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Abstract: 24 

Toxoplasma gondii, an intracellular parasitic protozoan, is capable of infecting man and all 25 

warm blooded animals. Cell-mediated immunity is vital in mounting protective responses 26 

against T. gondii infection. Recent studies have shown that T-helper (Th) 17 responses may 27 

play a key role in parasite control. In this current study, we constructed a DNA vaccine 28 

encoding T. gondii ROP13 in a pcDNA vector. Groups of BALB/c mice were immunized 29 

intramuscularly with pcROP13 or controls and challenged with the RH strain of T. gondii. 30 

The results showed that immunization with pcROP13 could elicit an antibody response 31 

against T. gondii. The expression of the canonical Th17 cytokines, IL-17 and IL-22, were 32 

significantly increased after immunization with pcROP13 compared to control groups 33 

(P<0.05). Furthermore, vaccination resulted in a significant decrease in parasite load 34 

(P<0.05). The induction of Th17 related cytokines, using a ROP13 DNA vaccine, against T. 35 

gondii should be considered as a potential vaccine approach for the control of toxoplasmosis.  36 
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1. Introduction 44 

Toxoplasmosis is globally widespread parasitic infection caused by the intracellular 45 

protozoan pathogen, T. gondii, infecting humans and the other warm-blooded animals [1]. In 46 

immunocompetent people Toxoplasma infection is benign and mostly presents with no 47 

clinical manifestations. However, dependent on the status of host immune system it can cause 48 

serious and irreversible effects [1-2]. Toxoplasmosis in immunocompromised individuals is 49 

an opportunistic infection that may cause severe ocular and life-threatening neurological 50 

disorders [2]. Due to the high prevalence of T. gondii and the resulting pathogenesis of 51 

infection it is considered as a public health hazard. Despite extensive research, effective anti-52 

Toxoplasma therapeutics without side effects remains a barren area [3]. Hence, the most 53 

effective strategy to reduce disease burden and clinical outcomes is the development of 54 

vaccine formulations against T. gondii [4]. 55 

Current approaches to immunization against Toxoplasma infection takes several forms 56 

including attenuated live vaccines, killed vaccines and subunit vaccines [4-5]. Owing to the 57 

safety issues with the use of attenuated or killed forms of the pathogen, subunit vaccines have 58 

attracted considerable attention [4, 6]. In particular, DNA vaccines have been developed in 59 

recent years [5]. Results from several studies have raised the possibility of developing a DNA 60 

vectored vaccine to protect against T. gondii infection. The most investigated compounds as 61 

vaccine candidates include excreted-secreted antigens (ESA) and surface antigens of 62 

tachyzoites [7-9]. Previous findings indicate that ESA play a significant role in disease 63 

pathogenesis, and escape of the parasite from host immunity [10]. In particular Rhoptries 64 

(ROP) are unique secretory organelles that involved in host cell penetration by T. gondii and 65 

parasitophorous vacuole formation allowing survival and multiplication [11-12].  66 
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The protective mechanisms against T. gondii involve both CD4+ and CD8+ T-cell responses 67 

[13]. IFN-γ is known to be the major effector as a result of T-helper 1 (Th1) cell and NK cell 68 

activation. Th17 cells are a subset of CD4+ T-cells conditioned to produce the cytokines IL-69 

17, IL-21, and IL-22 which trigger responses causing the elimination of infection [13-16]. 70 

However, T cell-dependent production of IL-17 has been implicated in both protective and 71 

pathogenic responses during infection with T. gondii [17]. Subsequent studies identified NK 72 

cells as the innate IL-17 secreting cells in mice challenged with Toxoplasma [17-18]. 73 

Moreover, IL-17 mediated signaling was reported to play an important role during the initial 74 

stages of T. gondii infection through neutrophil recruitment and activation [19].  75 

Given the essential roles of ROP proteins in the pathogenesis of the Toxoplasma infection, 76 

these critical antigens are appropriate vaccine candidates [20]. ROP13 is a relatively recently 77 

recognized antigen of T. gondii and in tandem few studies have evaluated the Th17 response 78 

in T. gondii DNA vaccine [21]. Hence, the two major objectives of the present study was to 79 

construct a DNA vaccine vector expressing T. gondii ROP13 for use in immunization and to 80 

thereafter analyze the protective immune responses induced by vaccination and challenge 81 

with T. gondii RH strain.  82 

2. Materials and methods 83 

2.1 Mice and parasite 84 

 The highly virulent RH strain of T. gondii (type I) was used in all experiments. The RH 85 

tachyzoites were provided by Toxoplasmosis Research Center in Mazandaran University of 86 

Medical Sciences, Sari, Iran. The parasite was maintained by serial passage and 87 

intraperitoneal inoculation and female 6 to 8 week-old BALB/c mice. The animals were 88 

obtained from the Pasteur Institute of Iran and maintained under standard conventional 89 
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conditions. The animal experiments were approved by the local Ethics Committee of Tabriz 90 

University of Medical Sciences, Tabriz, Iran (No. IR.TBZMED.REC.1395.578).  91 

2.2 Cloning of ROP13 and construction of plasmids 92 

 DNA was extracted from tachyzoites by using an AccuPrep genomic DNA extraction kit 93 

(Bioneer, Korea) according to the manufacturer’s instructions. The NCBI GenBank database 94 

was used to determine the complete sequence of ROP13 gene of RH strain and to design 95 

specific primers (GeneBank accession number: JN051278.1).  The ROP13 gene was 96 

amplified using the primer pair Forward: 5' -GGATCCATGAAGAGAACAGAGCTTTG- 3', 97 

and Reverse: 5' -TCTAGATCACAATAGCCTCAAGGAATTC- 3' with six base pair, 98 

underlined, recognition sites for Bam HI and Xba I respectively in the primers. The coding 99 

sequence of ROP13 gene was 1203bp in length which was inspected by using 1% agarose gel 100 

electrophoresis to ensure the fidelity of the PCR product. The ROP13 PCR product was then 101 

inserted into the linearized pTG19-T vector (Vivantis) between the Bam HI and Xba I sites.  102 

The pTROP13 plasmid was then transferred into competent Top10 E. coli cells. Transformed 103 

bacteria were plated on LB-agar plates containing ampicillin, X-gal, and IPTG and incubated 104 

overnight. Blue/white screening was used to select transformed colonies harboring pTROP13 105 

were isolated and subjected to PCR to confirm the correct insertion was present [21-22]. 106 

To generate the vaccine plasmid pTROP13 was recovered from E. coli and subject to 107 

miniprep plasmid extraction (Gene All). The ROP13 coding sequence removed from the 108 

vector by double digestion cleavage using BamHI / XbaI (Jena Bioscience). The coding 109 

sequence was subject to gel purification and extraction (Bioneer, AccuPrep® Gel Purification 110 

Kit) before confirmation by DNA sequencing. To construct the vaccine vector, the ROP13 111 

gene sequence was ligated into the pcDNA3, yielded the plasmid pcROP13. 112 
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2.5 Transfection of CHO cells 113 

Chinese Hamster Ovary (CHO) cells were transfected with the pcROP13 plasmid. Cells, 1-2 114 

× 104 per well were plated into a 96-well tissue culture plate and used when the cells were 50-115 

80% confluent. Transfection was performed using jetPrime (Polyplus, France) according to 116 

the manufacturer’s instructions. Uptake of pcROP13 and expression from pcROP13 was 117 

detected 24-48 hours after transfection by immunofluorescence [21]. 118 

2.6 In vitro expression of pcROP13 119 

PcROP13 plasmid expression was detected by indirect immunofluorescence assay. Serial 120 

dilutions, beginning at 1/10, of the human anti-T. gondii antiserum were applied to 121 

transfected cells. Anti-sera were coated on a slide where the Transfected cells, on slides, were 122 

fixed, followed by incubation with anti-sera in a humidified chamber for 30 minutes; slides 123 

were then washed with PBS and dried at room temperature. The slides were subsequently 124 

incubated with secondary antibody of goat anti-human IgG conjugated with fluorescein 125 

isothiocyanate (FITC) for 30 minutes in the dark. After washing 3 times with PBS, the cells 126 

were mounted using buffered glycerol and examined for fluorescence detection under 127 

CYTATION5 imaging reader [21]. 128 

2.7 Mice immunization and challenge 129 

 Forty female 6-8-week-old BALB/c mice were divided into four groups; group A was 130 

vaccinated with 100 μg of pcROP13 DNA plasmid suspended in PBS, by intramuscular 131 

injection. Group B received PBS, Group C received empty pcDNA3 vector in PBS, and 132 

Group D received 20 μg of TLA (T. gondii lysate antigen). All mice were immunized three 133 
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times, two weeks apart prior to parasite challenge. Animals were infected with T. gondii RH 134 

strain by intraperitoneal injection with 1×104 parasites.  135 

2.8 Immune responses and determination of parasite load 136 

Serum IgG antibody levels were determined by ELISA as previously described (REF). 137 

Samples were obtained from mice at two individual time points including the pre-vaccination 138 

period (day 0) and on day 42 after immunization but prior to infection.  139 

To evaluate parasite load 3 days after challenge, DNA was extracted from the blood using the 140 

Blood Genomic DNA Extraction kit (YTA, Iran, Cat No: YT9040) according to the 141 

manufacturer’s instructions. Parasite load was determined by quantification of tachyzoites 142 

using real time PCR amplification of the highly conserved RE gene of T. gondii as previously 143 

described [23-24]. Briefly, forward primer: 5`AGGGACAGAAGTCGAAGGGG-3` and 144 

reverse primer: 5`GCAGCCAAGCCGGAAACATC-3` specified to amplify a 164-bp 145 

fragment of the RE gene using SYBR green chemistry, with all amplifications in triplicate. 146 

Q-PCR was performed using the following thermal cycling protocol: 10 minutes at 95°C, 40 147 

cycles at 94°C for 30 seconds (denaturation), 55°C for 30 seconds (annealing) and 72°C for 148 

30 seconds (amplification). Melting curve analysis was performed to verify the correct gene 149 

product ensuring the absence of side products. The threshold cycle (CT) value at which the 150 

fluorescence passes the fixed threshold was used to calculate the number of parasites in the 151 

samples according to a standard curve obtained with tachyzoites prepared for DNA samples 152 

over a range of 5 × 106 to 5 × 101/ml. The results were reported as T. gondii tachyzoite-153 

equivalents per ml of blood.  154 

Th17 cytokine gene expression was monitored using blood samples collected from 155 

animals  156 
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Subsequently, the blood RNA was extracted (YTA, Iran, Cat No: YT9075) and cDNA was 157 

synthesized (YTA, Iran, Cat No: YT4500) Real-time PCR for IL-17, IL-22 and GAPDH (as 158 

internal control) was performed using SYBR Green chemistry (YTA, Iran) on a Roche Real-159 

time PCR system (Applied Biosystems). The primers for IL-17 and IL-22 based on real-time 160 

PCR were as follow: IL-17 Forward primer: TCTCTGATGCTGTTGCTGCT, IL-17 Reverse 161 

primer: CGTGGAACGGTTGAGGTAGT, IL-22 Forward primer: 162 

TTGAGGTGTCCAACTTCCAGCA, IL-22 Reverse primer: 163 

AGCCGGACGTCTGTGTTGTTA. The PCR cycling was carried out in a final volume of 20 164 

µl reaction by an initial denaturation step at 95˚C for 3 min followed by 45 cycles at 95∘C for 165 

10 seconds, 58∘C for 30 seconds, and 72˚C for 20 seconds. Relative mRNA expression was 166 

measured by the 2-(ΔΔCT) method, using GAPDH as a reference gene.  167 

 2.11 Statistical analysis 168 

Statistical analysis was performed using GraphPad Prism 5.0 (San Diego, CA). Multiple 169 

comparisons between groups were conducted by 1-way ANOVA with post-hoc testing. P < 170 

0.05 was reported to be statistically significant. 171 

 3. Results 172 

3.1 Vaccine Construct 173 

The total DNA extracted from Toxoplasma tachyzoites and the coding sequence of ROP13 174 

gene was amplified using PCR, a 1203-bp PCR product corresponding to the ROP13 coding 175 

sequence was obtained (Figure 1A). This was inserted into the expression vector pcDNA3 176 

between the Bam HI and Xba I cloning sites. The pcROP13 was transferred into CHO cells 177 

and the protein expression was confirmed using IFAT (Figure. 1). 178 
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 179 

 180 

 181 

Figure 1. (Left) Gel electrophoresis analysis on PCR product, Lane 1: DNA size marker, Lane 2: 182 

ROP13 gene with the expected band size. Lane 3: negative control. (Right) Indirect 183 

immunofluorescence (IFA) detection of Toxoplasma gondii ROP13 on CHO cells (A: cells were 184 

transfected with pcROP13, B: empty vector).  185 

3.2 Immunization with pcROP13 186 

Groups of BALB/c mice were immunized with pcROP13 or appropriate controls.  187 

Immunization resulted in the seroconversion of animals as determined by ELISA.  A specific 188 

antibody response in both TLA and pcROP13 immunized groups was detected after the third 189 

immunization (Figure 2). The total IgG levels for both groups was significantly different 190 

(P<0.05) when compared to the negative control groups (PBS and pcDNA3).  191 
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 192 

Figure 2. Measurement of the specific anti-Toxoplasma IgG antbody in the sera of 193 

BALB/c mice before (left) and after (right) immunization at a 1:100 dilution.  The results 194 

are shown as mean of the OD450 ± SD of three independent experiments. *P < 0.05 195 

Statistically significant differences compared to control group were determined by a 1-196 

way anova. There were no detectable antibodies against T. gondii in the sera of control 197 

groups. 198 

 199 

3.3 Blood Cytokine mRNA expression 200 

48hr after the third immunization peripheral blood was collected from tail vein to evaluate the 201 

expression level of Th17 cytokines. The expression level of IL-22 mRNA in pcROP13 and 202 

TLA groups was found to be respectively 4 and nearly 2.5 folds higher than that observed in 203 

PBS and pcDNA3 groups (Figure 3). The expression of IL-17 was also significantly elevated 204 

among pcROP13 and TLA groups (2.8 and nearly 2 folds, respectively) compared with 205 

negative controls (P<0.05).  206 
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 207 

Figure 3. Relative mRNA expression of IL-17 (A) and IL-22 (B) in immunized mice with pcROP13, 208 

TLA, pcDNA3 and PBS. Results are expressed as mean and SD. P-value was determined using 1-way 209 

anova analysis (*P<0.05, ** P<0.01, *** P<0.001). 210 

3.4 Determination of parasite load in immunized mice 211 

To determine the protective efficacy of the pcROP13 vaccine to induce protection against T. 212 

gondii, immunized mice were challenged via the intraperitoneal route with 1 × 10 4 213 

tachyzoites 2 weeks after the third immunization. Blood parasite load was then determined by 214 

qPCR three days after challenge. Figure 4 clearly shows that immunization with either TLA 215 

or pcROP13 induced protection in mice as measured by the significantly different parasite 216 

burden (P<0.05). The PBS and pcDNA groups harbored on average 22201 and 18436 217 

parasite/mL, respectively. The pcROP13 and TLA immunized groups harbored 1694 and 812 218 

parasites, respectively. However no significant difference was observed between pcROP13 219 

and TLA groups (Figure 4). 220 
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 221 

Figure 4: The parasite load, tachyzoites/mL of blood in immunized mice following a 3-day i.p. 222 

infection with RH strain of T. gondii. Significant differences in parasite load between groups was 223 

detected by 1-way anova (*P < 0.05). 224 

4. Discussion 225 

Immunization with T. gondii ROP13 gene has been previously shown to induce a strong 226 

protective humoral and cellular response against infection in the recent study when 227 

adjuvanted with IL-18 [21]. In the current study, we constructed a vaccine plasmid pcROP13 228 

expressing protein ROP13 of T. gondii and evaluated the immune response induced in 229 

BALB/c mice. Our findings demonstrated that in addition to the induction of a humoral 230 

response, there is also an increased gene expression of Th17 cytokines (IL-17 and IL-22). In 231 

agreement with previous studies we found that immunization with pcROP13, as a DNA 232 

vaccine, successfully decreased the parasite load of blood in immunized mice.  233 

In the past decade, DNA vaccines have been widely studied and have been shown to elicit an 234 

efficient immune response against target antigens in various animal models [5, 25]. Various 235 

antigens of T. gondii have been assessed as potential candidates for vaccine development [8, 236 
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22, 26-27]. Rhoptries are found in apical secretory organelle and function in the 237 

establishment of infection through formation of specific compartments known as 238 

parasitophorous vacuoles in which parasite evades intracellular killing [11]. ROP13 is a 239 

unique soluble effector protein known to implicate in host cell invasion that can be detected 240 

in the cytoplasm of host cells [21]. A previous study evaluated the immunogenicity of a DNA 241 

vaccine expressing ROP13 of T. gondii, pVAX-ROP13, in Kunming mice. The pVAX-242 

ROP13 could induce humoral and cellular immunity against T. gondii [21]. The mice were 243 

assessed for production of cytokines specific for Th1 (IFN-γ and IL-2) and Th2 (IL-4 and IL-244 

10) after immunization and the results showed that the protective efficacy of the DNA 245 

vaccine expressing T. gondii ROP13 were related to Th1-driven immune response in 246 

Kunming mice, confirming the importance of the cellular immune response. 247 

Elimination of intracellular parasites is mainly conferred by Th1 immunity leading to the 248 

secretion of cytokines interferon-gamma (IFN-𝛾), interleukin-12 (IL-12) and tumor necrosis 249 

factor-alpha (TNF-𝛼) [16, 18]. IL17-producing T cells termed Th17 cells secrete a set of anti-250 

microbial cytokines including IL-22 and IL-21 and also mediate host protection against 251 

parasites and other pathogens [28-29]. They are involved in immunity to intracellular 252 

infections including Cryptosporidium, Plasmodium spp. and Trypanosoma cruzi [30-31]. 253 

However, pathogenic roles of Th17 responses have also been reported in the context of some 254 

parasitic infections [30, 32]. Among the complex network of cytokines that have been 255 

described in the immune responses to T. gondii, the pro-inflammatory cytokine, IFN-γ was 256 

shown to block intracellular development of the parasite and is considered as the main 257 

mediator of resistance to T. gondii [33]. There is evidence indicating that IL-22 has anti-258 

parasite effects during infection with intracellular parasite, Eimeria falciformis that belongs to 259 

the same phylum with T. gondii [34]. In contrast with these findings, IL-22 but not IL-17 is 260 
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shown to drive inflammation and tissue injury following mice infection with T. gondii [35]. 261 

Furthermore, recently published data from a mouse model of rickettsial infection, an obligate 262 

intracellular bacterium, demonstrates that either Th1 or Th17 responses can have protective 263 

effects. Surprisingly cells producing IL-17A or IL-22 are as protective as IFN-γ producing 264 

Th1 cells, if the immunopathologic effects of TNF-α are controlled [36]. This compliments 265 

recent novel findings that Th17 cells provide stronger protection, compared with Th1 266 

responses, against the intracellular microorganism T. cruzi [32]. These findings open the 267 

possibility that Th17 mediated protection during T. gondii is a prospect for vaccination. 268 

In the present study, we found significantly raised levels of both IL-17 and IL-22 mRNA in 269 

mice immunized with pcROP13 compared with control mice immediately prior to infection. 270 

These elevated levels of IL-17 and IL-22 in pcROP13 immunized mice associated with lower 271 

parasite burdens (P< 0.05) compared with PBS and pcDNA3 treated mice. This set of 272 

responses also provoked secretion of specific IgG antibodies detected in the sera of mice 273 

immunized with pcROP13 after the last immunization compared to control groups (P<0.05). 274 

Early reports supporting our data indicating a key role for IL-17 in the recruitment of 275 

neutrophils which is required for resistance to T. gondii [37]. Neutrophils are critical for 276 

successful host protection during early T. gondii infection [38]and experimental models have 277 

demonstrated that IL-17R-/- mice show significantly decreased migration of neutrophils into 278 

the peritoneal cavity after T. gondii infection [19], indicating that neutrophil response is 279 

dependent on IL-17-induced signaling. Studies on the NK response demonstrated that the 280 

need for Il-6 in driving IL-17 responses against T. gondii was conserved between across the 281 

T-cell populations [17]. 282 

In contrast to the perception that Th17 cells only function against extracellular pathogens, we 283 

have demonstrated that Th17 effectors, IL-17 and IL-22, may be important in the defense 284 
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against T. gondii infection as conferred by a ROP13 DNA-based vaccine. Multiple subtypes 285 

of innate and adaptive immune cells such as NK cells, γδ and CD4 T cells have been found as 286 

a source of IL-17; what subset of IL-17 producers is specifically implicated in pathogenic or 287 

protective immunity to T. gondii remained unclear. Further research is required to achieve a 288 

more detailed understanding of the exact correlates of protection against T. gondii infection in 289 

our system. This may enable us to revise the previously described harmful effects of IL-17 290 

and IL-22 producing T cells during infection with intracellular pathogens in particular T. 291 

gondii infection. 292 
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