Correlation between Magnetic Resonance Imaging and Surgical Exploration of the 1 2 Anterolateral Structures of the Acutely Anterior Cruciate Ligament Injured Knee 3 4 Edoardo Monaco, Camilo Partezani Helito, Andrea Redler, Angelo De Carli, 5 Giuseppe Argento, Paulo Victor Partezani Helito, Adnan Saithna, and Andrea Ferretti 6 7 8 9 10 Abstract 11 Background: Combined Anterior Cruciate Ligament (ACL) and Anterolateral ligament (ALL) reconstruction is associated with improved clinical outcomes compared to isolated intra-12 13 articular reconstruction but the indications are not precisely defined. It may be the case that 14 patients with proven anterolateral injury on pre-operative imaging are most likely to benefit 15 but the accuracy of MRI is not known. Hypothesis/Purpose: To evaluate the correlation between MRI findings and intra-operative 16 17 anterolateral compartment exploration in acute ACL injured knees. The study hypothesis was that a positive correlation would be identified between imaging and surgical findings for 18 19 injuries to the ALL/capsule and the iliotibial band and that pre-operative MRI would be 20 associated with high sensitivity, specificity and accuracy for these parameters. Study Design: Case Series 21 22 Methods: Between January 2016 to May 2016 patients presenting with an acute ACL injury 23 were considered for study eligibility. A sample size calculation determined the numbers 24 enrolled. Included patients underwent 1.5T MRI and this was evaluated by three investigators 25 who attributed a Ferretti grade of injury to the anterolateral structures. At the time of ACL 26 reconstruction, a lateral exploration was undertaken and macroscopic injuries were

identified, classified and repaired. An evaluation of correlation between MRI and surgical exploration findings was performed. Results: 26 patients participated in the study. 96% had an ALL/capsule injury. The sensitivity, 30 specificity and accuracy of MRI in the evaluation of ALL/capsule injury, when using surgical exploration as a gold standard were 88%, 100% and 88.5% respectively. For evaluation of iliotibial band injury these values were 62.5%, 40% and 50%. The percentage agreement between MRI and surgical findings for ALL/capsule injury was 88% but only 65% for the ITB. The sensitivity and specificity of MRI for complete or partial tear of ALL and capsule were 78.6 and 41.7 respectively. The k test for correlation between surgical and MRI findigs was 0.27 for ITB abnormalities, 0.47 for ALL/capsule abnormalities, 0.23 for ALL/capsule determination of partial or complete tear and 0.49 for ALL/capsule determination of anterior or posterior tear. The overall percentage agreement between MRI and the classification based on surgical findings was only 53% and the Altman classification of kappa was fair. This suggests that whilst 40 the classification is useful for description of surgical findings the grade cannot be reliably established from MRI, at least with the parameters used in the current study Conclusion: Surgical exploration demonstrates that injuries occur to the anterolateral 43 structures in almost all acute ACL injured knees. Pre-operative MRI is highly sensitive, specific and accurate, for detection of abnormalities of the ALL/capsule and shows a high percentage of agreement with surgical findings. In contrast MRI has low sensitivity, specificity, and accuracy for the diagnosis of ITB injury. The agreement between MRI and surgical exploration with respect to ITB abnormality and determination of whether ALL/capsular tears were partial or complete was only fair.

27

28

29

31

32

33

34

35

36

37

38

39

41

42

44

45

46

47

Key terms: Anterolateral Ligament; Anterior Cruciate Ligament, magnetic resonance imaging,

Iliotibial band

What is known about the subject: The recently renewed interest in extra-articular procedures has led to them being carried out frequently in clinical practice. However, the indications are not precisely defined. It is known that isolated ACL reconstruction in knees with an anterolateral injury results in failure to restore normal knee kinematics. This suggests that those patients who have an imaging proven anterolateral injury may be most likely to benefit from such a procedure. However, the sensitivity, specificity and accuracy of MRI in diagnosing anterolateral injury has not been studied to the knowledge of the authors

What this study adds to existing knowledge: To our knowledge this is the first study that has correlated MRI findings of anterolateral injury in the acute ACL-injured knee with intra-operative lateral exploration findings. This has allowed determination of the sensitivity, specificity, and accuracy of MRI for injury to the anterolateral structures. The high percentage agreement suggests that MRI is a useful modality for evaluation of injury to the anterolateral ligament and capsule

Introduction:

Lateral extra-articular procedures have recently been popularized due to the increasing evidence that they improve the outcomes of ACL reconstruction. Recent studies have demonstrated that anterolateral ligament (ALL) reconstruction performed at the time of anterior cruciate ligament (ACL) reconstruction is associated with a significant reduction in

ACL graft rupture rates, and improved return to sport compared to isolated intra-articular reconstruction^{10,26}. Systematic reviews have also shown that patients who undergo an extra-articular procedure have a significantly lower pivot shift index than those undergoing ACL reconstruction only^{23,25}. However, it is important to note that lateral extra-articular procedures were widely abandoned in the 1980's due to concerns about high re-operation rates and complications. Contemporary study has demonstrated that combined ACL and ALL reconstruction appears to be a safe procedure. Thaunat³⁰ et al reported that the reoperation rate after combined ACL and ALL reconstruction in a large series of patients (n=548), with a minimum follow-up of two years, was broadly comparable to reoperation rates after isolated ACL reconstruction. In addition, they reported that the high rates of knee stiffness and reoperation reported in historical series of nonanatomic, lateral extraarticular tenodesis were not observed in their series. Despite these significantly improved clinical outcomes, the precise indications for the addition of an extra-articular procedure remain undefined. It is perhaps the case that those patients who have a demonstrable anterolateral injury on pre-operative imaging may be most likely to benefit but this has not been proven to date. Biomechanical studies have shown that when an anterolateral injury exists, normal knee kinematics are only restored when an extra-articular procedure is performed at the time of ACLR because isolated intra-articular reconstruction fails to restore IR control^{9,18,22}. It is therefore important to note that anterolateral injury has been reported to occur in up to 90% of acute ACL injured knees^{8,15,20,29}. The ability to identify these injuries on pre-operative imaging may help to determine which patients are more likely to benefit from a combined ACL reconstruction and extra-articular procedure. Several authors have therefore reported rates of identification of ALL injury on MRI^{4,6,12,13,17,31}.

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

However, the rate of reported injury shows broad variation which raises concerns about its reliability. To the knowledge of the authors, the sensitivity and specificity of MRI for determining injury to the anterolateral structures has not been previously reported. This is because published studies have not compared MRI findings with a lateral extra-articular exploration. The only studies that correlated MRI with anatomy were performed in cadavers with no anterolateral reported injuries^{2,11,12}.

Thus, the aim of this study was to evaluate the correlation between MRI findings and intra-operative anterolateral compartment exploration in acute ACL injured knees. The study hypothesis was that a positive correlation would be identified between imaging and surgical findings for injuries to the ALL/capsule and the iliotibial band and that pre-operative MRI

would be associated with high sensitivity and specificity for these parameters.

METHODS

Ethical approval was granted for this study by the Institutional Research Board. All patients gave valid consent to participate. The sample size was derived from Bujang and Adnan¹ who reported minimum numbers required for determining sensitivities and specificities in diagnostic studies. The sample size was determined to be n=22, based on a prevalence of injury to the ALL of 90% in acutely ACL-injured knees (assumed from Ferretti at al)⁸, a null hypothesis sensitivity of 50%, alternate hypothesis 80%, power 80% and a p value of <0.05.

Between January 2016 and May 2016, patients presenting to the emergency department with a history of acute knee injury and physical examination findings consistent with ACL injury were prospectively considered for study enrollment. Patients were excluded if they had a previous history of either ipsilateral or contralateral knee injury/surgery or infection, multiligament injury or inability to undergo MRI.

All patients underwent clinical assessment and a standard acute knee examination. This included an evaluation of the ACL with Lachman and pivot shift tests, and also relevant physical examination tests to exclude concomitant injuries.

After clinical evaluation, patients were referred for magnetic resonance imaging of the injured knee. MRI scans were performed on a 1.5T device (Siemens Maestro Sonata, gradient 40mT, software syngo A35) with the following parameters (Table 1).

1	7	O
T	_	О

	Sagittal	Sagittal T2	Coronal T2	Coronal	Axial T2
	PD	FATSAT	FATSAT	T1	FATSAT
Field of view (FOV)	180 mm	180mm	180mm	180mm	180mm
Repetition time					
(TR)	2800	3950	2950	3110	2940
Echo time (TE)	33	30	30	33	33
Thickness (mm)	3 mm	3mm	3mm	3mm	3mm
Spacing (mm)	2 mm	2 mm	1.5mm	1.5mm	2mm

Table 1. Parameters used in the MRI sequences. (Siemens Maestro Sonata, gradient 40mT, software syngo A35)

MRI scans were evaluated by three blinded observers (two musculoskeletal radiologists, with 15 years (main evaluator) and 8 years of experience respectively, and one orthopedic surgeon with 10 years of experience of interpreting MRI scans of the knee in daily practice). The ALL was evaluated using coronal images, with the axial and sagittal planes used mainly for anatomical orientation. The ALL was defined as the low signal band originating from the

region of the lateral epicondyle of the femur, crossing the proximal surface of the lateral collateral ligament (LCL), deep to the iliotibial band, to its tibial insertion between Gerdy's tubercle and the fibular head. The fibers were considered abnormal when they presented irregular contours, a wavy aspect, or areas of discontinuity. Joint capsule lesions were defined by thickening and increased signal in T2-weighted sequences, as well as the presence of periarticular fluid. For the purposes of this study the ALL/anterolateral capsule were considered as a single unit. When the ALL and/or capsule were found to be abnormal the injuries were also sub-classified. If a full thickness injury could be observed they were classified as complete tears, otherwise they were classified as incomplete. In addition, the observers also reported whether there was extension of the capsular tear (anterior or anterior/posterior). The presence and absence of iliotibial tract (ITT) lesions was also determined and recorded using the criteria established by Mansour et al. 19 The iliotibial tract was considered abnormal when thickening, signal change in its fibers, or edema of adjacent planes were present, even if observed in a discrete manner. MRI evaluators were then asked to attribute a Ferretti grade of injury (Table 2) to the anterolateral structures⁸. Following MRI evaluation, in line with the standard of care for acute ACL ruptures at our institution, all patients underwent ACL reconstruction within 10 days from injury. A concomitant exploration of the lateral compartment was performed as part of the study protocol. All procedures were performed by the senior author who has more than 25 years of experience in this field. The lateral compartment was exposed in all cases regardless of the degree of pivot shift (evaluated under general anaesthesia prior to surgery). This was performed prior to ACL reconstruction. The lateral compartment was approached by a hockey stick incision. After elevation of skin flaps, the fascia lata was exposed and evaluated for evidence of macroscopic injury. It was then incised, in line with its fibers, to expose the

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

anterolateral compartment. When a lesion was found it was repaired by 3-4 parallel stitches with square knots (No. 2 Vicryl; Ethicon) with the knee at 90 of flexion and neutral rotation.

At each step of the lateral exploration, a written record was made of the presence or absence of injury to the anterolateral structures of the knee, including hemorrhage, incomplete capsular tear, ALL/capsule complete tears, and fractures. Both positive and negative findings were documented in every case by intra-operative photographs throughout the dissection.

Macroscopic tears of the ALL/capsule were classified as suggested by Ferretti et al (Table 2):

Type I	multilevel rupture in which individual layers are torn at different levels with
	macroscopic hemorrhage involving the area of the anterolateral ligament (ALL) and
	extended to the anterolateral capsule only (incomplete tear of anterolateral capsule)
Type II	multilevel rupture in which individual layers are torn at different levels with
	macroscopic hemorrhage extended from the area of the ALL and capsule to the
	posterolateral capsule (incomplete tear of anterolateral and posterolateral capsule)
Type III	complete transverse tear involving the area of the ALL near its insertion to the lateral
	tibial plateau, always distal to the lateral meniscus (complete tear of anterolateral
	capsule)
Type IV	corresponding to bony avulsion (Segond fracture)

Table 2. Classification of injuries of anterolateral complex as described by Ferretti et al.⁸

 $Following \ the \ lateral \ exploration, \ all \ of \ the \ identified \ ALL/capsular \ injuries \ underwent \ repair.$

ACL reconstruction was performed in a standardized manner with a doubled semitendinosus and gracilis tendon graft with an outside-in technique.

Statistical analysis

All calculations were made using SPSS software (Version 20.0, SPSS Inc., Chicago, IL). Cohens Kappa was used to determine inter- and intra-observer reliability between all MRI evaluators

and also to determine correlation between MRI and surgical findings. The latter was performed using the main evaluators assessment. Strength of agreement was evaluated according to the criteria of Altman. The sensitivity, specificity and accuracy of MRI in evaluating injuries to the anterolateral structures were calculated using surgical exploration findings as the gold standard.

RESULTS

Twenty-six patients met the eligibility criteria and were enrolled to the study. Table 3 reports the demographic details and patient characteristics of the study population

Age (Range)	26.7±7.1(17-46) years
Gender	
Male	21
Female	5
BMI (range)	20.6±1.3(19-23.5)
Time to surgery (range)	4.3±2.2(1-10) days
Pre-operative pivot-shift test (evaluated under	
general anaesthesia)	-
Grade 0	5
Grade 1	16

Grade 2	5	
Grade 3		

Table 3. Demographics and patient characteristics of the study population

Results of MRI evaluation: The ITB was considered normal in 15/26 (57.7%) cases and abnormal in 11/26 (42.3%) cases. The ALL/ anterolateral capsule was considered normal in 4/26 (15.4%) cases and abnormal in 22/26 (84.6%) cases. Tears of the ALL and capsule were considered complete in 15/22 (68.2%) cases and incomplete in 7/22 (31.8%) cases. Extension of the capsular tear was observed to be anterior in 11/22 (50.0%) cases and anterior/posterior in 11/22 (50.0%). The inter- and intraobserver correlation indices are reported in table 4

Kappa Coefficient	ALL / capsule lesion (presence or not)	ALL / capsule lesion (complete or incomplete)	Capsular tear extension (anterior/posterior)	ITB tear (presence or not)
inter-observer	1	0.64	0.47	0.64
intra-observer 1	1	0.66	0.58	0.69
intra-observer 2	1	0.60	0.82	0.61
intra-observer 3	1	0.75	0.82	0,8

Table 4: The inter- and intraobserver correlation indices

Surgical evaluation: at surgical evaluation, the ITB was considered normal in 18/26 (69.2%) cases and abnormal in 8/26 (30.8%) cases. The ALL and capsule were considered normal in 1/26 (3.8%) cases and abnormal in 25/26 (96.2%) cases. The ALL and capsular tear was considered complete in 10/25 (40.0%) cases and incomplete in 15/25 (60.0%) cases. Extension

of the capsular tear was observed to be anterior in 11/25 (44.0%) cases and anterior-posterior in 14/25 (56.0%).

The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of MRI for parameters of injury to the anterolateral structures of the acutely ACL-injured knee, when using surgical exploration as a gold standard are reported in Table 4.

Table 5: Sensitivity, Specificity, PPV – Positive Predictive Value, NPV – Negative Predictive Value and Accuracy of

	Sensitivity	Specificity	PPV	NPV	Accuracy
ITB Abnormality	62.5	40.0	45.5	57.1	50.0
	24.49 to	12.16 to	28.49 to	29.2 to	26.02 to
95% CI	91.48	73.76	63.54	81.17	73.98
ALL/Capsule					
Abnormality	88.0	100.0	100.0	25.0	88.5
	68.8 to			10.34 to	69.85 to
95% CI	97.4	2.5 to 100	n/a	49.07	97.55
ALL/Capsule					
complete/partial tear	78.6	41.7	61.1	62.5	61.5
	49.2 to	15.17 to	47.53 to	33.29 to	40.57 to
95% CI	95.34	72.33	73.16	84.77	79.77
ALL/Capsule					
anterior/posterior	75.0	64.3	54.6	81.8	68.2
	34.91 to	35.14 to	34.83 to	56.02 to	45.13 to
95% CI	96.81	87.24	72.93	94.08	86.14

MRI for parameters of injury to the anterolateral structures of the acutely ACL-injured knee, when using surgical exploration as a gold standard

The K test for correlation between surgical and MRI findings is reported in Table 5 along with the strength of agreement according to Altman 1991.

		Al
	Карра	Class
ITB Abnormality	0.27	
ALL/Capsule Any Abnormality	0.47	Мо
ALL/Capsule: Determination of complete/partial tear	0.23	

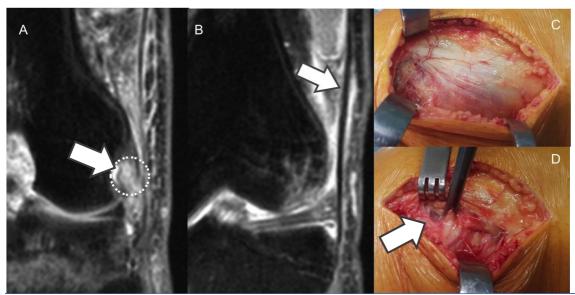
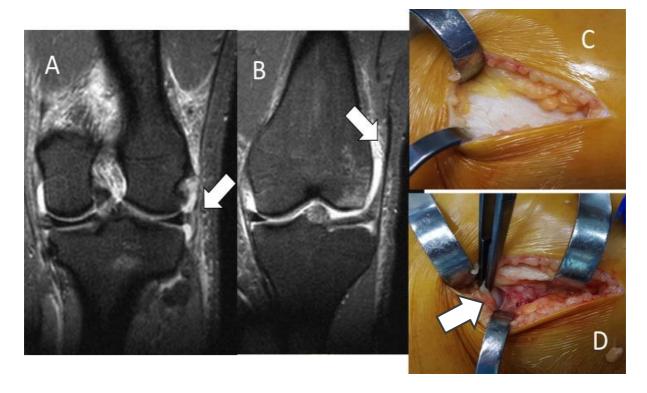



Table 6: Correlation between MRI and Surgical findings using Cohens Kappa and the Altman classification of strength of agreement and overall percentage agreement

Figure 1 A: Coronal T2 weighted MRI image. Discontinuity at the proximal (femoral) portion of the anterolateral ligament (circle) with marked regional edema. B: Coronal T2 weighted MRI image. Non-insertional iliotibial band strain (arrow) characterized by adjacent edema, with no fiber discontinuity. C: surgical exploration of the fascia lata showing edema and incomplete tear. D: surgical exploration of the capsule showing a complete tear of the anterolateral capsule and ligament (arrow; type 3 according Ferretti classification).

Figure 2. MRI T2 weighted images with fat saturation. **A.** Anterolateral ligament presenting abnormal signal and irregular aspect of its fibers (arrow). **B.** Iliotibial band with normal signal and thickness (arrow). **C.** surgical exploration of the fascia lata that is normal. **D.** surgical exploration of the capsule showing a complete tear of the anterolateral capsule and ligament (arrow; type 3 according Ferretti classification).

Discussion

The most important finding of this study was that when considering surgical exploration as the gold standard, MRI evaluation demonstrated high sensitivity, specificity and accuracy for detection of abnormalities of the ALL/capsule. The sensitivity and specificity for other parameters such as whether there was a complete tear or not, and anterior/posterior extension were not as high, and for evaluation of the ITB, the values were low. These findings were mirrored in the kappa correlation data for agreement between surgery and

MRI evaluations. Although there was moderate agreement between them for ALL/capsular abnormalities and determination of anterior/posterior extension of tears, the agreement between them with respect to ITB abnormality and determination of whether ALL/capsular tears were partial or complete was only fair. To the knowledge of the authors this is the first study that has compared MRI findings with intra-operative anterolateral exploration in the acute ACL-injured knee. However, several previous cadaveric studies have compared MRI findings with laboratory exploration in normal knees. Caterine et al and Helito et al both reported that they were able to fully visualise the ALL and subjectively and objectively correlate 1.5T MRI findings with dissection in all specimens^{2,12}. Subsequent authors have not demonstrated such a high degree of reliability in identification of the ALL in clinical studies, and published rates of full visualisation (11-100%)^{24,28}, partial visualisation (11.5-48.5%)^{5,11} and non-visualisation (0-49%)^{24,28} show broad variation in normal knees. Part of the reason for this discrepancy is that the aforementioned cadaveric studies used MRI protocols with very thin (0.4mm and 0.6-1.5mm) slices. This has the advantage of reducing the partial volume effect and improving spatial resolution. However, in clinical practice the increased scan duration with thinner slices is prohibitive and more typically a slice thickness of 3mm is used. Rates of MRI identification of abnormalities of the anterolateral ligament in the ACL injured knee also demonstrate broad variation which may be influenced by factors such as magnet strength, slice thickness, experience of evaluators, and the timing of injury (acute/chronic). Rates of injury between 32.6-88% are reported, with the majority of authors reporting values around 40%, towards the lower end of the spectrum^{4,7,12,13,31}. These lower values are inconsistent with the clinical findings of surgical exploration studies by Hughston¹⁵, Terry²⁹,

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

271 Muller²⁰ and more recently by Ferretti⁸ et al that demonstrated a much higher rate of injury 272 of approximately 90% 273 More recent imaging studies have tended to report higher rates of ALL and capsule injury 274 which are more in keeping with the rate previously reported at surgical exploration. Muramatsu et al.²¹ with the use of 3D-MRI demonstrated that 87.5% of acute ACL-injured 275 276 knees and 55.6% of chronic ACL injured knees were associated with an ALL injury. This trend 277 towards reporting higher rates of injury may reflect increasing experience and knowledge 278 regarding MRI evaluation of these structures and a consequently improved detection rate. 279 In the current study, it was hypothesised that there would be good agreement between MRI 280 and anterolateral exploration. An attempt to reduce confounding was made by only including 281 acute ACL injured knees and having three imaging evaluators with considerable expertise in 282 ALL evaluation. Despite that, using the Altman classification of Cohen's kappa, none of the 283 parameters studied showed good agreement between MRI and surgical findings. However, it 284 is important to highlight that for the category ALL/capsule injury, the strength of agreement 285 is lower than expected, principally because over 90% of observations were in the "abnormal" 286 category. This skewness of data is a well-recognised cause of paradox where the kappa 287 coefficient appears to be lower than expected based on the percentage agreement. As such 288 the percentage agreement in this particular group (88%) is a more useful metric than the 289 kappa coefficient, but for other parameters it is an appropriate evaluation. The Altman 290 classification for agreement between MRI and surgical findings was moderate for 291 anterior/posterior extension of ALL and capsular injuries but only fair for determination of 292 whether the injury was complete or partial, and for evaluation of ITB abnormalities. 293 The overall percentage agreement between MRI and the Ferretti classification, based on 294 surgical findings, was only 53% and the Altman classification of kappa was fair. This suggests that whilst the classification is useful for description of surgical findings the grade cannot be reliably established from MRI, at least with the parameters used in the current study. The main reasons for this lack of correlation are that the percentage agreement between MRI and surgery for the parameters of complete/partial injury and anterior/posterior extension were only 61% and 57% respectively. This is reflected in the fact that MRI has a moderate sensitivity and low specify for both of these injury characteristics. It is important to note that surgical exploration identified injury to the ITB in only 8 patients, whereas almost all patients had an injury to the ALL/capsule. More importantly, it should be specifically stated that 19/26 (73.1%) patients had an injury to the ALL/capsule with a completely normal ITB. This is somewhat in contrast to the laboratory-based concept that the ITB is the primary restraint to internal tibial rotation and the ALL a secondary restraint ¹⁶. This important clinical finding is likely a reflection of the reliance of laboratory studies on artificially created injury patterns which do not easily replicate in-vivo mechanisms. It should also be stated that there was fair agreement with respect to kappa and a 65% agreement between surgical findings and MRI with respect to ITB abnormalities. However, the accuracy of MRI was only 50%. Where there was disagreement between MRI and surgery the most common reason (66.6%) was that MRI had suggested an ITB injury but no abnormality was identified at surgery. This is also an important finding because MRI evidence of injury to the ITB has been reported as an indication for performing a LET but the findings of the current study suggest that the accuracy of MRI for this parameter is low and that using it in this way may lead to overtreatment²⁷.

316

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Limitations

The small study population could be considered a limitation given that ACL rupture is a very common injury in the sports medicine scenario. However, a sample size calculation was specifically performed in order to include an adequate number of patients to answer the research question studied. It was a deliberate decision not to include a much larger number of patients because it is not useful to access the lateral compartment in every ACL-injured knee and there is a potential associated morbidity of this additional procedure. Specifically, it is not known which patterns of anterolateral injury warrant direct surgical repair and this study did not attempt to define that. A further limitation of the study was that there is no published, validated, standardized imaging protocol for evaluation of injury to the ALL/anterolateral capsule. This may have been mitigated to some extent by the fact that the MRI evaluators in this study had considerable experience in evaluating these structures in their daily practice. However, it should be noted that evaluators were specifically instructed to identify injuries to the anterolateral structures. It is plausible that this lack of blinding of the study purpose may have influenced the rate of diagnosis of injury to these structures.

Conclusions

Surgical exploration demonstrates that injuries occur to the anterolateral structures in almost all acute ACL injured knees. Pre-operative MRI is highly sensitive, specific and accurate, for detection of abnormalities of the ALL/capsule and shows a high percentage of agreement with surgical findings. In contrast MRI has low sensitivity, specificity, and accuracy for the diagnosis of ITB injury

REFERENCES

343	1.	Bujang MA, Adnan TH. Requirements for Minimum Sample Size for Sensitivity
344	and Specificit	cy Analysis. J Cli Diagn Res. 2016 Oct; 10(10): YE01–YE06. Published online 2016
345	Oct 1. doi: 10	0.7860/JCDR/2016/18129.8744 PMCID: PMC5121784
346		
347	2.	Caterine S, Litchfield R, Johnson M, et al. A cadaveric study of the
348	anterolateral	ligament: re-introducing the lateral capsular ligament. Knee Surg Sports
349	Traumatol Ar	throsc. 2015 Nov;23(11):3186-95
350		
351	3.	Cavaignac E, Faruch M, Wytrykowski K et al. Ultrasonographic Evaluation of
352	Anterolateral	Ligament Injuries: Correlation With Magnetic Resonance Imaging and Pivot-
353	Shift Testing.	Arthroscopy. 2017 Jul;33(7):1384-1390. doi: 10.1016/j.arthro.2017.01.040.
354	Epub 2017 M	ar 24. PubMed PMID: 28343806.
355		
356	4.	Claes S, Bartholomeeusen S, Bellemans J. High prevalence of anterolateral
357	ligament abn	ormalities in magnetic resonance images of anterior cruciate ligament-injured
358	knees. Acta C	Orthop Belg. 2014 Mar;80(1):45-9.
359		
360	5. Coqua	art B, Le Corroller T, Laurent PE, et al. Anterolateral 🔠 gament of the knee:
361	Myth or reali	ty? Surg Radiol Anat 2016;38:955-962.
362		
363	6.	Devitt BM, O'Sullivan R, Feller JA, et al. MRI is not reliable in diagnosing of
364	concomitant	anterolateral ligament and anterior cruciate ligament injuries of the knee. Knee
365	Surg Sports T	raumatol Arthrosc. 2017 Apr;25(4):1345-1351. doi: 10.1007/s00167-017-4538-
366	2. Epub 2017	Apr 12.

367		
368	7.	Faruch Bilfeld M, Cavaignac E, Wytrykowski K, Constans O, Lapègue F,
369	Chiavassa Ga	andois H, Larbi A, Sans N. Anterolateral ligament injuries in knees with an
370	anterior cruc	ciate ligament tear: Contribution of ultrasonography and MRI. Eur Radiol. 2018
371	Jan;28(1):58-	-65. doi: 10.1007/s00330-017-4955-0. Epub 2017 Jul 12
372		
373		
374	8.	Ferretti A, Monaco E, Fabbri M, et al. Prevalence and Classification of Injuries
375	of Anterolate	eral Complex in Acute Anterior Cruciate Ligament Tears. Arthroscopy. 2017
376	Jan;33(1):147	7-154.
377		
378	9.	Guenther D, Irarrázaval S, Bell KM, Rahnemai-Azar AA, et al. The Role of
379	Extra-Articula	ar Tenodesis in Combined ACL and Anterolateral Capsular Injury. J Bone Joint
380	Surg Am. 201	17 Oct 4;99(19):1654-1660. doi: 10.2106/JBJS.16.01462. PubMed PMID:
381	28976430	
382		
383	10.	Helito CP, Camargo DB, Sobrado MF, Bonadio MB, Giglio PN, Pécora JR,
384	Camanho GL	, Demange MK. Combined reconstruction of the anterolateral ligament in
385	chronic ACL	injuries leads to better clinical outcomes than isolated ACL reconstruction.
386	Knee Surg Sp	oorts Traumatol Arthrosc. 2018 Apr 2. doi: 10.1007/s00167-018-4934-2
387		
388	11.	Helito CP, Demange MK, Helito PV, et al. Evaluation of the anterolateral
389	ligament of t	he knee by means of mag- netic resonance examination. Rev Bras Orton

2015;50: 214-219.

391		
392	12.	Helito CP, Helito PV, Bonadio MB, Pécora JR, Bordalo-Rodrigues M, Camanho
393	GL, Demange	MK. Correlation of Magnetic Resonance Imaging With Knee Anterolateral
394	Ligament Ana	tomy: A Cadaveric Study. Orthop J Sports Med. 2015 Dec
395	16;3(12):2325	967115621024. doi: 10.1177/2325967115621024
396		
397	13.	Helito CP, Helito PVP, Costa HP, et al. Assessment of the Anterolateral
398	Ligament of th	ne Knee by Magnetic Resonance Imaging in Acute Injuries of the Anterior
399	Cruciate Ligan	nent. Arthroscopy. 2017 Jan;33(1):140-146. doi:
400	10.1016/j.arth	nro.2016.05.009. Epub 2016 Jun 17. PubMed PMID: 27324971.
401		
402	14.	Helito CP, Helito PVP, Leão RV, et al. Anterolateral ligament abnormalities are
403	associated wit	th peripheral ligament and osseous injuries in acute ruptures of the anterior
404	cruciate ligam	ent. Knee Surg Sports Traumatol Arthrosc. 2017 Apr;25(4):1140-1148.
405		
406	15.	Hughston JC, Andrews JR, Cross MJ, et al. Classification of knee ligament
407	instabilities. P	art II. The lateral compartment. J Bone Joint Surg Am. 1976 Mar;58(2):173-9.
408		
409	16.	Huser LE, Noyes FR, Jurgensmeier D, et al. Anterolateral Ligament and
410	Iliotibial Band	Control of Rotational Stability in the Anterior Cruciate Ligament-Intact Knee:
411	Defined by Tib	piofemoral Compartment Translations and Rotations. Arthroscopy. 2017
412	Mar;33(3):595	5-604. doi: 10.1016/j.arthro.2016.08.034

414	17.	Kızılgöz V, Sivrioğlu AK, Aydın H,et al. Assessment of the anterolateral
415	ligament of th	ne knee by 1.5 T magnetic resonance imaging. J Int Med Res. 2018 Jan
416	1:300060517	740032. doi: 10.1177/0300060517740032. [Epub ahead of print] PubMed
417		
418	18.	Lutz C, Sonnery-Cottet B, Niglis L, et al. Behavior of the anterolateral
419	structures of	the knee during internal rotation. Orthop Traumatol Surg Res. 2015
420	Sep;101(5):52	23-8.,
421		
422	19.	Mansour R, Yoong P, McKean D, et al. The iliotibial band in acute knee
423	trauma: patte	erns of injury on MR imaging. Skeletal Radiol. 2014 Oct;43(10):1369-75
424		
425	20.	Muller W. The Knee, form, function and ligament reconstruction. ISBN:978-3
426	642-61765-2(print) 978-3-642-61763-8 (online)
427		
428	21.	Muramatsu K, Saithna A, Watanabe H, et al. Three-dimensional Magnetic
429	Resonance Im	naging of the Anterolateral Ligament of the Knee: An Evaluation of Intact and
430	Anterior Cruc	iate Ligament-Deficient Knees From the Scientific Anterior Cruciate Ligament
431	Network Inte	rnational (SANTI) Study Group. Arthroscopy. 2018 May 2. pii: S0749-
432	8063(18)3014	10-3. doi: 10.1016/j.arthro.2018.02.014.
433		
434	22.	Parsons EM, Gee AO, Spiekerman C, et al. The biomechanical function of the
435	anterolateral	ligament of the knee. Am J Sports Med. 2015 Mar;43(3):669-74
436		

437	23.	Pomajzl R, Maerz T, Shams C, et al. A review of the anterolateral ligament of	
438	the knee: current knowledge regarding its incidence, anatomy, biomechanics, and surgical		
439	dissection. Arthroscopy. 2015 Mar;31(3):583-91. doi: 10.1016/j.arthro.2014.09.010. Epub		
440	2014 Nov 8. Review. PubMed PMID: 25447415.		
441			
442	24.	Porrino J Jr, Maloney E, Richardson M, Mulcahy H, Ha A, Chew FS. The	
443	anterolateral ligament of the knee: MRI appearance, association with the Segond fracture,		
444	and sephistorical perspective. AJR Am J Roentgenol 2015;204: 367-373.		
445			
446			
447			
448	25.	Rezende FC, de Moraes VY, Martimbianco AL, et al Does Combined Intra-	
449	and Extraarticular ACL Reconstruction Improve Function and Stability? A Meta-analysis. Clin		
450	Orthop Relat Res. 2015 Aug;473(8):2609-18		
451			
452	26.	Sonnery-Cottet B, Saithna A, Cavalier M, et al. Anterolateral Ligament	
453	Reconstruction Is Associated With Significantly Reduced ACL Graft Rupture Rates at a		
454	Minimum Follow-up of 2 Years: A Prospective Comparative Study of 502 Patients From the		
455	SANTI Study Group. Am J Sports Med. 2017 Jun;45(7):1547-1557.)		
456			
457	27.	Smith PA. Editorial Commentary: Filling the Void in Translational Research for	
458	Lateral Extra-a	articular Tenodesis for Anterior Cruciate Ligament Reconstruction: Are We	
459	Saturated With Biomechanical Studies? Arthroscopy. 2018 Jan;34(1):261-263. doi:		
460	10.1016/j.arthro.2017.10.003. PubMed PMID: 29304967.		

461			
462	28.	Taneja AK, Miranda FC, Braga CA, et al. MRI features of the anterolateral	
463	ligament of the knee. Skeletal Radiol 2015;44:403-410.		
464			
465			
466	29.	Terry GC, Norwood LA, Hughston JC, et al. How iliotibial tract injuries of the	
467	knee combine with acute anterior cruciate ligament tears to influence abnormal anterior		
468	tibial displacement. Am J Sports Med 1993 21, 55–60.		
469			
470	30. T	Thaunat M, Clowez G, Saithna A, et al. <u>Reoperation Rates After Combined Anterior Cruciate</u>	
471	Ligament	t and Anterolateral Ligament Reconstruction: A Series of 548 Patients From the SANTI Study	
472	Group W	<u>ith a Minimum Follow-up of 2 Years.</u> Am J Sports Med. 2017 Sep;45(11):2569-2577.	
473			
474	31.	Van Dyck P, Clockaerts S, Vanhoenacker FM,et al. Anterolateral ligament	
475	abnorma	alities in patients with acute anterior cruciate ligament rupture are associated with	
476	lateral n	neniscal and osseous injuries. Eur Radiol. 2016 Oct;26(10):3383-91.	
477			
478			