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Abstract

Mutations in the mitochondrial GTPase mitofusin 2 (MFN2) cause Charcot-Marie-Tooth disease type 2 (CMT2A), a form of
peripheral neuropathy that compromises axonal function. Mitofusins promote mitochondrial fusion and regulate
mitochondrial dynamics. They are also reported to be involved in forming contacts between mitochondria and the
endoplasmic reticulum. The fruit fly, Drosophila melanogaster, is a powerful tool to model human neurodegenerative
diseases, including CMT2A. Here, we have downregulated the expression of the Drosophila mitofusin (dMfn RNAI) in adult
flies and showed that this activates mitochondrial retrograde signalling and is associated with an upregulation of genes
involved in folic acid (FA) metabolism. Additionally, we demonstrated that pharmacological and genetic interventions
designed to increase the FA metabolism pathway suppresses the phenotype of the dMfn RNAI flies. We conclude that
strategies to increase FA metabolism may ameliorate diseases, such as peripheral neuropathies, that are associated with
loss of mitochondrial function. A video abstract for this article is available at https.//youtu.be/fs1G-QRo6xI.

Introduction

Chartcot-Marie-Tooth (CMT) disease is the most
common inherited neuromuscular disorder’, with no cure
or treatment available. This peripheral neuropathy results
from damage to neurons that transmit information from
the brain and spinal cord to other parts of the body.
Individuals with CMT suffer from muscle weakness and
atrophy as well as mild sensory loss. There are two main
types of CMT: type 1, where the damage occurs to myelin
sheaths that surround the axons of neurons (CMT1) and
type 2, where the damage is to the neuron itself (CMT?2).
Mutations in mitofusin 2 (MFN2) have been found to be
one of the most common causes of CMT2, called
CMT2a.
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Mitofusins are GTP-hydrolysing enzymes that promote
mitochondrial fusion. They are important to ensure the
dynamic balance between fusion and fission that deter-
mines mitochondria morphology . This dynamic balance
also regulates mitochondrial health, since fission is crucial
for recycling defective mitochondria through a process
called mitophagy (reviewed in>).

Mitofusins can also act as organelle bridges. Mfn2 was
reported to link mitochondria to the endoplasmic reti-
culum (ER)* and the downregulation of Drosophila
mitofusin (dMfu, also known as Marf) reduced contacts
between the ER and mitochondria®.

The fruit fly, Drosophila melanogaster, is a powerful tool
to study human neurodegenerative diseases (reviewed
in®). Moreover, pharmacological approaches can be used
to test therapeutic candidates in flies. Drugs can be
incorporated in the food and readily delivered. Since flies
lack a stringent blood-brain barrier, these drugs can easily
access the nervous system (reviewed in’).

Previously, it was reported that the ubiquitous down-
regulation of dMfn in Drosophila is lethal at the larval

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction

BY in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecormmons.org/licenses/by/4.0/.

Official journal of the Cell Death Differentiation Association

SPRINGER NATURE
CDDpress


https://youtu.be/fs1G-QRo6xI
http://creativecommons.org/licenses/by/4.0/
mailto:shyl2@mrc-tox.cam.ac.uk
mailto:martins.lmiguel@gmail.com

Garrido-Maraver et al. Cell Death and Disease (2019)10:288

stage® and causes cellular toxicity by activating ER stress’.
Here, we employed a strategy that enabled the generation
of adult flies with ubiquitous downregulation of dMfn and
explored the consequences of its loss. We show the
downregulation of dMfn in adult flies compromises
mitochondrial function and slows down the axonal
transport of mitochondria in wing sensory neurons.

We used an exploratory analysis of the toxic con-
sequences of downregulating dMfn in adult flies. We
uncovered an alteration of folic acid (FA) metabolism
transcripts in flies with downregulated dMfun. We show
that both dietary and genetic interventions to enhance FA
metabolism partially supressed the defects observed in
adult flies lacking dMfn. We conclude that strategies to
enhance FA metabolism may prevent or delay the axonal
defects in MFN2-linked CMT2a and other peripheral
neuropathies associated with mitochondrial dysfunction.

Results
Reducing the expression of dMfn compromises motor
function in adult flies

The ubiquitous downregulation of dMfn by RNAI using
the tubulin-Gal4 driver is lethal at the larval stage®. By
using an alternative ubiquitous driver, daughterless-Gal4
(daGal4), we generated adult dMfn RNAI flies where the
dMfn transcript was downregulated by 50% (Fig. 1a). This
also reduced dMfn protein levels (Fig. 1b) and enabled
approximately 50% of the adult flies to hatch (Fig. 1c). We
then investigated the basal locomotor activity in dMfn
RNAi flies and found that the loss of dMfn resulted in
locomotor defects (Fig. 1d). Additionally, both the ubi-
quitous or pan-neuronal downregulation of dMfn resulted
in climbing defects (Fig. le).

Downregulation of dMfn expression results in a loss of
mitochondrial cristae and reduced mitochondria axonal
transport

We next performed an analysis of mitochondria in
dMfn RNAI flies. A morphological analysis of the larval
ventral nerve cord revealed fragmentation of mitochon-
dria in the mechanosensory axons (Fig. 2a). Ultra-
structural analysis of adult fly brains showed fragmented
mitochondria cristae (Fig. 2b). To determine if the
ultrastructural defects observed upon depletion of dMfu
were associated with a decrease in mitochondrial density
(MD), we measured the levels of the mitochondrial
matrix enzyme citrate synthase'®, an indirect measure-
ment of MD, in adult flies. Citrate synthase levels in dMfn
RNAi flies were not significantly altered compared to
controls (Fig. 2¢), indicating that the loss of mitochon-
drial cristae following depletion of dMfn is not accom-
panied by a generalised loss of mitochondrial mass.
Mitochondria are responsible for the generation of the
majority of cellular ATP, a source of energy for axonal
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Fig. 1 In vivo suppression of dMfn causes motor impairment in
adult flies. a and b RNAi-mediated suppression of dMfn. a Expression
levels of the dMfn transcript were measured by real-time gPCR (mean
+ SD; asterisks, two-tailed unpaired t-test compared to control).

b Analysis of dMfn protein levels. Whole-fly lysates were analysed
using the indicated antibodies. ¢ Eclosion defects following RNAi-
mediated suppression of dMfn (asterisks, chi-square two-tailed, 95%
confidence intervals). d Suppression of dMfn decreases locomotor
activity. The number of flies tested is indicated for each genotype.
e Motor impairment upon RNAi-mediated suppression of dMfn. Flies
were tested using a standard climbing assay (mean + SD; asterisks,
one-way ANOVA with Dunnett's multiple comparison test). Genotypes
in (a-e (ubiquitous)): Control: w; 4, daGal4/+, dMfn RNAi: w; dMfn
RNAI/+; daGal4/+. (e (neuronal)): Control: w; elavGal4/+; +, dMfn
RNAi: w; elavGal4/dMin RNAJ; +

mitochondrial transport (reviewed in''). We also
observed a significantly lower level of ATP in dMfn RNAi
flies compared to the control (Fig. 2d). Moreover, MFN2
mutations present in CMT2 patients cause defects in
mitochondrial transport in cultured neurons'?. We
therefore assessed the effect of lowering dMfn expression
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Fig. 2 Suppression of dMfn causes a loss of mitochondrial cristae density. a RNAi-mediated suppression of dMfn results in mitochondrial
fragmentation. Confocal analysis of mitoGFP in the larval mechanosensory axons. The quantification of mitochondrial length is shown as a combined
violin and box plot (p value, two-tailed unpaired t-test compared to control). b The knockdown of dMfn causes defects in mitochondrial cristae.
Ultrastructural analysis of the brains in adult dMfn RNAI flies (m, mitochondria; nu, cell nuclei). Asterisks, chi-square two-tailed, 95% confidence
intervals. ¢ The knockdown of dMfn does not affect overall mitochondrial mass. Mitochondrial mass was assessed by measuring the activity of the
mitochondrial matrix enzyme citrate synthase in adults (ns, p > 0.05, two-tailed unpaired t-test compared to control). d The knockdown of dMfn
causes a loss of ATP in adult flies (mean £ SD, asterisks, two-tailed unpaired t-test compared to control). Genotypes in a Control: w; elavGal4/+;
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on the axonal transport of mitochondria to (retrograde)
and away (anterograde) from the cell nucleus in wing
sensory neurons (Vagnoni et al., 2016). We observed that
lowering the expression of dMfn results in decreased
speeds for both anterograde and retrograde transport of
mitochondria (Fig. 3).

We next focused on the functional status of mito-
chondria in adult flies with decreased expression of dMfn.
High-resolution respirometry analysis revealed a sig-
nificant decrease in respiration rates following suppres-
sion of dMfn (Fig. 4a). Furthermore, we detected a loss of
mitochondrial membrane potential (Aym) (Fig. 4b) and
an increase in the levels of reactive oxygen species (ROS)
(Fig. 4c, d) in the brains of adult flies with decreased
expression of dMfn. These results, together with the loss
of mitochondrial cristae integrity (Fig. 2b), suggest that
the suppression of dMfn does not affect the overall

Official journal of the Cell Death Differentiation Association

quantity of mitochondria but does compromise their
function.

Decreased expression of dMfn is associated with the
activation of ATF4-dependent targets associated with folic
acid metabolism

Debattisti and colleagues showed that loss of dMfn
activates ER stress’. We have recently demonstrated
that ER stress linked to mitochondrial dysfunction
causes the activation of dATF4, a transcription factor
involved in cellular adaptation to stress'. To determine
if a decrease in dMfn could affect dATF4 expression, we
measured the levels of activation of this transcription
factor in dMfn RNAI tissues using a reporter for dATF4
activation'?, This analysis showed that the decreased
expression of dMfn led to a marked activation of dATF4
(Fig. 5a, b). The response to ER stress involves a
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Fig. 3 The knockdown of dMfn decreases axonal mitochondrial
motility. a Representative image of a control wing nerve with
mitoGFP expression and a scheme indicating the direction of
anterograde and retrograde mitochondrial transport. b Decreased
mitochondrial speed in dMfn RNAi wing sensory axons. Both
anterograde and retrograde mitochondrial speed were measured for
the indicated genotypes. Combined violin and box plot. (n is the
number of moving mitochondria analysed, asterisks, two-tailed
unpaired t-test compared to control). Genotypes: Control: w; dprGal4/
+; UASmitoGFP/+, dMfn RNAI: w; dprGald4/dMfn RNAi; UASmitoGFP/+
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generalised decrease in protein translation mediated by
PERK and a concomitant activation of ATF4-dependent
transcriptional programmes designed to induce a cel-
lular adaptation to stress (reviewed in'®). To identify
such transcriptional programmes in dMfun RNAI flies, we
took an unbiased approach by using microarray analysis.
The analysis of transcriptional changes in dMfn RNAI
flies (Supplementary Table 1) showed a significant (FDR
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step-up < 0.05) upregulation of 275 transcripts with
fold-change > 1.6 (Supplementary Table 2). Next, a
pathway analysis of the upregulated transcripts showed
that the decrease in dMfn expression causes an activa-
tion of genes involved in FA metabolism (Fig. 5¢, d and
Supplementary Table 3), including mitochondrial serine
hydroxymethyl transferase (Shmt2) and mitochondrial
NAD-dependent  methylenetetrahydrofolate  dehy-
drogenase (Nmdmc), two transcriptional targets of
dATF4 that code for mitochondrial proteins'®>. The
increased levels of Shmt2 and Nmdmc transcripts fol-
lowing dMfn RNAi were confirmed in adult flies using
real-time qPCR (Fig. 5e).

A diet supplemented with folic acid suppresses
mitochondrial dysfunction

Folic acid has been historically used to treat anaemia
during pregnancy. It functions as a carbon donor in
metabolic reactions, including those involved in the
synthesis of nucleotides from purine precursors (reviewed
inlé), and it has been shown to counteract mitochondrial
dysfunction in the Drosophila central nervous system'’.

Our data show that in the context of decreased levels of
dMfn, flies attempt to compensate for mitochondrial
stress by inducing the expression of FA metabolism genes.
We therefore tested if enhancing this metabolic pathway
by increasing the bioavailability of FA could rescue cel-
lular defects associated with the loss of dMfn.

Maintaining dMfn RNAI flies on an FA-supplemented
diet during embryonic development did not alter
mitochondrial fragmentation in larval mechanosensory
axons (Fig. 6a) but was able to suppress loss of Aym in
the brains of adult flies (Fig. 6b). This FA-supplemented
diet also suppressed the activation of dAtf4 (Fig. 6¢, d)
and rescued the eclosion defects of dMfn RNAi flies
(Fig. 6e). However, dMfn RNAI flies raised on an FA-
supplemented diet showed no significant difference in
their lifespan (Fig. 6f) or locomotor activity (Fig. 6g) as
compared to flies on a normal diet.

Expression of Nmdmc rescues the phenotypes of dMfn
RNAi flies

Genes involved in FA metabolism, such as Nmdmc,
comprise a branch of mitochondrial retrograde signalling
under the control of the dAtf4 transcription factor. We
therefore tested the effect of enhancing the expression of
Nmdmc in dMfn RNAI flies. Increasing the expression of
Nmdmc rescued mitochondrial function in neurons
(Fig. 7a), suppressed the activation of dA¢f4 (Fig. 7b)
and decreased the eclosion defects of dMfn RNAi adult
flies (Fig. 7c). We also observed that the expression of
Nmdmc increased the lifespan (Fig. 7d) and decreased the
locomotor deficit (Fig. 7e) of dMfin RNAi flies. Taken
together, these results indicate that the expression of this
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Fig. 4 The knockdown of dMfn reduces mitochondria respiration and leads to an increase in reactive oxygen species. a Decreased
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gene, involved in FA metabolism, has a protective role upon
loss of dMfu.

Discussion

Mitochondrial dynamics are coordinated by division
and fusion. Fusion is coordinated by mitofusins, nuclear
encoded mitochondrial transmembrane GTPases.
Mitofusins act by promoting the fusion of the mito-
chondrial outer membrane (reviewed in'®). Flies contain
two genes coding for mitofusins, with dMfn being the
only mitofusin expressed in the somatic tissues of
adults. Here, we show that the reduction of dMfn in
adult tissues leads to a fragmentation of mitochondrial
cristae, compromising mitochondrial function and
transport. Even though it was previously reported that
the deletion of Mfn2 in cultured mouse cells increases
mitochondrial mass'®, we did not detect any alterations
of mitochondrial mass after the in vivo depletion
of dMfn. Our data also suggest that the observed
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fragmentation of mitochondrial cristae upon loss of
dMjfn is not associated with loss of mitochondria since
the overall mitochondrial mass is not altered.

The loss of Aym and activation of dAtf4 in flies depleted
for dMfn could be reversed with dietary supplementation
with FA, suggesting that defective mitochondria can act as
upstream activators of ER stress pathways. This backs our
previous work showing that mitochondrial defects acti-
vate ER stress in pinkl or parkin mutant flies”.

The climbing defects and decreased lifespan observed in
dMfn RNAI flies could be improved by the expression of
Nmdmc, an enzyme involved in FA metabolism, but not by
dietary supplementation with FA. Since the intracellular
levels of FA intermediates were not measured in our study,
we reason that flies lacking dMfin might have a decreased
food uptake or, alternatively, defects in the intestinal
absorption of FA. This is in line with a previous study
reporting that mitochondrial fragmentation triggered by
the adult expression of Drpl, a protein that promotes



Garrido-Maraver et al. Cell Death and Disease (2019)10:288

Page 6 of 11

A Control

dMfn RNAI

GFP

ATF4.5'UTR>dsRed

150 um

Cysteine & methionine metabolism
Purine metabolism
Glycine, serine & threonine metabolism

Energy metabolism

One carbon pool by folate

0 1 2 3 4
KEGG pathway enrichment score (-LOG p-value)

B
7 301 *x
=
=
el
© 25
£
s
3 2
14
7]
kel
A
1
= 1.5 )
= control dMfn RNAI
g n=13 n=10
[T
= 104
D E
One carbon pool by folate transcripts Shmt2 Nmdme
aded 00 .0
Dhfr
Atic, CG11089 o '® 3
CG1750 S
<
Shmt2, CG3011 @IED * 310 2
CG6415 2
L 05 1
CG7560 @D
. CG8665 0 8 0 7
5 Nmdmc @K * \&o\evg \*&é$
pug S S&
S S
IS &

Fig. 5 The knockdown of dMfn is associated with an enhanced expression of one-carbon metabolism transcripts. a and b The RNAi-
mediated suppression of dMfn activates dATF4. RNAI dMfn was targeted at the posterior compartment of the larval wing disc using hhGal4
recombined with a GFP reporter. a Representative confocal images showing the enhanced in vivo expression of the ATF4.5'UTR > dsRed reporter
(lower right panel) following the RNAi-mediated suppression of dMfn (posterior to the left and anterior to the right). b Quantitative analysis of dsRed
fluorescence in the wing discs of the indicated genotypes. Combined violin and box plot (asterisks, two-tailed unpaired t-test). ¢ and d Enhanced
expression of one-carbon pool by folate metabolism transcripts following the RNAi-mediated suppression of dMfn. ¢ Top pathways, comprising
functionally related genes identified using Partek Pathway Analysis software are shown. P-values were calculated using Fisher's exact test. See also
Supplementary Table 3. d Individual transcripts belonging to the one-carbon pool by folate metabolism enriched following the RNAi mediated
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ATF4.5'UTR > dsRed/dMfnRNAI; hhGal4,UASGFP/+. c—e Control: w; +; daGal4/+, dMfn RNAi: w; dMfn RNAI/+; daGald/+

mitochondrial fission, compromises the integrity of the fly
intestinal barrier”®. This, in turn, might explain why our
pharmacological intervention was less efficient than a
genetic enhancement approach.

A therapeutic approach to treat Charcot-Marie-Tooth
disease type 2 by manipulating mitofusin conformations
has been proposed recently”’. Our data show that
enhancement of FA metabolism might also be a viable
approach to treat Charcot-Marie-Tooth disease type 2
and other diseases linked to mitochondrial dysfunction.

Methods
Genetics and Drosophila strains

Fly stocks and crosses were maintained on standard
cornmeal agar media at 25°C. The strains used were
daGAL4, w8 elavGAL4, UASmitoGEP (Bloomington
Stock Centre), RNAi line dMfn (ID: 105261,Vienna
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Drosophila RNAi Center), UAS Nmdmc as previously
described"®, hhGal4, UASGFP (kind gift from H. Steller,
Rockefeller University, New York, USA), dprGal4 (kind gift
from S. Bullocks, MRC Laboratory of Molecular Biology,
Cambridge, UK) and dATF4.5'UTR > dsRed reporter (kind
gift from K. Kang and M-J. Kang, University of Ulsan
College of Medicine, Seoul, Republic of Korea). All
experiments on adult flies were performed using only males.

RNA extraction and quantitative real-time RT-PCR

Total RNA was extracted using TRIzol (Ambion) and
quantified by spectrophotometric analysis. Quantitative
real-time PCR with reverse transcription (QRT-PCR) was
performed on a real-time cycler (Applied Biosystems 7500
Fast Real-Time PCR Systems) using the SensiFAST SYBR
Lo-ROX one-Step Kit (Bioline). Gene-specific primers
were obtained from QIAGEN (QuantiTect Primer Assays)
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ANOVA with Bonferroni's multiple comparison test). ¢, d Dietary supplementation with FA suppresses the increased expression of dATF4 in dMfn RNAI
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used in Fig. 73, labelled dMfn RNAI. Dataset in (d) labelled control (NF) and dMfn RNAi (NF) are also used in Fig. 5b

for the following genes: dMfn (QT00499205), Nmdmc
(dm: QT00503153), Shmt2 (dm: QT00498904). Gene-
specific primer rp49 (forward, TGTCCTTCCAGCTT
CAAGATGACCATCG; reverse, CTTGGGCTTGCGCCA
TTTGTG) was obtained from Sigma and used as a
housekeeping gene.

Protein extraction and western blotting

Protein extracts from whole flies were prepared by
grinding flies in lysis buffer (100 mM KCl, 20 mM Hepes
at pH 7.5, 5% (v/v) glycerol, 10 mM EDTA, 0.1% (v/v)
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Triton X-100, 10 mM DTT, (1 ug/mL leupeptin, 1 yg/mL
antipain, 1 pg/mL chymostatin and 1 pg/mL pepstatin).
The suspensions were cleared by centrifugation at
21,000 x g for 10 min at 4 °C and protein concentrations of
the supernatants were measured using the Bradford assay
(Bio-Rad). All supernatants were mixed with 4 x LDS
loading buffer. For SDS-PAGE, equivalent amounts of
proteins were resolved on 10% Precast Gels (Invitrogen)
and transferred onto PVDF membranes (Millipore). The
membranes were blocked in TBS (0.15 M NaCl and 10
mM Tris-HCl, pH 7.5) containing 10% (w/v) dried non-fat



Garrido-Maraver et al. Cell Death and Disease (2019)10:288

Page 8 of 11

A B Cc
= 2000 4
[2] *
£ 1 ™ T 8 % 100 -
x
T 1500 1 7
£ 2 y
- £ . gol
@ i) 8
% 1000 1 s 51 % 60 -
: 3 ] & g+
S 500 w2 =
& e . X 20 -
= (= L
L 6 F o- dMfn RNA
2 o - control dMin RNAI e T 0 - &
& & & < n=20 n=30 _1ms me e\ b&o
S &L n= GRS
N A N D
SN S @
S8 R
S &
S &
D E (o
100
—vs = p <0.0001 08| =
80 8
© £ 06—
60 £
3 € 04— *
< kS [
S 40 02- -
[0)
o dMfn RNA A
207 (n=332) 0.0-1-291 39 5
S N
0 s @gﬁ «
- 2
I T T T 1 ° \p‘?‘
0 10 20 30 40 &
Days §Q
Fig. 7 Expression of Nmdmc rescues defects associated with downregulation of dMfn. Expression of Nmdmc rescues (a) the loss of Aym in
dMfn RNAI flies, mean + SD; asterisks, one-way ANOVA with Bonferroni's multiple comparison test and (b) the increased expression of dATF4 in dMfn
RNAi flies (asterisks, one-way ANOVA with Dunnett’s multiple comparison test). ¢ Expression of Nmdmc prevents the eclosion defects in dMfn RNAI
flies (asterisks, chi-square two-tailed, 95% confidence intervals). d Expression of Nmdmc increases the lifespan of dMfn RNAi flies. The p-value is shown
for the log-rank Mantel-Cox test. e Expression of Nmdmc increases locomotor activity of dMfn RNA flies. Flies were tested using a standard climbing
assay (mean =+ SD; asterisks, one-way ANOVA with Dunnett's multiple comparison test). Genotypes; (a, c-e) Control: w; +; daGal4/4, dMfn RNAi: w;
dMfn RNAI/+; daGal4/+, dMfn RNAi, UAS Nmdmc: w; dMfn RNAI/UAS Nmdmc; daGald/+, (b) Control: w; ATF4 5UTR DsRed/+; hhGal4, UASGFP/+, dMfn
RNAI: w; ATF4.5°UTR > dsRed/dMfn RNAJ; hhGal4,UASGFP/+, dMfn RNAI, UAS Nmdmc: w; ATF4.5'UTR > dsRed/dMfn RNAi, UAS Nmdmc; hhGal4, UASGFP/+.
Dataset in A, labelled dMfn RNAI, is also used in Fig. 6b, labelled dMfn RNAi (NF)

milk for 1h at room temperature, then probed with the
primary antibodies (anti-a-tubulin, Sigma, T6074) or anti-
dMfn (a gift from A. Whitworth, MRC, Mitochondrial
Biology Unit, University of Cambridge, Cambridge, UK),
before being incubated with the appropriate HRP-
conjugated secondary antibody. Antibody complexes
were visualised by Pierce enhanced chemiluminescence
(ECL).

Climbing assay

Climbing assays were performed as previously
described* using a counter-current apparatus equipped
with six chambers. A total of 15-20 male 3-day-old flies
were placed into the first chamber, tapped to the bottom,
and then given 20 s to climb a distance of 10 cm. The flies
that successfully climbed 10cm or beyond within 20s
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were then shifted to a new chamber, and both sets of flies
were given another opportunity to climb the 10 cm dis-
tance. This procedure was repeated a total of five times.
After five trials, the number of flies in each chamber was
counted. A video demonstrating this technique can be
found at https://youtu.be/vmR6s_WAXgc. The climbing
index was measured using a weighted average approach
with the following formula:

(0%10)+(1xn1)+(2+n2)+(3%n3) 4 (4+n4)+(5+n5)
5«SUM (n0:n5)

In this formula, #0 corresponds to the number of flies
that failed the first trial, and nl through »5 are the
numbers of flies that successfully passed each
successive trial. At least 100 flies were used for each
genotype tested.


https://youtu.be/vmR6s_WAXgc
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Lifespan analysis

Groups of 15 newly eclosed males of each genotype
were placed into separate vials with food and maintained
at 25°C. The flies were transferred to vials containing
fresh food every two to three days, and the number of
dead flies was recorded. The data are presented as
Kaplan—Meier survival distributions, and the significance
was determined by the log-rank test.

Dietary supplements

Folic acid (Sigma, F7876) was incorporated into the fly
food at a final concentration of 4 mM. The animals were
treated with FA throughout development. Adult flies were
maintained on FA-containing food throughout their life-
span, and they were transferred to vials with fresh food
every two to three days.

Microscopy-based assessment of mitochondrial function
and length

Measurement of Aym in brains of 3-day-old flies was
performed using tetramethylrhodamine (TMRM) as pre-
viously described'”. Briefly, adult fly brains were loaded
with 40 nM TMRM in loading buffer (10 mM HEPES, pH
7.35, 156 mM NaCl, 3 mM KCl, 2mM MgSO,, 1.25 mM
KH,PO4, 2 mM CaCl, and 10 mM glucose) for 40 min at
room temperature, and the dye was present during the
experiment. In this experiment, TMRM was used in the
redistribution mode to assess Aym, and therefore, a
reduction in TMRM fluorescence represents mitochon-
drial depolarisation. Confocal images were obtained using
a Zeiss 510 confocal microscope equipped with a 40x oil
immersion objective. Illumination intensity was kept to a
minimum (at 0.1-0.2% of laser output) to avoid photo-
toxicity, and the pinhole was set to give an optical slice of
2 um. Fluorescence was quantified by exciting TMRM
using the 565 nm laser and measured above 580 nm. Z-
stacks of 5 fields of 300 um? each per brain were acquired,
and the mean maximal fluorescence intensity was mea-
sured for each group.

Mitochondrial length was quantitated in mechanosensory
axons in the ventral nerve cord (VNC) from third-instar
larvae. The VNC was dissected in PBS, transferred to a drop
of PBS as mounting medium on glass slides, covered with a
coverslip and imaged on a Zeiss LSM510 confocal micro-
scope. Mitochondrial length was calculated using the “seg-
mented line” tools in Image] to measure the length of
mitoGFP-positive mitochondria across their largest
dimension. Z-projection of 10 um-thick stacks was used to
follow the mitochondrial 3D distribution and measure
lengths more accurately.

Citrate synthase assay

Citrate synthase activity was measured using a protocol
adapted from the Citrate Synthase Assay kit (CS070
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SIGMA). Ten male flies (3-days-old) were homogenised
in lysis buffer (100 mM KCl, 20 mM Hepes at pH 7.5, 5%
(v/v) glycerol, 10 mM EDTA, 0.1% (v/v) Triton X-100, 10
mM DTT, 1 pug/mL leupeptin, 1 pg/mL antipain, 1 pg/mL
chymostatin and 1pg/mL pepstatin). The suspensions
were cleared twice by centrifugation at 2,000 x g for 15 s at
4°C, and the protein concentrations were determined by
Bradford assay (Bio-Rad). Sample volume was resus-
pended in reaction buffer (75 mM Tris-HCI pH 8, 100 uM
DTNB, 0.1% Triton, 350 pg/ml, 0.5 mM Oxalacetate) and
absorbance was measured at 412nm for 2min using
M200PRO plate reader (TECAN, Switzerland). Absor-
bance values were plotted against time (min) for each
reaction. Changes in absorbance (AA412/minute) were
used to calculate the citrate synthase activity using the
following equation: units (mmole/ml/min) = (AA412/
min x V(ml)/ €™ x L(cm) x Ven, (ml). V(ml) = reaction
volume, e™ =13.6mM ' cm ™, V., (ml) = volume of
sample. Units of citrate synthase activity were normalised
to protein concentration (mg/ml).

ATP assays

Five male flies (3-days-old) were homogenised in 100 uL
of 6 M guanidine-HCl in extraction buffer (100 mM Tris
and 4 mM EDTA, pH 7.8) to inhibit ATPases. Homo-
genised samples were subjected to rapid freezing in liquid
nitrogen followed by boiling for 5 min. Samples were then
cleared by centrifugation and the supernatant was diluted
(1/50) with extraction buffer and mixed with luminescent
solution (CellTiter-Glo Luminescent Cell Viability Assay,
Promega). The luminescence was measured on an infi-
nitive M200PRO plate reader (TECAN, Switzerland). The
relative ATP levels were calculated by dividing the lumi-
nescence by the total protein concentration, which was
determined by the Bradford method.

Analysis of ATF4 activation in Drosophila wing discs

To analyse ATF4 activation, ATF4.5'UTR > dsRed
reporter larvae with the expression of GFP in the pos-
terior compartment of wing discs under the control of
hhGal4 were used. Wing discs were dissected in PBS and
imaged on a Zeiss LSM510 confocal microscope. The 15
um-thick stacks were acquired and maximum projection
of DsRed signal was measured by using Image] software.

Measurement of mitochondrial ROS in Drosophila adult
brain

Drosophila adult brains were dissected in PBS and
incubated with 5uM MitoSOX™ Red mitochondrial
superoxide indicator (M36008, Molecular Probes) for 30
min. After incubation brains were washed with PBS for
10 min and imaged on a Zeiss LSM510 confocal micro-
scope. The 100 pm-thick stacks were acquired and used to
measure the MitoSOX signal using Image] software.
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Analysis of mitochondrial speed

Axonal mitochondrial speeds were measured as pre-
viously described®***, The 2—5-day-old flies expressing GFP
under the dpr driver were anaesthetised with CO, and
enclosed in a custom-built chamber formed by cover glasses
where the body of the fly was placed ventral side up and
wings were positioned under small coverslips and covered
with a drop of halocarbon oil. Imaging of the axonal wing
nerve was performed using a Zeiss LSM510 confocal
microscope with a 100x oil immersion objective. Mito-
chondrial movements were quantified using Image]. Z-
projection was performed and anterograde and retrograde
mitochondrial movements were scored following the
direction of movement as previously reported. Anterograde
runs towards the fly thorax and retrograde to the cell body
of the neuron®*, Transported mitochondria were manually
tracked across the frames and speeds calculated dividing the
total distance by the time. Data were plotted using Prism
(GraphPad).

Electron microscopy

For transmission electron microscopy, adult fly brains
were fixed overnight in 0.1 M sodium cacodylate buffer
(pH 7.4) containing 2% paraformaldehyde, 2.5% glu-
taraldehyde and 0.1% Tween-20. Then, the samples
were post-fixed for 1 h at room temperature in a solu-
tion containing 1% osmium tetroxide and 1% potassium
ferrocyanide. After fixation, the samples were stained
en bloc with 5% aqueous uranyl acetate overnight at
room temperature; then, they were dehydrated via a
series of ethanol washes and embedded in TAAB epoxy
resin (TAAB Laboratories Equipment Ltd., Aldermas-
ton, UK). Semi-thin sections were stained with tolui-
dine blue, and areas of the sections were selected for
ultramicrotomy. Ultrathin sections were stained with
lead citrate and imaged using a MegaView 3 digital
camera and iTEM software (Olympus Soft Imaging
Solutions GmbH, Miinster, Germany) with a Jeol 100-
CXII electron microscope (Jeol UK Ltd., Welwyn Gar-
den City, UK).

Microarray acquisition and analysis

RNA was prepared from 3-day-old male adult flies
(8 samples in total, 4 replicates for each genotype). The
dMfn RNAi was driven by daGAL4. The RNA quality
was confirmed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, CA, USA). Detailed experi-
mental protocols and raw data were deposited in
ArrayExpress under accession E-MTAB-6579. Differ-
ential expression was analysed using the Partek
Genomics Suite (Partek Inc. Missouri, USA). Pathway
enrichments were calculated using a pathway ANOVA
statistical model in Partek Pathway (Partek Inc. Mis-
souri, USA).
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Respirometry

Mitochondrial respiration in 3-day-old flies was assayed
at 37°C by high-resolution respirometry as previously
described’. The OROBOROS Oxygraph DatLab software
package (OROBOROS, Innsbruck, Austria) was used for
data acquisition (2 s time intervals) and analysis, including
calculation of the time derivative of the oxygen con-
centration and signal deconvolution dependent on the
response time of the oxygen sensor, with correction for
instrumental background oxygen flux. Respiration was
assessed by homogenising two flies using a pestle in
MiRO5 respiration buffer (20mM HEPES, 10mM
KH,PO,4, 110 mM sucrose, 20 mM taurine, 60 mM K-
lactobionate, 0.5 mM EGTA, 3 mM MgCl,, and 1 g/l fatty
acid-free BSA). Coupled state 3 respiration for complex I
was assayed in MiR05 respiration buffer in the presence of
2 mM malate, 10 mM glutamate and 5 mM ADP.

Statistical analyses

Descriptive and inferential statistical analyses were
performed using GraphPad Prism 8 (www.graphpad.com).
The data are presented as the mean value, and the error
bar indicates + SD or + SEM (as indicated). In the com-
bined violin and box plots, the median is shown with a
solid white line and the quartiles are represented by the
dashed white lines. The number of biological replicates
per experimental variable (n) is indicated in either the
respective figure or figure legend. Significance is indicated
as **** for p < 0.0001; *** for p < 0.001; ** for p < 0.01 and *
for p <0.05. The investigators gathering quantitative data
on the biological samples were not blinded to the sample
identities at the time of analysis. No specific randomisa-
tion strategies were employed when the biological repli-
cates were assigned to the treatment groups.

Digital image processing

Western blot images were acquired as uncompressed,
bitmapped digital images (TIFF format). The images were
processed using Adobe Photoshop, employing established
scientific imaging workflows?°.
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