YJ) which is the bootstrap analogue to St.

Repeat Steps 5 to 7, to construct B independent bootstrap samples and bootstrap statis-
tics, denoted Yr and Sfr, | =1, ..., B, respectively, and collect S, 1 1= ( LT e E,T)/-
Approzimate Fg,.(s) by the bootstrap distribution function FSE (s)=+% Zlel I(Sgr <

s).

A.4 Simulation Algorithm and Coverage Rates

Below we outline how we conduct the simulation experiments and implement the bootstrap

procedures.

Algorithm 5.

Step 1.

Step 2.

For the ith simulation, with 1 =1,2,..., R and R = 1000, generate sample data for uy,
t =1,2,..T, which follows an ARM A(p, q) model with standard normal innovations;
the starting value is always set to be u; = 0. The settings for T, p and q are as

described in the main text.

Then, apply the inverse of the Fast Fractional Difference (FFD), introduced by Jensen
and Nielsen (2014), and generate Y; = p + A;dut setting pu = 0. Therefore,

}/{g = A_T_dut.



Step 3.

Step 4.

Step 5.

Step 6.

The values of d considered are as given in the main text. Calculate the statistic of
interest Sy = Sy (Y1, .., Yr).

Construct B = 199 bootstrap resamples for Y, denoted by Yi'r, | =1, ..., B, using two

approaches:

(a) Ignoring the presence of long memory and applying the sieve AR bootstrap, M BB,
SBB, SDDB using the MA or AR representation directly to Y;; exactly as dis-
cussed in Algorithm 4. The AR order, h, for the sieve is obtained: (i) using AIC
with mazimum order H := | (log T)Qj , and (ii) setting h = | (log T)2J. The latter
is h =23 for T'= 120 and h = 39 for T = 500. We use OLS to estimate the AR

parameters in the sieve bootstrap.

(b) Employing FDB and applying Algorithm 4; in fractional differencing and cumula-
tion steps we use the FFD and its inverse. We obtain c/l\usmg LW or ELW with
m =11 and m = 22 for T'= 120 and T = 500, respectively.

Then, calculate the statistic of interest and obtain Sir, 1 =1,..., B, collecting Sp 1 :=
(SiT, o SE’T),. It should be noted here that for KN, M BB and SBB bootstraps, one
must use the bootstrap samples as calculated in Step 3a above, inflating Sp 7 by bl
Then, calculate the q o5 and qg o5 quantiles of Sp . Finally, calculate C; which takes

the value 1 if ¢ o5 < ST < q 95 and 0 otherwise.

Repeat steps (1) to (4) above for alli = 1,2, ..., R simulations.

R o
Report the simulated bootstrap coverage rate for St defined as CR := %.



A.5 Full Set of Simulation Results
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