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Abstract 24 

 25 

Heterogeneity is a widely recognised phenomenon within the majority of cell types in the 26 

body including cells of the central nervous system (CNS). The heterogeneity of neurons based 27 

on their distinct transmission modes and firing patterns has been recognised for decades, and 28 

is necessary to coordinate the immense variety of functions of the CNS. More recently, 29 

heterogeneity in glial cells has been described, including heterogeneity in oligodendrocyte 30 

progenitor cells (OPCs) and oligodendrocytes. OPC subpopulations have been described 31 

based on their developmental origin, anatomical location in the grey or white matter, and 32 

expression of surface receptors. Oligodendrocytes are categorised according to differences in 33 

gene expression, myelinogenic potential and axon specificity. Much of what is described as 34 

heterogeneity in oligodendrocyte lineage cells (OLCs) is based on phenotypic differences. 35 

However, without evidence for functional differences between putative subgroups of 36 

oligodendrocyte lineage cells (OLCs), distinguishing heterogeneity from plasticity and lineage 37 

state is difficult. Identifying functional differences between phenotypically distinct groups is 38 

therefore necessary for a deeper understanding of the role of OLCs in health and disease.   39 

 40 
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 44 

Main points 45 

 46 

1. Phenotypic differences have been described between subpopulations within the cells of 47 

the oligodendrocyte lineage. 48 

2. Heterogeneity cannot be distinguished from functional plasticity based solely on 49 

phenotypic differences. 50 

3. Distinct functional differences between subclasses of oligodendrocyte lineage cells need to 51 

be demonstrated unambiguously to prove heterogeneity. 52 

 53 

  54 



Introduction 55 

 56 

The central nervous system (CNS) integrates information it receives from all parts of the body, 57 

and in turn coordinates and influences their activity. To coordinate this immense variety of 58 

functions, different neuronal subtypes with distinct transmission modes and firing patterns 59 

are necessary. Similarly, region-specific astrocyte functions are required for the maintenance 60 

of CNS homeostasis and neuronal survival (Tsai et al., 2012). These examples demonstrate a 61 

functional heterogeneity of different cell types in the CNS, raising the question whether a 62 

similar heterogeneity exists for oligodendrocyte lineage cells (OLCs, an umbrella term for 63 

oligodendrocyte progenitor cells (OPCs) and their progeny oligodendrocytes). Evidence for 64 

diversity within both the oligodendrocyte and OPC populations has accumulated over the last 65 

decade.  However, there is not yet a fully coherent perspective on the functional implications 66 

of this diversity or the extent to which this diversity represents true heterogeneity as distinct 67 

from functional plasticity. There are several different methods of categorising heterogeneity 68 

of OPCs and oligodendrocytes, many of which are not mutually exclusive. Here we examine 69 

the evidence in support of the OLCs being a heterogenous cell population and discuss what 70 

the functional roles for these different sub populations might be. 71 

 72 

Definition of heterogeneity 73 

 74 

The term heterogeneity derives from the Greek for ‘heteros’ (ἕτερος), meaning two, other or 75 

different, and ‘genesis’ from the Latin, originally borrowed from the Greek (γένεσις), meaning 76 

origin or development (Oxford English Dictionary). Therefore, implicit in the term is the sense 77 

that, for a population to exhibit heterogeneity, its components must have distinct 78 

developmental origins.  However, currently it is more commonly used to describe a situation 79 

where, in addition to origin, a single cell type can show distinct morphological and/or 80 

phenotypic profiles, including gene expression, and a distinctive range of functions including 81 

proliferation potential, motility, and response to injury. The gold-standard to unambiguously 82 

identify heterogeneous populations of a cell type is the proof of functional differences. A 83 

critical point is that true heterogeneity should not be confused with identification of cells at 84 

different cell states within a cell population (e.g. adult versus adult activated OPCs following 85 



injury), which is better termed functional plasticity, or cells captured at different points along 86 

a differentiation path (e.g. pre-myelinating versus mature oligodendrocytes). 87 

 88 

Defining OPCs and Oligodendrocytes 89 

 90 

In the adult CNS, OPCs are estimated to comprise at least 5% of all cells, residing in both white 91 

and grey matter (Dawson, Polito, Levine, & Reynolds, 2003; Pringle, Mudhar, Collarini, & 92 

Richardson, 1992). Typically, OPCs are identified by the presence of the proteoglycan NG2 93 

(Stallcup & Beasley, 1987) or by platelet derived growth factor receptor A (PDGFRA) (Pringle 94 

et al., 1992). In vivo lineage tracing studies show that the vast majority of OPCs express both 95 

NG2 and PDGFRA (Figure 1) (Kang, Fukaya, Yang, Rothstein, & Bergles, 2010; Karram et al., 96 

2008; Rivers et al., 2008); hence, the two marker proteins can be used interchangeably, 97 

rendering it possible to compare studies performed using either marker. Additionally, the 98 

ganglioside antibody A2B5 is used for the identification of OPCs in in vitro studies (Raff, Miller, 99 

& Noble, 1983). Immunostaining of OPCs isolated using A2B5 indicates that the vast majority 100 

of these cells also express NG2 and PDGFRA (Figure 1) (unpublished data from our laboratory). 101 

However, neither marker is exclusively restricted to OPCs: NG2 can label activated microglia 102 

and pericytes, PDGFRA can also label pericytes while the A2B5 antibody can label neural stem 103 

cells and neurons. Therefore, to unambiguously identify an OPC, a combination of the OPC 104 

markers or co-localisation with an OLC marker, such as the transcription factors Olig2 (Zhou, 105 

Wang, & Anderson, 2000) or Sox10 (Kuhlbrodt, Herbarth, Sock, Hermans-Borgmeyer, & 106 

Wegner, 1998), should be used. However, as the OLC markers are also expressed by cells in 107 

later stages of differentiation they cannot alone be used for the identification of OPCs.   108 

 109 

As an OPC starts to differentiate, marker proteins such as the ectonucleotide 110 

pyrophosphatase/phosphodiesterase 6 (ENPP6) (Xiao et al., 2016), O4 (Sommer & Schachner, 111 

1981) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (Poduslo & Norton, 1972) 112 

are expressed, identifying a differentiation state between a progenitor and a fully mature 113 

oligodendrocyte. These pre-myelinating oligodendrocytes differentiate into cells with 114 

progressively more complex process networks and eventually mature myelin sheaths, thus 115 

becoming a mature oligodendrocyte. Mature, sheath forming, oligodendrocytes express 116 

myelin sheath proteins including myelin basic protein (MBP) (Sternberger, Itoyama, Kies, & 117 



Webster, 1978), myelin/oligodendrocyte glycoprotein (MOG) (Linnington, Webb, & 118 

Woodhams, 1984), myelin-associated glycoprotein (MAG) (Sternberger, Quarles, Itoyama, & 119 

Webster, 1979), myelin regulatory factor (MYRF) (Cahoy et al., 2008) and proteolipid protein 120 

(PLP) (Sobel, Greer, Isaac, Fondren, & Lees, 1994).  121 

 122 

Progression along a differentiation and maturation pathway is a continuous and seamless 123 

process. Combinations of marker proteins, all of which appear and disappear within defined 124 

phases of differentiation, can be used to define distinct stages of development, which are 125 

useful as reference points but should not be taken to imply that differentiation necessarily 126 

proceeds in quantal steps. Additionally, it should be noted that the expression of marker 127 

proteins (so far only shown for OPCs) can change with the activation state (Moyon et al., 128 

2015), during development (Clarke et al., 2012; Karram et al., 2008; Ligon et al., 2006; Stallcup 129 

& Beasley, 1987) (Figure 1) and/or ageing (unpublished data from our laboratory). Therefore, 130 

proof of heterogeneity inferred from marker protein expression is difficult as it may only 131 

represent lineage stage. 132 

 133 

Developmental OPC heterogeneity – does origin matter? 134 

 135 

During embryonic development of the CNS, OPCs are generated from radial glia cells in 136 

multiple localised areas. The diversity of OPCs based on their origin is known as 137 

developmental heterogeneity.  In the murine spinal cord, most OPCs arise from the pMN 138 

domain of the ventral ventricular zone, and subsequently populating the entire neural tube 139 

(Fogarty, Richardson, & Kessaris, 2005; Pringle & Richardson, 1993).  Additionally, a minority 140 

of OPCs is generated from progenitors in the dorsal dP3, dP4, dP5 and dP6 domains beginning 141 

at E16.5 (Cai et al., 2005; Fogarty et al., 2005; Vallstedt, Klos, & Ericson, 2005). In the adult 142 

mouse, OPCs from ventral and dorsal regions are intermixed, with a heavy predominance of 143 

pMN-derived (ventral) cells (85-90%). OPCs arising from dorsal progenitors mostly populate 144 

the dorsal and lateral funiculus (Tripathi et al., 2011). 145 

 146 

Developmental heterogeneity of OPCs also occurs in the telencephalon, where OPCs arise 147 

from three distinct regions in a spatiotemporal manner. The earliest OPCs develop from the 148 

medial ganglionic eminence (MGE) and the anterior entopeduncular (AEP) region in the 149 



ventral developing telencephalon, starting from E11.5. Subsequently, at E16.5, a second 150 

population of OPCs are formed from the ventral lateral and caudal ganglionic eminence (LGE, 151 

CGE). Both OPC populations spread from ventral to dorsal, eventually populating the entire 152 

telencephalon. After birth, a third population of OPCs arises in the developing cortex, which 153 

populate the dorsal parts of the telencephalon (Kessaris et al., 2006). During postnatal 154 

development, the majority of the first population of OPCs from the MGE-AEP region is 155 

eliminated, leaving the adult brain with OPCs derived from the ventral LGE-CGE region and 156 

the dorsal cortex (Kessaris et al., 2006). In the adult telencephalon, dorsally derived OLCs 157 

mainly populate the cortex (50% dorsal OLCs, 35% ventral OLCs) and the corpus callosum 158 

(CC) (25% dorsal OLCs, 15% ventral OLCs), whereas the anterior commissure (AC), the pre-159 

optic tract (POA) and the lateral olfactory tract (LOT) are almost exclusively populated by 160 

ventral OLCs (Tripathi et al., 2011). The question arises, why should there be developmental 161 

heterogeneity in the oligodendrocyte lineage? Do different OLC populations fulfil different 162 

roles, or is developmental diversity simply an evolutionary ploy to accommodate for the rapid 163 

growth of the CNS? 164 

 165 

Different molecular cues are needed for ventral and dorsal OPC specification in development. 166 

Shh-signalling is required to generate ventral OPCs but is redundant for dorsal OPC 167 

specification (Cai et al., 2005; Fogarty et al., 2005). In contrast, the induction of FGF signalling 168 

as well as the inhibition of WNT and BMP signalling pathways may play an important role in 169 

the specification and timing of appearance of dorsal OPCs (Chandran et al., 2003; Fogarty et 170 

al., 2005; Langseth et al., 2010; Vallstedt et al., 2005). In addition to differences in 171 

specification factors, dorsally derived OPCs also exhibit a preference to myelinate dorsal areas 172 

in the CNS (Kessaris et al., 2006; Tripathi et al., 2011). In the course of spinal cord 173 

development, the dorsal funiculus is initially populated by ventrally-derived oligodendrocytes 174 

but by adulthood comprises more than 80% of dorsally-derived oligodendrocytes. That 175 

ventrally derived oligodendrocyte numbers decrease after postnatal day 13 (P13), whereas 176 

dorsally derived oligodendrocyte numbers stay constant, argues strongly for a selective 177 

advantage of dorsally derived oligodendrocytes in the dorsal funiculus of the spinal cord 178 

(Tripathi et al., 2011). Similar competition between ventrally and dorsally derived 179 

oligodendrocytes occurs in the cortex and CC in the murine forebrain (Kessaris et al., 2006). 180 

 181 



Although OPCs respond to neuronal electrical stimulation (Gibson et al., 2014; Li, Brus-Ramer, 182 

Martin, & McDonald, 2010; Makinodan, Rosen, Ito, & Corfas, 2012; Mensch et al., 2015), not 183 

all OPCs necessarily respond in the same way (discussed below) (Chittajallu, Aguirre, & Gallo, 184 

2004; Clarke et al., 2012; Káradóttir, Hamilton, Bakiri, & Attwell, 2008; Spitzer et al., 2019), 185 

leading to the hypothesis that this diversity in function might be linked to developmental 186 

origin. However, there is no evidence that this is the case (Tripathi et al., 2011). 187 

 188 

To test whether ventral OPCs can functionally compensate for the absence of dorsal OPCs, 189 

individual developmentally-distinct OPC populations in the telencephalon were ablated by 190 

region-specific expression of diphtheria toxin A (DTA). The ablation of any one of the three 191 

distinct OPC populations did not, however, cause a reduction in the total number of OLCs at 192 

P12 or in myelination in adult mice (Kessaris et al., 2006), indicating that different OLCs can 193 

functionally compensate for one another. RNA-sequencing data support these findings, as no 194 

differences in the gene expression profile between the developmentally distinct OPC 195 

populations has been detected (Marques et al., 2018). Whether ventrally and dorsally derived 196 

oligodendrocytes show transcriptional differences remains to be investigated.  197 

 198 

Do OPCs show different propensities for self-renewal?  199 

 200 

Self-renewal prevents a stem cell pool becoming depleted (stem cell exhaustion), which, in 201 

the context of OPCs, would result in an inability to generate new oligodendrocytes under 202 

homeostatic conditions and following demyelinating injury. BrdU labelling experiments had 203 

initially suggested that a non-dividing population of adult OPCs exists alongside a separate 204 

dividing population (Psachoulia, Jamen, Young, & Richardson, 2009; Rivers et al., 2008; Simon, 205 

Götz, & Dimou, 2011). However, a subsequent study indicated that the toxicity of BrdU in 206 

these studies may have led to erroneous conclusions being drawn on the proliferative 207 

capacity of adult OPCs (Young et al., 2013). The use of the non-toxic BrdU analogue EdU has 208 

more reliably demonstrated that all OPCs proliferate in the adult CNS (Clarke et al., 2012; 209 

Young et al., 2013). However, a difference exists between white matter (WM) and grey matter 210 

(GM) OPCs, with the former proliferating more rapidly and having a shorter cell cycle time 211 

(Dawson et al., 2003; Dimou, Simon, Kirchhoff, Takebayashi, & Götz, 2008; Rivers et al., 2008; 212 

Young et al., 2013). This difference has been recapitulated in vitro, where WM OPCs have a 213 



three to four fold greater proliferative response to PDGF-AA than GM OPCs (Hill, Patel, 214 

Medved, Reiss, & Nishiyama, 2013). WM tissue transplanted into GM areas of brain slices 215 

retain their greater proliferative response to PDGF-AA, suggesting that NG2+ cells in the WM 216 

have an intrinsically higher proliferative capacity than those in GM (Hill et al., 2013). The 217 

functional implication of a different proliferation, and therefore self-renewal rates, are not 218 

yet fully understood.  219 

 220 

Do OPCs have distinct differentiation capacities?  221 

 222 

Similar to the differences in proliferation, WM OPCs have a higher propensity to differentiate 223 

into mature oligodendrocytes than OPCs from GM regions (WM: 40.6%, GM: 11%) (Dimou et 224 

al., 2008). To resolve whether this difference is due to extrinsic or intrinsic differences 225 

between the two populations, OPCs derived from both GM and WM were transplanted into 226 

the antithetical region.  Here it was shown that WM derived cells were able to differentiate 227 

more efficiently in both WM and GM than GM derived cells when transplanted into WM 228 

(Viganò, Möbius, Götz, & Dimou, 2013).  The authors posit that this demonstrates an intrinsic 229 

difference, but could not definitively rule out a role for environmental priming of the cells 230 

before transplantation.    231 

 232 

A detailed in vivo characterisation of ion channels in neonatal OPCs identified different 233 

profiles of Na+ and K+ channel expression in WM and GM OPCs (Chittajallu et al., 2004; 234 

Káradóttir et al., 2008; Spitzer et al., 2019). With respect to voltage gated potassium channels, 235 

there is a marked increase in the expression of KDR (slow-inactivating delayed-rectifier) and 236 

Kir (inward-rectifier) potassium channels in GM OPCs, when compared to WM OPCs 237 

(Chittajallu et al., 2004). However, the expression of KA (fast-inactivating A-type) potassium 238 

channel is similar between the two OPC subpopulations (Chittajallu et al., 2004). The 239 

difference in potassium channel expression levels is of particular interest since 240 

oligodendrocyte specific knockout of Kir4.1 increases OPC differentiation (Schirmer et al., 241 

2018). Therefore, and consistent with the studies discussed above, this apparent difference 242 

in the potassium channel expression between GM and WM may imply functional 243 

heterogeneity. However, these data are collected during the early postnatal period (p5-10) 244 

and do not necessarily represent the expression profiles of adulthood.   245 



 246 

A difference in OPC expression in Na+ channels has also been reported (Chittajallu et al., 2004; 247 

Clarke et al., 2012; Káradóttir et al., 2008). Several studies have identified a subpopulation of 248 

OPCs in both WM and GM that exhibit a transient Nav channel mediated inward current, 249 

followed by a K+ channel mediated outward current, in response to depolarisation (Chittajallu 250 

et al., 2004; Clarke et al., 2012; Káradóttir et al., 2008). The remaining OPCs did not show this 251 

response (Chittajallu et al., 2004; Clarke et al., 2012; Káradóttir et al., 2008). However, 252 

whether two OPC populations based on the responsiveness to depolarisation exist is still 253 

unclear, as other studies have found that all OPCs exhibit similar Nav density and NaV 254 

mediated inward currents (De Biase, Nishiyama, & Bergles, 2010; Spitzer et al., 2019). In 255 

addition, whether the ability to spike in response to depolarisation is functionally relevant for 256 

OPCs remains unknown. To date, only a positive correlation of the number of Nav channels 257 

and active cell cycle progression of OPCs has been reported (Spitzer et al., 2019). 258 

 259 

In addition, Spitzer and colleagues have shown that there is a higher proportion of neonatal 260 

OPCs with detectable NMDA-evoked currents in the WM, and that WM OPCs have an 261 

increased NMDA receptor density than GM OPCs (Spitzer et al., 2019). The percentage of 262 

OPCs expressing NMDA receptors decreases with age, although at different rates in WM and 263 

GM (Spitzer et al., 2019). The presence of NMDA receptors is dispensable for OPC 264 

proliferation and differentiation as the knockout of the NMDAR subunit NR1 does not show 265 

any effect on myelination (De Biase et al., 2010; Saab et al., 2016). However, the 266 

oligodendrocyte specific knockout of NMDA receptors leads to an axon pathology caused by 267 

decreased oligodendroglial axonal support in aged animals (Saab et al., 2016). Whether 268 

oligodendrocyte heterogeneity based on the capacity of metabolic support to neurons exists 269 

also remains to be investigated.   270 

 271 

In addition to the CNS region in which an OPC resides, the expression of G-protein receptor 272 

17 (GPR17) confers OPC diversity with respect to their differentiation potential. GPR17 273 

inhibits OPC differentiation by acting on the differentiation inhibitors ID2 and ID4 (Chen et al., 274 

2009). GPR17-driven lineage tracing has revealed that only a proportion of adult NG2+ cells 275 

(75% in the GM and 60% in the WM) express GPR17 (Viganò et al., 2016). Using a BrdU label 276 

retention approach, it was shown that 82.0% of GPR17+/BrdU+ but only 23.4% of the 277 



GPR17−/BrdU+ populations retained NG2‐immunoreactivity, suggesting that more of the 278 

GPR17+ OPCs remain in cell cycle and do not undergo differentiation (Viganò et al., 2016). The 279 

block of differentiation in GPR17+ OPCs in homeostasis is released after various types of 280 

injuries (demyelination induced by cuprizone or EAE, and cerebral damage by acute injury or 281 

ischemia)(Coppolino et al., 2018; Viganò et al., 2016): however, how the differentiation 282 

capacity of GPR17+ OPCs compares to GPR17- OPCs after injury is not known.  283 

 284 

Are some OPCs better at regeneration than others?   285 

 286 

Alongside providing new oligodendrocytes for myelination during development and 287 

adulthood, OPCs have a central role in oligodendrocyte regeneration (a process known as 288 

remyelination) (Franklin & Ffrench-Constant, 2017).  In response to oligodendrocyte loss, 289 

local OPCs migrate to the site of CNS damage, proliferate, and differentiate into 290 

oligodendrocytes, or in the concomitant absence of astrocytes, into Schwann cells capable of 291 

creating new myelin sheaths (Monteiro de Castro, Deja, Ma, Zhao, & Franklin, 2015; Zawadzka 292 

et al., 2010).  293 

 294 

By tracing the response of dorsal OPCs to demyelination in the ventral WM of the spinal cord, 295 

it was shown that dorsal OPCs populated the lesion and differentiated in mature 296 

oligodendrocytes (Zhu et al., 2011). A subsequent study demonstrated that dorsal OPCs 297 

respond more vigorously than ventral OPCs to focal acute demyelination in the spinal cord, 298 

with more of them undergoing proliferation. Thus, following demyelination of ventral WM, 299 

where the majority of OLCs are of ventral origin, the subsequent remyelination involves a 300 

disproportionately high contribution from dorsally derived cells (Crawford, Tripathi, 301 

Richardson, & Franklin, 2016) (Figure 2). The genetic ablation of dorsally derived OPCs led to 302 

a reduction in mature oligodendrocytes following demyelination (Crawford et al., 2016), 303 

demonstrating that ventrally derived OLCs cannot fully compensate for the lack of dorsally 304 

derived OLCs. However, the situation changes with ageing, where the majority of dorsal OLCs 305 

remains undifferentiated (presumably in an OPC state) in the aged animals, while ventral 306 

OPCs continue to differentiate into oligodendrocytes at the same rate as in young adults 307 

(Crawford et al., 2016). This suggests that the age-associated decline in OPC function has a 308 

greater impact on dorsal OPCs than on ventral OPCs. The underlying reason for this remains 309 



unknown. In addition, in response to the toxin-induced demyelination, dorsal OPCs show an 310 

increased propensity to differentiate into Schwann cells when compared to ventral OPCs 311 

(Crawford et al., 2016). However, this propensity is lost with ageing, consistent with the 312 

conclusion that dorsal and ventral OPCs age at different rates. Taken together, these data 313 

indicate that the regenerative properties of adult OPCs are determined by their 314 

developmental origin and is an example of true functional heterogeneity within the OLC 315 

lineage.   316 

 317 

Are oligodendrocytes heterogeneous in the CNS?  318 

 319 

The notion of oligodendrocyte diversity was first introduced by del Río Hortega who identified 320 

four different classes of oligodendrocytes based on their morphology (del Río Hortega, 1928). 321 

Class 1 (CI) oligodendrocytes occur in both WM and GM and are characterised by a high 322 

number of thin processes leading to thinly-myelinated small diameter axons. Class 2 (CII) 323 

oligodendrocytes have fewer, but thicker processes and are exclusively found in WM. 324 

Oligodendrocytes categorised in class 3 (CIII) and class 4 (CIV) are mostly found in the WM of 325 

the brain stem and spinal cord, areas with an abundance of larger diameter axons. In 326 

comparison to CI and CII oligodendrocytes, they are less abundant and extend fewer 327 

processes (del Río Hortega, 1928). Following this early classification of oligodendrocyte 328 

diversity, additional morphological subclasses have been identified (Murtie, Macklin, & 329 

Corfas, 2007; Vinet et al., 2010).  330 

 331 

The development of an MBP-GFP (membrane bound) reporter mouse line, only labelling 332 

around 1% of oligodendrocytes in the brain, has enabled imaging of the myelin sheaths 333 

formed by a single oligodendrocyte (Chong et al., 2012). 3D reconstruction revealed a 334 

diversity within the oligodendrocyte population with respect to the number of myelin sheaths 335 

formed per oligodendrocyte (between 10 and 60 myelin sheaths per oligodendrocyte) and 336 

myelin sheath length (between 20m and 200m per myelin sheath) (Chong et al., 2012). 337 

This diversity is not region-specific, and occurs along axons with similar functional properties 338 

(Chong et al., 2012; Tomassy et al., 2014), suggesting that internode length might not be 339 

determined by the regional diversity  of oligodendrocytes (as proposed by del Rio Hortega), 340 

but rather local environmental cues. Indeed, using an in vitro co-culture of cortical OPCs with 341 



neurons, Chong and colleagues were able to demonstrate that the density of OPCs (not 342 

oligodendrocytes) negatively regulates the myelinogenic potential of oligodendrocytes 343 

through repulsive interaction (Chong et al., 2012). Whether there is a difference in OPC 344 

density in different CNS regions and how the local density of OPCs would be regulated in the 345 

CNS to explain the observed morphological subclasses of oligodendrocytes remains unknown.  346 

 347 

To assess the intrinsic diversity in regional OLC populations without the influence of axon 348 

properties, Bechler and colleagues have examined the compact myelin sheath formation of 349 

cortical and spinal cord OPCs in an assay where artificial microfibres substitute for the role of 350 

the axon in providing a substrate for myelination. Oligodendrocytes from the spinal cord 351 

formed myelin sheaths which are twice as long as those formed by cortical oligodendrocytes, 352 

even though the number of sheaths formed per oligodendrocyte was similar (Bechler, Byrne, 353 

& Ffrench-Constant, 2015). This suggests that the origin of the OPCs determines the 354 

myelinogenic potential of the oligodendrocytes. However, the difference in internode length 355 

formed by cortical and spinal cord oligodendrocytes was less pronounced when the OPCs of 356 

different origins were cultured on dorsal root ganglion neurons or brain slices, indicating that 357 

neurons also influence the myelinogenic potential of the oligodendrocytes (Bechler et al., 358 

2015). 359 

 360 

The optimisation of the single-cell RNA sequencing of CNS cells has allowed the analysis of 361 

oligodendrocyte diversity to be explored in greater depth. OLCs in ten different CNS regions 362 

of juvenile and adult mouse CNS revealed 12 distinct OLC populations spanning the 363 

differentiation stages of OPCs to mature oligodendrocytes. In the juvenile mouse, all CNS 364 

regions contain oligodendrocytes from at least 2 different oligodendrocyte populations. 365 

Whereas one mature oligodendrocyte population was present in all CNS regions, the other 366 

oligodendrocyte populations are prevalent in certain CNS regions. However, within the adult 367 

brain regions examined (cortex and CC) the diversity of oligodendrocyte populations is 368 

reduced, with only two oligodendrocyte populations being present (Marques et al., 2016). 369 

Whether the transcriptionally different oligodendrocyte populations fulfil distinct functions 370 

in the brain remains to be investigated. These findings raise several important questions 371 

including, how can transcriptional diversity of oligodendrocytes arise from transcriptionally 372 

homogenous OPCs (Marques et al., 2018)? Possible explanations include technical limitations 373 



of the sequencing technique to study gene expression in OPC (limited amounts of RNA, 374 

fragility of OPC population) or environmental influences exerted during, or after, the 375 

oligodendrocyte differentiation process. 376 

 377 

Strong evidence for functional heterogeneity of oligodendrocytes has been obtained using 378 

three different viruses to label oligodendrocytes, together with neuronal axon projections of 379 

motor and sensory neurons in the CC. The analysis revealed that collosal oligodendrocytes 380 

can be classified into three categories: those that either preferentially myelinate axons from 381 

1) the motor cortex, 2) the sensory cortex, and 3) from both brain regions without preference 382 

(75% of all oligodendrocytes assessed) (Osanai et al., 2017). It is conceivable that the 25% of 383 

oligodendrocytes showing a preference towards specific axons are adult-born 384 

oligodendrocytes, specifically myelinating an axon based on its activity.  385 

 386 

Concluding remarks 387 

 388 

An expanding body of evidence has been published describing phenotypical differences 389 

within the OPC and oligdendrocyte populations (Table 1). However, only a minortiy of these 390 

publications addresses the important question of whether the observed phenotypical 391 

differences are intrinsically driven (indicating OLC heterogeneity) or dictated by 392 

environmental cues (OLC functional plasticity). As intrinsic heterogeneity is often established 393 

due to different extrinsic (developmental) signals, the definition of intrinsic and extrinsic 394 

heterogeneity can be blurred. The definition implies that extrinsically heterogeneous cells 395 

would show similar properties within an identical environment. In contrast, cells that are 396 

intrinsically heterogeneous will still exhibit different functional behaviour even in the same 397 

environment. While one study argues for a non-existence of oligodendrocyte diversity (Chong 398 

et al., 2012), other studies showed intrinsic diversity of aspects of OPC, such as OPC 399 

differentiation capacity, (Crawford et al., 2016; Viganò et al., 2013) and oligodendrocyte 400 

biology (Bechler et al., 2015). However, whether these intrinsic differences have any 401 

functional implications has only been adressed in one study (Table 1). Crawford and 402 

colleagues showed that dorsal OPCs are the proportionally greater contributors to WM 403 

remyelination, and that the deletion of dorsal OPCs leads to a reduced remyelination 404 

effeciency (Crawford et al., 2016) (Table 1). Nevertheless, no evidence has been found for the 405 



functional heterogeneity in the homeostatic adult CNS, leaving the field without the definitive 406 

proof required to unambiguously assert heterogeneity. However, the discovery of new 407 

functions of OLCs are likely to reveal other examples of functional heterogeneity, and allow 408 

current phenotypic descriptions of diversity to be better mapped on to newly elucidated OLCs 409 

functions. 410 

 411 

In favour of the existence of functional OLCs heterogeneity is the notion that the cortex, an 412 

area coordinating complex tasks, is mainly populated by dorsal OLCs, whereas other 413 

evolutionarily conserved brain areas are populated by ventral OLCs, suggesting that a variety 414 

of oligodendrocyte subtypes are needed for optimal CNS function. In addition, the most 415 

heterogeneous set of myelination profiles of the murine cerebral cortex exists in the upper 416 

layers which is due to neurons from different cortical layers having different longitudinal 417 

myelination profiles along their axons (Tomassy et al., 2014). While this effect might be driven 418 

by neuronal activity, it is possible that distinct oligodendrocyte subpopulations are needed to 419 

create such a specific myelination pattern. To this end, oligodendrocytes are transcriptionally 420 

distinct in the adult CNS, which is indicative of functional distinct oligodendrocyte 421 

subpopulations (Marques et al., 2016). This would echo what is know about the other 422 

principal macroglial cell type, the astrocyte, where it has been shown that functionally distinct 423 

astrocyte populations are necessary to support optimal neuronal transmission (Tsai et al., 424 

2012). As oligodendrocytes are also critical for neuron circuit function, it is likely that distinct 425 

oligodendrocytes exist to meet the special needs of different neuronal circuits. Furthermore, 426 

OPCs and oligodendrocytes form intercellular connections with neurons (via synapses) and 427 

astrocytes (via gap junctions), respectively. Neurons exhibit functional heterogeneity with 428 

respect to their mode of transmission and firing patterns, and astrocytes were shown to 429 

become specialised for interactions with their own particular neuronal neighbours (Tsai et al., 430 

2012). Therefore, the existence of OLCs heterogeneity to accommodate the specific 431 

functional requirements of individual neuron-glia networks is likely.   432 
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Figure legends 714 

Figure 1: Overlap of OPC markers 715 

 716 

Overlap of OPC markers (NG2, PDGFRA and A2B5) and oligodendrocyte lineage cell markers 717 

(Olig2 and Sox10) in neonatal (left) and adult (right) OPCs based on published in vivo lineage 718 

tracing experiments (Clarke et al., 2012; Kang et al., 2010; Karram et al., 2008; Ligon et al., 719 

2006; Rivers et al., 2008; Stallcup & Beasley, 1987). A2B5 data was generated from 720 

immunostaining of with the A2B5 antibody (unpublished data). The overlap of OPC marker 721 

expression changes during development: adult OPCs show a higher overlap of the OPC marker 722 

proteins when compared to neonatal OPCs.  723 

 724 

Figure 2: Developmental origin of OPCs determines their remyelination response 725 

 726 

Following a focal toxin-induced demyelination injury dorsal OPCs make a disproportionately 727 

high contribution to remyelination when compared to ventral OPCs. Detailed analysis of the 728 

OPC response to the injury showed that a higher proliferative response of dorsal OPCs causes 729 

their increased response to demyelination. MGE = medial ganglionic eminence, AEP = anterior 730 

entopeduncular, LGE = lateral ganglionic eminence, CGE = caudal ganglionic eminence, CC = 731 

corpus callosum, AC = Anterior commisure, p = progenitor domain, MN = motor neuron, dP = 732 

dorsal progenitor domain, DF = dorsal funiculus, LF = lateral funiculus.  733 

 734 

Table legends 735 

 736 

Table 1: Summary of current literature on OPC and oligodendrocyte diversity 737 

 738 

Several phenotypical differences have been described between subclasses of 739 

oligodendrocyte lineage cells. However, the assessment of phenotypic differences does not 740 

allow to distinguish between cell/lineage plasticity and heterogeneity. Therefore, functional 741 

differences between subclasses of oligodendrocyte lineage cells need to be investigated to 742 

unambiguously prove heterogeneity. 743 


