
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)
Neuroscience 220 (2012) 215–227
SIGNAL DETECTION IN ANIMAL PSYCHOACOUSTICS: ANALYSIS
AND SIMULATION OF SENSORY AND DECISION-RELATED INFLUENCES
A. ALVES-PINTO, * J. SOLLINI AND C. J. SUMNER

MRC Institute of Hearing Research, Science Road, University
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Abstract—Signal detection theory (SDT) provides a frame-

work for interpreting psychophysical experiments, separat-

ing the putative internal sensory representation and the

decision process. SDT was used to analyse ferret behav-

ioural responses in a (yes–no) tone-in-noise detection task.

Instead of measuring the receiver-operating characteristic

(ROC), we tested SDT by comparing responses collected

using two common psychophysical data collection meth-

ods. These (Constant Stimuli, Limits) differ in the set of sig-

nal levels presented within and across behavioural

sessions. The results support the use of SDT as a method

of analysis: SDT sensory component was unchanged

between the two methods, even though decisions depended

on the stimuli presented within a behavioural session. Deci-

sion criterion varied trial-by-trial: a ‘yes’ response was more

likely after a correct rejection trial than a hit trial. Simulation

using an SDT model with several decision components

reproduced the experimental observations accurately, leav-

ing only �10% of the variance unaccounted for. The model

also showed that trial-by-trial dependencies were unlikely

to influence measured psychometric functions or thresh-

olds. An additional model component suggested that inat-

tention did not contribute substantially. Further analysis

showed that ferrets were changing their decision criteria,

almost optimally, to maximise the reward obtained in a ses-

sion. The data suggest trial-by-trial reward-driven optimiza-

tion of the decision process. Understanding the factors

determining behavioural responses is important for corre-

lating neural activity and behaviour. SDT provides a good

account of animal psychoacoustics, and can be validated

using standard psychophysical methods and computer sim-

ulations, without recourse to ROC measurements.
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INTRODUCTION

Signal detection theory (SDT) is a quantitative framework

to analyse subjects’ responses in psychophysical tasks
0306-4522/12� 2012 IBRO. Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.neuroscience.2012.06.001

*Corresponding author. Tel: +44-(0)-115-922-3431; fax: +44-(0)-
115-951-8503.

E-mail address: alvespinto.ana@gmail.com (A. Alves-Pinto).
Abbreviations: CR, correct rejection; dB, decibel; H, hit; ROC, receiver-
operating characteristic; SDT, signal detection theory; SNR, signal-
to-noise ratio.

215

Open access under CC BY licens
(Green and Swets, 1966). It assumes that a subject’s abil-

ity to distinguish between different stimuli is limited by the

variability of an (unspecified) internal sensory representa-

tion, and that behavioural responses are based on a com-

parison between the internal representation and a

criterion value. Using certain assumptions sensory acuity

(d0) can be derived, filtering out the influence of the cogni-

tive decision process. Those assumptions underlying

SDT have been tested in a wide range of psychophysical

(and memory) experiments, particularly for human

subjects, and generally hold (e.g. classically in hearing,

Tanner et al., 1956). Nevertheless, there are discrepan-

cies. Measured d0 can depend on the number of intervals

and references in a forced choice task (Creelman and

Macmillan, 1979) or differ between detecting change

and discriminating the direction of change (Semal and

Demany, 2006), and the appropriate sensory model is still

debated (Kaernbach, 1991; Pastore et al., 2003; Micheyl

et al., 2008).

SDT can also be applied to neural sensory responses,

allowing quantitative comparisons between neural and

psychophysical data (e.g. Britten et al., 1992; Parker

and Newsome, 1998; Shackleton et al., 2003; Alves-Pinto

et al., 2010). SDT-related models have been extended to

coding in spike timing (Bizley et al., 2009; Malone et al.,

2010) and to large neuronal populations (Pressnitzer

et al., 2008; Alves-Pinto et al., 2010; Bizley et al.,

2010). It is clear that neuronal responses reflect both sen-

sory acuity and behaviour (e.g. Selezneva et al., 2006;

Lee and Seo, 2007; Atiani et al., 2009; Zhou et al.,

2010; Brosch et al., 2011).

Relating sensory neuronal and behavioural responses

in the same species requires a thorough understanding of

psychophysics in non-human animals (Stebbins, 1970;

Dooling and Hulse, 1989). SDT is often used for analysis

of behaviour (Marston, 1996; Alsop, 1998). However,

although comparisons with physiology depend upon the

SDT model, validation is attempted infrequently (Hack,

1963; Blough, 1967; Clopton, 1972; Marston, 1996;

Talwar and Gerstein, 1999). The degree to which (and

when) SDT is a reasonable model of psychophysical

measurements in animals, is far from clear. Different

methods yield systematic differences (Burdick, 1979;

Klink et al., 2006), and SDT-derived measures of sensory

acuity are subject to cognitive factors (Alsop, 1998).

The present study applied SDT techniques to analyse

behavioural responses of ferrets in an auditory signal-

in-noise detection task. Conventionally, the assumptions

underlying SDT are tested by measuring the receiver-

operating characteristic (ROC). This is done by
e.
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Fig. 1. The apparatus used in the behavioural experiments. Black
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attempting to manipulate the decision process and the

discriminability of the stimulus independently, which is a

lengthy process. It also requires SDT to hold under condi-

tions of extreme response criterion not encountered in

most psychophysical testing. Here, instead, we compare

SDT analyses in two different methods of varying stimulus

parameters, commonly used to measure psychophysical

thresholds: the Method of Limits and the Method of Con-

stant Stimuli. We show, with the aid of computational sim-

ulations, that SDT measures of sensitivity in the data are

independent of stimulus presentation method. However,

the decisions themselves are dependent upon both the

set of stimuli presented in a session and on immediately

preceding trials. Simulations, based on a SDT model of

perception which accounts for several influences on deci-

sion criterion, accurately model these data.

EXPERIMENTAL PROCEDURES

Behavioural experiments
speaker/spout modules indicate those used for stimulus presentation

(0�; including LED) and response/reward locations for no-signal (‘no’;

�90�) and signal (‘yes’; 90�) trials. Grey modules were not used in

this task. A continuous broadband noise and the target stimulus were

played from the loudspeaker positioned at 0�. The ferret triggered a

new trial by approaching the centre platform and licking the centre

spout. When the target tone was presented (‘signal-trial’), the ferret

could receive water reward at the 90� spout; if no tone was presented

(‘no-signal trial’) then a reward was obtainable at �90�. The LED

(indicated by the bulb) at 0� was illuminated on every trial.
Subjects. Five adult pigmented ferrets (Mustela putorius),
three females and two males, were trained and tested in a posi-

tive reinforcement behavioural procedure. Each underwent two

behavioural sessions (20–40 min each) every day, during which

they received most of their water intake. At the end of each day

they were given ground ferret food mixed with additional water

and a supplement (Cimicat, Petlife International Ltd., UK). One

block of sessions typically lasted 11 days. After this water was

available ad libitum for at least 3 days. All ferrets were weighed

daily and their health monitored continuously. Behaviour was

stopped if animals’ weight dropped 20% below their pre-regula-

tion weight or if there were any other health concerns. Animals

were housed individually with environmental enrichment in their

cages and received daily social activity with other ferrets. All pro-

cedures were carried out under licence from the UK Home Office.

Behavioural apparatus. Experiments were conducted in a cir-

cular arena (1.5 m diameter) inside a double walled, sound-atten-

uating room (IAC-1204, UK; Fig. 1). The inner walls were lined

with mineral wool, except for a double-glass window. The arena

floor was polyvinyl chloride (PVC) and the sides and top were

made with wire mesh. The mesh perimeter was surrounded by

acoustically transparent net fabric that concealed 12 custom-

made modules (N.B. some of these modules were present for

other studies; Irving et al., 2011). Each module contained a loud-

speaker (Visatron FX10) and a solenoid-operated water spout,

which contained an infrared lick detector. In the centre of the are-

na there was a platform with a water spout. The central spout reg-

istered a lick when the ferret touched the spout and the body

simultaneously broke an infra-red beam. The beam ensured the

ferret was correctly positioned on the platform. Additionally,

the ferret put their head through a hole in a metal fence to lick

the central spout, ensuring a consistent head position.

Stimulus presentation and response acquisition were done

via the modules surrounding the arena, and were controlled by

a MOTU 24 I/O system (Mark of the Unicorn, Cambridge, MA,

USA) that was driven by a computer outside the booth using cus-

tom-made software. A custom-made USB system controlled the

amount of water delivered (�300 lL for each correct response).

Stimuli. The masker was a 48 kHz-wide noise played contin-

uously, by looping a 30 s long frozen noise. The target used for

testing was a 10 kHz pure tone, 500 ms long including 20 ms

rise/fall ramps. The sampling frequency was always 96 kHz.

The sound pressure level (RMS) was measured with a ½ in.
B&K 4165 condenser microphone, pointing upwards and placed

at a position where the ferret’s head was when a trial was trig-

gered. The sound pressure level of the background noise was

35 or 55 dB SPL for ferret F1 and 48 dB SPL for ferrets F2–F5.
Behavioural task. Ferrets were trained to perform a ‘yes/no’

detection task (Neff et al., 1975; Kelly et al., 1986; Hine et al.,

1994), initiating trials by licking the central spout. On half the trials

a 10-kHz tone was presented (‘signal trials’) simultaneously with

a visual timing cue (the illumination of an LED in the 0� module).

In the rest of trials the LED was illuminated but no sound

presented (‘no-signal trials’). Signal trials were rewarded when

responses were made at the spout located at 90� (‘yes’

response), whilst no-signal trials were rewarded at the �90�
spout (‘no’ response). Incorrect responses were not rewarded,

and the subsequently triggered trial was identical to the previous.

These ‘correction trials’ continued until a correct response was

given.

Training began with the ferrets learning to lick and obtain

reward from each of the three water spouts in silence, and grad-

ually to lick the centre spout whilst lined up facing forward on the

platform. Next, the detection task was introduced. Licking the

centre spout initiated a trial as described above, and this was

rewarded on every trial whilst only correct responses were

rewarded at the answer spouts. The level of the tone was fixed

at 65 or 72 dB SPL. In early training the tone continued until

the ferret responded. Following 2–3 consecutive sessions of high

performance (>90% correct), the tone duration and/or the

amount of water given at the centre were reduced. This contin-

ued progressively until the tone was 500 ms long and only two

drops of water were given at the centre, randomly on one in eight

trials. The continuous background noise was then introduced

directly at the level used during testing (48 or 55 dB SPL).

Complete training of a ferret usually lasted 2–3 months.



Fig. 2. Psychometric functions collected for individual ferrets with the

Methods of Limits (left column) and Constant Stimuli (right column).

Each row illustrates results for a different subject and/or masker level.

Different symbols indicate P(c)max values at different SNRs (dB).

Different shades of grey distinguish separate blocks of behavioural

sessions. Lines are logistic fits to experimental values.

Fig. 3. Average signal detection thresholds (dB SNR) obtained with

the Method of Limits (circles), Constant Stimuli (triangles) and

Adaptive Tracking (squares). Average thresholds and standard

deviations were calculated across the different blocks of behavioural

sessions (i.e. each psychometric function).
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Psychophysical procedure and estimation of detection thresh-
old. The testing procedure differed from training in that the level

of the target tone was varied to yield a psychometric function and

a detection threshold. Performance was measured with three dif-

ferent methods, differing in the way the level of the target tone

was varied: (1) Method of Limits, (2) Method of Constant Stimuli,

and (3) Adaptive Tracking.
Fig. 4. Hit rate versus false-alarm rate. Lines join data collected

within a single block of sessions. Colour differentiates signal SNR

(dB) as indicated in the inset. (A) Method of Limits for F2. (B) Method

of Constant Stimuli for F2. Lower panels (C, D) show data for all

animals. Symbols differentiate ferrets; colour differentiates tone level,

as in (B). Each point corresponds to the mean hit/false-alarm rate, for

a given ferret, averaged across all blocks of sessions. Dotted lines

mark chance (hit rate = false-alarms) performance and unbiased (hit

rate = 1-false-alarms) behaviour. (For interpretation of the refer-

ences to colour in this figure legend, the reader is referred to the web

version of this article.)
Method of limits. The level of the tone was fixed within a ses-

sion and decreased systematically across a contiguous block of

sessions until performance was below threshold (Fechner,

1948; Kelly et al., 1986; Hine et al., 1994; Lam et al., 1996).

The rates of hits (‘yes’ on a signal trial) and false-alarms (‘yes’

on a no-signal trial) were calculated for the trials in each session,

ignoring correction trials and any trials where water was delivered

at the centre spout. d0 values were calculated (Green and Swets,

1966) from these, and the corresponding percentage correct val-

ues for an unbiased observer, P(c)max (MacMillan and Creelman,

2005).

At the start of a contiguous block of sessions, the tone was

set at a high level. Following 2–3 sessions of P(c)max > 90%,

the level of the tone was reduced by 10 dB. The level of the tone

was then reduced by 10 dB each session until P(c)max dropped

below 85%. Subsequently the tone level was decreased in 5 dB

steps every other session until P(c)max fell below 71%, with a third
session at a given level if P(c)max varied by more than 10%. On

average, the proportion of correction trials per behavioural ses-

sion increased (from 6% to 27%) as the signal-to-noise ratio

(SNR) decreased (24 to �15 dB). The average number of



Fig. 5. The dependency of responses on the outcome of previous trials for ferret F2. (A) Signal-trials for the Method of Limits. Each tree shows a

different SNR. The leftmost symbol in each tree indicates the overall probability of a ‘yes’ response, P(yes), averaged across sessions. The middle

points represent P(yes), averaged across sessions, after a hit (d, P[yesi| Hiti�1]), a correct rejection (N, P[yesi|CRi�1]), and a miss (j, P[yesi|
Missi�1]). The rightmost points in each tree show the dependency on the last but one trial. For example, the filled triangle (N) right and uppermost in

a tree give the average P(yes) given the previous trial was a CR and the previous to that one a CR: P[yesi,signal|CRi�1|CRi�2]. Asterisks indicate

significant dependencies on the previous trial (i�1) between hits and correct-rejections; ‘H’ and ‘CR’ indicate significant dependency on two trials

previous (i�2) when the previous trial (i�1) were hits and correct rejections. (B) No-signal trials for the Method of Limits. Symbols as (A) except for

false-alarms (h; P[yesi|FAi�1]). (C) Method of Constant Stimuli.
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rewarded trials in a session remained approximately the same at

all SNRs. The total number of trials increased with decreasing

SNR as the proportion of correct, rewarded, trials decreased.

For subsequent analyses, P(c)max values at a given level

were derived from the overall hits and false alarm rates calcu-

lated from two or more consecutive sessions, with a minimum

of 50 signal trials and 50 no-signal trials. At least two blocks of

sessions with the Method of Limits were collected for every ferret,

interleaved with blocks using other methods. Psychometric func-

tions of P(c)max as a function of tone level were fitted with logistic

functions, from which detection thresholds were derived for a

P(c)max of 71%.
Method of Constant Stimuli. In a block of sessions using the

Method of Constant Stimuli, a preset group of 4–6 tone levels

were tested in each session. The set of levels was set, with some

piloting, so that at least one was easily detectable and one was

below threshold. A proportion of easily detectable signals served
to monitor suprathreshold performance and help maintain the

correct stimulus–reward relationship. Psychometric functions

were derived from (three or more) sessions over which there

were a minimum of 50 signal trials per each of the levels tested.

For each signal level a corresponding false alarm rate was calcu-

lated from a randomly selected sample (matched to the number

signal trials) of the available no-signal trials in those sessions.

This way, both hit and false alarm rates were calculated from a

similar number of trials, as occurs also in the Method of Limits.

On average, 21% of trials were correction trials.
Adaptive Tracking procedure. In a block of sessions using the

Adaptive Tracking (up-down) procedure, the level of the signal

was varied during a behavioural session according to the

subject’s response outcome: signal level was reduced (down)

after a correct response, and increased (up) after an incorrect

response (Levitt, 1971). In the beginning of the session the level

of the tone was kept high and was reduced (6 dB) only after five



Fig. 6. Difference between the probabilities of a ‘yes’ response after

a correct rejection (CR) relative to that after a hit, as a function of

signal-to-noise ratio, across ferrets. (A) Signal trials for the Method of

Limits. (B) No-signal trials for the Method of Limits. (C) Method of

Constant Stimuli (j, signal trials; h, no-signal trials). Asterisks

indicate significant differences (Holm–Bonferroni corrected Chi-

squared test, p< 0.05). Also indicated is the slope of the linear

regression to all points in the panel.

Fig. 7. Comparison between experimental data and simulations for

ferret F2. (A, B) Average simulated psychometric function (red line)

and experimental functions (thin black lines) for the Method of Limits

(A) and Method of Constant Stimuli (B). Dashed red lines show 95%

confidence regions for the simulations. (C, D) Simulated hit and false-

alarm rates. Each line illustrates results for a different block of

sessions and colours indicate different signal SNRs, as in Fig. 5, with

the number of simulated trials matched to the data average. (For

interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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consecutive correct responses to either signal or no-signal trials

(1-up/5-down). Afterwards, the level of the tone was increased

(4 dB) after an incorrect response and decreased (4 dB) after

two consecutive correct responses (1-up/2-down rule). This con-

tinued for 4–6 reversals and afterwards the level of the tone was

changed by 2 dB, using the same 1-up/2-down rule. Thresholds

were derived by averaging the tone levels at reversal points in

the last part of the adaptive track.

Analysis of trial-by-trial dependency of decisions. We com-

puted the probability of a ‘yes’ response on the current trial i for
different outcomes in the previous trial i � 1: hit, correct rejection

(CR; ‘no’ to a no-signal trial), miss (‘no’ on a signal trial) or false-

alarm. This was done separately for signal and no-signal trials,

and for each signal level. Probabilities were first calculated for

individual sessions and then averaged across sessions.

For example, the probability of a ‘yes’ response on trials

where a signal was presented at 0 dB SNR was split into three

different probabilities: (1) after a hit (P[yesi,signal|Hiti�1]), (2) after
a correct rejection (P[yesi,signal|CRi�1]) and (3) after a miss
(P[yesi,signal|Missi�1]). After a (unrewarded) miss would follow a

correction trial, so an opposite response (a rewarded ‘yes’) would

be unsurprising. However, a significant difference in the probabil-

ity when the previous trial was a hit versus a correct rejection indi-

cated the response depended on the previous trial, despite signal

and no-signal trials being equally likely. Note that owing to correc-

tion trials, a signal trial cannot follow a false-alarm, so this prob-

ability does not exist. A similar analysis can be done when the

current trials are no-signal trials, in which case the outcome in

the previous trial is limited to hits, correct rejections and false-

alarms. This analysis was also extended to the dependency on

the outcome two trials back (i�2).

Computational model based on signal detection
theory

A SDT model was used to simulate the ferrets’ behaviour. Each

simulated trial generates a sensory value, the ‘internal represen-

tation variable’. For signal trials this was the dB SPL of the signal

plus some variability, or internal-noise. For no-signal trials it was

internal noise plus a parameter (‘reference level’) determining the

signal level which was indistinguishable from no-signal trials. Var-

iability was modelled as a Gaussian-distributed random number,

with a fixed standard deviation in dB (‘internal s.d.’) for all trials.

The decision in a given trial was based on the comparison

between the internal representation variable and a decision crite-

rion (in dB SPL). The decision criterion was a combination of an

optimal criterion, and a systematic shift away from this. The

optimal point was not a parameter but was calculated as the point

between the internal no-signal distribution and signal distributions

at which the probabilities of a false alarm and a miss are equal.

For the Method of Limits, the signal distribution was that of the

signal level used in that session and the optimal point is just mid-

way between the two distributions. For the Method of Constant



Table 1. Parameters used in the SDT-based model to simulate the behavioural performance obtained experimentally for each of the five ferrets tested

in the signal-in-noise detection task. Also presented are (1) the mean correlation coefficient between simulated blocks of sessions and (2) the mean

correlation coefficient between each experimental block of sessions and the corresponding set of simulated blocks of sessions. The correlation

coefficients were calculated separately for P(c)max, hit and false alarm values (note that false alarm correlations would not be meaningful for the Method

of Constant Stimuli)

Ferret Internal

s.d. (dB)

Block criterion bias

(mean + s.d., dB)

Guess

rate (%)

Reference

level (dB SPL)

Trial

shift

i � 1

Trial

shift

i � 2

(1) sim–sim (2) exp–sim

r2

P(c)max

r2

hits

r2 fa r2

P(c)max

r2

hits

r2 fa

Method of Limits

F1,

35

10.54 1.8 ± 1.52 1 12.54 2 1 0.93 0.87 0.84 0.90 0.82 0.74

F1,

55

11.83 1.48 ± 0.02 1 31.55 2 1 0.86 0.78 0.74 0.81 0.72 0.62

F2 9.2 3.78 ± 3.12 1 37.35 2 1.5 0.90 0.77 0.73 0.94 0.90 0.87

F3 11.29 1.03 ± 0.03 5 39.46 2.5 2 0.86 0.79 0.72 0.86 0.70 0.31

F4 11.00 1.05 ± 1.80 5 29.86 2 1.5 0.91 0.80 0.79 0.81 0.38 0.62

F5 7.24 1.85 ± 0.84 1.3 30.30 2 1 0.94 0.92 0.84 0.92 0.76 0.28

Mean r2 0.89 0.82 0.77 0.87 0.71 0.57

(1) sim–sim (2) exp–sim

r2

P(c)max

r2

hits

r2

P(c)max

r2 hits

Method of Constant Stimuli

F1,

35

11 2.98 ± 0.34 1 12 2.5 1 0.92 0.95 0.80 0.88

F1,

55

11.8 3.40 ± 0.07 1 32.76 3 2.5 0.88 0.93 0.81 0.87

F2 8.07 3.62 ± 0.11 1 37.39 2 1.5 0.91 0.96 0.68 0.85

F3 11.86 4.19 ± 0.06 2 40.51 3.5 3 0.90 0.95 0.90 0.86

F4 10.50 3.20 ± 1.84 1 35.14 2 1.5 0.89 0.93 0.83 0.87

F5 11.09 2.24 ± 0.89 2 26.29 2 1.5 0.85 0.92 0.58 0.74

Mean r2 0.89 0.94 0.76 0.84
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Stimuli, signal distribution was taken as the average of the distri-

butions associated with the different tone levels tested in a ses-

sion (Gorea and Sagi, 2000) and the optimal criterion is below

the intersection point.

Shifts away from the optimal decision criterion were modelled

as a fixed shift in dB. This was fixed for a given block of (�20)
behavioural sessions (‘criterion bias’). All the other parameters

were fixed across all simulations for a given ferret and method.

The dependency on the previous trial (Figs. 5 and 6) was mod-

elled by shifting the criterion by a fixed amount (in dB, the ‘trial

shifti�1’) on each trial, added if the answer on the previous trial

was ‘yes’ and subtracted if it was a ‘no’. A second ‘trial shifti�2’
parameter accounted for the dependency on the trial before that.

We also included an attentional factor (‘guess-rate’): a propensity

to guess on a proportion of trials, with a 50% probability of choos-

ing either answer regardless of the sensory information in that

trial (Wightman and Allen, 1992). Inattention tends to bring down

the top end of the psychometric function, reducing the maximum

performance for supra-threshold stimuli.

For each ferret and method, the parameters were adjusted to

minimise the mean squared error for hit and false-alarm rates

between the simulations and the data (see Table 1 for a descrip-

tion). The number of trials in each session approximated the aver-

age for each ferret, and errors were calculated from 100 simulated

sessions for every set of stimulus conditions and model parame-

ters. Fitting was done in several supervised stages, using both

mapping of parameter ranges and automatic minimisation on sub-

sets of parameters. Initially, the parameters ‘internal s.d.’, ‘refer-

ence level’ and ‘criterion bias’ were optimised whilst the

remainder were fixed (trial shifti�1 = 2; trial shifti�2 = 1.5; guess

rate = 1%). Subsequently the ‘guess-rate’ was optimised by sim-

ulating a pre-set range of values and finally trial dependencies

(trial shifti�1 and trial shifti�2) were optimised in the same way

(these parameters had little influence on hits and false alarms).
To assess the success of the model we correlated the

P(c)max, hit rates and false-alarms from each behavioural block

against the SNR-matched model output, averaged across many

sessions (200 per SNR for the Method of Limits, 1000 for the

Method of Constant Stimuli). Part of the variability in both the

data and the simulations was a product of the number of trials

and tone levels in a behavioural session. Therefore we also cor-

related the model against itself. We repeatedly (100 times) drew

one block of sessions from the total pool of simulations and cor-

related it with the mean across the remainder. This gave an

upper limit on the possible correlation given the experimental pro-

tocol. Correlations of false-alarm rate were not considered for the

Method of Constant Stimuli as these would be close to zero and

not meaningful, since no-signal trials are not associated with any

SNR in this method. 95% confidence intervals for P(c)max, hit

rates and false-alarms were also calculated from these

simulations.
RESULTS

Methods of Limits and Constant Stimuli yield similar
psychometric functions and detection thresholds

SDT posits an underlying and unchanging sensory repre-

sentation. Consistent with this, psychometric functions,

expressed as the criterion-free measure P(c)max, were

not significantly different whether obtained with the

Methods of Limits or Constant Stimuli (Fig. 2; p> 0.05;

one-way MANOVA applied to P(c)max at different SNRs),

except for one ferret (F3). However, there were differ-

ences between individuals (p< 0.05; ANOVA on

ferret �method � SNR). The similarity in the shape of



Fig. 8. (A) Simulated (thick lines) and experimental (thin black lines)

psychometric functions obtained and measured for ferret F2, for the

Method of Limits. Thick central lines illustrate the median simulated

psychometric functions and outer lines define 95% confidence

intervals with (grey line) and without (dashed line) trial-to-trial

dependencies in the simulations. (B) Effect of trial dependencies on

example model psychometric functions for similar variability of

internal representation to the data (internal s.d. = 10), and less

(s.d. = 5). Simulated trial shift is 5 dB for the previous trial only.

Fig. 9. Proportions of ‘Yes’ responses and the relationship to

rewards. (A) P(yes) for ferret F2, for Method of Limits (black:

sessions >80% correct; white: sessions <80% correct) and the

Method of Constant Stimuli (grey). (B) As (A) for ferrets F1–F4

together. (C) Mean and s.d. of P(yes) for each ferret, across Method

of Limits (4 sessions >80% correct; O sessions <80% correct) and

Method of Constant Stimuli (h). (D) Proportion of rewards versus

P(yes) in an SDT model, for the Method of Limits at various SNRs

(dB; grey lines – peak increases with SNR) and the Method of

Constant Stimuli (black line) with the same set of SNRs. (E) Gradient

of reward change versus P(yes) in the model (aligned for zero reward

gradient). Model parameters in (D) and (E) are fitted to F1 for the

Method of Limits.
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the psychometric functions obtained with the Methods of

Constant Stimuli and Limits was confirmed by the match

of tone detection thresholds (Fig. 3). Thresholds differed

between individuals, but did not differ between the two

methods (p> 0.05; two-way ANOVA on ferret �
method).

We also attempted to measure thresholds with an

adaptive tracking procedure. However, similar to observa-

tions in mice (Klink et al., 2006), this yielded more variable

threshold estimates than the other two methods, and in

several cases higher thresholds (squares in Fig. 3). We

did not therefore attempt to analyse the adaptive tracking

data further.
Hit and false-alarm rates for Methods of Limits and
Constant Stimuli show different distribution patterns

In SDT, the optimal decision criterion will be different if

signals are presented at only a single high suprathreshold
level, or at a low level, or if the signal level varies from

trial-to-trial. Human subjects can only maintain a single

internal representation and one decision criterion in a

given task (Gorea and Sagi, 2000). Thus, although the

method used did not significantly affect criterion-free mea-

sures of performance, we expect it to affect hit and false-

alarm rates.

The distribution of hit rates against false-alarm rates is

shown for ferret F2 for the Methods of Limits (Fig. 4A) and

Constant Stimuli (Fig. 4B). In this ferret false-alarm rates

were lower than hit rates for both methods. However, for

the Method of Limits false-alarms increased with decreas-

ing SNR, whilst for the Method of Constant Stimuli the

false alarm rates remained virtually constant across signal
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level because, unlike the Method of Limits, no-signal trials

are not associated with signal trials of a specific SNR. A

one-way MANOVA of the hits and false-alarms confirmed

there was a significant effect of data collection method

(p< 0.05) for this ferret.

For all ferrets, individually, there were significant dif-

ferences between the methods for both hits and false-

alarms (p< 0.05, one-way MANOVA as above).

Fig. 4C and D shows data averaged across blocks of ses-

sions for each ferret. For the Method of Limits, all ferrets

except F5, for which a small number of sessions were col-

lected, had significantly higher false-alarm rates at low

signal levels (one-way ANOVA for all ferrets separately,

p< 0.05), indicating that they were shifting their decision

criterion towards the optimal unbiased point. For the

Method of Constant Stimuli, the average false-alarm rate

was around 20% although false-alarm rates did differ

across ferrets (two-way ANOVA, p< 0.05).

Taken together with the invariance of P(c)max, this

suggests that SDT provides a clear interpretation of the

animals’ sensitivity in this detection task: the underlying

sensory representation is relatively constant within indi-

vidual ferrets, and does not depend on the data collection

method. However, the decision strategy differs within ani-

mals depending on the data collection method (i.e. the set

of stimuli presented).

Behavioural responses show sequential
dependencies

Decision processes that determine psychophysical re-

sponses are not necessarily static. In particular, they

can depend on the outcome on previous trials (e.g. Ward

and Lockhead, 1970; Jesteadt et al., 1977; Treisman and

Williams, 1984; Petzold and Haubensak, 2001). This can

be interpreted in SDT as a change in the decision criterion

from trial-to-trial (Treisman and Williams, 1984). Such ef-

fects have been reported rarely in animals during psy-

choacoustic testing (Talwar and Gerstein, 1999), but

have been more commonly reported in tasks that set

out to manipulate trial-by-trial reward expectation (e.g.

Blough and Blough, 1985; Barraclough et al., 2004; Lau

and Glimcher, 2005; Brosch et al., 2011).

Fig. 5 shows the trial dependencies observed for ferret

F2, as a separate tree for signal and no-signal trials at

each SNR. The overall probability of a ‘yes’ response (left-

most symbols in each tree) is split into separate probabil-

ities dependent on the previous trial (middle symbols in

each tree), and the one before that (rightmost symbols).

On signal trials the ferret was more likely to give a ‘yes’

response if the previous trial was a correct rejection (N)

than if the previous trial was a hit (d; ⁄ indicates a signif-

icant difference after Holm–Bonferroni corrected Chi-

squared test). This pattern was reversed for no-signal

trials. Effectively, it showed a tendency to respond at

the spout opposite to that at which it had just received a

reward from, despite the a priori probability of a reward

being equal. This dependency was stronger at lower

SNRs (F= 13.3 after linear regression model). We were

less interested in trials following incorrect answers, since

the same trial was presented again (a correction trial), so

the correct response was simply the opposite of the
previous response. Consistent with this, the highest pro-

portion of ‘yes’ responses and ‘no’ responses usually oc-

curred after a miss (j) and a false-alarm (h) respectively.

However, below �1 dB SNR for signal and no-signal trials

these proportions were significantly different from 1 or 0

(Kolmogorov–Smirnov test on the mean proportion of cor-

rect responses calculated for each behavioural session at

which a given SNR was tested, p< 0.05), indicating that

this ferret did not always respond correctly on correction

trials.

Decisions also depended on the previous trial for data

collected with the Method of Constant Stimuli (Fig. 5, low-

er panel). The probability of a ‘yes’ response after a cor-

rect rejection was again larger than after a hit from �16
to �6 dB SNRs (Holm–Bonferroni corrected Chi-squared

test). For no-signal trials, which were presented together

with signal trials of different tone levels within the same

session, it was not possible to separate out the effect of

signal level. Nevertheless, the overall dependency was

significant (Chi-squared test, p< 0.05) for no-signal trials

(Fig. 5, lower panel, right corner).

The dependency on the outcome two trials prior

(Fig. 5) showed a very similar pattern of results, for both

methods of data collection. For signal trials, a ‘yes’ was

more likely after a correct rejection in trial i � 2 than after

a hit, whether there was a hit (H indicates significance in

Fig. 5) or a correct rejection in trial i � 1 (CR indicates sig-

nificant difference). Dependencies of trials further back

were not significant due to the small number of trials for

each combination of dependencies.

Significant trial-to-trial dependencies were observed

for all subjects tested (Fig. 6; � indicates corrected Chi-

squared test) and were generally more frequent and lar-

ger at lower SNRs. However, this effect of level was not

significant (Fig. 6; e.g. one-way repeated-measures ANO-

VA, F(1,1) = 13.2, p= 0.18, for the Method of Constant

Stimuli).

These dependencies can be interpreted within SDT

as trial-by-trial shifts in decision criterion: the criterion

is lowered following a correct rejection and raised fol-

lowing a hit. The stronger influence of previous trials

in the current response at lower levels is expected,

since the internal representations of signal and no-sig-

nal trials overlap more at low levels. The level of the

signal also affects dependencies in humans (Speeth

and Mathews, 1961). We did not set out to encourage

them but these dependencies could arise as a conse-

quence of the correction trials by encouraging ferrrets

to go to the opposite spout on the next trial. Such trials

are used widely during behavioural testing in animals

(e.g. Blough and Blough, 1977; Kelly et al., 1986;

Britten et al., 1992; Maier et al., 2010) to control for re-

sponse biases and to ‘instruct’ errors. We tested the

influence of correction trials on these dependencies by

measuring with ferret F2 a full psychometric function

with the Method of Limits without employing correction

trials. Data (not shown here) showed similar trial-to-trial

dependencies. Although this result does not rule out a

role for correction trials in the development of these

dependencies, it suggests that their use in individual

sessions is not instrumental in producing them.
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A SDT model of behavioural responses and
psychometric functions

A computational model based on SDT was used to simu-

late behavioural responses of each ferret. The goal was to

see if we could account quantitatively for the patterns of

observed hits and false-alarms, the measured psycho-

metric functions and the differences between the two

methods of data collection. Good fits to the data would

constitute further evidence that the underlying SDT model

was sufficient in the context of practical psychophysical

measurements. It also allowed us to assess how optimal

decision criteria were in both methods. Further, we

wanted to estimate the different sources of variability

required to account for the data. Variability will arise from

noisy sensory representations, but may also be intro-

duced by the trial-by-trial dependencies, longer term shifts

in decision criterion, inattention, and the number of behav-

ioural trials.

Each simulated trial elicited an internal representation

on a dB scale, with a degree of internal variability (‘internal

s.d.’ parameter). The optimal decision criterion was as-

sumed to be such that the probability of a false alarm

equals the probability of a miss (in a given behavioural

session). Decision criterion could shift systematically

away from the optimal (‘criterion bias’), as well as having

a dependency on the previous two trials (‘trial shift’

parameters). The model also ‘guessed’ responses ran-

domly on a proportion of trials (‘guess rate’ parameter),

to account for possible inattention.

The average simulated psychometric functions repro-

duced the main features of the experimental functions for

both methods (shown for F2 in Fig. 7A and B) although,

for example, some of the data points for F2 fell outside

of the 95% confidence bounds of the model. The shape

of the functions was largely determined by the variability

in the internal representation (internal s.d.). Across all fer-

rets, the fitted model values associated with the sensory

representation were very similar between methods (Ta-

ble 1; difference between methods: internal s.d.

0.54 ± 1.7 dB; reference level 0.5 ± 3.01 dB), offering

further evidence that sensory representations were stable

between methods.

The simulations also captured the main features of the

hit and false-alarm rates (Fig. 7C and D for ferret F2, see

Table 1). To quantify the success of the models in

accounting for the data (independently of the fitting pro-

cess), each block of experimental sessions was corre-

lated (for matched SNRs) against the corresponding

mean simulated P(c)max, hit and false-alarm rate values

(see Table 1, column ‘exp–sim’; see methods). A large

degree of the variability in P(c)max (mean 82% of the var-

iance), hit rate (78%) and a lesser degree of false-alarms

(57% of the variance) is accounted for by the fitted mod-

els. However, these are in fact only slightly worse (10%

worse on average) than for correlations calculated for

the model against itself (Table 1, column ‘sim–sim’),

indicating that much of the remaining variability can be

accounted for by the experimental protocol.

For both methods, the fitted parameters showed sys-

tematic shifts in criterion, smaller for the Method of Limits,

towards a higher than optimal criterion (Table 1: mean
‘criterion-bias’ across blocks is positive in all cases). Nev-

ertheless, this is much smaller than the width of the inter-

nal distribution, and suggests that ferrets adopted a near

optimal strategy for a given ‘mean’ signal distribution.

Another aspect of behaviour made clear by the simu-

lations is that the proportion of random guesses in ferrets’

responses was low (5% or less). This can also be seen in

the data. For most ferrets P(c)max values converge to near

100% at high signal levels (Fig. 2). Thus, there is little

evidence that a lack of attention influenced ferrets’

responses, and this parameter contributed very little to

the quality of the fits.

Two additional parameters, ‘trial shifti�1’ and ‘trial

shifti�2’, determined the dependency on previous trials.

Trial dependencies were fitted subsequent to the other

parameters, and had very little effect on the fits to the

hit and false-alarm rates. Although not shown, in the mod-

el the effect of signal level on the trial-to-trial dependen-

cies emerges naturally, since the internal

representations of high level signal-trials are well spaced

from no-signal trials. The responses for hits and correct

rejections are reproduced well by the model. The re-

sponses following misses and false-alarms, which are

correction trials, are not. The responses on correction tri-

als neither reflect the ferret realising that they had made a

mistake (which would give ‘yes’ response probabilities of

0 or 1), nor are they consistent with the same criterion

shift as is observed following a correct trial. Thus, trial-

to-trial shifts in criterion were contingent on both the re-

sponse and the reward. We did not attempt to simulate

the effect of correction trials more accurately, which would

have required additional parameters. Across ferrets,

shifts were slightly larger for the Method of Constant Stim-

uli than for the Method of Limits (see Table 1; difference

between methods: 0.4 ± 0.5 for trial shifti�1 and

0.5 ± 0.6 for trial shifti�2).

The effect of trial-to-trial dependencies on the shape
of the psychometric function

The trial-to-trial dependencies could affect the shape of

the psychometric function and therefore signal detection

threshold. The likely influence on the data was evaluated

using the model fitted to the behavioural responses of fer-

ret F2 (Fig. 7), and comparing the psychometric functions

simulated with and without (trial shift = 0) dependency

effects. Median psychometric functions and 95% confi-

dence intervals, calculated from 800 simulated behav-

ioural sessions showed that the introduction of the

dependencies produce only minimal changes in P(c)max

values at low signal levels (Fig. 8A shows simulations of

the Method of Limits), and no change (46.3 versus

46.6 dB SPL) in average detection threshold. Hence,

trial-to-trial dependencies did not affect average thresh-

olds despite the changes produced in the distribution of

criterion values. Neither did these parameters affect the

quality of the fit to the hits and false-alarm rates.

Further exploration of model parameters (Fig. 8B)

showed that psychometric functions become shallower,

when trial-dependencies are large relative to the variabil-

ity in the internal representations (‘internal s.d.’ parame-

ter). Thus the effects of trial-dependencies on
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psychometric functions are very similar to variability in the

internal representation, but the size of the measured trial-

dependencies and the slopes of the psychometric func-

tions suggest that this is not affecting either psychometric

function shapes or thresholds.

Reward maximisation as a mechanism for setting
decision criterion

The model makes assumptions about where criterion

should be set, but it does not explain how the ferrets might

optimise their decision criteria. Here we attempt to relate

shifts in overall decision criterion to the maximisation of

reward.

Fig. 9 shows, for ferret F2 individually (panel A) and

ferrets F1–F4 together (B, C), the proportion of ‘yes’ re-

sponses (excluding correction trials) across behavioural

sessions, for each method. Method of Limits data are fur-

ther split into sessions where performance was above

(i.e. high SNRs) or below 80% correct (low SNRs).

P(yes) differed between these three groups of conditions,

as well as between ferrets (two-way ANOVA, p< .0001).

For sessions using the Method of Limits where perfor-

mance was high (black bars in Fig. 9A, B; triangles in

C) P(yes) clusters around 50% correct, which would be

optimal for an equal variance SDT model. However, in

sessions where performance was lower (open bars in

Fig. 9A, B; open circles in C) P(yes) was lower

(p< .0001, t-test on F1–F4 together, Bonferroni cor-

rected) and the distribution of responses more variable

(p< .0001, variance test). For the Method of Constant

Stimuli, P(yes) was again lower (p< .0001 for t-test)
and more variable (p< .0001) than the high performance

Method of Limits Sessions, though not as variable as the

low performance Method of Limits sessions (p< .0001).

These differences were largely evident in individual fer-

rets (though note F4).

Fig. 9D plots the proportion of rewards obtained (1

being 100% correct) for a deterministic version of the

SDT model (i.e. signal and no-signal distributions bi-

sected by a static decision criterion), as a function of

P(yes). Each line was obtained by varying the decision

criterion across the full range of both signal and no-signal

distributions. The grey lines show that, for varying SNRs

with the Method of Limits, rewards are always maximised

when P(yes) = .5. Thus, the consistently low P(yes) seen
in the more difficult Method of Limits sessions appear at

odds with the model. The lower P(yes) of data collected

using the Method of Constant Stimuli, on the other hand,

is consistent with the model: reward is maximised by a

slightly conservative criterion.

There is one possible explanation for the variable

decision criterion setting in the data (Maddox, 2002).

Fig. 9E shows, using the same model, the gradient of

the reward function against P(yes). The benefits of shift-

ing criterion naturally decrease near to the optimal crite-

rion, and changes in reward become difficult to judge.

The gradient also depends on discriminability. For the

Method of Limits it is lowest for low SNRs (see grey lines

in Fig. 9D). Thus at low SNRs optimal behaviour is less

likely, and decision criteria are likely to be more variable.

The model would also predict that criterion for the Method
of Constant Stimuli, with a reward gradient equivalent to

mid-level SNRs, would have intermediate decision

variability.
DISCUSSION

The effects of sensory and non-sensory factors in behav-

ioural responses of ferrets in a signal-in-noise detection

task were investigated by (1) applying SDT tools to ana-

lyse ferrets’ behavioural performance and (2) using a

computational model to simulate behavioural trial-and-

response series reproducing the experimental

observations.
The adequacy of SDT

Decision-criterion free measures of performance, P(c)max,

were stable within individuals across methods. This sup-

ports the practical value of SDT in interpreting animal

behaviour (Marston, 1996; Blough, 2001). It also argues

against the use of methods that instead adjust for false-

alarm rate (see also Long, 1994; Heffner and Heffner,

2001), which would yield different results depending upon

the data collection method used. A measured ROC curve

in one ferret (data not shown) further supported SDT that

assumes equal variance distributions. This assumption

does not always hold, especially for conditions away from

threshold, in animals (Hack, 1963; Talwar and Gerstein,

1999) or in humans (see Swets, 1996; Jesteadt et al.,

2003). Nevertheless, although more complex models

may be required in some situations (Micheyl and Dai,

2009), both data and model suggest that a simple

equal-variance SDT model offers an adequate interpreta-

tion here.
Choice of methods in animal psychophysics

Consistent results across different methods were by no

means a foregone conclusion. It is very likely that cogni-

tive factors influence results to a greater extent than in

humans, and these may depend on species, their

intelligence and the naturalness of the task (Harrison,

1992). In pigeons, performance on a visual spatial acuity

task was superior for the Method of Limits than the

Method of Constant stimuli. The largest differences were

for easier conditions (Blough, 1971) and so seem likely

to be attention related. In rats performing auditory inten-

sity discrimination, the Method of Limits gave inferior

performance for ascending rather than descending stimu-

lus differences (Terman, 1970; Terman and Terman,

1972). A likely explanation is deterioration in ‘stimulus

control’ (relationship between the stimulus and the

response). Instead, we only found differences for thresh-

olds derived from adaptive tracking, consistent with

observations in mice (Klink et al., 2006). However,

several previous auditory studies have used tracking

algorithms with success (e.g. Serafin et al., 1982; Cos-

talupes, 1983; Shofner et al., 1993; Early et al., 2001).

In rabbits, tracking has been found to be at least as stable

as the Method of Constant Stimuli (Early et al., 2001;

Zheng et al., 2002). In this paper, we showed that

decision criterion shifted depending on stimulus statistics
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in the current session and recent trials. Criterion shifts are

more likely in one-interval tasks used in animals, com-

pared with two-interval 2AFC tasks more normally used

in humans. Thus there is good reason to expect that

non-sensory influences will be complex for adaptive

tracking.

We cannot rule out that in our data a more detailed

sampling of the psychometric function might have

revealed differences between methods. Two-thirds of

the points fall within the mid two-thirds (60–90% P(c)max)

of the complete psychometric function. Greater power

would be afforded by larger sampling of the mid-portion.

However, the need to include a reasonable proportion of

suprathreshold levels (to maintain stimulus control) lim-

ited the sampling along the mid-portion of the function.

Although the Method of Constant Stimuli and the

Method of Limits gave similar results, the Method of Con-

stant Stimuli is also an efficient way to obtain reliable esti-

mates of detection threshold (though other methods exist

which have not been tried here, Green, 1993). A boot-

strap procedure employed to calculate thresholds from

subgroups of trials estimated that detection thresholds

stabilise at 25–40 trials per level (results not shown). Klink

et al. (2006) found similarly that a reduction in the number

of trials did not markedly affect thresholds using the Meth-

od of Constant Stimuli. Also, when correlating behaviour

and neuronal responses (e.g. Britten et al., 1992; Atiani

et al., 2009), particularly in behaving animals, the Method

of Constant Stimuli is preferable as it is good practice in

any physiological recordings, to randomise stimulus

order.

Criterion setting

The model was able to account for most of the variance

which was not attributable to the experimental parameters

(Fig. 7; Table 1). The difference between the methods

was largely reproduced in the model by the assumed dif-

ferences in the optimum criterion (section ‘Experimental

Procedures’). Although rarely explored experimentally, a

similar result was observed in pigeons, engaged in a

visual task (Wixted, 1993), and in human studies (Gorea

and Sagi, 2000; Agus et al., 2010). Thus it appears that

in animals and humans decisions in detection employ a

single decision criterion, which is quite well accounted

for by mean signal distributions.

Differences in decision criterion between the methods

reflected the correct strategies to maximise rewards.

However, overall two additional factors were required to

explain all of the data. The decision criterion for the Meth-

od of Limits was more variable at low signal levels, and of

intermediate variability for the Method of Constant Stimuli.

This has also been observed in humans (Maddox, 2002),

and was attributed to the difficulty of refining the decision

criterion when near to the optimum. Maddox (2002) also

reports the last characteristic of the decision criterion we

observed: more difficult trials lead to more biased re-

sponses. The more difficult a decision the more likely

any natural bias is to arise. This arose naturally in the

signal detection model as bias was a fixed value across

different signal levels. Ferrets were trained at a high

sound level on the same frequency used for testing, so
have received extensive reinforcement where a high deci-

sion criterion is optimal. Furthermore, if during behaviour

subjects begin with a high decision criterion and then seek

to adjust it to maximise reward, then it is likely to remain

higher than optimal, and more so for conditions where

the gradient reward function is shallower. Thus, ferrets

appear to be optimising their behaviour in a consistent

way regardless of the stimulus set presented, with a strat-

egy to maximise their rewards that is suboptimal in pre-

dictable ways.

Sources of criterion noise

SDT does not distinguish between a broad sensory repre-

sentation and variability in the decision criterion. Unsys-

tematic variability in the criterion manifests as lower

values of d0 and shallower psychometric functions. We

might have expected sources of decision noise to affect

the different collection methods differently. The Method

of Constant Stimuli might be predicted to lead to a more

variable criterion, if it were easier to maintain a stable cri-

terion for a set of equally discriminable sounds of constant

level. Conversely, it has been argued that presentation of

a range of easy and harder stimuli helps to maintain ‘stim-

ulus control’ in animal experiments (Blough and Blough,

1977; Klink et al., 2006). This would predict larger internal

noise for the Method of Limits. However, the similarity of

psychometric functions and thresholds and the fitted mod-

el parameters for the two methods argues against any-

thing but very small differences in criterion noise

between the methods.

Another potential source of decision noise was inat-

tention. However, modelling inattention as a constant

guessing rate (Wightman and Allen, 1992, chapter 4;

Blough, 2001), at least, suggested inattention did not

strongly influence the ferrets’ performance, with little dif-

ference between the two methods.

Ferret behavioural responses were influenced by the

outcome in previous trials (Figs. 5 and 6; Table 1). Trial

dependencies have been explained, using SDT, as

trial-wise shifts in the decision criterion (Treisman and

Williams, 1984). Unlike our data, generally in these exper-

iments a ‘yes’ response increased the probability of a sub-

sequent ‘yes’ response, and correction trials were not

used. Rats performing frequency discrimination in a go/
no-go task (Talwar and Gerstein, 1999), also respond

more (i.e. go) following a previous response (whether a

hit or false-alarm). Nevertheless, although the nature of

the dependency in our data may be quite different, it

was well accounted for as a shift in SDT decision criterion.

The question arises: could correction trials have

induced this trial-by-trial dependency? Removal of correc-

tion trials did not change the trial dependencies, but their

long term use may have led to the observed dependen-

cies. Correction trials are widely used in animal psycho-

physics to instruct mistakes and to control for response

bias (e.g. Blough and Blough, 1977; Kelly et al., 1986;

Britten et al., 1992; Meier et al., 2011). We have tried

unsuccessfully to train ferrets in the task without the use

of correction trials. However, ferrets did not reach 100%

correct after correction trials (Figs. 5 and 6) suggesting

correction trials were not fully recognised. Rather, these
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responses were more strongly affected by the previous

trial than correct, rewarded trials, suggesting a probabilis-

tic dependency on previous response and rewards.

Simulations demonstrated that thresholds are virtually

unaffected by these dependencies. Thus there may be no

practical impact of correction trials on psychophysical

measurements. It is, however, possible that we have

underestimated their impact, if for example it is com-

pounded by further dependencies lasting many trials. Pre-

vious models of such criterion shifts (Treisman and

Williams, 1984) have considered the decaying influence

of previous trials as a model parameter. Here, we did

not consider such models, given that we only found signif-

icant effects two trials prior. It is also possible that both

session-by-session and trial-by trial changes are both part

of a more general process. The data are consistent with a

standard SDT model allied to an adaptive process that ad-

justs the decision criterion, potentially trial-by-trial

(Barraclough et al., 2004; Dayan and Niv, 2008), ensures

near optimal setting of SDT decision criterion and maxi-

mises the reward gained.
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