Observation of two resonances in the $\Lambda_{b}^{0} \pi^{ \pm}$systems and precise measurement of $\Sigma_{b}^{ \pm}$and $\Sigma_{b}^{* \pm}$ properties

LHCb collaboration

Abstract

The first observation of two structures consistent with resonances in the final states $\Lambda_{b}^{0} \pi^{-}$and $\Lambda_{b}^{0} \pi^{+}$is reported using samples of $p p$ collision data collected by the LHCb experiment at $\sqrt{s}=7$ and 8 TeV , corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$. The ground states $\Sigma_{b}^{ \pm}$and $\Sigma_{b}^{* \pm}$ are also confirmed and their masses and widths are precisely measured.

Submitted to Phys. Rev. Lett.

[^0][^1]Bottom baryons are composed of a b quark and two lighter quarks ($b q q^{\prime}$). In the constituent quark model [1,2], such baryon states form multiplets according to the symmetries of their flavor, spin, and spatial wave functions [3]. The Λ_{b}^{0} baryon is the lightest of the bottom baryons and forms an isospin (I) singlet (bud) with spin-parity $J^{P}=\frac{1}{2}^{+}$. Two $I=1$ triplets with $J^{P}=\frac{1}{2}^{+}\left(\Sigma_{b}\right)$ and $J^{P}=\frac{3}{2}^{+}\left(\Sigma_{b}^{*}\right)$ are expected, with the spin of the flavor-symmetric $q q^{\prime}$ diquark $S_{q q^{\prime}}=1$. Four of those six states, the $\Sigma_{b}^{ \pm}$ and $\Sigma_{b}^{* \pm}$ baryons ($u u b$ and $d d b$), have been observed by the CDF collaboration [4,5 and reported briefly in a previous LHCb paper [6]. Beyond these ground states, radially and orbitally excited states are expected at higher masses, but only a few excited baryons have been observed in the bottom sector $[7-10]$. The search for and study of these states will cast light on the internal mechanisms governing the dynamics of the constituent quarks (11, 12.

In this Letter, we report the observation of structures in both the $\Lambda_{b}^{0} \pi^{+}$and $\Lambda_{b}^{0} \pi^{-}$mass distributions (charge conjugation is implied throughout this article) using $p p$ collision data collected by the LHCb experiment at $\sqrt{s}=7$ and 8 TeV , corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$. We refer to these new states as $\Sigma_{b}(6097)^{ \pm}$in the rest of the Letter. We also measure precisely the masses and widths of the $\Sigma_{b}^{ \pm}$and $\Sigma_{b}^{* \pm}$ ground states.

The LHCb detector $[13,14]$ is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a siliconstrip vertex detector surrounding the $p p$ interaction region [15], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm , and three stations of silicon-strip detectors and straw drift tubes [16] placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV (natural units with $c=\hbar=1$ are used throughout this Letter). The momentum scale is calibrated using samples of $J / \psi \rightarrow \mu^{+} \mu^{-}$and $B^{+} \rightarrow J / \psi K^{+}$ decays collected concurrently with the data sample used for this analysis [17, 18]. The relative accuracy of this procedure is estimated to be 3×10^{-4} using samples of other fully reconstructed b-hadron, K_{s}^{0}, and narrow Υ resonance decays. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $\left(15+29 / p_{\mathrm{T}}\right) \mu \mathrm{m}$, where p_{T} is the component of the momentum transverse to the beam, in GeV . Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors [19]. The online event selection is performed by a trigger [20] which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. The software trigger requires a two-, three- or four-track secondary vertex with significant displacement from all primary $p p$ interaction vertices. A multivariate algorithm [21] is used for the identification of secondary vertices consistent with the decay of a b hadron. Simulated data samples are produced using the software packages described in Refs. [22 26].

Samples of Λ_{b}^{0} candidates are formed from $\Lambda_{c}^{+} \pi^{-}$combinations, where the Λ_{c}^{+}baryon is reconstructed in the $p K^{-} \pi^{+}$final state. All charged particles used to form the b-hadron candidates are required to have particle-identification information consistent with the appropriate mass hypothesis. Misreconstructed tracks are suppressed by the use of a neural network trained to discriminate between real and fake particles [27]. To suppress prompt background, all Λ_{b}^{0} decay products are required to have significant $\chi_{\text {IP }}^{2}$ with respect to all

Figure 1: Mass distribution for the selected $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$candidates. The points show experimental data.

PVs in the event, where $\chi_{\text {IP }}^{2}$ is the difference in χ^{2} of the vertex fit of a given PV, when a particle is included or excluded from the fit. The reconstructed Λ_{c}^{+}vertex is required to have a good fit quality and to be significantly displaced from all PVs in the event. The reconstructed Λ_{c}^{+}mass must be within a mass window of $\pm 25 \mathrm{MeV}$ of its known value [28]. Pion candidates that have large χ_{IP}^{2} with respect to all PVs are combined with Λ_{c}^{+} candidates to form Λ_{b}^{0} candidates, requiring good vertex-fit quality and separation of the Λ_{b}^{0} decay point from any PV in the event. A Boosted Decision Tree (BDT) discriminant [29, 30] is used to further reduce the background. The BDT exploits nineteen topological variables, including the χ_{IP}^{2} and p_{T} values of all the particles in the decay chain, the χ^{2} values of the Λ_{b}^{0} and Λ_{c}^{+}decay vertices, their flight-distance significance, and the angle between their momentum and direction of flight, defined by their production and decay vertices. The BDT is trained using simulated Λ_{b}^{0} signal decays and Λ_{b}^{0} candidates in data in the sideband $5800<m\left(\Lambda_{b}^{0}\right)<6000 \mathrm{MeV}$. The signal candidates are refitted constraining the mass of the Λ_{c}^{+}to its known value [28] in order to improve the mass resolution [31]. The mass distribution of the selected $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}, \Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$candidates is shown in Fig. 1. The mass spectrum is fitted with an asymmetric resolution function for the signal component [32, plus a misreconstructed $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} K^{-}$component whose yield is fixed relative to that of $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$, an exponential function for the combinatorial background and an empirical function for partially reconstructed backgrounds as described in Ref. [32]. The resulting Λ_{b}^{0} signal yield is $234,270 \pm 900$.

The Λ_{b}^{0} candidates contained in a $\pm 50 \mathrm{MeV}$ window around the peak maximum are then combined with a prompt pion, hereafter referred to as $\pi_{s}^{ \pm}$, to form $\Sigma_{b}^{ \pm} \rightarrow$ $\Lambda_{b}^{0} \pi^{ \pm}$combinations (along with $\left.\bar{\Sigma}_{b}^{\mp} \rightarrow \bar{\Lambda}_{b}^{0} \pi^{\mp}\right)$. Initially, $p_{\mathrm{T}}\left(\pi_{s}^{ \pm}\right)>200 \mathrm{MeV}$ and $Q \equiv m\left(\Lambda_{b}^{0} \pi^{ \pm}\right)-m\left(\Lambda_{b}^{0}\right)-m\left(\pi^{ \pm}\right)<200 \mathrm{MeV}$ are required, where the $\Lambda_{b}^{0} \pi^{ \pm}$mass is recomputed constraining the masses of the Λ_{c}^{+}and Λ_{b}^{0} baryons to their known values [28]. Then the search is extended to higher masses up to $Q=600 \mathrm{MeV}$, observing an additional peak in both $\Lambda_{b}^{0} \pi^{-}$and $\Lambda_{b}^{0} \pi^{+}$spectra. A tighter transverse momentum cut $p_{\mathrm{T}}\left(\pi_{s}^{ \pm}\right)>1000 \mathrm{MeV}$ is applied to remove the background from prompt pions.

The signal yields and parameters of the $\Sigma_{b}^{ \pm}, \Sigma_{b}^{* \pm}$ and $\Sigma_{b}(6097)^{ \pm}$resonances are determined with extended unbinned maximum-likelihood fits to the Q-value distribution. All signal components are modeled as relativistic Breit-Wigner functions [33] including Blatt-Weisskopf form factors with a radius of $4 \mathrm{GeV}^{-1}$. The orbital angular momentum

Table 1: Summary of the results of the fits to the $Q \equiv m\left(\Lambda_{b}^{0} \pi^{ \pm}\right)-m\left(\Lambda_{b}^{0}\right)-m\left(\pi^{ \pm}\right)$mass spectra. Q_{0} and Γ are the mean and the width of the Breit-Wigner function. The quoted uncertainties are statistical only.

State	$Q_{0}[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	Yield
Σ_{b}^{-}	56.45 ± 0.14	5.33 ± 0.42	3270 ± 180
Σ_{b}^{*-}	75.54 ± 0.17	10.68 ± 0.60	7460 ± 300
Σ_{b}^{+}	51.36 ± 0.11	4.83 ± 0.31	3670 ± 160
Σ_{b}^{*+}	71.09 ± 0.14	9.34 ± 0.47	7350 ± 260
$\Sigma_{b}(6097)^{-}$	338.8 ± 1.7	28.9 ± 4.2	880 ± 100
$\Sigma_{b}(6097)^{+}$	336.6 ± 1.7	31.0 ± 5.5	900 ± 110

l between the Λ_{b}^{0} baryon and $\pi_{s}^{ \pm}$candidate is taken to be 1 in all cases. The relativistic Breit-Wigner functions are convolved with the detector resolution and corrected for a small distortion in the shape induced by the p_{T} requirement on the $\pi_{s}^{ \pm}$meson. The resolution models are determined from simulation, in which the three signal resonances are generated at the Q values found in data. The root-mean-square values of the resolution functions for $\Sigma_{b}, \Sigma_{b}^{*}$, and $\Sigma_{b}(6097)$ are $0.99,1.13$ and 2.35 MeV , respectively, all below the visible widths of the mass peaks and consistent with a resolution that scales as \sqrt{Q}. Different empirical parameterizations are used for the two mass ranges. For $0<Q<200 \mathrm{MeV}$ the background shape is described by a smooth threshold function [10, 35, 36], while for $0<Q<600 \mathrm{MeV}$ a sigmoid function is used, as in Refs. [37, 38]. The background shapes are validated by using candidates in the data sidebands for a wide range of p_{T} requirements. All of the masses, widths, and yields are free to vary in the fit, as are the background parameters; the resolutions of the signal components are fixed to the values found in simulation. The fit models are validated with pseudoexperiments and no significant bias is found on any of the free parameters.

The fits to the data sample are shown in Fig. 2 and the resulting parameters of interest are summarized in Table 1. The fit results are also used to determine mass differences and isospin splittings (given below). The two new peaks in $\Lambda_{b}^{0} \pi^{-}$and $\Lambda_{b}^{0} \pi^{+}$distributions have local statistical significances of 12.7σ and 12.6σ, respectively, based on the differences in log-likelihood between a fit with zero signal and the nominal fit.

Several sources of systematic uncertainty are considered. The dominant source of systematic uncertainty on the mass measurements comes from the knowledge of the momentum scale. This uncertainty is evaluated by adjusting the momentum scale by the 3×10^{-4} relative uncertainty from the calibration procedure [18] and rerunning the mass fit. This procedure is also validated using a control sample of approximately 3 million $D^{*+} \rightarrow D^{0} \pi^{+}$decays, with $D^{0} \rightarrow K^{-} \pi^{+}$. The momentum-scale uncertainties largely cancel in the mass differences and splittings. A second uncertainty arises from the parameterization of the background and is estimated by varying the function used (e.g. polynomial background functions of different order and other empirical curves). An additional source of uncertainty on the determination of the natural widths arises from known differences in resolution between data and simulation. These are expected to agree within 5%, based on previous studies [8, 10, 36] , and this assumption has been validated with the $D^{*+} \rightarrow D^{0} \pi^{+}$control sample. Systematic uncertainties on the widths are assessed by varying the width of the resolution function by $\pm 5 \%$. Further uncertainties on the

Figure 2: Mass distribution for selected $\Lambda_{b}^{0} \pi^{ \pm}$candidates. The points show experimental data. The left (right) column shows $\Lambda_{b}^{0} \pi^{-}\left(\Lambda_{b}^{0} \pi^{+}\right)$combinations. The top row shows the fits to the lower-mass states $\Sigma_{b}^{ \pm}$and $\Sigma_{b}^{* \pm}$. The lower row presents the fits to the new mass peaks with the requirement $p_{\mathrm{T}}\left(\pi_{s}^{ \pm}\right)>1000 \mathrm{MeV}$.
masses and widths arise from the assumed Breit-Wigner parameters. The resonant states are assumed to decay to $\Lambda_{b}^{0} \pi^{ \pm}$with angular momentum $l=1$. For the $\Sigma_{b}(6097)^{ \pm}$states, fits assuming $l=0,2,3$ are also performed and the largest changes to the fitted parameters with respect to the nominal fit are assigned as systematic uncertainties. The systematic uncertainties are summarised in Table 2; in all cases they are much smaller than the statistical uncertainties. All numerical results for the measured masses and widths are presented in Table 3. The mass values m are obtained using the most precise LHCb combination for the Λ_{b}^{0} mass, $m\left(\Lambda_{b}^{0}\right)=5619.62 \pm 0.16 \pm 0.13 \mathrm{MeV}[39]$, which dominates by far the current world average [40]. The correlated uncertainties, mainly deriving from the knowledge of the momentum scale which is a common source of systematic uncertainty in all LHCb mass measurements, are propagated as described in Ref. 41. The isospin splittings of the new states are consistent with zero, although with large experimental uncertainty.

In summary, the first observation of two new mass peaks in the $\Lambda_{b}^{0} \pi^{+}$and $\Lambda_{b}^{0} \pi^{-}$ systems is reported. These structures are consistent with single resonances described by relativistic Breit-Wigner functions. The ground-state $\Sigma_{b}^{ \pm}$and $\Sigma_{b}^{* \pm}$ baryons are also confirmed and their masses and widths precisely measured. These values are in good agreement with those measured by the CDF collaboration [5], with precision improved by a factor of 5 . We also quote the mass differences and isospin splittings, for which most of the systematic uncertainties cancel.

Table 2: Summary of the systematic uncertainties on the measured masses and widths. Q_{0} and Γ are the mean and the width of the Breit-Wigner function. All values are in MeV .

	Σ_{b}^{-}		Σ_{b}^{*-}		$\Sigma_{b}(6097)^{-}$	
Source	Q_{0}	Γ	Q_{0}	Γ	Q_{0}	Γ
p scale	0.046	0.036	0.047	0.071	0.130	0.013
Resolution	0.001	0.038	0.001	0.033	0.003	0.108
Spin assign.					0.370	0.462
Radius	0.003	0.101	0.010	0.017	0.080	0.081
Background	0.021	0.351	0.033	0.315	0.184	0.798
Total	0.051	0.369	0.058	0.325	0.440	0.932

	Σ_{b}^{+}		Σ_{b}^{*+}		$\Sigma_{b}(6097)^{+}$	
Source	Q_{0}	Γ	Q_{0}	Γ	Q_{0}	Γ
p scale	0.039	0.046	0.047	0.045	0.128	0.090
Resolution	0.001	0.040	0.001	0.038	0.002	0.086
Spin assign.					0.113	0.342
Radius	0.001	0.061	0.003	0.002	0.001	0.031
Background	0.027	0.357	0.026	0.256	0.207	0.598
Total	0.047	0.367	0.053	0.263	0.268	0.701

Table 3: Masses and widths of the $\Sigma_{b}(6097)^{ \pm}, \Sigma_{b}^{* \pm}$ and $\Sigma_{b}^{ \pm}$baryons. Isospin splittings $\Delta\left(X^{ \pm}\right)=m\left(X^{+}\right)-m\left(X^{-}\right)$and mass differences are also calculated. The first uncertainty is statistical, the second systematic. The systematic uncertainty on m includes the uncertainty from the knowledge of the Λ_{b}^{0} mass [39].

Quantity	Value $[\mathrm{MeV}]$
$m\left(\Sigma_{b}(6097)^{-}\right)$	$6098.0 \pm 1.7 \pm 0.5$
$m\left(\Sigma_{b}(6097)^{+}\right)$	$6095.8 \pm 1.7 \pm 0.4$
$\Gamma\left(\Sigma_{b}(6097)^{-}\right)$	$28.9 \pm 4.2 \pm 0.9$
$\Gamma\left(\Sigma_{b}(6097)^{+}\right)$	$31.0 \pm 5.5 \pm 0.7$
$m\left(\Sigma_{b}^{-}\right)$	$5815.64 \pm 0.14 \pm 0.24$
$m\left(\Sigma_{b}^{*-}\right)$	$5834.73 \pm 0.17 \pm 0.25$
$m\left(\Sigma_{b}^{+}\right)$	$5810.55 \pm 0.11 \pm 0.23$
$m\left(\Sigma_{b}^{*+}\right)$	$5830.28 \pm 0.14 \pm 0.24$
$\Gamma\left(\Sigma_{b}^{-}\right)$	$5.33 \pm 0.42 \pm 0.37$
$\Gamma\left(\Sigma_{b}^{*-}\right)$	$10.68 \pm 0.60 \pm 0.33$
$\Gamma\left(\Sigma_{b}^{+}\right)$	$4.83 \pm 0.31 \pm 0.37$
$\Gamma\left(\Sigma_{b}^{*+}\right)$	$9.34 \pm 0.47 \pm 0.26$
$m\left(\Sigma_{b}^{*-}\right)-m\left(\Sigma_{b}^{-}\right)$	$19.09 \pm 0.22 \pm 0.02$
$m\left(\Sigma_{b}^{*+}\right)-m\left(\Sigma_{b}^{+}\right)$	$19.73 \pm 0.18 \pm 0.01$
$\Delta\left(\Sigma_{b}(6097)^{ \pm}\right)$	$-2.2 \pm 2.4 \pm 0.3$
$\Delta\left(\Sigma_{b}^{ \pm}\right)$	$-5.09 \pm 0.18 \pm 0.01$
$\Delta\left(\Sigma_{b}^{* \pm}\right)$	$-4.45 \pm 0.22 \pm 0.01$

In the heavy-quark limit, five $\Sigma_{b}(1 P)$ states are expected. Several predictions of their masses have been made $11,12,42,43$, but some or all of these states may be too wide to be accessible experimentally [42]. Since the expected density of baryon states is high, it cannot be excluded that the new structures seen are the superpositions of more than one (near-)degenerate state. Taking into account that the predicted mass and width depend on the as-yet-unknown spin and parity, the newly observed structures are compatible with being $1 P$ excitations. Other interpretations, such as molecular states, may also be possible 44.

Acknowledgements

We thank Jonathan L. Rosner and Marek Karliner for useful discussions on the interpretation of the theoretical predictions. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA).

References

[1] M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8 (1964) 214.
[2] G. Zweig, An S_{3} model for strong interaction symmetry and its breaking; Version 1, Tech. Rep. CERN-TH-401, CERN, Geneva, Jan, 1964.
[3] E. Klempt and J.-M. Richard, Baryon spectroscopy, Rev. Mod. Phys. 82 (2010) 1095 , arXiv:0901.2055
[4] CDF collaboration, T. Aaltonen et al., Observation of the heavy baryons Σ_{b} and Σ_{b}^{*}, Phys. Rev. Lett. 99 (2007) 202001, arXiv:0706. 3868.
[5] CDF collaboration, T. Aaltonen et al., Measurement of the masses and widths of the bottom baryons $\Sigma_{b}^{ \pm}$and $\Sigma_{b}^{* \pm, ~ P h y s . ~ R e v . ~ D 85 ~(2012) ~ 092011, ~ a r X i v: 1112.2808 . ~}$
[6] LHCb collaboration, R. Aaij et al., Evidence for the strangeness-changing weak decay $\Xi_{b}^{-} \rightarrow \Lambda_{b}^{0} \pi^{-}$, Phys. Rev. Lett. 115 (2015) 241801, arXiv:1510.03829.
[7] LHCb collaboration, R. Aaij et al., Observation of excited Λ_{b}^{0} baryons, Phys. Rev. Lett. 109 (2012) 172003, arXiv:1205.3452.
[8] LHCb collaboration, R. Aaij et al., Observation of a new Ξ_{b}^{-}resonance, Phys. Rev. Lett. 121 (2018) 072002, arXiv:1805.09418.
[9] CMS collaboration, S. Chatrchyan et al., Observation of a new Ξ_{b} baryon, Phys. Rev. Lett. 108 (2012) 252002, arXiv:1204.5955.
[10] LHCb collaboration, R. Aaij et al., Observation of two new Ξ_{b}^{-}baryon resonances, Phys. Rev. Lett. 114 (2015) 062004, arXiv:1411.4849.
[11] K. Thakkar, Z. Shah, A. K. Rai, and P. C. Vinodkumar, Excited state mass spectra and Regge trajectories of bottom baryons, Nucl. Phys. A965 (2017) 57, arXiv:1610.00411.
[12] D. Ebert, R. N. Faustov, and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D84 (2011) 014025, arXiv:1105.0583.
[13] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
[14] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.
[15] R. Aaij et al., Performance of the LHCb Vertex Locator, JINST 9 (2014) P09007, arXiv:1405.7808.
[16] R. Arink et al., Performance of the LHCb Outer Tracker, JINST 9 (2014) P01002, arXiv:1311.3893.
[17] LHCb collaboration, R. Aaij et al., Measurements of the Λ_{b}^{0}, Ξ_{b}^{-}, and Ω_{b}^{-}baryon masses, Phys. Rev. Lett. 110 (2013) 182001, arXiv:1302.1072.
[18] LHCb collaboration, R. Aaij et al., Precision measurement of D meson mass differences, JHEP 06 (2013) 065, arXiv: 1304.6865 .
[19] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759.
[20] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
[21] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, JINST 8 (2013) P02013, arXiv:1210.6861.
[22] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175; T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.
[23] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.
[24] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.
[25] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.
[26] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250 .
[27] M. De Cian, S. Farry, P. Seyfert, and S. Stahl, Fast neural-net based fake track rejection in the LHCb reconstruction, LHCb-PUB-2017-011.
[28] Particle Data Group, C. Patrignani et al., Review of particle physics, Chin. Phys. C40 (2016) 100001.
[29] B. P. Roe et al., Boosted decision trees as an alternative to artificial neural networks for particle identification, Nucl. Instrum. Meth. A543 (2005) 577.
[30] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.
[31] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A552 (2005) 566, arXiv:physics/0503191.
[32] LHCb collaboration, R. Aaij et al., Measurement of CP observables in $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$ and $B^{ \pm} \rightarrow D^{(*)} \pi^{ \pm}$decays, Phys. Lett. B777 (2017) 16, arXiv:1708.06370.
[33] J. D. Jackson, Remarks on the phenomenological analysis of resonances, Il Nuovo Cimento 34 (1964) 1644.
[34] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics, Springer, New York, 1952.
[35] LHCb collaboration, R. Aaij et al., First observation of the decay $B_{s 2}^{*}(5840)^{0} \rightarrow$ $B^{*+} K^{-}$and studies of excited B_{s}^{0} mesons, Phys. Rev. Lett. 110 (2013) 151803, arXiv:1211.5994.
[36] LHCb collaboration, R. Aaij et al., Observation of five new narrow Ω_{c}^{0} states decaying to $\Xi_{c}^{+} K^{-}$, Phys. Rev. Lett. 118 (2017) 182001, arXiv:1703.04639.
[37] LHCb collaboration, R. Aaij et al., Measurement of the relative rate of prompt $\chi_{c 0}$, $\chi_{c 1}$ and $\chi_{c 2}$ production at $\sqrt{s}=7 \mathrm{TeV}$, JHEP 10 (2013) 115, arXiv:1307.4285.
[38] LHCb collaboration, R. Aaij et al., Measurement of the cross-section ratio $\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$ for prompt χ_{c} production at $\sqrt{s}=7 \mathrm{TeV}$, Phys. Lett. B714 (2012) 215, arXiv:1202.1080.
[39] LHCb collaboration, R. Aaij et al., Observation of the decays $\Lambda_{b}^{0} \rightarrow \chi_{c 1} p K^{-}$and $\Lambda_{b}^{0} \rightarrow \chi_{c 2} p K^{-}$, Phys. Rev. Lett. 119 (2017) 062001, arXiv:1704.07900.
[40] Particle Data Group, M. Tanabashi et al., Review of particle physics, Phys. Rev. D98 (2018) 030001.
[41] LHCb collaboration, R. Aaij et al., Observation of $\Lambda_{b}^{0} \rightarrow \psi(2 S) p K^{-}$and $\Lambda_{b}^{0} \rightarrow$ $J / \psi \pi^{+} \pi^{-} p K^{-}$decays and a measurement of the Λ_{b}^{0} baryon mass, JHEP 05 (2016) 132, arXiv:1603.06961.
[42] M. Karliner and J. L. Rosner, Prospects for observing the lowest-lying odd-parity Σ_{c} and Σ_{b} baryons, Phys. Rev. D92 (2015) 074026, arXiv:1506.01702.
[43] M. Karliner and J. L. Rosner, Scaling of P-wave excitation energies in heavy-quark systems, arXiv:1808.07869.
[44] W. H. Liang, C. W. Xiao, and E. Oset, Baryon states with open beauty in the extended local hidden gauge approach, Phys. Rev. D89 (2014) 054023.

LHCb collaboration

R. Aaij ${ }^{27}$, C. Abellán Beteta ${ }^{44}$, B. Adeva ${ }^{41}$, M. Adinolfi ${ }^{48}$, C.A. Aidala ${ }^{74}$, Z. Ajaltouni ${ }^{5}$, S. Akar ${ }^{59}$, P. Albicocco ${ }^{18}$, J. Albrecht ${ }^{10}$, F. Alessio ${ }^{42}$, M. Alexander ${ }^{53}$, A. Alfonso Albero ${ }^{40}$, G. Alkhazov ${ }^{33}$, P. Alvarez Cartelle ${ }^{55}$, A.A. Alves Jr^{41}, S. Amato ${ }^{2}$, S. Amerio ${ }^{23}$, Y. Amhis ${ }^{7}$, L. An 3, L. Anderlini ${ }^{17}$, G. Andreassi ${ }^{43}$, M. Andreotti ${ }^{16}$, J.E. Andrews ${ }^{60}$, R.B. Appleby ${ }^{56}$, F. Archilli ${ }^{27}$, P. d'Argent ${ }^{12}$, J. Arnau Romeu ${ }^{6}$, A. Artamonov ${ }^{39}$, M. Artuso ${ }^{61}$, K. Arzymatov ${ }^{37}$, E. Aslanides ${ }^{6}$, M. Atzeni ${ }^{44}$, B. Audurier ${ }^{22}$, S. Bachmann ${ }^{12}$, J.J. Back ${ }^{50}$, S. Baker ${ }^{55}$, V. Balagura ${ }^{7, b}$, W. Baldini ${ }^{16}$, A. Baranov ${ }^{37}$, R.J. Barlow ${ }^{56}$, S. Barsuk ${ }^{7}$, W. Barter ${ }^{56}$, F. Baryshnikov ${ }^{70}$, V. Batozskaya ${ }^{31}$, B. Batsukh ${ }^{61}$, V. Battista ${ }^{43}$, A. Bay ${ }^{43}$, J. Beddow ${ }^{53}$, F. Bedeschi ${ }^{24}$, I. Bediaga ${ }^{1}$, A. Beiter ${ }^{61}$, L.J. Bel ${ }^{27}$, S. Belin ${ }^{22}$, N. Beliy ${ }^{63}$, V. Bellee ${ }^{43}$, N. Belloli ${ }^{20, i}$, K. Belous ${ }^{39}$, I. Belyaev ${ }^{34,42}$, E. Ben-Haim ${ }^{8}$, G. Bencivenni ${ }^{18}$, S. Benson ${ }^{27}$, S. Beranek ${ }^{9}$, A. Berezhnoy ${ }^{35}$, R. Bernet ${ }^{44}$, D. Berninghoff ${ }^{12}$, E. Bertholet ${ }^{8}$, A. Bertolin ${ }^{23}$, C. Betancourt ${ }^{44}$, F. Betti ${ }^{15,42}$, M.O. Bettler ${ }^{49}$, M. van Beuzekom ${ }^{27}$, Ia. Bezshyiko ${ }^{44}$, S. Bhasin ${ }^{48}$, J. Bhom ${ }^{29}$, S. Bifani ${ }^{47}$, P. Billoir ${ }^{8}$, A. Birnkraut ${ }^{10}$, A. Bizzeti ${ }^{17, u}$, M. Bjørn ${ }^{57}$, M.P. Blago ${ }^{42}$, T. Blake ${ }^{50}$, F. Blanc ${ }^{43}$, S. Blusk ${ }^{61}$, D. Bobulska ${ }^{53}$, V. Bocci ${ }^{26}$, O. Boente Garcia ${ }^{41}$, T. Boettcher ${ }^{58}$, A. Bondar ${ }^{38, w}$, N. Bondar ${ }^{33}$, S. Borghi ${ }^{56,42}$, M. Borisyak ${ }^{37}$, M. Borsato ${ }^{41}$, F. Bossu ${ }^{7}$, M. Boubdir ${ }^{9}$, T.J.V. Bowcock ${ }^{54}$, C. Bozzi ${ }^{16,42}$, S. Braun ${ }^{12}$, M. Brodski ${ }^{42}$, J. Brodzicka ${ }^{29}$, A. Brossa Gonzalo ${ }^{50}$, D. Brundu ${ }^{22}$, E. Buchanan ${ }^{48}$, A. Buonaura ${ }^{44}$, C. Burr ${ }^{56}$, A. Bursche ${ }^{22}$, J. Buytaert ${ }^{42}$, W. Byczynski ${ }^{42}$, S. Cadeddu ${ }^{22}$, H. Cai ${ }^{64}$, R. Calabrese ${ }^{16, g}$, R. Calladine ${ }^{47}$, M. Calvi ${ }^{20, i}$, M. Calvo Gomez ${ }^{40, m}$, A. Camboni ${ }^{40, m}$, P. Campana ${ }^{18}$,
D.H. Campora Perez ${ }^{42}$, L. Capriotti ${ }^{15}$, A. Carbone ${ }^{15, e}$, G. Carboni ${ }^{25}$, R. Cardinale ${ }^{19, h}$, A. Cardini ${ }^{22}$, P. Carniti ${ }^{20, i}$, L. Carson ${ }^{52}$, K. Carvalho Akiba ${ }^{2}$, G. Casse ${ }^{54}$, L. Cassina ${ }^{20}$, M. Cattaneo ${ }^{42}$, G. Cavallero ${ }^{19, h}$, R. Cenci ${ }^{24, p}$, D. Chamont ${ }^{7}$, M.G. Chapman ${ }^{48}$, M. Charles ${ }^{8}$, Ph. Charpentier ${ }^{42}$, G. Chatzikonstantinidis ${ }^{47}$, M. Chefdeville ${ }^{4}$, V. Chekalina ${ }^{37}$, C. Chen ${ }^{3}$, S. Chen ${ }^{22}$, S.-G. Chitic ${ }^{42}$, V. Chobanova ${ }^{41}$, M. Chrzaszcz ${ }^{42}$, A. Chubykin ${ }^{33}$, P. Ciambrone ${ }^{18}$, X. Cid Vidal ${ }^{41}$, G. Ciezarek ${ }^{42}$, P.E.L. Clarke ${ }^{52}$, M. Clemencic ${ }^{42}$, H.V. Cliff ${ }^{49}$, J. Closier ${ }^{42}$, V. Coco ${ }^{42}$, J.A.B. Coelho ${ }^{7}$, J. Cogan ${ }^{6}$, E. Cogneras ${ }^{5}$, L. Cojocariu ${ }^{32}$, P. Collins ${ }^{42}$, T. Colombo ${ }^{42}$, A. Comerma-Montells ${ }^{12}$, A. Contu ${ }^{22}$, G. Coombs ${ }^{42}$, S. Coquereau ${ }^{40}$, G. Corti ${ }^{42}$, M. Corvo ${ }^{16, g}$, C.M. Costa Sobral ${ }^{50}$, B. Couturier ${ }^{42}$, G.A. Cowan ${ }^{52}$, D.C. Craik ${ }^{58}$, A. Crocombe ${ }^{50}$, M. Cruz Torres ${ }^{1}$, R. Currie ${ }^{52}$, C. D'Ambrosio ${ }^{42}$, F. Da Cunha Marinho ${ }^{2}$, C.L. Da Silva ${ }^{75}$, E. Dall'Occo ${ }^{27}$, J. Dalseno ${ }^{48}$, A. Danilina ${ }^{34}$, A. Davis ${ }^{3}$, O. De Aguiar Francisco ${ }^{42}$, K. De Bruyn ${ }^{42}$, S. De Capua ${ }^{56}$, M. De Cian ${ }^{43}$, J.M. De Miranda ${ }^{1}$, L. De Paula ${ }^{2}$, M. De Serio ${ }^{14, d}$, P. De Simone ${ }^{18}$, C.T. Dean ${ }^{53}$, D. Decamp ${ }^{4}$, L. Del Buono ${ }^{8}$, B. Delaney ${ }^{49}$, H.-P. Dembinski ${ }^{11}$, M. Demmer ${ }^{10}$, A. Dendek ${ }^{30}$, D. Derkach ${ }^{37}$, O. Deschamps ${ }^{5}$, F. Desse ${ }^{7}$, F. Dettori ${ }^{54}$, B. Dey ${ }^{65}$, A. Di Canto ${ }^{42}$, P. Di Nezza ${ }^{18}$, S. Didenko ${ }^{70}$, H. Dijkstra ${ }^{42}$, F. Dordei ${ }^{42}$, M. Dorigo ${ }^{42, x}$, A. Dosil Suárez ${ }^{41}$, L. Douglas ${ }^{53}$, A. Dovbnya ${ }^{45}$, K. Dreimanis ${ }^{54}$, L. Dufour ${ }^{27}$, G. Dujany ${ }^{8}$, P. Durante ${ }^{42}$, J.M. Durham ${ }^{75}$, D. Dutta ${ }^{56}$, R. Dzhelyadin ${ }^{39}$, M. Dziewiecki ${ }^{12}$, A. Dziurda ${ }^{29}$, A. Dzyuba ${ }^{33}$, S. Easo ${ }^{51}$, U. Egede ${ }^{55}$, V. Egorychev ${ }^{34}$, S. Eidelman ${ }^{38, w}$, S. Eisenhardt ${ }^{52}$, U. Eitschberger ${ }^{10}$, R. Ekelhof ${ }^{10}$, L. Eklund ${ }^{53}$, S. Ely ${ }^{61}$, A. Ene ${ }^{32}$, S. Escher ${ }^{9}$, S. Esen ${ }^{27}$, T. Evans ${ }^{59}$, A. Falabella ${ }^{15}$, N. Farley ${ }^{47}$, S. Farry ${ }^{54}$, D. Fazzini ${ }^{20,42, i}$, L. Federici ${ }^{25}$,
P. Fernandez Declara ${ }^{42}$, A. Fernandez Prieto ${ }^{41}$, F. Ferrari ${ }^{15}$, L. Ferreira Lopes ${ }^{43}$,
F. Ferreira Rodrigues ${ }^{2}$, M. Ferro-Luzzi ${ }^{42}$, S. Filippov ${ }^{36}$, R.A. Fini ${ }^{14}$, M. Fiorini ${ }^{16, g}$, M. Firlej ${ }^{30}$, C. Fitzpatrick ${ }^{43}$, T. Fiutowski ${ }^{30}$, F. Fleuret ${ }^{7, b}$, M. Fontana ${ }^{22,42}$, F. Fontanelli ${ }^{19, h}$, R. Forty ${ }^{42}$, V. Franco Lima ${ }^{54}$, M. Frank ${ }^{42}$, C. Frei ${ }^{42}$, J. Fu ${ }^{21, q}$, W. Funk ${ }^{42}$, C. Färber ${ }^{42}$,
M. Féo Pereira Rivello Carvalho ${ }^{27}$, E. Gabriel ${ }^{52}$, A. Gallas Torreira ${ }^{41}$, D. Galli ${ }^{15, e}$, S. Gallorini ${ }^{23}$,
S. Gambetta ${ }^{52}$, Y. Gan ${ }^{3}$, M. Gandelman ${ }^{2}$, P. Gandini ${ }^{21}$, Y. Gao ${ }^{3}$, L.M. Garcia Martin ${ }^{73}$,
B. Garcia Plana ${ }^{41}$, J. García Pardiñas ${ }^{44}$, J. Garra Tico ${ }^{49}$, L. Garrido ${ }^{40}$, D. Gascon ${ }^{40}$,
C. Gaspar ${ }^{42}$, L. Gavardi ${ }^{10}$, G. Gazzoni ${ }^{5}$, D. Gerick ${ }^{12}$, E. Gersabeck ${ }^{56}$, M. Gersabeck ${ }^{56}$,
T. Gershon ${ }^{50}$, D. Gerstel ${ }^{6}$, Ph. Ghez ${ }^{4}$, S. Giani ${ }^{43}$, V. Gibson ${ }^{49}$, O.G. Girard ${ }^{43}$, L. Giubega ${ }^{32}$,
K. Gizdov ${ }^{52}$, V.V. Gligorov ${ }^{8}$, D. Golubkov ${ }^{34}$, A. Golutvin ${ }^{55,70}$, A. Gomes ${ }^{1, a}$, I.V. Gorelov ${ }^{35}$, C. Gotti ${ }^{20, i}$, E. Govorkova ${ }^{27}$, J.P. Grabowski ${ }^{12}$, R. Graciani Diaz ${ }^{40}$, L.A. Granado Cardoso ${ }^{42}$, E. Graugés ${ }^{40}$, E. Graverini ${ }^{44}$, G. Graziani ${ }^{17}$, A. Grecu ${ }^{32}$, R. Greim ${ }^{27}$, P. Griffith ${ }^{22}$, L. Grillo ${ }^{56}$, L. Gruber ${ }^{42}$, B.R. Gruberg Cazon ${ }^{57}$, O. Grünberg ${ }^{67}$, C. Gu 3, E. Gushchin ${ }^{36}$, Yu. Guz ${ }^{39,42}$, T. Gys ${ }^{42}$, C. Göbel ${ }^{62}$, T. Hadavizadeh ${ }^{57}$, C. Hadjivasiliou ${ }^{5}$, G. Haefeli ${ }^{43}$, C. Haen ${ }^{42}$, S.C. Haines ${ }^{49}$, B. Hamilton ${ }^{60}$, X. Han 12, T.H. Hancock ${ }^{57}$, S. Hansmann-Menzemer ${ }^{12}$, N. Harnew ${ }^{57}$, S.T. Harnew ${ }^{48}$, T. Harrison ${ }^{54}$, C. Hasse ${ }^{42}$, M. Hatch ${ }^{42}$, J. He ${ }^{63}$, M. Hecker ${ }^{55}$, K. Heinicke ${ }^{10}$, A. Heister ${ }^{10}$, K. Hennessy ${ }^{54}$, L. Henry ${ }^{73}$, E. van Herwijnen ${ }^{42}$, M. Heß β^{67}, A. Hicheur ${ }^{2}$, R. Hidalgo Charman ${ }^{56}$, D. Hill ${ }^{57}$, M. Hilton ${ }^{56}$, P.H. Hopchev ${ }^{43}$, W. Hu ${ }^{65}$, W. Huang ${ }^{63}$, Z.C. Huard ${ }^{59}$, W. Hulsbergen ${ }^{27}$, T. Humair ${ }^{55}$, M. Hushchyn ${ }^{37}$, D. Hutchcroft ${ }^{54}$, D. Hynds ${ }^{27}$, P. Ibis ${ }^{10}$, M. Idzik ${ }^{30}$, P. Ilten ${ }^{47}$, K. Ivshin ${ }^{33}$, R. Jacobsson ${ }^{42}$, J. Jalocha ${ }^{57}$, E. Jans ${ }^{27}$, A. Jawahery ${ }^{60}$, F. Jiang ${ }^{3}$, M. John ${ }^{57}$, D. Johnson ${ }^{42}$, C.R. Jones ${ }^{49}$, C. Joram ${ }^{42}$, B. Jost ${ }^{42}$, N. Jurik ${ }^{57}$, S. Kandybei ${ }^{45}$, M. Karacson ${ }^{42}$, J.M. Kariuki ${ }^{48}$, S. Karodia ${ }^{53}$, N. Kazeev ${ }^{37}$, M. Kecke ${ }^{12}$, F. Keizer ${ }^{49}$, M. Kelsey ${ }^{61}$, M. Kenzie ${ }^{49}$, T. Ketel ${ }^{28}$, E. Khairullin ${ }^{37}$, B. Khanji ${ }^{42}$, C. Khurewathanakul ${ }^{43}$, K.E. Kim 61, T. Kirn ${ }^{9}$, S. Klaver ${ }^{18}$, K. Klimaszewski ${ }^{31}$, T. Klimkovich ${ }^{11}$, S. Koliiev ${ }^{46}$, M. Kolpin ${ }^{12}$, R. Kopecna ${ }^{12}$, P. Koppenburg ${ }^{27}$, I. Kostiuk ${ }^{27}$, S. Kotriakhova ${ }^{33}$, M. Kozeiha ${ }^{5}$, L. Kravchuk ${ }^{36}$, M. Kreps ${ }^{50}$, F. Kress ${ }^{55}$, P. Krokovny ${ }^{38, w}$, W. Krupa ${ }^{30}$, W. Krzemien ${ }^{31}$, W. Kucewicz ${ }^{29, l}$, M. Kucharczyk ${ }^{29}$, V. Kudryavtsev ${ }^{38, w}$, A.K. Kuonen ${ }^{43}$, T. Kvaratskheliya ${ }^{34,42}$, D. Lacarrere ${ }^{42}$, G. Lafferty ${ }^{56}$, A. Lai ${ }^{22}$, D. Lancierini ${ }^{44}$, G. Lanfranchi ${ }^{18}$, C. Langenbruch ${ }^{9}$, T. Latham ${ }^{50}$, C. Lazzeroni ${ }^{47}$, R. Le Gac 6, A. Leflat ${ }^{35}$, J. Lefrançois ${ }^{7}$, R. Lefèvre ${ }^{5}$, F. Lemaitre ${ }^{42}$, O. Leroy ${ }^{6}$, T. Lesiak ${ }^{29}$, B. Leverington ${ }^{12}$, P.-R. Li ${ }^{63}$, T. Li^{3}, Z. Li ${ }^{61}$, X. Liang ${ }^{61}$, T. Likhomanenko ${ }^{69}$, R. Lindner ${ }^{42}$, F. Lionetto ${ }^{44}$, V. Lisovskyi ${ }^{7}$, X. Liu ${ }^{3}$, D. Loh ${ }^{50}$, A. Loi ${ }^{22}$, I. Longstaff ${ }^{53}$, J.H. Lopes ${ }^{2}$, G.H. Lovell ${ }^{49}$, D. Lucchesi ${ }^{23, o}$, M. Lucio Martinez ${ }^{41}$, A. Lupato ${ }^{23}$, E. Luppi $^{16, g}$, O. Lupton ${ }^{42}$, A. Lusiani ${ }^{24}$, X. Lyu 63, F. Machefert ${ }^{7}$, F. Maciuc ${ }^{32}$, V. Macko ${ }^{43}$, P. Mackowiak ${ }^{10}$, S. Maddrell-Mander ${ }^{48}$, O. Maev ${ }^{33,42}$, K. Maguire ${ }^{56}$, D. Maisuzenko ${ }^{33}$, M.W. Majewski ${ }^{30}$, S. Malde ${ }^{57}$, B. Malecki ${ }^{29}$, A. Malinin ${ }^{69}$, T. Maltsev ${ }^{38, w}$, G. Manca ${ }^{22, f}$, G. Mancinelli ${ }^{6}$, D. Marangotto ${ }^{21, q}$, J. Maratas ${ }^{5, v}$, J.F. Marchand ${ }^{4}$, U. Marconi ${ }^{15}$, C. Marin Benito ${ }^{7}$, M. Marinangeli ${ }^{43}$, P. Marino ${ }^{43}$, J. Marks ${ }^{12}$, P.J. Marshall ${ }^{54}$, G. Martellotti ${ }^{26}$, M. Martin ${ }^{6}$, M. Martinelli ${ }^{42}$, D. Martinez Santos ${ }^{41}$, F. Martinez Vidal ${ }^{73}$, A. Massafferri ${ }^{1}$, M. Materok ${ }^{9}$, R. Matev ${ }^{42}$, A. Mathad ${ }^{50}$, Z. Mathe ${ }^{42}$, C. Matteuzzi ${ }^{20}$, A. Mauri ${ }^{44}$, E. Maurice ${ }^{7, b}$, B. Maurin ${ }^{43}$, A. Mazurov ${ }^{47}$, M. McCann ${ }^{55,42}$, A. McNab ${ }^{56}$, R. McNulty ${ }^{13}$, J.V. Mead ${ }^{54}$, B. Meadows ${ }^{59}$, C. Meaux ${ }^{6}$, F. Meier ${ }^{10}$, N. Meinert ${ }^{67}$, D. Melnychuk ${ }^{31}$, M. Merk ${ }^{27}$, A. Merli ${ }^{211, q}$, E. Michielin ${ }^{23}$, D.A. Milanes ${ }^{66}$, E. Millard ${ }^{50}$, M.-N. Minard ${ }^{4}$, L. Minzoni ${ }^{16, g}$, D.S. Mitzel ${ }^{12}$, A. Mogini ${ }^{8}$, J. Molina Rodriguez ${ }^{1, y}$, T. Mombächer ${ }^{10}$, I.A. Monroy ${ }^{66}$, S. Monteil ${ }^{5}$, M. Morandin ${ }^{23}$, G. Morello ${ }^{18}$, M.J. Morello ${ }^{24, t}$, O. Morgunova ${ }^{69}$, J. Moron ${ }^{30}$, A.B. Morris ${ }^{6}$, R. Mountain ${ }^{61}$, F. Muheim ${ }^{52}$, M. Mulder ${ }^{27}$, C.H. Murphy ${ }^{57}$, D. Murray ${ }^{56}$, A. Mödden ${ }^{10}$, D. Müller ${ }^{42}$, J. Müller ${ }^{10}$, K. Müller ${ }^{44}$, V. Müller ${ }^{10}$, P. Naik ${ }^{48}$, T. Nakada ${ }^{43}$, R. Nandakumar ${ }^{51}$, A. Nandi ${ }^{57}$, T. Nanut ${ }^{43}$, I. Nasteva ${ }^{2}$, M. Needham ${ }^{52}$, N. Neri ${ }^{21}$, S. Neubert ${ }^{12}$, N. Neufeld ${ }^{42}$, M. Neuner ${ }^{12}$, R. Newcombe ${ }^{55}$, T.D. Nguyen ${ }^{43}$, C. Nguyen-Mau ${ }^{43, n}$, S. Nieswand ${ }^{9}$, R. Niet ${ }^{10}$, N. Nikitin ${ }^{35}$, A. Nogay ${ }^{69}$, N.S. Nolte ${ }^{42}$, D.P. O'Hanlon ${ }^{15}$, A. Oblakowska-Mucha ${ }^{30}$,
V. Obraztsov ${ }^{39}$, S. Ogilvy ${ }^{18}$, R. Oldeman ${ }^{22, f}$, C.J.G. Onderwater ${ }^{68}$, A. Ossowska ${ }^{29}$, J.M. Otalora Goicochea ${ }^{2}$, P. Owen ${ }^{44}$, A. Oyanguren ${ }^{73}$, P.R. Pais ${ }^{43}$, T. Pajero ${ }^{24, t}$, A. Palano ${ }^{14}$, M. Palutan ${ }^{18,42}$, G. Panshin ${ }^{72}$, A. Papanestis ${ }^{51}$, M. Pappagallo ${ }^{52}$, L.L. Pappalardo ${ }^{16, g}$, W. Parker ${ }^{60}$, C. Parkes ${ }^{56}$, G. Passaleva ${ }^{17,42}$, A. Pastore ${ }^{14}$, M. Patel ${ }^{55}$, C. Patrignani ${ }^{15, e}$, A. Pearce ${ }^{42}$, A. Pellegrino ${ }^{27}$, G. Penso ${ }^{26}$, M. Pepe Altarelli ${ }^{42}$, S. Perazzini ${ }^{42}$, D. Pereima ${ }^{34}$, P. Perret ${ }^{5}$, L. Pescatore ${ }^{43}$, K. Petridis ${ }^{48}$, A. Petrolini ${ }^{19, h}$, A. Petrov ${ }^{69}$, S. Petrucci ${ }^{52}$, M. Petruzzo ${ }^{21, q}$, B. Pietrzyk ${ }^{4}$, G. Pietrzyk ${ }^{43}$, M. Pikies ${ }^{29}$, M. Pili ${ }^{57}$, D. Pinci ${ }^{26}$, J. Pinzino ${ }^{42}$, F. Pisani ${ }^{42}$, A. Piucci ${ }^{12}$, V. Placinta ${ }^{32}$, S. Playfer ${ }^{52}$, J. Plews ${ }^{47}$, M. Plo Casasus ${ }^{41}$, F. Polci ${ }^{8}$, M. Poli Lener ${ }^{18}$, A. Poluektov ${ }^{50}$, N. Polukhina ${ }^{70, c}$, I. Polyakov ${ }^{61}$, E. Polycarpo ${ }^{2}$, G.J. Pomery ${ }^{48}$, S. Ponce ${ }^{42}$, A. Popov 39, D. Popov ${ }^{47,11}$, S. Poslavskii ${ }^{39}$, C. Potterat ${ }^{2}$, E. Price ${ }^{48}$,
J. Prisciandaro ${ }^{41}$, C. Prouve ${ }^{48}$, V. Pugatch ${ }^{46}$, A. Puig Navarro ${ }^{44}$, H. Pullen ${ }^{57}$, G. Punzi ${ }^{24, p}$, W. Qian ${ }^{63}$, J. Qin ${ }^{63}$, R. Quagliani ${ }^{8}$, B. Quintana ${ }^{5}$, B. Rachwal ${ }^{30}$, J.H. Rademacker ${ }^{48}$, M. Rama ${ }^{24}$, M. Ramos Pernas ${ }^{41}$, M.S. Rangel ${ }^{2}$, F. Ratnikov ${ }^{37, a b}$, G. Raven ${ }^{28}$,
M. Ravonel Salzgeber ${ }^{42}$, M. Reboud ${ }^{4}$, F. Redi ${ }^{43}$, S. Reichert ${ }^{10}$, A.C. dos Reis ${ }^{1}$, F. Reiss ${ }^{8}$,
C. Remon Alepuz ${ }^{73}$, Z. Ren ${ }^{3}$, V. Renaudin ${ }^{7}$, S. Ricciardi ${ }^{51}$, S. Richards ${ }^{48}$, K. Rinnert ${ }^{54}$, P. Robbe ${ }^{7}$, A. Robert ${ }^{8}$, A.B. Rodrigues ${ }^{43}$, E. Rodrigues ${ }^{59}$, J.A. Rodriguez Lopez ${ }^{66}$, M. Roehrken ${ }^{42}$, S. Roiser ${ }^{42}$, A. Rollings ${ }^{57}$, V. Romanovskiy ${ }^{39}$, A. Romero Vidal ${ }^{41}$, M. Rotondo ${ }^{18}$, M.S. Rudolph ${ }^{61}$, T. Ruf ${ }^{42}$, J. Ruiz Vidal ${ }^{73}$, J.J. Saborido Silva ${ }^{41}$, N. Sagidova ${ }^{33}$,
B. Saitta ${ }^{22, f}$, V. Salustino Guimaraes ${ }^{62}$, C. Sanchez Gras ${ }^{27}$, C. Sanchez Mayordomo ${ }^{73}$,
B. Sanmartin Sedes ${ }^{41}$, R. Santacesaria ${ }^{26}$, C. Santamarina Rios ${ }^{41}$, M. Santimaria ${ }^{18}$,
E. Santovetti ${ }^{25, j}$, G. Sarpis ${ }^{56}$, A. Sarti ${ }^{18, k}$, C. Satriano ${ }^{26, s}$, A. Satta ${ }^{25}$, M. Saur ${ }^{63}$,
D. Savrina ${ }^{34,35}$, S. Schael ${ }^{9}$, M. Schellenberg ${ }^{10}$, M. Schiller ${ }^{53}$, H. Schindler ${ }^{42}$, M. Schmelling ${ }^{11}$, T. Schmelzer ${ }^{10}$, B. Schmidt ${ }^{42}$, O. Schneider ${ }^{43}$, A. Schopper ${ }^{42}$, H.F. Schreiner ${ }^{59}$, M. Schubiger ${ }^{43}$, M.H. Schune ${ }^{7}$, R. Schwemmer ${ }^{42}$, B. Sciascia ${ }^{18}$, A. Sciubba ${ }^{26, k}$, A. Semennikov ${ }^{34}$, E.S. Sepulveda ${ }^{8}$, A. Sergi ${ }^{47,42}$, N. Serra ${ }^{44}$, J. Serrano ${ }^{6}$, L. Sestini ${ }^{23}$, A. Seuthe ${ }^{10}$, P. Seyfert ${ }^{42}$, M. Shapkin ${ }^{39}$, Y. Shcheglov ${ }^{33, \dagger}$, T. Shears ${ }^{54}$, L. Shekhtman ${ }^{38, w}$, V. Shevchenko ${ }^{69}$, E. Shmanin ${ }^{70}$, B.G. Siddi ${ }^{16}$, R. Silva Coutinho ${ }^{44}$, L. Silva de Oliveira ${ }^{2}$, G. Simi ${ }^{23, o}$, S. Simone ${ }^{14, d}$, I. Skiba ${ }^{16}$, N. Skidmore ${ }^{12}$, T. Skwarnicki ${ }^{61}$, M.W. Slater ${ }^{47}$, J.G. Smeaton ${ }^{49}$, E. Smith ${ }^{9}$, I.T. Smith ${ }^{52}$, M. Smith ${ }^{55}$, M. Soares ${ }^{15}$, l. Soares Lavra ${ }^{1}$, M.D. Sokoloff ${ }^{59}$, F.J.P. Soler ${ }^{53}$, B. Souza De Paula ${ }^{2}$, B. Spaan ${ }^{10}$, E. Spadaro Norella ${ }^{21, q}$, P. Spradlin ${ }^{53}$, F. Stagni ${ }^{42}$, M. Stahl ${ }^{12}$, S. Stahl ${ }^{42}$, P. Stefko ${ }^{43}$, S. Stefkova ${ }^{55}$, O. Steinkamp ${ }^{44}$, S. Stemmle ${ }^{12}$, O. Stenyakin ${ }^{39}$, M. Stepanova ${ }^{33}$, H. Stevens ${ }^{10}$, A. Stocchi ${ }^{7}$, S. Stone ${ }^{61}$, B. Storaci ${ }^{44}$, S. Stracka ${ }^{24}$, M.E. Stramaglia ${ }^{43}$, M. Straticiuc ${ }^{32}$, U. Straumann ${ }^{44}$, S. Strokov ${ }^{72}$, J. Sun ${ }^{3}$, L. Sun ${ }^{64}$, K. Swientek ${ }^{30}$, T. Szumlak ${ }^{30}$, M. Szymanski ${ }^{63}$, S. T'Jampens ${ }^{4}$, Z. Tang ${ }^{3}$, A. Tayduganov ${ }^{6}$, T. Tekampe ${ }^{10}$, G. Tellarini ${ }^{16}$, F. Teubert ${ }^{42}$, E. Thomas ${ }^{42}$, J. van Tilburg ${ }^{27}$, M.J. Tilley ${ }^{55}$, V. Tisserand ${ }^{5}$, M. Tobin ${ }^{30}$, S. Tolk ${ }^{42}$, L. Tomassetti ${ }^{16, g}$, D. Tonelli ${ }^{24}$, D.Y. Tou ${ }^{8}$, R. Tourinho Jadallah Aoude ${ }^{1}$, E. Tournefier ${ }^{4}$, M. Traill ${ }^{53}$, M.T. Tran ${ }^{43}$, A. Trisovic ${ }^{49}$, A. Tsaregorodtsev ${ }^{6}$, G. Tuci ${ }^{24, p}$, A. Tully ${ }^{49}$, N. Tuning ${ }^{27,42}$, A. Ukleja ${ }^{31}$, A. Usachov ${ }^{7}$, A. Ustyuzhanin ${ }^{37}$, U. Uwer ${ }^{12}$, A. Vagner ${ }^{72}$, V. Vagnoni ${ }^{15}$, A. Valassi ${ }^{42}$, S. Valat ${ }^{42}$, G. Valenti ${ }^{15}$, R. Vazquez Gomez ${ }^{42}$, P. Vazquez Regueiro ${ }^{41}$, S. Vecchi ${ }^{16}$, M. van Veghel 27, J.J. Velthuis ${ }^{48}$, M. Veltri ${ }^{17, r}$, G. Veneziano ${ }^{57}$, A. Venkateswaran ${ }^{61}$, T.A. Verlage ${ }^{9}$, M. Vernet ${ }^{5}$, M. Veronesi ${ }^{27}$, N.V. Veronika ${ }^{13}$, M. Vesterinen ${ }^{57}$, J.V. Viana Barbosa ${ }^{42}$, D. Vieira ${ }^{63}$, M. Vieites Diaz ${ }^{41}$, H. Viemann ${ }^{67}$, X. Vilasis-Cardona ${ }^{40, m}$, A. Vitkovskiy ${ }^{27}$, M. Vitti ${ }^{49}$, V. Volkov ${ }^{35}$, A. Vollhardt ${ }^{44}$, D. Vom Bruch ${ }^{8}$, B. Voneki ${ }^{42}$, A. Vorobyev ${ }^{33}$, V. Vorobyev ${ }^{38, w}$, J.A. de Vries ${ }^{27}$, C. Vázquez Sierra ${ }^{27}$, R. Waldi ${ }^{67}$, J. Walsh ${ }^{24}$, J. Wang ${ }^{61}$, M. Wang ${ }^{3}$, Y. Wang ${ }^{65}$, Z. Wang ${ }^{44}$, D.R. Ward ${ }^{49}$, H.M. Wark ${ }^{54}$, N.K. Watson ${ }^{47}$, D. Websdale ${ }^{55}$, A. Weiden ${ }^{44}$, C. Weisser ${ }^{58}$, M. Whitehead ${ }^{9}$, J. Wicht ${ }^{50}$, G. Wilkinson ${ }^{57}$, M. Wilkinson ${ }^{61}$, I. Williams ${ }^{49}$, M.R.J. Williams ${ }^{56}$, M. Williams ${ }^{58}$, T. Williams ${ }^{47}$, F.F. Wilson ${ }^{51,42}$, J. Wimberley ${ }^{60}$, M. Winn ${ }^{7}$, J. Wishahi ${ }^{10}$, W. Wislicki ${ }^{31}$, M. Witek ${ }^{29}$, G. Wormser ${ }^{7}$, S.A. Wotton ${ }^{49}$, K. Wyllie ${ }^{42}$, D. Xiao ${ }^{65}$, Y. Xie ${ }^{65}$, A. Xu^{3}, M. $\mathrm{Xu}^{65}, \mathrm{Q} . \mathrm{Xu}^{63}$, Z. Xu^{3}, Z. Xu ${ }^{4}$, Z. Yang ${ }^{3}$, Z. Yang ${ }^{60}$, Y. Yao ${ }^{61}$, L.E. Yeomans ${ }^{54}$, H. Yin ${ }^{65}$, J. Yu ${ }^{65, a a}$, X. Yuan ${ }^{61}$, O. Yushchenko ${ }^{39}$, K.A. Zarebski ${ }^{47}$, M. Zavertyaev ${ }^{11, c}$, D. Zhang ${ }^{65}$, L. Zhang ${ }^{3}$, W.C. Zhang ${ }^{3, z}$, Y. Zhang ${ }^{7}$, A. Zhelezov ${ }^{12}$, Y. Zheng ${ }^{63}$, X. Zhu ${ }^{3}$, V. Zhukov ${ }^{9,35}$, J.B. Zonneveld ${ }^{52}$, S. Zucchelli ${ }^{15}$.

[^2]${ }^{8}$ LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
${ }^{9}$ I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
${ }^{10}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
${ }^{11}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
${ }^{12}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{13}$ School of Physics, University College Dublin, Dublin, Ireland
${ }^{14}$ INFN Sezione di Bari, Bari, Italy
${ }^{15}$ INFN Sezione di Bologna, Bologna, Italy
${ }^{16}$ INFN Sezione di Ferrara, Ferrara, Italy
${ }^{17}$ INFN Sezione di Firenze, Firenze, Italy
${ }^{18}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{19}$ INFN Sezione di Genova, Genova, Italy
${ }^{20}$ INFN Sezione di Milano-Bicocca, Milano, Italy
${ }^{21}$ INFN Sezione di Milano, Milano, Italy
${ }^{22}$ INFN Sezione di Cagliari, Monserrato, Italy
${ }^{23}$ INFN Sezione di Padova, Padova, Italy
${ }^{24}$ INFN Sezione di Pisa, Pisa, Italy
${ }^{25}$ INFN Sezione di Roma Tor Vergata, Roma, Italy
${ }^{26}$ INFN Sezione di Roma La Sapienza, Roma, Italy
${ }^{27}$ Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
${ }^{28}$ Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
${ }^{29}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
${ }^{30}$ AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
${ }^{31}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
${ }^{32}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
${ }^{33}$ Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
${ }^{34}$ Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{35}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
${ }^{36}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
${ }^{37}$ Yandex School of Data Analysis, Moscow, Russia
${ }^{38}$ Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
${ }^{39}$ Institute for High Energy Physics (IHEP), Protvino, Russia
${ }^{40}$ ICCUB, Universitat de Barcelona, Barcelona, Spain
${ }^{41}$ Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
${ }^{42}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{43}$ Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
${ }^{44}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
${ }^{45}$ NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
${ }^{46}$ Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
${ }^{47}$ University of Birmingham, Birmingham, United Kingdom
${ }^{48}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
${ }^{49}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{50}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{51}$ STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{52}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{53}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{54}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{55}$ Imperial College London, London, United Kingdom
${ }^{56}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{57}$ Department of Physics, University of Oxford, Oxford, United Kingdom
${ }^{58}$ Massachusetts Institute of Technology, Cambridge, MA, United States
${ }^{59}$ University of Cincinnati, Cincinnati, OH, United States
${ }^{60}$ University of Maryland, College Park, MD, United States
${ }^{61}$ Syracuse University, Syracuse, NY, United States
${ }^{62}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ${ }^{2}$
${ }^{63}$ University of Chinese Academy of Sciences, Beijing, China, associated to ${ }^{3}$
${ }^{64}$ School of Physics and Technology, Wuhan University, Wuhan, China, associated to ${ }^{3}$
${ }^{65}$ Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to ${ }^{3}$
${ }^{66}$ Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to ${ }^{8}$
${ }^{67}$ Institut für Physik, Universität Rostock, Rostock, Germany, associated to ${ }^{12}$
${ }^{68}$ Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to ${ }^{27}$
${ }^{69}$ National Research Centre Kurchatov Institute, Moscow, Russia, associated to ${ }^{34}$
${ }^{70}$ National University of Science and Technology "MISIS", Moscow, Russia, associated to ${ }^{34}$
${ }^{71}$ National Research University Higher School of Economics, Moscow, Russia, Moscow, Russia
${ }^{72}$ National Research Tomsk Polytechnic University, Tomsk, Russia, associated to ${ }^{34}$
${ }^{73}$ Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to ${ }^{40}$
${ }^{74}$ University of Michigan, Ann Arbor, United States, associated to ${ }^{61}$
${ }^{75}$ Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to ${ }^{61}$
${ }^{a}$ Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
${ }^{b}$ Laboratoire Leprince-Ringuet, Palaiseau, France
${ }^{c}$ P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
${ }^{d}$ Università di Bari, Bari, Italy
${ }^{e}$ Università di Bologna, Bologna, Italy
${ }^{f}$ Università di Cagliari, Cagliari, Italy
${ }^{g}$ Università di Ferrara, Ferrara, Italy
${ }^{h}$ Università di Genova, Genova, Italy
${ }^{\text {i}}$ Università di Milano Bicocca, Milano, Italy
${ }^{j}$ Università di Roma Tor Vergata, Roma, Italy
${ }^{k}$ Università di Roma La Sapienza, Roma, Italy
${ }^{l}$ AGH - University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Kraków, Poland
${ }^{m}$ LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
${ }^{n}$ Hanoi University of Science, Hanoi, Vietnam
${ }^{\circ}$ Università di Padova, Padova, Italy
${ }^{p}$ Università di Pisa, Pisa, Italy
${ }^{q}$ Università degli Studi di Milano, Milano, Italy
${ }^{r}$ Università di Urbino, Urbino, Italy
${ }^{s}$ Università della Basilicata, Potenza, Italy
${ }^{t}$ Scuola Normale Superiore, Pisa, Italy
${ }^{u}$ Università di Modena e Reggio Emilia, Modena, Italy
${ }^{v}$ MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
${ }^{w}$ Novosibirsk State University, Novosibirsk, Russia
${ }^{x}$ Sezione INFN di Trieste, Trieste, Italy
${ }^{y}$ Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras
${ }^{z}$ School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi'an, China
${ }^{a a}$ Physics and Micro Electronic College, Hunan University, Changsha City, China
${ }^{a b}$ National Research University Higher School of Economics, Moscow, Russia
${ }^{\dagger}$ Deceased

[^0]: (c) 2018 CERN for the benefit of the LHCb collaboration, CC-BY-4.0 licence

[^1]: ${ }^{\dagger}$ Authors are listed at the end of this Letter.

[^2]: ${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
 ${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
 ${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
 ${ }^{4}$ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
 ${ }^{5}$ Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
 ${ }^{6}$ Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
 ${ }^{7}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

