
Extending Fairness Expressibility of ECTL+:
A Tree-Style One-Pass Tableau Approach
Alexander Bolotov1

University of Westminster,
W1W 6UW, London, UK
A.Bolotov@westminster.ac.uk

Montserrat Hermo2

University of the Basque Country
P. Manuel de Lardizabal, 1, 20018-San Sebastián, Spain
montserrat.hermo@ehu.eus

Paqui Lucio3

University of the Basque Country
P. Manuel de Lardizabal, 1, 20018-San Sebastián, Spain
paqui.lucio@ehu.eus

Abstract
Temporal logic has become essential for various areas in computer science, most notably for
the specification and verification of hardware and software systems. For the specification pur-
poses rich temporal languages are required that, in particular, can express fairness constraints.
For linear-time logics which deal with fairness in the linear-time setting, one-pass and two-pass
tableau methods have been developed. In the repository of the CTL-type branching-time setting,
the well-known logics ECTL and ECTL+ were developed to explicitly deal with fairness. However,
due to the syntactical restrictions, these logics can only express restricted versions of fairness.
The logic CTL?, often considered as “the full branching-time logic” overcomes these restrictions
on expressing fairness. However, this logic itself, is extremely challenging for the application of
verification techniques, and the tableau technique, in particular. For example, there is no one-
pass tableau construction for this logic, while it is known that one-pass tableau has an additional
benefit enabling the formulation of dual sequent calculi that are often treated as more “natural”
being more friendly for human understanding. Based on these two considerations, the following
problem arises - are there logics that have richer expressiveness than ECTL+ yet “simpler” than
CTL? for which a one-pass tableau can be developed? In this paper we give a solution to this
problem. We present a tree-style one-pass tableau for a sub-logic of CTL? that we call ECTL#,
which is more expressive than ECTL+ allowing the formulation of a new range of fairness con-
straints with “until” operator. The presentation of the tableau construction is accompanied by an
algorithm for constructing a systematic tableau, for any given input of admissible branching-time
formulae. We prove the termination, soundness and completeness of the method. As tree-shaped
one-pass tableaux are well suited for the automation and are amenable for the implementation
and for the formulation of sequent calculi, our results also open a prospect of relevant develop-
ments of the automation and implementation of the tableau method for ECTL#, and of a dual
sequent calculi.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

1 The author would like to thank the University of Westminster for supporting the sabbatical in 2017.
2 This author has been partially supported by Spanish Projects TIN2013-46181-C2-2-R and TIN2017-

86727-C2-2-R, and by the University of the Basque Country under Project LoRea GIU15/30.
3 This author has been partially supported by Spanish Projects TIN2013-46181-C2-2-R and TIN2017-

86727-C2-2-R, and by the University of the Basque Country under Project LoRea GIU15/30.

© Alexander Bolotov, Montserrat Hermo, and Paqui Lucio;
licensed under Creative Commons License CC-BY

25th International Symposium on Temporal Representation and Reasoning (TIME 2018).
Editors: Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek; Article No. 5; pp. 5:1–5:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by WestminsterResearch

https://core.ac.uk/display/187717466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:A.Bolotov@westminster.ac.uk
mailto:montserrat.hermo@ehu.eus
mailto:paqui.lucio@ehu.eus
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Extending Fairness Expressibility of ECTL+

Keywords and phrases Temporal logic, fairness, tableau, branching-time, one-pass tableau

Digital Object Identifier 10.4230/LIPIcs.TIME.2018.5

Acknowledgements The authors are grateful to Jose Gaintzarain for his contribution.

1 Introduction

Temporal logic has become essential for the specification and verification of hardware and
software systems. For the specification of the reactive and distributed systems, or, most
recently, autonomous systems, the modelling of the possibilities “branching” into the future is
essential. Branching-time logics (BTL) give us an appropriate framework. Among important
properties of these systems, so called fairness properties are important. In the standard
formalisation of fairness, operators ♦ (eventually) and � (always) have been used: A♦�p –
“p” is true along all computation paths except possibly their finite initial interval, where “A”
is “for all paths” quantifier, and E�♦p – “p” is true along a computation path at infinitely
many states, where “E” is “there exists a path” quantifier.

For the branching-time setting, the most used class of formalisms are “CTL” (Computation
Tree Logic) type logics. CTL itself requires every temporal operator to be preceded by a path
quantifier, thus, cannot express fairness. ECTL (Extended CTL) [5] enables simple fairness
constraints but not their Boolean combinations. ECTL+ [6] further extends the expressiveness
of ECTL allowing Boolean combinations of temporal operators and ECTL fairness constraints
(but not permitting their nesting). Both ECTL and ECTL+ extend the expressiveness of CTL
in tackling fairness, instead of changing the semantics of the logic, as Fair CTL did [3]. The
logic CTL?, often considered as “the full branching-time logic” overcomes these restrictions
on expressing fairness. However, this logic is extremely challenging for the application of
any known technique of automated reasoning. From another perspective, the literature on
fairness constraints, even in the linear-time setting, lacks the analysis of their formulation
with the U (“until”) operator. To the best of our knowledge, there are only a few research
papers that raise or discuss the problem. Among them are [10], which introduces the logic
LCTL, providing an extension of liveness constraints by the “until” operator. However,
LCTL belongs to ‘Fair CTL-type’ logics [7]. “Generalised liveness assumptions, which allow
to express that the conclusion f2 U f3 of a liveness assumption �(f1 ⇒ (f2 U f3)) has to
be satisfied” are addressed in [1]. The U operator in the formulation of the fairness can
also be found in [15] which considers the sequential composition of processes, providing
the following example - the composition of processes P1 and P2 “behaves as P1 until its
termination and then behaves as P2”. Finally, [11] utilises restricted linear-time fairness
constraints with U in the linear-time setting. We are not aware of any other analysis of
fairness constraints in branching-time setting using the U operator and without restricting
the underlying logic to be interpreted over the “fair” paths. We bridge this gap, presenting
the logic ECTL# (we use # to indicate some restrictions on concatenations of the modalities
and their Boolean combinations). It is weaker than CTL? but extends ECTL+ by allowing
the combinations �(AU B) or AU �B, referred to as modalities �U and U �. This enables
the formulation of stronger fairness constraints in the branching-time setting. The fairness
constraint A(pU �q) reads as “q is true along all paths of the computation except possibly
their finite initial interval, where p is true”, for example,“if a user of a system cannot repeat
any old password and needs to change passwords from time to time, then the following
property should hold: A((password = pw)U �(password 6= pw)) provided that pw is the
current password”. Table 1 places our logic in the hierarchy of BTL representing their

https://doi.org/10.4230/LIPIcs.TIME.2018.5

A. Bolotov, M. Hermo, and P. Lucio 5:3

Table 1 Classification of CTL-type logics and their expressiveness.

B(U ,◦) (CTL) extensions E(�♦q) E(�♦q ∧ �♦r) A((pU �q) ∨ (sU �¬r)) A♦(◦p ∧ E◦¬p)
B(U ,◦,�♦) (ECTL)

√
X X X

B+(U ,◦,�♦) (ECTL+)
√ √

X X

B+(U ,◦, U �) (ECTL#)
√ √ √

X

B?(U ,◦) (CTL?)
√ √ √ √

expressiveness: logics are classified by using “B” for “Branching”, followed by the set of
only allowed modalities as parameters; B+ indicates admissible Boolean combinations of
the modalities and B? reflects “no restrictions” in either concatenations of the modalities
or Boolean combinations between them.4 Thus, B(U ,◦) denotes the logic CTL. In this
hierarchy ECTL# is B+(U ,◦, U �).

We present a tree-style one-pass tableau for this logic continuing the analogous develop-
ments in linear-time case [2, 8] and for CTL [2]. An indicative feature of this approach is
context-based tableau technique. To the best of our knowledge, the context-based tableau has
not been extended to more expressive BTL, though for them different other kinds of tableaux
exist. In particular, [13] presents a tableau based decision procedure for CTL?, which would
definitely cover ECTL# as a sublogic of CTL?. However, this tableau method is (unavoidably)
complicated. For example, it utilises “global conditions on infinite branches” to be checked
by the automata-theoretic approach. Though such complications may be well justified by the
complexity of CTL?, aiming at a weaker logic, we would benefit by reducing the complications
to the minimum. Also, a distinctive feature of the tableau method in [13] is the control of
loops, specifically, of so called “bad loops”. While it looks necessary for this technique, we
would like to avoid similar complications for a simpler logic. Moreover, due to the essential
use of the notion of “context” (see §3) our tableau rules only produce “good loops”. Tree-style
one-pass tableaux (without additional procedures for checking meta-logical properties) have
dual (cut-free) sequent calculi, see [8], enabling the construction of human-understandable
proofs. In addition, these tableaux are well suited for the automation and are amenable for
the implementation.5 Our tableau is effectively an AND-OR tree where nodes are labelled
by sets of state (see the definitions in §2) formulae. The difficult cases of ECTL# formulae
appear due to the enriched syntax: disjunctions of formulae in the scope of the A quantifier
and conjunctions of formulae in the scope of the E quantifier. To tackle these cases, in
addition to α− β rules, that are standard to the tableaux, we use novel β+-rules which use
the context to force the eventualities to be fulfilled as soon as possible.

Outline of the paper. In §2 we describe the syntax and semantics of ECTL#. The formu-
lation of the tableau method is given in §3, where we define and explain tableau rules. A
systematic tableau construction and relevant examples are introduced in §4. The correct-
ness of our tableau method, its soundness, refutational completeness, and termination, are
sketched in §5. In §6 we draw the conclusions and prospects of future work that the presented
results open. Finally, the Appendix in §A collects the proofs of the main Propositions,
Lemmas and Theorems.

4 This notation goes back to [4], here we use its nice tuning by Nicolas Markey in [12].
5 An excellent survey of the seminal tableau techniques for temporal logics can be found in [9].

TIME 2018

5:4 Extending Fairness Expressibility of ECTL+

2 Syntax and Semantics of ECTL#

In the language of ECTL# we utilise classical connectives (¬,∧,∨) 6, classically defined
constants F (“false”) and T (“true”), linear-time temporal operators � (always), ◦ (next
time), and U (until), and path quantifiers - A (on all future paths) and E (on some future
path). Similarly to other BTL, we distinguish state (σ) and path (π) formulae, such that
well formed formulae are state formulae.

I Definition 1 (Syntax of ECTL#). Let Prop be a fixed set of propositions, and let Lit be
the set of literals, Lit ::= F | T | ρ | ¬ρ, where ρ ∈ Prop. We inductively define the set of
ECTL#-formulae, FProp, over Prop as follows:
σ ::= Lit | σ1 ∧ σ2 | σ1 ∨ σ2 | Aπ | Eπ
π ::= π1 ∧ π2 | π1 ∨ π2 | ◦σ | �(σ ∨ �σ) | σ U (σ ∧ ♦σ) | σ U (�σ) | �(σ U σ)
where σ means a state formula, π means a path formula and ♦σ abbreviates TU σ.

Note that σ1 U σ2 and �σ abbreviate σ1 U (σ2∧♦T) and �(σ∨�F), respectively. Also, instead
of using a minimal set of temporal operators, we use a richer syntax above to make the
presentation of the tableau technique more transparent.

I Definition 2 (Consistent Set of Formulae). A set Σ of state formulae σ is syntactically
consistent (we will write “consistent” further in the paper) abbreviated as Σ> if F 6∈ Σ and
{σ,¬σ} 6⊆ Σ for any σ; otherwise, Σ is inconsistent abbreviated as Σ⊥.

Formulae of ECTL# are interpreted over labelled Kripke structures.

I Definition 3 (Kripke structure K = (S,R,L)). A Kripke structure K is a triple of the form
(S,R,L) such that S is a non-empty set of states, R ⊆ S ×S is a total binary relation, called
the transition relation, and L : S → 2Prop is a labelling function.

A fullpath x through a Kripke structure K is an infinite sequence of states s0, s1, . . . such
that (si, si+1) ∈ R, for every i ≥ 0. Given a path x = s0, s1, . . . , si, . . . (i ≥ 0), we denote
its state si, 0 ≤ i, by x(i) and its finite prefix by the sequence x≤i = s0, s1, . . . , si. When
path x is given, instead of x(i) we will often write i, referring to i as “a state index of x”. If
x is a fullpath and y is a path such that y(0) = x(i), for some i > 0, then the juxtaposition
x≤iy is a fullpath. Our Kripke structures are labelled directed graphs that correspond to
Emerson’s R-generable structures, i.e. the transition relation R is suffix, fusion and limit
closed [4].

I Definition 4 (Evaluation relation |= for Kripke structures). The relation K, x, i |= ϕ evaluates
ECTL# formula ϕ at the state index i of the given path x in the given structure K = (S,R,L)
and is inductively defined as follows (we omit cases for Booleans, F and T).

K, x, i |= Aϕ iff K, y, 0 |= ϕ holds for every path y such that y(0) = x(i).
K, x, i |= Eϕ iff there exists a path y such that y(0) = x(i) and K, y, 0 |= ϕ.

K, x, i |= ◦ϕ iff K, x, i+ 1 |= ϕ.

K, x, i |= �ϕ iff K, x, k |= ϕ holds for all k ≥ i.
K, x, i |= ϕ1 U ϕ2 iff there exists k ≥ i such that K, x, k |= ϕ2 and K, x, j |= ϕ1

for all j ∈ {i, . . . , k − 1}.

6 Since inputs to our tableau are supposed to be transformed into the negation normal form, see below.

A. Bolotov, M. Hermo, and P. Lucio 5:5

Table 2 Difficult cases of temporal operators in the scope of path quantifiers.

Type of a difficult case A-disjunctive formula E-conjunctive formula

Example A(◦q ∨ �r) E(◦r ∧ q U �¬p)

Our representation A(◦q,�r) E(◦r, q U �¬p)

We extend, in the standard way, the relation |= to sets of formulae: given a set, Φ, of
formulae, K, x, i |= Φ iff K, x, i |= ϕ, for all ϕ ∈ Φ.

I Definition 5 (Satisfiable Set of Formulae). Given a set of formulae Φ, the set of its models,
Mod(Φ), is formed by all triples (K, x, i) such that K, x, i |= Φ. Then Φ is satisfiable (Sat(Φ))
if Mod(Φ) 6= ∅, otherwise Φ is unsatisfiable (UnSat(Φ)).

The sets Φ and Ψ are equi-satisfiable if the following holds: Φ is satisfiable iff Ψ is satisfiable.
If Mod(Φ) = Mod(Ψ) then Φ and Ψ are equivalent denoted Φ ≡ Ψ.

I Definition 6 (Validity). ECTL# formula σ is valid iff σ ≡ T.

For a set of state formulae Σ, we sometimes write K |= Σ instead of K, x, 0 |= Σ. For any
K, any x ∈ fullpaths(K) and any natural number i, the notation K �x(i) denotes a Kripke
structure with the set of states of K restricted to those that are R-reachable from x(i).
CTL?, hence its sublogic ECTL# [14], has the small model property. Thus, we can consider
cyclic ECTL#-structures with fullpaths cyclic. Relevant concepts are defined below.

I Definition 7 (Cyclic Sequence, Cyclic Path). A finite sequence of states z = s0, s1, . . . , sj is
cyclic iff there exists si, 0 ≤ i ≤ j such that (sj , si) ∈ R. The sequence si, . . . , sj is a loop
with a cycling element si. A path over z called cyclic is an infinite sequence where the loop
si, si+1, . . . , sj is repeated infinitely: path(z) = s0, s1, . . . , si−1〈si, si+1, . . . , sj〉ω.

Cyclic paths do not have states after the “period”, they are also called ultimately periodic.

I Definition 8 (Cyclic Kripke structure). A Kripke structure K is cyclic if every fullpath of
K is a path over a cyclic sequence of states.

For ECTL#, we identify the following difficult cases of the nesting and Boolean combinations
of temporal operators in the scope of path quantifiers: A-disjunctive formula – disjunctions of
temporal operators in the scope of A and E-conjunctive formula – conjunctions of temporal
operators in the scope of E. For convenience, we will, respectively, write A(π1, . . . , πn) and
E(π1, . . . , πn), where n ≥ 1, and “,” in the scope of A means ∨ and while in the scope of E it
means ∧. Examples given in Table 2 will be used to illustrate tableau, in Figure 2. Note that
any A-formula (E-formula) σ can be transformed into an equivalent boolean combination
of A-disjunctive formulae A(π1, . . . , πn) (E-conjunctive formulae E(π1, . . . , πn)), such that
every πi (1 ≤ i ≤ n) is of one of the following: ◦σ, σ U (σ ∧ ♦σ), σ U �σ, �(σ ∨ �σ), and
�(σ U σ), and σ stands for a state formula. For example, the formula A(((◦q)∧ (�E◦r))∨◦p)
is equivalent to A(◦q,◦p)∧A(�E◦r,◦p); and E(((◦A◦r)∨ (q U �E¬p))∧◦q)} is equivalent to
E(◦A◦r)∨E(q U �E¬p,◦q). In what follows, Q abbreviates either of the path quantifiers. For
a set of path formulae Π = {π1, . . . , πn}, we write QΠ to denote the formula Q(π1, . . . , πn),
and Q◦Π denotes Q(◦π1, . . . ,◦πn). An empty set of formulae Φ means T when Φ occurs in a
conjunctive expression, while an empty Φ means F in a disjunctive expression. In particular,
for empty Π, AΠ = F and EΠ = T. We write Σ, σ to represent the set Σ ∪ {σ}.

TIME 2018

5:6 Extending Fairness Expressibility of ECTL+

We assume that each σ ∈ FProp is in its “negation normal form” called nnf(σ). The set of
ECTL#-formulae is obviously closed under nnf: for any ϕ ∈ FProp, nnf(¬ϕ) ∈ FProp. Also, the
negation of a state (path) formula is a state (path) formula. For example, nnf(¬A(pU �q)) =
E((�♦¬q) ∨ (♦(¬p ∧ ♦¬q))). For simplicity, we will write ¬ϕ instead of nnf(¬ϕ), and for a
finite set ∆ = {ϕ1, . . . , ϕn}, ¬∆ denotes the negation normal form of ¬

∧n
i=1 ϕi.

3 The Tableau Method

3.1 Preliminaries
To make the subsequent sections more transparent we informally overview here the construc-
tion of the tableau. Recall that the initial set in a tableau is exclusively formed by state
formulae (i.e. boolean combinations of literals and formulae of the form QΠ).

I Definition 9 (Tableau, Consistent Node, Closed branch). A tableau for a set of state formulae
Σ is a labelled tree T , where nodes are τ -labeled with sets of state formulae, such that the
following two conditions hold:
(a) The root is labelled by the set Σ.
(b) Any other node m is labelled with sets of state formulae as the result of the application

of one of the rules in Table 3, Table 4, Figure 1 and Table 5 to its parent node n. Given
the applied rule is R, we term m an R-successor of n.

A node n of T is consistent, abbreviated as n>, if τ(n) is a consistent set of formulae (see
Def. 2), else n is inconsistent, abbreviated as n⊥. If for a branch b of T , there exists n⊥ ∈ b,
then b is closed else b open.

A node of the tableau is labelled by a set of state formulae. To extend a node we apply
one of the following three rules: α, β or β+ rules. The first two types of rules are standard
to the tableau, and are essentially based on the fixpoint characterisation of Q� and QU
modalities, while β+ rules are characteristic (and crucial!) for our construction. They
tackle difficult cases of formulae in ECTL#, and are related to our dedicated account of
the eventualities. Namely, we treat an eventuality as occurring in some context, which,
in turn, is a collection of all state formulae (we will call this an outer context) or path
formulae (we will call this an inner context). Subsequently, β+ rules use the context to force
eventualities to be fulfilled as soon as possible. α − β − β+ rules are applied to expand a
node, generating its children labelled by the sets of state formulae. They apply repeatedly
unless they produce an inconsistent node n⊥, or we reach a node with the labels that already
occurred within the path under consideration. In the former case the expansion of the
given branch terminates with n⊥ as a leaf. In the latter case, a repetitive node in a branch
suggests that the formula under consideration is satisfied forever, so we change to select
another eventuality (if any). Obviously, n⊥ has an unsatifiable τ(n) and is a “deadlock” in
the construction of a model. However, open branches do not necessarily give us a model.
In particular, an open branch could be a prefix of a closed one. Later we introduce the
notion of an expanded branch that enables the model construction. Once no more expansion
rules are applicable to the given branch with the last node n>, the α − β rules ensure
that τ(n) = Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm where Σ is a set of literals. As τ(n) only
contains literals or formulae with the outer Q◦, this labelling is similar to a “pre-state” in the
standard temporal tableau. Then the “next-state” rule applies to generate successors with
the labels that are arguments of all A◦ modalities and the whole cycle of applying α−β−β+

and “next-state” rules is repeated until the tableau construction terminates. The nature of
our rules ensures that the terminated tableau represents a model for the tableau input if

A. Bolotov, M. Hermo, and P. Lucio 5:7

Table 3 Alpha Rules. (σi, σj are state formulae, Π is a (possibly empty) set of path formulae.)

α Sα

(∧) σ1 ∧ σ2 {σ1, σ2}

(Eσ) E(σ1, . . . , σn,Π) {σ1, . . . , σn,EΠ}

(E�U) E(�(σ1 U σ2),Π) {E(σ1 U σ2,◦�(σ1 U σ2),Π)}

(A�U) A(�(σ1 U σ2),Π) {A(σ1 U σ2,Π),A(◦�(σ1 U σ2),Π)}

Table 4 Beta Rules. (σ, σi are state formulae, Σ is a (possibly empty) set of state formulae, πi
is a path formula, Π is a (possibly empty) set of path formulae.)

β_Rule β k Sβi(1 ≤ i ≤ k)

(∨) σ1 ∨ σ2 2
Sβ1 = {σ1}
Sβ2 = {σ2}

(Aσ) A(σ1, . . . , σn,Π) n+ 1

Sβ1 = {σ1}
...
Sβn = {σn}
Sβn+1 = {AΠ}

(E�σ) E(�(σ1 ∨ �σ2),Π) 2
Sβ1 = {σ1,E(◦�(σ1 ∨ �σ2),Π)}
Sβ2 = {¬σ1, σ2,E(◦�σ2,Π)}

(EU σ) E(σ1 U (σ2 ∧ ♦σ3),Π) 2
Sβ1 = {σ2,E(♦σ3,Π}
Sβ2 = {σ1,E(◦(σ1 U (σ2 ∧ ♦σ3)),Π)}

(EU �) E(σ1 U �σ2,Π) 2
Sβ1 = {E(�σ2,Π)}
Sβ2 = {σ1,E(◦(σ1 U �σ2),Π)}

(A�σ) A(�(σ1 ∨ �σ2),Π) 3
Sβ1 = {σ1,A(◦�(σ1 ∨ �σ2),Π)}
Sβ2 = {¬σ1, σ2,A(◦�σ2,Π)}
Sβ3 = {AΠ}

(AU σ) A(σ1 U (σ2 ∧ ♦σ3),Π) 3
Sβ1 = {σ2,A(♦σ3,Π)}
Sβ2 = {σ1,A(◦(σ1 U (σ2 ∧ ♦σ3)),Π)}
Sβ3 = {AΠ}

(AU �) A(σ1 U �σ2,Π) 2
Sβ1 = {A(�σ2,Π)}
Sβ2 = {σ1, σ2,A(◦(σ1 U �σ2),Π)}

all the leaves in a collection of branches, called a bunch, are consistent and all eventualities
occurring in looping branches are fulfilled, otherwise, the tableau input is unsatisfiable. In
addition to the tableau rules introduced in the rest of this Section, we also use simplifications
rules that are given in the Appendix (Def. 42).

TIME 2018

5:8 Extending Fairness Expressibility of ECTL+

(Q◦) Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm,

AΦ1, . . . ,AΦn,EΨ1 & . . . & AΦ1, . . . ,AΦn,EΨm

Figure 1 Next-State Rule. (Set of literals Σ is possibly empty, Φi,Ψi 6= ∅ are sets of formulae.)

3.2 Alpha and Beta Rules
The α- and β-rules are the most elementary rules. An application of an α-rule enlarges a
branch with a node labelled by Σ, α, by a successor node labelled by Σ, Sα, where Sα is the
set of formulae associated to α in Table 3. An α-rule has the following representation Σ, α

Σ, Sα .

β-rules have the following representation Σ, β
Σ, Sβ1 | · · · | Σ, Sβk

. An application of a β-rule
splits a branch containing a node with a set Σ, β, where β is one of the formulae of Table 4,
in k new nodes each labelled by the corresponding Σ, Sβi

, see Table 4.

3.3 The Next-State Rule
The next-state rule (Q◦) in Figure 1 is the only rule that splits branches in a conjunctive
way: it produces m branches rooted by a node n labelled by a set AΦ1, . . . ,AΦn,EΨi, for
i ∈ {1, . . . ,m}. The generation of AND-successors of node n is represented by “&”. If both n
and m are zero, then the rule yields a unique new node labelled by the empty set. We assume
that whenever m is zero and n > 0, there is a unique descendant labelled by AΦ1, . . . ,AΦn.

I Example 10. Let n be a node such that τ(n) = {a,¬b,A◦c,E◦p,E◦¬p,A◦�((E◦p) ∧
(E◦¬p))}. Then only the next-state rule (Q◦) can be applied to n generating the following
AND-successors of n: {Ac, p,A�((E◦p) ∧ (E◦¬p))} and {Ac,¬p,A�((E◦p) ∧ (E◦¬p))}. Note
that the formula Ac requires the application of the β-rule (Aσ) to be reduced to c.

3.4 The Uniform Tableau
Here we present tableau with specific labels for leaves – Uniform sets of state formulae.

I Definition 11 (Elementary Set of State Formulae). A set of state formulae is elementary if
and only if it is exclusively formed by literals and formulae of the form Q◦Π.

Repeatedly applying α-β-rules to consistent leafs, we get leaves labelled by elementary sets.

I Proposition 12. Any set of state formulae has a tableau T such that all its leaves are
labelled by elementary sets of state formulae.

IDefinition 13 (Basic Path/State Formula, Uniform Set of Formulae). Path formulae σ1 U (σ2∧
♦σ3), σ1 U (�σ2), �(σ1 ∨ �σ2), �(σ1 U σ2) are basic. If Π is a set of basic path formulae
then QΠ is basic. A set of state formulae Σ is uniform set (US) iff Σ is only formed by
literals and basic state formulae, and Σ contains at most one E-conjunctive formula.

I Proposition 14. Any set of state formulae Σ has a tableau T s.t. all leaves are labelled by
US of state formulae; all open branches contain exactly one application of (Q◦).

I Definition 15 (Uniform Tableaux). For any set Σ of state formulae, the tableau for Σ
provided by Proposition 14 is denoted Uniform_Tableau(Σ).

A. Bolotov, M. Hermo, and P. Lucio 5:9

Figure 2 A tableau for A(◦q,�r),E(◦r, q U �¬p); its leaves are elementary.

Table 5 Beta-Plus Rules. (Notation: σ, σi stand for state formulae, Σ is a (possibly empty)
set of state formulae, Π is a (possibly empty) set of basic-path formulae.)

β+-Rule Σ, β k S+
Σ,βi

(1 ≤ i ≤ k)

(EU σ)+ Σ,E(σ1 U (σ2 ∧ ♦σ3),Π) 2
S+

Σ,β1
= {σ2,E(♦σ3,Π)}

S+
Σ,β2

= {σ1,E(◦((σ1 ∧ ¬Σ)U (σ2 ∧ ♦σ3)),Π)}

(EU �)+ Σ,E(σ1 U �σ2,Π) 2
S+

Σ,β1
= {E(�σ2,Π)}

S+
Σ,β2

= {σ1,E(◦((σ1 ∧ ¬Σ)U �σ2),Π)}

(AU σ)+ Σ,A(σ1 U (σ2 ∧ ♦σ3),Π) 3
S+

Σ,β1
= {σ2,A(♦σ3,Π)}

S+
Σ,β2

= {σ1,A(◦((σ1 ∧ (¬Σ ∨ ϕΠ))U (σ2 ∧ ♦σ3)),Π)}
S+

Σ,β3
= {AΠ}

(AU �)+ Σ,A(σ1 U �σ2,Π) 2
S+

Σ,β1
= {A(�σ2,Π)}

S+
Σ,β2

= {σ1, σ2,A(◦((σ1 ∧ ¬Σ ∨ ϕΠ ∨ σ2))U �σ2),Π)}

I Example 16. We construct a uniform tableau for the set {A(◦q,�r),E(◦r, q U �¬p),E◦q)}.
The first step gives the tableau in Figure 2. Subsequently, we enlarge each of the four
branches by applying the rule (Q◦), obtaining the following eight leaves (left to right):

1. A(q,�r),E(r,�¬p) 2. A(q,�r),Eq 3. Aq,E(r,�¬p) 4. Aq,Eq

5. A(q,�r),E(r, q U �¬p) 6. A(q,�r),Eq 7. Aq,E(r, q U �¬p) 8. Aq,Eq
Then by rules (Aσ) and (Eσ): the first branch is split into q, r,E�¬p and A�r, r,E�¬p; the
second into q and A�r, q; the third yields only a child q, r,E�¬p; the fourth and the eighth
yield only q; the fifth is split into two nodes q, r,E(q U �¬p) and A�r, r,E(q U �¬p); the sixth
into q and A�r, q; and the seventh yields the unique child q, r,E(q U �¬p).

3.5 The Beta-plus Rules
We extend tableau rules with so called β+-rules (Table 5), that, similarly to β-rules, split a
branch into two or three branches. They apply to a set Σ, β, where β has the form Q(π,Π)
and Π is a set of basic-path formulae and π is an U -formula. The β+ rules are the only rules
that make use of the so-called context for forcing the eventualities to be satisfied as soon
as possible. The context is given by the sets Σ containing state formulae and Π containing
path formulae. We name Σ the outer context and Π the inner context. The outer context
is used by all the β+rules. The inner context is only needed to deal with formulae AΠ.
Note that each β+-rule, when applied to a formula of the form Q(σ1 U ϕ,Π) –where ϕ could

TIME 2018

5:10 Extending Fairness Expressibility of ECTL+

be σ2 ∧ ♦σ3 or �σ2– generates one or more successors that contain a formula of the form
Q(◦((σ1 ∧ σ)U ϕ),Π) where σ depends on both the inner and the outer context, and is
defined based on whether Q is E or A. We call (σ1 ∧ σ)U ϕ the next-step variant of σ U ϕ.

I Definition 17 (Formula ϕΠ for β+-rules). Let Π be a set of basic path formulae. We define
the formula ϕΠ to be the following disjunction of state formulae:7∨

�(σ1∨�σ2)∈Π

(σ1 ∨ σ2) ∨
∨

σ1 U �σ2∈Π
σ2 ∨

∨
�(σ1 U σ2)∈Π

E(♦σ2).

The proof of Proposition 29 and the role that this proposition plays in the proof of Lemma
30 point out some hints about the relation of the formula ϕΠ (in Definition 17) with a limit
path, which is a model for the formula E(¬π1, . . . ,¬πn), but is not a model for A(π1, . . . , πn).
The following example aims to provide some intuition on the role of ϕΠ from the constructive
view, i.e when we construct a tableau for a formula A(π1, . . . , πn).

I Example 18. Consider the application of (AU σ)+ rule to the formula A(aU b,Π), where
Π = {�c, r U �s,�(pU q)} and a, b, c, p, q, r, s ∈ Prop. The outer context, Σ, is empty and
the inner context is Π. Then ¬Σ = F and ϕΠ = c∨ s∨ E♦q. Hence, the second child, namely
S+
β2
, raised by the application of (AU σ)+ is labelled by {a,A(◦((a ∧ (c ∨ s ∨ E♦q))U b),Π)}.

Then applying the rules (A�σ) to �c, (AU �) to r U �s, and (A�U) (followed by (AU σ)) to
�(pU q) we get, in one of the branches, a node n labelled by the set:

{a, c, r, s, p,A(◦((a ∧ (c ∨ s ∨ E♦q))U b),◦�c,◦(r U �s),◦�(pU q))} (1)

Then, by rule (Q◦), τ(n1) = {A((a∧ (c∨ s∨ E♦q))U b,�c, r U �s,�(pU q))}, where n1 is the
unique child of n. Now, repeating the previous steps, we get a node m labelled by

{a ∧ (c ∨ s ∨ E♦q), c, r, s, p,A(◦((a ∧ (c ∨ s ∨ E♦q))U b),◦�c,◦(r U �s),◦�(pU q))}

Using the rules (∧) and (∨), we get three children of m. Two of them are labelled by the
set (1). Hence, by rule (Q◦), we get a cycle to node n1. It is worth noting that this branch
represents a model where the initial A-disjunctive formula A(aU b,�c, r U �s,�(pU q)) is
satisfied because both �c and r U �s are satisfied. The third node is labelled by

{a,E♦q, c, r, s, p,A(◦((a ∧ (c ∨ s ∨ E♦q))U b),◦�c,◦(r U �s),◦�(pU q))}

Therefore, one of its children, due to the rule (EU σ), is labelled by

{a, q, c, r, s, p,A(◦((a ∧ (c ∨ s ∨ E♦q))U b),◦�c,◦(r U �s),◦�(pU q))}

and after applying (Q◦) we get a node labelled as n1 is, obtaining a cycle. This cycling branch
represents a model for the initial A-disjunctive formula A(aU b,�c, r U �s,�(pU q)) because
�(pU q) is satisfied. Here, for simplicity, we consider an empty outer context. However, note
that ¬Σ is also a disjunction of state formulae. For non-empty Σ, the application of the rule
(∨) would generate a child for each disjunct in ¬Σ. Each of these children represents a trial
to satisfy the formula aU b (in the initial A-disjunctive formula) as soon as possible.

7 If the disjunction is empty, then ϕΠ = F.

A. Bolotov, M. Hermo, and P. Lucio 5:11

Algorithm 1 Systematic Tableau Construction.
1: procedure systematic_Tableau(Σ0) . where Σ0: set of state formulae
2: if Σ0 is not uniform then T := Uniform_Tableau(Σ0)
3: while T has at least one non-terminal leaf do
4: . Invariant: Any non-terminal leaf of T is labelled by a US
5: Choose any leaf ` in T such that τ(`) is not terminal
6: Let Σ = τ(`) . Σ is uniform
7: if there are not eventualities in ` then T := T [`←Uniform_Tableau(Σ)]
8: else
9: Eventuality_Selection(Σ)
10: Apply_β+-rule(Σ)
11: Let k ∈ {2, 3} the number of new leaves
12: Let `1, . . . , `k be the new leaves and let Σ1, . . . ,Σk be their respective labels
13: for i = 1 .. k do
14: if `i is non-terminal and Σi is not uniform then
15: T := T [`i ←Uniform_Tableau(Σi)]
16: return T

4 Systematic Tableau Construction

Here we define an algorithm, Asys, that constructs a systematic tableau and illustrate its
performance. Recall that due to the rule (Q◦), any open tableau should have a collection
of open branches including all the (Q◦)-successors of any node labelled by an elementary
set of formulae. These collections of branches are called bunches. Any open bunch of the
systematic tableau, constructed by Asys, gives us of a model for the initial set of formulae.
Asys constructs an expanded tableau (see Definition 34) for the given input. Asys applied to
the input Σ0, denoted as Asys(Σ0), returns a systematic tableau AsysΣ0

. Intuitively, expanded
means “complete” in the sense that any possible rule has been already applied at every node.
Though the best way to implement this algorithm is a depth-first construction, for the sake
of clarity we prefer to formulate it as a breadth-first construction of a collection of subtrees.
The procedure Uniform_Tableau in Algorithm 1 was introduced in Definition 15 along with
the notion of a US of state formulae. The notation T1[` ← T2] stands for the tableau T1
where the leaf ` is substituted by the tableau T2. In particular, T [`←Uniform_Tableau(Σ)]
is the tableau T where the leaf ` is substituted by the Uniform_Tableau(Σ).

To introduce the procedures Eventuality_Selection and Apply_β+-rule and related concepts
of terminal node and eventuality-covered branch, let πU denote a basic path formula that
contains the operator U , i.e. πU is either σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2 or �(σ1 U σ2). We
call these formulae eventualities. Consequently, the notation Q(πU ,Π) stands for a formula
that contains at least one eventuality.

Eventuality_Selection selects a state formula Q(πU ,Π) (if there is one) and marks the
eventuality πU while Apply_β+-rule(Σ) applies the corresponding rule (or pair of rules)
depending on the selected eventuality:

If πU = σ1 U (σ2 ∧ ♦σ3) is the marked eventuality, then apply (QU σ)+

If πU = σ1 U �σ2 is the marked eventuality, then apply the respective rule (QU �)+

If πU = �(σ1 U σ2) is the marked eventuality, then apply first the rule (Q�U) and then
the rule (QU σ)+ with the selected eventuality σ1 U σ2.

Each application of a β+-rule introduces a next-step variant of the marked eventuality.

TIME 2018

5:12 Extending Fairness Expressibility of ECTL+

The call Eventuality_Selection(Σ) keeps the selection of QΠ ∈ Σ which contains a next-step
variant of the previously marked eventuality, whenever the leaf `, (Σ = τ(`)) is not a loop-
node. If ` is a loop-node, then a new selection should be made, if possible. If the branch is
already eventuality-covered and ` is a loop-node, ` is the leaf of an expanded open branch (see
Definition 34). When making the selection, priorities are guided by Definition 19 - the idea
is that the tableau branches represent paths in possible models. Since any path in a model is
cyclic, it has a possibly empty initial sequence of states followed by a looping-sequence. The
highest priority formulae are those that cannot produce a loop. The formulae that are not of
highest priority can be potentially-cycling formulae or cycling. Once all the highest priority
formulae have been selected, we only have cycling and potentially-cycling formulae. Now the
objective is to have a sequence of loop-nodes.

I Definition 19 (Priorities for Eventuality Selection). The formulae of the highest priority for
Eventuality_Selection are the formulae of the form:

AΠ where Π is exclusively formed by formulae of the form σ1 U (σ2 ∧ ♦σ3), and
EΠ where Π contains at least one eventuality. Eventualities of the form σ1 U (σ2 ∧ ♦σ3)
and σ1 U �σ2 have also the maximal priority to be marked in the selected EΠ.

I Definition 20 (Cycling Formula). A formula is cycling if it is of the form QΠ where Π only
contains formulae of the form: �(σ1 ∨ �σ2) and �(σ1 U σ2).

For any E-conjunctive formula σ, σ is not highest priority if and only if σ is a cycling
formula. For A-disjunctive formulae it is different - we also have potentially-cycling formulae.

I Definition 21 (Potentially-Cycling Formula). A formula is potentially-cycling if it is of the
form AΠ where Π contains at least one formula of the form σ1 U (σ2 ∧♦σ3) or σ1 U �σ2 and
also contains at least one formula of the form �(σ1 ∨ σ2) or �(σ1 U σ2).

I Definition 22 (Loop-node). Given b is a branch of T and ni ∈ b (0 ≤ i), ni is a loop-node
if there exists nj ∈ b (0 ≤ j < i) and τ(ni) = τ(nj); nj is called a companion node of ni.

I Definition 23 (Eventuality-covered Branch). A branch b = n0, n1, ..., ni of T is eventuality-
covered if ni is a loop-node, with a companion node nj (0 ≤ j < i), both labelled by a US
Σ = Q1Π1, . . . ,QmΠm such that for each h ∈ {1, . . . ,m}:

If Qh = E, then every eventuality in Πh has been marked in some node nk for some k
such that j ≤ k < i.
If Qh = A and AΠh contains at least one eventuality, then AΠh has been selected once in
some node nk such that j ≤ k < i and one of the eventualities in Πh has been marked.

The procedure Eventuality_Selection performs in some fair way that ensures that any
open branch will ever be eventuality-covered.

I Definition 24 (Terminal Node). A node n is terminal, if τ(n) = Σ⊥ or n is a loop-node of
the branch b and b is eventuality-covered. Otherwise, we say that n is non-terminal.

Consequently, a non-terminal node is either a node that is not a loop-node or a loop-node
whose branch is not eventuality-covered. A potentially-cycling formula could be selected
more than once in a branch because the loop-node could change along the branch. In fact,
the loop-node decreases in a well-founded order. The following example illustrates this issue.

I Example 25. Let σ1 = A(TU (¬c),�a), σ2 = A(aU �b), and σ3 = A�c, where a, b, c ∈ Prop.
Let Σ0 = {σ1, σ2, σ3} be the initial set of state formulae. Let σ1 be selected and TU (¬c)
is the first marked eventuality. Then, (AU σ)+ is applied to σ1. Now in the node that

A. Bolotov, M. Hermo, and P. Lucio 5:13

Figure 3 A closed tableau for A(TU p),E�¬p. Marked eventualities are in black boxes, big circles
represent AND-nodes or bunches. Whenever a bunch has a unique successor, we omit the big circle
in the edge before the (Q◦)-successor.

contains the next-step variant of σ1, (A�σ) is applied to the next-step variant of σ1; (AU �)
is applied to σ2; and (A�σ) to σ3. Then one of the open tableau branches is labelled by the
elementary set: {a, c,A(◦(((¬σ2)∨ (¬σ3)∨a)U (¬c)),◦�a),A◦(aU �b),A◦�c}. By rule (Q◦),
we get a node n1 labelled by the US τ(n1) = {σ′1, σ2, σ3} where σ′1 is the selected formula:
A(((¬σ2)∨(¬σ3)∨a)U (¬c),�a) and the eventuality ((¬σ2)∨(¬σ3)∨a)U (¬c) is kept marked.
Hence, in one of the branches that enlarges n1, the same sequence of rules produces a loop-node
n2 such that τ(n2) = τ(n1). However, this branch is not eventuality-covered since σ2 has not
been selected yet. Then the selected formula in n2 must be σ2, and (AU �)+ is applied to σ2.
Now, one of the open branches gets a node n3 such that τ(n3) = {σ′1, σ′2, σ3} where σ′2 = A�b.
Then σ′1 is selected again. Note that the outer context of σ′1 has changed because σ2 has been
replaced by σ′2. Hence, applying (AU σ)+ to σ′1 and (A�σ) to σ′2 and σ3, the leaf of one of the
open branches is a node n4 labelled by the US τ(n4) = {σ′′1 , σ′2, σ3} where σ′′1 is the selected
formula: A((((¬σ2)∧(¬σ′2))∨(¬σ3)∨a)U (¬c),�a). Note that ((¬σ2)∧(¬σ′2))∨(¬σ3)∨a is the
conjunctive normal form of ((¬σ2)∨(¬σ3)∨a)∧((¬σ′2)∨(¬σ3)∨a). Since, σ′′1 is kept selected,
we will get a loop-node n5 such that τ(n5) = τ(n4) and now the branch is eventuality-covered.
Indeed, this branch represents the following model of Σ0: {a, c}〈{a, b, c}〉ω.

I Definition 26 (Bunch in a Tableaux, Closed Bunch and Tableaux). A bunch b is a collection
of branches that is maximal with respect to (Q◦)-successor, i.e. every (Q◦)-successor of any
node in b are also in b. A bunch is closed if and only if at least one of its branches is closed.
Otherwise it is open. A tableau is closed if and only if all its bunches are closed.

Any open tableau has at least one open bunch, formed by one or more open branches.

I Example 27. (Figure 3) In the applications of (AU σ)+ rule, the inner context is empty;
the outer context is E�¬p, its negation in nnf is A♦p. Hence, the label of the rightmost leaf,
A◦((A♦p)U p) is the simplification of the selected formula A◦(((A♦p) ∧ (A♦p))U p).

I Example 28. On the left of Figure 4 we depict a representative open bunch of a tableau for
the set of formulae: p,A�(E◦p ∧ E◦¬p),A(♦¬p,�p). We apply at once the Uniform_Tableau

TIME 2018

5:14 Extending Fairness Expressibility of ECTL+

Figure 4 Open bunch in the tableau for p,A�(E◦p ∧ E◦¬p),A(♦¬p,�p) and represented model.

procedure subsequently choosing one of the leaves produced. For each node, we draw only
one of the OR-children, but all the AND-children. In the marked eventuality, ¬p∨E♦(A◦¬p)
comes from the negation of the outer context, and the disjunct p from the inner context. By
“Simplification” ¬p ∨ E♦(A◦¬p ∨ A◦p) ∨ p is reduced to T (in the left-hand child). In the
right-hand node, ¬p subsumes A((. . .)U ¬p,�p). This open bunch represents a model (of
the input set of formulae) that we depict on the right of Figure 4.

5 Correctness: Soundness, Completeness and Termination

The soundness of our tableau method (Theorem 31) is proved on the basis that tableau rule
preserve satisfiability (Lemma 30). For the latter it is essential to prove that the satisfaction
of the negated inner context is preserved from segments of a limit path to the limit path
itself (Proposition 29). The use of the formula ϕΠ (Definition 17) is crucial for that.

I Proposition 29 (Preservation of the Negated Inner Context). Let Π be any set of basic path
formulae and let ϕΠ be as in Definition 17. Let y = x≤i11 x≤i22 · · ·x≤ikk · · · be a limit path in
fullpaths(K) (of some Kripke structure K). Then K, y |= ¬π holds for all π ∈ Π, provided
that the following two conditions hold for all n ≥ 1:
(a) K, x≤i11 x≤i22 · · ·xn, j |= ¬σ2 for all σ1 U (σ2 ∧ ♦σ3) ∈ Π and all j ∈ {0..in}, and
(b) K, x≤i11 x≤i22 · · ·x≤inn , in |= ¬ϕΠ.

I Lemma 30 (Soundness of the Tableau Rules). For any set of state formulae Σ:
(i) For any α-formula α : Sat(Σ, α) iff Sat(Σ, Sα).
(ii) For any β-formula β of range k: Sat(Σ, β) iff Sat(Σ, Sβi

) for some 1 ≤ i ≤ k.
(iii) For any β+-formula β of range k: Sat(Σ, β) iff Sat(Σ, S+

Σ,βi
) for some 1 ≤ i ≤ k.

(iv) If Σ is a set of literals: Sat(Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm) iff for all 0 ≤ i ≤ m:
Sat(AΦ1, . . . ,AΦn,EΨi).

I Theorem 31 (Soundness of the Tableau Method). Given any set of state formulae Σ, if
there exists a closed tableau for Σ then UnSat(Σ).

A. Bolotov, M. Hermo, and P. Lucio 5:15

In the rest of this section, we sketch the main stages of the proof of completeness of
the presented tableaux method. Detailed proofs can be found in the technical report at
http://www.sc.ehu.es/jiwlucap/TechReport18.pdf while relevant proofs of the most
important Propositions, Lemmas and Theorems are given in the Appendix.

I Definition 32 (Stage of a Tableaux). Given a branch, b, of a tableau T , a stage in T is
every maximal subsequence of successive nodes ni, ni+1, . . . , nj in b such that τ(nk) is a not
a (Q◦)-child of τ(nk−1), for all k such that i < k ≤ j. We denote by stages(b) the sequence
of all stages of b.

I Definition 33 (αβ+-saturated Stage). A stage s in AsysΣ is αβ+-saturated iff for all σ ∈ τ(s):
1. If σ is an α-formula then Sσ ⊆ τ(s)
2. If σ is a β-formula of range k, but is not a β+-formula, then Sβi

⊆ τ(s) for some 1 ≤ i ≤ k.
3. If σ is a β-formula and also a β+-formula of range k then either Sβi

⊆ τ(s) or S+
Σ,βi
⊆ τ(s)

for some 1 ≤ i ≤ k and Σ = τ(n) \ {σ} for some n ∈ s.

I Definition 34 (Expanded Bunch and Tableau). An open branch b is expanded if each stage
s ∈ stages(b) is αβ+-saturated and b is eventuality-covered. A bunch is expanded if all its
open branches are expanded. A tableau is expanded if all its open bunches are expanded.

I Proposition 35. (Trivial by construction) Given any set of state formulae Σ, the systematic
tableau AsysΣ is expanded.

I Definition 36 (Open Bunch Model Construction). For any expanded bunch H of AsysΣ , let
KH = (S,R,L) be a Kripke structure such that S =

⋃
b∈H stages(b), R is the relation over

stages(b) for any b ∈ H, and for any s ∈ S: L(s) = {p | p ∈ τ(n) ∩ Prop for node n ∈ s}.

I Lemma 37 (Model Existence). Let AsysΣ have an expanded bunch H and KH = (S,R,L)
be as in Definition 36. For every state s ∈ S, if σ ∈ L(s) then KH , s, 0 |= σ. Therefore, for
any expanded bunch H of AsysΣ , KH |= Σ.

I Theorem 38 (Refutational Completeness). Given any set of state formulae Σ, if UnSat(Σ)
then there exists a closed tableau for Σ.

I Theorem 39 (Termination). Given any set of state formulae Σ , the construction of the
expanded tableau AsysΣ terminates.

Finally Theorems 38 and 39 give us the desired completeness result stated in Theorem 40.

I Theorem 40 (Completeness). Given any set of state formulae Σ, if Σ is satisfiable then
there exists a (finite) open expanded tableau for Σ.

6 Conclusion

We introduced a new logic, ECTL#, in the family of BTL, which can represent a richer class
of fairness constraints with the U operator. The tree-style one pass tableau method for
ECTL# handles inputs in an “analytic” way, due to the new, crucial for branching structures,
concept of “inner context”, in which eventualities are to be fulfilled. The tableau rules that
invoke the inner context, are essential to handle A-disjunctive formulae. Our analysis of
A-disjunctive and E-conjunctive formulae and of the prioritisation of eventualities, based on
their structure and the context for their fulfillment, are important from the methodological
point of view.

TIME 2018

http://www.sc.ehu.es/jiwlucap/TechReport18.pdf

5:16 Extending Fairness Expressibility of ECTL+

Our tableau technique is not directly extensible to CTL?. Without any significant
modifications, β+-rules become unsound for inputs that are beyond ECTL# syntax due to
nested path subformulae as in A♦(◦p ∧ E◦¬p). To show the correctness of β+-rules, we
developed the technique to identify relevant state-formulae inside the specific path-modalities.
This technique will be useful in studying more expressive logics (e.g. CTL?), as it allows to
identify those subformulae that do not affect the “context”, thus enabling the simplification
of the structures.

The size of the systematic tableau for the input of size m is bounded by 22O(m2) (see tech-
nical report http://www.sc.ehu.es/jiwlucap/TechReport18.pdf). However, the method
aims at the “shortest” way to fulfil the eventualities and, for many examples, finds the
first open bunch, giving us a model for the tableau input. This significantly reduces the
complexity. Finally, the presented technique is amenable for implementation – and this will
be another stream of our future work. In the refinement and implementation of the algorithm
we will be able to rely on similar techniques used in the implementation of its linear-time
analogue.

References

1 Therese Berg and Harald Raffelt. Model checking. In Manfred Broy, Bengt Jonsson, Joost-
Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors, Model-Based Testing of
Reactive Systems, pages 557–603. Springer-Verlag, Berlin Heidelberg, 2005. doi:10.1007/
b137241.

2 Kai Brünnler and Martin Lange. Cut-free sequent systems for temporal logic. Journal
of Logic and Algebraic Programming, 76(2):216–225, 2008. doi:10.1016/j.jlap.2008.02.
004.

3 Edmund M. Clarke, E. Allen Emerson, and Aravinda P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst., 8(2):244–263, 1986. doi:10.1145/5397.5399.

4 E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science (Vol. B), pages 995–1072. MIT Press, Cambridge, USA, 1990.
URL: http://dl.acm.org/citation.cfm?id=114891.114907.

5 E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. Journal of Computer and System Sciences, 30(1):1–24,
1985. doi:10.1016/0022-0000(85)90001-7.

6 E. Allen Emerson and Joseph Y. Halpern. Sometimes and not never revisited: On branching
versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/4904.4999.

7 E. Allen Emerson and Chin-Laung Lei. Temporal reasoning under generalized fairness
constraints. In Monien B. and Vidal-Naquet G., editors, STACS 1986, Lecture Notes
in Computer Science, vol 210, pages 21–37. Springer-Verlag Berlin Heidelberg, Karlsruhe,
Federal Republic of Germany, 1986. doi:10.1007/3-540-16078-7_62.

8 Jose Gaintzarain, Montserrat Hermo, Paqui Lucio, Marisa Navarro, and Fernando Orejas.
Dual systems of tableaux and sequents for PLTL. Journal of Logic and Algebraic Program-
ming, 78(8):701–722, 2009. doi:10.1016/j.jlap.2009.05.001.

9 Rajeev Gore. Tableau methods for modal and temporal logics. In Marcello D’Agostino,
Dov M. Dov Gabbay, Reiner Hähnle, and Joachim Posegga, editors, Handbook of
Tableau Methods, pages 297–396. Springer, Netherlands, Dordrecht, 1999. doi:10.1007/
978-94-017-1754-0_6.

10 Bernhard Josko. Model checking of ctl formulae under liveness assumptions. In Thomas
Ottmann, editor, Automata, Languages and Programming, 14th International Colloquium,

http://www.sc.ehu.es/jiwlucap/TechReport18.pdf
http://dx.doi.org/10.1007/b137241
http://dx.doi.org/10.1007/b137241
http://dx.doi.org/10.1016/j.jlap.2008.02.004
http://dx.doi.org/10.1016/j.jlap.2008.02.004
http://dx.doi.org/10.1145/5397.5399
http://dl.acm.org/citation.cfm?id=114891.114907
http://dx.doi.org/10.1016/0022-0000(85)90001-7
http://dx.doi.org/10.1145/4904.4999
http://dx.doi.org/10.1007/3-540-16078-7_62
http://dx.doi.org/10.1016/j.jlap.2009.05.001
http://dx.doi.org/10.1007/978-94-017-1754-0_6
http://dx.doi.org/10.1007/978-94-017-1754-0_6

A. Bolotov, M. Hermo, and P. Lucio 5:17

pages 5–24. Springer-Verlag Berlin Heidelberg, Karlsruhe, Federal Republic of Germany,
1987. doi:10.1007/3-540-18088-5.

11 Jan Kretinsky and Ruslan Ledesma Garza. Rabinizer 2: Small deterministic automata
for LTL\GU. In Automated Technology for Verification and Analysis - 11th International
Symposium, ATVA 2013, pages 446–450, Heidelberg Dordrecht London New York, 2013.
Springer. doi:10.1007/978-3-319-02444-8_32.

12 Nicolas Markey. Temporal logics. Course notes, Master Parisien de Recherche en Inform-
atique, Paris, France, 2013. URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/
NM-coursTL13.pdf.

13 Mark Reynolds. A tableau for CTL?. In Ana Cavalcanti and Dennis Dams, editors, FM
2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands, November
2-6, 2009. Proceedings, volume 5850 of Lecture Notes in Computer Science, pages 403–418.
Springer, 2009. doi:10.1007/978-3-642-05089-3_26.

14 Robert S. Streett and E. Allen Emerson. The propositional mu-calculus is elementary. In
Jan Paredaens, editor, Automata, Languages and Programming, 11th Colloquium, Antwerp,
Belgium, July 16-20, 1984, Proceedings, volume 172 of Lecture Notes in Computer Science,
pages 465–472. Springer, 1984. doi:10.1007/3-540-13345-3_43.

15 Jun Sun, Yang Liu, Jin Song Dong, and Hai H. Wang. Specifying and verifying event-
based fairness enhanced systems. In Shaoying Liu, Tom Maibaum, and Keijiro Araki,
editors, Formal Methods and Software Engineering: 10th International Conference on
Formal Engineering Methods ICFEM 2008, pages 5–24. Springer Science and Business
Media, Kitakyushu-City, Japan, 2008. doi:10.1007/978-3-540-88194-0.

A Appendix

Proof of Proposition 14. Use Proposition 12 to construct a tableau with all its leaves
labelled by elementary sets of formulae. Then apply the rule (Q◦) to any leaf. Finally, apply
(to every leaf) the rules (Eσ), (Aσ), (∧), and (∨), as long as they are applicable. J

Proof of Proposition 29 (Preservation of the Negated Inner Context). We check the four
cases of a basic path formula π ∈ Π. If π is of the form σ1 U (σ2 ∧ ♦σ3), then property (a)
ensures that every state in y satisfies ¬σ2. Therefore, ¬(σ1 U (σ2 ∧ ♦σ3)) is satisfied in the
limit path y. The remaining three cases are proved on the basis of (b) and Definition 17:
If π = �(σ1 ∨ �σ2), then K, x≤i11 x≤i22 · · ·x≤inn , in |= ¬σ1 ∧ ¬σ2 for all n. Therefore, it holds
that K, y |= ¬�(σ1 ∨ �σ2).
If π = �(σ1 U σ2), then K, x≤i11 x≤i22 · · ·x≤inn , in |= ¬E(♦σ2) for all n. Hence, K, y |=
¬�(σ1 U σ2).
If π = σ1 U �σ2, thenK, x≤i11 x≤i22 · · ·x≤inn , in |= ¬σ2 for all n. Hence, K, y |= ¬(σ1 U �σ2). J

Proof of Lemma 30 (Soundness of Tableau Rules). Noting that (i), (i) and (iv) can be
easily proved by the “systematic” application of the semantic definitions of temporal operators,
we prove (iii). The “only if” direction“ for each of the cases of β+-rules is trivial.
For the “if” direction of rule (EU σ)+, let us suppose that K |= Σ,E(σ1 U (σ2 ∧ ♦σ3),Π).
There exists x ∈ fullpaths(K) such that K, x, 0 |= Σ,Π, σ1 U (σ2∧♦σ3). We are going to prove
that there exists K′ such that one of the following two properties holds:
(a) K′ |= Σ, σ2,E(♦σ3,Π)
(b) K′ |= Σ, σ1,E(◦((σ ∧ ¬Σ)U σ2),Π).
If K, x, 0 |= σ2 ∧ ♦σ3, then (a) is trivially satisfied for K′ = K. Otherwise, for some i > 0,
it holds that K, x, i |= σ2 ∧ ♦σ3 and for all j < i: K, x, j |= σ1. Let j be the least number
greater than 0 such that K, x, j |= σ2∧♦σ3. Consider k to be the greatest index in {0, . . . , j}
such that K, x, k |= Σ,Π. If k = j, then (a) is satisfied for K′ = K �x(k). Otherwise, if k < j

TIME 2018

http://dx.doi.org/10.1007/3-540-18088-5
http://dx.doi.org/10.1007/978-3-319-02444-8_32
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/NM-coursTL13.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/NM-coursTL13.pdf
http://dx.doi.org/10.1007/978-3-642-05089-3_26
http://dx.doi.org/10.1007/3-540-13345-3_43
http://dx.doi.org/10.1007/978-3-540-88194-0

5:18 Extending Fairness Expressibility of ECTL+

then K, x, k |= Σ, σ1,◦((σ1 ∧ ¬Σ)U (σ2 ∧ ♦σ3)),Π. Hence, item (b) holds for K′ = K �x(k).
Rewriting in the above proof σ2 ∧♦σ3 by �σ2, we obtain the proof for rule (EU �)+. Indeed,
both proofs for (EU σ)+ and (EU �)+ are very similar to the context-based rule in linear-time
case of PLTL (see Lemma 5.1 in [8]).
For the “if” direction of rule (AU σ)+, let us suppose that the three sets Σ∪SΣ,β1 , Σ∪SΣ,β2 ,

and Σ∪SΣ,β3 of the rule (AU σ)+ are unsatisfiable. We will show that the set Σ,A(σ1 U (σ2∧
♦σ3),Π) must be also unsatisfiable. By the hypothesis, we know that any model of Σ is
not a model of SΣ,βi for all i ∈ {1, 2, 3}. In other words, for any K such that K |= Σ, the
followings three facts holds:
(a) K 6|= σ2 ∧ A(♦σ3,Π)
(b) K 6|= σ1 ∧ A(◦((σ1 ∧ (¬Σ ∨ ϕΠ))U (σ2 ∧ ♦σ3)),Π)
(c) K 6|= AΠ
To show that Σ,A(σ1 U (σ2∧♦σ3),Π) is unsatisfiable, we consider any K such that K |= Σ and
prove that K 6|= A(σ1 U (σ2 ∧ ♦σ3),Π). Since K |= Σ, then (a), (b) and (c) hold. According
to (b), there are two possible cases:
(Case 1): If K 6|= σ1 then, by (a), either K |= ¬σ1 ∧ ¬σ2 or K |= ¬σ1 ∧ E(�¬σ3,¬Π). In both
cases, it is easy to see that K 6|= A(σ1 U (σ2 ∧ ♦σ3),Π).
(Case 2): Otherwise, if K 6|= A(◦((σ1 ∧ (¬Σ∨ϕΠ))U (σ2 ∧♦σ3)),Π), then we have that there
exists x1 ∈ fullpaths(K) such that K, x1 |= ◦¬((σ1 ∧ (¬Σ ∨ ϕΠ))U (σ2 ∧ ♦σ3)) ∧ ¬Π. This
yields two possible cases:
(Case 2.1): If K, x1 |= ◦�(¬σ2∨�¬σ3)∧¬Π, then it is trivial that K 6|= A(σ1 U (σ2∧♦σ3),Π).
(Case 2.2): Otherwise, there should exist i1 > 0 that satisfies the following three properties:
(i) K, x1, j |= (¬σ2) ∨ �¬σ3 for all j such that 0 ≤ j ≤ i1, and
(ii) K, x1, i1 |= ¬σ1 ∨ (Σ ∧ ¬ϕΠ), and
(iii) K, x1, 0 |= ¬Π
If (i) is satisfied because K, x1, j |= �¬σ3 for some j such that 0 ≤ j ≤ i1, then trivially
K, x1, 0 6|= σ1 U (σ2 ∧ ♦σ3). This, along with the fact (iii), ensures that K 6|= A(σ1 U (σ2 ∧
♦σ3),Π). Moreover, this also applies to any other formula σ′1 U (σ′2 ∧♦σ′3) in Π. Henceforth,
in what follows, we can suppose that for all j such that 0 ≤ j ≤ i1: K, x1, j |= ¬σ2 and also
that K, x1, j |= ¬σ′2 for all σ′1 U (σ′2 ∧ ♦σ′3) ∈ Π.
If (ii) is satisfied because K, x1, i1 |= ¬σ1 then it is clear that K, x1, 0 6|= σ1 U (σ2 ∧ ♦σ3).
Therefore, by (i) and (iii), K 6|= A(σ1 U (σ2 ∧ ♦σ3),Π).
Otherwise, if (ii) is satisfied because K, x1, i1 |= Σ ∧ ¬ϕΠ, then, since K, x1, i1 |= Σ, then
again (a), (b) and (c) hold for K �x1(i1) (instead of K). Hence, reasoning for K �x1(i1) as
we do above for K, there should exist a path x2 ∈ fullpaths(K �x1(i1)) such that one of the
following two facts holds:
(Case 2.2.1): K �x1(i1), x2 |= �¬(σ2 ∧ ♦σ3) ∧ ¬Π, and therefore K 6|= A(σ1 U (σ2 ∧ ♦σ3),Π).
(Case 2.2.2): there should exist i2 > 0 such that K � x1(i1), x2, i2 |= Σ ∧ ¬ϕΠ and for all
j ∈ {0..i2}:
K �x1(i1), x2, j |= ¬σ2, and
K �x1(i1), x2, j |= ¬σ′2 for all σ′1 U (σ′2 ∧ ♦σ′3) ∈ Πj

Now, (a), (b) and (c) apply to K �x2(i2). Hence, the infinite iteration of the second case
yields a path y = x≤i11 x≤i22 · · ·x≤ikk · · · (that exists by the limit closure property) for which
the Proposition 29 ensures that K, y 6|= A(σ1 U (σ2 ∧ ♦σ3),Π).
The proof for rule (AU �)+ follows the same scheme. It is worth noting that, according to
rule (AU �)+, for all n: K, x≤i11 x≤i22 · · ·x≤inn , in+1 |= ¬ϕΠ ∧ ¬σ2 because this ensures that
the limit path y satisfies ¬�σ2. J

A. Bolotov, M. Hermo, and P. Lucio 5:19

Proof of Theorem 31 (Soundness of Tableau Method). Let TΣ be a closed tableau for Σ.
The set of formulas labelling at least one leaf in each bunch is inconsistent and therefore
unsatisfiable. Then, by Lemma 30, the root Σ is unsatisfiable. J

To prove refutational completeness and termination, we first define a partial order relation
on the set of basic state formulae. This order is the basis for inductively proving that KH is
a model of the tableau input (Lemma 37). The termination of Algorithm 1 (Theorem 39) is
based on the extension that order to the set of finite sets of basic state formulae.

I Definition 41 (Order on Basic state formulae). The order � is defined as the reflexive-
transitive closure of the smallest binary relation ≺⊂ FProp ×FProp that satisfies the following
conditions:
1. QΠ′ ≺ QΠ if Π′ ⊂ Π.
2. σ ≺ QΠ if σ is a proper state-subformula of QΠ.
3. Q((σ1 ∧ δ)U (σ2 ∧♦σ3),Π) ≺ Q(σ1 U (σ2 ∧♦σ3),Π). In particular, Q((σ1 ∧ δ)U σ2,Π) ≺

Q(σ1 U σ2,Π).
4. Q(♦σ3,Π) ≺ Q(σ1 U (σ2 ∧ ♦σ3),Π).
5. Q((σ1 ∧ δ)U �σ2,Π) ≺ Q(σ1 U �σ2,Π).
6. Q(�σ2,Π) ≺ Q(σ1 U �σ2,Π).
where Q ∈ {A,E}, Π,Π′ are sets of basic path formulae, σ, σ1, σ2 are basic state formulae,
and δ is a state formula different of the constant T.
The extension ≺∗ is the partial order relation on finite sets of basic state formulae defined by
Σ1 �∗ Σ2 if and only if for every σ1 ∈ Σ1 either σ1 ∈ Σ2 or there exists σ2 ∈ Σ2 such that
σ1 ≺ σ2. Therefore Σ1 ≺∗ Σ2 if and only Σ1 �∗ Σ2 and Σ1 6= Σ2.

Proof of Lemma 37 (Model Existence) (Sketch). Let AsysΣ have an expanded bunch H

and KH = (S,R,L) be as in Definition 36. We prove that, for every state s ∈ S, if σ ∈ L(s)
then KH , s, 0 |= σ. This proof is made by structural induction on the formula σ. That
induction requires many auxiliary properties about how ECTL#-formulae evolve along the
branches in the systematic construction of the tableau AsysΣ . These properties can be found
in the technical report http://www.sc.ehu.es/jiwlucap/TechReport18.pdf). For space
reasons, we only give here the following sketch of the proof. The base case, σ = p ∈ Prop, is
ensured by Definition 36. The bunch H ensures that, whenever a tableau node (at stage s)
is labelled by an elementary set {Σ, A◦Φ1, . . . , A◦Φn,E◦Ψ1, . . . ,E◦Ψm} ⊆ L(s) then, by
rule (Q◦), H contains one successor stage si (for each i ∈ {1, . . . ,m}) that, in turn, contains
{AΦ1, . . . ,AΦn,EΨi}. By inductive hypothesis: KH , si, 0 |= AΦ1, . . . , AΦn,EΨi, for each
i ∈ {1, . . . ,m}. Therefore, KH , s, 0 |= {Σ,A◦Φ1, . . . , A◦Φn,E◦Ψ1, . . . ,E◦Ψm}. Every branch
b ∈ H is open, so it is a cyclic branch such that path(b) = s0, s1, . . . , si−1〈si, si+1, . . . , sj〉ω.
For any sk ∈ path(b) and any formula QΠ in τ(sk), we prove that KH , sk, 0 |= QΠ, by
induction in QΠ. Formulae of the highest priority have to be selected at the stage previous to
si. Hence, the first node of stage si is a loop-node that must be labelled by a set exclusively
formed by potentially-cycling and cycling formulas (in particular, the empty set) J

Proof of Theorem 38 (Refutational Completeness). Suppose that for an input Σ there is
no closed tableau. Then the systematic tableau AsysΣ would be open and there would be at
least one expanded bunch H in AsysΣ . By Lemma 37, KH |= Σ. Consequently, Σ would be
satisfiable. J

Simplification rules are very useful to reduce the tableau construction but, more import-
antly, some simplification rules are essential for termination.

TIME 2018

http://www.sc.ehu.es/jiwlucap/TechReport18.pdf

5:20 Extending Fairness Expressibility of ECTL+

I Definition 42 (Simplification Rules). First, to stop the growth of the subformula σ in
the successive next-step variants (σ1 ∧ σ)U ϕ, we use trivial simplification rules such as
ϕ ∧ ϕ −→ ϕ and ϕ ∨ ϕ −→ ϕ, as well as classical subsumptions rules. Second, to simplify
the detection of equal node labels (for looping in tableau branches) we use the following
rules:
(@E� U) E(σ1 U σ2,�(σ1 U σ2),Π) −→ E(�(σ1 U σ2),Π).
(@A� U) If Π′ ⊆ Π then A(σ1 U σ2,Π) ∧ A(�(σ1 U σ2),Π′) −→ A(�(σ1 U σ2),Π′).
Finally, to prevent the duplications of the original eventuality σ1 U σ2 and its successive
next-step variants by rules (Q�U) and (QU σ)+, and to ensure termination, we use the
following rules:
(@Aσ U) σ2 ∧ A(σ1 U σ2,Π) −→ σ2.
(@E U σ) E((σ1 ∧ σ)U ϕ, σ1 U ϕ,Π) −→ E((σ1 ∧ σ)U ϕ,Π)
(@A U σ) If Π′ ⊆ Π then A((σ1 ∧ σ)U ϕ,Π′) ∧ A(σ1 U ϕ,Π) −→ A((σ1 ∧ σ)U ϕ,Π′).
In order to prove termination, the following Propositions 43 and 44 ensure that any open
branch of AsysΣ cannot be labelled by an infinitely �∗-decreasing succession of set of formulae
in the sense of items 3 and 5 in Definition 41. In addition, Proposition 45 shows that any
open branch of AsysΣ is eventuality-covered.

I Proposition 43. Let b be an open branch of AsysΣ , let si ∈ stages(b) and let Σ ∪ {EΠ} be
the US labelling the first node of si where EΠ has been selected and one of the eventualities
πU ∈ Π has been marked. Then there exists some k ≥ i such that:
(a) If πU = σ1 U (σ2∧♦σ3) then {σ2,E(♦σ3,Π′)} ⊆ τ(sk) for some Π′ such that E(♦σ3,Π′) ≺

EΠ.
(b) If πU = σ1 U �σ2 then E(�σ2,Π′) ∈ τ(sk) for some Π′ such that E(�σ2,Π′) ≺ EΠ.
(c) If πU = �(σ1 U σ2) then σ2 ∈ τ(sk).

Proof. Suppose that the rule (EU σ)+ (or (EU �)+) has been successively applied, keeping
the selection, between stages si and sk. In the case (c), (EU σ)+ is applied immediately after
(E�U). Then, in any of the three cases, the US labelling the first node of stage sk has the
form Σsk

,E((σ1 ∧ (¬Σsi ∧ · · · ∧ ¬Σsk−1))U ϕ,Π′) where ϕ is either (σ2 ∧ ♦σ3) or �σ2 or σ2;
each Σsj

(i ≤ j ≤ k) is the context of the selected formula at the first node of each stage sj
(in particular Σsi

= Σ); and Π′ is such that : E((σ1 ∧ (¬Σsi
∧ · · · ∧ ¬Σsk−1))U ϕ,Π′) ≺ EΠ.

Since no other β+-rule is applied between stage si and sk, each Σsj is a subset of the finite set
formed by all state formulae that are subformulae of some formula in Σsi

∪ (Π\{π}) and their
negations.8 Hence, there is a finite number of different Σsj . Therefore, after a finite number
applications of the β+-rule, the label containing the set {σ1 ∧ (¬Σsi

∧ · · · ∧ ¬Σsk−1),Σsk
}

must be inconsistent. Henceforth, the open branch b must satisfy (a) or (b) or (c), depending
on the case of πU , and according to the rules (EU σ)+ and (EU �)+. J

For A-disjunctive formulae, not only the outer context, but also the inner context plays
an important role. The proof of the next proposition is based on the use of both kinds of
context.

I Proposition 44. Let b be an open branch of AsysΣ , let si ∈ stages(b) and let Σ ∪ {AΠ} be
the US labelling the first node of si where QΠ has been selected and one of the eventualities
πU ∈ Π has been marked. Then there exists some stage sk ∈ stages(b) (for some k ≥ i) such
that one of the following two facts holds:

8 This finite set can be seen as a “local closure”.

A. Bolotov, M. Hermo, and P. Lucio 5:21

(a) if πU = σ1 U (σ2∧♦σ3) then {σ2,A(♦σ3,Π′)} ∈ τ(sk) for some Π′ such that E(♦σ3,Π′) ≺
EΠ; if π = σ1 U �σ2, then A(σ2,Π′) ∈ τ(sk) for some Π′ such that A(�σ2,Π′) ≺ AΠ;
and if πU = �(σ1 U σ2) then σ2 ∈ τ(sk), or

(b) the first node n of stage sk is a loop-node that contains {A((σ1 ∧ δ)U ϕ,Π′) for some δ,
some ϕ that depends on πU , and some Π′ such that {A((σ1 ∧ δ)U ϕ,Π′) ≺ AΠ.

Proof. Suppose that the rule (AU σ)+ (or (AU �)+) has been successively applied, keeping
the selection, between stages si and sk. Then the US labelling the first node of stage sk has
the form:

Σsk
,A((σ1 ∧ (¬Σsi ∨ ϕΠsi

) ∧ · · · ∧ (¬Σsk−1 ∨ ϕΠsk−1
))U ϕ,Πsk

)

where ϕ is σ2 ∧♦σ3 or �σ2 or σ2 (depending on the case of πU); and each Σsj and each Πsj

(i ≤ j ≤ k) are respectively the outer context and the inner context at the first node of each
stage sj . In particular, Σsi = Σ and Πsi = Π. Since no other β+-rule is applied between si
and sk, then9

each Σsj
is a subset of the finite set formed by all state formulae that are subformulae

of some formula in Σ ∪ (Π \ {πU }), their negations, and a formula E(TU σ2) for each
subformula �(σ1 U σ2) in Σ ∪ (Π \ {πU }) (see Definition 17), and
each Πsj is a subset of the finite set of all path formulae that are subformulae of some
formula in Π.

Therefore, since we simplify ϕ ∧ ϕ by ϕ and ϕ ∨ ϕ by ϕ, after a finite number β+-rule
applications (if b is not closed) some previous node label should be repeated. J

I Proposition 45. Any open branch b of AsysΣ is eventuality-covered.

Proof Sketch. This sketch is based on several properties of the systematic tableau construc-
tion which, for space reasons, can only be found in the technical report http://www.sc.ehu.
es/jiwlucap/TechReport18.pdf. Whenever we say by construction we refer to some of
these properties. Let b be any open branch of AsysΣ . By construction, there exists some stage
si ∈ stages(b) such that the label of the first node n in si is either empty or a non-empty
US Σ that consists exclusively of potentially-cycling and cycling formulae (and possibly a
set of literals). If Σ is empty or a set of literals, b is finished by a cycle consisting of two
empty labels, which is trivially eventuality-covered. Otherwise, Σ contains at most one
formula EΠ along with a set AΠ1, . . . ,AΠk,AΠ′1, . . . ,AΠ′m such that for all 1 ≤ i ≤ k: AΠi

is a potentially-cycling formula, and for all 1 ≤ i ≤ m: AΠ′i is a cycling formula. Note that
if there is one EΠ in Σ, then EΠ is a cycling formula. If k = 0 and Π′1, . . . ,Π′m,Π does not
contain any eventuality (as formula or subformula). By construction, the first-node of the
next-stage si+1 is a loop-node also labelled by Σ and b is eventuality-covered. Otherwise, one
of the formulae in Σ (the label of node n) is selected, namely σ, and one of its eventualities,
namely π, is marked. By construction, the node n should be followed (in b) by some node n′,
labelled by Σ′, such that either π is fulfilled in Σ′ or n′ is a loop-node. In both cases Σ′ ≺∗ Σ.
If Σ′ does not contain more eventualities (apart from π), b is already eventuality-covered.
Otherwise, the selection of eventualities is applied in the first state of the new stage. All
the formulae of highest-priority are “solved” firstly (if Σ′ have some), until the label is
again a set of potentially-cycling and cycling formulae. Then we change to select a formula
(if any) that has been not already selected in the branch (if it is not a loop-node) or in
the loop (if it is a loop-node). This process gives –as node labels– sequences of sets of

9 Finite sets Σsj and Πsj can be seen as “local closures”.

TIME 2018

http://www.sc.ehu.es/jiwlucap/TechReport18.pdf
http://www.sc.ehu.es/jiwlucap/TechReport18.pdf

5:22 Extending Fairness Expressibility of ECTL+

cycling and potentially-cycling formulae that are strictly decreasing with respect to �∗.
Henceforth, while b remains open, loop-nodes strictly decrease w.r.t. �∗. Since the number
k of potentially-cycling formulae is finite, after a finite number of stages, we get a minimal
loop-node labelled by some Σ′′. If Σ′′ does not contain any eventuality, the Uniform_Tableau
produces a new node labelled by Σ′′. Otherwise, any selection made on this Σ′′ leads to a
stage whose first node is also labelled by Σ′′. Hence, after selecting all the selectable formulae
in Σ′′ the branch b is eventuality-covered. J

Proof of Theorem 39 (Termination). Tableau rules produce a finite branching, hence
König’s Lemma applies. The subsumption-based simplification rules (Definition 42) do
prevent the generation of formulae containing the original eventuality when a next-step
variant of the eventuality has been generated. By Propositions 43 and 44, once one eventuality
is marked, a kind of “local closure” allows us to ensure the finiteness of the application of a
β+-rule to the selected eventuality. Finally, Proposition 45 ensures that any open branch is
eventually-covered. J

	Introduction
	Syntax and Semantics of sf{ECTL^#}
	The Tableau Method
	Preliminaries
	Alpha and Beta Rules
	The Next-State Rule
	 The Uniform Tableau
	The Beta-plus Rules

	Systematic Tableau Construction
	Correctness: Soundness, Completeness and Termination
	Conclusion
	Appendix

