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Abstract

Distributed consensus, the ability to reach agreement in the face of failures and
asynchrony, is a fundamental primitive for constructing reliable distributed systems
from unreliable components. The Paxos algorithm is synonymous with distributed
consensus, yet it performs poorly in practice and is famously difficult to understand.
In this paper, we re-examine the foundations of distributed consensus. We derive an
abstract solution to consensus, which utilises immutable state for intuitive reasoning
about safety. We prove that our abstract solution generalises over Paxos as well as the
Fast Paxos and Flexible Paxos algorithms. The surprising result of this analysis is a
substantial weakening to the quorum requirements of these widely studied algorithms.

1 Introduction

We depend upon distributed systems, yet the computers and networks that make up these systems
are asynchronous and unreliable. The longstanding problem of distributed consensus formalises
how to reliably reach agreement in such systems. When solved, we become able to construct
strongly consistent distributed systems from unreliable components [13, 21, 4, 17]. Lamport’s
Paxos algorithm [14] is widely deployed in production to solve distributed consensus [5, 6], and
experience with it has led to extensive research to improve its performance and our understanding
but, despite its popularity, both remain problematic.

Paxos performs poorly in practice because its use of majorities means that each decision re-
quires a round trip to many participants, thus placing substantial load on each participant and
the network connecting them. As a result, systems are typically limited in practice to just three
or five participants. Furthermore, Paxos is usually implemented in the form of Multi-Paxos, which
establishes one participant as the master, introducing a performance bottleneck and increasing
latency as all decisions are forwarded via the master. Given these limitations, many production
systems often opt to sacrifice strong consistency guarantees in favour of performance and high
availability [7, 3, 18]. Whilst compromise is inevitable in practical distributed systems [10], Paxos
offers just one point in the space of possible trade-offs. In response, this paper aims to improve
performance by offering a generalised solution allowing engineers the flexibility to choose their own
trade-offs according to the needs of their particular application and deployment environment.

Paxos is also notoriously difficult to understand, leading to much follow up work, explaining the
algorithm in simpler terms [20, 15, 19, 23] and filling the gaps in the original description, necessary
for constructing practical systems [6, 2]. In recent years, immutability has been increasingly widely
utilised in distributed systems to tame complexity [11]. Examples such as append-only log stores [1,
8] and CRDTs [22] have inspired us to apply immutability to the problem of consensus.
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This paper re-examines the problem of distributed consensus with the aim of improving perfor-
mance and understanding. We proceed as follows. Once we have defined the problem of consen-
sus (§2), we propose a generalised solution to consensus that uses only immutable state to enable
more intuitive reasoning about correctness (§3). We subsequently prove that both Paxos and Fast
Paxos [16] are instances of our generalised consensus algorithm and thus show that both algorithms
are conservative in their approach, particularly in their rules for quorum intersection and quorum
agreement (§4 & §5). Finally, we conclude by illustrating the power of our abstraction by out-
lining three different instances of our generalised consensus algorithm which provide alternative
performance trade-offs compared to Paxos (§6).

2 Problem definition

The classic formulation of consensus considers how to decide upon a single value in a distributed sys-
tem. This seemingly simple problem is made non-trivial by the weak assumptions made about the
underlying system: we assume only that the algorithm is correctly executed (i.e., the non-Byzantine
model). We do not assume that participants are either reliable or synchronous. Participants may
operate at arbitrary speeds and messages may be arbitrarily delayed.

We consider systems comprised of two types of participant: servers, which store the value, and
clients, which read/write the value. Clients take as input a value to be written and produce as
output the value decided by the system. Messages may only be exchanged between clients and
servers and we assume that the set of participants, servers and clients, is fixed and known to the
clients.

An algorithm solves consensus if it satisfies the following three requirements:
• Non-triviality. All output values must have been the input value of a client.
• Agreement. All clients that output a value must output the same value.
• Progress. All clients must eventually output a value if the system is reliable and synchronous
for a sufficient period.

The progress requirement rules out algorithms that could reach deadlock. As termination
cannot be guaranteed in an asynchronous system where failures may occur [9], algorithms need
only guarantee termination assuming liveness.

If we have only one server, the solution is straightforward. The server has a single persistent
write-once register, R0, to store the decided value. Clients send requests to the server with their
input value. If R0 is unwritten, the value received is written to R0 and is returned to the client.
If R0 is already written, then the value in R0 is read and returned to the client. The client
then outputs the returned value. This algorithm achieves consensus but requires the server to be
available for clients to terminate. To overcome this limitation requires deployment of more than
one server, so we now consider how to generalise to multiple servers.

3 Generalised solution

Consider a set of servers, {S0, S1, . . . , Sn}, where each has a infinite series of write-once, persistent
registers, {R0, R1, . . . }. Clients read and write registers on servers and, at any time, each register
is in one of the three states:

• unwritten, the starting state for all registers; or
• contains a value, e.g., A, B, C; or
• contains nil , a special value denoted as ⊥.
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Register Quorums

R0 {{S0, S1, S2}}
R1, R2, . . . {{S0, S1}, {S0, S2}, {S1, S2}}

(a)

Register Quorums

R0, R2, . . . {{S0, S1}}
R1, R3, . . . {{S2, S3}}

(b)

Register Quorums

R0, R1, . . . {{S0, S1}, {S2, S3}}

(c)

Register Quorums

R0, R1, . . . {{S0, S1}, {S0, S2}, {S1, S2}}

(d)

Figure 1: Sample configurations for systems of three or four servers.

S0 S1 S2

R0 A ⊥ B

R1 ⊥ ⊥ ⊥
R2 B A A

(a) A decided by R2

S0 S1 S2

R0 A A A

R1 A A

(b) A decided by R0 & R1

S0 S1 S2

R0 A ⊥ A

R1 A C ⊥
R2 C B

(c) No decisions yet

Figure 2: Sample state tables for a system using the configuration in Figure 1a.

A quorum, Q, is a (non-empty) subset of servers, such that if all servers have a same (non-nil)
value v in the same register then v is said to be decided. A register set, i, is the set comprised of
the register Ri from each server. Each register set i is configured with a set of quorums, Qi, and
four example configurations are given in Figure 1. The state of all registers can be represented
in a table, known as a state table, where each column represents the state of one server and each
row represents a register set. By combining a configuration with a state table, we can determine
whether any decision(s) have been reached, as shown in Figure 2.

3.1 Correctness

Figure 3 describes a generalised solution to consensus by giving four rules governing how clients in-
teract with registers to ensure that the non-triviality and agreement requirements for consensus (§2)
are satisfied.

Rule 1 (quorum agreement) ensures that clients only output values that have been decided.
Rule 2 (new value) ensures that only client input values can be written to registers thus only client
input values can be decided and output by clients. Rules 3 and 4 ensures that no two quorums

Rule 1: Quorum agreement. A client may only output a (non-nil) value v if it has read
v from a quorum of servers in the same register set.
Rule 2: New value. A client may only write a (non-nil) value v provided that either v is
the client’s input value or that the client has read v from a register.
Rule 3: Current decision. A client may only write a (non-nil) value v to register r on
server s provided that if v is decided in register set r by a quorum Q ∈ Qr where s ∈ Q then
no value v′ where v 6= v′ can also be decided in register set r.
Rule 4: Previous decisions. A client may only write a (non-nil) value v to register r
provided no value v′ where v 6= v′ can be decided by the quorums in register sets 0 to r− 1.

Figure 3: The four rules for correctness.
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Register Client

R0, R3, . . . C0

R1, R4, . . . C1

R2, R5, . . . C2

Figure 4: Sample round robin allocation of register sets to clients.

can decide upon different values. Rule 3 (current decision) ensures that all decisions made by a
register set will be for the same value whilst Rule 4 (previous decisions) ensures that all decisions
made by different register sets are for the same value.

3.2 Implementing the correctness rules

Rules 1 and 2 are easy to implement, but Rules 3 and 4 require more careful treatment.

Rule 3 (current decision). The simplest implementation of Rule 3 is to permit only configura-
tions with one quorum per register set, as in Figure 1b. We generalise this to intersecting quorums
configurations by permitting multiple quorums per register set, provided that all quorums for a
given register set intersect, as in Figure 1d. The requirement for intersection ensures that if mul-
tiple quorums in a register set decide a value then they must decide the same value as they must
share a common register.

Alternatively, we can support disjoint quorums if we require that all values written to a given
register set are the same. This can be achieved by assigning register sets to clients and requiring
that clients write only to their own register sets, with at most one value. In practice, this could
be implemented by using an allocation such as that in Figure 4 and by requiring clients to keep a
persistent record of which register sets they have written too. We refer to these as client restricted
configurations.

Both techniques, intersecting quorums configurations and client restricted configurations, can
be combined on a per-register-set basis.

Rule 4 (previous decisions). Rule 4 requires clients to ensure that, before writing a (non-nil)
value, previous register sets cannot decide a different value. This is trivially satisfied for register
set 0, however, more work is required by clients to satisfy this rule for subsequent register sets.

Assume each client maintains their own local copy of the state table. Initially, each client’s
state table is empty as they have not yet learned anything regarding the state of the servers. A
client can populate its state tables by reading registers and storing the results in its copy of the
state table. Since the registers are persistent and write-once, if a register contains a value (nil or
otherwise) then any reads will always remain valid. Each client’s state tables will therefore always
contain a subset of the values from the state table.

From its local state table, each client can track whether decisions have been reached or could
be reached by previous quorums. We refer to this as the decision table. At any given time, each
quorum is in one of four decision states:

• Any: Any value could be decided by this quorum.
• Maybe v: If this quorum reaches a decision, then value v will be decided.
• Decided v: The value v has been decided by this quorum; a final state.
• None: This quorum will not decide a value; a final state.
The rules for updating the decision table are as follows: Initially, the decision state of all

quorums is Any. If there is a quorum where all registers contain the same value v then its decision

4



A client may output value v provided at least one quorum state is Decided v (Rule 1).
A client c may write a non-nil value v to register set r provided:

i. v is c’s input value or has been read from a register (Rule 2), and
ii. r is either:

• quorum intersecting, or
• client restricted and r has been allocated to c but not yet used (Rule 3), and

iii. the decision state of each quorum from register sets 0 to r − 1 is None, Maybe v or
Decided v (Rule 4).

Figure 5: Client decision table rules

S0 S1 S2 S3

R0

Register Quorum Decision state

R0 {S0, S1} Any

(a) Initial state.

S0 S1 S2 S3

R0

R1 B

Register Quorum Decision state

R0 {S0, S1} Maybe B
R1 {S2, S3} Maybe B

(b) State after reading B from R1 on S3.

S0 S1 S2 S3

R0 A

R1 B

Register Quorum Decision state

R0 {S0, S1} None
R1 {S2, S3} Maybe B

(c) State after reading A from R0 on S0.

S0 S1 S2 S3

R0 A

R1 B B

Register Quorum Decision state

R0 {S0, S1} None
R1 {S2, S3} Decided B

(d) State after reading read B from R1 on S2.

Figure 6: Sample client state tables (left) and decision tables (right).

state is Decided v. When a client reads nil from register r on server s then for all quorums Q ∈ Qr

where s ∈ Q, the decision state Any/Maybe v becomes None. When a client reads a non-nil value
v from a client restricted register set r then for all quorums over register sets 0 to r, the decision
state Any becomes Maybe v and Maybe v′ where v 6= v′ becomes None. When a client reads a
non-nil value v from a quorum intersecting register set r on server s then for all quorums Q ∈ Qr

where s ∈ Q and for all quorums over register sets 0 to r − 1, the state Any becomes Maybe v
and Maybe v′ where v 6= v′ becomes None.

These rules utilise the knowledge that if a client reads a (non-nil) value v from the register r
on server s, it learns that:

• If r is client restricted then all quorums in r must decide v if they reach a decision (Rule 3).
• If any quorum of register sets 0 to r − 1 reaches a decision then value v is decided (Rule 4).
Figure 5 describes how clients can use decision tables to implement the four rules for correctness.

3.3 Examples

This process is illustrated by Figures 6 and 7, which demonstrate how a client’s state is updated
as they read registers. Figure 6 shows the state of a client C0 in a system of 4 servers using the
intersecting quorum configuration from Figure 1b. Figure 6a shows the client’s initial state. The
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S0 S1 S2 S3

R0

Register Quorum Decision state

R0 {S0, S1} Any
{S2, S3} Any

(a) Initial state.

S0 S1 S2 S3

R0 ⊥

Register Quorum Decision state

R0 {S0, S1} None
{S2, S3} Any

(b) State after reading nil from R0 on S0.

S0 S1 S2 S3

R0 ⊥ ⊥
R1 B

Register Quorum Decision state

R0 {S0, S1} None
{S2, S3} None

R1 {S0, S1} Maybe B
{S2, S3} Maybe B

(c) State after reading nil from R0 and B from R1 on S3.

S0 S1 S2 S3

R0 ⊥ ⊥
R1 B B

Register Quorum Decision state

R0 {S0, S1} None
{S2, S3} None

R1 {S0, S1} Maybe B
{S2, S3} Decided B

(d) State after reading B from R1 on S2.

Figure 7: Sample client state tables (left) and decision tables (right).

client’s state table is empty thus the status of all quorums in the decision table is Any. At this time,
the client may only write non-nil values to R0 due to condition (iii) in Figure 5. Next, Figure 6b,
the status of quorum {S2, S3} over register set 1 is updated to Maybe B since, depending on the
state of register R1 on S2, either this quorum will not reach a decision or it decides value B. Since
the client that wrote B into R1 on S3 must have followed Rule 4, the quorum in R0 must decide B
if it reaches a decision thus its status is updated to Maybe B. The client C0 can now write value
B to R1 or R2. Subsequently in Figure 6c, the client could now safely write its input value to R1
but there would be no use in doing so. Finally in Figure 6d, the client learns that B is decided and
thus can output B.

Figure 7 shows the state of a client C0 in a system using the configuration in Figure 1c and
the client allocation from Figure 4. Figure 7a shows the initial state of the client C0. At this time,
the client C0 can only write non-nil values to R0. Later in Figure 7c, the client has updated the
status of both quorums in R1 to Maybe B after reading B from R1. This is because register set 1
is client restricted to value B.

4 Generalisation of Paxos

The (unoptimised) Paxos algorithm is described in Figure 8 using only write-once registers. Figure 9
gives an example of the message exchange as two clients execute Paxos with three servers.

We observe that Paxos is a conservative instance of our generalised solution to consensus. The
configuration used by Paxos is majorities for all register sets, such a configuration is given in
Figure 1d. Paxos also uses client restricted for all register sets and a suitable client assignment is
given in Figure 4. The purpose of phase one is to implement Rule 4 and the purpose of phase two
is to implement Rule 1. Earlier (§3), we proposed client state and decision tables as a mechanism
for clients to implement the rules for correctness. Upon receiving P1b(r,R) where R is the set

6



Phase 1
• A client c chooses a register set r that it has been assigned but not yet used and sends

P1a(r) to all servers.
• Upon receiving p1a(r), each server checks if register r is unwritten. If so, any unwritten

registers up to r − 1 (inclusive) are set to nil. The server replies with p1b(r, S) where S
is a set of all written non-nil registers.

• If c receives p1b messages from a majority of servers then c chooses the value from the
greatest (non-nil) register. If no values were returned with P1b messages then c chooses
its input value. c then proceeds to phase two. Otherwise, c times out and restarts phase
one.

Phase 2
• c sends P2a(r, v) to all servers where v is value chosen at the end of phase one.
• Upon receiving P2a(r, v), each server checks if register r is unwritten. If so, any unwritten

registers up to r−1 (inclusive) are set to to nil and register r is set to v. The server replies
with P2b(r, v).

• If c receives P2b messages from the majority of servers then c learns that the value v has
been decided and can output v. Otherwise, c times out and restarts phase one.

Figure 8: The Paxos algorithm using write-once registers.

C0 C1

S0

S1

P
1
a
(0
)

P
1
b
(0
,{
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)
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)

P
2
b
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,A

)

P
2
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(0
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)
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)
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0
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P
2
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)

P
2
b
(1
,A

)

P
2
b
(1
,A
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Figure 9: Sample message exchange for Paxos

S0 S1 S2

R0

Register Quorum Decision state

R0 {S0, S1} Any
{S0, S2} Any
{S1, S2} Any

(a) Initial state, unchanged after receiving P1b(0,{}) from S1.

S0 S1 S2

R0 A A

Register Quorum Decision state

R0 {S0, S1} Decided A
{S0, S2} Maybe A
{S1, S2} Maybe A

(b) State after receiving P2b(0,A) from S1.

Figure 10: Sample client state tables (left) and decision tables (right) for client C0 during the
execution in Figure 9.
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S0 S1 S2

R0 A

Register Quorum Decision state

R0 {S0, S1} Maybe A
{S0, S2} Maybe A
{S1, S2} Maybe A

(a) State after receiving P1b(1,{R0:A}) from S0.

S0 S1 S2

R0 A A

Register Quorum Decision state

R0 {S0, S1} Decided A
{S0, S2} Maybe A
{S1, S2} Maybe A

(b) State after receiving P1b(1,{R0:A}) from S1.

Figure 11: Sample client state tables (left) and decision tables (right) for client C1 during the
execution in Figure 9.

of registers from a server, the client learns the contents of registers 0 to r − 1. This is because
registers are always written to in-order on each server and register r must be unwritten. Therefore
the client’s state table and thus its decision table can be updated accordingly. This is demonstrated
in Figure 10 for client C0 and Figure 11 for client C1.

4.1 Weakened quorum intersection requirements

The boolean function I tests whether two or more quorum sets are intersecting and is defined as
I({Qi}) ≡ ∀i,∀Qi ∈ Qi :

⋂
Qi 6= ∅.

Paxos utilises majorities as it requires all quorums, Q ∈ Q, to intersect, regardless of the register
set or phase of the algorithm. That is, in terms of I, I(Q,Q).

Instead, we differentiate between the quorums used for each register set and which phase of
Paxos the quorum is used for. Qk

r is the set of quorums for phase k of register set r. We observe
that quorum intersection is required only between the phase one quorum for register set r and the
phase two quorums of register sets 0 to r− 1. This is the case because a client can always proceed
to phase two after intersecting with all previous phase two quorums since the condition (iii) in
Figure 5 will be satisfied. More formally,

∀r ∈ N0,∀r
′ ∈ N<r : I(Q

1
r ,Q

2

r′). (*)
This result confirms the findings of Flexible Paxos [12]. This is illustrated in Figure 10a where

the client was safe to proceed to phase two from startup since there is no intersection requirement
for register set 0.

4.2 Progress without quorums

Each of the two phases of Paxos waits for agreement from a quorum of servers. However, we observe
that it may be possible to proceed prior to reaching quorum agreement.

A client can safely terminate once it learns that a value has been decided (Rule 1). This need
not be the result of completing both phases of the algorithm. This is illustrated in Figure 11b
where the client learns that value A has been decided prior to starting phase two.

Similarly, if a server learns that a register r contains a (non-nil) value v then it also learns that
if any quorums from register sets 0 to r reach a decision then v must be chosen. By updating their
decision table, we observe that it is no longer necessary for the client in phase one to intersect with
the phase two quorums of registers up to r (inclusive). This is illustrated in Figure 11a where the
client could safely proceed to phase two after one P1b message as the client reads a non-nil value
from predecessor register set.
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Register Quorums

R0, R1, . . . {{S0, S1, S2}, {S0, S1, S3},
{S0, S2, S3}, {S1, S2, S3}}

(a)

Register Quorums

R0, R1, R2 {{S0, S1, S2}}
R3, R4, . . . {{S0, S1}, {S0, S2}, {S1, S2}}

(b)

Register Quorums

R0 {{S0, S1}}
R1, R2, . . . {{S0, S1}, {S0, S2}, {S1, S2}}

(c)

Register Quorums

R0, R1, . . . , R10 {{S0, S1}, {S0, S2}, {S1, S2}}
R11, . . . {{S3, S4}, {S3, S5}, {S4, S5}}

(d)

Figure 12: Additional sample configurations.

5 Generalisation of Fast Paxos

Paxos requires client restricted configuration for all register sets. Fast Paxos [16] generalises Paxos
by permitting intersecting quorum configurations for some register sets, known as fast sets, whilst
still utilising client restricted configurations for remaining sets, known as classic sets. Quorums
for classic sets must include > 1/2 of servers whereas quorums for fast sets must include ≥ 3/4 of
servers. Figure 12a is an example of such a configuration.

Fast Paxos modifies our original Paxos algorithm (Figure 8) as follows:
• If a register set is fast then a client does not need to be assigned the register set nor do they
need to ensure that they write to it with only one value. Any client can use the any fast
register set.

• If the register set is fast then completion of each phase requires responses from 3/4 of servers
instead of 1/2 of servers.

• When choosing a value at the end of phase one, multiple values may have been read from the
same register set (if it was a fast set), in which case the client chooses the most common.

5.1 Weakened quorum intersection requirements

Fast Paxos uses quorums of 3/4 of servers for fast sets and 1/2 of servers for classic sets since it
requires the following intersection between quorums for fast sets, Qf and quorums for classic sets,
Qc: I(Qc,Qc), and I(Qc,Qf ,Qf ).

1

As with Paxos, these intersection requirements are conservative. We differentiate between the
quorums used for each register set and which phase of the algorithm the quorum is used for. Qk

r

is the set of quorums for phase k of register set r. In addition to Paxos’s weakened intersection
requirement (Eq. (*)), we observe that two additional quorum intersections are required: between
the quorums for each fast register set, and between the phase one quorum for register set r and
any pair of phase two quorums of fast register sets from 0 to r−1. Denoting the set of fast register
sets as F, we express these requirements as follows:

∀r ∈ F : I(Q2
r ,Q

2
r) and ∀r ∈ N0,∀r

′ ∈ F<r : I(Q
1
r ,Q

2

r′ ,Q
2

r′). (**)

5.2 Progress without quorums

Utilising decision tables, we observe that quorum agreement is sufficient but not necessary for a
client to complete a phase of the algorithm. In particular, during the following three cases.

(i) As with Paxos, once a client learns that a quorum of registers contain a value then the client
can terminate and return that value.

1Generalisation to quorums requires us to rewrite the value selection rule to chose the value which may be decided.
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S0 S1 S2 S3

R0 ⊥ ⊥

Register Quorum Decision state

R0 {S0, S1, S2} None
{S0, S1, S3} None
{S0, S2, S3} None
{S1, S2, S3} None

Figure 13: Sample client state table (left) and decision table (right) for client C0 during Fast Paxos.

S0 S1 S2 S3

R0 A B

Register Quorum Decision state

R0 {S0, S1, S2} None
{S0, S1, S3} None
{S0, S2, S3} Maybe A

{S1, S2, S3} Maybe B

Figure 14: Sample client state table (left) and decision table (right) for client C0 during Fast Paxos.

(ii) If a client learns that a register r contains a (non-nil) value v then it also learns that if
any quorums from register sets 0 to r − 1 reach a decision then v must be chosen. If r is a classic
register set then it also learns that if any quorums from register sets r reach a decision then v must
be chosen. The client therefore no longer needs to intersect with quorums 0 to r − 1 if r is fast or
quorums 0 to r if r is classic.

(iii) Furthermore, a client in phase one will only need to intersect with any previous two fast
quorums if it is unable to determine which value to propose. Figures 13 & 14 give an example
of this with the configuration from Figure 12a. According to Equation (**), the client C0 needs
to read three registers from register set 0 before it can safely write to register set 1. However, in
Figure 13, the client can safely write to register set 1 after reading just two registers. This is not
the case in Figure 14 however.

Figure 15 summaries how these generalisation can be combined into a revised Fast Paxos algo-
rithm. Note that a client can complete a phase once the completion criteria (underlined) has been
satisfied even if it has not executed every step.

6 Example consensus algorithms

In this section, we outline three uses of our generalisation of Paxos and Fast Paxos by utilising
different configurations.

Co-located consensus. Consider a configuration which uses a quorum containing all servers
for the first k register sets and majority quorums afterwards, as shown in Figure 12b. All registers
sets are client restricted. Participants in a system may be deciding a value between themselves,
and so a server and client are co-located on each participant. A client can therefore either achieve
consensus in one round trip to all servers (if all are available) or two round trips to any majority
(in case a server has failed).

Fixed-majority consensus. Consider a configuration with one majority quorum for register
set 0 and majority quorums for register sets 1 onwards, as shown in Figure 12c. Register set 0 is
quorum intersecting and register sets 1 onwards are client restricted. A client can either achieve
consensus in one round trip to a specific majority or two round trips to any majority.

Reconfigurable consensus. Consider a set of servers partitioned into a primary set and
backup set. Consider a configuration which uses only primary servers for register set 0 to k−1 and
only backup servers from register set k, as shown in Figure 12d. A client can move the systems from
primary servers to backup servers by executing Paxos for register set k or greater. No subsequent
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Phase 1
• A client c chooses a register set r that is either: quorum intersecting or is client restricted

and has been assigned to c but not yet used. c sends P1a(r) to all servers.
• Upon receiving p1a(r), each server checks if register r is unwritten. If so, any unwritten

registers up to r − 1 (inclusive) are set to to nil. The server replies with p1b(r,S) where
S is a set of all written registers.

• Each time c receives a P1a, it updates its state and decision tables accordingly. If the
decision state of all quorums from register sets 0 to r − 1 is None or Maybe v then c
chooses v (or if all states are None then its input value) and proceeds to phase two. If c
times out before completing phase one, it restarts phase one.

Phase 2
• c sends P2a(r,v) to all servers where v is value chosen at the end of phase one.
• Upon receiving P2a(r,v), each server checks if register r is unwritten. If so, any unwritten

registers up to r − 1 (inclusive) are set to nil and register r is set to v. The server replies
with P2b(r,v).

• Each time c receives a P2a, it updates its state and decision tables accordingly. If the
decision state of a quorum isDecided v then c outputs v. If c times out before completing
phase two, it restarts phase one.

Figure 15: The Generalised Fast Paxos algorithm.

client will need a reply from a primary server to make progress whilst the backup set is available.

7 Conclusion

Paxos has long been the de facto approach to reaching consensus, however, this “one size fits
all” solution performs poorly in practice and is famously difficult to understand. In this paper,
we have reframed the problem of distributed consensus in terms of write-once registers and thus
proposed a generalised solution to distributed consensus. We have demonstrated that this solution
not only unifies existing algorithms including Paxos and Fast Paxos but also demonstrates that
such algorithms are conservative as their quorum intersection requirements and quorum agreement
rules can be substantially weakened. We have illustrated the power of our generalised consensus
algorithm by proposing three novel algorithms for consensus, demonstrating a few interesting points
on the diverse array of algorithms made possible by our abstract.

Our aim is to make reasoning about correctness sufficiently intuitive that proofs are not neces-
sary to make a convincing case for the safety; nonetheless, we include in Appendix A for complete-
ness.
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Appendices

A Proofs of safety

In this appendix, we provide proofs for the safety properties (non-triviality, agreement) of our
proposed algorithms for solving consensus.

A.1 Four correctness rules

Figure 3 proposed four rules which we claim are sufficient to satisfy the non-triviality and agreement
requirements of distributed consensus (§2). We now consider each requirement in turn. We will
use s[r] = v to denote that the value v is in register r on server s.

Theorem A.1 (Satisfying non-triviality). If a value v is the output of a client c then v was the
input of some client c′.

Proof.
Assume v was the output of client c.
According to Rule 1, ∃r ∈ N0,∃Q ∈ Qr,∀s ∈ Q : s[r] = v therefore at least one register contains

v.
Consider the invariant that all (non-nil) registers contain client input values. Initially, all

registers are unwritten thus this invariant holds. According to Rule 2, each client will only write
either their input value or a value copied from another register, thus the invariant will be preserved.

Theorem A.2 (Satisfying agreement). If two clients, c and c′, output values, v and v′ (respec-
tively), then v = v′.

Proof.
Assume that value v was the output of client c. Assume that value v′ was the output of client

c′.
According to Rule 1, the following must be true:

∃r ∈ N0,∃Q ∈ Qr,∀s ∈ Q : s[r] = v

∃r′ ∈ N0,∃Q
′ ∈ Q′

r,∀s
′ ∈ Q′ : s′[r′] = v′

Since register sets are totally ordered, it must be the case that either r = r′, r < r′ or r > r′:
Case r = r′:

Both decisions are in the same register set. It is either the case that both clients have read
from the same quorum or they have read from different quorums.
Case Q = Q′:

Each quorum can decide at most one value thus v = v′

Case Q 6= Q′:
According to Rule 3, since Q has decided v, each client who wrote a register in Q must
have ensured that no other quorum in register set r can reach a different decisions. Thus
v = v′.

Case r < r′:
According to Rule 4, a client will only write v to register set r′ after ensuring no quorum in
register set r will reach a different decision. Thus v = v′.
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Case r > r′:
This is the same as r < r′ with r and r′ swapped. Thus v = v′.

A.2 Client decision table rules

We have shown that the four rules for correctness are sufficient to satisfy the non-triviality and
agreement requirements of consensus. We will now show that the client decision table rules (Fig-
ure 5) implement the four rules for correctness (Figure 3) and thus satisfies the non-triviality and
agreement requirements of consensus.

Theorem A.3 (Satisfying Rule 1). If the value v is the output of client c then c has read v from
a quorum Q ∈ Qr in register set r.

Proof.
Assume the value v is the output of client c. There must exist a register set r and quorum

Q ∈ Qr in the decision table of c with the status Decided v (Figure 5). A quorum Q can only
reach decision state Decided v if ∀s ∈ Q : s[r] = v.

Theorem A.4 (Satisfying Rule 2). If the value v is written by a client c then either v is c’s input
value or v has been read from some register.

Proof.
Assume the value v has been written by client c. According to Figure 5, v must be either the

input value of c or read from some register.

Theorem A.5 (Satisfying Rule 3). If the values v and v′ are decided in register set r then v = v′.

Proof.
Assume the value v is decided in register set r by quorum Q ∈ Qr, thus ∀s ∈ Q : s[r] = v.

Assume the value v′ is decided in register set r by quorum Q′ ∈ Qr, thus ∀s ∈ Q′ : s[r] = v′.
The register set r either uses intersecting quorums or client restricted configuration.

Case r is client restricted:
Each client is assigned a disjoint subset of register sets thus at most one client is assigned r.
A client will only write a (non-nil) value to r if they have been assigned it and not yet written
to it (Figure 5). The register set r will therefore only contain one (non-nil) value thus v = v′.

Case r has intersecting quorums:
This requires that there exists a server s such that s ∈ Q and s ∈ Q′. We require that both
s[r] = v and s[r] = v′, thus v = v′.

Theorem A.6 (Satisfying Rule 4). If the value v is decided in register set r and the (non-nil)
value v′ is written to register set r′ where r < r′ then v = v′

We will prove this by induction over the writes to register sets > r.

Theorem A.7 (Satisfying Rule 4 - Base case). If the value v is decided in register set r then the
first (non-nil) value to be written to a register set r′ where r < r′ is v.
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Proof.
Assume the value v is decided in register set r by quorum Q ∈ Qr thus ∀s ∈ Q : s[r] = v. Since

registers are write once, the following always holds true: ∀s ∈ Q : s[r] = v ∨ s[r] = unwritten.
Assume the value v′ is written to register set r′ by client c where r < r′. Assume that v′ is the

first value to be written thus c cannot read any (non-nil) values from registers > r before writing
v′.

We will show that v = v′.
Consider the decision table of client c when it is writing to r′. Since r < r′, the decision state

of Q must be either None, Maybe v′ or Decided v′ (Figure 5).
Case Decided v′:

This decision state requires that ∀s ∈ Q : s[r] = v′. Since we know that ∀s ∈ Q : s[r] =
v ∨ unwritten then v = v′.

Case Maybe v′:
The decision state Maybe v′ can be reached in one of three ways:
Case c read v′ from register r of some server s ∈ Q: Since we know that ∀s ∈ Q : s[r] =

v ∨ unwritten then v = v′.
Case r is client restricted and c read v′ from register r of some server s Since we know that

∀s ∈ Q : s[r] = v ∨ unwritten then v = v′.
Case c read v′ from a register > r: Since v′ is the first value to be written to a register > r,

this case cannot occur.
Case None:

The decision state None can be reached in one of five ways:
Case c read nil from register r of some server s ∈ Q:

Since ∀s ∈ Q : s[r] = v ∨ unwritten, this case cannot occur.
Case c read two different values from two servers, s, s′ ∈ Q:

Since ∀s ∈ Q : s[r] = v ∨ unwritten, this case cannot occur.
Case c read two different values from registers > r:

Since v′ is the first value to be written to a register > r, this case cannot occur.
Case c read a value from register r of some server s ∈ Q and a different value from a register

> r:
Since v′ is the first value to be written to a register > r, this case cannot occur.

Case r is client restricted, c read a value from a register in r and a different value from a
register > r:
Since v′ is the first value to be written to a register > r, this case cannot occur.

Since the following proof overlaps significantly with the previous proof, we have underlined the
parts which have been altered.

Theorem A.8 (Satisfying Rule 4 - Inductive case). If the value v is decided in register set r and
all (non-nil) values written to registers > r are v then the next (non-nil) value to be written to a
register set r′ where r < r′ is also v.

Proof.
Assume the value v is decided in register set r by quorum Q ∈ Qr thus ∀s ∈ Q : s[r] = v. Since

registers are write once, the following always holds true: ∀s ∈ Q : s[r] = v ∨ s[r] = unwritten.
Assume the value v′ is written to register set r′ by client c where r < r′. Assume that all

(non-nil) values written to registers > r are v thus c can only read v from (non-nil) registers > r.
We will show that v = v′.
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Consider the decision table of client c when it is writing to r′. Since r < r′, the decision state
of Q must be either None, Maybe v′ or Decided v′ (Figure 5).
Case Decided v′:

This decision state requires that ∀s ∈ Q : s[r] = v′. Since we know that ∀s ∈ Q : s[r] =
v ∨ unwritten then v = v′.

Case Maybe v′:
The decision state Maybe v′ can be reached in one of three ways:
Case c read v′ from register r of some server s ∈ Q:

Since we know that ∀s ∈ Q : s[r] = v ∨ unwritten then v = v′.
Case r is client restricted and c read v′ from register r of some server s:

Since we know that ∀s ∈ Q : s[r] = v ∨ unwritten then v = v′.
Case c read v′ from a register > r:

Since v is the only (non-nil) value to be written to registers > r then v = v′.
Case None:

The decision state None can be reached in one of five ways:
Case c read nil from register r of some server s ∈ Q:

Since ∀s ∈ Q : s[r] = v ∨ unwritten, this case cannot occur.
Case c read two different values from two servers, s, s′ ∈ Q:

Since ∀s ∈ Q : s[r] = v ∨ unwritten, this case cannot occur.
Case c read two different values from registers > r:

Since v is the only (non-nil) value to be written to registers > r, this case cannot occur.
Case c read a value from register r of some server s ∈ Q and a different value from a register

> r:
Since we know that ∀s ∈ Q : s[r] = v ∨ unwritten and v is the only (non-nil) value to be
written to registers > r, this case cannot occur.

Case r is client restricted, c read a value from a register in r and a different value from a
register > r:
Since we know that at some time ∀s ∈ Q : s[r] = v, then if r is client restricted then all
non-nil registers in r must contain v. Since v is the only (non-nil) value to be written
to registers > r, this case cannot occur.

A.3 (Fast) Paxos

Figure 8 describes the Paxos algorithm using write-once registers. Section 5 describe how to gen-
eralise Figure 8 to Fast Paxos. In this section, we proof that Fast Paxos (and therefore Paxos)
implements the four rules for correctness (Figure 3) and thus satisfies the non-triviality and agree-
ment requirements of consensus.

Theorem A.9 (Satisfying Rule 1). If the value v is the output of client c then c has read v from
a quorum Q ∈ Qr in register set r.

Proof.
Assume the value v is the output of client c.
This must be the result of c completing phase two of Fast Paxos for some register set r. c must

have received the message P2b(r,v) from > 1

2
/≥ 3

4
of servers (depending on either r is classic/fast).

Prior to sending P2b(r,v), each server s has written register r to v. Qr is any subset of servers
containing > 1

2
/≥ 3

4
of servers (depending on either r is classic/fast). Thus c has read a quorum

Q ∈ Qr in register set r.
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Theorem A.10 (Satisfying Rule 2). If the value v is written by a client c then either v is c’s input
value or v has been read from some register.

Proof.
Assume a value v is written by a client c. This must be the result of completing phase one of

Fast Paxos for some register set r and choosing the value v. The value v must have been chosen in
one of following ways:
Case 0 (non-nil) registers where returned with P1b messages:

In this case, v is c’s input value.
Case 1 or more (non-nil) registers where returned with P1b messages:

In this case, v is the most common value from the greatest register set thus v has been read
from some register.

Theorem A.11 (Satisfying Rule 3). If the values v and v′ are decided in register set r then v = v′.

Proof.
Assume the values v and v′ are decided in register set r. It is therefore the case that there exists

two quorums Q,Q′ ∈ Qr such that ∀s ∈ Q : s[r] = v and ∀s ∈ Q′ : s[r] = v′ The register set r is
either fast (quorum intersecting) or classic (client restricted):
Case r is fast :

There exists a server s where s ∈ Q and s ∈ Q′. We require that s[r] = v ∧ s[r] = v′ thus
v = v′

Case r is classic:
At most one client is assigned register set r. Each client only writes (non-nil) values to
assigned register sets and each does so with only one value. Therefore v = v′.

Theorem A.12 (Satisfying Rule 4). If the value v is decided in register set r and the (non-nil)
value v′ is written to register set r′ where r < r′ then v = v′

We will prove this by induction over the writes to register sets > r.

Theorem A.13 (Satisfying Rule 4 - Base case). If the value v is decided in register set r then the
first (non-nil) value to be written to a register set r′ where r < r′ is v.

Proof.
Assume the value v is decided in register set r. If r is fast (quorum intersecting), v must have

been written to register r on 3

4
or more of servers. Otherwise, if r is classic (client restricted), v

must have been written to register r on least 1

2
of servers. The writing of v to r must be the result

of receiving P2a(r,v).
Assume the (non-nil) value v′ is written to register set r′ by client c. This must be the result

of completing phase one of Fast Paxos for register set r′ and choosing the value v′. The value v′

could be chosen in one of two ways:
Case v′ is c’s input value: This requires that (non-nil) registers where returned to c with the P1b

messages for r. At last one server s must both write s[r] = v and send a P1b message to c
since both require at least 1

2
of servers.

Case s sends P1b for register r′ first:
Prior to sending P1b, the server s must write nil to all unwritten registers 0 to r′ − 1,
including register r since r < r′. Server s will not be able to later write s[r] = v so this
case cannot occur.
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Case s must write s[r] = v first:
Since no registers where returned with P1b messages, this case cannot occur.

Case v′ is the most common value read from the greatest (non-nil) register set: This requires that
1 or more (non-nil) registers where returned to c with the P1b messages for r. As we have
already seen, at least one P1b message for register r′ must include r : v. The chosen value v′

must have either been read from register set r or from any register set > r.
Case v′ was read from register set r:

The register set r is either fast (quorum intersecting) or classic (client restricted):
Case r is classic:

All (non-nil) registers from r returned with P1b messages will contain v thus v = v′.
Case r is fast :

At least 1

4
of servers will reply with r : v. Therefore v will be the most common

value and it will be chosen by c thus v = v′.
Case v′ was read from a register set > r:

Since the client c is the first to write to a register > r then c will not read any registers
> r. Therefore this case cannot occur.

Since the following proof overlaps significantly with the previous proof, we have underlined the
parts which have been altered.

Theorem A.14 (Satisfying Rule 4 - Inductive case). If the value v is decided in register set r and
all (non-nil) values written to registers > r are v then the next (non-nil) value to be written to a
register set r′ where r < r′ is also v.

Proof.
Assume the value v is decided in register set r. If r is fast (quorum intersecting), v must have

been written to register r on 3

4
or more of servers. Otherwise, if r is classic (client restricted), v

must have been written to register r on least 1

2
of servers. The writing of v to r must be the result

of receiving P2a(r,v).
Assume the (non-nil) value v′ is written to register set r′ by client c. This must be the result

of completing phase one of Fast Paxos for register set r′ and choosing the value v′. The value v′

could be chosen in one of two ways:
Case v′ is c’s input value: This requires that (non-nil) registers where returned to c with the P1b

messages for r. At last one server s must both write s[r] = v and send a P1b message to c
since both require at least 1

2
of servers.

Case s sends P1b for register r′ first:
Prior to sending P1b, the server s must write nil to all unwritten registers 0 to r′ − 1,
including register r since r < r′. Server s will not be able to later write s[r] = v so this
case cannot occur.

Case s must write s[r] = v first:
Since no registers where returned with P1b messages, this case cannot occur.

Case v′ is the most common value read from the greatest (non-nil) register set: This requires that
1 or more (non-nil) registers where returned to c with the P1b messages for r. As we have
already seen, at least one P1b message for register r′ must include r : v. The chosen value v′

must have either been read from register set r or from any register set > r.
Case v′ was read from register set r:

The register set r is either fast (quorum intersecting) or classic (client restricted):
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Case r is classic:
All (non-nil) registers from r returned with P1b messages will contain v thus v = v′.

Case r is fast :
At least 1

4
of servers will reply with r : v. Therefore v will be the most common

value and it will be chosen by c thus v = v′.
Case v′ was read from a register set > r:

Since all non-nil registers > r contain v then c will not read any other value from any
registers > r thus v = v′.
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