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Abstract

In this paper, we introduce two new particle filtering algorithms for high-dimensional state spaces

in the multiple particle filtering approach. In multiple particle filtering, the state space is parti-

tioned and a different particle filter is used for each component of the partition. At each time step,

all particle filters share information about their marginal densities so that they can adequately ap-

proximate the filtering recursion. In this paper, we propose a second order approximation to

the involved densities based on sigma-point integration methods. We then introduce two dif-

ferent particle filters that make use of this strategy. Finally, we demonstrate their remarkable

performance through simulations of a multiple target tracking scenario with a sensor network.

Keywords: Particle filters, curse of dimensionality, unscented transform, sigma-point, multiple particle
filter.

1. Introduction

Many problems in science and engineering require the estimation of the state of a dynamic

system based on a sequence of noisy measurements. Advances in this field have allowed the

development of a plethora of applications in navigation, aerospace engineering, remote surveil-

lance, telecommunications, control theory and finance, among others [1]. Estimation theory

provides different methods to tackle the state estimation problem [2]. However, it is usually the

case that sensor measurements are gradually made available at progressive time instants, so that
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online estimators given past states are usually preferred, making Bayesian techniques in estima-

tion theory particularly suitable for this problem.

The Bayesian filtering approach to the estimation of the current state of a dynamic system

requires the sequential computation of the posterior probability density function (PDF), which

contains all the information of interest about the current state of the system given the sequence of

measurements up to the current time [1]. However, the posterior PDF does not generally have a

closed form expression and is not described by a finite set of parameters unless some assumptions

hold [3]. Thus, approximations are usually required in order to face this problem in a general

setting.

Nonlinear Kalman filters can be used to deal with nonlinear problems, of low and high di-

mensionality, using a Gaussian approximation [4–6]. These methods can work very well if the

posterior PDF is roughly Gaussian [1] and nonlinearities are mild [7].

Particle filters (PFs) [8–10] are a widely used tool to generally approximate the Bayesian filter-

ing recursion, with general posterior densities, not necessarily Gaussian or unimodal. However,

the performance of PFs severely decreases if the dimension of the state space is high, an effect

which is usually referred to as the curse of dimensionality [11]. Therefore, it is of interest to

develop strategies within the particle filtering framework that can satisfactorily deal with high-

dimensionality.

In an attempt to tackle the curse of dimensionality, some useful techniques can be applied

to PFs. A common approach in systems with linear/Gaussian substructures is to use Rao-

Blackwellization [12, 13]. Another effective approach in the literature to soften the effects of

dimensionality in the performance of PFs is to assume that, given a partition of the state of the

dynamic system, the different components of the partition are posterior independent [14–18].

The approach of multiple filtering [19–25] has also been proposed to tackle the problem of

high dimensional state estimation. Multiple filters also partition the state space into different

components to alleviate the curse of dimensionality. However, instead of considering the joint

posterior PDF of the complete state, as in the previous posterior independence methods, they

separately approximate the marginal posterior PDFs of each component of the partition with an

individual filter. The dimension of each of the individual state spaces is thus kept low so that

the effects of the curse of dimensionality are mitigated. Multiple filters that make use of particle

filters are referred to as multiple particle filters (MPFs).
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Computation of the involved marginalization integrals in multiple filtering does not generally

admit an analytical result, and approximations via Monte Carlo sampling can result in computa-

tionally expensive methods [26]. It is then of high interest in MPFs to develop tractable, accurate

approximations to deal with these marginalization integrals. In the following, we proceed to re-

view different approaches to the marginalization step, which result in different MPF algorithms.

A first order approximation to perform the marginalization was considered in the original MPF

[19, 20]. Each individual PF receives the predicted mean of the state of the other components of

the partition, and use them to compute an approximation of the marginalization integrals. The

performance of this MPF can severely decline if the predicted PDF of the state of the components

of the partition is not adequately represented by its predicted mean, for instance, when the state

uncertainty is relatively high.

An improvement over this first order MPF, coined as the C-PF-PROP, was presented in [22].

This method considers a second order approximation to the involved integrals, so that each PF

in the method receives not only the predicted means of the adjacent components of the partition

but also the covariance matrices of the predictions. An important drawback of the C-PF-PROP

is that it requires complex analytical derivations, which have only been provided for the received

signal strength indicator measurement model [27]. In addition, a general procedure of how to

extend C-PF-PROP to other measurement models is not explicitly mentioned in [27] so it is not

straightforward to use it with other measurement models.

In this paper, we address the shortcomings of the original MPF and C-PF-PROP and develop

two multiple particle filters that exchange second order information and can be used with additive

measurement models, without the need of analytical derivations. In the proposed methods, we

first indicate how we can make use of sigma-point integration methods to efficiently compute the

marginalization integrals [1, 4, 5, 28, 29]. The resulting filter presented in this paper is referred

to as the sigma-point MPF (SP-MPF). The second contribution of this paper is the inclusion of

auxiliary sampling to further improve the performance of SP-MPF [30]. This method is referred

to as the sigma-point multiple auxiliary PF (SP-MAPF). We demonstrate via simulations that the

two proposed algorithms outperform other PFs in the literature.

The rest of the paper is organized as follows. In Section 2, the general setting of the problem

is presented and previous solutions based on MPFs are reviewed. Section 3 introduces the two

sigma-point based MPFs presented in this paper. In Section 4, the performance of the presented
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methods is tested against other PFs in the literature via simulations. Finally, conclusions are

drawn in Section 5.

2. Background on multiple particle filtering

In this section, the Bayesian approach to the estimation of the current state of a dynamic

system is first considered. The state at time k is described by the state vector Xk ∈ Rnx , which

is observed through the measurements zk ∈ Rnz , where nx and nz are the dimensions of the state

space and the measurement vector, respectively. The dynamic system is modeled by the dynamic

and measurement equations

Xk = f
(
Xk−1,wk−1

)
(1)

zk = h
(
Xk, vk

)
(2)

where the dynamic function f(·) describes the evolution of the state through time and the mea-

surement function h(·) describes the dependence of the observations with the state of the system.

The functions f(·) and h(·) might be nonlinear functions, wk−1 is the process noise vector of the

state at time k − 1, and vk is the measurement noise vector at time k [8]. Noise vectors are

independent and have zero mean.

Let z1:k = (z1, ..., zk) be the sequence of measurements up to time k. The posterior can be

computed via Bayesian filtering, using a two-step recursion [1]. Thus, using the Chapman-

Kolmogorov equation and Bayes’ rule, the posterior PDF at time k can be obtained as

p(Xk |z1:k−1) =

ˆ
p(Xk |Xk−1)p(Xk−1|z1:k−1)dXk−1 (3)

p(Xk |z1:k) ∝ p(zk |Xk)p(Xk |z1:k−1) (4)

where ∝ denotes proportionality, p(Xk |Xk−1) is obtained from (1) and the likelihood function

p(zk |Xk) is obtained from (2). The initial state PDF p(X0) is also known in order to initialize the

recursion.

Directly computing or approximating (3) and (4) can be a difficult task due to the possible

nonlinearities in (1) and (2), specially when the dimensionality of the involved spaces is high.

Multiple filters [19–22, 24, 25] address this problem by considering that the state of the dynamic

system can be partitioned into t components as [24]

Xk =
[
(xk

1)T , (xk
2)T , ..., (xk

t )T
]T

(5)
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where xk
j is the state of the j-th component at time k, and T stands for the vector transpose.

We assume that the dynamic model is such that Equation (1) can be written as

xk
j = f j(xk−1

j ,wk−1
j ) (6)

where f j(·) describes the evolution of the j-th component of the state through time and wk−1
j is an

independent noise vector for the j-th component. According to (6), the state of each component

evolves independently from the rest so that the transition density is

p(Xk |Xk−1) =

t∏
j=1

p(xk
j |x

k−1
j ). (7)

While (7) is not a constraint of multiple filters, which can be adapted to consider a broader

family of dynamic models [20, 21], it is still a common assumption in multiple filtering [19, 22,

24, 31]. In addition, multiple filters assume that

• A1: The posterior PDF is independent so that

p(Xk |z1:k) =

t∏
j=1

p(xk
j |z

1:k). (8)

It should be noted that, due to the correlation arising from processing the measurements, the

posterior PDF is not generally independent as indicated by A1. Nevertheless, it is shown in [16]

that, for a Gaussian posterior, the posterior independence assumption improves performance for

a high enough state dimension or a low enough number of particles. This assumption has been

demonstrated to be beneficial in other high-dimensional particle filters [14, 15, 18].

Making use of (8) and (7), the predicted PDF in (3) can be written as

p(Xk |z1:k−1) =

t∏
j=1

[ˆ
p(xk

j |x
k−1
j )p(xk−1

j |z
1:k−1)dxk−1

j

]

=

t∏
j=1

p(xk
j |z

1:k−1) (9)

where p(xk
j |z

1:k−1) is the predicted density of the j-th component of the state at time k based on

measurements up to time k − 1.

The aim of multiple filters is to separately approximate the marginal posterior PDF p(xk
j |z

1:k)

for each component of the partition in (5). To explain this procedure, we define vector

Xk
−{ j} =

[
(xk

1)T , ..., (xk
j−1)T , (xk

j+1)T , ..., (xk
t )T

]T
, (10)

in which the state of the j-th component has been removed from Xk. Using (4) and (9), the
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marginal posterior PDF of xk
j can then be computed as

p(xk
j |z

1:k) =

ˆ
p(Xk |z1:k)dXk

−{ j}

∝ p(xk
j |z

1:k−1)
ˆ

p(zk |Xk)p(Xk
−{ j}|z

1:k−1)dXk
−{ j} (11)

where using (9)

p(Xk
−{ j}|z

1:k−1) =

t∏
l=1,l, j

p(xk
l |z

1:k−1). (12)

Approximating these marginal posterior distributions instead of the high dimensional joint

state posterior PDF generally results in a better performing particle filter [19–22]. MPFs use

an individual PF to approximate each marginal posterior PDF of the different components of

the partition in (5). However, in order to efficiently achieve its purpose, the j-th PF of a MPF

approximates the marginal posterior PDF of xk
j in an indirect way by considering the whole

sequence of states up to time k, x0:k
j = (x0

j , ..., x
k
j). The advantage of this approach is that it is no

longer necessary to compute the integral in the prediction step, see (3), so that [8, 10]

p(x0:k
j |z

1:k−1) = p(xk
j |x

k−1
j )p(x0:k−1

j |z1:k−1) (13)

and

p(X0:k |z1:k−1) =

t∏
j=1

p(x0:k
j |z

1:k−1) (14)

where (14) corresponds to the extension of Assumption A1 to state sequences. The same discus-

sion regarding the motivation of A1 (paragraph after (8)) applies to (14).

Given that the measurements only depend on the current state of the dynamic system, the

marginal posterior PDF can be written as

p(x0:k
j |z

1:k) ∝
ˆ

p(zk |Xk)
t∏

l=1

[
p(x0:k

l |z
1:k−1)

]
dX0:k
−{ j}

= p(xk
j |x

k−1
j )p(x0:k−1

j |z1:k−1)
ˆ

p(zk |Xk)p(Xk
−{ j}|z

1:k−1)dXk
−{ j}. (15)

where X0:k
−{ j} = (X0

−{ j}, ...,X
k
−{ j}) represents the sequence of states up to time k of all the components

of the partition except for the j-th.

MPFs use a different particle representation for each marginal posterior PDF. Therefore, we

have t different PFs with a set of N weighted samples (particles) {(x0:k
j,1 , ω

k
j,1), ..., (x0:k

j,N , ω
k
j,N)},

where x0:k
j,i stands for the i-th particle of the j-th filter at time k, with associated weight ωk

j,i.
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Then, the marginal posterior PDF of x0:k
j is approximated as

p(x0:k
j |z

1:k) ≈
N∑

i=1

ωk
j,iδ(x

0:k
j − x0:k

j,i ). (16)

Approximating (15) via direct Monte Carlo sampling is quite demanding computationally as

we need to sample a large state space to compute the marginalization integral in (15). Therefore,

MPFs usually make use of some approximations that enable the use of several parallel com-

putationally efficient PFs which share information among themselves to approximate (15). We

proceed to review two methods in the literature: the first order MPF and C-PF PROP.

2.1. MPF: A first order approximation

In the MPF [19], at time k − 1, the l-th PF approximates the predicted value of xk
l . There are

different ways of obtaining these predictions. Here, we consider

x̂k
l ≈

N∑
i=1

ωk−1
l,i · x

k|k−1
l,i (17)

where xk|k−1
l,i is obtained using the dynamic model to propagate particle xk−1

l,i as

xk|k−1
l,i ∼ p(xk

l |x
k−1
l,i ). (18)

Thus, x̂k
l is the predicted state of the l-th component of the state at time k given its particle

posterior approximation at time k − 1. Once these predictions have been computed, they are

sent to the rest of the PFs. At time k, the j-th PF receives all these estimates of the states of the

adjacent components and builds

X̂k
−{ j} =

[
(x̂k

1)T , ..., (x̂k
j−1)T , (x̂k

j+1)T , ..., (x̂k
t )T

]T
. (19)

The j-th PF then makes use of the following first order approximation

p(Xk
−{ j}|z

1:k−1) ≈ δ
(
Xk
−{ j} − X̂k

−{ j}

)
. (20)

Using (20), the marginal posterior of x0:k
j , see (15), becomes

p(x0:k
j |z

1:k) ∝ p(zk |xk
j, X̂

k
−{ j})p(xk

j |x
k−1
j )p(x0:k−1

j |z1:k−1). (21)

It should be noted that (21) corresponds to one step of the Bayesian recursion with a modi-

fied likelihood function p(zk |xk
j, X̂

k
−{ j}). Then, particles at time k are sequentially drawn from a

proposal or importance function q j(x0:k
j |z

1:k) which is chosen to factorize as

q j(x0:k
j |z

1:k) = p(xk
j |x

k−1
j )q j(x0:k−1

j |z1:k−1). (22)

Particles x0:k−1
j,i in (16) were drawn at the previous time step from q j(x0:k−1

j |z1:k−1), so that a new
7



particle, x0:k
j,i , is drawn by sampling from p(xk

j,i|x
k−1
j,i ) and appending it to the previous i-th particle

[8, 19]. Particle weights are computed according to the principle of importance sampling as

ωk
j,i ∝

p(x0:k
j,i |z

1:k)

q j(x0:k
j,i |z1:k)

(23)

= p(zk |xk
j,i, X̂

k
−{ j})ω

k−1
j,i . (24)

This recursion is repeated for each component of the partition at each time step.

2.2. C-PF-PROP: A second order approximation

The MPF can achieve a very good performance, but it deteriorates if p(Xk
−{ j}|z

1:k−1) is not

narrowly concentrated around X̂k
−{ j}, i.e. if the approximation in (20) is not accurate. Under a

linear-Gaussian dynamic model, p
(
xk

l |x
k−1
l

)
= N

(
xk

l ; Axk−1
l ,Q

)
, where N (x; x̂,C) is a Gaussian

PDF with mean x̂ and covariance matrix C evaluated at x, the C-PF-PROP [22] addresses this

limitation using a second order approximation in (20). That is, it makes the approximation

p(Xk
−{ j}|z

1:k−1) ≈
t∏

l=1,l, j

N
(
xk

l ; x̂k
l , Ĉ

k
l

)
, (25)

and

x̂k
l = Ax̄k−1

l (26)

Ĉk
l = AC̄k−1

l AT + Q (27)

where

x̄k−1
l =

N∑
i=1

ωk−1
l,i xk−1

l,i (28)

C̄k−1
l =

N∑
i=1

ωk−1
l,i · (x

k−1
l,i − x̄k−1

l ) · (xk−1
l,i − x̄k−1

l )T . (29)

The j-th PF uses all the received information to build X̂k
−{ j} and Ĉk

−{ j}, which are respectively

the collection of all the first and second predicted moments of the components of the marginal

states, except for the j-th. Using (25) in (15), C-PF-PROP then approximates the marginal

posterior PDFs by

p(x0:k
j |z

1:k) ∝ p(x0:k
j |z

1:k−1)p(zk |xk
j; X̂k

−{ j}, Ĉ
k
−{ j}) (30)

where we use the notation

p(zk |xk
j; X̂k

−{ j}, Ĉ
k
−{ j}) ,

ˆ
p(zk |Xk)

t∏
l=1,l, j

N
(
xk

l ; x̂k
l , Ĉ

k
l

)
dXk
−{ j}. (31)
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As in the MPF, particles are drawn from the importance sampling function in (22), so that

using (23), particle weights are computed as

ωk
j,i ∝ p(zk |xk

j,i; X̂k
−{ j}, Ĉ

k
−{ j})ω

k−1
j,i . (32)

Equation (31) does not generally have an analytical solution, but an approximation was pro-

vided in [22] for the received signal strength indicator (RSSI) measurement model.

3. Sigma-point multiple particle filters

In this section, we introduce two new MPFs with a second order approximation to the marginal

PDFs of the components of the state in Xk
−{ j} using sigma-point methods [1]. A brief review of

sigma-point methods is first provided in Section 3.1. The two MPFs proposed in this work are

presented in Sections 3.2 and 3.3, respectively.

3.1. Sigma-point integration methods

Sigma-point methods [1, 32] are numerical integration tools to compute the moments of a

distribution that undergoes a nonlinear transformation. Let us consider a random variable x with

PDF p(x) that is transformed through a function z = h(x). Sigma-point methods use a set of

m sigma-points with their corresponding weights, X = {(X1,w1), ..., (Xm,wm)}, which match the

mean x̄ and covariance matrix P, i.e., the first two moments of p(x), and approximate the first

two moments of z as

z̄ =

ˆ
h (x) p(x)dx (33)

≈

m∑
i=1

wih(Xi)

S =

ˆ
(h (x) − z̄) (h (x) − z̄)T p(x)dx (34)

≈

m∑
i=1

wi
(
h(Xi) − z̄

) (
h(Xi) − z̄

)T
.

There are many ways of selecting sigma-points and their corresponding weights, with different

properties regarding computational burden and accuracy, for example, the unscented transform

[32], the Gauss-Hermite quadrature rule [5], and the cubature rule [6] among others [1]. The

unscented transform and cubature rule have the important property of requiring a number of

sigma-points which grows linearly with the dimension of the state-space. On the contrary, the
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number of sigma-points in Gauss-Hermite integration grows exponentially with the dimension

of the state [1], often making its use in high-dimensional state spaces prohibitive.

3.2. SP-MPF: A sigma-point second order approximation

The sigma-point MPF (SP-MPF), as C-PF-PROP, is a second order approximation to multi-

ple particle filtering. However, unlike the latter, it does not require derivation of any analytical

approximations for (31). Instead, it uses sigma-point integration, which has been shown to out-

perform analytical approximations in nonlinear Kalman filters [4].

First, it is useful to define

l j(zk |xk
j) ,
ˆ

p(zk |Xk)
t∏

l=1,l, j

p(xk
l |z

1:k−1)dXk
−{ j} (35)

which represents the likelihood for xk
j after removing the influence on the measurements of the

rest of the components of the state. Using (35), the marginal posterior for SP-MPF can be

expressed as

p(x0:k
j |z

1:k)∝ l j(zk |xk
j)p(xk

j |x
k−1
j )p(x0:k−1

j |z1:k−1). (36)

The developed particle filters in this section require additive sensor models, which make the

assumption

• A2: Equation (2) can be expressed as

zk =

t∑
l=1

hl

(
xk

l

)
+ vk (37)

where hl(xk
l ) is the contribution to the sensor measurements of the l-th component of the

state and vk is a zero-mean noise with known covariance matrix Rk. Note that Equation

(37) indicates that additivity of the measurements hl(xk
l ) is required.

In order to provide a second order approximation to the marginalization integrals, we consider

the computation of ȳk
j

(
xk

j

)
and Ŝk

j, which respectively denote the mean and covariance of the

conditional distribution l j(zk |xk
j). We show in Appendix 1 that these quantities can be computed

as

ȳk
j

(
xk

j

)
=

ˆ
zkl j(zk |xk

j)dzk (38)

= h j

(
xk

j

)
+

t∑
l=1,l, j

z̄k
l

10



where

z̄k
l =

ˆ
hl(xk

l )p(xk
l |z

1:k−1)dxk
l . (39)

On the other hand, Ŝk
j can be written as

Ŝk
j =

ˆ (
zk − z̄k

) (
zk − z̄k

)T
l j(zk |xk

j)dzk (40)

= Rk +

t∑
l=1,l, j

Sk
l

where

Sk
l =

ˆ [(
hl(xk

l ) − z̄k
l

) (
hl(xk

l ) − z̄k
l

)T
]

p(xk
l |z

1:k−1)dxk
l . (41)

Note that the computation of z̄k
l and Sk

l , respectively the contributions of xk
l to the mean and

covariance of zk in (39) and (41), correspond to the type of integrals we can conveniently compute

using sigma-points, as pointed out in Section 3.1.

In order to use sigma-point methods to evaluate integrals (39) and (41), we require the mean

x̂k
l and covariance Ĉk

l matrix of the prior distribution of each component of the partition. The

presented method does not require the dynamic model to be linear-Gaussian, so that instead of

using (26) and (27), we consider the expression in (17) to compute x̂k
l , while Ĉk

l is computed as

Ĉk
l =

N∑
i=1

ωk−1
l,i ·

(
xk|k−1

l,i − x̂k
l

)
·
(
xk|k−1

l,i − x̂k
l

)
T (42)

where xk|k−1
l,i is obtained using (18) and x̂k

l from (17).

Making use of sigma-point methods, we proceed to estimate z̄k
l and Sk

l . For each component

of the partition, we can use any sigma-point integration method [5, 6, 32] to select a set of ml

weighted sigma-points Xl = {(X1
l ,w

1
l ), ..., (Xml

l ,w
ml
l )} that match x̂k

l and Ĉk
l , which are given

by (17) and (42). Then, sigma-points are propagated through hl(·), so that z̄k
l and Sk

l can be

approximated as

z̄k
l ≈

ml∑
i=1

wi
lhl(Xi

l) (43)

Sk
l ≈

ml∑
i=1

wi
l

(
hl(Xi

l) − z̄k
l

)
·
(
hl(Xi

l) − z̄k
l

)T
. (44)

Thus, we can compute a second order Gaussian approximation to (35) using sigma-points as

[1]

l j(zk |xk
j) ≈ lNj (zk |xk

j) (45)
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Algorithm 1 PF for the j-th component in SP-MPF

- Initialize particles according to p(x0
j )

- Compute x̂1
j and Ĉ1

j using (17) and (42)

- Obtain a set of sigma-points and weights X j, whose first two moments

match x̂1
j and Ĉ1

j

- Compute z̄1
j and S1

j using (43) and (44) using a sigma-point method

- Send z̄1
j and S1

j to the other t − 1 PFs.

for k = 1, ..., kend do . kend is the final time step

- Collect new measurements zk from sensors

for l = 1, ..., t l , j do

- Receive z̄k
l and Sk

l from the l-th PF.

for i = 1, ...,N do

- Draw a sample xk
j,i using p(xk

j |x
k−1
j,i )

- Compute lNj (zk |xk
j,i) using (45)

- Compute ωk
j,i = ωk−1

j,i lNj (zk |xk
j,i)

for i = 1, ...,N do

- Normalize ωk
j,i =

ωk
j,i∑N

i=1 ω
k
j,i

-Compute N̂ j
e f f = 1∑N

i=1(ωk
j,i)

2

if N̂ j
e f f < Γ then

-Resample the particle set {(xk
j,1, ω

k
j,1), ..., (xk

j,N , ω
k
j,N )})

- Compute x̂k+1
j and Ĉk+1

j using (17) and (42)

- Obtain a set of sigma-points and weights X j, whose first two moments

match x̂k+1
j and Ĉk+1

j using a sigma-point method

- Compute z̄k+1
j and Sk+1

j using (43) and (44)

- Send z̄k+1
j and Sk+1

j to the other t − 1 PFs.

12



= N
(
zk; h j(xk

j) +

t∑
l=1,l, j

z̄k
l ,R

k +

t∑
l=1,l, j

Sk
l

)
.

At time k, the j-th PF receives this estimation of z̄k
l and Sk

l from the other t − 1 PFs so that it can

approximate lNj (zk |xk
j). SP-MPF also draws particles from the importance density (22) so that the

particle weight update equation in (23) becomes

ωk
j,i ∝

lNj (zk |xk
j)p(xk

j,i|x
k−1
j,i )p(x0:k−1

j,i |z1:k−1)

p(xk
j,i|x

k−1
j,i )q(x0:k−1

j,i |z1:k−1)
(46)

= ωk−1
j,i lNj (zk |xk

j).

The j-th PF finally computes x̂k+1
j and Ĉk+1

j , the first two moments of the predicted PDF of the

state at time k + 1, using (17) and (42). Then, it draws its own set of sigma-points X j that match

x̂k+1
j and Ĉk+1

j and use them to approximate z̄k+1
j and Sk+1

j using (43) and (44) to transmit them to

the other t − 1 PFs, which would use them in their own recursion at time k + 1.

As a result of the way particles are drawn from q j(x0:k
j |z

1:k), approximating p(xk
j |z

1:k) only

requires to store the states of the particles up to time k − 1, so that implementations can be

memory-efficient. However, the underlying state-space which the filter is dealing with is in fact

that of x0:k
j . The dimension thus grows at every time step, which provokes the so called particle

degeneracy [33].

To prevent particle degeneracy, an adaptive resampling scheme based on the monitoring of the

effective sample size Ne f f
j is considered [10, 34]. One cannot generally exactly evaluate Ne f f

j ,

however a commonly accepted estimate is given by [8]

N̂e f f
j =

1∑N
i=1(ωk

j,i)
2
, (47)

which takes values in the interval [1,N]. If N̂e f f
j falls below a given threshold, Γ, particles

are resampled. This restores the effective sampling size to N, preventing particle degeneracy,

but results in a loss of diversity among particles. The pseudocode for SP-MPF is provided in

Algorithm 1

3.3. SP-MAPF: Introducing auxiliary sampling in the SP-MPF

In this section, we propose a version of SP-MPF that uses auxiliary sampling [30]: SP-MAPF.

The use of an auxiliary variable allows for the consideration of the actual measurements in the

drawing of samples from the marginal posterior PDF, mimicking the way samples would be
13



Table 1: Principal features of the different multiple particle filtering algorithms

Filter MPF C-PF-PROP SP-MPF SP-MAPF

Approximation to

Equation (11)

Dirac delta

approximation

Analytical

approximation

sigma-point methods sigma-point methods

Order of the

approximation

mean mean and

covariance

mean and

covariance

mean and

covariance

Auxiliary

filtering

× × × X

Does not require

analytical derivations

X × X X

drawn from the optimal importance density [8]. This technique has been shown to improve

particle filters performance under informative sensor measurements.

Contrary to the previously discussed methods, instead of considering the posterior PDF of the

sequence of states as in (15), SP-MAPF obtains samples from p(xk
j |z

1:k), the marginal posterior

PDF of the state at time k+1 in (11). Given a particle representation of the marginal posterior PDF

at time k − 1, the j-th PF can approximate p(xk
j |z

1:k−1) in (11) using the Chapman-Kolmogorov

equation as

p(xk
j |z

1:k−1) =

ˆ
p(xk

j |x
k−1
j )p(xk−1

j |z
1:k−1)dxk−1

j

≈

ˆ
p(xk

j |x
k−1
j )

N∑
i=1

ωk−1
j,i δ(x

k−1
j − xk−1

j,i )dxk−1
j

=

N∑
i=1

ωk−1
j,i p(xk

j |x
k−1
j,i ). (48)

As in SP-MPF, at time k the j-th PF of SP-MAPF collects the shared estimations z̄k
l and Sk

l

from the rest of the components of the partition so that it can also approximate lNj (zk |xk
j) in (45).

Using (48), (11) can therefore be written as

p(xk
j |z

1:k) ∝ lNj (zk |xk
j)

N∑
i=1

ωk−1
j,i p(xk

j |x
k−1
j,i ). (49)

SP-MAPF indirectly obtains samples from this PDF using an auxiliary variable, a j, for each

component of the state [30], which removes the sum in (49). Thus, SP-MAPF also avoids the in-

crease in computational cost arising from the Chapman-Kolmogorov step integral in (48). There-
14



fore SP-MAPF samples in a higher dimension from

p(xk
j, a j|z1:k)∝lNj (zk |xk

j)ω
k−1
j,a j

p(xk
j |x

k−1
j,aj

) (50)

where a j ∈ {1, 2, ...,N} is an index in the mixture in (49).The selection of the auxiliary variable

is sound as p(xk
j, a j|z1:k) ≥ 0 and integrating (50) over a j, one gets the marginal PDF in (49).

SP-MAPF produces samples from an importance density in a higher dimension

q j(xk
j, a j|z1:k) ∝ lNj (zk |µk

j,a j
)ωk−1

j,a j
p(xk

j |x
k−1
j,aj

) (51)

with µk
j,a j

being some characterization of xk
j given xk−1

j,a j
, such as the predicted mean, µk

j,a j
=

E[xk
j |x

k−1
j,a j

], or a sample, µk
j,a j
∼ p(xk

j |x
k−1
j,a j

). Samples from a j are drawn according to the distribu-

tion of first-stage weights, λ j,i, which are given by

λ j,i ∝ ω
k−1
i lNj (zk |µk

j,a j
). (52)

Using (50) and (51), the weight update equation in (23) becomes

ωk
j,i ∝

p(xk
j,i, a

i
j|z

1:k)

q j(xk
j,i, a

i
j|z1:k)

(53)

=

lNj (zk |xk
j,ai

j
)

lNj (zk |µk
j,ai

j
)
.

As in SP-MPF, the j-th particle filter finally estimates the first two moments of the predicted

PDF at the next time step using (17) and (42), and draws a set of sigma-points X j to approximate

z̄k+1
j and Sk+1

j using (43) and (44), which are then sent to the other t − 1 PFs. It should be noted

that, if t = 1 and the measurement noise is Gaussian, SP-MPF and SP-MAPF corresponds to

sequential importance sampling and the auxiliary particle filter, respectively.

The pseudocode for SP-MAPF is given in Algorithm 2. The main features and differences

among the different multiple particle filtering algorithms are summarized in Table 1.

3.4. On computational complexity

In this section, we briefly analyze the computational complexity of the proposed methods in

comparison to that of MPF (see Section 2.1), as this algorithm is the most basic multiple particle

filter. The key aspect is that the computational complexity of the presented methods is O (N · t),

i.e., linear with respect to the number of particles, which is a desirable property for a particle

filter algorithm, though not necessary [26, 35], and also linear with respect to t, the number of

components of the partition in (5).
15



The main increase in computational complexity of SP-MPF with respect to MPF lies in the

following required additional steps:

1. The computation of the covariance matrix Ĉk
l , which is O

(
N · n2

xl

)
.

2. The drawing of sigma-points, which considering the use of a Cholesky factorization of Ĉk
l ,

is O
(
n3

xl

)
[32].

3. The transformation of sigma-points, whose computational complexity depends on the mea-

surement model, and computation of the mean and covariance of the transformed sigma-

points, which are O (m · nz) and O
(
m · n2

z

)
, respectively.

The important result of this analysis is that, typically, we have that N >> m, N >> nxl and

N >> nz, so that the computational complexity of each individual filter is mainly dominated by

the number of particles. As the computational complexities of SP-MPF and MPF are both linear

with respect to the number of particles, this means that the increase in computational complexity

of SP-MPF with respect to MPF is usually not high as will be shown in Section 4. In addition,

if we aim to achieve a required performance goal in our application, which is the case in many

engineering problems, SP-MPF allows for the decrease of the number of particles N with respect

to MPF. Therefore, the required running time to achieve our performance goal can be effectively

lowered with respect to MPF. A discussion considering this aspect based on our simulations can

be found in Section 4.

In the case of SP-MAPF the evaluation of the first stage weights is also required, a procedure

whose computational complexity is also O (N), but which also depends on the specifics of the

measurement model. It is important to note that the computational complexity of SP-MAPF will

therefore also remain linear with respect to the number of particles.

4. Simulations

In this section, the performance of the proposed methods is analyzed via simulations of a mul-

tiple target tracking scenario with fixed and known number of targets. This problem adequately

fits in the multiple filtering approach, as the marginal posterior PDF of the state of each target

can be individually approximated by a different filter. The developed methods could be used to

deal with the surviving targets in multiple target tracking problems with an unknown and varying

number of targets [15].
16



Algorithm 2 PF for the j-th component in SP-MAPF
- Initialize particles according to p(x0

j )

- Compute x̂1
j and Ĉ1

j using (17) and (42)

- Obtain a set of sigma-points and weights X j, whose first two moments

match x̂1
j and Ĉ1

j using a sigma-point method

- Compute z̄1
j and S1

j using (43) and (44)

- Send z̄1
j and S1

j to the other t − 1 PFs.

for k = 1, ..., kend do . kend is the final time step

- Collect new measurements zk from sensors

for l = 1, ..., t l , j do

- Receive z̄k
l and Sk

l from the l-th PF.

for i = 1, ...,N do

- Draw µk
j,i using: p(xk

j |x
k−1
j,i ) or E[xk

j |x
k−1
j,i ]

- Compute lNj (zk |µk
j,i) using (45)

- Compute λk
j,i = ωk−1

j,i lNj (zk |µk
j,i)

for i = 1, ...,N do

- Normalize λk
j,i =

λk
j,i∑N

i=1 λ
k
j,i

for i = 1, ...,N do

- Sample an index ai
j from the distribution (λ j,1, λ j,2, ..., λ j,N )

- Draw a sample xk
j,i using p(xk

j |x
k−1
j,ai

j
)

- Compute lNj (zk |xk
j,ai

j
) using (45)

- Compute ωk
j,i =

lNj (zk |xk
j,ai

j
)

lNj (zk |µk
j,ai

j
)

for i = 1, ...,N do

- Normalize ωk
j,i =

ωk
j,i∑N

i=1 ω
k
j,i

- Compute x̂k+1
j and Ĉk+1

j using (17) and (42)

- Obtain a set of sigma-points and weights X j, whose first two moments

match x̂k+1
j and Ĉk+1

j using a sigma-point method.

- Compute z̄k+1
j and Sk+1

j using (43) and (44)

- Send z̄k+1
j and Sk+1

j to the other t − 1 PFs.
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Figure 1: SP-MPF particles (thin dots) and sigma-points (thick dots) in a scenario with 3 different targets at a given time

step.

Before discussing performance considerations, we think it is convenient to illustrate how SP-

MPF and SP-MAPF work. To this end, Figure 1 shows the inner information managed by the

different PFs of the proposed methods in a scenario with 3 targets. As previously explained in

Section 3, the marginal PDF of each target is approximated by a PF using a weighted set of

particles. In addition, every PF also computes a set of sigma-points (in this case drawn using the

unscented transform) that matches the first two moments of its predicted marginal posterior PDF.

Figure 1 shows in a different color for each target (or each PF) the particles and sigma-points

which represent their marginal PDFs at a given time step.

The considered dynamic and measurement models are introduced in Section 4.1, while the

performance in the presented scenario for different PF methods is discussed in Section 4.2.

4.1. Dynamic and measurement models

There is a total of t targets in the scenario, where the state of the j-th target at time k is rep-

resented by its position and velocity through its state vector, xk
j = [xk

j , ẋ
k
j , y

k
j, ẏ

k
j]

T , with [xk
j , y

k
j]

T

being the position vector and [ẋk
j , ẏ

k
j]

T the velocity vector of target j at time k. The motion of

each target has been modeled as linear with a nearly constant velocity [2]

p(xk+1
j |x

k
j ) = N(xk+1

j ;Fxk
j ,Q) (54)

F = I2 ⊗

 1 τ

0 1

 Q = σ2
uI2 ⊗

 τ3/3 τ2/2

τ2/2 τ


where τ is the sampling period, In is the n×n identity matrix, ⊗ stands for the Kronecker product

and σ2
u is the continuous-time process noise intensity. The PDF at time k = 0 of the position the

j-th target p(x0
j ) is initialized as Gaussian distribution centered at the true position of the target,

18



with covariance Q. Measurements at time k, zk = [zk
i , ..., z

k
Ns

]T , are received through Ns = 169

sensors in a sensor network displayed in a 2-D regular grid covering 120m×120m, with a spacing

of 10m between sensors in both axes, see Figure 2.

Simulations include up to t = 8 targets in the scenario whose trajectories cross each other,

recreating a demanding multiple target tracking problem. These trajectories were generated ac-

cording to Equation (54), with τ = 1s and σu = 0.1m/s3/2. The simulated target trajectories are

shown in Figure 2.

We aim to compare the performance of the methods proposed in this paper with the C-PF-

PROP method. Therefore, we use the received signal strength indicator measurement model for

which the C-PF-PROP analytical expressions are available in [22, 27]. The nonlinear measure-

ment equation (37) for the i-th sensor at time k then is

zk
i = hi(Xk) + vk

i (55)

hi(Xk) =

t∑
j=1

hi, j(xk
j ) hi, j(xk

j ) =
Φ(

dk
j,i

)α
+ ε

where vk
i is a zero-mean, unit-variance (σ2 = 1), Gaussian-distributed noise, Φ determines the

signal power received by a sensor, ε is a saturation parameter which limits the signal power that

can be received from near targets, α is a path-loss coefficient and dk
j,i is the distance from the j-th

target to the i-th sensor. The sensor model parameters have been set to Φ = 500, ε = 25 and

α = 2.

Under the above dynamic and measurement models, nonlinearities arise from the relationship

between target positions and measurements in (55), while the relationship between the veloc-

ities and the positions of the targets is linear and Gaussian. This allows for the use of Rao-

Blackwellization, which improves the performance of the PFs for a given sample size [12, 15].

Therefore, particles in our simulations only contain the position elements of the targets, while

velocities are estimated using a Kalman filter for each particle, conditional on its positions up to

the current time step.

4.2. Simulation results

In this section, we compare the proposed methods with the following particle filters for high-

dimensional spaces: the parallel partition (PP), presented in [15, Sec. III], is a PF which esti-

mates the joint PDF of all targets by independently sampling each target state, the auxiliary PP
19



(APP) [17, 18] is a version of the PP method which uses an auxiliary variable for each target to

improve its importance sampling procedure. These two filters, PP and APP, estimate the joint

state space PDF but independently sample the state of each target. The rest of the considered

methods fall into the group of the multiple particle filtering approach: the MPF [19, 20], which

has been reviewed in Section 2.1, the MAPF [23, 36] which makes use of auxiliary filtering to

improve MPF, and C-PF-PROP [22], whose details can also be found in Section 2.2.

We have implemented SP-MPF and SP-MAPF using the unscented transformation [4, 32], the

cubature rule [6] and the Gauss-Hermite quadrature rule [5] (of order n = 3). The weight of the

central sigma-point in the unscented transform has been set to wo = 1/3. It should also be noted

that the sigma-points are only drawn in the position elements, due to the Rao-Blackwellization.

The obtained results considering the cubature rule and the Gauss-Hermite quadrature rule remain

basically unaltered with respect to the use of the unscented transform, so that, for the sake of

clarity, their results have not been included in the figures.

The performance of the different methods is characterized by their averaged optimal subpat-

tern assignment (OSPA) [37] position error (with parameters p = 2, c = 10). The average is

computed with respect to the 100 time steps of the trajectories (see Figure 2) of all targets in the

scenario, in a Monte Carlo experiment with 5000 runs. Before analyzing the performance of the

filters, we first seek to characterize the accuracy of the Gaussian approximation of the marginal-

ization integral in Equation (45). In order to do so, we have performed simulations considering

the method in [26, Equation (49)], which computes a particle approximation of the marginaliza-

tion integrals in Equation (11) (i.e. without a Gaussian approximation). Results show that in a

scenario with 2 targets, and using 100 particles, the averaged OSPA position error for SP-MPF

and the method in [26] are 1.41.m and 1.39m, respectively. For 3 targets, averaged OSPA errors

are respectively 1.37m and 1.38m. Note that the difference in performance between SP-MPF and

the filter in [26] is almost negligible, indicating that the Gaussian approximation of SP-MPF is

as accurate as the particle integration method in [26]. It should be noted, that the computational

complexity of SP-MPF is O(t · N), while the method in [26] is O(N t). Thus, the use of this direct

marginalization method is unaffordable for a high number of components in the partition in (5).

Figure 3 shows the averaged OSPA position error for the different algorithms with respect to

the number of particles when there are 3 and 6 targets in the scenario. It is worth noting that SP-

MPF and SP-MAPF both outperform C-PF-PROP, a feature which speaks particularly well of the
20



0 20 40 60 80 100 120

x position [m]

0

20

40

60

80

100

120

y
 p

o
s
it
io

n
 [

m
]

1

2

3

4

5

6

7

8

Figure 2: Eight simulated trajectories, consisting of 100 steps. The initial point of each trajectory is indicated by a circle,

while the final point is represented by a square. An arrow shows the position of the target at steps 20, 40, 60 and 80 of

each trajectory. When simulating a scenario with t targets, target trajectories 1 to t are taken into account. Sensors are

represented as red dots.

algorithms presented in this paper, as the design of C-PF-PROP specifically fits the measurement

model in (55). It can also be observed that SP-MAPF is the best-performing filter as it gathers

all the advantages from the techniques considered in this paper, dealing with the dimensionality

effects by multiple particle filtering and Rao-Blackwellization, relying on sigma-point methods to

achieve a higher order approach to the marginalization integrals, and using improved importance

densities by means of auxiliary filtering. The performance of the filters that estimate the joint

state (PP and APP) should not to be overlooked, as they also competently deal with the proposed

multiple target tracking problem, especially, for a high number of particles. In addition, some

applications can benefit from the availability of an approximation to the joint posterior PDF [38].

The averaged OSPA error against time for the different algorithms when there are 3 targets in

the scenario is provided in Figure 4. Note that, as expected, the error generally increases for all

algorithms at those time instants when the targets trajectories cross each other, which happens at

around time step k = 50, see Figure 2. It is in fact in these difficult situations when the biggest

difference in performance is observed when comparing SP-MPF or SP-MAPF with the rest of

the filters.

In order to further analyze the performance of the filters, the efficiency of the importance
21
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Figure 3: Averaged OSPA position error with respect to the number of particles of the different algorithms in a scenario

with 3 targets (a) and with 6 targets (b).

sampling schemes of the different multiple particle filters is also considered by means of their

effective sample size [10, 34]. Figure 5 shows the mean target effective sample size at each time

step, with three targets under track, for the different multiple particle filter algorithms when they

use 300 particles. To have a fair comparison in the effective sampling size analysis, MPF, C-PF-

PROP and SP-MPF perform a resampling stage after every time step, with the effective sample

size being computed prior to the resampling stage. It can be observed that SP-MAPF has the

highest effective sample size at all times. Note that at those time instants where the involved

PDFs are harder to approximate (i.e. when targets get in close proximity, from time k = 50), the

difference in the effective sample size from the second-order approximations of SP-MAPF and
22
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Figure 4: Averaged OSPA position error at each time step of the different algorithms with N = 300 particles in a scenario

with 3 targets.

SP-MPF respectively broadens with respect to the first order approximations of MAPF and MPF,

indicating that the methods presented in this paper achieve a better approximation to the posterior

PDF at these time instants. It is also worth noting that SP-MPF also presents a higher effective

sample size than C-PF-PROP in these situations, which is in accordance with the tracking error

results presented before.

As indicated in Section 3.4, it is important to take into account that these algorithms do not

have the same computational resources requirements for a given number of particles. Figure 6

plots the mean execution time of our MATLAB implementation of these methods with an Intel

Core 7 at 2.5GHz against the number of particles. Using Figure 6 along with the results of Figure

3a allows us to note that, as the computational load for SP-MPF and C-PF-PROP is almost the

same, for a given computational load, SP-MPF achieves a lower error, making its use clearly

advisable.

It is also worth highlighting that those algorithms using auxiliary filtering require approxi-

mately a 60% additional time compared to their counterparts that do not implement this feature,

which is in accordance with the computational complexity insights drawn in Section 3.4. Al-

though the use of auxiliary filtering generally pays off in this scenario, its incidence in computa-

tional complexity should be carefully considered. For example, if computational load is a critical

factor, choosing SP-MAPF over SP-MPF with 3 targets in the scenario would not further dimin-

ish the error, as for the same computational load. For example, the error for SP-MAPF with 200

particles and SP-MPF with 400 particles in Figure 3a is approximately the same. Nevertheless,
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Figure 5: Mean effective sample size for the different multiple particle filters considered in the paper in a scenario with

3 targets and 300 particles. As there is a particle filter for each target, we show the averaged effective sample size for all

targets. The average sample size is higher for the filters with auxiliary sampling. Sigma-point integration improves the

results when targets get in close proximity (from time step 50).

choosing any of SP-MPF with 400 particles or SP-MAPF with 200 particles would clearly be

advisable when compared to the rest of the considered algorithms with a similar computational

load: APP with 300 particles, MAPF with 200 particles, C-PF-PROP with 400 particles, PP with

400 particles, or MPF with 500 particles. To illustrate how the different methods react to an

increase in the dimensionality of the state-space, Figure 7 shows their averaged OSPA position

error using a fixed number of particles with respect to the number of targets in the scenario.

It is shown that those filters using higher order approximations to the marginal posterior PDFs

outperform the first order approaches.

It is worth noting that although the error apparently increases for all the algorithms when a

higher number of targets is considered, this trend is not applicable when the 8th target is incorpo-

rated in the scenario, as the averaged error in this case descends. Note that the trajectory of this

target in Figure 2 does not get close to targets 1 to 6. This behavior, shown in Figure 2, indicates

that the increasing error in Figure 7 is (to a great extent) caused by the difficult situation arising

from the repeatedly crossing of targets 1 to 7 in the center of the scenario. Once again, this shows

the remarkable ability of SP-MPF and SP-MAPF to deal with these difficult scenarios.
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Figure 6: Mean execution time with respect to the number of particles for the different algorithms when t = 3 targets are

present at the scenario. Execution times consider the estimation of the 100 steps of the trajectories.
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Figure 7: Averaged OSPA position error of the different algorithms with 250 particles in scenarios with 1 to 8 targets.
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5. Conclusions

In this paper, we have introduced two new algorithms, SP-MPF and SP-MAPF, which fit in

the multiple particle filtering paradigm providing a second order approximation to the involved

marginal PDFs. The proposed algorithms are valid for additive measurement models, do not re-

quire the calculation of Jacobians and make use of sigma-point integration methods for accurate

marginalization. This enables them to outperform MPF and C-PF-PROP due to a higher accuracy

in the marginalization step. Compared to C-PF-PROP, the presented methods have the advantage

of being directly applicable to a wider range of models. The performance of the presented meth-

ods has been evaluated in a high-dimensional multiple target tracking problem, demonstrating

that SP-MPF and SP-MAPF widely outperform previously presented algorithms in the literature.

Appendix

This appendix shows a derivation of the first and second moments of the marginalization in-

tegrals in (38) and (40), which are of interest in multiple filtering. The first moment can be

computed as

ȳk
j
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=
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where z̄k
l is given by (39). The second moment can be computed as
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