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Abstract 

Improving a city’s infrastructure is seen as a crucial part of its sustainability, leading to efficiencies 

and opportunities driven by technology integration. One significant step is to support the integration 

and enrichment of a broad variety of data, often using state of the art linked data approaches. 

Among the many advantages of such enrichment is that this may enable the use of intelligent 

processes to autonomously manage urban facilities such as traffic signal controls. 

In this paper we document an attempt to integrate sets of sensor and historical data using a data hub 

and a set of ontologies for the data. We argue that access to such high level integrated data sources 

leads to the enhancement of the capabilities of an urban transport operator. We demonstrate this by 

documenting the development of a planning agent which uses such data as inputs in the form of 

logic statements, and when given traffic goals to achieve, outputs complex traffic signal strategies 

which help transport operators deal with exceptional events such as road closures or road traffic 

saturation. The aim is to create an autonomous agent which reacts to commands from transport 

operators in the face of exceptional events involving saturated roads, and creates, executes and 

monitors plans to deal with the effects of such events. We evaluate the intelligent agent in a region 

of a large urban area, under the direction of urban transport operators. 

 

1 Introduction 

The central idea of smart city initiatives is to use technology to improve the efficiency, effectiveness 

and capability of various city services, thus improving the quality of the inhabitants’ lives (Townsend 

2013). Recent smart city initiatives are emerging all over the world. A fundamental difference 

between smart cities and similar uses of technology in other areas, like business, government or 
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education, is the vast variety of the technologies used, the types and volumes of data, and the services 

and applications targeted (d’Aquin et al. 2015). To develop successful smart city solutions, there is a 

need to (i) collect and maintain relevant data, both static and dynamic in the form of IoT data, and (ii) 

use a variety of technologies for improving decision making and support and optimizing solutions 

and services. The complexity and diversity of relevant data in smart cities is one of the main reasons 

why they have emerged as key use cases for linked data (Bizer et al. 2009) and Semantic Web 

technologies (Berners-Lee et al. 2001). Linked data is well suited for data integration because it 

allows integration and unified access through common, high-level vocabularies, while leaving the 

original data distributed and managed under the control of their original contributors (d’Aquin et al. 

2015). In addition, the use of linked data and Semantic Web technologies allows the semantic 

enrichment of data by linking them with additional information, thus providing context and also 

aiding data cleaning. 

The work reported here was one of the deliverables of a funded project called “SimplyfAI” which 

was carried out by a consortium consisting of a university (University of Huddersfield), a major 

transport authority (Transport for Greater Manchester – TfGM), a large technology supplier (British 

Telecommunications - BT), one SME performing the project management (KamFutures Ltd), and 

another SME 

providing independent validation of the results (InfoHub). Thus the paper reports on research results 

and their evaluation in a real setting: the problem area, the data, the validation and the management 

were all performed to a large part independently of the research group at the centre of the project. The 

overall aims were in the context of developing smart city technology, taking advantage of the wide 

range of data available in a modern urban area. In particular the project focussed on exploiting the 

real-time and historical data sources to pursue better congestion control during times when the road 

network was saturated. 

In general, urban traffic management and control (UTMC) is a primary concern of any city, and urban 

traffic transport operators often have at their disposal a disparate variety of real time and historical 

data, traffic controls (the most common of which are traffic signals) and controlling software. They 

use these assets to perform the crucial role of tackling road congestion, minimising delay to the road-

based traveller, and minimising traffic related environmental effects. Like in many organisations, 

however, the software systems used in UTMC tend to be based around a syntactic, product specific 

integration of data, which at best shares data externally at a relational database level. They adopt a 

vertical systems design, and though eminently configurable within the range of their function, they 

are not integrated at a horizontal level with the overall function of the UTMC centre where they 

operate. Within UTMC operations this perpetuates the status quo of recurrent system replacement, 

rather than system evolution and data and software reuse. 

To counter this status quo, the project was engaged in developing semantic technology in order to 

better capture and exploit real-time and historical urban data sources, while pursuing the higher level 

of data integration. We aim to make UTMC systems less brittle and more adaptable by raising the 

level of traffic control software integration via semantic component inter-operability. In doing this 

we have the longer-time aim of utilising an autonomic approach to UTMC in particular, and road 

transport support in general, as developed in the EU’s transport network ARTS1 (McCluskey et al. 

2016). Results of the Network supported the idea of the construction of a semantic systems level for 

UTMC, consistent with work on integrating decision support within semantic technologies 

(Blomqvist 2014, Antunes et al. 2016). Among the benefits of a higher level of information integration 

is a more joined up UTMC capability, where the flexibility of a knowledge level representation gives 

the opportunity to use intelligent agents to provide a more autonomous approach to tackle UTMC 

issues. Indeed, one of the enablers of deploying agents that can reason with the knowledge of an 

application area is that the data available embodies its own semantics in the consistent use of meta-

data. 

                                                 
1 EU’s COST Action 1102 “Towards Autonomic Road Transport Support Systems” (ARTS) 



Within this context, we present a novel planning agent which addresses a well known functional 

drawback of established UTMC tools referred to above: they do not work adequately in the face of 

exceptional or unexpected conditions affecting urban regions (containing many hundreds or 

thousands of road vehicles). Hence the contributions of the paper are in the demonstrations of how: 

• the diversity of traffic-related data can be represented using semantic technologies, to enable 

the integration into a unified form through a common, high-level vocabulary; 

• a planning agent can take advantage of the semantically-enriched data to assist in better 

control and decision making in traffic management; 

• the planning agent can generate traffic control strategies (actions which change signals at a 

specified time) in real time in response to detection of traffic congestion caused by exceptional 

circumstances in an area of Manchester, UK. 

 

The quality of the strategies output from the planning agent was evaluated firstly by hand inspecting 

the strategies to check that they were “sensible”. In this case the strategies were inspected by transport 

operators, to check they embodied common sense uses of the traffic signal within them. Secondly, 

their effect was compared against optimised strategies derived from historical data by simulating their 

execution using both the AIMSUN micro-modelling software2, and the off-the-shelf SUMO 

(Krajzewicz et al. 2012) micro-modelling software. In each, transport engineers compared the results 

of simulations using both automated planning generated strategies, and optimised strategies derived 

from historical data. In both these simulators, run by different members of the consortium, the agent-

generated strategies produced noticeable savings - approximately a 20% efficiency gain. Given we 

know of no other operational system that generates region wide strategies for exceptional events in 

busy urban areas, the implications of taking this approach are, we believe, of a step changing nature 

for UTMC. Additionally, while this application demonstrates what can be done currently, we perceive 

a range of benefits from the existence of the integration of a wide range of data, expressed at a 

semantic level. Currently we are engaged in the adaptation of the system to deal with additional 

effector actions (rather than only controlling traffic signal change) and a more sophisticated, flexible 

goal language with which the operators can communicate with the agent. 

 

2 Creation of a Semantic Level for Traffic-related Data 

This section is focused on the semantic enrichment of traffic-related data. 

 

2.1 Overview 

The initial focus of the SimplyfAI project concentrated on the semantic enrichment of traffic data in 

a collaboration involving university academics and the technology provider, BT. In broad outline, the 

raw data was taken from transport and environment sources and integrated into a data hub3, using 

semantic technologies such as the universal RDF triple format and a data ontology. The method was 

to take real time feeds and process them until they produced logical facts about a traffic scenario, 

which serves as the dynamic data input to the planning agent. These facts contain the real-time 

occupancy of road links (a link is a uni-directional part of a road between two intersections) and the 

signal phase of the traffic lights in intersections connecting the road links within an operator-defined 

region. 

Introducing machine readable semantics for data sharing and integration calls for a formal language 

for conceptualization of application domains, the related concepts, their properties and their 

relationships. Based upon existing work on knowledge representation, logic and ontologies, RDF 

(Hayes 2004) forms the basis for Semantic Web standards for data representation, while RDFS and 

OWL are used for defining concepts, their properties and their relationships. OWL 2 (Hitzler et al. 27 

October 2009) is the current standard for ontology definitions. These definitions can reference and 

                                                 
2 http://aimsun.com 

3 http://portal.bt-hypercat.com/ 



reuse existing definitions and data forming distributed interconnected datasets (Linked Data), which 

are typically open (Linked Open Data-LOD)4. 

 

2.2 Data Hub 

In SimplyfAI, the data hub provides a focal point for the sharing and consumption of related datasets, 

such as traffic data. The role of the data hub is to enable information from various sources to be 

brought onto a common platform. Its portal provides a direct interface through which data consumers, 

such as app developers, can browse a data catalogue and select and subscribe to data feeds that they 

want to use. In addition, a JSON-based Hypercat (Beart 2016) machine-readable catalogue, described 

further below, is also provided (as well as a recently proposed RDF-based Hypercat (Tachmazidis et 

al. 2016) catalogue). An API enables access to data feeds, secured by API keys, from browsers or 

within computer programs, while a relational, GIS capable, database enables complex queries that 

data can be filtered according to a wide range of criteria. 

A set of adapters enables information coming onto the hub to be converted to a standard format for 

use inside the platform’s core. It also provides a consistent API to end users and developers. The hub 

provides a consistent approach to integration between data exposed by sensors, systems and 

individuals via communication networks and the applications that can use derived information to 

improve decision making, e.g., in control situations that we elucidate in Section 3 below. It includes 

a set of adapters for ingress (input) and egress (output). These are potentially specific to each data 

source or application feed and may be implemented on a case by case basis. There is therefore a need 

to translate data between arbitrary external formats and the data formats used internally. 

 

[Figure 1 about here] Top Level Concepts. 

 

In addition, as mentioned above, a Hypercat catalogue is implemented which is included via the 

Hypercat API. Hypercat is in essence a standard for representing and exposing Internet of Things data 

hub catalogues over web technologies. The idea is to enable distributed data repositories (data hubs) 

to be used jointly by applications through making it possible to query their catalogues in a machine 

readable format. This enables the creation of “knowledge graphs” of available datasets across multiple 

hubs that applications can exploit and query to identify and access the data they need, whatever the 

data hub in which they are held. 

 

2.3 Data Enrichment 
While Hypercat offers a syntactic first step, providing semantically enriched data, it also allows the 

unique identification of existing resources, interoperability across various domains and further 

enrichment by combining internally stored data with the Linked Open Data cloud. Developing an 

ontology that provides definitions to required concepts at a level of complexity that allows fast 

reasoning over big data is the main challenge during this work at the semantic level. Thus, data 

enrichment in the data hub is achieved by representing data in RDF using concepts and properties 

defined in an OWL ontology. Figure 1 shows the top level concepts of the developed ontology. A 

major design decision in this work is to propose a minimalistic representation that can be the basis of 

an efficient reasoning mechanism over Big Data (e.g., IoT applications) thus reusability of existing 

definitions on other ontologies (e.g., definition of lat/long coordinates) and axioms were restricted to 

the minimum required. Additional axioms and links to existing definitions will be added in future 

applications if necessary, but reasoning and querying performance is a factor that must be taken into 

account. 

In the developed ontology, Feed is the top level class for any data feed that is asserted in the 

knowledge base. It contains the semantic properties of feeds. These include the feed id, creator, update 

date, title, url, status, description, location name, domain and disposition. There are also subclasses 

                                                 
4 http://lod-cloud.net/ 



of class Feed, namely: SensorFeed, EventFeed and LocationFeed representing feeds for sensors, 

events and locations respectively. 

Data that has been modelled for the SimplyfAI project has been incorporated in the data hub as one 

of the following feed types: (a) SensorFeed, (b) EventFeed, and (c) LocationFeed. Practically, each 

data source can advertise available information through the hub by providing a feed. A feed should 

be understood as a source of sensor readings, events or locations. Within each feed, data is available 

through datastreams (a class Datastream is defined, which has two subclasses namely: SensorStream 

and EventStream representing datastreams for sensors and events respectively). Thus, a given feed 

may provide a range of datastreams that are closely related e.g., for a weather data feed, different 

datastreams may provide sensor readings for temperature, humidity and visibility. Considering 

information about locations, a feed (of type LocationFeed) provides information directly by returning 

locations (note that class Location models any given location), namely locations are attached to and 

provided by a given feed. Note that time-stamping feeds in conjunction with their location provides 

the required dynamic information for the planning agent. 

A Hypercat online catalogue5 contains details of feeds and information sources along with additional 

metadata such as tags, which allow improved search and discovery. The developed semantic model 

enables a semantic annotation and linkage of available feeds and datastreams. An OWL ontology has 

been developed and made available with the uri: 

http://portal.bt-hypercat.com/ontologies/bt-hypercat 

 

By defining an ontology, semantically enriched data can be provided in RDF format, while prior to 

the SimplyfAI project only XML and JSON formats were available. RDF data is represented in N-

Triples6 format since such a format facilitates both storage and processing of data. Thus, following 

W3C standards ensures interoperability and enables the utilization of existing tools and applications. 

By providing semantically enriched data through the data hub, the developed approach enables 

reusability of existing information, which in turn facilitates future extensions (e.g., modelling an 

entire traffic network). In this way, data imports to services (such as the planning agent, described in 

Section 3) are scalable in terms of the size of the network, namely when moving from a specific traffic 

area to a large traffic network. Note that handling large traffic networks would impose significant 

challenges in case of an ad hoc data management. 

One of the key advantages of semantic representation over traditional DBs (and the corresponding 

SPARQL queries over SQL queries) is that the semantic representation (and SPARQL queries) 

incorporate semantic reasoning within the returned results. For example, classes SensorFeed and 

EventFeed are subclasses of class Feed. Thus, the reasoner classifies all objects that belong to either 

SensorFeed or EventFeed as Feed. 

The data hub includes additional adapters for egress (output) in order to provide data in RDF format. 

Here is an example of how subject, predicate and object are generated for a SensorFeed. Initially, the 

URI of each SensorFeed is generated, namely 

<http://api.bt-hypercat.com/sensors/feeds/feedID> 

 

Note that “http://api.bt-hypercat.com/” is the prefix URI for any data provided by the data hub. In 

addition, “/sensors” provides information about the type of the feed (here SensorFeed ), followed by 

“/feeds”, which indicates that this URI belongs to a resource describing a feed, and finally “/feedID” 

is an id that uniquely identifies the given feed. For each SensorFeed, the data hub provides its type, 

namely: 

 

Subject: <http://api.bt-hypercat.com/sensors/feeds/feedID> 

Predicate: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 

Object: <http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorFeed> 

 

                                                 
5 http://portal.bt-hypercat.com/cat -- http://portal.bt-hypercat.com/cat-rdf 

6 https://www.w3.org/TR/n-triples/ 

http://portal.bt-hypercat.com/ontologies/bt-hypercat


In this application, SensorFeeds (as well as other types) are tagged when added into the knowledge 

base, while the generation of other triples follows a similar rational. Note that due to performance 

reasons the ontology contains definitions that are necessary in this application. However, the proposed 

semantic representation allows for further enrichment, using federated queries (Tachmazidis et al. 

2017). 

 

2.4 Extracted Data 

Data for several automated traffic counting locations within the SimplyfAI study area is available. 

The data indicates the number of vehicles passing the site in the previous 5 minute period. A separate 

count for each road is provided as a datastream of the feed. The feeds are available via the data 

catalogue (e.g., search for “Automatic Traffic Count”). Access to the data itself is currently restricted 

but can be made available to users on request. Once subscribed, users can access the data via URIs 

such as the following (a URL including the feed id for the Automatic Traffic Count site in question): 

http://api.bt-hypercat.com/sensors/feeds/aecb7ce3-d537-436f-a485-7f8f7436cdad/ 

 

Each feed has datastreams corresponding to each road e.g., for site 1202 in Dawson St there are two 

datastreams: 

Stream id: 1 Data: Northbound 

Stream id: 2 Data: Westbound 

 

 

The result of the http request will show the most recent datapoint for the specified datastream i.e., the 

number of vehicles in the last 5 minutes. The following XML response shows that there were 180 

vehicles in the preceding 5 minute period: 

 

  <datastream id=“2”> 

   <tag>Westbound</tag> 

   <current_time>Fri, 06 May 2016 15:57:31 GMT</current_time> 

   <current_value>180</current_value> 

  </datastream> 

 

A query giving an example of how the system can gather information from sensors (the example 

query is a federated query spanning over different SPARQL endpoints and it retrieves all sensor 

measurements close to a specific point of interest), which will be subsequently used for populating 

the dynamic data of the Planning Agent’s input file, is as follows: 

 

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> 

PREFIX hypercat: <http://portal.bt-hypercat.com/ontologies/bt-hypercat#> 

PREFIX naptan: <http://transport.data.gov.uk/def/naptan/> 

PREFIX skos: <http://www.w3.org/2004/02/skos/core#> 

SELECT distinct ?d ?at_time ?western_longitude ?southern_latitude 

?eastern_longitude ?northern_latitude ?stop ?lat ?long 

WHERE { 

SERVICE <http://gov.tso.co.uk/transport/sparql> 

{ 

?stop a naptan:CustomBusStop; 

naptan:naptanCode ?naptanCode; 

naptan:stopValidity ?stopValidity; 

naptan:street "Kingswood Road"; 

geo:lat ?lat; 

geo:long ?long. 

?stopValidity naptan:stopStatus ?stopStatus. 



?stopStatus skos:prefLabel "Active"@en. 

} 

SERVICE <http://portal.bt-hypercat.com/BT-SPARQL-Endpoint/sparql> 

{ 

?d a hypercat:Datapoint. 

?d hypercat:datapoint_at_time ?at_time. 

?d hypercat:datapoint_western_longitude ?western_longitude. 

?d hypercat:datapoint_southern_latitude ?southern_latitude. 

?d hypercat:datapoint_eastern_longitude ?eastern_longitude. 

?d hypercat:datapoint_northern_latitude ?northern_latitude. 

FILTER (?western_longitude > ?long - 0.1) 

FILTER (?southern_latitude > ?lat - 0.1) 

FILTER (?eastern_longitude < ?long + 0.1) 

FILTER (?northern_latitude < ?lat + 0.1) 

} 

FILTER(BOUND(?d)) 

} 

 

 

Data are extracted from the data hub using SPARQL queries. We relied on the technique presented 

by Tachmazidis et al. (2017), where federated queries are allowed via the definition of a number of 

different types of SPARQL endpoints. The previous query retrieves sensor measurement data close 

to a specific bus stop (this is a federated query spanning over different SPARQL endpoints). It is 

worth reminding that in this work we do not define a mapping to a domain-specific ontology (e.g., a 

Planning ontology): such a mapping must be defined for each application domain, followed by 

extraction of relevant data using the application specific ontology. Instead, here we rely on the 

previously presented domain-independent ontology for the extraction of relevant data, that is then 

appropriately wrapped and encoded – as described in Section 3.2– in order to allow the Planning 

Agent to perform automated reasoning. 

 

3 Utilisation of Semantic Data in a Strategy-Generating Planning Agent 
The overall concept in the improvement of traffic management is to utilise the semantically enriched 

data referred to in the previous section, to enable the use of an intelligent function which requires 

both the integration of traffic data from disparate sources, and the transformation of the data into a 

predicate logic level, in order to operate. The intelligent function was to create traffic signal strategies 

in real time to solve challenges caused by exceptional or unexpected conditions. Conventional road 

traffic signal management techniques, such as traffic-responsive systems like SCOOT (Taale et al. 

1998) and SCATS (Chong-White et al. 2012), or fixed time light strategies optimised using historical 

data, work reasonably well in normal or expected conditions. When a capacity changing event such 

as a road closure occurs, however, they are known not to be optimal. Additionally, they are not helpful 

if the transport manager would like to change the distribution of traffic for some other reason than to 

minimise delay. For example, given certain weather conditions and traffic concentrations, it can be 

predicted if the legal limit of pollutants may be breached in some traffic region. Transport operators 

would then set the goal of the intelligent planning agent as the lowering of traffic concentrations in 

this region to avoid the pollution event.  

The reasoning system employed within the agent is capable of generating signal strategies using 

planning (Ghallab et al. 2004). The planning agent is provided with a general description of the 

causality in the environment by knowledge engineers. This contains a formal description of available 

actions, processes and event and is called the “domain model” (refer to the architectural view of 

Figure 2). Also, the planning agent has situational awareness provided by the data hub (Dynamic Data 

in Figure 2) and existing databases (Static Data in Figure 2), with goals provided by the transport 

operators. The agent will synthesise strategies from groundings of the actions in space and time in 



order to achieve the goals (for example changing the timings of traffic signals at certain intersections 

in the network at certain time points in the future). 

The operational concept is that, when an exceptional situation or predicted problem was spotted, the 

transport operators engage the agent to output a solution strategy. In the future, working in a fully 

autonomous mode, we foresee that this may be replaced by a trigger which automatically engages the 

agent. In order for the agent to do this the data hub would supply all the relevant dynamic data 

describing its current situation. The agent is invoked to solve the problem, and a solution strategy is 

generated (tests below show this generation takes up to 30 seconds), then the normal fixed time 

strategy would be turned off, and replaced by the agent-generated strategy. When the strategy had 

achieved the goal, the fixed time strategy would be turned back on. To ensure that the strategy (which 

may take minutes or hours to enact) was up-to-date, the data hub provides the real time data to effect 

monitoring. This means that the agent’s strategy’s simulated effect would be compared to the actual 

situation on the network. If this comparison returned a close similarity, the strategy would continue. 

If the simulated effect and the actual situation on the network were very different, then the agent 

would be re-tasked to produce an updated strategy, and this would be enacted. 

 

3.1 Input Data 

The input data has to be gathered from a traffic region whose geographical limits are defined by the 

transport operators, wherein the problem event lies. The data for this region required by the planning 

agent falls into two types: the first type of data is real time situational data. In our case, for a specific 

time, the number of vehicles on each link and the current traffic signal position. This makes up the 

dynamic situational awareness of the agent, and is what, via its actions, the agent can have some effect 

on. The data gathering and semantic enrichment processes in the previous section needs to provide 

an accurate and complete description of this dynamic information, via the data hub, at a specific time. 

An example of how this dynamic data is extracted is given above in section 2.4. 

The second is the description of the fixed environment of the region, such as road layout, signal 

locations and signal phase definitions. This gives a situational awareness of the fixed or static 

knowledge for an agent (fixed in the sense that the agent can not change it). In detail this contains: 

1. the topology of the road links; 

2. the physical vehicle capacity of all the road links (in numbers of “passenger car units" –pcu– 

which takes into account the differing size of vehicles); 

3. intergreen timings between each of the phases of the signals. Intergreen intervals are used 

between two traffic light phases for clearing the intersection from vehicles, and allowing 

pedestrian crossings. The duration of intergreens often vary – they could be as much as 30 

seconds for pedestrian crossings across a busy intersections, or 0 seconds if the difference 

between 2 phases was the green lighting of a filter arrow. Intergreens have a fixed length, 

which cannot be modified by the agent (or by traffic controllers); 

4. the specification of the phases of signals (that is which paths across an intersections are on 

green light during each phase, and the minimum and maximum time that a signal phase can 

be set for;  

5. the average traffic flows between links within each phase of traffic lights, in number of pcu’s 

per second. In other words, for each phase, the average number of vehicles (in pcus) that cross 

between two links during a time interval; 

6. the traffic flows into and out of a region. 

 

The data for 1–4 is available to the agent through UTC from current data bases including historical 

data and SATURN data. The data for 6 can be computed from the known traffic demand via an 

original-destination (OD) matrix using historical data. The data for 5 can also be pre-computed, 

although the value we require is not straightforward. Two flow rates for each link to link flow through 

a intersection during a particular phase can be considered: (i) the maximum flow rate –that is the 

maximum number of pcus, taking into account any opposing flows, that can travel from one link to 

another. This maximum could be reached during periods of saturation which typically happen in times 



of capacity-reducing events or events causing extra loading. (ii) The flow rate calculated by 

simulating the traffic flow using the OD matrix over the OD’s period of time (typically one hour), 

and calculating the consequent flow rates across intersections during phases. This value translates the 

intentions of the traffic captured in the OD matrix to the individual flows between intersections, and 

will be some percentage of the maximum flow rate. In the case of our tests, given we were 

concentrating on solving problems during exceptional traffic flows, we chose to use value (i) for 

intersections which had waiting traffic. 

These static and dynamic data provide the agent its situational awareness, and this is automatically 

translated into a state file in a very expressive formal language called PDDL+ (Fox & Long 2006). 

An overview of the SimplyfAI architecture, showing the position of the PDDL+ state, and transport 

operators, is shown in Figure 2. 

 

[Figure 2 about here] 

 

Goals are presented to the agent either by transport operators, or by a trigger that is made true by 

inspection of the situation. Currently we are experimenting with hand-created goals, as a first stage 

before the introduction of triggers. The goals are made up of numerical expressions corresponding to 

saturation levels on sets of links. 

 

3.2 Construction of the Agent’s Knowledge Base 

In contrast to the situational information, the persistent knowledge used within the agent was 

engineered by planning experts to capture the physics of the traffic signals, and the progression of 

traffic flows across intersections. This knowledge was captured in a “domain model” using PDDL+, 

shown in Figure 2. This language has constructs to represent hybrid states (which have discrete and 

numeric state variables) and dynamical objects such as processes, events and actions. We formalise 

the traffic problem within PDDL+ as follows. 

A region of the road network can be represented by a directed graph (the topology of Section 3.1, 

item 1. above), where edges stand for road links and vertices stand for intersections. One vertex is 

used for representing the outside of the modelled region. Intuitively, vehicles enter (leave) the network 

from road links connected with the outside. Each road link has a given maximum capacity, i.e. the 

maximum number of vehicles that can be in that link (introduced in Section 3.1, item 2. above), and 

the current number of vehicles of a road link, which is denoted as an occupancy (part of the dynamic 

data introduced in Section 3.1). In our formulation, we consider only intersections that are controlled 

by traffic lights, as they are those under the control of traffic controllers. 

Traffic in intersections is distributed by flow rates that are defined between each couple of road links 

(introduced in Section 3.1, item 5. above). Given two road links rx , ry , an intersection i, and a traffic 

phase p such that rx is an incoming road link to the intersection i, ry is an outgoing road link from i, 

and the flow is active (i.e., has green light) during phase p. Flow rates stand for the maximum number 

of vehicles that can leave rx (hence we use interpretation (i) of Section 3.1), pass through i and enter 

ry per time unit. For the sake of simplicity, we assume that vehicles going in the same direction move 

into the correct lane, thus not blocking other vehicles going in the different directions. 

Intersections are described in terms of a sequence of traffic phases. Specifically, intersections contain 

a traffic phase, and traffic phases are connected using a next predicate. According to the active traffic 

phase, one (or more) flow rates are activated, corresponding to the traffic lights that are turned green. 

For each traffic phase, the minimum and maximum phase length is specified (introduced in Section 

3.1, item 4. above). Within this range, the agent can decide whether to stop the phase currently active, 

or not. Between two subsequent traffic phases, an intergreen interval is specified (introduced in 

Section 3.1, item 3. above). 

The model was encoded so that intersections are either controllable (by the agent), or not under the 

control of the agent. Intersections are regulated using the following PDDL+ constructs: 

• An action switchPhase(p,i) is used by the agent for stopping the currently active phase p in 

intersection i, if the intersection i is controllable, and minimum phase time of p (increased by 



the keepPhase process) has been reached. This action is the “tool” allowing the agent to affect 

the traffic flows. The only effect of this action is of activating a trigger for the intersection i. 

• An event triggerCatcher(p,i) is activated when the trigger of intersection i is activated, during 

the traffic phase p. The event stops the current traffic phase, resets the phaseTime to zero, and 

turns on the subsequent intergreen phase. 

• A process keepPhase(p,i) is used for “keeping” the traffic phase p on intersection i active, and 

measuring the time the phase is kept on. This process is started when the activePhase predicate 

of p is set to true, and automatically stops when the phase time has reached the maximum 

allowed value, or the phase has been de-activated by the agent. Similarly, a keepIntergreen(p,i) 

process is used for keeping the intergreen, subsequent to the traffic phase p, active.  

• An event maxPhaseTimeReached(p,i) is triggered when the phase p of intersection i reaches 

the maximum allowed time (the keepPhase process). The event activates the trigger predicate 

of i (in the same way as the switchPhase action does). A corresponding 

maxIntergreenTimeReached(p,i) is used for stopping an intergreen phase when the maximum 

time has been reached.  

• A process flowPhase(p,r1,r2) is activated when the keepPhase(p,i) process is active. It is used 

for moving vehicles from road r1 to road r2 at the given flow rate. If there is no vehicle on 

r1, or r2 is full (the number of the vehicles is the same as the capacity of r2), the process is 

stopped. 

The PDDL+ encoding of the switchPhase action, the triggerCatcher event and the keepInterGreen 

process is as follows: 

 

(:action switchPhase 

 :parameters (?p - phase ?i - intersection) 

 :precondition (and 

  (controllable ?i) 

  (activePhase ?p) 

  (contains ?i ?p) 

  (> (phaseTime ?i) (minPhaseTime ?p) )) 

 :effect (and 

  (trigger ?i) )) 

 

(:event triggerCatcher 

 :parameters (?p - phase ?i - intersection) 

 :precondition (and 

  (trigger ?i) 

  (activePhase ?p) 

  (contains ?i ?p)) 

 :effect (and 

  (not (trigger ?i)) 

  (not (activePhase ?p)) 

  (activeIntergreenAfter ?p) 

  (assign (phaseTime ?i) 0) )) 

 

(:process keepInterGreen 

 :parameters (?p - phase ?i - intersection) 

 :precondition (and 

  (activeIntergreenAfter ?p) 

  (contains ?i ?p) 

  (< (interGreenTime ?i) (interGreenLimit ?p)) ) 

 :effect (and 

  (increase (interGreenTime ?i) (* #t 1 )) )) 



 

 

A road link connected with the outside area can either have incoming or outgoing flows of vehicles. 

In the first case, vehicles from the outside region are entering the modelled area through the link, 

otherwise the road link is used by vehicles that are leaving the modelled area. Each road link 

connected with the outside has a corresponding entering (leaving) rate, that indicates the maximum 

flows of vehicles, in either direction, that can be served by the link. Vehicles that are going to enter 

the network are queued in the corresponding incoming road link, unless the road link is full. Flows 

of vehicles entering the network can be activated, or deactivated, using Timed Initial Literals (Fox & 

Long 2003). 

 

3.3 Trials of the Approach 

The data enrichment and strategy generation have been tested with real data and traffic scenarios 

utilising UTMC simulation software en route to progressing to physical trials. Hence, rather than 

taking in real-time current data, we adjusted the system so that what would be translated into the 

current state would be from input from the real historical data that was available. This would allow 

checking the performance of the system against the observed performance from historical data, in 

order to assess its feasibility, before deployment on the road system. The historic data includes 

sufficient information that can be processed into the input PDDL+ state, the same as a real-time 

version. 

 

[Figure 3 about here] 

 

As a basis for exploring exceptional or emergency traffic conditions, we chose to use historically 

averaged traffic data from a time/day when the road links were most congested: morning rush hour, 

between 8am and 9am on a non-holiday weekday. The modelled region chosen by the transport 

operator (Transport for Greater Manchester – TfGM) was in the Salford district of Manchester, UK, 

as shown in Figure 3, and abstracted in Figure 4. Intersections are identified following the IDs 

provided by TfGM. Directed links are identified by the concatenation of the names of their start and 

end intersections. 

The agent was equipped with existing software called UPMurphi (Della Penna et al. 2009) which can 

generate strategies using the situational information, the agent’s goals, and the agent’s knowledge 

encased in PDDL+ (Fox & Long 2006). This existing software was itself encapsulated by a domain 

model and initial state processor which reduces the number of redundant states considered by the 

planner. We tested the agent on a range of classes of problems (i) to clear a saturated road link as soon 

as possible; (ii) to clear several saturated road links as soon as possible; (iii) to clear a region as soon 

as possible; and (iv) to clear a saturated road link with nearby road works. 

All the goals in the tests below have the format: 

 

X1 < N1 & X2 < N2 … 

 

where Xi is the road link occupancy, and Ni is the desired occupancy level. Hence, in this context, 

clearing road links equates to lowering the occupancy to less than a certain –predefined– value, 

equivalent to a percentage of its saturation level. 

UPMurphi was configured so that its heuristic was to minimise the values of link occupancy in the 

goal expression (X1, X2, ...). The tests completed generated strategies in less than 30 seconds, on a 

standard Linux PC with 2GB of memory. The strategies (plans) output from the agent were composed 

of sequences of the instantiation of the parametrised action in the PDDL+ model: to move on a traffic 

a signal phase on to the next phase (respecting intergreen intervals, of course). To investigate the 

scaling up of the method, we enlarged the scenario in Figure 4 in phases, eventually reaching a 

scenario containing 57 intersections and 125 links. 

Validation of the generated strategies was carried out in several steps: 



1. Comparison with what would be expected in a “common sense” solution. 

2. Comparison of the effects of the generated strategies with a fixed strategy which had been 

optimised for the time of day by Transport Engineers, using simulation software (SUMO and 

AIMSUN). Clearly this fixed strategy was not generated to deal with the exceptional event, 

but nevertheless this was assumed a good comparison as that strategy would be operational 

when an event occurred. 

 

[Figure 4 about here] 

 

3.4 Results 

The first experiment was in part intended to investigate the connection between the agent’s internal 

traffic model (based on flow values), the microsimulation model SUMO being utilised by Infohub, 

and the AIMSUN microsimulation package used by TfGM. We were aware that if the PDDL+ model 

was correct/sufficiently accurate, then the generated strategy was guaranteed to solve the goal when 

executed; and if the independent simulation tests showed that it does not, then we would conclude 

that the agent’s PDDL+ model was not correct or sufficiently accurate.  

The first test was inspired by a possible scenario. Assume there was an extreme vehicle build upon a 

link (in our case 3966_1202) entering into the region, and the consequent air quality implications 

around the link were unacceptable. The problem to address would then be to clear the link as soon as 

possible. It is formalised by assuming the link contains at the initial state an unexpectedly large 

number of vehicles (in this case, 300), and the goal state is to reduce the number to less than 10. This 

scenario is also similar to the effect of car parks emptying into a link after the end of some large event. 

In the test scenarios, this was the only time that we introduced our own data into the problem 

formulation, in order to simulate the occurrence of some exceptional event. 

The common sense, approximate strategy to solve this kind of problem would be as follows. At the 

intersection that the link leads out of (in this case 1202) called the “primary intersection”: give 

maximum green time to those light phases which allow vehicles to leave the link, and minimise those 

phases which do not, so that the lights will quickly cycle back to the phases letting out traffic. At the 

intersections that lead off from the primary intersection (in this case 6013 and 1349): give at least 

enough green time to the links leading in from the primary intersection to make sure that the links do 

not get congested and the increased level of traffic can go through them smoothly. This strategy may 

have to be repeated through intersections further away if necessary. To visually inspect the quality of 

the strategy, we checked that it was indeed close to this common sense solution. An example of the 

output provided by the planning agent is provided below. For each line of the plan, the first value 

indicates when the action has to be performed. Since the approach focuses on controlling traffic 

signals, the only available action for the agent is to switch red the current traffic light phase, in order 

to move to the next one. The action considers the current phase (first value) and the affected 

intersection (second value). For instance, the first line of the strategy shown below means that the 

currently active phase 2 of intersection 1353 has to be stopped after 130 seconds. 

 

130.00: ( switchphase J1353_p2 J1353) [0.000] 

130.00: ( switchphase J1352_p0 J1352) [0.000] 

130.00: ( switchphase J6013_p1 J6013) [0.000] 

130.00: ( switchphase J6014_p2 J6014) [0.000] 

130.00: ( switchphase J1349_p1 J1349) [0.000] 

135.00: ( switchphase J1867_p2 J1867) [0.000] 

140.00: ( switchphase J1353_p0 J1353) [0.000] 

140.00: ( switchphase J1352_p1 J1352) [0.000] 

140.00: ( switchphase J6013_p2 J6013) [0.000] 

140.00: ( switchphase J6014_p3 J6014) [0.000] 

[...] 

 



Considering the simulation, the traffic models (AIMSUN and SUMO) were run independently by the 

transport authority and the SME Infohub, respectively, using the planner-output strategy and the fixed 

optimised strategy. In the first test, after validating that the simulations were fairly consistent, the 

reduction in time to clear a intersections using the planner-output strategy was approximately 20% 

using the simulations. AIMSUN and SUMO gave similar results to each other, but tended to produce 

slightly longer times to clear congestion than the planner’s own simulation, and tended to give better 

results for the planner-generated strategy than the planner’s own simulation. Videos of the AIMSUN 

planner-generated7 and fixed optimised8 strategies are available online. This comparison shows a 

slightly longer makespan than the planner’s internal simulator on both configurations (compare with 

results in Table 1, first row). 

 

[Table 1 about here] 

 

The results of the full range of tests are shown in Table 1: “3 Links” is to clear congestion from 3 

road links leading into the intersections 1867, 1349 and 1202 shown in Figure 4, where an extra 600 

vehicles are entering as a result of a disturbance in another region; "Saturated" is where all the links 

in the region of Figure 3 are at capacity, “Roadworks” is the same configuration as the initial test, but 

with roadworks severely limiting flow between intersections 1202 an 1349. In each case the figures 

in Table 1 are the times in seconds to decongest the roads involved using the optimised fixed strategy 

(first column) or the planner-produced strategy (second row) using the planner’s simulator. All show 

a marked reduction in the case of the planner-generated strategies. A common sense, approximate 

strategy to solve the more complex problems (columns 2-4 in Table 1) is much more difficult to 

formulate than for the initial test (and hence one of the reasons for automation). However, a sensible 

pattern appeared to exist in the planner-generated strategies, to green light the correct intersections. 

The results of the tests for investigating one aspect of scale-up (how big a region can the planning 

agent reason with) are shown in the right hand side of the table. The original problem was enlarged 

from 15 intersections (of which 7 are controllable) to 19 intersections (of which 10 are controllable). 

The latter scenario was then duplicated to provide the data for 38 and 57 intersection scenarios. The 

Generation Time is the time in seconds the planning agent took to generate a solution strategy in each 

case. Not surprising this value rises steeply, but in still manageable for 57 intersections. This compares 

very favourably to the size of area used in tests of the decentralised scheduling-basic traffic 

management system SURTRAC (Xie et al. 2012). 

 

3.5 Discussion of Results and Future Directions 

The tests confirmed that the use of a planning agent to generate strategies in real time in response to 

some exceptional or unusual congestion-causing event was feasible in terms of generation time. They 

also confirmed in a variety of scenarios that the quality of the strategies produced were superior in 

terms of makespan to those fixed time strategies already in operation. 

In essence, connecting smart city data infrastructure in terms of semantically enriched and globally 

integrated data enabled the use of advanced AI technology to provide these solutions to a real UTMC 

challenge as demonstrated in our trials. Without the semantic level data, any deployment of such 

technology would require its own layer of software to extract data and would lack the urban-wide 

integration and reach delivered in the SimplyfAI project. 

The main advantage of the approach appears to be its ability to generate a useful, readable strategy in 

real time to meet the needs of a new unexpected situation. This relies on the flexibility of the PDDL+ 

encoding, as well as the speed of an agent in dealing with the specified goals. Also, new effectors 

such as the exploitation of variable speed limits or variable message signs (affecting traffic flows) 

can be added to the agent’s domain model modularly, meaning that new strategies generated will 

contain instances of those effectors if they help achieving a goal. 

                                                 
7 https://goo.gl/st149L 

8 https://goo.gl/dNzByU 



To deal with the uncertainty in real world scenarios, in future trials involving real physical 

infrastructure the method of implementation would incorporate monitoring and re-planning as 

follows. As the infrastructure implements the planning agent-generated strategy, the dynamic data 

from the current traffic situation will be retrieved via the queries discussed in Section 2, every period 

of time (typically 5 minutes). The planning agent’s simulated results will be compared with this real 

data, and in cases where they diverge significantly, the planning agent will be forced to create a new 

plan using the original goal but starting from the advanced state that has just been sensed. As the 

CPU-time required by the agent during the trials to generate strategies is reasonable (under 30 

seconds, even when dealing with 57 intersections) this makes re-planning in real time feasible. 

Note also that, though the processes including the plan generating times are low (in terms of seconds), 

they are non zero. Hence once a strategy is generated for a particular goal and state, and the strategy 

has been passed to the hardware (signals) to be executed, the state would have changed. In order to 

take into account the latency in the system (let us assume a delay value in the system of 2 minutes, 

which takes into account the agent’s strategy generation time plus any time for validation by 

simulation and transfer to hardware) the traffic situation can be very quickly simulated to give the 

situation after 2 minutes. The planning agent can then be invoked to solve the problem using this 

future point as its starting point, and the generated solution strategy will then be issued to start at this 

point in the future. 

 

3.6 Comparison with a SCOOT-driven Control 
SCOOT is a demand driven algorithm coping very well with cycle-to-cycle changes in demand. In 

the scenario where an input link to a intersection suddenly became saturated, its incremental changes 

would not move timings far from those predetermined –i.e. the presence of a SCOOT system would 

produce similar results to the optimised strategies identified by the traffic control centre. Furthermore, 

if the controlled region consists of several SCOOT regions, each SCOOT region is optimised on its 

own. In contrast, the agent-generated strategies work on the whole region giving an unlimited 

infrastructure horizon for optimisation. 

A fundamental limitation of SCOOT is that it is dependent on its own local data sensors –the inductive 

loops embedded in the road surface. SimplyfAI’s planning agent inputs enriched sources of data 

including data from inductive loops and more, hence this gives it the immediate advantage of higher 

quality data and a wider data view. Furthermore, SCOOT’s gradual adaptation approach to adjusting 

the traffic signal timings does not compare well to the immediate adjustment made by the enactment 

of the agent-generated strategies. 

In summary, simulating with SCOOT-based intersection control would force little change to the 

optimised control strategies to cope with the resulting step change of in-flows to intersections 

resulting from an exceptional event. 

 

4 Related Work 

While there are many examples of the application of general AI techniques to road traffic monitoring 

and management (Various 2007, Miles & Walker 2006), the generation of a complete temporal 

strategy to help in the management of road traffic is fairly novel (McCluskey & Vallati 2014, Cenamor 

et al. 2014). The most mature work based on AI Planning or Scheduling appears to be SURTRAC, a 

distributed scheduling system which controls traffic signals in urban areas (Xie et al. 2012). In 

SURTRAC, each intersection is controlled by a scheduling agent that communicates with connected 

neighbours to predict future traffic demand, and to minimise predicted vehicles waiting time at the 

traffic signal. It is currently being trialled in Pittsburgh, USA, with its distributed 

approach suggesting good scale-up but less flexibility than a centralised AI planning agent. 

A line of research in transportation is also devoted to optimise strategies for controlling specific set 

of intersections, that show some peculiar characteristics (Yang & Chang 2016,). Approaches to 

region-wide traffic control has been trialled using model predictive control (MPC) strategies and 

optimisation (Lin 2011, Dotoli et al. 2006, van den Berg et al. 2004), and are able to take into account 

emissions (Han et al. 2016, ). This line of research uses a control theory approach which, given an 



adequate dynamical model, can be used to derive a solution that can give continuous responses to 

changing inputs. Under changing state conditions, researchers have designed MPC algorithms which 

can continuously adjust the controlled 

features (here signal timings) to optimise some given goal in real time. This approach tends to be less 

flexible than our approach using UPMurphi, as a solution needs to be designed, implemented and 

tuned using a specific model of traffic flow and a specific objective function. Additionally it is less 

scrutable, as it generates plans over a restricted time horizon. 

A different line of approaches to cope with traffic congestion is based on the idea of controlling the 

access of vehicles to the network. The work of Csikós et al. (2017), for instance, shows how the flow 

of vehicles can be optimised while constraints on the lenght of the queue waiting to gain access to the 

area are respected.  

A number of approaches have been recently introduced specifically to handle exceptional events in 

urban area networks. Darmoul et al. (2017) suggested a multi-agent architecture to control interrupted 

flow at signalised intersections. Each agent a junction, and adapts to disturbances in traffic flows. 

Similarly, Aslani et al. (2017) exploit actor-critic method to perform adaptive signal traffic control, 

and show how their approach is able to cope with different traffic distruption events. The approach 

proposed by Chai et al. (2017) deals with exceptional and unexpected events by dynamically re-

routing traffic; similar approaches are also developed for usual traffic conditions (Barthélemy & 

Carletti 2017). As it is apparent, the two lines of research (controlling traffic lights and routing traffic) 

are complementary, and it is envisaged that they will be combined in the future. Finally, it is worth 

noting that also social media strategies can be exploited to affect the behaviour of traffic and transport 

users, as well as transport policies, particularly in the case of large events (Cottrill et al. 2017, Gal-

Tzur et al. 2014). 

The approach exploited in the SimplyfAI project is based on recent work from Vallati et al. (2016) 

(and subsequently extended in McCluskey & Vallati (2017)). It was inspired by works such as those 

from Lin (2011), and van den Berg et al. (2004), where traffic is modelled using “flows”, and then 

analysed through model-predictive controllers. The work of Vallati et al. (2016) exploit PDDL+ (Fox 

& Long 2006) for encoding a flow model of vehicles through traffic-light controlled intersections, 

though the scope of the work, which was carried out in an academic environment, was limited. Their 

experimental analysis, however, demonstrated that UPMurphi could solve traffic problems containing 

thousands of vehicles, in response to exceptional conditions (Vallati et al. 2016). They showed the 

efficacy of the resulting strategy by comparing its execution with a “fixed time” plan, and plans 

generated by a reactive approach, using SUMO. The largest scenario used was a hand simulation of 

a real problem, and the strategy generated by UPMurphi was shown by SUMO to be approximately 

twice as efficient as a fixed time and reactive-generated strategies. 

Semantic Web technologies have been utilized in various road traffic applications. More specifically, 

Valle et al. (2011) presented a prototype for road traffic prediction and trip planning in the city of 

Milano (Italy). The prototype imports information from heterogeneous sources by converting it into 

RDF format and utilises conceptual (SPARQL) query answering for information retrieval. Lécué et 

al. (2012, 2014) developed a system that predicts the severity of road traffic congestion in the city of 

Dublin (Ireland). A major part of the system was the semantic integration of datastreams coming from 

different sources including road weather condition, weather information, Dublin bus stream, social 

media feeds, road works and maintenance, and city events. Used data were initially available in 

multiple formats such as CSV, XML, Tweets, PDF and ESRI SHAPE, but subsequently converted 

into OWL 2 EL and fed to the system. The system was further extended and named STARCITY 

(Lécué et al. 2014), while being deployed in cities including Dublin (Ireland), Bologna (Italy), Miami 

(USA) and Rio (Brazil). 

 

5 Conclusions 

In this paper we have described the operation and results of a collaboration between a transport 

authority, academics, a large technology provider and two SMEs to not only implement data 

infrastructure that underpins a Smart City, but to show how this can enable the use of an intelligent 



agent to create traffic signal strategies in real time to solve challenges caused by exceptional or 

unexpected conditions. The data integration in the urban environment was enacted via a data hub, in 

order to integrate disparate types of data obtained from sensors and historical databases. Using data 

items that are based on ontologies, we elevated the data to become logical facts that can be consumed 

by a planning agent. 

We embedded within the agent the UPMurphi software which is capable of generating plans of traffic 

signal changes to achieve desired goals in the presence of exceptional events. The trials involved 

using data describing the traffic and infrastructure in the region of a large city. The strategies (timing 

changes of traffic signals) output were judged to be useful for dealing with exceptional situations, 

using both hand inspecting the strategies to check that they were sensible and simulating their 

execution using two different traffic modelling software packages AIMSUN and SUMO. We believe 

that this is the first successful demonstration of using a planning agent to create useful strategies for 

UTC where the overall control for the region chosen, the nature of the data feeds, the planning of the 

project, and the validation of the end result was largely in the hands of non-academic stakeholders. 

Further, we believe that this is the first demonstration of its kind in the integration of the semantic 

layer with an AI agent. For future work, we plan to further develop the data hub platform, and field 

test the agent within physical trials. 
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