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Abstract

In this paper we study sublogics of RoCTL*, a recently proposed logic for spec-
ifying robustness. RoCTL* allows specifying robustness in terms of properties
that are robust to a certain number of failures. RoCTL* is an extension of the
branching time logic CTL* which in turn extends CTL by removing the require-
ment that temporal operators be paired with path quantifiers. In this paper we
consider three sublogics of RoCTL*. We present a tableau for RoBCTL*, a
bundled variant of RoCTL* that allows fairness constraints to be placed on
allowable paths. We then examine two CTL-like restrictions of CTL*. Pair-
RoCTL* requires a temporal operator to be paired with a path quantifier; we
show that Pair-RoCTL* is as hard to reason about as the full CTL*. State-
RoCTL* is restricted to State formulas, and we show that there is a linear truth
preserving translation of State-RoCTL into CTL, allowing State-RoCTL to be
reasoned about as efficiently as CTL.
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1. Introduction

RoCTL* [1] is temporal logic for specifying Robustness. As with other sim-
pler propositional temporal logics such as the popular linear LTL [2], it can
be used to reason about the behaviour of finite state transition systems, and
hardware or software systems that can be modelled with these. Temporal con-
nectives, such as gfor next step (which indicates that its argument is true at
the next step), and U for until (a bimodal operator that indicates that one ar-
gument is true until the other is satisfied), added to the classical propositional
ones, allow us to specify and deduce properties of such systems as they operate
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over time. The branching logics CTL [3] and CTL* [4] add the ability to reason
about alternative possible steps. RoCTL*, goes even further, and adds basic
deontic operators to consider what the system should do, versus what it may do
if some undesirable transitions occur. These transitions may represent occur-
rences such as packet loss which although unwanted must be accounted for in
the design of the system. The robustness operators, allow us to consider overall
behaviour of the system if only a limited number of undesired transitions occur.

Thus, RoCTL* has three path quantifiers: All Paths (A), Obligatory (O),
and Robustly (N). From these operators the duals ExistPath (E), Permissible
(P) and Prone (4) are defined. This extends the full Computation Tree Logic
(CTL*) whose only path quantifier is A (and its dual E).

As an example, consider the following specification in RoCTL* which uses
the usual LTL temporal connective for always. The formula ON (p→ ♦q)
says that it is obligatory that robustly always a p request is eventually followed
by a q grant. This means that along every failure-free behaviour, even if there
is one failure deviating from such a behaviour then any p event is eventually
followed some time in the future by a q event. In earlier work [1, 5] we have
showed that this language can comfortably and effectively express situations
with conflicting resource requirements, temporary communication failures and
contrary-to-duty obligations (what a system should do when it hasn’t done what
it should do). More examples can be found in Section 3.

The logic RoCTL* was introduced in [1] but more detailed technical inves-
tigation of the language and its computational properties was reported in [6].
That paper showed that the satisfiability problem for RoCTL* is decidable. It
provided truth and satisfiability preserving translations of RoCTL* into Quan-
tified Computation Tree Logic (QCTL*) [7, 8] and Full Computation Tree Logic
(CTL*), either of which can be used to decide the satisfiability of RoCTL* for-
mulas. However, it was also shown that translating RoCTL* formulas into tree
automata results in at least a singly exponentially blowup per alternation with
the N operator [6]. Thus, there is no elementary reduction of RoCTL* into tree
automata or CTL*. Nor is there any known elementary decision procedure.

In Section 4 below we will argue that RoCTL* is not significantly harder than
CTL* to decide, in practice. However, for many purposes, decision procedures
even for CTL* are too computationally demanding and, since RoCTL* is a
conservative extension of CTL*, it is clear that RoCTL* is at least as hard to
decide as CTL*.

We clearly have a problem with advocating direct use of the RoCTL* lan-
guage for applications. This leads us to make the common move of considering
restricted sub-languages of RoCTL* and considering whether some sufficiently
expressive sub-languages may have easier decision problems. Thus the current
paper considers sub-logics of RoCTL* from the point of view of being amenable
to automated reasoning as well as their expressiveness. For example, we will dis-
cuss how restricting the syntax of RoCTL* to state-formulas makes the model
checking and satisfiability problems as easy as those for CTL.

We will investigate semantic and syntactic sublogics of RoCTL*. RoBCTL*
is a so-called bundled variant of RoCTL* : limit closure is not valid in RoBCTL*,
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while it is valid in RoCTL*, making RoBCTL* a semantic sublogic. Informally
the limit closure property states that if we have an infinite sequence of states
σ such that for all n the first n states form an allowed path, then the infinite
sequence σ forms an allowed path. This property ensures that all paths through
the structure are allowed in CTL*, while in BCTL* we are limited to some
bundle of paths which may or may not include all paths through the structure.
We will also investigate two CTL-like restrictions of RoCTL*.

We explain the concept of a bundled variant of a branching time logic in
the following section. Bundled branching-time logics adopt a different seman-
tics to the non-bundled versions and have been studied for example in [9]. The
basic idea is that in the bundled variant, not all paths through the structure
must be considered when evaluating a formula, just those in the relevant bundle
which is a set of allowed paths. RoCTL* can be thought of as the restriction
of RoBCTL* where the bundle must include all possible paths in the structure.
Under this interpretation, RoBCTL* and RoCTL* are not just trivially expres-
sively equivalent but truly equivalent when interpreted over RoCTL* structures.
The bundled variant has a set of valid formulas which is a subset of those al-
lowed in of RoCTL*. Similarly, any formula that is satisfiable in RoCTL* is
satisfiable in RoBCTL*. We investigate RoBCTL* for two reasons.

The first reason is because it is generally easier to find tableaux for bundled
logics; for example, note that the tableau for BCTL* [9] was found before the
tableaux for CTL* [10, 11]. The bundled variant is of interest as BCTL* has a
simple tableau with optimal (2EXPTIME) worst case performance, and a tree
based implementation that performs much better in practice than one would
expect from the worst case performance bounds [12]. By comparison the only
decision procedure for CTL* that combines good real world performance with
optimal worst case results is neither a simple tableau or automata technique,
but rather a combination of a tableau and a parity game solver [11, 13].

The second reason is bundled logics can express fairness constraints which are
commonly needed for specifications [14, 15]. In a robust system there is often
an implicit fairness constraint. For example, a normally functioning network
will lose a packet with some probability; however, (almost surely) given enough
retransmits the packet will eventually get through. The direct specification of
this in CTL* or RoCTL* contradicts the limit-closure property. This is because
the limit closure property means that if it is always possible that we lose a
packet, it is also possible that we always lose a packet.

By contrast, while RoBCTL* allows models that disallow paths that do not
satisfy fairness constraints. Note that (Ro)BCTL* are not designed to repre-
sent traditional numerical probabilities, for examples bundles cannot distinguish
between p = 0.1 and p = 0.99.

In Section 4 we will present a tableau based decision procedure for the bun-
dled variant RoBCTL* of RoCTL*, and show that under certain reasonable
restrictions on the nesting of operators, the tableau has elementary worst-case
complexity.

The other sub-languages we investigate are syntactical restrictions of RoCTL*
using the original semantics. Even if an elementary decision procedure is found

3



for RoCTL*, it is clear that it will be at least as complex as CTL*. Despite the
expressive power of CTL*, the less expressive CTL is frequently used; the most
famous example of the use of CTL is the 1995 verification of the Futurebus+
cache coherence protocol [16]. However, later papers have also tended to also use
approaches based on CTL rather than the full CTL* [17, 18]. This is because
the satisfiability and model-checking decision problems for CTL are much easier.
The CTL* decision problems are exponentially harder [19] than the CTL deci-
sion problems [20], the satisfiability of CTL* formulas is 2-EXPTIME complete
while testing the satisfiability of CTL formulas is EXPTIME-COMPLETE;
model checking for CTL* is singly exponential in the length of the formula,
but for CTL we can model check in time linear in the length of the formula; in
either case we can model check in time linear in the size of the model [21, 22, 23]
(that is, the sum of the number of nodes and edges).

We will examine two CTL-like restrictions of RoCTL*. Arguably the most
intuitive CTL-like restriction of RoCTL* is to require (like in CTL) that each
of the LTL operators ( gand U) be paired with a path quantifier (A, O, or N).
This restriction is called Pair-RoCTL. However, it will be shown in Section 5
that this restriction of RoCTL* has the same expressivity as RoCTL* and it
will similarly be shown that Pair-RoCTL is as at least as hard to decide as
CTL*. The difficulty in reasoning with Pair-RoCTL comes from the fact that
Nφ is not a state formula. That is the truth of Nφ may depend on which future
eventuates, not just the current state. Thus another restriction of RoCTL*
called State-RoCTL will be examined. This restriction instead pairs the LTL
operators with a non-empty sequence of path operators which must form a state
formula. Hence O4N(φUψ) is a State-RoCTL formula but N(φUψ) is not. It
will be shown in Section 6 that we can use standard CTL decision procedures to
reason about State-RoCTL, although we need to inspect the internal state of the
CTL model checking algorithm of [24] to achieve the same order of complexity
as the original. Thus although Pair-RoCTL is an intuitive definition of a CTL-
like restriction of RoCTL*, State-RoCTL is more CTL-like in complexity than
Pair-RoCTL.

Every property that can be expressed in State-RoCTL can be expressed in
CTL, yet State-RoCTL can naturally express interesting robustness properties.
CTL is significantly less expressive than CTL* and RoCTL*. For example,
CTL cannot express fairness, the property that if a process is ready to run
infinitely often, then it will be chosen to run infinitely often [4]. Nevertheless
State-RoCTL is expressive enough to capture some interesting properties of
RoCTL*, such as direct alternations between N and 4. Additionally, the truth
preserving translation of State-RoCTL into CTL results in a formula that may
be exponentially longer than the original. A linear translation will be given that
is both satisfiability preserving and computationally efficient, providing efficient
decision procedures for State-RoCTL, but this translation adds atoms and is not
truth preserving.

With current technology State-RoCTL is more tractable for larger formulas
than CTL*; we have given simple translations into CTL and there are a num-
ber of easily available and fast decision procedures for CTL. The resolution
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procedure CTL-RP [25] can solve the decision problems relating to the (coordi-
nated attack) problem presented in [1] in under 2 seconds. The Tableau Work
Bench [26] also has little difficulty with translations of our examples into CTL,
determining that the specification for feeding a cat in Example 22 is satisfiable
almost instantaneously. We also note that dedicated CTL solvers tend to be
more efficient [27] than the CTL* prover proposed in [11, 13].

1.1. Our contributions

The main contributions of this paper are: (Section 4) a tableau for RoBCTL*,
which terminates but can require a non-elementary amount of time; (Section 5)
a proof that the satisfiability and model checking problems for Pair-RoCTL are
at least as hard as those for CTL*; and (Section 6) a polynomial reduction of
State-RoCTL to CTL. This reduction shows that the model checking problems
for State-RoCTL have the same complexity as CTL, and so out of the sublog-
ics of RoCTL* considered in this paper, State-RoCTL is the easiest to reason
about. This is the first appearance of these results in a journal.

The core results in this paper have been presented in abridged form at con-
ferences [28, 29]. The tableau for RoBCTL* originally appeared in [28]; in
this paper we additionally include a proof of soundness and completeness of
this tableau. Partial proofs relating to Pair-RoCTL appeared in [29], but only
considered the U and E operators. Here we included full proofs and also con-
sider the expressivity of Pair-RoCTL. State-RoCTL also appeared in [29], here
we provide more details on the proofs and consider corollaries such as model
checking. Section 7 on related work was not published in the conferences.

We use a slightly different definition of RoCTL* structures in this paper
than some previous papers. RoCTL* structures distinguish between successful
and failing transitions. This can be done naturally by having two accessibility
relations, one for failure transitions, and one for success transitions [1]. However,
when discussing translations to CTL and CTL* it is helpful to restrict ourselves
to traditional CTL/Kripke models that only have one accessibility relation. For
any RoCTL* structure we can (1) split worlds which have both incoming success
and failure transitions, (2) put a special “violation” atom at the end of failing
transitions, and merge the success and failure accessibility relation. We call the
resulting logic over Kripke structure RoCTL*v.

In this paper we define RoCTL* as the restriction of RoCTL*v that prohibits
the violation atom occurring in formulas. This change in notation does not
affect which formulas are satisfiable. Given the translation between the models
is trivial and linear, this difference does not affect other properties such as
model checking complexity either, so we consider this an alternate notation for
the same logic. For a more thorough discussion of RoCTL* and related logics,
see the PhD thesis [5]. For a more thorough discussion of related work, see
Section 7.
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2. RoBCTL*, RoCTL*, CTL* and CTL

In this section we define RoBCTL*, RoCTL*, CTL* and CTL. We first
provide some basic intuitions and definitions starting with our set of variables.

Deontic logics allow us to express what ought to be. The simple modal logic
known as “KD” or “K” divides worlds/states into allowable states where all
obligations are fulfilled, and disallowed states that fail some obligation. It may
be more natural to talk about allowed and disallowed actions.

The intuition behind RoCTL* is that there are two types of transitions:
failure transitions and success transitions. A failure transition is a possible
transition where some form of failure occurs, for example losing a packet. A
success transition represents a transition that occurs when the system is acting
as it should. This was how RoCTL* was defined in [1]. In this paper we compare
RoCTL* to CTL*. To do this we need to define RoCTL* on CTL* structures.
As CTL* only has a single transition relation, we will instead use a special atom
v, used to indicate that the last transition was a failure. To convert an original
RoCTL* structure to this new CTL* based RoCTL* structure, we can unroll
the structure into a tree so that every state has at most one possible parent,
and add the v atom to the states reached by failure transitions. For a full proof
of equivalence of these definitions see [5].

The RoCTL* logic is designed to represent robust systems. That is, systems
that ensure that some goals are met even in the face of a certain number of
failures occurring. Note that a failure transition may not involve the system
failing to achieve any of its goals. For example, even a real time system may
be able to recover fully from some fixed number of packets losses, and a single
bit error in ECC memory may cause no harm. A particular failure transition
may happen to have a beneficial effect, such as flipping a bit that has already
been flipped once. However, given an assumption that the number of failures is
no more than some number n, we may be able to verify that a system achieves
some/all of its goals.

Definition 1. We let V be our set of variables. The set V contains a special
variable v. A valuation g is a map from a set of worlds S to the power set of
the variables.

The statement p ∈ g(w) is to be read as “the variable p is true at world w”.
The v atom will be used to represent failure transitions. In the terminology of
Deontic logic, it is forbidden to follow a path with a failure transition. While
the interpretation of forbidden depends on the domain of application, from the
point of view of robust systems it is natural to think of a failure transition being
the result of an event not desired by the designer of the system, but that the
designer wishes to account for, such as a corrupted network packet or mistake
by a user of the system.

Informally it may be possible to enter a state labelled with v, but it is
forbidden to do so; entering such a state will be considered a failure.

As is normal we say a binary relation is serial if every element has a successor.
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Definition 2. We say that a binary relation R on S is serial (total) if for every
a in S there exists b in S such that aRb.

While in some logics the truth of formulas depends solely on the current
world, the truth of CTL* and BCTL* (and hence RoCTL* and RoBCTL*) may
depend on which future eventuates. These futures are represented as infinitely
long (full) paths through the structure. For this reason, we provide a formal
definition of fullpaths.

Definition 3. We call an ω-sequence σ = 〈w0, w1, . . .〉 of worlds a fullpath iff
for all non-negative integers i we have wiRwi+1. For all i in N we define σ≥i to
be the fullpath 〈wi, wi+1, . . .〉, we define σi to be wi and we define σ≤i to be the
sequence 〈w0, w1, . . . , wi〉.

Note that the indices in the definition above start at 0 and can be thought
of as a distance. We now define allowable sets of fullpaths called bundles.

Definition 4. We say that a set of fullpaths Π is suffix closed iff for all π ∈ Π
and positive integers i we have π≥i ∈ Π. We say that a set of fullpaths Π is
fusion closed iff for any pair of non-negative integers i, j and fullpaths σ, π ∈ Π
such that σi = πj we have σ≤i ·π≥j+1 ∈ Π. We say a non-empty set of fullpaths
B through (S,R) is a bundle of (S,R) iff B is suffix and fusion closed.

Motivation for bundled logics has been given in other publications. For
example, it can be difficult to adapt some satisfiability checking techniques
to non-bundled logics with the limit-closure property [20], and certain fairness
constraints can be naturally expressed in a restricted bundled logic BCTL which
has singly exponential satisfiability checking procedure [14, 15]. We will explain
the need for suffix and fusion closure in terms of the semantics and satisfiable
formulas in Example 12.

The difference between “bundled” and non-“bundled” logics is that unbun-
dled logics do not need to be limit closed. The limit closure property is rarely
used explicitly, as bundled logics do not require that their bundles be limited
closed. Unbundled logics can be defined more simply without using bundles but
rather just quantifying over all paths; however, the semantics of CTL* can be
equivalently defined using bundles that are also required to be limit closed. To
illustrate the difference between bundled and non-bundled logics we will now
define limit closure. Informally, limit closure means that if every prefix of a
path is in the bundle, the path is in the bundle.

Definition 5. We say that a set of fullpaths Π is limit closed when for every
fullpath σ, if for all i ∈ N there exists π ∈ Π such that π≤i = σ≤i then σ ∈ Π.

We now provide a definition of a structure.

Definition 6. A BCTL-structure M = (S,R, g,B) is a 4-tuple containing a set
of worlds S, a serial binary relation R on S, a valuation g on the set of worlds
S and a bundle B on (S,R). We say M is a RoBCTL-structure if every world
has an allowed successor, that is for all x ∈ S there exists (x, y) ∈ R such that
v /∈ g(y).
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· · ·
πi+1 πn−1πi+2 πn

σ0 σ1
σ

α

βα
π

αα

αα
σi

Figure 1: Example of Deviation π satisfying αUβ

We now define the property of failure-freeness. This means that, in the
future, no failing transitions are taken. Informally, a failure-free fullpath repre-
sents a perfect future. This is somewhat similar to a very simple traditional de-
ontic logic [30, 31] called Standard Deontic Logic (SDL). SDL is the modal logic
K with the addition of seriality on the Krikpe semantics, meaning that what
is morally necessary (or obligatory) is also permissible. Whereas the Obliga-
tory operator in Standard Deontic Logic quantifies over acceptable worlds, the
Obligatory operator we will define quantifies over failure-free fullpaths.

Definition 7. We say that a fullpath σ is failure-free iff for all i > 0 we have
v /∈ g (σi). We define δω(w) to be the set of all fullpaths in B starting with
world w and δ0(w) to be the set of all failure-free fullpaths in B starting with
w. We call a BCTL-structure a RoBCTL-structure iff δ0(w) is non-empty for
every w ∈ S.

We choose the notation above as δω includes paths with potentially an infi-
nite number of failures and δ0 only includes paths without any failures.

We will now define deviations. We will use the notation δ+ as informally
deviations represent the possibility of adding an additional failure to some step
i along a path. After i we follow a different path, and we allow only a single
failure not on the existing path so no failures occur after i+ 1.

Deviations are intended to represent possible failures we may wish to be
able to recover from, and if our system is robust to failures we also want it
to be robust in the face of correct transitions. For this reason we allow the
new transition added at step i to be a success as well as a failure. In addition
the robustly operator we will define quantifies over the present path as well as
deviations from that path. This is because it would be odd to say that a goal
is robustly achieved if it will not be achieved. For example, in Figure 3 all
deviations (and deviations of deviations etc.) of σ reach p, but not σ itself. It
would be odd to say that σ robustly ensures that we would eventually reach a
p. These conventions are also followed by previous work on RoCTL* [1].

Definition 8. For two fullpaths σ and π in the bundle B we say that π is
an i-deviation from σ iff σ≤i = π≤i and π≥i+1 ∈ δ0(πi+1). We say that π is
a deviation from σ if there exists a non-negative integer i such that π is an
i-deviation from σ. We define a function δ+ from fullpaths to sets of fullpaths
such that where σ and π are fullpaths in B, the fullpath π is in δ+(σ) iff π is a
deviation from σ.
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πi+1 πi+2
π

σ0 σ1

α α
σn−1 σn

α β
σσi

Figure 2: Path σ satisfying αUβ, and π which deviates after β occurs

σ1
σσiσ0

v v v

p p p

Figure 3: Example where p occurs on all deviations of σ, but not σ itself.

Note that deviations always have a finite number of failures along the path,
since i is always finite.

For an example of a formula being satisfied along a deviation, see Figure
1. In this example αUβ is satisfied along the deviation as α is satisfied along
the original path up to σi, where the deviation occurs, and then αUβ continues
to be satisfied along the deviation. More trivial examples are also possible. In
Figure 2 we see that we reach β before the deviation occurs, so αUβ is likewise
satisfied along the original path.

We see that δ0 (σ0) ⊆ δ+(σ) ⊆ δω(σ0). Bundled logics are semantic variants
that share the original syntax. Where p varies over V, we define the well formed
formulas of RoCTL* and RoBCTL* formulas according to the following abstract
syntax:

φ := α | ¬φ | (φ ∧ φ) | (φUφ) | gφ |Nφ
α := p | ¬α | (α ∧ α) |Aφ |Oφ .

The α formulas above are called state formulas. Formulas that are not state
formulas are called path formulas. To allow for alternative semantic interpreta-
tions of RoBCTL* and RoCTL* (such as in [32]), we do not consider a formula
that explicitly contains v to be a RoBCTL* formula, although our results work
equally well for such formulas and the behaviour of the O and N operators
do depend on v. We call the logic without the restriction on v appearing in
formulas RoBCTL*v.
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The ¬, ∧, g, U and A are the familiar “not”, “and”, “next”, “until” and
“all paths” operators from CTL.

Definition 9. We say that a pair of formulas φ, ψ are equivalent (φ ≡ ψ) iff
for all structures M and paths σ through M :

M,σ � φ ⇐⇒M,σ � ψ .

We now define the abbreviations in terms of the base operators as follows:
⊥ ≡ (p ∧ ¬p), > ≡ ¬⊥, φ ∨ ψ ≡ ¬ (¬φ ∧ ¬ψ), ♦φ ≡ (>Uφ), φ ≡ ¬♦¬φ,
φWψ ≡ (φUψ)∨ φ, Eφ = ¬A¬φ, φ→ ψ ≡ (¬φ ∨ ψ) and φ↔ ψ ≡ (φ→ ψ)∧
(ψ → φ) are defined as in CTL*. As with Standard Deontic Logic (SDL, also
known as KD or D) [30] logic, we define Pφ ≡ ¬O¬φ. Note that unlike Aφ and
Eφ, a formula of the form Nφ is a path formula rather than a state-formula.
Finally, we define the dual 4 of N as the abbreviation 4φ ≡ ¬N¬φ. We call the
O, P, N, 4 operators Obligatory, Permissible, Robustly and Prone respectively.

In this paper we will also consider two syntactic sublogics of RoCTL*, “Pair-
RoCTL” and “State-RoCTL”. These will be discussed in Sections 5 and 6.

Definition 10. The syntax of Pair-RoCTL is defined by the following:

φ := φ ∧ φ | ¬φ | p |Aψ |Oψ |Nψ

ψ := φ
¬
Uφ |φUφ | gφ

The Release operator
¬
U above is defined such that φ

¬
Uψ ≡ ¬ (¬φU¬ψ). Note

that the addition of
¬
U to the BNF above is a convenience so that we do not

have to include the three path operators E, P, and 4 as E(φUψ), P (φUψ) and

4 (φUψ) can be represented as ¬A(¬φ
¬
U¬ψ), ¬O(¬φ

¬
U¬ψ) and ¬N(¬φ

¬
U¬ψ)

respectively.

Definition 11. We define State-RoCTL formulas as follows:

α := Aθ |Eθ |E gα |Oθ |Pθ |P gα |α ∧ α | ¬α | p
θ := 4θ |Nθ |αUα

Formulas of the form θ will not be called State-RoCTL formulas, instead they
will be called State-RoCTL path-formulas. In State-RoCTL the distinction
between state and path formulas is important. We will use the symbols α and
β to refer to state formulas in this section. The symbol θ will be used to refer
to a path-formula, and the symbols φ and ψ will be used to refer to formulas
that may be either state or path formulas. Additionally where we could write
something like M,σ≥i � α we will instead write M,σi � α to remind ourselves
that, as α is a state formula, the choice of the remainder of the path is irrelevant
to the truth of α.

We define similar abbreviations to CTL, for example we use O gα as an
abbreviation for ¬P g¬α. Additionally, note that the first transition of a de-
viation can be any success or failure transition leading away from the current
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node. As such it is clear that 4 gα ↔ E gα and N gα ↔ A gα are valid for
any state formula α. Thus we treat 4 gα and N gα as abbreviations for E gα
and A gα respectively. Note that these last two abbreviations are not valid for
RoCTL*, 4 gα is only equivalent to E gα because in State-RoCTL we know
that α is a state-formula.

We define truth of a RoBCTL* formula φ on a fullpath σ = 〈w0, w1, . . .〉 in
a RoBCTL-structure M recursively as follows:

M,σ � gφ iff M,σ≥1 � φ

M, σ � φUψ iff ∃i ∈ N, s.t. M,σ≥i � ψ and;

∀j ∈ N, j < i =⇒ M,σ≥j � φ

M, σ � Aφ iff ∀π ∈ δω(σ0), M, π � φ

M, σ � Oφ iff ∀π ∈ δ0(σ0), M, π � φ

M, σ � Nφ iff ∀π ∈ δ+(σ), M, π � φ and M ,σ � φ .

The definitions for p, ¬ and ∧ are as we would expect from classical logic.

M,σ � p iff p ∈ g(σ0)

M,σ � ¬φ iff M,σ 2 φ
M, σ � φ ∧ ψ iff M,σ � φ and M,σ � ψ .

The intuition behind the N operator is that it quantifies over paths that could
result if a single failure was introduced; the deviations have at most one failure
not on the original path, and they are identical to the original path until this
failure occurs. The definition of bundles used in this paper have been used
previously in the definition of BCTL* (see for example [9]); however, we will
now show that some intuitively unsatisfiable formulas would be satisfiable if we
did not require bundles to be suffix and fusion closed.

Example 12. If we relaxed the suffix closure requirement, then the formula
E g( gp ∧A g¬p) would be satisfiable. If not for suffix closure we could have
a path σ ∈ B such that M,σ � ggp but not have any path σ≥1 ∈ B starting
at σ1 such that σ≥1 � gp. If the fusion closure requirement was relaxed, the
formula A ggp ∧ E gE g¬p would be satisfiable. Using fusion closure we see
that if there are paths σ, π ∈ B such that π0 = σ1 and π0 � g¬p then there
must exist a path σ0 · π which starts at σ0 and M, (σ0 · π) � ggp, whereas
without fusion closure there would be no requirement that such a path exists.
Note that since we do not require that the bundles be limit closed, the limit
closure axiom [33] of CTL* is not valid in BCTL*:

A (Eα→ E g(EβUEα)) → (Eα→ E (EβUEα)) .

Definition 13. A function τ from formulas to formulas is truth-preserving iff
for all M,σ and φ it is the case that M,σ � φ ⇐⇒ M,σ � τ (φ). We
say that a function τ from formulas to formulas is satisfiability-preserving iff:
∃M,σ s.t. M,σ � φ ⇐⇒ ∃M ′, σ′ s.t. M ′, σ′ � τ (φ).
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Given that traditional modal logics define truth at worlds, instead of over
paths, many important properties of modal logics assume such a definition of
truth. When dealing with those properties we can use the following definition
of truth of RoBCTL* formulas at worlds.

Definition 14. A RoBCTL* state formula is true at a world if it is true on
some path leading from that world, or more formally:

M,w � α iff ∃π s.t. π0 = w and M,π � α .

For the purposes of this paper it is most natural to define RoCTL* as
RoBCTL* with an additional restriction of the models.

Definition 15. A RoCTL-structure (S,R, g,B) is a RoBCTL-structure where
B contains every possible path through R. Likewise, a CTL-structure is a
BCTL-structure where B contains every possible path through R.

Note that the original definition of RoCTL-structures [6] did not have B,
but was rather a 3-tuple (S,R, g). Since B is determined by R in a RoCTL-
structure, we can consider (S,R, g) as an abbreviation of (S,R, g,B). This
leaves the definition of RoCTL* in this paper equivalent to the previous one.

We define CTL* to be the syntactic restriction of RoCTL* without O or N.

Definition 16. Where p varies over V, we define CTL* formulas according to
the following abstract syntax:

φ := p | ¬φ | (φ ∧ φ) | (φUφ) | gφ |Aφ .

CTL* was proposed as an extension to CTL, which in turn was proposed as
an extension of UB Logic that added an until operator [20]. However, here it
is more convenient to define CTL as a syntactic restriction of CTL*, with the
following syntax [3]:

φ ::= p | ¬φ | (φ ∧ φ) |A (φUφ) |E gφ |E (φUφ) .

In CTL, we treat A gφ, A♦φ and A (φWψ) as abbreviations of ¬E g¬φ, A (>Uφ)
and ¬E ((¬ψ) U (¬φ ∧ ¬ψ)) respectively. Likewise, in CTL, we treat E♦φ and
E (φWψ) as abbreviations of E (>Uφ) and ¬A (¬ψU (¬φ ∧ ¬ψ)). Finally, we
define A φ and E φ as abbreviations of ¬E♦¬φ and ¬A♦¬φ.

The following lemma will not be used in any proofs. It is included to make
the subtle distinction between bundled versus unbundled logics more clear and
in particular when they are interchangeable.

Lemma 17. Given a formula φ that does not contain U (or the abbreviations
♦ and that use U), φ will be satisfiable in RoCTL* iff it is satisfiable in
RoBCTL*.

Proof. It is clear that limit closure only has an effect on infinitely long paths.
For a more detailed proof, see the Section 3.3.4 of the PhD thesis [5].
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We now define some operators for comparing formulas.

Definition 18. For any pair of formulas (φ, ψ), we say that φ v ψ iff φ is a
subformula of ψ. As normal where S is a set we define the size |S| of S as the
number of elements of S. For a formula φ, we define the length |φ| of φ to be
the total number of occurrences of symbols in the representation of φ excluding
parentheses. For example, |(p ∧ p)| is three as p occurs twice and ∧ occurs once.

Proposition 19. RoCTL* (RoBCTL*) is a conservative extension of CTL*
(BCTL*).

If a BCTL* formula φ is satisfiable in BCTL* then there is a BCTL-structure
M that satisfies φ and does not have the special atom v. As M does not contain
the special atom v, we see that the BCTL-structure is a RoBCTL-structure.

If a BCTL* formula φ is satisfiable in RoBCTL*, then there exists a RoBCTL-
structure M that satisfies φ. Since RoBCTL-structures are a subclass of BCTL-
structures, M is also a BCTL-structure. We see that M satisfies φ under the
BCTL* semantics as they are the same as the RoBCTL* semantics for the
BCTL* operators. The same argument can be made for RoCTL*/RoCTL*.

Theorem 20. When interpreted over Ro(B)CTL-structures, BCTL*v is expres-
sively equivalent to RoBCTL*v.

Proof. First it is clear that as BCTL*v is just a syntactic restriction of RoBCTL*v,
it cannot have greater expressive power. It is trivial to see that

Oφ ≡ A ( g ¬v→ φ) .

With a bit more effort it can be shown that the N operator can also be translated
into BCTL*v [6]. This provides a truth preserving translation from RoBCTL*
into BCTL*.

The same argument can also be used to show that RoCTL*v has the same
expressive power as CTL*v.

Proposition 21. When interpreted over Ro(B)CTL-structures, RoCTL* (RoBCTL*)
has the same effective expressive power as CTL* (BCTL*).

Recall that RoCTL* is defined here as a syntactic restriction of RoCTL*v that
is not allowed to include the special atom v in formulas. So clearly RoCTL*v
is at least as expressive as RoCTL* (technically it is strictly more expressive
as v cannot be translated into RoCTL*). Thus CTL*v is also more expressive
than CTL*. Since RoCTL* is a syntactic extension of CTL* it is intuitive that
it would be at least as expressive as CTL*. Indeed interpreted over a CTL-
structure without any appearance of the special atom v in the valuation of any
states, RoCTL* become equivalent to CTL*, and the O and N operators become
equivalent to A. Thus from the above arguments and that RoCTL*v has the
same expressive power as CTL*v we see that the expressive power of RoCTL* is
between (or the same as) that of CTL*v and CTL* (without v).
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However, since CTL*v does not have any special operators that rely on the
special atom v, we see that v is only special in that it is guaranteed to satisfy
A E g¬v. Satisfying A E g¬v isn’t very exciting, particularly since it is
satisfied by any structure that does not have v in the valuation of any states.
Essentially CTL*v is strictly more expressive than CTL* (without v) since it uses
one more atom than CTL* however there is no interesting difference in their
expressive powers. Thus RoCTL*, CTL* and CTL*v may be seen as having the
same effective expressive power.

3. Examples

In this section we present some motivating examples for RoCTL*. For more
examples, see the paper that introduced RoCTL* [6], and the thesis [5].

The following example is taken from [6]. It has been adapted to only use
formulas in the fragment State-RoCTL* of RoCTL* that will be introduced in
Section 6, and is used here as an example of a system that can be expressed in
that fragment.

An important consideration is resource management. For example, leaving
a crusher idle on a mine site can be expensive so it is important to keep it
supplied with ore. We now consider a simplified example where we have to keep
a cat fed. Note that when specifying problems we often need for formulae to
hold everywhere in the model. This can be represented with the simple CTL
operator/pair of CTL* operators A meaning “On every possible future, it is
always the case that”.

Example 22. We have a cat that does not eat the hour after it has eaten. If the
cat bowl is empty we might forget to fill it. We must ensure that the cat never
goes hungry, even if we forget to fill the cat bowl one hour. At the beginning
of the first hour, the cat bowl is full. In this example the failure transitions
represent failing to fill the cat bowl. We have the following atoms:

b “The cat bowl is full at the beginning of this hour”

f “This hour is feeding time”

We can translate the statements above into RoCTL* statements:

1. A (f → A g¬f): (It is true everywhere that) If this hour is feeding
time, the next is not.

2. A ((f ∨ ¬b)→ E g¬b): (It is true everywhere that) If it is feeding time
or the cat bowl is empty, then the bowl could be empty at the next step.

3. A ((¬f ∧ b)→ A gb): (It is true everywhere that) If the bowl is full and
it is not feeding time, the bowl will be full at the beginning of the next
hour.

4. ON (f → b): It is obligatory that, if at most one failure occurs, it is
always the case that the bowl must be full at feeding time.

5. b: The cat bowl starts full.
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In (2) above note that E g¬b would be equivalent to4 g¬b. This is because the
truth of g¬b does not depend on the truth of atoms more than one time step in
the future and RoCTL* does not allow more than one failure per time step, the
operator prone quantifies over deviations, and the deviation could occur now
resulting in arbitrary behaviour for a single time step.

(1) and (3) could be formulated as A (f → A g¬f) and A ((¬f ∧ b)→
A gb) respectively in RoCTL* (but not State-RoCTL*). (4) Represents “If at
most one failure occurs” using O (in a perfect future that ought to occur, that
is one with no failures) and N (even if an additional failure occurs. (5) is a
trivial formula that does not use any operators, but simply states b, indicating
that b is true now (but might not be true in the future). Note that failure is
a property of transitions in the model, and is not explicitly referenced in the
formulas. A failure is represented by following a transition that we ought not
to, one that leads to a state labelled with v. We will present below a model
where failure represents forgetting to fill the cat bowl.

We can construct a model M = (S,R, g,B) of this example. We let S =
{w,w′, u, u′}, g (w) = {b, f}, g (w′) = {b}, g (u) = {v}, g (u′) = {v, f}, R =
{(w,w′) , (w′, w) , (w, u) , (u, u′) , (u,w), (u′, w′) , (u′, u)}, and B be the set of all
possible fullpaths throughR. Where σ is w,w′, w, w′, . . . we see that σ represents
the case where no failures occur, and we keep the cat bowl full at all times. We
see that this path also achieves the requirement (4) above, because a single
failure (represented by reaching a v atom) may result in reaching state u where
the cat bowl is not full, but that does not matter because it is not feeding time.
It would take an additional failure to reach u′ where it is feeding time, but the
bowl is still not full.

Example 23. A simple robustness property is that a single mistake must not
result in a particular error (e) state. This can be represented with φ = ON ¬e.

However, when safety is paramount it is usually important to report near
misses, so that they can be avoided in future. The property “A single mistake
could cause . . . ” can be represented using the4 operator. We can represent the
property that a single deviation could (eventually) cause an error (e) as 4♦e.
We can then represent this “notification” requirement that if such a near miss
will occur, then we will (eventually) warn (w) the user with 4♦e → ♦w. We
can represent the notification property will hold over all possible futures with
the formula ψ = A (4♦e→ ♦w).

Below we give an example of a description of a system that satisfies that
above φ and ψ properties. Proving this provides a motivation for the tableau
that we will define later in the paper.

Example 24. We define a system that will attempt to reach a safe state (rep-
resented by s) and warn (w) the user if the system enters an unsafe state (¬s).
The intuition is that if an error (e) is sufficiently serious then the system should
consider any state where the error could occur within a single step to be unsafe.

1. A O gs: The system should always ensure that the system reaches a
safe state by the next step.
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2. A (s → g¬e): If the system is in a safe state an error e will not occur
at the next step.

3. s ∧ ¬e: The system starts in a safe state with no error.

4. A (¬s→ gw): If the system is in an unsafe state, the system will warn
the user at the next step.

Note that the example above could be adapted to State-RoCTL by replacingg¬e and gw with A g¬e and A gw respectively.
We now adapt an existing example from [34].

Example 25. A sea guard system has three agents: (1) a UAV, (2) a helicopter
and (3) a patrol boat. The helicopter or the UAV can monitor the area (but
not both at the same time). If an unauthorised vehicle is detected then it must
be intercepted by one of the three agents. The helicopter and the UAV do not
both monitor the area at the same time. At most one agent will be sent to
intercept any unauthorised vehicle. Neither the helicopter nor the UAV can
monitor and intercept at the same time. By sending the UAV to intercept the
intruder, its position is revealed. In the following we focus on formalising the
constraints requiring obligation and robustness. The other constraints can be
formalised using propositional logic formulae under the A operators. We use
m1 to represent that the UAV monitors the area and m2 to represent that the
helicopter monitors the area.

The system has five requirements:

1. The UAV must monitor the area. Recall that in RoCTL*, obligations have
to relate to the future to be non-trivial. As no stop time has been given,
we interpret this as forever. Using m1 for the UAV monitoring the area,
this can be represented in RoCTL* as O m1.

2. If the UAV does not monitor the area, the helicopter must monitor the
area. This is a contrary-to-duty obligation, and the natural interpretation
is that if the UAV fails to monitor the area, the helicopter must monitor
the area. This obligation is only relevant when a failure (of the UAV) has
already occurred. For the purposes of this example we do not consider the
possibility that we allow a brief period to activate the helicopter after the
UAV fails. Thus a natural interpretation is that when a single failure (e.g.
of the UAV) has occurred, then if the UAV isn’t monitoring the area the
helicopter must monitor the area. This can be represented in RoCTL* as
ON (¬m1 → m2).

3. If an (u)nauthorised vehicle is in the area, an agent must (i)ntercept it.
As before we can represent this as O u→ i.

4. If all agents fail to intercept the unauthorised vehicle, an agent must
(r)eport this to headquarters. Given that there are three agents to in-
tercept, we may wish to require that this occur even if the face of two out
of the three agents failing (although if we model check this against a model
where the vehicle needs to be detected by either the UAV or helicopter
first, this property might not hold). We can represent this in RoCTL*
with ONN ((u ∧ ¬i)→ r).
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5. The UAV must not reveal its (l)ocation.: O ¬l.

An important consideration in computer systems is liveness, that the com-
puter system will not freeze permanently, so if it receives an infinite number of
requests it will provide an infinite number of responses. Continuing to accept
requests after a failure has occurred may not always be wise. Even if a system
is capable of accepting requests after a failure, a detected failure may suggest
undetected safety problems or trip intrusion detection. Frequently a system
that rejects requests is expected to respond with some form of denial, such as
a “404: file not found” error from a web page, diagnostic information, or an
apology for the inconvenience.

Example 26. Consider a system that processes a stream of requests. A single
failure could leave it unable to accept requests; however, the system should at
least remain live, sending “denied” responses to requests.

1. At the next time it is always both possible that a request is (r)eceived,
and possible that a request is not received A (E gr ∧E g¬r).

2. It ought to be the case that if an infinite number of requests are received,
an infinite number of requests are (a)ccepted: O ( ♦r → ♦a)

3. It ought to be robustly true that if an infinite number of requests are
received, an infinite number of requests should be either accepted or
(d)enied: ON ( ♦r → ♦ (a ∨ d)).

Bundled logics can be more effective for representing fairness. For example,
CTL* and BCTL* are complete for doubly exponential time; however, due to
bundled logic’s ability to encode fairness constraints in the bundle, a BCTL*
tableau can be combined with a singly exponential BCTL tableau in a way
that allows BCTL formulas to be interpreted over BCTL* fairness constraints
of bounded size in singly exponential time [35]. With RoBCTL* we can enforce
the fairness condition that an infinite number of requests are received within
the bundle itself, giving a closely related specification below.

Example 27. Consider a system that processes a stream of requests:

1. (As above) At the next time it is always both possible that a request is
(r)eceived, and possible that a request is not received A (E gr∧E g¬r).

2. Nevertheless, in every future an infinite number of requests will be re-
ceived: A ♦r

3. It ought to be the case that an infinite number of requests are (a)ccepted:
O ♦a

4. It ought to be robustly true that an infinite number of requests should be
either accepted or denied: ON ♦ (a ∨ d).

Note that (1) and (2) above are contradictory under CTL* and RoCTL*. From
(1) we know that at each point there is a next step where g¬r is true; in non-
bundled logics A quantifies over every path through the structure, including
the branch which at every step follows the step where g¬r is true. Since that
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branch never reaches r, ♦r is clearly false, contradicting (2). In a bundled
logic, A only quantifies over the bundle. It is easy to show that the set of
paths on which r occurs infinitely often, through some structure satisfying (1),
is a bundle. It can be natural to impose the fairness constraints on the bundle
itself. For example, if the requests are generated by a fair scheduler then it is a
property of r itself that at each next step r may or may not be true, but r will
be true infinitely often. In this case it is shorter and more natural to specify
this once, rather than within each A and O formula as we would have to under
non-bundled logics.

Fairness also allows a different kind of robustness to be specified. Consider
the case were a request is sent at every time step, but due to packet loss is
only received given some arbitrary independent probability strictly between 0
and 1. In the limit we would expect an infinite number of both packets lost and
packets delivered. Showing that a system remains live under these circumstances
provides a different kind of robustness to the kind provided by the N operator.
The N operator is best used to represent a single failure, or a finite number n
of failures when nested n times.

We will present a translation of State-RoCTL into CTL. Note that State-
RoCTL can also be interpreted over the bundled semantics, and this could be
interpreted as a translation of State-RoBCTL into BCTL. We will not discuss
State-RoBCTL elsewhere in the paper, but we will discuss how to adapt Exam-
ple 28 to State-RoBCTL. First note that while many fairness properties cannot
be translated into CTL, A ♦r is equivalent to A A♦r.

Example 28. Consider a system that processes a stream of requests:

1. At the next time it is always both possible that a request is (r)eceived,
and possible that a request is not received A (E gr ∧ E g¬r). Already
State-RoBCTL/CTL.

2. Nevertheless, In every future an infinite number of requests will be re-
ceived: A ♦r. Equivalent to A A♦r.

3. It ought to be the case that an infinite number of requests are (a)ccepted:
O ♦a. Similarly equivalent to O O♦a

4. It ought to be robustly true that an infinite number of requests should be
either accepted or denied: ON ♦ (a ∨ d). Translating this is less trivial,
but we can use

ON O♦ (a ∨ d) ∧O ON♦ (a ∨ d) .

4. A Tableau for RoBCTL*

Here we define a tableau RoBCTL*-TAB for deciding RoBCTL*v and thus
also the restriction RoBCTL*. This tableau is an extension of Reynolds’ [9]
tableau for BCTL*. As with tableaux for other temporal logics (see [9] for a
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fuller discussion), this tableau is not a tree, the structure of the tableau is essen-
tially an arbitrary graph. The traditional tree-based method for constructing a
tableau is to start with a single node and then build up the tableau by adding
leaves. This tableau technique begins by adding all possible nodes and then acts
like a sculptor, removing nodes but never adding them. Once we have finished
removing nodes we find a model of the formula, provided that it is satisfiable.

An issue with branching temporal logics is that formulas are evaluated over
paths rather than at worlds. As with [9], we handle this by using hues and
colours. The hues correspond to paths, and are sets of formula in the closure set.
The colours represent worlds and are sets of hues. The worlds are represented
as the collection of paths that could start at that world. The nodes of the
tableau are colours, the edges are added between any pair of nodes that satisfy
a temporal successor relation. These colours can be thought of as labels, so the
labels of the tableau are sets of sets of formulas.

There are two major features not present in the BCTL* tableau. We have
instead used a successor function that adds enough formulas to the closure that
we can handle deviations without having to distinguish paths in the Tableau.
For example, the successor of “Next A” is “A”. This can make the closure set
large, although the size of the closure set will be elementary if the alternations
between Robustly and Until are bounded.

Another feature not present in the BCTL* tableau is the ability to deal with
eventualities that change over time. In BCTL* the only eventuality is of the
form “A Until B”, which remains unchanged until it is resolved by B occurring.
In RoBCTL* we have “Eventually a path will deviate and along that path A
will be hold”, at the next step this becomes “. . . the successor of A will hold”.

Definition 29. We define logical operations on sets of formulas S and T as
follows:

(S?T ) = {ε : ∃φ ∈ S, ∃ψ ∈ T s.t. ε = (φ?ψ)} where ? ∈ {U ,∧}
?S = {ε : ∃φ ∈ S s.t. ε =?φ} where ? ∈ {¬,N,A, g,O}

We define the abbreviations 4,E,P,∨,→,↔ on sets similarly.

Definition 30. We let Ξ be some normalisation function from formulas to
formulas such that Ξ (α) = Ξ (β) iff α is equivalent to β under classical logic
taking all subformulas with non-classical operators of highest precedence as
atoms.

Note that the precise choice of Ξ is unimportant, provided the complexity is
moderate compared to the doubly exponential running time of the tableau for
BCTL*. Any usual normalisation such as conjunctive normal form, or picking
the shortest equivalent formula would not affect the theoretical running time
results.

We now wish to give an approximation g−1 of the inverse of the goperator.
There are no past-time operators in RoBCTL*, so it is not possible to representg−1 in RoBCTL* without knowing what atoms were true at the previous state.
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Thus we first define g−1
a , where a is a set of atoms. The intention is that for

any formula φ, fullpath σ through some structure M , then where a is the set of
state formulas true at σ0 we have M,σ � φ ⇐⇒ M,σ≥1 � g−1

a (φ).

Definition 31. For any set of state formulas a, we define a formula translation
function g−1

a .g−1
a (φUψ) =

( g−1
a (φ) ∧ (φUψ)

)
∨ g−1

a (ψ)g−1
a (¬φ) =¬ g−1

a (φ)g−1
a ( gφ) =φg−1

a (φ ∧ ψ) = g−1
a (φ) ∧ g−1

a (ψ)g−1
a (p) =

{
⊥ if p /∈ a
> if p ∈ ag−1

a (Aφ) =
{
⊥ if Aφ /∈ a
> if Aφ ∈ ag−1

a (Oφ) =
{
⊥ if Oφ /∈ a
> if Oφ ∈ ag−1

a (Nφ) =

{
⊥ if A gOΞ

( g−1
a (φ)

)
/∈ a

NΞ
( g−1

a (φ)
)

otherwise

To determine the required closure set, we will now define g−1, g−i and g?
in terms of g−1

a .

Definition 32. We define a function g−1 from sets of formulas to sets of
formulas as follows: given a set of formulas Φ, a formula ψ is a member ofg−1 (Φ) iff there exists ψ ∈ Φ and a set of state formulas a such that ψ ∈g−1

a (ψ).
We now formalise and prove the idea that g−1

a is the inverse of gin the
lemma below.

Lemma 33. If a is the valuation g (π0) of the first world of π and ϑ is a fullpath
such that ϑ0 = π0 then ϑ � φ iff ϑ≥1 � g−1

a φ for any formula φ.

Proof. For any formula φ, let Lφ be the statement: “for all structures, and paths
ϑ through that structure, we have ϑ � φ iff ϑ≥1 � g−1

a φ.”
It is clear that Lφ is true when φ is a state formula or a formula of the formgψ. For some pair of formulas (φ, ψ), say that Lφ and Lψ is true, then:
(=⇒)

1. Say that ϑ � (φUψ),

(a) If ϑ � ψ then ϑ≥1 � g−1
a ψ and so ϑ≥1 � g−1

a (φUψ).
(b) If ϑ 2 ψ then ϑ � φ and ϑ≥1 � (φUψ). Hence ϑ≥1 � g−1

a (φ)∧(φUψ)
and so ϑ≥1 � g−1

a (φUψ).

2. Say that ϑ � ¬φ. Then ϑ 2 φ and so ϑ≥1 2 g−1
a (φ). Finally, ϑ≥1 �

¬ g−1
a (φ).

3. Say that ϑ � φ ∧ ψ. Then ϑ � φ and ϑ � ψ. Thus ϑ≥1 � g−1
a φ and

ϑ≥1 � g−1
a ψ. Hence ϑ≥1 � g−1

a (φ) ∧ g−1
a (ψ) = g−1

a (φ ∧ ψ)
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4. Say that ϑ � Nφ;

(a) thus σ � φ for any deviation σ from ϑ. Note that as a deviation,
σ0 = ϑ0, and hence σ≥1 � g−1

a (φ); additionally for any path σ with
σ0 = ϑ0, if σ≥1 is failure-free then σ is a deviation from ϑ and so
ϑ � A gO g−1

a (φ). As Ξ is a normalisation function, it follows that
ϑ � A gOΞ

( g−1
a (φ)

)
; and

(b) we will show that ϑ≥1 �NΞ
( g−1

a (φ)
)
. Say that σ′ is a deviation from

ϑ≥1. Then from fusion closure of the set of paths B, there exists a
path σ such that σ≥1 = σ′ and σ0 = ϑ0. This path σ is a deviation
from ϑ, and so σ � φ and thus σ′ � g−1

a (φ). Hence ϑ≥1 � N g−1
a (φ).

(⇐=)

1. Say that ϑ≥1 � g−1
a (φUψ) =

( g−1
a (φ) ∧ (φUψ)

)
∨ g−1

a (ψ)

(a) If ϑ≥1 � g−1
a (φ)∧(φUψ) then ϑ � φ and ϑ≥1 � (φUψ) so ϑ � (φUψ).

(b) If ϑ≥1 � g−1
a (ψ) then ϑ � ψ and so ϑ � (φUψ).

2. Say that ϑ≥1 � ¬ g−1
a (φ). Then ϑ≥1 2 g−1

a (φ) and so ϑ 2 φ. Thus
ϑ � ¬φ.

3. Say that ϑ≥1 � g−1
a (φ ∧ ψ). Then, from the definition of g−1

a we have
ϑ≥1 � g−1

a φ and ϑ≥1 � g−1
a ψ. Thus ϑ � φ and ϑ � ψ. Hence ϑ � φ ∧ ψ

4. Say that ϑ≥1 � g−1
a (Nφ). Clearly ϑ≥1 2 ⊥, and so g−1

a (Nφ) 6= ⊥. Thus,
from Definition 31, we know that g−1

a (Nφ) = N g−1
a (φ) and that

A gO ( g−1
a (φ)

)
∈ a .

It follows that ϑ � A gO ( g−1
a (φ)

)
. Say σ is a deviation from ϑ; we will

show that σ≥1 � g−1
a (φ), and so σ � φ. Since every deviation forces φ it

follows that ϑ � Nφ:

(a) as ϑ � A gO ( g−1
a (φ)

)
, if σ is a 0-deviation then σ≥1 � g−1

a (φ);
(b) if σ is an i-deviation where i > 0, then σ≤1 = ϑ≤1 and so σ≥1 is

an (i − 1)-deviation from ϑ≥1. As ϑ≥1 � N g−1
a (φ), it follows that

σ≥1 � g−1
a (φ).

By induction on the length of the formula we see that the lemma holds.

Definition 34. We define g−i recursively as g−i(Φ) = g−1
( g1−i(Φ)

)
andg0 (Φ) = Φ. Let g? (Φ) be the normalised closure of a set of formulas Φ underg−1. That is, φ ∈ g? (Φ) iff there exists a non-negative integer i such that

φ ∈ Ξ
( g−i (Φ)

)
.

For example, g? ({ ggp}) = { ggp, gp, p,⊥,>}. Although g? and g−1

are finite, they can become very large. See Section 4.2 for a detailed discussion
of cardinality.

Recall that v indicates that the previous transition was a failure, and so we
can present “the next transition is a success” with γ = g¬v.

Definition 35. Let γ = g ¬v represent the statement “this path is failure-
free”.
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Note that γ is not a RoBCTL* formula, because it contains v; it is a
RoBCTL*v formula.

Definition 36. The closure clφ of the formula φ is defined as the smallest set
that satisfies the four following requirements:

1. clφ ⊇ {φ, γ}
2. For all ψ ∈ clφ, if α v ψ then α ∈ clφ.

3. For all ψ ∈ clφ, ¬ψ ∈ clφ or there exists α such that ψ = ¬α and α ∈ clφ.

4. If Nψ ∈ clφ then clφ ⊇ N g?(ψ) and clφ ⊇ A gO g?(ψ).

Recall that we have defined logical operations on sets of formulas (Definition 29).
Thus A gO g?(ψ) represents the set of formulas that results when each element
of g?(ψ) is prefixed with A gO.

The requirement (4) above is required to ensure that the successor formulas
from Definitions 32 and 31 are included in the closure set.

Definition 37 (MPC). We say that a ⊆ clφ is Maximally Propositionally
Consistent (MPC) iff for all α, β ∈ a

(M1) if β = ¬α then β ∈ a iff α /∈ a,

(M2) if α ∧ β ∈ clφ then (α ∧ β) ∈ a iff (α ∈ a and β ∈ a)

A hue is roughly speaking a set of formulas that could hold along a single
fullpath. Note though that a hue is underspecified, as {A gp,E g¬p, . . .} could
be a hue even though A gp and E g¬p are clearly not consistent. We will need
many more relations and rules to eliminate other forms of inconsistency from
the tableau.

Definition 38. [Hue] A set a ⊆ clφ is a hue for φ iff

(H1) a is MPC;

(H2) if αUβ ∈ a then α ∈ a or β ∈ a;

(H3) if ¬ (αUβ) ∈ a then β /∈ a; and

(H4) if Aα ∈ a or Nα ∈ a then α ∈ a.

Note that we do not require that α ∈ a if Oα ∈ a. As O is a deontic operator
Oα→ α is not valid.

Let Hφ be the set of hues of φ.

Definition 39. We define a function hφ on paths such that

hφ (π) = {α : α ∈ clφ and π � α}

As H1–4 are simply properties that any set of formulas that hold along the
same path must satisfy, it is clear that the following lemma holds.
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Lemma 40. From the semantics of RoBCTL*, we see that for each π ∈ B,
hφ(π) is a hue.

Proof. (H1) Since the semantics of the ∧ and ¬ operators in RoBCTL* come
from classical logic, it is clear that hφ (π) is MPC.

(H2) If αUβ ∈ hφ (π) then π � αUβ and we see that either β is satisfied
immediately and so π � β or π � α; hence α ∈ hφ (π) or β ∈ hφ (π).

(H3) Likewise if ¬ (αUβ) ∈ hφ (π) then we see that π 2 αUβ and so π 2 β
and so β /∈ hφ (π), demonstrating that H3 is satisfied.

(H4) If Aα ∈ hφ (π) then π � Aα and so all paths starting at π0, including
π, satisfy α. Likewise if Nα ∈ hφ (π) then π � Nα and so π � α. Either way
α ∈ hφ (π).

The following lemma motivates the definition of g−1
a φ. We will now de-

fine a temporal successor relation rX on hues, so called because it will satisfy
hφ (π) rXhφ (π≥1) for all paths π. The definition below is similar to that found
in [9], but with the additional requirements (R5) and (R6).

Definition 41. [rX ] The temporal successor rX relation on hues is defined as
follows: for all hues a, b put (a, b) in rX iff the following conditions are satisfied:

(R1) gα ∈ a implies α ∈ b

(R2) ¬ gα ∈ a implies α /∈ b

(R3) αUβ ∈ a and β /∈ a implies αUβ ∈ b

(R4) ¬(αUβ) ∈ a and α ∈ a implies ¬(αUβ) ∈ b

(R5) Nα ∈ a implies g−1
a (Nα) ∈ b

(R6) ¬Nα ∈ a implies ¬ g−1
a (Nα) ∈ b

We will now define a relation on hues rA, which informally relates hues which
describe paths that can start at the same state.

Definition 42 (rA). For hues a, b, we put (a, b) in rA iff the following conditions
hold:

(A1) Aα ∈ a iff Aα ∈ b and Oα ∈ a iff Oα ∈ b

(A2) For all p ∈ V, we have p ∈ a iff p ∈ b

Note that if (a, b) ∈ rA then for all formulas ψ we have g−1
a (ψ) = g−1

b (ψ) (i.e.g−1
a = g−1

b ). The rA relation is used to specify which pairs of hues can exist
in the same “colour”; a colour represents a set of hues for paths which could
start at the same world.

Definition 43. A set of hues C is a colour of φ iff

(C1) for all a, b ∈ C we have (a, b) ∈ rA; and
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(C2) if a ∈ C and ¬Aα ∈ a or ¬Nα ∈ a then there is b ∈ C such that
¬α ∈ b; and

(C3) if a ∈ C and ¬Oα ∈ a then there is b ∈ C such that ¬α ∈ b and
γ ∈ b; and

(C4) there exists a ∈ C such that γ ∈ a

(where γ was defined in Definition 35).
Let Cφ be the colours of φ. We define a successor relation on Cφ as follows:

Definition 44 (RX). We define a temporal successor relation RX on colours
as follows: for all C,D ∈ Cφ, put (C,D) ∈ RX iff for all b ∈ D there exists
a ∈ C such that (a, b) ∈ rX .

Definition 45. We define the pre-tableau (for φ) to be (Cφ, RX , Hφ, rX).

4.1. Pruning the Pre-Tableau

The temporal successor relations ensure that each step of the pre-tableau is
consistent. Note though that for any finite n, the formula ♦φ does not require
that φ occur in any of the next n steps. Thus each time-step being consistent
with the next is not enough to ensure that ♦φ is satisfied. We will use the term
eventuality to informally describe formulas for which the consistency of each
temporal step is not sufficient to ensure that the formula is really satisfied on
the resulting model.

The following pruning procedure is based on the technique used in [9]. How-
ever, to extend this technique to RoBCTL* a new type of eventuality must be
considered: ¬Nψ. This formula can be interpreted as “either ¬ψ or there exists
a path which eventually deviates, and ¬ψ holds along that path.” It is neces-
sary to explicitly handle this eventuality. Imagine a pre-tableau with only one
colour C = {{¬N p, p, p,¬v,>}}, it is clear that (C,C) ∈ RX so without
handling eventualities of the form ¬Nψ this colour would not be pruned. We
need to ensure that eventually a path deviates on which p is false. The rules
(1) and (2) below correspond to removal rules 1 and 2 from [9], but the rule (3)
is original.

Initially, we let the set S′ of colours be equal to Cφ. We say that a 3-tuple
(C, c, α) is an instance iff C ∈ S′, c is a hue, α is a formula and α ∈ c ∈ C.
We iteratively remove colours from S′ according to the following rules until no
more colours can be removed:

1. Remove C from S′ if we cannot find successors for every hue in C. That
is, we remove C from S′ if there exists a hue c in C such that for every
D ∈ S′,
(a) (C,D) /∈ RX , or
(b) for every d ∈ D, the pair (c, d) /∈ rX .
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2. An instance (C, c, αUβ) is directly fulfilled iff β ∈ c. Initially, an instance is
fulfilled iff it is directly fulfilled; we iteratively mark (C, c, αUβ) as fulfilled
iff there exists a fulfilled instance (D, d, αUβ) such that (C,D) ∈ RX and
(c, d) ∈ rX . We finish when we can no longer mark instances as fulfilled.
Finally, for all instances (C, c, αUβ) that are not fulfilled, we remove C
from S′.

3. An instance (C, c,¬Nα) is directly fulfilled iff A gOΞ
( g−1

c (α)
)
/∈ c or α /∈

c. Initially, an instance is fulfilled iff it is directly fulfilled; we iteratively
mark (C, c,¬Nα) as fulfilled iff there exists a fulfilled instance (D, d,¬Nα′)
such that (C,D) ∈ RX , (c, d) ∈ rX and Nα′ = g−1

c (Nα); we finish when
we can no longer mark instances as fulfilled. Finally, for all instances
(C, c,¬Nα) that are not fulfilled, we remove C from S′.

Definition 46. We say that the tableau “RoBCTL*-TAB” succeeds if there
exists a hue h and colour C such that φ ∈ h ∈ C ∈ S′ after the pruning is
complete. We say that a tableau algorithm halts iff the construction process is
finite.

4.2. Cardinality of the Closure Set

The complexity of the tableau is doubly exponential with respect to |clφ|.
To see this note that the set of hues is a subset of 2clφ and so the set of colours
is a subset of 22clφ

. Thus constructing all the colours can be done in 22|clφ| time.
The time required to prune a colour is polynomial in the number of colours.

We see |clφ| is linear with respect to |φ|maxψvφ | g? ({ψ})|, from Defini-
tion 36 of clφ. Thus if | g? ({ψ})| is n-exponential then the overall complexity
of the tableau is (n+ 2)-exponential. In this section we will discuss the size of
| g? ({ψ})|.

Theorem 47. When we require that there are no more than m pairs of alter-
nations between N and U that are not broken by an A (or O) then | g? ({ψ})|
is 3m-exponential on the size of the formulas.

We prove this by showing that we can build | g? ({ψ})| recursively: below
we show that we can recurse through any number of N operators with a singly
exponential blowup until we reach a U operator, and we can recurse through
any number of U operators with a doubly exponential blowup until we reach a
N operator.

Lemma 48. Say that Φ is a set of formulas each starting with N, and ψ is a
formula constructed from x instances of state formulas, y instances of ∧, U , g,¬
operators (we exclude the N operator) and elements of Φ. Then g? ({ψ}) is
doubly exponential with respect to x+ y + maxφ∈Φ

g? (φ).

Proof. Let C be a function such that C(Φ) represents all normalised classical
formulas with the elements of Φ as atoms. Note that a truth table on n atoms
has 2n rows, and hence there are 22n equivalence classes on such formulas. It

follows that |C(Φ)| ≤ 22|Φ| . Let
¸

be a function from formulas to sets of formulas
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such that φ ∈
¸

(ψ) iff gφ v ψ or φ = (φ1Uφ2) v ψ. For any set of formulas Φ,
we define

¸
(Φ) as

⋃
φ∈Φ

¸
(φ). We see that the following statement holds:

g? ({ψ}) ⊆ C

 ¸ (ψ) ∪

 ⋃
Nφ∈Φ

g? ({Nφ})


It follows that g? ({ψ}) ∈ O

(
22(x+y)+

∑
Nφ∈Φ

g?({Nφ})
)

. In other words, g? ({ψ})

is doubly exponential with respect to x+ y + maxφ∈Φ
g? ({φ}).

Definition 49. When considering some formula ψ, let # (φ) be the number
of times that φ occurs in ψ without being part of a state formula (not nested
inside an O or A).

Lemma 50. Say that Φ is a set of formulas, and ψ is a formula constructed from
any number of instances of ∧ and ¬ operators, x instances of state formulas,
y instances of N operators, and z instances of goperators (we exclude the U
operator) and elements of Φ. Then | g? ({ψ})| is singly exponential with respect
to x+ y + z + maxφ∈Φ

g? ({φ}).

Proof. Consider the set g−i ({ψ}). By inspecting the definition of g−1 we
see that we have two choices when we reach a state formula, > and ⊥. When
we reach a N operator, we have two choices, terminate with ⊥ or continue
to recurse. It is clear that for all φ ∈ Φ and j ∈ [0,∞] it is the case that∣∣ g−j ({φ})

∣∣ ≤ | g? ({φ})|. By taking the product of all these cases we get the
following: ∣∣ g−i ({ψ})

∣∣ ≤ 2x2y
∏
φ∈Φ

| g? ({φ})|#(φ)

Note that g−1 removes any goperator or state formula that is not inside angor U operator. It is clear from induction that g−i will have removed anygoperator or state formula that is not inside i goperators or a U operator.
Since ψ does not contain any U operator that does not form part of a φ ∈ Φ,
it is the case that for i > z we no element of g−i ({ψ}) would contain an g
operator that does not form part of an element of | g? ({ψ})|, and have already
replaced all state formulas which do not form part of an element of | g? ({ψ})|
with either > or ⊥. It follows that∣∣∣∣∣⋃

i>z

g−i ({ψ})

∣∣∣∣∣ ≤ 2x2y
∏
φ∈Φ

| g? ({φ})|#(φ)
.

Since g? ({ψ}) =
⋃
i≥0 Ξ g−i ({ψ}) and g−0 ({ψ}) = 1,

| g? ({ψ})| =

∣∣∣∣∣∣
⋃
i≥0

g−i ({ψ})

∣∣∣∣∣∣ ≤ 1 + (1 + z) 2x2y
∏
φ∈Φ

| g? ({φ})|#(φ)
.
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Corollary 51. The tableau provides a 3-exponential decision procedure for the
fragments of RoCTL* and RoBCTL* without Until.

Proof. Clear from Lemmas 50 and 17.

Definition 52. Let Nn be a sequence NN . . .N of n instances of the N operator.

We see that also g? ({Nnφ}) = {Nx : x ∈ g?(φ)} ∪ {⊥}. The Nn operator
is interesting as it represents the statement “even with n additional failures”
and a significant factor in the design of the N was to provide a simple unimodal
operator that could represent this statement. However, in the QCTL* based
decision procedure for RoCTL* [32] the Nn operator involves a non-elementary
blowup in the complexity. By comparison, in this tableau the complexity is
independent of n in Nn.

ψ ::=φ ∧ φ | ¬φ |Aψ |Oψ | gψ |Nψ |αUα
α ::=α ∧ α | ¬α |Aψ |Oψ | gα |Nβ |αUα (inside U)

β ::=β ∧ β | ¬β |Aψ |Oψ | gβ |Nβ (inside U , N)

We now show that when we restrict ourselves to formulas without a U op-
erator nested within a N operator nested within a U operator (unbroken by an
A or O), the tableau running time become elementary.

Corollary 53. | g? ({ψ})| is 4-exponential with respect to ψ and the running
time of the tableau is at worst 6-exponential when we restrict input as described
by the following BNF:

ψ ::=φ ∧ φ | ¬φ |Aψ |Oψ | gψ |Nψ |αUα
α ::=α ∧ α | ¬α |Aψ |Oψ | gα |Nβ |αUα (inside U)

β ::=β ∧ β | ¬β |Aψ |Oψ | gβ |Nβ (inside U , N)

Proof. Let Φ1 be the set of formulas that do not contain any U operators. From
Lemma 50 we see that | g? ({φ})| is singly exponential in |φ| for φ ∈ Φ1. Let
Φ2 be the set of formulas that consist only of elements of Φ1 and operators
other than U . From Lemma 48 we see that | g? ({φ})| is 3-exponential in |φ| for
φ ∈ Φ2. Let Φ3 be the set of formulas that consist only of elements of Φ2 and
operators other than N. From Lemma 48 we see that | g? ({φ})| is 4-exponential
in |φ| for φ ∈ Φ3. We see that Φ3 is precisely the set of formulas that do not
contain a U operator nested within a N operator nested within a U operator,
and furthermore that g? ({Aφ}) = g? ({Oφ}) = {>,⊥}, and so these nestings
would not pose a problem if broken by an O or A. Finally since the tableau is
2-exponential in the size of the closure set the result follows.

The potential real world uses for Ro(B)CTL* suggested by examples such
as those in Section 3, do not require multiple alternations between U and N and
so they would be elementary to decide (at worst 6-exponential). Also clearly
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| g? ({ψ})| is O (1) for fixed ψ or for ψ of fixed length. As such clφ is linear on |φ|
when the length of the subformulas with N as the operator of highest precedence
is bounded, and complexity is 2-exponential like CTL*. This indicates that we
can introduce some (fixed) RoBCTL* properties into a set of systems specified
in BCTL* without affecting the overall complexity.

4.3. Soundness

In this section we prove the following lemma.

Lemma 54. RoBCTL*-TAB is sound, that is, if it succeeds on φ then φ is
satisfiable in RoBCTL*

Say that RoBCTL*-TAB finishes with the set S′ of colours. Then we define a
RoBCTL-structure (S,R, g,B) as follows: the transition frame (S,R) is simply
(S′, RX), and the valuation g (C) of a world/colour C contains an atom p iff the
hues in C contain p. We now define the set of bundled paths B.

We will now define a thread. Informally, a thread is a sequence which demon-
strates the existence of a path which satisfies some hue h0 in some colour c0.
To do this it provides a sequence of hues and colours in rX and RX . To under-
stand the need for restrictions on this sequence, recall firstly that (αUβ) is not
satisfied unless we eventually reach a β. Secondly ¬Nα is equivalent to 4¬α,
and is only satisfied if ¬α is true on the current path, or if we can eventually
deviate onto a path where ¬α is satisfied. This second requirement requires
a more complex definition, as the eventuality that we need to satisfy changes.
For example, if 4¬ ggp is in h0 then this eventuality becomes 4¬ gp in the
subsequent hue h1. This is because if there is a deviation needs to ¬ gp to
ensure ¬ ggp is satisfied in the previous step.

Definition 55. We call an ω-sequence 〈(c0, h0) , (c1, h1) , . . .〉 a thread through
S′ iff for all i ≥ 0: each ci ∈ S′, each hi ∈ ci, each (ci, ci+1) ∈ RX , each
(hi, hi+1) ∈ rX . We say that this is a fulfilling thread iff for all i ≥ 0

1. For all formulas of the form (αUβ) in hi, there exists j ≥ i such that
β ∈ hj

2. For all formulas of the form ¬Nα in hi, ¬α ∈ hi or there exists j ≥ i such
that g−1

hj
g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα) = ⊥

We include a fullpath σ = 〈c0, c1, . . .〉 in B iff there exists a fulfilling thread
〈(c0, h0) , (c1, h1) , . . .〉, and we say that this thread justifies σ being in B.

Recall from Section 4.1 that an instance (C, c,¬Nα) is directly fulfilled iff
A gOΞ

( g−1
c (α)

)
/∈ c or α /∈ c; from Definition 31 that

g−1
a (Nφ) =

{
⊥ if A gOΞ

( g−1
a (φ)

)
/∈ a

NΞ
( g−1

a (φ)
)

otherwise
.

The following lemma follows naturally from these definitions, though some
details need to be considered.

28



Lemma 56. Requirement (2) above is equivalent to the statement: there exists

j ≥ i such that
(
cj , hj ,¬ g−1

hj−1

g−1
hj−2

. . . g−1
hi

(Nα)
)

is directly fulfilled.

Proof. (=⇒) Say requirement (2) holds.
Case 1. ¬α ∈ hi. Then (ci, hi,¬(Nα)) is directly fulfilled.
Case 2. There exists j ≥ i such thatg−1

hj
g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα) = ⊥

Say Without Loss of Generality (WLOG) that j is as small as possible, e.g.g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα) 6= ⊥

Then there exists β such that

Nβ = g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα)

and g−1
hj
Nβ = ⊥

Thus A gOΞ
( g−1

hj
(β)
)
/∈ hj and so (cj , hj ,¬Nβ) is directly fulfilled. Hence(

cj , hj ,¬ g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα)
)

is directly fulfilled.

(⇐=) Say there exists j ≥ i such that
(
cj , hj ,¬ g−1

hj−1

g−1
hj−2

. . . g−1
hi

(Nα)
)

is

directly fulfilled. Hence, there exists β such that Nβ = g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα).

Case 1. A gOΞ
( g−1

hj
(β)
)
/∈ hj . Then g−1

hj
(Nβ) = ⊥ and so

g−1
hj

g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα) = ⊥

Case 2. ¬β ∈ hj . From Corollary 57 below, β ∈ hj iff α ∈ hi. Hence ¬α ∈
hi.

Corollary 57. Say that there exists β such that

Nβ = g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα) .

Where Nα ∈ clφ. Then β ∈ hj iff α ∈ hi.

From the definition of clφ we see that Nα ∈ clφ =⇒ Nβ ∈ clφ. Hence we
see that the above corollary follows from Lemma 56 and induction. We may
likewise use induction to show that σ≥i � α iff σ≥j � g−1

hj−1

g−1
hj−2

. . . g−1
hi

(Nα).
We will show that B is a bundle by showing that B is suffix closed, fusion

closed and non-empty (recall Definition 4).
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Lemma 58. B is suffix closed.

Proof. Say µ = 〈(c0, h0) , (c1, h1) , . . .〉 justifies σ ∈ B. Clearly if there is an
eventuality at σm which is fulfilled at σn then n ≥ m. Thus for any suffix σ≥j
then if σn is not on σ≥j then σm is not on σ≥j either. Hence we see that for all
j ≥ 0, µ≥j justifies σ≥j ∈ B.

Lemma 59. B is fusion closed.

Proof. Say that σ, π are in B and σ0 = π1. We will show below that

〈π0, σ0, σ1, . . .〉 ∈ B .

The general case where σ0 = πj follows from prefix closure and induction.
As σ ∈ B, there is a fulfilling thread µ = 〈(σ0, h1) , (σ1, h2) , . . .〉. As

(π0, π1) ∈ RX , we can choose h0 from π0 such that (h0, h1) ∈ rX .
If αUβ ∈ h0, then β ∈ h0 or αUβ ∈ h1. As µ is fulfilling, if αUβ ∈ h1 then

there exists j ≥ 1 such that β ∈ hj .
If ¬Nα ∈ h0 then

1. ¬α ∈ h0 or ¬A gOΞ
( g−1

a (α)
)
∈ h0; or

2. ¬NΞ
( g−1

h0
(α)
)
∈ h1. (From (R6) and Definition 31)

If (1) then the eventuality ¬Nα is directly fulfilled. Otherwise, from Lemma 56,
there exists β and j such that

Nβ = g−1
hj−1

g−1
hj−2

. . . g−1
h1

(
NΞ
( g−1

h0
(α)
))

= g−1
hj−1

g−1
hj−2

. . . g−1
h0

(Nα)

and A gOΞ
( g

hj (β)
)
/∈ hj or β /∈ hj . Thus the eventuality ¬Nα is fulfilled by

hj .

We now show that we can construct a fulfilling thread in the lemma below.
As with Reynolds’ 2007 BCTL* tableau [9] the intuition is that we can ensure
that all eventualities are satisfied by iteratively satisfy the oldest eventuality
first. Since the number of eventualities is finite (indeed no more in size than the
closure set), and the number of steps to fulfil each eventuality is finite, all of the
eventualities will be fulfilled in a finite number of steps. Thus, even though an
eventually may reoccur an infinite number of times in the thread, this strategy
ensures it will always be satisfied again later in the thread.

Lemma 60. If a ∈ c ∈ S′ then there is a fulfilling thread

µ = 〈(c0, h0) , (c1, h1) , . . .〉

such that h0 = a and c0 = c. Thus σ = 〈c0, c1, c2, . . .〉 ∈ B.
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Proof. Say we have chosen the first n elements of µ and 0 ≤ i ≤ n. We say
that an eventuality αUβ ∈ hi is unfulfilled iff for all j ≤ i ≤ n the formula
β /∈ hj . We say that an eventuality ¬Nφ ∈ hi is unfulfilled iff for all j ≤ i ≤ n
the instance (

ci, hi,¬ g−1
hj−1

g−1
hj−2

. . . g−1
hi

(Nα)
)

is not directly fulfilled.
For the lowest i such that there exists an unfulfilled eventuality in hi we fulfil
this eventuality as follows:

Case 1. If no such i exists, we choose (cn+1, hn+1) such that (cn, cn+1) ∈ RX
and (hn, hn+1) ∈ rX .

Case 2. If the eventuality is of the form αUβ, then there must exist αUβ ∈
hn. Due to the pruning rule, for some j there must exist a sequence of instances

(cn, hn, αUβ) , (cn+1, hn+1, αUβ) , . . . , (cj , hj , αUβ)

such that the final instance is directly fulfilled (β ∈ hj), and each other instance
is fulfilled by the next instance in the chain. Having now chosen µ up to (cj , hj)
with β ∈ hj , the eventuality αUβ ∈ hi is now fulfilled.

Case 3. If the eventuality is of the form ¬Nα, then there must exist ¬Nφ ∈ hn
where

Nφ = g−1
hn−1

g−1
hn−2

. . . g−1
hi

(Nα) .

Due to the pruning rule, for some j there must exist a sequence of instances

(cn, hn,¬Nφ) ,
(
cn+1, hn+1,¬ g−1

hn
Nφ
)
, . . . ,

(
cj , hj ,¬ g−1

hj−1

g−1
hj−2
· · · g−1

hn
Nφ
)

such that the final instance is directly fulfilled, and each other instance is fulfilled
by the next instance in the chain. Having now chosen µ up to (cj , hj), the
eventuality ¬Nα ∈ hi is now fulfilled, as

¬ g−1
hj−1

g−1
hj−2
· · · g−1

hn
Nφ =¬ g−1

hj−1

g−1
hj−2
· · · g−1

hn
g−1
hn−1

g−1
hn−2

. . . g−1
hi

(Nα) ,

and (
cj , hj ,¬ g−1

hj−1

g−1
hj−2
· · · g−1

hi
(Nα)

)
,

is directly fulfilled.

In the following lemma we formalise and prove the intuition that a formula
is true along a thread iff it is in the first hue.

Lemma 61. For all α in clφ, for all threads µ = 〈(c0, h0), (c1, h1), . . .〉 justifying
σ = 〈c0, c1, . . .〉 we have

(S,R, g,B) , σ � α iff α ∈ h0
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Proof. We will prove this using induction. Let Lψ be the statement: this lemma
holds for the case where α = ψ.

First note that Lψ holds by definition when ψ is an atom. Assume that Lψ
holds for all ψ in clφ where |ψ| ≤ n and the number of nested N operators in ψ
is less than m. We can show that Lψ holds for any ψ in clφ where |ψ| ≤ n+ 1
and the number of nested N operators is less than m + 1. We will show below
the case where ψ is of the form Nβ, the other forms are left as an exercise for
the reader (or see [9]).

(=⇒) Suppose by contradiction that Nβ /∈ h0 so that ¬Nβ ∈ h0. If ¬β ∈
h0 then σ � ¬β, which gives us a contradiction. From (R6) we know that
¬ g−1

h0
(Nβ) is in h1. Note that g−1

h0
(Nβ) is either ⊥ or of the form Nψ. Ifg−1

h0
(Nβ) is of the form Nψ, we likewise see that g−1

h1

g−1
h0

(Nβ) ∈ h2 and so
on; however, due to pruning rule 3 this cannot go on forever, there must exist
finite i such that g−1

hi
g−1
hi−1

g−1
hi−2

. . . g−1
h0

(Nβ) = ⊥. It is now easy to use
Lemma 33 and induction to show that σ � Nβ iff σ � ⊥, which again gives us a
contradiction.

(⇐=) Suppose by contradiction that (S,R, g,B) , σ 2 Nβ. If σ 2 β then
β /∈ h0, so for some i there must exist an i-deviation π from σ such that π 2 β.
We can show that π≥i 2 g−1

πi−1
· · · g−1

π1

g−1
π0

(β) and so

Ξ g−1
πi−1
· · ·Ξ g−1

π1
Ξ g−1

π0
(β) /∈ πi.

Thus g−1
πi−1
· · · g−1

π1

g−1
π0

(Nβ) = NΞ g−1
πi−1
· · ·Ξ g−1

π1
Ξ g−1

π0
(β) /∈ πi.

It follows that Nβ /∈ π0 = σ0.

4.4. Completeness

In this section we prove the following lemma.

Lemma 62. RoBCTL*-TAB is complete, that is, if φ is satisfiable in RoBCTL*v
then RoBCTL*-TAB halts and succeeds on φ.

The tableau is finite so RoBCTL*-TAB will halt. Say that φ is satisfiable.
Then there exists a RoBCTLv structure (S,R, g,B) and path π0 in B such that
π0 � φ. We will define a translation ρφ from worlds to colours, and show that
for each world w in S, the colour ρφ (w) will not be pruned from the tableau.
Hence S′ will be non-empty when RoBCTL*-TAB halts, and so RoBCTL*-TAB
will succeed.

We will now define a function from worlds to colours. This definition uses
the function from paths to hues defined in Definition 39.

Definition 63. We define a function ρφ on worlds to sets of hues:

ρφ(w) = {hφ(π) : π ∈ B and π0 = w} .

Lemma 64. For each w ∈ S, ρφ(w) is a colour.
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Proof. Obvious, as C1–C4 are trivial consequences of the semantics of RoBCTL*.

Case 1 and 2 below are similar to the corresponding proof in [9]. Case 3
is original. In each case it intuitive that the pruning rule would not find an
inconsistency since ρφ (w) is derived from an actual model and so cannot be
inconsistent unless some other consistent node has already pruned.

Lemma 65. For each w ∈ S, ρφ (w) is never removed from S′.

Proof. Suppose for contradiction that ρφ (w) is removed. Without loss of gen-
erality, choose w such that ρφ (w) is the first such node to be pruned.

Case 1. ρφ (w) is removed from S′ by rule 1 as we cannot find successors
for every hue in ρφ (w). Then there exists a hue c ∈ ρφ (w) such that for
every D ∈ S′, (ρφ (w) , D) /∈ RX , or for every d ∈ D, the pair (c, d) /∈ rX .
Since c ∈ ρφ (w) there must exist a fullpath π ∈ B such that π0 = w. It is
easy to verify that (ρφ (π0) , ρφ (π1)) ∈ RX , that hφ (π≥1) ∈ ρφ (π1) and that
(c, hφ (π≥1)) ∈ rX .

Case 2. ρφ (w) is removed from S′ by rule 2 as it contains an unfulfillable
eventuality of the form αUβ.

Thus there is a ∈ ρφ (w) such that αUβ ∈ a, but β /∈ a and there is no
sequence of instances

〈(c0, h0, αUβ) , (c1, h1, αUβ) , . . . , (cn, hn, αUβ)〉

with n ≥ 0 such that c0 = ρφ (w), h0 = a, α0 = α each hi ∈ ci ∈ S0, each
(ci, ci+1) ∈ RX , each (hi, hi+1) ∈ rX and with β ∈ hn.

As a ∈ ρφ (w), there exists π in B such that π0 = w and hφ (π) = a. Hence
π � αUβ and so there exists a non-negative integer i such that π≥i � β. Hence
the instance (ρφ (πi) , hφ (π≥i) , αUβ) is directly fulfilled, and so such a sequence
of instances does exist:

〈(ρφ (π0) , hφ (π) , αUβ) , (ρφ (π1) , hφ (π≥1) , αUβ) , . . . , (ρφ (πi) , hφ (π≥i) , αUβ)〉.

By contradiction, ρφ (w) is not removed.
Case 3. ρφ (w) is removed from S′ by rule 3 as it contains an unfulfillable

eventuality of the form ¬Nα. Thus there is a ∈ ρφ (w) such that ¬Nα ∈ a, but
α ∈ a and there is no sequence of instances

〈(c0, h0,¬Nα0) , (c1, h1,¬Nα1) , . . . , (cn, hn,¬Nαn)〉

with n ≥ 0 such that c0 = ρφ (w), h0 = a, α0 = α each hi ∈ ci ∈ S0,
each (ci, ci+1) ∈ RX , each (hi, hi+1) ∈ rX , each Nαi+1 = g−1

hi
(Nαi) and

(cn, hn,¬Nαn) being directly fulfilled.
Since a ∈ ρφ (w) there exists π with a = hφ (π) , π ∈ B, π0 = w. Now

¬Nα ∈ a = hφ (π) so π 2 Nα. If π 2 α then ¬α ∈ a and (c0, h0,¬Nα0) is
directly fulfilled. If π � α then for some i there exists an i-deviation σ ∈ B from
π such that σ 2 α. For purposes of contradiction we will now show how that
such a sequence of instances does exist with n = i.
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From the definition of 31 we see that for each j ≤ n we have αj+1 = g−1
hj

(αj),

or αj+1 = ⊥. Since π � α we know αj+1 6= ¬⊥ (from Lemma 33). From
σ 2 α, Lemma 33, αj+1 = g−1

hj
(αj) and induction it follows that σ≥i 2 αi. By

definition of an i-deviation we see that σ≥i+1 is failure-free. As πi = σi and
σ≥i 2 αi it follows that σ≥i+1 2 g−1

hi
αi and so π≥i 2 A gO g−1

hi
αi. Hence,

A gOΞ (αi+1) /∈ hφ (π≥i), and so (ρφ (πi) , hφ (π≥i) ,¬Nαi) is directly fulfilled.
Thus such a sequence does exist:

〈(ρφ (w) , hφ (π) ,¬Nα) , (ρφ (π1) , hφ (π≥1) ,¬Nα1) . . . (ρφ (πi) , hφ (π≥i) ,¬Nαi)〉

By contradiction, ρφ (w) is not removed.

4.5. Example of Tableau

Here we will consider the tableau for the trivial case where φ = p. Our
closure must contain g ¬v and negations of subformulas, so our closure clφ
is {¬ g ¬v, g ¬v,¬ ¬v, ¬v,¬v,v, p,¬p}.

From (M1) know that for any hue h each member α of the closure set, either
α or ¬a is in α (but not both). We will begin to enumerate the hues.

h1 = {¬ g ¬v,¬ ¬v,¬v,¬p}
h2 = {¬ g ¬v,¬ ¬v,¬v, p}
h3 = {¬ g ¬v,¬ ¬v,v,¬p}
h4 = {¬ g ¬v,¬ ¬v,v, p}
h5 = {¬ g ¬v, ¬v,¬v,¬p}
h6 = {¬ g ¬v, ¬v,¬v, p}

The next rows are:

{¬ g ¬v, ¬v,v,¬p}
{¬ g ¬v, ¬v,v, p} .

However, these are not hues. Recall that ¬v is an abbreviation for
¬ (>Uv), and so these rows contradict H3. Hues 7–12 are similar to hues 1–6,
but with ¬ g ¬v replaced with g ¬v. For example,

h12 = { g ¬v, ¬v,¬v, p} .

Since we have 12 hues, we have possible 212 sets of hues to consider when
constructing the colours. For space reasons we will not explicitly consider all
these possibilities. Even for the trivial input formula p, to directly apply the
algorithm is non-trivial for a human. In this case only one colour is required to
show that p is satisfiable: {h12}. This colour loops back onto itself.

It is well known that unwinding a graph tableau into a tree-like tableau gives
much greater efficiency. It has been shown how to do such a tree unwinding
for tableau based on hues and colours such as this one. In the hue-colour
tree tableau for BCTL* [12] it is not required that the hues be maximally
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propositionally consistent. A hue without either α or ¬α represents paths that
may or may not contain α. This allows the BCTL* tableau for φ to begin
with a single node: {∅, {φ}} and only construct the nodes reachable from that
node. This greatly improves real world performance, but is not necessary for
theoretical results. In the case of RoBCTL* we could implement a similar
tableau beginning with {∅, {φ} , { g ¬v}}.

5. Pair-RoCTL

Recall that reasoning about CTL* is harder than CTL. For example, satisfi-
ability checking for CTL* is double-exponentially complete [36, 37, 19], whereas
this problem for CTL can be decided in singly exponential time. For this reason
it is of interest to find a CTL-like restriction of RoCTL*. One possibility is
to require (as with CTL) that every temporal operator be paired with a path
quantifier.

Recall Definition 10 of Pair-RoCTL. Pair-RoCTL is a syntactic fragment of
RoCTL* that is similar to CTL in the sense that every path operator is paired
with a path quantifier and vice-versa.

We will present a satisfiability preserving translation τ from CTL* into Pair-
RoCTL. This translation has some special atoms yAψ and yEψ. Note that
these special atoms are not required for translating LTL into Pair-RoCTL. As
model checking LTL is as hard as for CTL*, it would be sufficient to provide a
translation from the LTL formulas, as it is a well known result that LTL is as
hard to model check as CTL* [38, 39], both are PSPACE-Complete. However,
satisfiability checking is considerably harder for CTL* than LTL, as CTL* is
2-EXPTIME hard [19] (and complete [37]) for double exponential time while
satisfiability checking LTL is complete for polynomial space [39].

The intuition behind the following translation is that we force the CTL*
formula to be evaluated over paths consisting solely of failures. These paths
cannot be deviations, as deviations have a failure-free suffix. Thus 4φ will be
satisfied iff φ is satisfied, and so we can pair each gor U operator with a 4
without changing whether the formula is satisfied.

Requiring that gv hold along a path would ensure that the path is fully
failing; however, v is a special atom which does not occur in RoCTL* formulas.
We instead create an atom f such that f is only true when the last transition
was a failure,1 and the restriction of the structure to subset of the states where
f is true form a CTL model. We then use f in place of v.

When comparing RoCTL* and CTL* we will only consider RoCTLv struc-
tures. This means that

1. we can check that we are being evaluated over a fully failing path (one
that satisfies f) by use of 4 f ; and

1If we are using RoCTLv structures then this means ef will be true only where ev is
true. Note that as Pair-RoCTL is a restriction of RoCTL*, Pair-RoCTL formulas do not
include the atom v.
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2. we can represent any linear temporal operator (e.g. ♦) in Pair-RoCTL by
prefixing it with 4 (e.g. we translate ♦ into 4♦)

We will now define a translation τ from CTL* to Pair-RoCTL. The intention
is that τ (φ) is satisfiable iff φ is satisfiable.

Definition 66. We define a function τ from CTL* formulas to Pair-RoCTL
formulas as follows:

Let φ be a CTL* formula in Negation Normal Form (NNF). We will begin by
defining κf ,τy, prev, τprev, τ1 and τp which we will use to define a translation
function τ . The Pair-RoCTL formula κf ensures that the f atom remains false
once it becomes false, that f is only true if the last transition was a failure
transition and that the subset of the worlds S that satisfy f true is serial.

κf = A (¬f → A g¬f)∧
A O g¬f ∧A (f → E gf) .

The Pair-RoCTL formula τy (φ), defined below, is used to encode the state-
formulas of an arbitrary CTL* formula φ into atoms. It ensures that each atom
of the form yAψ is only true at those states that satisfy Aψ. Likewise each atom
of the form yEψ is only true at those states that satisfy Eψ. Note that we do
not require that yAψ be true at states that satisfy Aψ. This is because yAψ
occurs only positively in τ1 (φ), which will be defined below, and so making yAψ
false will never make τ1 (φ) to be true. Thus a requirement that Aψ =⇒ yAψ
would be redundant when testing for satisfiability.

τy(φ) =
∧

Aψvφ

A ((yAψ ∧ (4 f))→ τ1(ψ))∧

∧
Eψvφ

A (yEψ → E gprev (τ1 (ψ))) .

We now define the function prev from Pair-RoCTL formulas to Pair-RoCTL
formulas with the intention that gprev (ψ) ↔ ψ on all paths through our
structure. By [p/p′] we denote replacing the atom p with p′, and by [∀p v ψ :
p/p′] we denote similarly replacing all atoms.

prev (ψ) = ψ[∀p v ψ : p/p′]

The translation above replaces each occurrence of p with p′, relying on p′ being
true exactly when p was true at the last state. We define the function τprev
below from Pair-RoCTL formulas to Pair-RoCTL formulas for the purpose of
ensuring that this holds for each atom of the form p′ that occurs in some formula
ψ. We denote that α is a subformula of β by α v β.

τprev (ψ) =A

 ∧
p′vψ

(p→ A gp′) ∧ ∧
p′vψ

(¬p→ A g¬p′) .
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We can now define τp, which adds all the new atoms required by combining κf
τy and τprev.

τp(φ) = κf ∧ τy (φ) ∧ τprev (τy (φ)) .

We now define the τ1 translation. This is the core of the τ translation, but it
depends on atoms introduced by the τp translation for correctness.

τ1(Aψ) = yAψ ∧4 f

τ1(Eψ) = yEψ ∧4 f

τ1( gψ) = (4 gτ1(ψ))

τ1(ψ ∗ φ) = 4[τ1(ψ) ∗ τ1(φ)], ∗ ∈ U ,
¬
U

τ1(p) = (p ∧4 f)

τ1(¬p) = (¬p ∧4 f)

Finally we define τ (φ) itself as follows:

τ (φ) = τ1 (φ) ∧ τp (φ) .

5.1. Translating a CTL* Model into a Pair-RoCTL Model

Recall Definition 15 of CTL-structures. Given a CTL-structureM = (S,R, g),
we construct a RoCTL-structure MR =

(
SR, RR, gR

)
from M as follows:

• we add a new “success” world s so that SR = S ∪ {s}

• the accessibility relation RR is the least relation that satisfies RR ⊇ R
and 〈w, s〉 ∈ RR for all w ∈ SR

• the valuation gR satisfies the following:

– for every atom p in the original formula φ and w ∈ S we have p ∈
gR (w) iff p ∈ g (w)

– the failure atom f and violation atom v is true at every world except
the success world. Formally, f ∈ gR (w) iff w 6= s and v ∈ gR (w) iff
w 6= s

– for every atom of the form yψ in τy (φ) and every world w ∈ S it is
the case that yψ ∈ gR (w) iff M,w � ψ.

Note that we need the f atom as the v atom cannot explicitly appear in any
RoCTL* or Pair-RoCTL formula.

We will now define a function h to add the p′ atoms into the model.

Definition 67. We define a function h from RoCTLv structures to RoCTLv

structures such that for any RoCTLv structure M = (S,R, g) we have h (M) =(
Sh, Rh, gh

)
where:
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1. Sh = R, so every world in h (M) is of the form (w, v) where w and v are
in S (that is worlds of M). Being in world (w, v) means roughly “we are
currently at world v but were at world w previously”

2. for any pair of worlds (w, v) and (x, y) in Sh we have (w, v)Rh (x, y) iff
x = v and (x, y) ∈ R

3. for all p ∈ V, it is the case that p ∈ gh (〈w, v〉) ⇐⇒ p ∈ g (v) and
p′ ∈ gh (〈w, v〉) ⇐⇒ p ∈ g (w)

We will use 〈?, w〉 to represent 〈v, w〉 for some arbitrary v, when we do
not care about truth values of the p′ atoms at this world. For convenience we
extend the definition of h such that h (σ) = 〈?, σ0〉 , 〈σ0, σ1〉 , 〈σ1, σ2〉 . . ., and
h (M,σ) = h (M) , h (σ).

Lemma 68. For all RoCTLv structures M , fullpaths σ through M and RoCTL*
formulas φ that do not contain atoms of the form p′ we have M,σ � φ ⇐⇒
h (M,σ) � φ ⇐⇒ h (M,σ) � gprev (φ). If each atom p′ is true exactly when
p was true at the previous world (or M,σ � τprev (φ)) for some formula φ then
h (M,σ) � φ ⇐⇒ h (M,σ) � gprev (φ).

Proof. We have shown that RoCTL*v is bisimulation invariant in [6], and so it is
clear that M,σ � φ ⇐⇒ h (M,σ) � φ. It is easy to see that h (M,σ) � p ⇐⇒
h (M,σ) � gp′, or in other words that h (M,σ) � ψ ⇐⇒ h (M,σ) � gprev (ψ)
for ψ of length 1. Thus it is clear from induction on the length of formula and
the semantics of RoCTL* that h (M,σ) � ψ ⇐⇒ h (M,σ) � gprev (ψ) for ψ
of any length.

Definition 69. Given a modelM for an Pair-RoCTL formula τ (φ) we construct
a model MC for the CTL* formula φ as follows: remove all worlds where f is
false.

5.2. Proof of Correctness

Without loss of generality we can assume that each structure has a world
w0 such that every other world is reachable from that world, so for example
M,w0 � A p means that p is true at all worlds in M .

When we use “(¬)” in a sentence this indicates that the sentence remains
true if all occurrences of (¬) are replaced with a ¬ or if all occurrences of (¬)
are simply removed. This is similar to how the ± operator is frequently used.

Lemma 70. For any structure M that satisfies M,w0 � A O g(¬f), it is the
case that M,π � 4 f =⇒ M,π � f and M,π � 4τ1 (ψ) =⇒ M,π �
τ1 (ψ) for all paths π through M and formulas ψ.

Proof. As M,π � 4 f either M,π � f or there exists a deviation σ from
π that satisfies f . Any deviation σ from π has a failure-free suffix. That is
there exists i such that σ≥i is failure-free. As M,w0 � A O g¬f , it is the
case that M,σ≥i � O g¬f , and as σ≥i is failure-free, M,σ≥i+1 � ¬f and so
M,σ 2 f . Hence, by contradiction, M,π � f .

38



As any deviation π from σ has a failure-free suffix and M,σ 2 f , we see
that M,σ 2 ((¬) p ∧4 f) for any p ∈ V. Thus we see that M,σ 2 τ1 (ψ) for
any ψ of length 1. It is easy to see by recursion on length of ψ that M,σ 2 τ1 (ψ)
for ψ of any length. It follows that M,π � 4τ1 (ψ) =⇒ M,π � τ1 (ψ).

For the next lemma, recall that s was the success world defined at the be-
ginning of Section 5.1.

Lemma 71. Say that MR, σ � τ1 (ψ) for some path σ through MR, then s 6= σi
for any non-negative integer i.

Proof. For any fullpath π such that MR, π 2 4 f we see that for ψ of the form
Aθ, Eθ, p or ¬p it is the case that MR, π 2 τ1 (ψ). If there exists an integer i
such that σi = s we see that MR, σj 2 f for any j ∈ N, and hence by Lemma
70 above we have MR, σj 2 4 f . By induction, we see that MR, σ 2 τ1 (ψ),
for any formulas ψ.

We will now show that the translation preserves truth.

Lemma 72. For any CTL* formula φ, CTL-structure M and fullpath π through
M we have h

(
MR, π

)
� τ (φ) if M,π � φ.

Proof. Let H (ψ) be the statement: for any CTL-structure M and fullpath π
through M we have h

(
MR, π

)
� τ (ψ) if M,π � ψ. We will now show H (ψ) is

true for all ψ such that |ψ| = 1, that is all ψ that consist of a single atom.
It is easy to see that for every path σ through M we have MR, σ � 4 f and

so for every p ∈ V, it is the case that M,σ � (¬) p =⇒ MR, σ � ((¬) p∧4 f).
Thus for all formulas ψ that consist of a single atom it is the case that M,σ �
ψ =⇒ MR, σ � τ1 (ψ). Say that M,σ � ψ =⇒ h

(
MR, σ

)
� τ1 (ψ) for all ψ

of length less than some integer n. Now we assume that H (ψ) is true for all ψ
such that |ψ| ≤ n for some positive integer n, and will prove that H (ψ) holds
for any ψ such that |ψ| = n+ 1.

ψ = αUβ: For all σ it is the case that M,σ � α =⇒ MR, σ � τ1 (α) and
M,σ � β =⇒ MR, σ � τ1 (β). Say that M,σ � αUβ then there
exists an integer i such that M,σ≥i � β and for all integers j less
than i we have M,σ≥j � α. Thus MR, σ≥i � τ1 (β) and for all j less
than i we have MR, σ≥j � τ1 (α). Hence MR, σ � τ1 (α) Uτ1 (β), so
MR, σ � 4 (τ1 (α) Uτ1 (β)) = τ1 (ψ).

ψ = α
¬
Uβ: Say that M,σ � α

¬
Uβ. Then M,σ � ¬ (¬αU¬β), and so for all i ∈ N

either M,σ≥i 2 ¬β or there exists j < i such that M,σ≥j 2 ¬α.
Thus MR, σ≥i � τ1 (β) or there exists j < i such that MR, σ≥j �
τ1 (α) and so MR, σ � ¬ (τ1 (¬α) U (¬β)). Hence

MR, σ � 4¬ (τ1 (¬α) U (¬β)) = τ1(α
¬
Uβ).

ψ = gα: if M,σ � gα then M,σ≥1 � α. Thus MR, σ≥1 � τ1 (α), and so
MR, σ � gτ1 (α) = τ1 (ψ).
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ψ = Eα: By definition, M,σ � Eα iff MR, σ � yEα. As σ is a path through
M , it does not contain the success state and so MR, σ � f and
so if M,σ � Eα then MR, σ � yEα ∧4 f = τ1(ψ).

ψ = Aα: As above.

It is now clear from induction that MR, π � τ1 (φ). We see that case for Aα
and Eα above are trivial. The complexity was taken outside τ1 in the form:∧

Aψvφ

A ((yAψ ∧ (4 f))→ τ1(ψ))

∧
Eψvφ

A (yEψ → E gprev (τ1 (ψ)))

Now yEψ occurs exactly on those σ0 where M,σ � Eψ. Thus MR, σ � Eτ1 (ψ)
and h

(
MR, σ

)
� Eτ1 (ψ), thus h

(
MR, σ

)
� E gprev (τ1 (ψ)). Likewise yAψ

occurs exactly on those σ0 where M,σ � Aψ, that is, for every path σ′ through
M such that σ′0 = σ0 it is the case that M,σ � ψ and so MR, σ � τ1 (ψ) and
MR, σ � (yAφ ∧ (4 f))→ τ1(ψ). If the path σ is not through M , it contains
the success state s, and so σ 2 4 f and so again MR, σ � (yAφ ∧ (4 f))→
τ1(ψ).

It is now easy to show that the wayMR is constructed ensures that h
(
MR, σ

)
�

τp (φ), and since h
(
MR, σ

)
� τ1 (φ), it follows that h

(
MR, σ

)
� τ (φ).

Given any CTL-structure M we can construct the RoCTLv structures MR

and h
(
MR

)
. From Lemma 72 above it is clear that τ (φ) is satisfiable if φ

is satisfiable. We have not yet shown that for any RoCTLv structure we can
construct an equivalent CTL-structure. We will now deal with constructing a
CTL-structure from an arbitrary RoCTLv structure; from Lemma 73 below it
is clear that φ is satisfiable, if τ (φ) is satisfiable. By combining these we get
Theorem 74, with which we will conclude this section.

Lemma 73. For any RoCTLv structure M , If M,w0 � τ (φ) then MC , w0 � φ.

Proof. Recall that MC is the translation of M defined in Definition 69; that is
the structure M with the worlds that do not satisfy f removed.

As M � τ (φ), clearly M � τp (φ). Since M � τp (φ) we see that M,w0 �
A O g(¬f) from Lemma 70 and again it is the case that M,π � 4 f =⇒
M,π � f and M,π � 4τ1 (ψ) =⇒ M,π � τ1 (ψ) for all CTL* formulas ψ
and fullpaths π through M .

Say that for all paths σ through M and all CTL* formulas ψ with |ψ| ≤ n for
some integer n, it is the case that M,σ � τ1 (ψ) =⇒ M,σ � ψ. Now consider

the case where |ψ| = n+ 1. Where ψ is of the form (¬) p, α
¬
Uβ, αUβ or gα we

see that M,σ � τ1 (ψ) =⇒ M,σ � ψ using the same arguments made in the
previous lemma.
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Now say ψ is of the form Aθ, and say M,σ � τ1 (ψ) = yAθ ∧ 4 f .
From τy we know that A ((yAθ ∧ (4 f))→ τ1(θ)). Consider a path π
through MC such that π0 = σ0, i.e. π ∈ δω (σ0). We know that MC , π0 �
f as f is true at every world in MC , so likewise M,π � f and M,π �

4 f . From τ1 (φ) we know that M,π � yAθ and from τy we know that
A ((yAθ ∧ (4 f))→ τ1(θ)), hence M,π � τ1 (θ). Since |θ| ≤ n it follows
that MC , π � θ, for all π ∈ δω (σ0). Thus MC , σ � Aθ.

Say ψ is of the form Eθ and M,σ � τ1 (ψ) = yEθ ∧ 4 f . As M,σ � yEθ,
from τy we know that M,σ � E gprev (τ1 (θ)). As M,σ � τprev (τy (φ)), we see
that M,σ � E (τ1 (θ)). Finally, since |θ| ≤ n we know that M,σ � Eθ.

Theorem 74. τ (φ) is satisfiable in Pair-RoCTL iff φ is satisfiable in CTL*.

5.3. Model Checking

Given a formula φ, and a model checking procedure for Pair-RoCTL we can
compute the RoCTLv structure MR from the CTL-structure M as follows.

First we add the f atom as above. Then, for subformulas α of the form
Aψ (or Eψ) we perform the following, starting with the shortest subformula α.
For each world t in MR we pick an arbitrary world 〈s, t〉 in h

(
MR

)
and model

check E gprev (τ1 (ψ)), if this formula holds at 〈s, t〉 we add yφ to the valuation
of the world t.

We now have the model h
(
MR

)
, such that h

(
MR

)
� τ (φ) iff M � φ. Thus

where m = |φ| and n is the number of worlds in M we can easily reduce the
problem of model checking a CTL* formula to mn model checking problems of
Pair-RoCTL formula of length O(m) on models with no more than n2 worlds.
As the model checking algorithm for CTL* is PSPACE-complete [24], the model
checking problem for Pair-RoCTL is PSPACE-hard.

5.4. Expressivity

Previously we have given a translation from CTL* to Pair-RoCTL that pre-
serves satisfiability. However, the translation was not truth-preserving, and a
satisfiability preserving translation tells us nothing about the expressivity of the
language. After all, we can easily construct a satisfiability preserving transla-
tion from CTL* to > and ⊥. Here we will briefly define a translation that is
truth-preserving, but has a singly exponential blowup in the size of the resulting
formulas.

We now present a translation function τ from CTL* formulas to Pair-RoCTL
formulas such that for all structures M and paths σ it is the case that MR, σ �
τ (φ) iff M,σ � φ is satisfiable; where MR is RoCTLv structure generated from
M as by adding a success world s and f, v atoms as in Section 5.1. Unlike
Section 5.1 we need not at any atoms of the form yAψ, yEψ or p′ to MR.

It is well known that for we can split a formula φ into state formulas and
formulas that are true at the next step, that is into the form:∨

i

αi ∧ gψi ,
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where α is a list of state formulas and ψ is a list of formulas. Informally, we will
define τ1 (Aφ) and τ1 (Eφ) in terms the above split as follows:

τ1 (Aφ) =
∨
i

τ1 (αi) ∧A gτ1 (ψi)

τ1 (Eφ) =
∨
i

τ1 (αi) ∧E gτ1 (ψi) .

We will now define such a split so that we can provide a precise definition of
this τ1.

Recall Definition 31 of g−1
a , a set of formula translation functions which has

the following property:

Lemma 75. Let σ be an arbitrary path, φ an arbitrary formula and again let
Φ be the set of all state subformulas of φ. Then σ � φ iff σ≥1 � g−1

a (φ).

This lemma (and its proof) is very similar to Lemma 33.

Definition 76. Let Φ be the set of all state subformulas of φ. Then we define
a function split from formulas to formulas such that for any formula φ

split (φ) =
∨
a∈2Φ

∧
ψ∈a

ψ

 ∧
 ∧
ψ∈(Φ−a)

¬ψ

 ∧ gg−1
a (φ)


Lemma 77. Let σ be an arbitrary path, φ an arbitrary formula. Then σ � φ
iff σ � split (φ).

Proof. We see that exactly one clause of the form∧
ψ∈a

ψ

 ∧
 ∧
ψ∈(Φ−a)

¬ψ


will hold along σ: the clause where for each ψ ∈ Φ we have ψ ∈ a iff M,σ � ψ.
Thus M,σ � split (φ) iff M,σ � g−1

a (φ) for this a, and so from Lemma 75 we
know that M,σ � φ.

The formula translation function τ1 is defined as follows:

τ1 (Aφ) =
∨
a∈2Φ

∧
ψ∈a

ψ

 ∧
 ∧
ψ∈(Φ−a)

¬ψ

 ∧A gτ1 ( g−1
a (φ)

)
τ1 (Eφ) =

∨
a∈2Φ

∧
ψ∈a

ψ

 ∧
 ∧
ψ∈(Φ−a)

¬ψ

 ∧E gτ1 ( g−1
a (φ)

) ,

for formulas of forms other than Aφ and Eφ, we define τ1 as in Definition 66.
As this new τ1 does not add any atoms except for f we do not need most of τp
and so τ becomes:

τ (φ) = τ1 (φ) ∧ κf ,
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where κf is defined the same as in Section 5.1.
Translating a CTL* model M to Pair-RoCTL is now trivial, as we only have

to add the f/v atoms to the valuation of each world of M and then add a success
world s at which f and v are false. Given a Pair-RoCTL model to translate into
a CTL* model, we either reject the model as inconsistent if it does not satisfy
κf , or remove all worlds where f is false. As the translation of the structure
does not depend on the formula being translated, this gives us an expressivity
result.

Theorem 78. For any CTL-structure M and fullpath σ through M we have
MR, σ � τ (φ) ⇐⇒ M,σ � φ.

The proof of correctness of this new translation is similar to the previous
translation and has been omitted.

6. State-RoCTL

In this section we will show that the decision problems for State-RoCTL are
of similar complexity to the corresponding decision problems for CTL. We will
do this by presenting a translation of State-RoCTL into CTL. Note that as
we are now translating formulas into CTL we do not have to avoid using the
v atom as CTL (and CTL*, RoCTL*v) formulas can contain this atom. Here
we find it convenient to define E gand P gas base operators, as this notation
allows a simpler presentation of the proofs relating to State-RoCTL. Recall the
formal definition of State-RoCTL given in Definition 11.

6.1. Expressivity

We will now define a translation from State-RoCTL to CTL. To understand
how the translation to CTL works, consider the formula 4 (αUβ). If M,σ �
4 (αUβ) then either M,σ � αUβ or there exists a deviation from σ like π in
Figure 1, for some integers i and n. The case where M,σ � αUβ is clearly
trivially represented in CTL, when translation of α and β into CTL are known.

Consider the case where M,σ 2 αUβ. In this case, β does not occur on πj
for j ≤ i as then σ would also satisfy αUβ. And so (as in Figure 1) we see
that M,π≥i+1 � αUβ. Since π is an i-deviation π≥i+1 is failure-free and so
πi+1 � P (αUβ), thus the state formula E gP (αUβ) holds at σi. Thus along
the path σ the state-formula α holds until E gP (αUβ) holds together with
α. The translation will recursively push 4 operators inside the U operator by
replacing 4 (αUβ) with

αU (β ∨ (α ∧E gP (αUβ))) .

The N operator is the dual of the 4, so it will be handled similarly. We now
formally define the translation.
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Definition 79. We now define a translation function τ from State-RoCTL
formulas and path-formulas to CTL-formulas and path-formulas respectively.
For any atom p we let τ (p) = p. For any State-RoCTL formula α we define τ
such that the following equalities hold:

τ (E gα) = E gτ (α)

τ (P gα) = E g(τ (α) ∧ ¬v)

τ (¬α) = ¬τ (α) .

Likewise, for any pair α, β of State-RoCTL formulas:

τ (α ∧ β) = τ (α) ∧ τ (β)

τ (αUβ) = τ (α) Uτ (β)

τ (N (αUβ)) = τ (α ∧A gO (αUβ)) Uτ (β)

τ (4 (αUβ)) = τ (α) Uτ (β ∨ (α ∧E gP (αUβ))) .

For any State-RoCTL path-formula θ:

τ (Aθ) = Aτ (θ)

τ (Eθ) = Eτ (θ) .

The operators O and P are not in CTL so they will have to be handled differently
to A and E. First we will consider the case where αUβ is nested directly inside
the O or P operators:

τ (O (αUβ)) = τ (β) ∨ (τ (α) ∧A gA (τ (α) U (τ (β) ∨ v)))

τ (P (αUβ)) = τ (β) ∨ (τ (α) ∧E gE ((τ (α) ∧ ¬v) U (τ (β) ∧ ¬v))) .

We handle the case where N or 4 occur inside O or P by specifying that for all
path-formulas θ not of the form αUβ:

τ (Oθ) = τ (Oτ (θ))

τ (Pθ) = τ (Pτ (θ)) ,

and similarly for N and 4:

τ (Nθ) = τ (Nτ (θ))

τ (4θ) = τ (4τ (θ)) .

We see above that τ (θ) is of the form αUβ and so its definition does not
require infinite recursion. For example, τ(NNN(pUq)) = τ (Nτ (Nτ (N (pUq)))),
and we see that we can expand this from the inside out using the definition of
τ (N (αUβ)) above.

To help verify that τ is well-defined (not circular), we will define a partial
ordering < which is to be read as “is simpler than”. We will then use this to
show that the recursive definition of τ is not circular as at each step of the
recursion we consider simpler formulas.
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Definition 80. We define a partial ordering < on RoCTL* formulas such that
φ < ψ if φ has less N operators than ψ, and φ < ψ if φ and ψ have the same
number of N operators and |φ| < |ψ|.

Note that we treat 4 as an abbreviation for ¬N¬, so p < 4p. We now show
that τ is not circular, and well-defined.

Lemma 81. The formula τ (φ) is defined for all φ in the domain of τ .

Proof. We see that for all φ in the domain, that is all φ that are either State-
RoCTL formulas or path-formulas, τ (φ) occurs in the Left-Hand Side (LHS)
of the above definition. We also see that where τ (φ) occurs on the LHS and
τ (ψ) occurs on the RHS, ψ < φ. Thus by induction on the number of N and
induction on the length of the formulas we see that τ (φ) is finite in length for
all φ in the domain.

Recall that τ (φ) is a CTL formula. The following lemma demonstrates that
State-RoCTL is expressively equivalent to CTL. The proof follows naturally
from the definition of τ , but is not of trivial length as many cases need to be
considered.

Lemma 82. For all RoCTLv structures M , fullpaths σ through M and State-
RoCTL formulas φ, we have M,σ � φ ⇐⇒ M,σ � τ (φ).

Proof. For contradiction, say that φ is the simplest formula that provides a
counter example to this lemma, that is there exists no counter example ψ such
that ψ < φ. In the proof of this lemma, we will use the notation π≤i · σ to
represent the concatenation π0, π1, . . . , πi, σ0, σ1, . . . of π≤i and σ.

We now show that φ does not provide a counter example for any RoCTLv

structure M and fullpath σ through M .
Case 1. Say that φ is of the form N (αUβ).
(=⇒) Say that M,σ � N (αUβ) and M,σ 2 τ (N (αUβ)). Thus

M,σ 2 τ (α ∧A gO (αUβ)) Uτ (β) ,

Since φ is the simplest counter example and α∧A gO (αUβ) , β < φ we get:

M,σ 2 (α ∧A gO (αUβ)) Uβ .

There are two ways to avoid σ satisfying the above formula. The first is if for
all i, we have M,σ 2 β; however, M,σ � N (αUβ) so we know that M,σ � αUβ
and there must exist some i such that M,σi � β. The second way is if there
exists an integer i such that for all j ≤ i we have M,σj 2 β, and

M,σi 2 (α ∧A gO (αUβ)) .

Assume without loss of generality that j is the smallest j such that M,σj 2 β.
Since M,σ � αUβ and M,σi 2 β we see that M,σi � α and hence

M,σi 2 A gO (αUβ) .
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The sequence of operators A gO quantifies over exactly those fullpaths that
are failure-free after the first step, or in other words 0-deviations. Thus there
exists an i-deviation π from σ such that M,π≥i 2 gαUβ and equivalently
M,π≥i+1 2 αUβ. Recall that M,σj 2 β for all j ≤ i; since β is a state-formula
and σ≤i = π≤i it follows that M,πj 2 β. Combining this with the fact that
M,π≥i+1 2 αUβ we find that M,π 2 αUβ. Since π is a deviation from σ we
find that M,σ 2 N (αUβ), which contradicts our original assumption.

We now consider the reverse part of the case where φ is of the form N (αUβ).
(⇐=) Say that M,σ 2 N (αUβ) and M,σ � τ (N (αUβ)). Since M,σ 2

N (αUβ) either M,σ 2 αUβ or there exists a deviation π from σ such that
M,π 2 αUβ. If M,σ 2 αUβ then clearly M,σ 2 (α ∧A gO (αUβ)) Uβ, so by
contradiction there must exist an i-deviation π from σ such that M,π 2 αUβ.

Since M,σ � (α ∧A gO (αUβ)) Uβ we see that there exists n such that
M,σn � β and for all m < n it is the case that

M,σm � (α ∧A gO (αUβ)) .

Say that n ≤ i. Since M,σm � α for all m < n and M,σn � β, we can see that
as π≤i = σ≤i it must also be the case that M,π � (αUβ), as in Figure 2.

However, recall that we chose the path π such that M,π 2 αUβ. By contra-
diction we know that n > i.

Since n > i we know that for all j ≤ i it is the case that M,σj � α and σj =
πj . From this and the fact that M,π 2 αUβ it follows that M,π≥i+1 2 αUβ.
Since π≥i+1 is failure-free we see that M,πi+1 2 O (αUβ) and

M,πi 2 A gO (αUβ) .

Since πi = σi we also have M,σi 2 A gO (αUβ). However, recall that

M,σm � (α ∧A gO (αUβ)) ,

for all m < n. By contradiction we see that the smallest counter-example φ
cannot be of the form N (αUβ). The proof for the case where φ is of the form
4 (αUβ) is similar.

Case 2. Say that φ is of the form 4 (αUβ) then recall that

τ (4 (αUβ)) = τ (α) Uτ (β ∨ (α ∧E gP (αUβ))) .

Say that M,σ � 4 (αUβ) and M,σ 2 τ (4 (αUβ)). Thus

M,σ 2 αU (β ∨ (α ∧E gP (αUβ))) ,

and clearly M,σ 2 αUβ. Hence there exists an i-deviation π from σ such that
M,π � αUβ, for some i ∈ N. Since M,σ 2 αUβ we see that M,σj 2 β for
any j ≤ i. Thus M,π≥i+1 � αUβ, and since M,π≥i+1 is failure-free we know
that M,πi+1 � P (αUβ). From this we know that M,σi � E gP (αUβ). Since
M,π � αUβ and β is not satisfied before π deviates from σ we know that for
each j ≤ i we have M,σj � α. Hence M,σ � (αU (α ∧E gP (αUβ))) and so
M,σ � τ (4 (αUβ)).
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Case 3. Say that φ is of the form P gα.
(=⇒) Say that M,σ � P gα. Since M,σ � P gα we see there exists a

failure-free fullpath π such that π0 = σ0 and M,π � gα so M,π≥1 � α. Since
π is failure-free we see that M,π≥1 � ¬v, and hence M,π≥1 � α ∧ ¬v. As
M,π � g(α ∧ ¬v) and π0 = σ0 we see that M,π � E g(α ∧ ¬v). This is
precisely τ (P gα).

(⇐=) Say that M,σ � τ (P gα) = E g(α ∧ ¬v). Then there exists π such
that π0 = σ0 and M,π � g(α ∧ ¬v). Thus M,π≥1 � (α ∧ ¬v). We can
construct a failure-free fullpath ρ starting at π1, We note that as α is a state
formula and M,π≥1 � α the fullpath ρ also satisfies α. Since ρ is failure-free
and satisfies ¬v, we see that σ0 · ρ is failure-free. Note that M,σ0 · ρ � gα. It
finally follows that M,σ � P gα.

Case 4. Say that φ is of the form O (αUβ).
(=⇒) Say that M,σ � O (αUβ). If M,σ � β then, as φ is the simplest

counter-example and β is simpler, M,σ � τ (β) and M,σ � τ (O (αUβ)).
If M,σ 2 β then clearly M,σ � α and M,σ � τ (α). For contradiction,

consider a fullpath π such that π0 = σ0 and M,π≥1 2 αU (β ∨ v); we see that
there exists i ∈ N such that M,π≥j 2 τ (β) ∨ v for all j ≤ i and M,π≥i 2
τ (α) ∨ τ (β) ∨ v. We see that we can construct a failure-free path ρ such that
ρ0 = πi. We see that π≤i−1 ·ρ is failure-free, and that M,π≤i−1 ·ρ 2 αUβ. This
implies that M,σ 2 O (αUβ), and so by contradiction we know that M,π≥1 �
τ (α) U (τ (β) ∨ v) for all paths π starting at σ0. It is then easy to show that
M,σ � A gA (αU (β ∨ v)) and since M,σ � α we see that M,σ � τ (O (αUβ)).

(⇐=) Say that M,σ 2 O (αUβ) and M,σ � τ (O (αUβ)). We see that if
M,σ � τ (β) then M,σ � β and since β is a state formula, M,σ � O (αUβ).
Say that instead

M,σ � τ (α) ∧A gA (τ (α) U (τ (β) ∨ v)) .

Then we see that for every path π starting at σ0 we have

M,π �τ (α) ∧ g(τ (α) U (τ (β) ∨ v)) ,

and α∧ g(αU (β ∨ v)). Let π be failure-free, then we have M,π � g ¬v and
so M,π � α ∧ g(αUβ). We see that M,π � αUβ for all failure-free full paths
π starting at σ0 and so M,σ � O (αUβ).

Case 5. The case where φ is of the form P (αUβ) is similar to O (αUβ).
Say that φ is of the form ¬α. By definition τ (¬α) = ¬τ (α). State-RoCTL

is a syntactic restriction of RoCTL*, so since τ leaves the ¬ unchanged we see
that

M,σ � ¬α ⇐⇒ M,σ � τ (¬α) .

Where φ is of the form E gα, α ∧ β, αUβ, Oθ, Pθ, Nθ, 4θ, Aθ, or Eθ, we
likewise see that, as State-RoCTL is a syntactic restriction, we have M,σ �
φ ⇐⇒ M,σ � τ (φ).
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6.2. Complexity

We have shown that every statement in State-RoCTL can be expressed in
CTL when the CTL logic formulas are allowed to reference the special atom v.
The translation into CTL isn’t linear. For example, consider

τ (4 (αUβ)) = τ (α) Uτ (β ∨ (α ∧E gP (αUβ))) .

See that α and β occur twice on the Right Hand Sided (RHS). Thus the length
of the translated formula can double with each 4. However, since α and β are
state formulas, it is well known by implementers of decision procedures that
we can replace α and β with atoms pα and pβ . Elsewhere a clause is added
requiring that

A (pα ↔ τ (α) ∧ pβ ↔ τ (β)) .

A similar trick can be used with model checkers, where the atom pα is added
to states where the model checker determines that α holds. We will discuss the
details of how this can be achieved for State-RoCTL. Since we are translating
the State-RoCTL formula into CTL*, we will explicitly state this property for
CTL* as a lemma.

Lemma 83. Say that in some CTL-structure M there exists an atom pψ such
that for all fullpaths σ we have M,σ � pψ iff M,σ � ψ. Then for any CTL*
formula φ we have M,σ � φ[ψ/pψ] ⇐⇒ M,σ � φ.

It is trivial to prove this lemma inductively from the semantics of CTL*.
While the lemma above holds even if ψ is not a state-formula, we will only
apply it to state formulas, as in the next corollary.

Corollary 84. For any CTL* formula φ, and state-formula ψ, it is the case
that φ is satisfiable iff φ̂ is satisfiable where φ̂ = φ[ψ/pψ] ∧A (pψ ↔ ψ).

Proof. Say that φ̂ is satisfied on some structure M and fullpath π. We can
say WLOG that every world in the structure M is accessible from π0. Since
M,σ � A (pψ ↔ ψ), we know that M,σ � pψ ⇐⇒ M,σ � ψ for all fullpaths
σ through M . Thus from the previous lemma and the fact that M,π � φ[ψ/pψ]
we know that M,π � φ. Hence φ is satisfiable.

Say that φ is satisfied on some structure M and fullpath σ. Since ψ is
a state-formula we can add pψ to M to produce M ′ such that pψ is true on
exactly those states where ψ is true. Hence M ′, σ � A (pψ ↔ ψ) and from
the previous lemma M ′, σ � A (pψ ↔ ψ).

We now show that, as expected, avoiding duplication of subformulas results
in an easily computable translation of linear size.

Theorem 85. There exists a polynomial-time computable satisfiability preserv-
ing linear translation τsat from State-RoCTL formulas into CTL formulas.
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Proof. Recall that

τ (N (αUβ)) = τ (α ∧A gO (αUβ)) Uτ (β)

τ (4 (αUβ)) = τ (α) Uτ (β ∨ (α ∧E gP (αUβ))) .

We define a translation function τ ′ similarly to τ with the exception that

τ ′ (N (αUβ)) = τ ′
(
pτ ′(α) ∧A gO (pτ ′(α)Upτ ′(β)

))
Upτ ′(β)

τ ′ (4 (αUβ)) = τ ′
(
pτ ′(α)

)
Uτ
(
pτ ′(β) ∨

(
pτ ′(α) ∧E gP (pτ ′(α)Upτ ′(β)

)))
.

Below, recall that v is read as “subformula of”. We then define a translation
function

τ ′′ (α) =τ ′ (α) ∧
∧

β s.t. pβv(τ ′(α))

A (pβ ↔ β) .

Recall that we need the clause A E g¬v to ensure that the translated formula
is only satisfied on RoCTLv structure, so we let

τsat = τ ′′ (α) ∧A E g¬v .

From the previous corollary we see that τ ′′ (α) is satisfiable iff τ (α) (and α) is
satisfiable. We will now show that for any State-RoCTL* formula α it is the
case that |τ ′′ (α)| ≤ 45 |α|, and hence that the translation τ ′′ (α) is linear. Other
authors often use slightly different set of primitive operators, such as using ∨
as a primitive operator instead of ∧. In such variations it may not be the case
that |τ ′′ (α)| ≤ 45 |α|. Nevertheless translating between such minor syntactic
changes is linear so, the linearity of the translation τ ′′ is preserved even if the
precise factor 45 is not.

For compatibility with the definition of the length of formulas, in this proof
we will not include ( and ) in the count of symbols in a formula. We can enu-
merate the symbols of α, and modify τ

′
such that τ

′
preserves this enumeration.

Below we give an example of assigning an integer label i to the operators on the
RHS from a label on the LHS. These labels do not have any semantic meaning,
they are only added to assist in counting the number of operators used. Note
also that we have expanded the ∨ operator into two the base operators ¬ and
∧. We define τ ′

(
4i
(
αU jβ

))
to be equal to:

τ ′
(
piτ ′(α)

)
U iτ

(
¬i
(
¬ipiτ ′(β) ∧

i ¬i
(
piτ ′(α) ∧

i Ei giPi
(
piτ ′(α)U

ipiτ ′(β)

))))
.

Likewise for the other lines defining τ ′ we define τ ′ such that the new operators
introduced on the RHS have the same label as the operator of the highest
precedence on the LHS. We see that in the line above, there are 15 symbols
labelled with i for the one operator4 labelled with i on the LHS. It is easy to see
from induction that i occurs at most 15 times in τ ′′ (α) for each time it occurs
in α. Note that τ ′′ contains ↔ operators, which we define as abbreviations
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rather than as primitive operators. Since these are not nested, expanding each
occurrence of · · · ∧A (pβ ↔ β) into

· · · ∧A (¬ (¬ (pβ ∧ β) ∧ ¬ (¬pβ ∧ ¬β))) ,

at most doubles the number of i-labelled symbols. Hence for each i-labelled
symbol in α there are at most 30 i-labelled symbols in τ ′′ (α). We see in the
equation fragment above (excluding the portion represented as · · · ) has 15 un-
labelled symbols. Thus for each symbol in α there are at most 45 symbols in
τ ′′ (α). Thus |τ ′′ (α)| ≤ 45 |α|.

We see that the translation function τsat is itself computationally simple.
Since the decision problem for CTL is in EXPTIME [20], we get the following
theorem.

Theorem 86. The satisfiability decision problem for State-RoCTL is in EXP-
TIME.

We will now show that, as with CTL [24], we can model check State-RoCTL
in O ((|S|+ |R|) · |ψ|) time.

Theorem 87. Given a State-RoCTL structure M = (S,R, g), and formula
ψ the State-RoCTL model checking problem can be decided in time of order
O ((|S|+ |R|) · |ψ|).

Proof. It is easy to see that model-checking procedure is polynomial; for each
atom pβ v τ ′′ (ψ) and world w ∈ S we can use the CTL model checking proce-
dure to model check β at the world w and add pβ recursively to the model if
M,w � β. We then see that

M,w � τ ′ (ψ) ⇐⇒ M,w � τ ′ (ψ) ⇐⇒ M,w � ψ .

Hence model checking the State-RoCTL formula ψ will result in at most |S| · |ψ|
calls to the O ((|S|+ |R|) · |ψ|) model checking procedure. We will now refine
this procedure.

The model checking procedure for CTL in [24] marks each state with the
subformulas of β that hold at each state when checking whether M,w � β holds
for some formula β, structure M and world w. This is done so that each formula
of length n can be easily model checked once each state has been marked with
the subformulas of length n − 1. After performing the CTL model checking
procedure of [24] we can inspect this marking to determine at which worlds of
M the formula β holds at, and we do not need to perform the procedure for
each world in S. As such we need to call the CTL model-checking procedure
of [24] at most |ψ| times. This refinement has removed a factor of |S|. We will
now show that algorithm achieves a complexity of O ((|S|+ |R|) · |ψ|) despite
needing to call the CTL model-checker multiple times. The basis of this proof
is the fact that we only need to model check short formulas, which are in total
shorter than τ ′′ (ψ).
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Let Φ be the set of formulas that we send to the CTL model-checker, that is

Φ = {τ ′ (ψ)} ∪ {β : pβ v τ ′ (ψ)} .

Hence the time required is

O

∑
φ∈Φ

((|S|+ |R|) · |φ|)

 ,

which simplifies to

O

(|S|+ |R|) ·
∑
φ∈Φ

|φ|

 .

Note that each member of Φ is a subformula of τ ′′ (ψ). Since each member of Φ
comes from a separate part of τ ′′ (ψ) we see that

∑
φ∈Φ |φ| ≤ |τ ′′ (ψ)| ≤ 45 |ψ|.

As such the complexity is O ((|S|+ |R|) · |ψ|).

It is well known that model-checking CTL formulas is P-hard [21]. As State-
RoCTL is an extension of CTL it is clear that it is also P-hard. Together with
the previous theorem, this gives us the following corollary.

Corollary 88. Model checking State-RoCTL formulas is P-complete.

7. Related Work

In this paper we have discussed sublogics of the logic of robustness RoCTL*.
Many previous logics for reasoning about fault tolerant systems represent re-
liability using probabilities. For examples of such logics, see [40, 41, 42, 43].
With such logics, if we know the probabilities of various forms of failure, we can
determine the probability that the system will continue to function correctly.

Another approach is to find the smallest metric perturbation that is required
to cause failure. This can be useful when processing noisy signals [44, 45], where
the signal is generally analog at the hardware level, and in biological systems
[46]. A logic has been proposed to model how robustly a system can handle
non-compliance by some set of agents [47, 48]. We will now discuss these two
basic approaches in greater detail.

The approach of [44, 45] is to define the robustness of a Metric Temporal
Logic (MTL) formula. MTL extends the syntax of LTL by replacing the U
operator with a UI operator where I represents an (possibly continuous) in-
terval. The statement φUIψ indicates that within the interval I it is the case
that φ is true until ψ becomes true. They define how robustly true a state-
ment is in terms of the closest signal which does not satisfy the formula. The
semantics of their logic considers not only whether an atom p is true or false,
but also the set of signals “O (p)” on which p is true. They define a measure
of distance the Distd (x, S) of a point x to a set S on a metric d such that
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the distance is negative if the point is inside the set and positive if the point
is outside. They define the “robust valuation” of an atomic proposition p as
[[p,O]]C(s, t) := Distd(s(t), O(p)), where O is an “observation map” [45, p22],
s is the signal, t is the time, s (t) is the current value of the signal, and O(p) is
the set of values where p is true. They then define the robust valuation of other
formulas recursively in terms of the atomic proposition.

The approach of [46] is broadly similar to that of [44, 45], but has a couple
of differences. Like [44, 45], they define robustness in terms of metric pertur-
bations. Unlike [44, 45], [46] considers LTL rather than MTL formulas. Addi-
tionally, they do not redefine the semantics of the logic, instead they define the
“violation degree” of a trace to be the distance to the closest trace that satisfies
a formula.

The Probabilistic real time Computation Tree Logic (PCTL) of [40] is a
variation of CTL. In place of the all paths operator A they use [φ]≥p and [φ]>p
which indicates that, from the current world, the probability of the path formula
φ occurring is at least p and greater than p respectively. In a manner similar
to MTL, they also replace the U operator with a U≤t operator. The formula
φU≤tψ indicates that ψ will become true within the next t time steps, and prior
to then φ will remain true.

As RoCTL* has an “obligatory” operator, it can be considered as a deontic
logic. Early deontic logic has been plagued with paradoxes. The first deontic
logic was that of Mally. Under Mally’s logic it is provable that everything is as
it ought to be ([49]; cited in [50, 51]). Although Mally considered this to be an
important philosophical result, it reduces the expressiveness of the logic to that
of classical logic. RoCTL* is primarily intended to model robustness of systems
to violations of soft constraints rather than to give deep philosophical insights
into the nature of obligation. For example, Aφ→ Oφ is valid in RoCTL*. When
discussing a system with soft constraints this is most naturally interpreted as the
uncontroversial statement “If φ is a hard constraint, it is also a soft constraint”.
However, from a philosophical perspective it would be interpreted as “If φ is
inevitable, it is also obligatory”, which philosophers following Mally have found
questionable. Further comparison of RoCTL* with deontic logics is found in
the PhD thesis [5].

When developing a normative system it is reasonable to ask whether the
normative system is robust to non-compliance by some subset of the agents.
Recently [47] have considered necessary and sufficient coalitions needed to com-
ply with a normative system to ensure the goals of the normative system are
achieved, and proposed a logic to reason about such issues. There has been
considerable interest in this area [52, 48, 53].

Alternating Tree Logic [54] is an extension of CTL* that can also be used to
reason about coalitions. This logic replaces the CTL* operator A with a 〈〈C〉〉
operator that represents “if the agents in the coalition C work together, they
can achieve. . . ”. ATL* can be used to reason about robustness of a system to
misbehaving subsystems or users. This is an important form of robustness, but
is very different from transient faults.

Graded modalities have been used in a range of modal logics to extend
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universal and existential quantifiers to represent “for all but k successors” and
“there exists at least k successors”. For example, a graded version of the µ-
calculus [55] is provided in [56]. This is a propositional modal logic with least
and greatest fixpoint operators and graded modalities. Graded versions of CTL
have been considered in [57, 58] and for CTL* in [59]. The graded modalities for
CTL/CTL* consider the number of paths rather than the number of successors
(as in the graded µ-calculus). This can be used to quantify the robustness of
systems by considering the numbers of paths showing good or bad properties.
The notion of robustness for these graded logics is different to what we consider
which is whether properties hold given a fixed number of failures, rather than the
number of paths where a property holds. Different semantics have been adopted
for the graded modalities depending on how different paths are defined. The
satisfiability problem is considered in [57, 58, 59] and model checking in [57, 59].

A graded version of ATL (called Graded ATL) [60] has some ability to reason
about transient faults. It can represent the number of paths or strategies that
are available to reach some goal. This is quite different from RoCTL*. Graded
ATL has a number of different semantics, “online”, “memoryless”, and “offline”.
However, none of these semantics quite capture the idea of always achieving a
goal in the face of some bounded number of faults. For example, a river with
several slippery fords may offer you multiple strategies to get a book to the
other side, but a single misstep will still ruin the book.

Graded ATL is well suited to representing robustness in situations where we
can start again from the beginning. For example, if a random computer glitch
prevents a sequence of file converters from correctly processing a file, a differ-
ent sequence could be tried, and an increase in the number of combinations of
converters that should work increases the robustness of the system. When start-
ing again is not an option, more strategies does not necessarily mean that our
system is more robust. Graded versions [61, 62] also exist for Strategy Logics.
Strategy logics are more expressive than ATL and ATL* allowing quantification
over strategies.

8. Conclusion

We discussed three sub-logics of RoCTL*: RoBCTL*, Pair-RoCTL and
State-RoCTL. We have given a tableau for RoBCTL*, shown that Pair-RoCTL
is not any easier to decide than CTL*, and shown that existing techniques can
be used to solve State-RoCTL* satisfiability and model checking problems with
no increase in computational complexity. We have not given a model check-
ing procedure for RoBCTL*. RoCTL* can be model checked by translating
the formulas into CTL*, and then model checking the resulting formulas [6].
RoBCTL* can likewise be translated into BCTL*; however, whereas CTL* has
the bounded model property [36], BCTL* models have bundles which are never
finite. Thus the RoBCTL*/BCTL* model checking property cannot even be
defined without reference to some particular finite representation BCTL* mod-
els. Although BCTL* tableaux provide such a finite representation, they may
not be the most natural representation.
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We presented a tableau based decision procedure for RoBCTL*, which al-
lows us to reason about robustness in systems that need not be limit closed.
The complexity of this decision procedure may be non-elementary; however, we
discussed why this may not be a problem for most applications. For example,
the examples in Section 3 had the property that they never had U , N, U nested
in order, which is sufficient to ensure that the decision procedure for RoBCTL*
terminates in an elementary amount of time. In [6] it was shown that RoCTL*
could be decided by reducing to QCTL* and tree automata, and further that no
such reductions could provide an elementary decision procedure for RoCTL*.
The tableau for RoBCTL* was first presented in a conference paper [28], and
no optimisation has been found to provide an elementary decision procedure for
RoBCTL* or RoCTL*. This suggests the possibility that no elementary deci-
sion procedure for RoCTL* will be found. For this reason we also investigated
syntactic restrictions of RoCTL*.

We have shown that although the syntax of Pair-RoCTL is an intuitive
definition of a CTL-like restriction of RoCTL*, the properties of Pair-RoCTL are
closer to CTL*. We have shown that the addition of a “success world” to CTL*
models allows every property that can be expressed in CTL* to be expressed in
Pair-RoCTL. Combining this with the result [6] that every property that can
be expressed in RoCTL* can be expressed in CTL* when CTL* formulas are
allowed to include the special violation atom indicates that Pair-RoCTL, CTL*
and RoCTL* all have similar expressivity. Additionally, we have shown that
the decision problems of Pair-RoCTL are in complexity classes that are at least
as hard as those of CTL*, for example, satisfiability checking Pair-RoCTL is
2-EXPTIME hard. Determining whether the decision problems for Pair-RoCTL
are as hard as those RoCTL* remains an open problem.

State-RoCTL is as easy to reason with as CTL. State-RoCTL* has a linear
length satisfiability-preserving translation into CTL that is efficient to compute.
This allows existing implementations of CTL satisfiability procedures to be used
to decide State-RoCTL. Even existing model checking procedures for CTL
can be used on the linear translation with only trivial modifications; that is
recursively adding each pα atom in the translation at states of the model where α
is satisfied. Although having CTL-like complexity, State-RoCTL can naturally
express non-trivial RoCTL* formulas, such as formulas that have Prone nested
directly within Robustly.
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