
Error-Correcting Neural Sequence Prediction

James O’ Neill * 1 Danushka Bollegala 1

Abstract
In this paper we propose a novel neural lan-
guage modelling (NLM) method based on error-
correcting output codes (ECOC), abbreviated as
ECOC-NLM. This latent variable based approach
provides a principled way to choose a varying
amount of latent output codes and avoids ex-
act softmax normalization. Instead of minimiz-
ing measures between the predicted probability
distribution and true distribution, we use error-
correcting codes to represent both predictions and
outputs. Secondly, we propose multiple ways
to improve accuracy and convergence rates by
maximizing the separability between codes that
correspond to classes proportional to word em-
bedding similarities. Lastly, we introduce a novel
method called Latent Mixture Sampling, a tech-
nique that is used to mitigate exposure bias and
can be integrated into training latent-based neural
language models. This involves mixing the latent
codes (i.e variables) of past predictions and past
targets in one of two ways: (1) according to a pre-
defined sampling schedule or (2) a differentiable
sampling procedure whereby the mixing proba-
bility is learned throughout training by replacing
the greedy argmax operation with a smooth ap-
proximation. In evaluating Codeword Mixture
Sampling for ECOC-NLM, we also baseline it
against CWMS in a closely related Hierarhical
Softmax-based NLM.

1. Introduction
Language modelling (LM) is a fundamental task in natural
language that requires a parametric model to generate tokens
given past tokens. LM underlies all other types of structured
modelling tasks in natural language, such as Named Entity
Recognition, Constituency/Dependency Parsing, Corefer-
ence Resolution, Machine Translation (Sutskever et al.,
2014) and Question Answering (Mikolov et al., 2010).
The goal is to learn a joint probability distribution for a
sequence of length T containing words from a vocabulary
V . This distribution can be decomposed into the conditional
distributions of current tokens given past tokens using the

chain rule, as shown in Equation 1. In Neural Language
Modelling (NLM), a Recurrent Neural Network (RNN)
fθ(·) parameterized by θ is used to encode the informa-
tion at each timestep t into a hidden state vector hlt which
is followed by a decoder zlt = hltW

l + bl and a normaliza-
tion function φ(zlt) which forms a probability distribution
p̂θ(yt|xt, ht−1), ∀t ∈ T .

P (w1, ..., wT) =

T∏
t=1

P (wt|wt1, ..., w1) (1)

However, training can be slow when |V| is large while also
leaving a large memory footprint for the respective input em-
bedding matrices. Conversely, in cases where the decoder
is limited by an information bottleneck (Yang et al., 2017),
the opposite is required where more degrees of freedom are
necessary to alleviate information loss in the decoder bot-
tleneck. Both scenarios correspond to a trade-off between
computation complexity and out-of-sample performance.
Hence, we require that a newly proposed model has the
property that the decoder can be easily configured to deal
with this trade-off in a principle way.

Lastly, standard supervised learning (self-supervised for
language modelling) assumes inputs are i.i.d. However, in
sequence prediction, the model has to rely on its own pre-
dictions at test time, instead of past targets that are used
as input at training time. This difference is known as ex-
posure bias and can lead to errors compounding along a
generated sequence. This approach to sequence prediction
is also known as teacher forcing where the teacher provides
targets that are used at training time. We also require that
exposure bias is addressed in our approach while dealing
with the aforementioned challenges related to computation
and performance tradeoffs in the decoder.

We propose an error-correcting output code (ECOC) based
NLM (ECOC-NLM) that address this desiderata. In the
approximate case where codeword dimensionality |c| < |V|,
we show that that given sufficient error codes (|V| � |c| �
log2(|V|)), we maintain accuracy compared to traditional
NLMs that use the full softmax and other approximate meth-
ods. Lastly, we show that this latent-based NLM approach
can be extended to mitigate the aforementioned problem
of compounding errors by using Latent Mixture Sampling

ar
X

iv
:1

90
1.

07
00

2v
1

 [
cs

.L
G

]
 2

1
Ja

n
20

19
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/187717633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Error-Correcting Latent Neural Sequence Prediction

(LMS). LMS in an ECOC-NLM model also outperforms
an equivalent Hierarchical Softmax-based NLM that uses
Scheduled Sampling (Bengio et al., 2015) and other closely
related baselines. To our knowledge, this is the first latent-
based technique to mitigating compounding errors in recur-
rent neural networks (RNNs).

Our main contributions are summarized as the following:

• An error-correcting output coded neural language
model that requires less parameters than its softmax-
based language modelling counterpart given sufficient
separability between classes via error-checks.

• An embedding cosine similarity rank ordered codebook
that leads to well-separated codewords.

• A Latent-Mixture Sampling method to mitigate expo-
sure bias in latent-variable models. This is then ex-
tended to Differentiable Latent Mixture Sampling that
uses the Gumbel-Softmax so that discrete categorical
variables can be backpropogated through.

• Novel baselines such as Scheduled Hierarchical Sam-
pling (SS-HS) and Scheduled Adaptive Sampling (SS-
AS), are introduced in the evaluation of our proposed
ECOC method. This applies scheduled sampling to
two closely related softmax approximation methods.

2. Background
2.1. Error-Correcting Codes

Error-Correcting Codes (Hamming, 1950) originate from
seminal work in solid-state electronics around the time of the
first digital computer. Later, binary codes were introduced
in the context of artificial intelligence via the NETtalk sys-
tem (Sejnowski & Rosenberg, 1987), where each class index
is represented by their respective binary code C. A paramet-
ric model fθ(·) is then used to predict a probability for each
n binary bit positions being active or not. This results in a
predicted Ĉ which can then be measured against the ground
truth C. At training time we optimize for some objective
L(C, Ĉ). At test time we choose the codeword that is clos-
est to the predicted code, allowing for Hamming distances
between codewords and the error-correcting codes. When
|V| 6= 2n, the remaining codes are used as error-correction
bits k = |V| − 2n. This tolerance can be used to account
for the information loss due to the sample size by measur-
ing the distance (e.g Hamming) between the predicted code
word and the true codeword with d error-correction bits.
If the minimum distance between codewords is d then at
least (d − 1)/2 bits can be corrected for and hence, if the
Hamming distance d ≤ (d− 1)/2 we will still retrieve the
correct codeword. In contrast to using one bit per k classes

in standard multi-class classification, error-correction can-
not be achieved. Both error-correction bits and class bits
make up the codebook C.

In order to achieve good separation between k classes (i.e
codewords that are assigned so that it less likely to make
mistakes due close Hamming distances), the codes should
have good row and column separation. The former refers
to having equidistant Hamming distances, where remaining
codes are the error-correcting codes. Column separation
refers to ensuring that the functions for each bit-position
are uncorrelated with one another. This can be achieved by
maximizing the Hamming distance between the columns,
similar to row-separation. A primary aim in ECOC is that
the bit errors are uncorrelated and that likelihood of simulta-
neous errors occurring is low. This property makes it easier
for error-correcting codes to re-correct errors. If many si-
multaneous errors are made, this becomes more difficult.

ECOCs have been used for multi-class document classifi-
cation (Berger, 1999). The authors also propose a coding
theory argument as to why randomly assigned codes can re-
sult in well-separated codes. However, they make the strong
assumption of class independence which is weak for typical
natural language problems. This work addresses by using
semantically-driven separation for language modelling.

ECOC can be considered an ensembled method for multi-
classification since each model needs to make a prediction
for each binary unit for b binary codes on the output (similar
to Bagging in ensemble learning), albeit a distinct code that
is being predicted in binary classification. Kong & Diet-
terich (1995) have shown that this distinction over voting
methods leads to variance reduction and bias-correction in
each respective ECOC classifier. This is different to regular
multi-class classification where one prediction is made from
a distribution over k classes and log2(k) ≤ b ≤ k.

2.2. Why Latent Codes for Neural Language Modelling?

Targets in standard training of NLMs are represented as
1-hot vectors (i.e kronecker delta) and the problem is treated
as a 1-vs-rest multi-class classification. This can be con-
sidered a special case of ECOC classification where the
codebook C with n classes is represented by an identity
In×n. ECOC classification is well suited over explicitly us-
ing observed variables when the output space is structured.
Flat-classification (1-vs-rest) ignores the dependencies in
the outputs, in comparison to using latent codes that share
some common latent variables between associative words.
For example, in the former case, if we train a model that
only observes the word “silver” in a sequence “...silver car..”
and then at test-time observes “silver-back”, because there
is high association between “silver” and “car”, the model is
more likely to predict “car” instead of “gorilla”. ECOC is
less prone to such mistakes because although a/some bit/s

Error-Correcting Latent Neural Sequence Prediction

may be different between the latent codes for “car” and
“gorilla”, the potential misclassifications can be re-corrected
with the error-correcting bits. In other words, latent coding
can reduce the variance of each individual classifier and has
some tolerance to mistakes induced by sparse transitions,
proportional to the number of error-checks used. Further-
more, 1-vs-rest classification requires n−1 class boundaries
be learned at once, whereas in ECOC we must only build
class boundaries for log2(|V|) − 1 ≤ n ≤ |V| − 1, typi-
cally closer to the lower-bound of this interval. In fact, in
the case of language modelling where n is commonly large
(e.g n > 105), the boundary is learned multiple times and
therefore is more likely to recover from mistakes, in the
same way ensembles reduce variance in prediction (Kong &
Dietterich, 1995).

2.3. Methods for Softmax Approximation

2.3.1. LOSS-BASED METHODS

Hierarchical Softmax (HS) Goodman (2001); Morin &
Bengio (2005) propose to use short codes that represent
marginals of the conditional distribution, where the prod-
uct of these marginals that are gotten along a path in the
tree approximate the conditional distribution. This speeds
up training by summing over the paths of a binary tree
where intermediate nodes assign relative probabilities of
child nodes. Therefore, only few sums are necessary, along
the binary path to a given leaf (i.e word). The probability
for an embedded word vector vΓ at an intermediate node
Γ is the product of taking left or right turn at every in-
termediate node. The probability of transitioning right is
p(r → ws|n) = σ(v′TΓ vws). The conditional p(wt|ws; θ) is
then

∏L(wt)
k=1 σ

(
Ib(Γ(wt, k),Γ(wt, k + 1)) · v′Γ(wt,k)T vws

)
where L(wt) is the path depth to wt, Ib is a decision point
along a path that transitions to the left child n(w0, k+ 1) or
the right child n(wt, k). Defining a good tree structure im-
proves performance since semantically similar words have a
shorter path and therefore similar representations are learned
for similar words. This can be achieved by either clustering
words via term frequency using a Huffman Tree (Mikolov
et al., 2013) or using already defined word groups from
semantic networks (Morin & Bengio, 2005) such as Word-
Net. As we will discuss in section 4, we also build upon
HS by proposing a method that interpolates between pre-
dicted codes and target codes to make the model more robust
to its own errors and use this as a reasonable baseline for
ECOC-NLM that also integrates this method into training.

Differentiated Softmax (DS) uses a sparse linear block of
weights for the decoder where a set of partitions are made
according to the unigram distribution, where the number
of weights are assigned proportional to the term frequency.
This intuitive since rare words require less degrees of free-
dom to account for the little amount of contexts in which

they appear, in comparison to common words. For a sparse
decoder weight matrix Rk×d, each p partition has dimen-
sionality dp where for common words dp ≈ d and rare
words dp � d. Both the number of partitions and the di-
mensionality dp∀p can be tuned at training time.

Adaptive Softmax (AS) Grave et al. (2016) provide an
approximate hierarchical model that directly accounts for
the computation time of matrix multiplications. AS results
in 2x-10x speedups when compared to the standard soft-
max, dependent on the size of the corpus and vocabulary.
Interestingly, they find on sufficiently large corpora (Text8,
Europarl and 1-Billion datasets), they manage to maintain
accuracy while reducing the computation time.

2.3.2. SAMPLING-BASED METHODS

Importance Sampling (IS) is a classical Monte-carlo sam-
pling method used to approximate probability distributions.
A proposal distributionQ is used to approximate the true dis-
tribution P which allows us to draw Monte-Carlo samples at
much less cost than if we were to draw directly from P . Q is
often chosen to be simple and close to P . In language mod-
elling, it is common that the unigram distribution is used
for Q. The expectation Ewi∼P [∇θϕ(wi)] ≈

∑m
i=1∇θϕ(wi)

over sampled word wi that is approximately the gradient of
ϕ(wi). However, computing p(w) for each sample is still
required and therefore there have been methods to compute
the product of marginals that avoids expensive normaliza-
tion over the MC samples (Bengio et al., 2003a). Adaptive
Importance Sampling (Jean et al., 2014) (AIS) only con-
siders a set fraction of target tokens to sample from. This
involves partitioning the training set where each partition is
designated a subset of the vocabulary V

′ ⊂ V . Therefore,
there is a separate predictive distribution for each partition
and for a given partition V

′
all words within V

′
are assigned

some probability.

Noise Contrastive Estimation (Mnih & Teh, 2012) pro-
pose to use Noise Contrastive Estimation (NCE) (Gutmann
& Hyvärinen, 2010) as a sampling method in an unnormal-
ized probabilistic model that is more stable than IS (can lead
to diverging model distribution Q in relation to underlying
distribution P). Similar to our proposed ECOC-NLM, NCE
treats density estimation as multiple binary classification
problems, but different in that it does so by discriminating
between both data samples and a known noise distribution
(e.g noise proportional to the unigram distribution). The
posterior can be expressed in the context independent case
as Ph(D = 1|w, θ) = Phθ (w)/

(
Phθ (w) +kPn(w)

)
for hid-

den state h, parameterized by θ for k generated samples.
NCE is different from IS since it does not estimate the word
probabilities directly, but instead uses an auxiliary loss that
maximizes the probability of the correct words from noisy
samples.

Error-Correcting Latent Neural Sequence Prediction

2.4. Recent Applications of Latent Codes

Shu & Nakayama (2017) recently used compositional codes
for word embeddings to cut down on memory require-
ments in mobile devices. Instead of using binary coding,
they achieve word embedding compression using multi-
codebook quantization. Each bit c ∈ C comprises of a
discrete code (0-9) and therefore at minimum log10(k) bits
are required. They too propose to use Gumbel-Softmax trick
but for the purposes of learning the discrete codes. The per-
formance was maintaned for sentiment analysis and machine
translation with 94% and 98% respective compression rates.
Shi & Yu (2018) propose a product quantizatioon structured
embedding that reduces memory by 10-20 times the num-
ber of parameters, while maintaining performance. This
involves slicing the embedding tensor into groups which
are then quantized independently. The embedding matrix
is represented with an index vector and a codebook tensor
of the quantized partial embedding. Zhang et al. (2013)
propose a weighted Hamming Distance to avoid ties in rank-
ing Hamming Distances which is common, particularly for
short codes. This is relevant to our work as well in the con-
text of assigning error-checking bits by Hamming distance
to codewords that correspond to classes in V .

3. Codebook Construction
A challenging aspect of assigning codewords is ordering
the codes such that if errors made that the resulting incor-
rect codeword is at least, semantically closer to that of the
codewords that are less related, while ensuring good separa-
tion between codes. Additionally, we have to consider the
amount of error-checking bits to use. In theory, log2(k)/k
is sufficient to account for all k classes. However, this alone
can lead a degradation in performance. Hence, we also con-
sider a large amount of error-checking bits. In this case, the
error-checking bits can account for more mistakes given by
other classes, which may be correlated. In contrast, using
probability distributions naturally account for these corre-
lations, as the mass needs to shift relative to the activation
of each output. This point is particularly important for lan-
guage modelling because of the high-dimensionality of the
output. The most naive way to create the codebook is to
simply assign binary codes to each word in random order.
However, it is preferable to assign similar codes to words in
the vocabulary that are semantically similar while maximiz-
ing the Hamming distance between codes where leftover
error codes separate class codes.

3.1. Codebook Arrangement

A fundamental challenge in creating the codebook C is in
how error-codes are distributed between codes that max-
imize the separability between codewords that are more
likely to be interchangeably and incorrectly predicted. This

is related to the second challenge of choosing the dimension-
ality of C. The latter is dependent on the size of the corpus,
and in some cases might only require | log2(V)| ≤ d ≤ |V|
bits to represent all classes with leftover error-checking
bits. These two decisions correspond to a tradeoff between
computational complexity and accuracy of our neural lan-
guage model, akin to tree expressitivity in the Hierarhcial
Softmax to using the Full Softmax. Below we describe a
semantically motivated method to achieve well-separated
codewords, followed by a guide on how to choose codebook
dimensionality dC .

3.1.1. EMBEDDING SIMLARITY-BASED CODEBOOKS

Previous work on ECOC has focused on theories as to why
randomly generated codes lead to good row and column
separation (Berger, 1999). However, this assumes that class
labels are conditionally independent and therefore it does
not apply well for language modelling where the output
space is loosely structured. To address this, we propose to
reorder C ∈ C such that Hamming distance between any
two codewords is proportional to the embedding similarity.
Moreover, separating codewords by semantic similarity can
be achieved by placing the amount of error-checking bits
proportional to rank ordered similarity for a chosen query
word embedding. A codebook ordered by embedding sim-
ilarity for w∗ is denoted as CΛw∗ . The similarity scores
between embeddings is given as F(M∗,Mi) ∀i is used re-
order M →M′

. Good separation is achieved when codes
are separated proportional to the cosine similarity between
embeddings of the most frequent word w∗ ∈ V and the
remaining words w′. Therefore, words with high similar-
ity have corresponding codes that are closer in Hamming
distance H(·, ·) in C. This ensures that even when codes
are correlated, that incorrect latent predictions are at least
more likely to correspond to semantically related words. We
are not guaranteed that codes close in Hamming distance
are closer in a semantic sense in the random case. Given
k redundant codewords Ck, we require an assignment that
leads to a strongly separated C. Let δ(·, ·) denote a func-
tion that assigns Cki error-checking codewords assigned to
the ith class codeword and δ(C∗, Ci) ∝ F(M∗,Mi)∀k.
In practice δ(·, ·) normalizes the resulting embedding sim-
ilarities S = F(M∗,M) using a normalization function
cumsum

(
φ(S) × |C|

)
to assign the intervals between ad-

jacent codeword spans. This results in greater distance
between words that are more similar to w∗, and less error-
checking codewords to relatively rarer words that tend to
have little neighbouring words in the embedding space.

3.1.2. RANDOM CODEBOOKS

Berger (1999) find that a well row-separated binary C can be
defined as one where all rows have a relative Hamming sep-

Error-Correcting Latent Neural Sequence Prediction

aration at least 1
24
√

logm
n . The probability that a randomly-

constructed binary matrix C is not well row-separated is at
most 1/m4. Further, it holds that for any two rows in a
well-separated C which have a relative Hamming separation

in the range,
[

1
2 − 4

√
logm
n , 1

2 + 4
√

logm
n

]
the probability

that a randomly constructed C is not strongly well-separated
is at most 2/m4. We consider these random codebooks as
one of the baselines when evaluating ECOC against other
related approximate methods in NLM.

4. Latent Mixture Sampling
To mitigate exposure bias for latent-based language mod-
elling we propose a sampling strategy that interpolates be-
tween predicted and target codewords. We refer to this
as Latent Mixture Sampling (LMS) and its application to
ECOC as Codeword Mixture Sampling (CMS).

4.1. Curriculum-Based Latent Mixture Sampling

In Curriculum-Based Latent Mixture Sampling (CLMS), the
mixture probability is pc = 0 ∀c ∈ C at epoch ε = 0 and
throughout training the probability monotonically increases
pc = δc ∀c ∈ C where δc is the threshold for the c th bit
after ε epochs. A Bernoulli sample C̃ = B(Ĉt, Ct)∀c ∈ C
is carried out for each timestep t in each minibatch. The
probabilities per dimension pc are independent of keep-
ing a prediction ŷt−1,c instead of the c th bit in the target
codeword y(t−1,c) at timestep t-1. The reason for having
individual mixture probabilities per bits is because when we
consider a default order in C, this results in tokens being
assigned codewords ranked by frequency. Therefore, the
leftmost bit predictions are more significant than bit errors
near the beginning (e.g 20 = 1 only 1 bit difference). In this
paper we report results when using a sigmoidal schedule as
shown in Equation 2 where τmax represents the temperature
at the last epoch and δ is a scaling factor that controls the
slope of the sigmoid (in our experiments δ = 0.1).

[ŷt−1, yt−1] ∼ τmax
1 + exp(−ε/δ)

∀ε ∈ [−N/2, N/2] (2)

4.2. Latent Soft-Mixture Sampling

In standard CMS, we pass token indexwt which is converted
to an input embedding ew based on the most probable bits
predictions at the last time step arg maxθ p(yt−1|xt−1; θ).
We can instead replace the argmax operator with a soft
argmax that uses a weighted average of embeddings e ∈ E
where weights are assigned from the previous predicted
output via the softmax normalizatio φ(xt−1, τ), where τ
controls the kurtosis of the probability distribution (τ → 0
tends to the argmax), as shown in Equation 3.

(, ,)log a
1

log a
2

log a
T

(, , ...) ~ GumbelG
1

G
2

G
T

 ht

Cˆ(i,1)

Cˆ(i,n−1)

Cˆ(i,n)

Figure 1. Differentiable Latent Mixture Sampling

xt =
∑
w∈V

ew

(exp(hTwθ/τ)∑
w∈V exp(hTwθ/τ)

)
(3)

In the ECOC-NLM, we consider binary codewords and
therefore choose the top k least probable bits to flip accord-
ing to the curriculum schedule. Hence, this results in k
codewords where each Ĉ has at least hamming distance
H(Ĉ, C) = 1 (20). Concretely, this is a soft interpolation
between past targets and a weighted sum of the k most
probable codewords ĈK = arg maxk

(
σ(hTwW)

)
such that

xt = BK
(
C,
∑K
k φ(Ĉk)

)
where BK samples one or the

other for each k dimension of C.

5. Differentiable Latent Sampling
The previous curriculum strategies disregard where the er-
rors originate from. Instead, they interpolate between model
predictions of latent variables Ŷ and targets Y in a way that
does not distinguish between cascading errors and localized
errors. This means that it only recorrects errors after they
are made instead of directly correcting for the origin of the
errors. Maddison et al. (2016) showed that such operations
can be approximated by using a continuous relaxation using
the reparameterization trick, also known as the Concrete Dis-
tribution. By applying such relaxation it allows us to sample
from the distribution across codes while allowing for a fully
differentiable objective, similar to recent work (Goyal et al.,
2017). We extend this to mixture sampling by replacing the
argmax operation with the Concrete distribution to allow the
gradients to be adjusted at points where prior predictions
changed value throughout training. This not only identifies
at which time-step the error occurs, but what latent vari-
ables (i.e output codes) had the most influence in generating
the error. This is partially motivated by the finding that in
the latent variable formulation of simple logistic regression
models, the latent variable errors form a Gumbel distribu-
tion. Hence, sampling latent codes inversely proportional to
the errors from a Gumbel distribution would seem a suitable
strategy.

Gumbel-Softmax Similarly, instead of passing the most

Error-Correcting Latent Neural Sequence Prediction

likely predicted word ŷw∗t−1, we can instead sample from
ŷt−1 ∼ φ(ht−1, w) and then pass this index as x̂t. This
is an alternative to always acting greedily and allow the
model to seek other likely actions. However, in order to
compute derivatives through samples from the softmax, we
need avoid discontinuities, such as the argmax operation.
The Gumbel-Softmax (Maddison et al., 2016; Jang et al.,
2016) allows us to sample and differentiate through the
softmax by providing a continuous relaxation results in
probabilities instead of a step function (i.e argmax). For
each componentwise Gumbel noise k for latent variable z,
we find k that maximizes logαk − log(− logUk) and then
set Dk = 1 and D¬k = 0, where Uk ∼ Uniform(0, 1) and
αk is drawn from a discrete distribution D ∼ Discrete(α).

p̂(yt|xt; θ) =

D∏
d=1

exp((logαk +Gk)/τ)∑n
i=1 exp((logαi +Gi)/τ)

(4)

For ECOC, we instead consider Bernoulli random variables
which for the Concrete distribution can be expressed by
means of two arbitrary Gumbel distributions G1 and G2.
The difference between G1 and G2 follows a Logistic dis-
tribution and so G1 − G2 ∼ Logistic and is sampled as
G1 − G2 ≡ logU − log(1 − U). Hence, if α = α1/α2,
then P (D1 = 1) = P (G1 + logα1 > G2 + logα2) =
P (logU log(1 − U) + logα > 0). For a step function
H, D1 ≡ H(logα + logU − log(1 − U)), corresponding
to the Gumbel Max-Trick (Jang et al., 2016). The sam-
pling process for a Binary Concrete random variable in-
volves sampling Z, sample L ∼ Logistic and set Z as
shown in Equation 5, where α, τ ∈ (0,∞) and Z ∈ (0, 1).
This Binary Concrete distribution is henceforth denoted as
BinConcrete(·, ·) with location α and temperature τ .

Z ≡ 1

1 + exp
(
(logα+ L)/τ

) (5)

This is used for ECOC and other latent variable-based mod-
els, such as Hierarchical Sampling, to propogate through
past decisions and make corrective updates that backpro-
pogate to where errors originated from along the sequence.
Hence, we also carry out experiments with BinConcrete
(Equation 5) and Gumbel-Softmax(Equation 4) for HS and
ECOC. The temperature τ can be kept static, annealed ac-
cording to a schedule or learned during training, in the latter
case this is equivalent to entropy regularization (Szegedy
et al., 2016; Grandvalet & Bengio, 2005)that controls the
kurtosis of the distribution. In this work, we consider using
an annealed τ , similar to Equation 2 where τ → 2.5 and
starts with τ = 0.01. This is done to allow the model to
avoid large gradient variance in updates early on. In the
context of using the Gumbel-Softmax in LMS, this allows

the model to become robust to non-greedy actions gradually
throughout training, we would expect such exploration to
improve generalization proportional to the vocabulary size.

6. Experimental Setup
We carry out experiments for a 2-hidden layer Long-
Short Term Memory (LSTM) and Gated Recurrent Unit
(GRU) model with embedding size |e| = 400, Back-
propogation Through Time (BPTT) length 35 and varia-
tional dropout (Gal & Ghahramani, 2016) with rate pd=0.2
for input, hidden and output layers. The ECOC-NLM
model is trained using Binary Cross Entropy loss Lθ =
maxk

∏C
c

[
yc log

(
σc(h

T θ
)

+(1−yc) log
(
1−σc(hT θ)

)]
for k error-checking codewords, with respective gradients
δL
δθ = (yσ(hT θ)) · hT .

Baselines for ECOC-Neural Language Model The first
set of experiments include comparisons against the most
related baselines, which include Sample-Softmax (Bengio
et al., 2003b; Bengio & Senécal, 2008),Hierarchical Soft-
max (HS), AS (Grave et al., 2016), and NCE (Mnih & Teh,
2012). For HS, we use a 2-hidden layer tree with a branch-
ing factor (number of classes) of

√
|V| by default. For AS,

we split the output into 4 groups via the unigram distribu-
tion (in percentages of total words 5%-15%-30%-100%).
For NCE, we set the noise ratio to be 0.1 for PTB and
0.2 for WikiText-2 and WikiText-103. Training is carried
out until near convergence (ε ≈ 40), the randomly initial-
ized HS and Sampled Softmax of which take longer (ε ∈
[55-80]). Table 1 reports the results for log2 |V|2 number
of samples in the case of Rand/Unigram-Sample-SM. For
Rand/Unigram Hierarchical SM, we use a 2-hidden layer
tree with 10 classes per child node.

Baselines ECOC Mixture Sampling To test Latent Mix-
ture Sampling (LMS), we directly compare its application
in HS and ECOC, two closely related latent NLM meth-
ods. Additionally, we compare the performance of LMS
against the most related sampling-based supervised learning
technique called scheduled sampling (SS) (Bengio et al.,
2015). For SS with cross-entropy based training (SS-CE),
we also consider using a baseline of the soft-argmax (Soft-
SS-CE) where a weighted average embedding is generated
proportional to the predicted probability distribution.

Evaluation Details In order to compute perplexities for
ECOC-NLM, we must view the codewords in terms of
a product of marginal probabilities. At training time
we choose the most confident prediction within the span
of k error checks for a codeword Ck such that pĈ =

maxk
∏Ci
ci

(
φ(xt, ht)

)
, i = [0, 1.., k] i.e among the error

checks corresponding to a particular token, we choose the
most probable of these checks as the value when computing
the binary cross-entropy loss. At test time, if the predicted

Error-Correcting Latent Neural Sequence Prediction

codeword Ĉ falls within the k error-checking bits of code-
word C, then it is deemed a correct prediction and assigned
the highest probability of all k predictions. We note that
we only convert the ECOC predictions to perplexities to be
comparable against baselines. ECOCs can also be evaluated
using Hamming Distance or Mean Reciprocal Rank when
the codes are ordered semantically or by Hamming distance
(i.e Unigram-ECOC or Embedding-ECOC).

7. Results
7.1. Error-Correcting Output Coded NLM Results

We first compare our proposed ECOC-NLM to aforemen-
tioned methods that approximate softmax normalization,
using binary trees and latent codes that are ordered accord-
ing to unigram frequency (Unigram-Hierarchical-SM and
Unigram-ECOC). This is also the same ordering we use
to compare our proposed CMS-ECOC sampling method to
scheduled sampling (Bengio et al., 2015) in standard cross-
entropy training with softmax normalization. Although,
these are not directly comaprable, since ECOC-NLM intro-
duces a whole new paradigm, we use the common evaluation
measures of Hamming distance and accuracy to have some
kind of baseline with which we can compare our proposed
method to. Figure 2 shows how the reduction in perplexity
as the number of ECOC-LSTM decoder parameters increase
as more bits are added to the codeword. For PTB, large per-
plexity reductions are made between 14-100 codebits, while
between 100-1000 codebits there is a gradual decrease. In
contrast, we see that there is more gained from increasing
codeword size for WikiText-2 and WikiText-103 (which pre-
serve the words that fall within the long-tail of the unigram
distribution). We find the discrepancy in performance be-

5614 8020 16040

80

90

Penn Treebank

ecoc-random val

ecoc-random test

ecoc-unigram val

ecoc-unigram test

ecoc-embed val

ecoc-embed test

6817 16040 40100

120

130

V
al

id
a
ti

on
&

T
es

t
P

er
p

le
x
it

y

WikiText 2

6817 16040 40100

Number of Decoder Parameters

50

60

WikiText-103

Figure 2. ECOC-NLM Performance with Increasing Number of
Decoder Parameters (corresponding to 14/20/40 codeword bits for
Penn-TreeBank and 17/40/100 codeword bits for WikiText-2/103)

tween randomly assigned codebooks and ordered codebooks
is more apparent for large compression (|C| < |V|/10). In-
tuitively, the general problem of well-separated codes is
alleviated as more bits are added.

Table 1 shows that overall ECOC with a rank ordered em-
bedding similarity C (Embedding-ECOC) almost performs
as well as the full-softmax (8.02M parameters) while only
using 1000 bits for PTB (|V|/20 and) and 5K bits for
WikiText-2 (|V|/25) and WikiText-103 (|V|/30). The HS-
based models use a 2-hidden layer tree with 10 tokens per
class, resulting in 4.4M parameters for PTB, 22.05M param-
eters for WikiText-2 (full softmax - 40.1M) and WikiText-
103. Moreover, we find there is a consistent improvement
in using Embedding-ECOC over using a random codebook
(Random-ECOC) and a slight improvement over using a
unigram ordered codebook (Unigram-ECOC). Note that in
both Embedding-ECOC and Unigram-ECOC, the number
of error-checking bits are assigned inversely proportional to
the rank position when ordering embedding similarities (as
discussed in subsubsection 3.1.1) and unigram frequency
respectively. We also found that too many bits e.g |C| = |V|
takes much longer (ε ∈ [20-30] more for PTB) to converge
with negligible perplexity reductions. Hence, the main ad-
vantage of ECOC-NLMs is the large compression rate while
maintaining performance (e.g PTB with |C| = 40, there is
less than 2 perplexity points compared to the full softmax).

7.2. Latent Mixture Sampling Results

Figure 3 shows how validation perplexity on WikiText-2
changes throughout training an LSTM as τ begins to tend
to τmax=2.5, τmax=10 and the case where τconst=1 is kept
constant. We see that too much exploration (τmax=10) leads
to an increase in perplexity, as τ > 5, the validation per-
plexity begins to rise. In contrast, we find a slow monotonic
increase to τmax=2.5 leads to a steady increase, at which
τ = 2 (epoch 24) the model has almost converged. Table 2
shows all results of LMS when used in HS and ECOC-based

0 5 10 15 20 25 30 35 40

Epochs

120

130

140

150

160

170

P
er

p
le

x
it

y

τmax = 2.5

τmax = 10

τconst = 1

0

2

4

6

8

10

τ

Figure 3. WikiText-2 Validation Perplexity When Varying τ (cor-
responding dashed lines) in CLMS-ECOC (LSTM)

Error-Correcting Latent Neural Sequence Prediction

Model PTB WikiText-2 WikiText-103
Val. Test Val. Test Val. Test

Full SM

GRU 85.49 78.81 126.28 122.66 59.23 51.44
LSTM 86.19 79.24 124.01 119.30 56.72 49.35

Rand-Sample-SM

GRU 94.42 83.79 138.91 131.48 70.08 60.80
LSTM 92.14 81.82 136.47 129.29 68.95 59.34

Unigram-Sample-SM

GRU 91.23 82.45 134.49 128.29 67.10 57.62
LSTM 90.37 81.36 133.08 127.19 66.23 57.09

Rand-Hierarchical-SM

GRU 96.83 89.93 134.11 127.88 65.01 55.79
LSTM 94.31 88.50 133.69 127.12 62.29 54.28

Unigram-Hierarchical-SM

GRU 94.35 87.67 131.34 124.91 63.18 54.67
LSTM 92.38 86.70 130.26 124.83 62.02 54.11

Adaptive-SM

GRU 92.11 85.74 129.90 122.26 60.95 53.03
LSTM 91.38 85.29 118.89 120.92 60.27 52.63

NCE

GRU 98.62 92.03 131.34 126.17 62.68 54.90
LSTM 96.79 89.30 131.20 126.82 61.11 54.52

Random-ECOC

GRU 92.47 87.28 132.61 124.22 61.33 52.80
LSTM 91.00 87.19 131.01 123.29 56.12 52.43

Unigram-ECOC

GRU 87.43 80.39 127.79 120.97 58.12 51.88
LSTM 86.44 82.29 129.76 120.51 52.71 48.37

Embedding-ECOC

GRU 86.03 80.45 127.40 122.01 58.28 51.67
LSTM 84.40 77.53 125.06 120.34 57.37 49.09

Table 1. Perplexities for Full Softmax (SM), Sample-Based SM
(Sample-SM), Hierarchical-SM (HSM), Adaptive-SM, NCE and
ECOC-NLM.

NLM models. We baseline this against both SS and the soft-
argmax version of SS, the most related sample-based super-
vised learning approach to LMS. Furthermore, we report
results on CLMS-ECOC (Curriculum-LMS ECOC) which
mixes between true targets and codewords predictions ac-
cording to the schedule in Equation 2 and a differentiable
extension of LMS via samples from the Gumbel-Softmax
(DCMS-ECOC). At training time for both DCMS-ECOC
and DLMS-Hierarchical-SM we sample from each softmax
defined along the path to the target code. We find that using
a curriculum in CMS-ECOC to perform better in general
when mixing code predictions and targets, outperforming
the full softmax that uses scheduled sampling (SS-SM).
Lastly, we note that DLMS-ECOC is comparable in per-
formance to CLMS-ECOC, and improves performance on
WikiText-2. Consistently, there has been an improvement
using LMS over SS which suggests that LMS is an effective
alternative when directly optimizing over latent variables i.e
mixture sampling is less suited when using the full softmax
since the target is extremely sparse (dirac delta distribution).

PTB WikiText-2 WikiText-103
Val. Test Val. Test Val. Test

SS-SM

GRU 82.49 75.36 123.39 119.71 57.22 49.39
LSTM 81.17 75.24 124.01 119.30 56.72 49.35

Soft-SS-SM

GRU 78.23 70.60 120.34 116.04 54.49 46.59
LSTM 77.48 69.81 119.93 115.27 54.02 45.77

SS-Adaptive-SM

GRU 82.11 77.88 122.23 118.57 58.36 51.01
LSTM 82.45 78.03 122.37 118.59 57.81 49.08

SS-Hierarchical-SM

GRU 85.29 78.83 124.24 121.60 60.48 52.19
LSTM 85.56 78.17 123.88 120.91 59.76 51.59

SS-ECOC

GRU 86.14 78.44 125.12 121.52 58.49 50.68
LSTM 86.02 78.57 124.39 120.81 58.23 50.29

Soft-SS-ECOC

GRU 85.78 78.12 124.69 121.13 58.18 50.33
LSTM 85.11 77.59 123.94 120.82 57.01 49.26

CLMS-Hierarchical-SM

GRU 84.09 77.83 124.31 120.60 59.69 51.27
LSTM 84.11 77.13 123.23 121.35 59.56 50.41

DLMS-Hierarchical-SM

GRU 82.47 78.03 124.07 122.27 59.31 53.18
LSTM 81.83 77.40 123.51 121.78 58.63 52.72

CLMS-ECOC

GRU 80.34 78.55 122.89 118.07 58.29 50.37
LSTM 80.67 78.39 122.27 117.90 57.81 50.03

DLMS-ECOC

GRU 79.34 74.25 120.89 117.89 58.71 50.28
LSTM 79.67 76.39 119.27 117.41 59.35 51.67

Table 2. Perplexities for Techniques that Mitigate Exposure Bias.
Hierarchical Softmax uses Categorical Concrete distribution for
DLMS-HS and Binary Concrete Distribution for DCMS-ECOC.
CLMS-Hierarchical-SM and CLMS-ECOC both montonically in-
crease τ according to Equation 2. Both HS and ECOC use Embed-
ding ordered decoder matrix (we omit the -Embedding extension)

8. Conclusion
This work proposed an error-correcting neural language
model and a novel Latent Mixture Sampling method for
latent variable models. We find that performance is main-
tained compared to using the full conditional and related
approximate methods, given a sufficient codeword size to
account for correlations among classes. This corresponds to
40 bits for PTB and 100 bits for WikiText-2 and WikiText-
103. Furthermore, we find that performance is improved
when rank ordering the codebook via embedding similarity
where the query is the embedding of the most frequent word.
Lastly, we introduced Latent Mixture Sampling which can
be integrated into training latent-based language models,
such as the ECOC-based language model, to mitigate expo-
sure bias. We find that this method outperforms well-known
sampling-based methods for reducing exposure bias when
training neural language models with maximum likelihood.

Error-Correcting Latent Neural Sequence Prediction

References
Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-

uled sampling for sequence prediction with recurrent neu-
ral networks. In Advances in Neural Information Process-
ing Systems, pp. 1171–1179, 2015.

Bengio, Y. and Senécal, J.-S. Adaptive importance sampling
to accelerate training of a neural probabilistic language
model. IEEE Transactions on Neural Networks, 19(4):
713–722, 2008.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. A
neural probabilistic language model. Journal of machine
learning research, 3(Feb):1137–1155, 2003a.

Bengio, Y., Senécal, J.-S., et al. Quick training of proba-
bilistic neural nets by importance sampling. In AISTATS,
pp. 1–9, 2003b.

Berger, A. Error-correcting output coding for text classifi-
cation. In IJCAI-99: Workshop on machine learning for
information filtering, 1999.

Gal, Y. and Ghahramani, Z. A theoretically grounded ap-
plication of dropout in recurrent neural networks. In
Advances in neural information processing systems, pp.
1019–1027, 2016.

Goodman, J. T. A bit of progress in language modeling.
Computer Speech & Language, 15(4):403–434, 2001.

Goyal, K., Dyer, C., and Berg-Kirkpatrick, T. Differentiable
scheduled sampling for credit assignment. arXiv preprint
arXiv:1704.06970, 2017.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning by
entropy minimization. In Advances in neural information
processing systems, pp. 529–536, 2005.

Grave, E., Joulin, A., Cissé, M., Grangier, D., and Jégou, H.
Efficient softmax approximation for gpus. arXiv preprint
arXiv:1609.04309, 2016.

Gutmann, M. and Hyvärinen, A. Noise-contrastive esti-
mation: A new estimation principle for unnormalized
statistical models. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 297–304, 2010.

Hamming, R. W. Error detecting and error correcting codes.
Bell System technical journal, 29(2):147–160, 1950.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. On using
very large target vocabulary for neural machine transla-
tion. arXiv preprint arXiv:1412.2007, 2014.

Kong, E. B. and Dietterich, T. G. Error-correcting output
coding corrects bias and variance. In Machine Learning
Proceedings 1995, pp. 313–321. Elsevier, 1995.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and
Khudanpur, S. Recurrent neural network based language
model. In Eleventh Annual Conference of the Interna-
tional Speech Communication Association, 2010.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. In Advances in neural infor-
mation processing systems, pp. 3111–3119, 2013.

Mnih, A. and Teh, Y. W. A fast and simple algorithm
for training neural probabilistic language models. arXiv
preprint arXiv:1206.6426, 2012.

Morin, F. and Bengio, Y. Hierarchical probabilistic neural
network language model. In Aistats, volume 5, pp. 246–
252, 2005.

Sejnowski, T. J. and Rosenberg, C. R. Parallel networks that
learn to pronounce english text. Complex systems, 1(1):
145–168, 1987.

Shi, K. and Yu, K. Structured word embedding for low mem-
ory neural network language model. Proc. Interspeech
2018, pp. 1254–1258, 2018.

Shu, R. and Nakayama, H. Compressing word embeddings
via deep compositional code learning. arXiv preprint
arXiv:1711.01068, 2017.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Advances in
neural information processing systems, pp. 3104–3112,
2014.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W.
Breaking the softmax bottleneck: A high-rank rnn lan-
guage model. arXiv preprint arXiv:1711.03953, 2017.

Zhang, L., Zhang, Y., Tang, J., Lu, K., and Tian, Q. Bi-
nary code ranking with weighted hamming distance. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1586–1593, 2013.

