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Network-based	approaches	for	multi-omic	data	integration	
Hui	Xiao	

	
The	 advent	 of	 advanced	 high-throughput	 biological	 technologies	 provides	
opportunities	 to	 measure	 the	 whole	 genome	 at	 different	 molecular	 levels	 in	
biological	systems,	which	produces	different	types	of	omic	data	such	as	genome,	
epigenome,	 transcriptome,	 translatome,	 and	 interactome.	 In	 order	 to	 uncover	
the	 systematic	 complexity	 of	 biological	 systems,	 it	 is	 desirable	 to	 integrate	
multi-omic	data	 to	 transform	 the	multiple	 level	 data	 into	biological	 knowledge	
about	the	underlying	mechanisms.	Due	to	the	heterogeneity	and	high-dimension	
of	multi-omic	data,	it	is	necessary	to	develop	effective	and	efficient	methods	for	
multi-omic	data	integration.	

This	 thesis	 aims	 to	 develop	 efficient	 approaches	 for	 multi-omic	 data	
integration	 using	 machine	 learning	 methods	 and	 network	 theory.	 We	 assume	
that	a	biological	 system	can	be	 represented	by	a	network	with	nodes	denoting	
molecules	 and	 edges	 indicating	 functional	 links	 between	 molecules,	 in	 which	
multi-omic	data	can	be	integrated	as	attributes	of	nodes	and	edges.	We	propose	
four	 network-based	 approaches	 for	multi-omic	 data	 integration	 using	machine	
learning	 methods,	 with	 specific	 aims	 for	 (1)	 gene	 module	 detection	 by	
integrating	multi-condition	 transcriptome	 and	 interactome	data	 using	network	
overlapping	module	detection	method,	(2)	gene	module	detection	by	integrating	
transcriptome,	translatome,	and	interactome	data	using	multilayer	network,	(3)	
feature	 selection	 by	 integrating	 transcriptome	 and	 interactome	 data	 using	
network-constrained	regression,	and	(4)	classification	by	integrating	epigenome	
and	 transcriptome	 data	 using	 neural	 networks.	 By	 applying	 the	 proposed	
approaches	 to	 multi-omic	 data	 of	 human	 cancer	 and	 early	 embryonic	
development,	 several	 underlying	 patterns	 are	 recognized	 through	 the	 data	
integration	which	 reveal	 interested	biological	 insights	providing	valuable	 clues	
for	understanding	the	potential	molecular	mechanisms.	 	

The	approaches	proposed	in	this	thesis	offer	effective	and	efficient	solutions	
for	integration	of	heterogeneous	high-dimensional	datasets,	which	can	be	easily	
applied	 to	 other	 datasets	 presenting	 the	 similar	 structures.	 They	 are	 therefore	
applicable	 to	 many	 fields	 including	 but	 not	 limited	 to	 Bioinformatics	 and	
Computer	Science.	
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Abstract

The advent of advanced high-throughput biological technologies provides opportunities to

measure the whole genome at di↵erent molecular levels in biological systems, which produces

di↵erent types of omic data such as genome, epigenome, transcriptome, translatome,

proteome, metabolome and interactome. Biological systems are highly dynamic and

complex mechanisms which involve not only the within-level functionality but also the

between-level regulation. In order to uncover the complexity of biological systems, it is

desirable to integrate multi-omic data to transform the multiple level data into biological

knowledge about the underlying mechanisms. Due to the heterogeneity and high-dimension

of multi-omic data, it is necessary to develop e↵ective and e�cient methods for multi-omic

data integration.

This thesis aims to develop e�cient approaches for multi-omic data integration using

machine learning methods and network theory. We assume that a biological system can be

represented by a network with nodes denoting molecules and edges indicating functional

links between molecules, in which multi-omic data can be integrated as attributes of nodes

and edges. We propose four network-based approaches for multi-omic data integration

using machine learning methods. Firstly, we propose an approach for gene module detection

by integrating multi-condition transcriptome data and interactome data using network

overlapping module detection method. We apply the approach to study the transcriptome

data of human pre-implantation embryos across multiple development stages, and identify

several stage-specific dynamic functional modules and genes which provide interesting

biological insights. We evaluate the reproducibility of the modules by comparing with

some other widely used methods and show that the intra-module genes are significantly

overlapped between the di↵erent methods. Secondly, we propose an approach for gene

module detection by integrating transcriptome, translatome, and interactome data using

multilayer network. We apply the approach to study the ribosome profiling data of mTOR

perturbed human prostate cancer cells and mine several translation e�ciency regulated

modules associated with mTOR perturbation. We develop an R package, TERM, for

implementation of the proposed approach which o↵ers a useful tool for the research

field. Next, we propose an approach for feature selection by integrating transcriptome

and interactome data using network-constrained regression. We develop a more e�cient



network-constrained regression method eGBL. We evaluate its performance in term of

variable selection and prediction, and show that eGBL outperforms the other related

regression methods. With application on the transcriptome data of human blastocysts, we

select several interested genes associated with time-lapse parameters. Finally, we propose

an approach for classification by integrating epigenome and transcriptome data using neural

networks. We introduce a superlayer neural network (SNN) model which learns DNA

methylation and gene expression data parallelly in superlayers but with cross-connections

allowing crosstalks between them. We evaluate its performance on human breast cancer

classification. The SNN provides superior performances and outperforms several other

common machine learning methods.

The approaches proposed in this thesis o↵er e↵ective and e�cient solutions for inte-

gration of heterogeneous high-dimensional datasets, which can be easily applied to other

datasets presenting the similar structures. They are therefore applicable to many fields

including but not limited to Bioinformatics and Computer Science.
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Chapter 1

Introduction

1.1 Motivation

The advent of advanced high-throughput technologies in molecular biology, such as

microarray and next generation sequencing, provides opportunities to measure the whole

genomes at di↵erent molecular levels in biological systems [1, 2]. The genome-wide

experiments of the molecular levels produce various omic data including genome, epigenome,

transcriptome, translatome, proteome, metabolome, interactome and so on. Each type of

omic data has its unique characteristics and provides a comprehensive view of functionality

at the corresponding molecular level. Most biological systems are highly dynamic and

complex mechanisms which involves not only the within-level functionality but also the

inter-level regulation. In order to uncover the complexity of biological systems, it is

desirable to integrate the multi-omic data to transform the heterogeneous high-throughput

data into biological knowledge about the underlying mechanisms [3, 4].

Machine learning techniques have been successfully used to carry out the biological

knowledge transformation from omic data [5, 6]. Machine learning is the method of fitting

an analytical model for the given data [7]. It is a data-driven process which automatically

learn processing rules, identify patterns and make decisions. There are two main disciplines

in machine learning, supervised learning and unsupervised learning. Supervised learning,

applies on labelled data, infers the discriminating rules from the given data and then

make predictions on the new unlabelled data. Unsupervised learning explores the data

and infers the hidden structures from unlabelled data independently. Both of the two

disciplines have been widely applied to analyse omic data to address biological questions.

For example, given a transcriptome data which provides the genome-wide gene expression

values in patients with di↵erent subtypes of cancer, the supervised learning can accurately

predict patients into di↵erent clinical groups [8, 9, 10], and the unsupervised learning can

identify new disease subtypes by clustering samples upon the similarities among their

gene expressions [11, 12]. Enormous e↵ort has been put into research and development of
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machine learning methods for mining omic data, but mainly focused on single-omic data

and does not take full advantage of multi-omic data.

In a complex biological system, molecules usually function coordinately, rather than

independently, with each other through the functional links among them. The coordinate

functional ways of molecules thus form a network in which the nodes are the molecules

and the edges are the functional links between corresponding molecule pairs. A molecular

network provides a comprehensive representation of the biological system, which allows

us to investigate and understand the biological characteristics based on the network

properties [13, 14]. On the basis of network theory, statistical modelling and machine

learning methods are capable of detecting hidden patterns from the molecular network

[15, 16, 17]. Di↵erent data sources and prior knowledge can be incorporated into molecular

networks as additional attributes of nodes and edges to be investigated based on the

functional context using proper models. Molecular networks therefore o↵er a flexible

framework for multi-omic data representation and integration.

With the advances of high-throughput technologies and the reduce of genomic ex-

perimental costs, there will be a boost of generation of multi-omic data. The rapid

growth of the amount of multi-omic data provides great opportunities for enhancing our

understanding of molecular biological systems through data integration. However, it also

brings big challenges for multi-omic data integration such as need of large computational

resources, data heterogeneity of di↵erent types of omic data and ine�cient computational

models for the high-dimensional data structure. It is therefore necessary to develop more

e↵ective and e�cient approaches for multi-omic data integration based on more powerful

methods such as advanced machine learning techniques and network theory.

1.2 The hypothesis

The hypotheses for this thesis are as follows:

1. Complex biological systems can be represented by networks where nodes are molecules

and edges are the functional links between molecules.

2. Multi-omic data can be integrated into molecular networks as attributes of nodes

and edges.

3. Machine learning methods can be applied to recognise underlying patterns from

molecular networks.
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1.3 Research problems

On the basis of the above hypotheses, the main aim of this thesis is to develop network-based

approaches for multi-omic data integration using machine learning methods. Specifically,

we aim to provide solutions for four generalized biological problems by integrating corre-

sponding multi-omic data, of which the former two are unsupervised learning problems

and the latter two are supervised learning problems:

1. How to identify condition responsive gene functional modules based on transcriptome

and interactome data?

2. How to identify translational regulated gene functional modules based on transcrip-

tome, translatome and interactome data?

3. How to select feature genes for scalar responses based on transcriptome and interac-

tome data?

4. How to classify patients based on epigenome and transcriptome data?

1.4 Contributions

The main task of multi-omic studies is to perform data mining through integration of

multiple heterogeneous and high-dimensional omic data with respect to specific biological

research problems. The biggest challenge for this task is how to use appropriate computa-

tional models to integrate di↵erent heterogeneous and high-dimensional omic data taking

into account the relationships between the di↵erent levels of omic data. This thesis builds

a bridge between computer science and biology by contributing to the multi-omics field

in terms of methodologies. We develop e�cient approaches using appropriate machine

learning models for data mining through multi-omic data integration. These approaches

are capable of transforming the multiple heterogeneous and high-dimensional omic data

into underlying biological insights. Specifically, in this thesis, we propose four approaches

aiming to address the aforementioned research problems, respectively, which incorporate

principles from machine learning and network theory, as illustrated in Figure 1.1. Chapter

3 addresses the first research problem, in which we propose an approach for gene module

detection by integrating multi-condition transcriptome data and interactome data using

network overlapping module detection method. Chapter 4 addresses the second research

problem, in which we propose an approach for gene module detection by integrating

transcriptome, translatome, and interactome data using multilayer network. Chapter 5

addresses the third research problem, in which we propose an approach for feature selection

by integrating transcriptome and interactome data using network-constrained regression.
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Figure 1.1: Multi-omic data integration approaches proposed in the thesis. Chapter 3 pro-
poses an approach for gene module detection by integrating multi-condition transcriptome
and interactome data using network overlapping module detection method. Chapter 4
proposes an approach for gene module detection by integrating transcriptome, translatome,
and interactome data using multilayer network. Chapter 5 proposes an approach for feature
selection by integrating transcriptome and interactome data using network-constrained
regression. Chapter 6 proposes an approach for classification by integrating epigenome
and transcriptome data using neural networks.

Chapter 6 addresses the fourth research problem, in which we propose an approach for

classification by integrating epigenome and transcriptome data using neural networks.

Besides the contributions to the methodology side, this thesis also contributes to the

biological discovery side. The research studies conducted in this thesis are involved in

an EU collaborative project, Marie Curie Initial Training Network (ITN) EpiHealthNet,

which consists of several research groups from di↵erent fields such as biology, statistics and

computer science. EpiHealthNet aims to explore molecular mechanisms during mammalian

early embryonic development in order to help to improve the health of human population

through the interdisciplinary collaborations within the ITN. Various types of data, including

omic data, are generated by the biological groups in EpiHealthNet, and my responsibility

is to perform data mining on the omic data and transform them into the information

that biologists need. Using the proposed approaches, we have successfully assisted our

collaborators in transforming their in-house generated omic data into meaningful biological
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insights through the integrative analysis with molecular networks. In Chapter 3 and 5, we

present the works that are in collaboration with our partners in EpiHealthNet, Prof Daniel

Brison from The University of Manchester, UK and Dr Giovanna Lazzari from Avantea,

Italy. Applying the proposed approaches on the in-house generated transcriptome data of

human early embryos provided by Daniel and Giovanna, we successfully discover several

meaningful biological insights which help them to understand the underlying mechanisms

related with human early embryonic development. Furthermore, besides the omic data

provided by EpiHealthNet, in Chapter 4 and 6, we apply the proposed approaches on

public human cancer omic data and mine interesting biological clues related with the

mechanisms of tumorgenesis.

Publications (published, accepted, planned) related with this thesis are listed as follows:

1. Barandalla M, Shi H, Xiao H, Colleoni S, Galli C, Lio P, Trotter M, Lazzari G.

Global gene expression profiling and senescence biomarker analysis of hESC exposed

to H2O2 induced non-cytotoxic oxidative stress. Stem Cell Res Ther, 2017 Jul

5;8(1):160. (related with Chapter 3)

2. Helen Louise Smith, Adam Stevens, Ben Minogue, Sharon Sneddon, Lisa Shaw, Lucy

Wood, Tope Adeniyi, Hui Xiao, Pietro Lio, Sue Kimber, Daniel Brison. Systems

based analysis of human embryos and gene networks involved in cell lineage allocation.

(accepted by BMC Genomics). (related with Chapter 3)

3. Hui Xiao, Pietro Lio. TERM: an R package for identification of translation e�ciency

regulated modules via network-based integration of Ribosome profiling data. (in

submission). (related with Chapter 4)
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1.5 Thesis overview

The rest of the thesis is structured as follows:
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Chapter 2 covers the background knowledge for the thesis, which provides introductions

to multi-omic data, biological networks and common machine learning techniques.

Chapter 3 proposes an approach for gene module detection by integrating multi-

condition transcriptome data and interactome data using network overlapping module

detection method, which consists of four steps: (1) construction of gene co-expression

network by evaluating co-expression correlation coe�cient between each interacted gene

pair based on their gene expression; (2) detection of overlapping gene modules from the

co-expression network using network overlapping module detection method; (3) identifi-

cation of condition-associated modules by assessing the significance of enrichment with

condition-associated genes within the modules using ANOVA-GSEA; (4) selection of

condition-specific feature modules and feature genes using GEL logistic regression with

K-fold cross-validation. We apply the proposed approach on the transcriptome data of

human pre-implantation embryos across multiple development stages and identify human

embryonic development stage-specific modules and genes. Interesting biological insights

are revealed from the dynamic expression patterns of the stage-specific modules and the

multiple function genes located in the overlapping modules, which provides clues for under-

standing the potential molecular mechanisms during human pre-implantation embryonic

development. To assess the stability of the modules identified by the proposed approach,

we perform similar module detection studies using several common module detection

methods as well as on di↵erent transcriptome data. We find that the intra-module genes

are significantly overlapped between di↵erent methods and datasets.

Chapter 4 proposes an approach for gene module detection by integrating transcriptome,

translatome, and interactome data using multilayer network, which consists of five steps:

(1) construction of multilayer di↵erential expression network by integrating transcriptome

and translatome with interactome data respectively; (2) selection of seed genes for module

detection by evaluating their degrees of di↵erential translation; (3) detection of modules

from the multilayer network using greedy search for each seed gene by minimizing the

entropy-based local modularity function; (4) identification of translation e�ciency (TE)

regulated modules by the refinements including significance assessment, redundancy

deletion and dynamic evaluation; (5) visualization of TE-regulated modules as graphs

with incorporated multilayer information from the networks. We apply the proposed

approach on a published ribosome profiling data of mTOR perturbed prostate cancer

cells and mine several TE-regulated modules associated with mTOR perturbation. The

translational regulated genes and modules downstream mTOR provide valuable clues

for understanding the mTOR associated translational regulation mechanisms in prostate

cancer genesis and metastasis. We develop an R package, TERM, for implementation of

the proposed approach, which is capable of (1) evaluating di↵erential translation of genes;
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(2) identifying TE-regulated modules; (3) visualizing the TE-regulated modules. It is a

useful tool for exploring translational regulation mechanisms by integrating transcriptome,

tanslatome and interactome data.

Chapter 5 proposes an approach for feature selection by integrating transcriptome

and interactome data using network-constrained regression. We develop a more e�cient

network-constrained linear regression method, named eGBL, by incorporating the edge

weights into the GBL network-constrained penalty, which takes the advantage of weighted

network. We evaluate the performance of eGBL on four simulated datasets built with

di↵erent proportions of features, di↵erent magnitudes of coe�cients and di↵erent signs

of coe�cients. We show that eGBL outperforms several common regularized regression

methods and provides superior performance on feature selection. We apply eGBL to explore

whether the key time-lapse parameters capable of predicting EmbryoScope blastocyst

qualities are associated with transcriptional patterns. For each time-lapse parameter, we

use eGBL on the transcriptome data of blastocysts to select the feature genes by fitting the

linear model incorporating the human pre-implantation embryonic development network

for regularization. We find scientific evidence that several selected feature genes play

important roles across the stages of embryonic development. The early stage associated

feature genes indicate the crucial roles of the key time-lapse parameters during the early

pre-implantation embryonic development. The late stage associated feature genes account

for the prediction capability of key time-lapse parameters on blastocyst qualities from the

molecular level.

Chapter 6 proposes an approach for classification by integrating epigenome and tran-

scriptome data using neural networks. We introduce two neural network models for DNA

methylation and gene expression integration based on two strategies: (i) the multilayer

perceptron (MLP) for series integration strategy, in which the DNA methylation and gene

expression features are stacked together by samples; (ii) the superlayer neural network

(SNN) for parallel integration strategy, in which the DNA methylation features and gene

expression features are learned separately in superlayers but with cross-connections al-

lowing the crosstalks between them. We train the optimal MLP and SNN on a breast

cancer dataset using stratified nested 5-fold cross-validation and compare their perfor-

mances on the cancer patients classification. The SNN provides superior performances

and outperforms the MLP due to its capability of learning the intrinsic characteristics

of the heterogeneous datasets. We compare the neuron activations between the layers

before cross-connections and the ones after cross-connections in the SNN, and find that

the cross-connections lead to a markedly improvement on discriminating the two classes of

samples in the latter layer. We recommend the parallel integration strategy (i.e. the SNN)

for the neural network based integration of DNA methylome and transcriptome data.
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Chapter 7 concludes the thesis. We summarize the main contributions of the thesis

and discuss future directions of the research field.
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Chapter 2

Background

2.1 Multi-omics

2.1.1 Central dogma

The genetic information carried by DNA can be transmitted to o↵spring, which is the basis

of the inheritance of phenotypic traits. Genes are the functional subunits of DNA which

can encode other functional molecules such as RNAs and proteins. The flow of the genetic

information from gene to gene products follows the “central dogma” of molecular biology

[18] (Figure 2.1), in which DNA is firstly transcribed into RNA (“transcription”) and then

RNA is translated into protein (“translation”). The process, by which the information

contained within a gene becomes a useful product (mRNA or protein), is called gene

expression. The expression levels of genes are regulated by a very complicated system of

mechanisms at both the transcription and translation levels. In biological systems, the

di↵erent molecules such as DNA, RNA and protein do not work independently but in

coordinate ways to fulfil some specific functions by interacting with each other through

various biological reactions such as DNA-protein binding, RNA-protein binding, protein-

protein physical interactions, metabolic reactions and so on. The molecules and the

functional links among them which are involved in a biological process are considered as a

biological pathway. From the perspective of system biology, biological systems are highly

dynamic, which consist of multiple pathways and functional molecules.

2.1.2 Multi-omic data

The advent of advanced high-throughput technologies in molecular biology, such as microar-

ray and next generation sequencing, provides opportunities to measure the whole genomes

at di↵erent molecular levels in biological systems. Such genome-wide experiments of the

molecular levels produce various omic data including genome, epigenome, transcriptome,

translatome, proteome, metabolome, and interactome (Figure 2.2). Each type of omic

21



Gene expression�

Figure 2.1: Central dogma of molecular biology.

data has its unique characteristics and provides a comprehensive view of functionality at

the corresponding molecular level. In order to gain a global view of molecular mechanisms

at the system level, it is critical not to understand the single omic data separately, but

to integrate the multiple omic data. Multi-omics refers to the integrative study of the

following multiple omic data.

Genome is the complete set of DNA, which holds all genetic information of an organism

[19]. The term “-omics” refers to the study of corresponding omic data. Genomics is the

study of the genome of an organism. The main aim of genomics is to determine the whole

sequence of DNA and study its structure, function, evolution, and editing of the genome.

The DNA is the fundamental knowledge of all other omic data. Therefore, genomics is of

great importance not only in omics fields but also in other research fields such as medicine

and biotechnology.

Epigenome is the complete set of the reversible chemical changes to the DNA and histone

proteins of an organism [20], which is heritable to its o↵spring. Unlike the static genome,

epigenome can be dynamically a↵ected by environmental conditions [21]. Epigenetic

changes can lead to alterations in chromatin structures, which will, in turn, a↵ect the

function of the genome. Two main types of epigenetic changes are DNA methylation and

histone modification, which have been proved to play important roles in regulating gene

expression [22]. Epigenomics focuses on genome-wide identification and characterization

of epigenetic modifications.

Transcriptome is the complete set of RNA molecules in a cell or a collection of cells

[23]. It usually refers to the total RNAs, but sometimes just the messenger RNAs

(mRNAs), which depends on the experiment design. By keeping only the mRNAs, the

transcriptome is an expression of the genome, which captures the expressed genes at
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Figure 2.2: Overview of multi-omic data.

transcription level in the given condition. Transcriptome is a dynamic system which

is responsive to external environmental conditions, where the gene expression changes

with the alterations in conditions. The main aim of transcriptomics is to identify genes

that exhibit significant di↵erence in expression between di↵erent conditions (e.g. disease

vs. normal, di↵erent tissues, multiple time points), usually referred to as di↵erentially

expressed genes (DEGs), and thus to infer the potential regulatory patterns which will

provide clues for understanding the related mechanisms.

Translatome is the complete set of the mRNA fragments that are being translated in a

condition in a single cell [24]. Translatome data can be obtained by using ribosome profiling

techniques [25]. It measures the total ribosome protected mRNAs fragments (RPFs) as

ribosome is the factory of protein synthetic in cells. Translatome is the intermediate layer

between transcription and translation. Translatome data are not studied independently,

but in combination with the matched transcriptome data. Translatomics aims to infer

the discordance between the changes in transcriptome and the changes in translatome.

The strong discordance will suggest the potential regulation mechanisms which control

the expression from transcription to translation.
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Proteome is the complete set of proteins expressed in a cell, tissue, or organism [26].

Similar with the transcriptome, the proteome is also an expression of the genome, but at the

translation level, which captures the expressed proteins. The proteome also actively changes

in response to the external environmental conditions. Besides the protein expressions, the

proteomics also involves understanding the potential patterns that proteins function and

interact with each other.

Metabolome is the complete set of all low molecular weight metabolites that are

produced by cells during metabolism, and provides a direct functional readout of cellular

activity and physiological status [27]. Compared to the above omic data, metabolome

is not directly involved in the information flow of the central dogma. Metabolomics is

an emerging discipline which aims to profile all small molecular metabolites present in

an organism. It provides a tool for understanding how mechanistic biochemistry links to

cellular phenotypes.

Interactome is the complete set of molecular interactions in a cell [28]. An interactome

can be intuitively represented by a network, where nodes are molecules such as genes,

RNAs and proteins, and edges indicate functional relationships between molecule pairs.

The functional links are defined from di↵erent data sources, such as physical interactions

from protein-protein interaction network, and protein-RNA binding from gene regulation

network. The interactomics aims to discover the potential patterns in the molecular

interactome from the network perspectives by studying the topological properties which

usually suggest the potential biological roles. It is needed to be noted that the molecular

interactome in a cell is a static network as it is a collection of molecular interactions

under various conditions. But biological processes in cells are highly dynamic systems

where the interactions turn on/o↵ in response to the temporal and spatial changes in

cells. Therefore, capturing the dynamic responsive patterns will help to understand the

underlying mechanisms.

2.2 Networks in molecular biology

Networks are widely used in the field of molecular biology as an intuitive representation of

a biological system, where nodes/vertices are molecules such as genes, RNAs and proteins,

and edges indicate functional links between molecule pairs. Molecular networks provide

di↵erent functional information of the biological system corresponding to di↵erent types

of interactions between molecules.

• Gene co-expression networks are constructed by looking for pairs of genes which

show similar expression patterns across biological conditions (e.g. disease vs. normal,
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di↵erent tissues, multiple time points), where the activation levels of two co-expressed

genes rise and fall together across conditions.

• Protein-protein interaction networks represent physical interactions between proteins

such as building of a protein complex which is a group of multiple proteins stably

interacting with each other and the activation of one protein by another protein.

• Metabolic networks show how metabolites are transformed, for example, to produce

energy or to synthesize specific substances such as carbohydrates, glycans, proteins

and nucleotides which are essential for biological systems.

• Signal transduction and gene regulatory networks describe how genes can be activated

or repressed, and therefore contain information about which mRNAs or proteins are

produced in a cell at a particular time.

In a biological system, the above networks crosstalk with each other and form a

comprehensive complex molecular interaction network which provides the fundamental

function context of molecular mechanisms.

2.2.1 Network properties

Molecular interaction network is presented in a graph with vertices/nodes referring to

molecules and edges presenting interactions among molecules. A node can be characterized

according to its topological properties in a network, which suggests that the topological

characteristics may indicate its biological roles. The most widely used network properties

for inferring associated biological patterns are described as follows:

2.2.1.1 Scale-free property

In a network, the degree of a node is the number of connections it has. The degree

distribution is the probability distribution of the degrees over the whole network. It is

reported that the degree distributions of most biological networks follow a power-law

distribution where the degree k following P (k) = ck��, with 2 < � < 3 [29]. Power-law

networks are often known as scale-free networks since alterations in the constant c do not

change the power-law exponent. One important characteristic of the scale-free network is

that there are many nodes with few interactions and few nodes that have many interactions

in the network. Random removal of a node in a scale-free network will not disturb its

fundamental structure because the chance that a random failure would delete a highly

connected node is very small and the removal of small degree nodes does not have a strong

e↵ect on integrity of network, which indicates the robustness of the scale-free network.

Since molecular interaction networks represent a complex biological system, the scale-free
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characteristic can also explain the stability of the biological system which is characterized

by its capacity to recover to stable conditions or steady states after a random perturbation

of its robustness (e.g. stimulations to the biological system or environment changes) [30].

2.2.1.2 Hubs

In a scale-free network, highly connected nodes are called hubs. Hubs have a significantly

larger number of links in comparison with other nodes in the network, which suggests

that hubs play central roles in the network locally or globally. Hubs are responsible for

exceptional robustness of network [31]. Removal of hubs will result in destruction of the

network. Because small nodes are predominantly linked to hubs, the integrity of the

network will fall apart relatively fast by the removal of hubs especially the largest ones.

The topological importance of hubs in molecular interaction network will suggest their

crucial roles in biological processes, e.g., essential genes are likely to be hubs in molecular

networks [13], as well as the disease genes [14]. Dysfunction of the hub molecules will

lead to a strong interruption for the biological system which might result in death or

disease genesis. A large number of e↵orts have been done in studying hub genes/proteins

to discover new biomarkers or drug targets.

2.2.1.3 Cliques and modules

A clique, is a graph or subgraph in which every node is connected to every other nodes,

e.g., a clique of size three corresponds to a triangle. A maximal clique is a clique that

cannot be further enlarged given its neighbours in the network. Large cliques in a sparse

network might be a potential sign of modules existing in the network. A module, also

called a community or a cluster, is usually defined as a tightly connected subnetwork

in a network, which is densely connected by internal edges but loosely connected to the

outside nodes. The emergency of modules suggests an important characteristic of scale-free

network which is defined as modularity.

In biological systems, molecules do not work independently but in a coordinate way by

crosstalking to each other, and a set of molecules that are involved in the same biological

process are likely to form a coherent functional module. Consequently, a functional module

can be defined as a group of genes or their products which are related by one or more

functional interactions such as co-regulation/co-expression/co-occurrence in a protein

complex/a metabolic or signalling pathway. An important property of a module is that its

function is separable from other modules [32] and that its members have more relations

among themselves than with members of other modules, which is reflected in the network

topology as a tightly connected network module [33].
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Figure 2.3: Date and party hubs illustrated by Han et al. [34].

2.2.2 Dynamic network

According to the biological roles of network properties, a biological system can be considered

as a functionally organised modular network consisting of functional modules and single

molecules. Biological systems are not static processes but dynamic procedures where

molecules are responsive to di↵erent temporal or spatial environments, e.g. many genes are

multi-functional that they involve in di↵erent biological pathways corresponding to di↵erent

conditions, and di↵erent biological pathways are responsive in di↵erent biological systems.

Therefore, the modular network can be considered as a dynamic network organised by

dynamic crosstalks among molecules and modules corresponding to di↵erent conditions.

Han et al. [34] discovered two types of hubs in protein-protein interaction network

according to their dynamic co-expression patterns with their partners (as shown in Figure

2.3): party hubs which interact with most of their partners simultaneously and date hubs

which interact with their di↵erent partners at di↵erent times or locations. From the

network perspectives, party hubs are likely to be hubs located within modules, while date

hubs are usually the ones located between modules. On the basis of such hypothesis, the

modularity of a molecular interaction network can be considered as dynamic re-wiring

between date hubs and modules responsive to di↵erent conditions. The dynamic patterns

can be captured by combining the molecular interaction network with di↵erent omics data,

e.g. transcriptome.

Dynamic molecular interaction network provides us a flexible framework to integrate

omic data with molecular network to identify responsive molecular patterns by using data

mining technologies such as statistical learning and machine learning.
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Figure 2.4: Illustration of a simple multilayer network. The multilayer network consists of
three layers with nodes in blue, green and purple respectively. The solid lines represent
the within-layer links and the dashed lines represent the between-layer links.

2.2.3 Multilayer network

Multilayer network is an emerging domain in the field of network science [35, 36]. A

multilayer network consists of several layers of network, which include the same nodes

in each layer network, illustrated in Figure 2.4. The networks are connected by both

within-layer links (links within a same layer) and between-layer links (links between

di↵erent layers). The multilayer network has advantages in modelling complex systems as

it is capable of describing the properties of a specific aspect by the within-layer links as

well as capturing the complexities between di↵erent aspects by the between-layer links.

Multilayer network has been introduced in molecular biology to understand the mecha-

nisms from di↵erent molecular levels in an integrative way instead of aggregating them into

a single network [37, 38], which helps to uncover new knowledge that are ignored in the

aggregated network. Multilayer network also provides a flexible and e�cient framework for

multi-omic data integration, as in a multilayer framework, each oimc data can be described

by a layer of network and the correlations among di↵erent omic data can be captured

by the between-layer links. Recently, many e↵orts have been made for multi-omic data

integration based on multilayer network, e.g., inference of epigenetic functional modules

from a multiple layer networks constructed based on gene expression and DNA methylation

data [39], and identification of cancer driver genes via community detection from multilayer

networks built by integrating multi-omic data [40].
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2.3 Machine learning

2.3.1 Regularized linear regression

Regularized linear regression is a supervised machine learning technique, which fits a linear

model using regularization techniques to penalize the coe�cients of the linear model. This

section provides the background knowledge of linear regression, regularized/penalized

regression and network-constrained regression.

2.3.1.1 Linear regression

Linear regression is a statistical model developed for understanding the relationship

between a dependent scalar variable and a number of independent variables, which has

been widely used in machine learning for supervised learning to predict a quantitative

response variable from the predictor variables.

Let y = (y1, ..., yn)T be a quantitative response variable which contains a vector of n

observations. Let xi = (xi1, ..., xip) be the vector of p predictor variables corresponding

to the observed response yi, where i = 1, ..., n. According to the assumption that the

relationship between response variable and predictor variables is linear, it is modelled as

follows:

yi = �0 + �1xi1 + ...+ �pxip + ✏i = �0 + xi� + ✏i, i = 1, ..., n (2.1)

where � = (�1, ..., �p)T . �1, ..., �p are the regression coe�cients corresponding to the p

predictor variables, and �0 is the intercept of the linear model. ✏i is an unobserved random

variable of the systematic error for the linear model between yi and xi, which cannot be

predicted or reduced. The equations of n observations are stacked together and the linear

model can be written as:

y = �0 +X� + ✏ (2.2)

where X = (x1, ..., xn)T and ✏ = (✏1, ..., ✏n)T .

Statistical estimation and inference in linear regression model focuses on �. A regression

coe�cient �j can be interpreted as the partial derivatives of the response variable with

respect to the corresponding predictor variable. It can be negative or positive, which

assesses the degree of change in the response variable for every 1-unit of change in the

predictor variable. If �j is positive, the interpretation is that for every 1-unit increase

in the predictor variable, the response variable will increase by the value of �j. If �j is

negative, the interpretation is that for every 1-unit increase in the predictor variable, the

response variable will decrease by the absolute value of �j.
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2.3.1.2 Ordinary least squares estimation

The main task of linear regression is to estimate and infer the coe�cients � of the linear

model. A large number of methods have been developed to solve this problem. Ordinary

least squares (OLS) [41] is one of the most basic and common solution to estimate and

infer � for a linear model.

OLS aims to estimate the unknown coe�cients in a linear model by minimizing the loss

function L(�) defined by the sum of the squared residuals (SSR) which is the di↵erences

between the observed response variables y in the given dataset and those ŷ predicted

by the linear model. Suppose � is a candidate vector of values for the coe�cients. The

residual for the ith observation is quantified as (yi � ŷi), which assesses the distance of

fit between the actual data and the model. The sum of squared residuals (SSR) given �,

S(�), is a measure which evaluates the overall model fit:

S(�) =
nX

i=1

(yi � ŷi)
2 =

nX

i=1

(yi � xi�)
2 = (y �X�)T (y �X�) (2.3)

Thus, the loss function L(�) is defined as L(�) = S(�). The solution for coe�cient

estimation for the linear model is to find the OLS estimator �̂OLS for � which minimizes

L(�), that is, �̂OLS = argminL(�). Since L(�) is a quadratic function of �, the vector

�̂OLS which gives the global minimum can be found via matrix calculus by di↵erentiating

with respect to the vector � and setting equal to zero:

0 =
dL(�)

d�
=

d

d�

�
yTy � �TXTy � yTX� + �TXTX�

� ����
�=�̂OLS

= �2XTy + 2XTX�̂OLS

(2.4)

By assumption that matrix X has full column rank, XTX is invertible. Thus, the OLS

estimator �̂OLS for � is given by [42]:

�̂OLS = argmin
�

L(�) = (XTX)�1XTy (2.5)

2.3.1.3 Bias-variance trade-o↵

In order to verify whether the OLS estimator �̂ have the optimum values, we can check if

the predicted response value xi�̂ is close to the actual value xi� and how well the linear

model fits other independent datasets (e.g., future observations).

The mean squared error (MSE) is used to evaluate the closeness between the estimated

�̂ and the true �, which calculates the squared distance of �̂ to �:

MSE(�̂) = E[||�̂ � �||2] = E[(�̂ � �)T (�̂ � �)] (2.6)
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Figure 2.5: Bias-variance trade-o↵. This figure is adapted from [43].

where E is the true expectation.

The predicted error is calculated to evaluate how well the estimated model fits on

future observations, which can be explained as the di↵erence between the predicted ŷ and

the actual y from the new dataset. The expected squared predicted error is calculated as

follows:

ERR = E[(y � ŷ)2] = (E[ŷ]� y)2 + E[(ŷ � E[ŷ])2] + ✏ (2.7)

The ERR can be deposed as: ERR = Bias2 + V ariance+ IrreducibleError. The bias

is an error from erroneous assumption in the learning algorithm, which simply means how

far away is estimated values from actual values. The variance is an error from sensitivity

to small fluctuations in the training set which is a measure of variations in the predicted

values. The irreproducible error is the inherent uncertainty around the mean, which cannot

be predicted or reduced. Therefore, the predicted error is a↵ected by the bias and variance

of the model. Dealing with these two components will help in reducing MSE which in

turn will reduce the predicted error of the estimation.

The decomposition illustrates a trade-o↵ between bias and variance of the model. Figure

2.5 illustrates how bias and variance change as the complexity (number of predictors) of the

model increases. As the complexity increases, variance increases and bias decreases. Linear

regression exhibiting low variance and high bias in a model will result in underfitting of

the data, which means that the model is unable to find the underlying patterns within the

dataset. By contrast, a model with high variance but low bias will result in overfitting,

which suggests the model captures not only the underlying patterns but also the noises and

outliers in the dataset. In order to obtain a perfect model, we need to find an optimum

point balancing the trade-o↵ between bias and variance to improve the generalization

capability of the model, which is shown as marked by the dotted line in Figure 2.5.
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2.3.1.4 Regularized linear regression

In practice, the big data (e.g., omic data) studied by machine learning are usually high-

dimensional data, which means in the dataset, the number of features (predictors) greatly

exceeds the number of observations (samples). OLS estimation on such dataset will result

in overfitting of the linear model. Moreover, in OLS estimation, � is estimated without

any constrain, and therefore, the values of � can explode which is susceptible to a very

high variance.

As shown in Figure 2.5, to overcome overfitting of a model, the goal is to find the

optimum point for bias-variance trad-o↵ by moving the trade-o↵ line more towards left-

hand side. In this case, a small increase in bias can result in a big decrease in variance,

which will result in a substantial decrease in predicted error.

One of the most common methods to avoid overfitting is to reduce the model complexity

using regularization, which introduces a penalty term to the coe�cients � constraining

their magnitudes in OLS estimation. The objective of regularized regression is to solve:

min
�

S(�) subject to P (�)  t, (2.8)

where S(�) is the OLS loss function which is given by Equation 2.3, and P (�) denotes the

penalty term added for regularization. t is a predefined free parameter which determines

the magnitude of regularization. Consequently, the loss function for the regularized

regression becomes L(�) = S(�) + P (�) and the estimator �̂ is given by:

�̂ = argmin
�

L(�) = argmin
�

(S(�) + P (�)) (2.9)

The most commonly used regularization technique controlling the magnitude of a

numeric vector is called Lp-norm, which is defined as follows:

||x||p =
 

nX

i=1

|xi|p
!1/p

(2.10)

If p = 1, L1-norm is defined as the sum of absolute value of the vector. If p = 2, L2-norm

is defined as the root of sum of squares. When p ! 1, L1-norm approaches the infinity

norm which is defined as the maximal absolute value of the vector. L1-norm and L2-norm

are widely used for regularized regression. L2-norm o↵ers a smooth solution for coe�cient

estimation by shrinking the magnitudes of the coe�cients, and L1-norm o↵ers a sparse

solution by shrinking the coe�cients and enforcing the irrelevant coe�cients to 0.

A large number of regularized regression methods have been proposed by assigning

di↵erent penalties to coe�cients to overcome the overfitting of linear models in high-

dimensional data, and several most common methods are introduced as follows:
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Ridge Ridge regression [44] is a regularized linear regression method with the L2-norm

based regularization. The penalty function in Ridge regression is defined as:

P (�) = �||�||22 = �
pX

j=1

�2
j

(2.11)

where � is the shrinkage parameter which controls the magnitudes of coe�cients �. The

overall fit of the Ridge regression model can be evaluated by the following loss function:

L(�) =
nX

i=1

(yi � xi�)
2 + �

pX

j=1

�2
j

= (y �X�)T (y �X�) + �||�||22

(2.12)

Thus, the Ridge regression estimator �̂Ridge is given by �̂Ridge = argmin
�

L(�).

Ridge regression aims to avoid overfitting by penalizing large values of coe�cients �.

The L2-norm based penalty introduces the smooth solution by shrinking large values of

� in order to reduce the mean squared error and the predicted error of the linear model.

The penalty function P (�) is applied to the coe�cients �1, ..., �p but not to the intercept

�0 as �0 is simply a constant of the mean value of the response variable. � is a tuning

parameter controlling the amount of shrinkage of the values of �, which will always be

greater than 0. When � = 0, Ridge regression is equivalent to standard linear regression

and the coe�cient estimation procedure is the same with OLS estimation. The higher

value of �, the greater shrinkage will be performed on the values of �.

One important property of Ridge regression is that it shrinks the coe�cients of less

important predictors approaching 0 but not becoming 0, which means that Ridge regression

cannot filter out irrelevant predictors by enforcing their coe�cients equal to 0 but reduce

their impacts in the model. Consequently, Ridge regression improves prediction error by

parameter shrinkage to reduce overfitting, but does not perform variable selection.

Lasso Lasso [45], standing for Least Absolute Shrinkage and Selection Operator, is a

regularized regression method with the L1-norm for regularization. The penalty function

in Lasso regression is defined as:

P (�) = �||�||1 = �
pX

j=1

|�j| (2.13)
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where � is the shrinkage parameter similar with the � parameter in Ridge regression. The

overall fit of the Lasso regression model can be evaluated by the following loss function:

L(�) =
nX

i=1

(yi � xi�)
2 + �

pX

j=1

|�j|

= (y �X�)T (y �X�) + �||�||1

(2.14)

Thus, the Lasso regression estimator �̂Lasso is given by �̂Lasso = argmin
�

L(�).

Lasso regression performs the L1-norm regularization, which o↵ers the sparse solution

with both regularization and selection for coe�cient estimation. Similar as Ridge regression,

Lasso regression also shrinks the values of coe�cients according to the impacts of the

predictors. But the key di↵erence with Ridge regression is that Lasso regression enforces

the coe�cients of irrelevant predictors to 0 and removes them from the linear model. The

remaining non-zero predictors are therefore selected as the features for the model, which

achieves the goal of variable selection.

Although Lasso regression is capable of feature selection, there are still some shortcom-

ings with the practical applications on the high-dimensional omic data. When the number

of predictor variables p is greater than the number of observations n (i.e., p > n), Lasso

regression can select at most n features, even if there might be more than n associated

features. Moreover, for a group of highly correlated variables, Lasso tends to select only

one variable from the group and ignore the others, which might miss some important

features in the data.

ElasticNet In high-dimensional datasets, especially when p � n, some groups of

predictor variables tend to be strongly correlated among themselves within the same group,

which refers to group e↵ect. Taking such group e↵ect into account in regression, a group

of highly correlated predictors are supposed to have similar regression coe�cients. But

Lasso tends to select only one variable from the group and ignore the others. To overcome

such limitations, Zou and Hastie introduced the elastic net [46], referred to as ElasticNet

hereafter, which adds the Ridge penalty to Lasso. The penalty function in ElasticNet

regression is defined as a combination of L1-norm and L2-norm:

P (�) = �1||�||1 + �2||�||22 = �1

pX

j=1

|�j|+ �2

pX

j=1

�2
j

(2.15)

where �1 and �2 are the shrinkage parameters for Lasso regularization and Ridge regu-

larization, respectively. Let ↵ = �1/(�1 + �2), the penalty function is thus equivalent to:
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P (�) = (1� ↵)||�||1 + ↵||�||22 = (1� ↵)
pX

j=1

|�j|+ ↵
pX

j=1

�2
j

(2.16)

↵ is a tuning parameter ranging from 0 to 1, which controls the trade-o↵ between Lasso

regularization and Ridge regularization. When ↵ = 0, ElasticNet regression is equivalent

to Lasso regression. When ↵ = 1, it becomes Ridge regression. The overall fit of the

ElasticNet regression model can be evaluated by the following loss function:

L(�) =
nX

i=1

(yi � xi�)
2 + (1� ↵)

pX

j=1

|�j|+ ↵
pX

j=1

�2
j

= (y �X�)T (y �X�) + (1� ↵)||�||1 + ↵||�||22

(2.17)

Thus, the ElasticNet regression estimator �̂ElasticNet is given by �̂ElasticNet = argmin
�

L(�).

In ElasticNet penalty, the combination of L1-norm and L2-norm o↵ers advantages

of both Lasso and Ridge. ElasticNet regression introduces both sparse solution and

smooth solution for coe�cient estimation. It is capable of enforcing coe�cient sparsity

and overcomes the limitation on the number of selected variables. More importantly,

ElasticNet regression performs variable selection encouraging the grouping e↵ect. For a set

of strongly correlated independent variables in the dataset, ElasticNet regression simply

forms them into a group and shrinks their coe�cients into similar levels. The entire group

tends to be selected into or out of the model together. ElasticNet regression is particularly

useful for high-dimensional data when the number of predictors is much bigger than the

number of observations.

Group Lasso Ridge, Lasso and ElasticNet regression perform regularizations to estimate

coe�cients for individual predictor variable. ElasticNet regression has taken group e↵ect

into account for variable selection, but the highly correlated predictors are formed into

groups automatically when estimating coe�cients. However, in many regression problems,

predictors are not distinct but arise from common underlying patterns, such as the

predefined groups. In these cases, the goal focuses on selecting important groups and

estimating their e↵ects. The aforementioned regression methods can still be used for

such cases by considering each predictor individually, but they are ine�cient to deal with

the prior grouping structure of predictor variables. Ignoring the existing structures of

variables might result in biased or insu�cient results for feature selection. To address

these limitations, Yuan and Lin [47] proposed the group lasso regression method in order

to allow predefined groups of variables to be selected into or out of a model together, so

that all the members of a particular group are either included or not included.

Suppose that the p predictor variables are divided into L groups. Let pl be the number
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of predictors in group l, where
P

L

l=1 pl = p. Let Xl be the matrix of the predictors in group

l with the corresponding coe�cient vector �l. Group Lasso incorporates the grouping

structure into the regularization and the estimator �̂gLasso is given by minimizing the loss

function:

�̂gLasso = argmin
�

L(�) = argmin
�

 
||y �

LX

l=1

Xl�l||22 + �
LX

l=1

p
pl||�l||2

!
(2.18)

where � is the shrinkage parameter, and ||�l||2 denotes the L2-norm of the coe�cients of

group l.

Group Lasso performs regularization like Lasso at the group level, which shrinks the

coe�cients of the predictors within a group to a same value and enforces the coe�cients for

irrelevant groups to 0 by tuning the parameter �. The groups with non-zero coe�cients are

considered to be associated with the response variable, and all the predictors corresponding

to each non-zero group are selected into the model. Therefore, Group Lasso performs

variable selection at group level. If the size of each group is one, Group Lasso is equivalent

to standard Lasso.

Sparse-Group Lasso Group Lasso produces sparsity of coe�cients at group level, but

does not yield sparsity within a group as it treats all the predictors within the group

equally. However, in practice, the predictors within a same group have di↵erent impacts on

the response variable. It is therefore meaningful to select both groups and the important

predictors within the groups. To achieve this goal, Simon et al. [48] proposed a regularized

regression method, named Sparse-Group Lasso, which o↵ers the bi-level sparse solution

resulting in both the group-wise sparsity and the within-group sparsity, by combining

Lasso penalty to Group Lasso penalty. The estimator of Sparse-Group Lasso �̂sgLasso is

given by:

�̂sgLasso = argmin
�

 
||y �

LX

l=1

Xl�l||22 + (1� ↵)�
LX

l=1

p
pl||�l||2 + ↵�||�||1

!
(2.19)

where � = (�1, ..., �p) is the coe�cients vector of all predictors in the dataset, �l is the

coe�cients vector of predictors belonging to a specific group l, � is the shrinkage parameter

and ↵ is the tuning parameter which controls the trade-o↵ between Lasso penalty and

Group Lasso penalty. When ↵ = 0 Sparse-Group Lasso is equivalent to Group Lasso

regression and when ↵ = 1, it becomes standard Lasso regression. On the basis of the

bi-level sparsity produced by Sparse-Group Lasso, the coe�cients of all predictors in the

irrelevant groups are enforced to 0 as well as the irrelevant predictors in the relevant

groups. The remaining non-zero predictors in the relevant groups are selected as the

feature predictors in the feature groups.
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Group Exponential Lasso (GEL) Breheny proposed a more e�cient solution, Group

Exponential Lasso (GEL) [49], for producing bi-level sparsity, which is capable of group

selection as well as important predictor selection from feature groups. The GEL penalty is

defined based on an exponential function as follows:

P (�) =
LX

l=1

✓
�2

✓

⇢
1� exp

✓
�✓||�l||1

�

◆�◆
(2.20)

where � is the regularization parameter and ✓ is the tuning parameter. The GEL penalty

allows the penalization on a predictor in a group decay exponentially as the importance of

the group grows, and the rate of such decay is controlled by parameter ✓. It is reported that

the diminishing rate of penalization will lead to nearly unbiased estimator �̂ given a large

enough sample size [50], which accounts for the outperformance of GEL in comparison

with the classic regularized methods such as Lasso that introduces significant bias toward

zero for large numbers of regression coe�cients. Consequently, GEL will be well suited for

feature selection in high-dimensional dataset in the case p � n.

2.3.1.5 Network-constrained regression

The aforementioned regularized regression methods deal with the problem of variable

selection in high-dimensional data with an important assumption that the predictor

variables in the dataset are independent among each other. Although ElasticNet and

Group Lasso based methods have taken into account the group e↵ects such as inherent

correlations and pre-defined grouping information among the predictors, they still treat

each predictor individually in the group. However, for most cases of high-dimensional

data in practice, the predictors are not independent but correlated to each other. Such

correlation structures can be defined based on the prior knowledge from di↵erent aspects.

For instance, di↵erent types of molecular interaction networks provide various functionally

correlated structure among the genes in omics data such as co-expression correlation,

co-regulation correlation and physical interaction in proteins (see details in Chapter

2.2). A generalization structure among predictors can be intuitively given by a network,

where the nodes represent predictors and the edges denote the relationships between

correlated predictor pairs that pre-defined from the prior knowledge. Incorporating the

information from these networks into linear regression is of great importance, which will

capture underlying patterns in the dataset by feature selection. To address this problem,

a specific type of regularized regression framework, network-constrained regression, has

been proposed for fitting linear models and achieving variable selection by incorporating

the network structure as the constraint for regularization. Network-constrained regression

methods are developed based on two prior assumptions:
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• The hub predictors in the network are supposed to have larger coe�cients than

the lower degree predictors. On the basis of network properties, the topological

importance of hubs usually indicates their critical roles in practice, which suggests

the stronger associations between the hub predictors and the responsive variable.

Highly connected predictors in the network, therefore, tend to have larger coe�cients.

• Two predictors that are linked in the network are supposed to have similar degree-

scaled coe�cients. The edge between the two predictors indicates a correlated

relationship between them, which suggests that they both have impacts on the

response variable. Their impacts should be similar because the two linked predictors

could be considered as a group following the pre-defined group structure. But

according to the first assumption, the impact of a predictor is also proportional to

its degree in the network. Therefore, the degree-scaled coe�cients for the two linked

predictors should be similar.

Recently, several network-constrained regression methods have been proposed to incor-

porate the graph information into regularization for fitting linear models. In this section,

we introduce some commonly used network-constrained regression methods.

On the basis of the linear model defined in Chapter 2.3.1.1, lets introduce a weighted

graph G = (V,E,W ) to represent the network, where V is the set of vertices/nodes

corresponding to the p predictor variables, E = i ⇠ j is the set of edges denoting that the

correlated predictors i and j are linked in the network, and W is the weights of the edges,

where w(i, j) denotes the weight for the corresponding edge e = (i ⇠ j). The edge weight

can be considered as a measure which evaluates the strength of the correlated relationship

between two predictors. Let di =
P

i⇠j
w(i, j) be the degree of vertex i. If i is an isolated

vertex in the network, let di = 0.

Grace Grace, standing for Graph Constrained Estimation, is the first network-constrained

regression model proposed by Li et al. [51]. It performs a network-constrained regular-

ization by combining a graph-based penalty with the Lasso penalty, which is defined as

follows:

P (�) = �1

pX

k=1

|�k|+ �2

X

i⇠j

 
�ip
di

� �jp
dj

!2

w(i, j) (2.21)

where the first term is Lasso penalty inducing the sparse solution and the second term

induces the smooth solution, which is similar as ElasticNet that combines Lasso and Ridge

penalties to achieve both sparsity and smoothness for coe�cients. Let ↵ = �2/(�1 + �2),

then P (�) can be written in the generalization style as EalsticNet:

P (�) = (1� ↵)
pX

k=1

|�k|+ ↵
X

i⇠j

 
�ip
di

� �jp
dj

!2

w(i, j) (2.22)
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where ↵ 2 [0, 1) is a tuning parameter which controls the trade-o↵ between the Lasso

penalty and the graph-based penalty. When ↵ = 0, Grace becomes the standard Lasso.

The network-constrained estimator �̂Grace is derived by minimizing the loss function:

�̂Grace = argmin
�

(y �X�)T (y �X�)

+ (1� ↵)
pX

k=1

|�k|+ ↵
X

i⇠j

 
�ip
di

� �jp
dj

!2

w(i, j)
(2.23)

Grace performs a two-item ElasticNet-like penalty taking network structures into

account. The first item produces the sparsity for coe�cients which enforces the coe�cients

of irrelevant predictors to 0 in order to achieve the goal of variable selection. The second

penalty term provides smooth solution motivated by the two prior assumptions. It shrinks

the coe�cients over the network by penalizing the weighted sum of squares of the di↵erence

of the scaled coe�cients between the linked vertices in the network. The coe�cients are

scaled by the degrees of the corresponding vertices (�i/
p
di) in the regularization, which

allows the vertices with larger degrees (e.g. hubs) in the network to have larger coe�cients.

For a pair of linked predictors in the network, this penalty item cannot shrink their

coe�cient to similar magnitudes. But by introducing the weight factor w(i, j) into the

penalty, it is capable to reduce the di↵erence between the two coe�cients according to the

weight of the corresponding edge. Thus, Grace can enforce the similar scaled coe�cients

for two highly correlated predictors (i.e., �i/
p
di ⇡ �j/

p
dj).

Although Grace provides solution for enforcing �i/
p
di ⇡ �j/

p
dj, it might fail when

�i and �j have opposite signs which will be reasonable in practice, e.g., the opposite signs

of two linked nodes/genes in gene co-expression networks usually suggest the potential

regulation between the two genes.

GBL Pan et al. [52] proposed an alternative but more e�cient penalty for network-

constrained regression, which performs a form of grouped penalty for each edge in the

network. We refer to this method as GBL hereafter because the authors suggested the

implementation with modified generalized Boosted Lasso (GBL) algorithm [53]. The

penalty function is defined as follows:

P (�) = �
X

i⇠j

21/�
0
✓
|�i|�

w(i)
+

|�j|�

w(j)

◆1/�

(2.24)

where parameters � > 0, � > 1 and �0 satisfies (1/�) + (1/�0) = 1. w(i) denotes a

weight function which is used to scale the coe�cient of each predictor. The authors

proposed three types of weight function w(i) for vertex i based on its degree in the network:

w(i) = d(�+1)/2
i

, di, or d
�

i
.
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The group-like penalty of GBL shrinks the coe�cients on each edge over the network

incorporating the two prior assumptions. It considers each pair of linked predictors in

the network as a group. Similar as the Group Lasso penalty, it is capable to shrink the

scaled coe�cients of two linked predictors to similar levels and to enforce the coe�cients of

irrelevant predictor pair to 0. Scaling the coe�cients in the penalty allows the predictors

with larger degrees (e.g. hubs) in the network to have larger coe�cients. Specifically,

if � = 2 and wi = wj = 1, the GBL penalty becomes the Group Lasso penalty, which

intuitively accounts for its capability of group shrinkage that achieves the goal of the first

priori assumption.

When parameter � is determined, the multiplier 21/�
0
becomes a constant and the

penalty therefore exclusively depends on �. By comparing the performances with di↵erent

�, the author suggested that a large � will result in stronger shrinkage on coe�cients and

better performance for variable selection, and setting w(i) = d�
i
will reduce the bias in

predicted errors. Consequently, the penalty function can be simplified based on these

suggestions as follows:

P (�) = �
X

i⇠j

✓
|�i|
di

◆�

+

✓
|�j|
dj

◆��1/�
(2.25)

In particular, when � ! 1, the penalty becomes

P (�) = �
X

i⇠j

max

✓
|�i|
di

,
|�j|
dj

◆
(2.26)

Through the comparisons with Lasso, ElasticNet and Grace, Pan et al. [52] found that

GBL outperforms them in variable selection, but su↵ers a stronger bias in the predicted

error. Although the GBL penalty given by � ! 1 provides better performance than the

other smaller �, the predicted error is still not impressive.

2.3.2 Artificial neural networks

Deep Learning is an emerging subfield of machine learning concerned with algorithms

inspired by the structure and function of the brain called artificial neural networks. An

artificial neural network, abbreviated as NN, initially inspired by neural networks in the

brain [54, 55], which is defined as “a computing system made up of a number of simple,

highly interconnected processing elements, which process information by their dynamic

state response to external inputs” [56].

The basic structure of a neural network consists of layers of interconnected computing

neurons, which can be classified in to three categories: the input layer, the hidden layer

and the output layer, as shown in Figure 2.6. It receives data from the input layer, which
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Figure 2.6: Basic structure of a neural network (NN). A basic NN consists of a input layer,
several hidden layers and an output layer. Each node represents a neuron and arrows
indicate the interconnections among neurons. The which consists of a input layer, the
hidden layers and an output layer. The blue dashed rectangle indicates the hidden layers.

are then transformed in a non-linear way through the multiple hidden layers, before final

outputs are computed in the output layer. Neurons in a hidden or output layer are

connected to all neurons in the previous layer. The depth of a neural network is defined by

the number of the hidden layers, and the width refers to the maximum number of neurons

in one of its layers.

2.3.2.1 Artificial neuron

The fundamental unit of a neural network is an artificial neuron, illustrated in Figure 2.7.

Each neuron computes a linear combination, i.e. weighted sum, of its inputs x = (x1, ..., xn),

and then applies a non-linear activation function f to calculate its output y:

y = f

 
b+

nX

i=1

xiwi

!
= f(b+ xw) (2.27)

where w = (w1, ..., wn) is the vector of weights corresponding to the input x, and b denotes

the intercept of the linear combination. The activation function f can be defined by the

following common ways:

• logistic function

f(x) = �(x) =
1

1 + e�(b+xw)
(2.28)
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Figure 2.7: Illustration of an artificial neuron.

• hyperbolic tangent (tanh)

f(x) = tanh(b+ xw) (2.29)

• rectified linear unit (ReLU)

f(x) = max(0, (b+ xw)) (2.30)

• softmax function

f(x) = P (y = j|x) = ebj+xwj

P
K

k=1 e
bk+xwk

(2.31)

The first three functions can be used for both hidden layers and the output layer, while

the softmax function is usually used for the output layer. The choice of activation functions

depends on the goal of the problem. The logistic function provides an output representing

the probability for binary values 0 and 1, which is used for binary classification problem.

The softmax function provides an output representing a categorical distribution, i.e., a

probability distribution over K di↵erent possible outcomes, which is used for multi-class

classification problem. The hyperbolic tangent can result in a symmetric output ranging

from -1 to 1. In practice, the most widely used activation function is the ReLU as it allows

faster learning compared to others [57].

2.3.2.2 Neural network architectures

Several neural network architectures have been developed for specific applications, which

depends on the way how the neurons are arranged, such as the convolutional neural

network (CNN) for images [58] and the recurrent neural network (RNN) for sequential

data [59]. Here, the neural network architectures that are commonly applied in biology
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will be introduced, including the multilayer perceptron (MLP) [60], the recurrent neural

network (RNN) and the Long Short-Term Memory Units (LSTM) [61].

MLP The multilayer perceptron is the most basic neural network, in which a sequence

of layers are fully connected with at least one hidden layer. The neural network illustrated

in Figure 2.6 is a MLP, where the neurons between two adjacent layers are all-against-all

connected, but no connections exist between neurons within the same layer. MLP is a

class of feedforward artificial neural network, in which connections between the neurons

do not form a cycle. Each neuron in a hidden layer takes the outputs from the previous

layer as its inputs and computes its output which is be used as an input to the neurons in

the next layer.

The MLP is trained using the supervised learning technique backpropagation with

gradient descent optimization, which learns the weights between neurons by minimizing the

error between the predicted output and the actual observation defined by a loss function.

It repeats a three-step cycle including propagation, backpropagation and weight updating:

1. In the propagation step, the neural network takes the input data from the input layer

and propagate forward layer by layer until reaching the output layer. The errors are

calculated for each neuron in the output layer according to the loss function.

2. In the backpropagation step, the resulting errors are propagated from the output

layer back through the network, until each neuron has an associated error value that

reflects its contribution to the original output.

3. In weight updating step, the gradient of the loss function, calculated using these

error values, is fed to the optimization method to update the weights.

After repeating this cycle for a su�ciently large number of times, the network will

usually converge to some state where the prediction error is smaller than expectation. In

this case, we would say that the network has learned a certain target function F̂ (x;w, b),

which can be used to make predictions for future data that are unlabelled.

RNN Unlike MLP analysing all the elements of the input vector x simultaneously,

a recurrent neural network (RNN) processes the inputs as a sequence of time-steps

x = (x1, x2, ..., xT ), where xt is the input at time-step t. RNN is a class of neural network

architecture, di↵erent from feedforward neural network, which allows for cycles, illustrated

in Figure 2.8.

At each time-step, RNN applies the same operation:

ht = �(whxxt + whhht�1 + bh) (2.32)
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Figure 2.8: Recurrent neural network (RNN).

where � is a non-linear activation function. ht is a vector of hidden state of the RNN,

which will be sequentially updated based on the current input xt and the previous hidden

state ht�1. It is also referred to as the memory of the neural network as it memorizes the

input sequence (x1, ..., xt) up to the time-step t. The final hidden state hT memorizes the

whole input sequence. An important characteristic of the RNN is that the weights whx,

whh and the bias bh are shared across all the time steps. The output yt at time-step t

depends on the hidden state ht, and therefore, the whole previous sequences:

yt = f(wyhht + by) (2.33)

f is an activation function, which is chosen according to the aim of the task, such as the

logistic function to model binary outputs and the softmax function to model categorical

outputs. Th output of RNN can be either the single yT or a vector of the sequence of

outputs y = (y1, ..., yt). The RNN parameters whx, whh, bh, wyh, by are also trained by using

backpropagation with gradient descent optimization, which is similar with training a MLP.

LSTM RNN has been considered di�cult to train because of its long computation paths.

An incorrect parameter initialization can lead to exploding or vanishing gradients. Several

advanced RNN architectures have been developed to address these problems such as the

long short-term memory (LSTM) units. The core idea of LSTM is using additional gates

to update the memory of the network only at certain time steps, which will help keep the

gradients stable.

The basic LSTM block has much more internal structure than the standard RNN,

illustrated in Figure 2.9. The centre of the LSTM block is a memory cell which maintains

the information over the time steps. At each time step, the current information is obtained

from the inputs of the LSTM block through a tanh activation function:

vt = tanh(wvxt + uvht�1 + bv) (2.34)
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Figure 2.9: Long Short-Term Memory Unit (LSTM).

where wv, uv are the weights and bv is the bias for the LSTM block.

The current state of the memory cell is calculated from the current inputs and the

previous states of memory cell, which is modulated by the following logistic gates:

• The forget gate computes a linear function of its inputs, followed by a logistic

activation function. If the gate is on (i.e., outputting 1), the memory cell remember

its previous value, otherwise, the cell forgets the previous value.

ft = �(wfxt + ufht�1 + bf ) (2.35)

• The input gate has the same linear-then-logistic function as the forget gate, which

controls whether the memory cell receive the inputs from other LSTMs in the network.

If the gate is on, the summed inputs are passed through a tahn activation function

and then added to the memory cell.

it = �(wixt + uiht�1 + bi) (2.36)

• The output gate performs the linear-then-logistic function as well, which controls

whether pass on the LSTM output to the rest of the network. If the gate is on,

the value of the memory cell is passed through a tanh activation function and then

passed on to the rest of the network.

ot = �(woxt + uoht�1 + bo) (2.37)

where wf , wi, wo, uf , ui, uo are the weights and bi, bf , bo are the biases of the corresponding
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gates. Based on the status of the forget and input gates, the current states of the memory

cell is updated following:

ct = vt ⌦ it + ct�1 ⌦ ft (2.38)

The behaviours of the memory cell responsive to di↵erent states of the gates are

summarized in Table 2.1.

Table 2.1: LSTM memory cell operations modulated by forget and input gates.
Forget gate Input gate Memory cell behaviour

1 0 keep the previous value
1 1 add the input value to the previous value
0 0 clear the previous value
0 1 replace the previous value by the input value

Finally, the output of the LSTM block is controlled by the status of the output gate:

ht = tanh(ct)⌦ ot (2.39)

2.3.3 Support vector machine

The support vector machine (SVM) [62] is a popular and powerful machine learning

method. It is a supervised learning technique which can be used for both classification

and regression. In its standard form, a SVM model performs binary classification, which

maps the data into a higher-dimensional space where the two classes are separated by a

hyperplane. The goal of the SVM model is to maximise the gap between the separating

hyperplane and it thus results in minimised expected generalization error.

Let (xi, yi) denote the sample i (i = 1...n) in a labelled data, where xi represents a

vector of real numbers (referred to as features) and yi 2 {0, 1} presents the labels of the

two classes. The goal is to find a discriminant function f mapping the input vectors x

onto labels y which minimizes the misclassified number (f(x) 6= y). A linear classifier is

constructed based on the linear discriminant function f as follows:

f(x) = wx+ b (2.40)

where w is the weight vector corresponding to the features in x and b is the bias. The

space is divided into two sets according to the sign of wx + b. The linear classifier is

defined as

h(x) =

(
1, for wx+ b � 0

0, for wx+ b < 0
(2.41)

The optimal linear discriminant function can be estimated by minimizing the objective

46



function

min
w

1

2
||w||2 (2.42)

subject to specific constraints

(
wx � 1, if y = 1

wx  �1, if y = 0
(2.43)

With these constraints, the model ensures that the selected the linear discriminant

function has the largest distance from the closest data points, while at the same time the

classifier minimises the classification errors on future unlabelled data. If all the samples

can be classified correctly by a linear classifier, we call the data linearly separable.

In practice, most data are not linearly separable in the original feature space. One

solution to address this problem is using the kernel functions mapping the original features

into a higher-dimensional space where the transformed data are linearly separable. Four

commonly used kernel functions include: the linear kernel, the polynomial kernel, the

radial basis function kernel and the sigmoid tanh kernel.

Linear kernel The linear kernel is usually used when the data is close to being linearly

separable, which represents a simple scalar product of two feature vectors xi and xj:

K(xi, xj) = xT

i
xj (2.44)

Polynomial kernel The polynomial kernel describes the similarity of samples in a

feature space over polynomials of the original features:

K(xi, xj) = (�xT

i
xj + r)d, � > 0 (2.45)

where xi and xj are two feature vectors, and �, r and d are kernel parameters.

Radial basis function (RBF) kernel The radial basis function kernel, also called the

Gaussian kernel, is a polynomial kernel with infinite degree. Its features are all possible

monomials of the input original features without degree restriction:

K(xi, xj) = exp(��||xi � xj||2), � > 0 (2.46)

where xi and xj are two feature vectors, and � is the kernel parameter.

Sigmoid tanh kernel The sigmoid tanh kernel provides the tanh of a scaled and shifted

scalar product:

K(xi, xj) = tanh(�xT

i
xj + r), � > 0 (2.47)
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where xi and xj are two feature vectors, and �, r and d are kernel parameters.

2.3.4 Random forest

Random forest [63] is an ensemble learning method for various machine learning tasks

such as classification, regression and so on. It constructs a multitude of decision trees and

outputs the class that is the label of the classes (classification) or the mean prediction

(regression) of the individual trees.

2.3.4.1 Decision tree

Decision tree [64] is a popular technique for various machine learning tasks. It is a tree-like

structure that consists of four main parts: a root node, internal nodes, leaf nodes and

branches. The root node is the starting point of the tree. Each internal node represents a

test on an attribute (e.g. a feature in the data). Each branch represents the outcome of

the test (e.g., conditions of the tested feature). Each leaf node represents a class label, i.e.,

the decision that has been taken after testing all attributes. The paths from the root node

to the leaf node define the classification rules, also called decision rules. The generalized

form of the rules follows:

if condition 1 and condition 2 and...and condition n then outcome.

The most widely used methods for training decision trees are greedy algorithms. A

tree can be learned by splitting the population of the data into subsets based on the test

of a feature. The process is repeated on each derived subset in a recursive way (referred

to as recursive partitioning). The recursive partitioning is completed when the subset

at a node has all the same class labels, or when the splitting does not contribute to the

performance of the classification.

Compared with other classification methods, decision trees have several significant

advantages. Decision trees are simple to understand and interpret due to the intuitive

decision rules. They work with low quality data because they do not require the parametric

distributions of the input data and are insensitive with the missing data. They also work

with di↵erent types of features at the same time, e.g., scalar variables, categorical variables

and boolean variables. For large datasets, decision trees provide high e�ciency because

we only need to construct one tree for the data and during each prediction, the maximum

of the tests is no more than the tree depth.

However, decision trees also have some disadvantages. They are unstable because a

small change in the data can lead to a large change in the tree structure. Consequently,

decision trees exhibit high variance when they are learned by di↵erent training and test

sets of the same data, which results in overfitting on the training data. For data including
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categorical variables with di↵erent numbers of levels, decision trees tend to be biased in

favour of the ones with more levels. They also su↵er low classification accuracy for the

data with correlated features.

2.3.4.2 Random forest

Random forests, also called random decision forests, are a popular ensemble method

that can be used to build predictive models for both classification and regression tasks.

Ensemble methods use multiple learning models to gain better predictive results. In the

case of a random forest, the model creates an entire forest of random uncorrelated decision

trees to achieve the best predictions.

A random forest consists of an arbitrary number of simple decision trees, which are

used to determine the final outcome. Each simple tree is growing based on a random

subset of features chosen independently (with replacement) from the original data. The

selected feature subsets follow the same distribution for all trees in the forest. All the

trees are capable of producing an outcome for the same task of the random forest. For

classification tasks, the ensemble of simple trees vote for the most popular class. The

random forest defines a margin function that measures the degree to which the average

number of votes for the correct class exceeds the average vote for any other class present in

the response variable. For regression tasks, the outcomes of all simple trees are averaged

to obtain an estimate of the response variable.

Because the random forest method is based on decision trees, it keeps all the advantages

of decision trees. Furthermore, it overcomes the overfitting limitations of decision trees

by using tree ensembles which can lead to significant improvement in predictions for new

unlabelled data.

2.3.5 Classification evaluation

2.3.5.1 Evaluation strategy

For the classification evaluation on a dataset, the classifier is learned on a subset of total

samples (referred to as training set), but is validated on another independent subset of

samples (referred to as test set). There is not overlapping between the training set and

the test set, which avoids the overfitting of the classifiers. Three strategies are mainly

used for classification evaluation: the hold-out validation, the K-fold cross-validation, and

the stratified nested K-fold cross-validation.

Hold-out validation For the hold-out validation, the samples of the data are randomly

separated into two non-overlapping subsets. One subset is used as the training set and the

other is used as the test set. A classifier is trained on the training set. A prediction is then
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Figure 2.10: Stratified nested K-fold cross-validation.

performed on the test set using the trained classifier. The performance of the classifier is

assessed by evaluation measures on the test set. Hold-out validation is usually used for

the data with large number of samples.

K-fold cross-validation The samples of the data are equally separated into K folds.

K�1 folds are used as training set to train a classifier. Then, the remaining fold is used

as the test set where a prediction is performed by the trained classifier. The procedure

is implemented iteratively for K times until every fold has been used as test set. The

performance of the classier is assessed by the summary of evaluation measures on K test

sets. Specifically, when setting K as the sample size of the data, the cross-validation is

referred to as leave-one-out cross-validation.

Stratified nested K-fold cross-validation Stratified nested K-fold cross-validation

is based on K-fold cross-validation. It consists of two loop procedures, the outer loop and

the inner loop, illustrated in Figure 2.10. The original sample set are equally separated

into K folds. In an outer loop step, K�1 folds are used as training set and the remaining

fold is used as test set. An optimal classifier is learned through an inner loop of a nested

K-fold cross-validation on the training set. Then the test set is used to evaluate the

performance of the optimal classifier. The outer loop is implemented iteratively for K

steps until each fold has been used as test set. The final optimal classifier is selected from

the outer loop step which provides the best performance on the corresponding test set.
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2.3.5.2 Evaluation measure

For bi-class classification problems, the prediction performance of classifiers can be evalu-

ated by several common measures. The actual labels for test samples are separated into

two classes: actual positive and actual negative. The predicted labels for the same test

samples are also separated into two classes: predicted positive and predicted negative.

The confusion matrix for a bi-class classifier is given by Table 2.2.

Table 2.2: Confusion matrix for a classification.
Classes Predicted Positive Predicted Negative

Actual Positive True Positive (TP ) False Negative (FN)
Actual Negative False Positive (FP ) True Negative (TN)

Several common evaluation measures for classification are defined based on the confusion

matrix:

• accuracy

The measure accuracy is the proportion of the total samples which are predicted

correctly:

accuracy =
TP + TN

TP + FP + TN + FN
(2.48)

• precision

The measure precision is the proportion of the predicted positive samples which are

correct:

precision =
TP

TP + FP
(2.49)

• recall

The measure recall is the proportion of the actual positive samples which are

identified correctly:

recall =
TP

TP + FN
(2.50)

• F -score

The measure F -score is the harmonic mean of precision and recall:

F -score =
2

1
precision

+ 1
recall

=
2 · precision · recall
precision+ recall

(2.51)

• False discovery rate (FDR)

The measure FDR is the proportion of the predicted positive samples which are not

correct:

FDR =
FP

TP + FP
(2.52)
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2.3.6 Clustering

In contrast to the aforementioned supervised learning methods, unsupervised learning

methods are methods in which we draw references from datasets consisting of input data

without labelled responses. Generally, it is used as a process to find underlying structures

in an unlabelled dataset.

Clustering is a type of unsupervised machine learning technique, which aims to group

unlabelled data points into inherent subsets or clusters. The task of clustering is to divide

data points into a number of groups based on similarity and dissimilarity between them.

Data points within a same group should be as similar as possible and data points in one

group should be as dissimilar as possible from data points in another group. One of the

most common clustering method is hierarchical clustering which aims to build a hierarchy

of clusters from the unlabelled data points. Strategies for hierarchical clustering mainly

fall into two types [65]: the “bottom-up” strategy which begins with each data point as a

singleton cluster and successively merges pairs of clusters as moving up the hierarchy, and

the “top-down” strategy which starts from a whole cluster consisting of all data points

and splits clusters recursively as moving down the hierarchy.

2.3.7 Network clustering

Network clustering is a type of clustering technique which aims to discover clusters from a

network structured unlabelled dataset. The dataset can be viewed as a network where

nodes represent data points and edges represent the predefined correlated relationships

between data points. The task is to discover the highly connected subnetworks or modules

through clustering over the network.

Biological network analysis has become an important field of bioinformatics and network

science because network properties provide clues to understand potential mechanisms of

biological systems. Significant e↵orts have been made on studying the topology and struc-

ture of molecular networks to infer hidden patterns from the network. As aforementioned,

modularity is an important feature of biological networks which suggests the existence of

modules in the network. A group of nodes that are tightly connected among each other

within the group form a module. A gene module in biological networks is most likely to

be a function unit in a biological process or pathway [66]. Detection of the functional

modules from biological networks will provide important clues for understanding underly-

ing mechanisms. This task can be addressed by applying network clustering methods to

biological networks.

Biological network clustering algorithms can be broadly categorized as topology-free

methods and graph-based methods. Topology-free clustering methods use traditional

clustering techniques (e.g. hierarchical clustering) on the basis of distances between nodes
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which do not take into account the topology of the network. Graph-based clustering

methods incorporate the topology of the network by applying specialized clustering

techniques. The common techniques that have been successfully used for biological network

clustering based on topology generally fall into four categories [67]: local neighbourhood

density search (LD), flow simulation (FS), link clustering (LC) and cost-based local search

(CL).

Local neighbourhood density search (LD) The LD methods are based on local

optimization strategies designed to discover dense subnetworks from a network. In a

dense subnetwork, each node is connected to many other nodes. The LD methods aim

to maximize the local density of each subnetwork. One of the most typical methods of

LD category is MCODE [68]. MCODE aims to detect dense and connected modules by

weighting nodes based on their local neighbourhood density. To address this task, the

k-core concept is applied. A k-core is defined as a subnetwork in which each node has

a degree of at least k. The highest k-core of a network is the most densely connected

subnetwork with the highest k. The weight of each node is defined based on its topological

relationships with the highest k-core. MCODE selects a certain number of nodes with

highest weights as seeds. For each seed, MCODE considers it as an initial cluster and

recursively merges neighbouring nodes into the cluster if their weights are above a fixed

threshold until there are no neighbouring nodes can be added.

Flow simulation (FS) The FS methods discover subnetworks from biological network

by mimicking the spread of information on the network using random walk [69] or biological

knowledge for passing information between genes. One of the most well-known methods of

FS category is MCL [70]. In a network, a random walk (or flow) means that the direction

walking (or flowing) from a node to its neighbouring nodes is assigned by chance. MCL

simulates many random walks (or flows) within a network according to the strength of

flows, i.e., strengthening the flow where the flows are strong and weakening it where the

flows are weak. By repeating such simulations, several subnetworks reveal with strong

internal flow, separated by boundaries without flows between subnetworks.

Link clustering (LC) The LC methods consider the edges of a network rather than

the nodes as the data points that are to be clustered. They group the set of edges based

on the similarities between edges. The nodes associated with the edges within a cluster

are assigned as a subnetwork. The LC methods allow to discover overlapping subnetworks

because the edges of a node can be grouped into di↵erent clusters and the node is thus

assigned into di↵erent subnetworks. One of the most typical LC methods is LinkComm

[71]. LinkComm performs the bottom-up clustering to group edges of a network into

topologically related clusters. It applies hierarchical clustering to build a dendrogram
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based on similarities between edges which are estimated taking into account the size of

both the intersection and the union of their neighbourhoods. The dendrogram is cut with

the best partition density to obtain the edge clusters. The nodes associated with the edges

within each cluster form a subnetwork.

Cost-based local search (CL) The CL methods divide the input network into con-

nected subnetworks by a cost function that guides the search toward a best partition of the

network. The methods of this category are flexible because we can define the cost functions

based on practical requirements. The CL methods, therefore, are the widely used category.

Two common CL methods for community detection from biological network is ModuLand

and OCG. ModuLand [72] is a family of integrative methods for detecting overlapping net-

work modules as hills of an influence function-based centrality-type community landscape

and including several widely used modularization methods as special cases. OCG [73] is a

recent CL method which decomposes the input network into overlapping clusters. OCG

first covers the network with initial overlapping classes that are considered as leaves of a

tree, and then fuses the classes progressively and hierarchically in a bottom-up way by

maximizing a cost function defined based on the overlapping modularity. It stops when no

further fusions can produce a gain in modularity.
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Chapter 3

Network overlapping module

detection for transcriptome and

interactome integration

3.1 Introduction

Transcriptomic profiling technologies such as microarray [74] and RNA-seq [23] assess

genome-wide gene expression of a cell in di↵erent conditions. Transcriptome data reveal

the dynamic expression patterns of genes responsive to external environments, which helps

to systematically understand the underlying molecular mechanisms. The most important

hypothesis for transcriptomics is that genes involving in the same biological processes tend

to exhibit similar expression patterns which are referred to as co-expression [75]. A group

of highly co-expressed genes, therefore, are usually suggested to be a potential functional

module which is responsive to a specific dynamic environment or is regulated by a same

molecular regulator. Such groups of co-expressed genes are defined as functional gene

modules which provide interesting clues for exploring the underlying molecular regulation

mechanisms. Many methods have been proposed to identify functional gene modules

based on gene co-expression using probabilistic graphical models, hierarchical clustering

and network clustering methods [76, 77, 78]. However, the co-expressed functional gene

modules inferred from transcriptome data su↵er large false positives because of the high

noise existing in the gene expression measured by the high-throughput technologies.

To reduce the noise in the inferred modules, interactome data have been integrated with

transcriptome data for detection of functional gene modules. Interactome data provide a

comprehensive reference of functional links among genes by the accumulating collection

of molecule interactions discovered in multiple conditions, which form a large and highly

connected network composed of nodes denoting genes and edges representing interactions

between them. Combining with transcriptome data, a co-expressed gene pair which are

55



linked in the network usually indicates a condition responsive functional interaction. There-

fore, a highly connected subnetwork composed of co-expressed interactions is considered

as a reliable functional gene module associated with the condition. Several methods have

been developed to detect functional gene modules through the integration of transcriptome

and interactome data [79, 80, 81, 82, 83, 84].

In spite of the success of previous methods in functional module detection by integrating

transcriptome and interactome data, there are still some limitations: (i) most of the

previous methods have been developed for case-control transcriptome data but not taken

into account the multi-condition data; (ii) when selecting condition responsive modules,

most of the methods consider a module as a whole unit but ignore the impact of di↵erent

genes within the module.

We proposed an approach to identify condition-specific responsive functional gene

modules by integrating transcriptome and interactome data using network overlapping

module detection method, which is capable of not only identifying the responsive functional

modules but also selecting important genes within the modules.

3.2 Multi-omics

3.2.1 Multi-omic data

3.2.1.1 Transcriptome

The transcriptome data studied in this chapter consist of the transcriptomes of human

embryos encompassing multiple pre-implantation development stages.

Human pre-implantation embryonic development is a crucial period of individual life,

which refers to the time from final maturation of the oocyte following by the fertilization

through the development of the early embryo before the implantation in the uterus [85].

The pre-implantation development encompasses a series of consecutive stages as shown in

Figure 3.1, including mature oocyte, fertilized oocyte, 2-cell embryo, 4-cell embryo, 8-cell

embryo, morula and blastocyst [86].

The transcriptomes of 15 human embryos, encompassing a range of important pre-

Figure 3.1: Human pre-implantation embryonic development stages illustrated in [86].
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implantation development stages, consist of four oocytes, four 4-cell embryos, three 8-cell

embryos and four blastocysts. The raw A↵ymetrix microarray data are provided by our

collaborator in EpiHealthNet ITN, Prof Daniel Brison from The University of Manchester,

which can be accessed from the Gene Expression Omnibus (GEO) with the accession

number GSE110693. Genome-wide gene expression values of each embryo are obtained by

pre-processing the raw data using RMA [87] and mas5call [88], which are implemented in

R using the a↵y package [89].

3.2.1.2 Interactome

Human gene interactome data are downloaded from PathwayCommons (version 8) [90],

which is a collection of public available human pathway data. The interactome data

provide comprehensive functional interactions, such as biochemical reactions, complex

assembly, transport and catalysis events, and physical interactions, among molecules

including proteins, DNA, RNA, small molecules and complexes. All the molecules in the

interactome data are mapped to the corresponding genes. After removing the duplicated

interactions and self-interactions, the remaining interactions form the gene-gene interaction

network.

3.2.2 Problem definition

Pre-implantation embryonic development is a crucial period of human life [85]. It is easily

a↵ected by the abnormal factors to maternal environment such as overstress, unhealthy

diet and in vitro fertilization (IVF) [86], which has been reported to have long-term impact

on adult’s health [91]. Understanding the pre-implantation development will help to

decrease the risk of health problems in the later life. However, due to limited resources, the

molecular basis of human pre-implantation embryonic development is poorly understood.

During the pre-implantation development, human embryos undergo the dramatic changes

of gene expression patterns in response to the series of development stages. The goal of

this study is to identify the underlying patterns associated with mechanisms of embryonic

development by integrating the transcriptome and interactome data.

In this chapter, the transcriptome data provide the dynamic information of gene

expression during embryo development across four stages. Following the aforementioned

hypothesis in Chapter 3.1, a group of highly co-expressed genes tend to involve in same func-

tions related with embryonic development. The interactome data from PathwayCommons

provide a comprehensive functional context of genes, which forms a large gene-gene inter-

action network. This network is static as it is a collection of gene functional interactions

observed from various experimental conditions, e.g., di↵erent cell lines, di↵erent tissues,

di↵erent diseases and so on. From the development point of view, this network can be
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considered as an aggregation of gene functional interactions from di↵erent development

periods including the embryonic development stages and di↵erent ages of adults. In

this comprehensive static interaction network, if two interacted genes are co-expressed

across multiple embryonic development stages, the gene pair is responsive to embryonic

development. Consequently, all dynamic co-expressed gene pairs responsive to embryonic

development can be extracted from the static network by integrating the transcriptome

data of embryos from series of development stages. All the responsive gene pairs form

a dynamic co-expressed gene-gene interaction network which is associated with human

embryonic development. In this co-expression gene network, if a module contains the genes

not only highly functionally connected but also significantly co-expressed, the module is

considered as a co-expressed gene module which tends to be associated with embryonic

development. Identifying key genes and gene modules from the dynamic co-expression

network will help to understand the mechanisms of embryonic development. The research

problem can be considered as an unsupervised learning task to detect functional gene

modules from the co-expression network. The task can be solved by applying e�cient

network module detection methods to identify gene modules from co-expression network

and using feature selection methods to select key genes and modules associated with

specific development stages.

3.3 Methodology

The task of this study is to identify key genes and gene modules associated with human

embryonic development by integrating the transcriptome data of embryos and the human

gene interactome data from PathwayCommons database. The task can be solved by dividing

into four subtasks: Firstly, constructing a co-expression network using the transcriptome

and interactome data; Then, detecting gene modules from the co-expression network; Next,

identifying significant modules associated with embryonic development; Finally, selecting

feature genes and modules associated with specific embryonic development stage from the

significant modules.

A number of approaches have been developed for identifying experiment condition

related functional gene modules through co-expression network clustering analysis [80].

The common pipelines for most existing approaches are generally solve the first three

up-mentioned subtasks in three steps [80]. In the first step, individual relationships between

genes are estimated based on correlation measures between each gene pair. In the second

step, the co-expression correlations are used to construct a network where nodes represent

genes and edges represent the strength of the co-expression relationships. In the third

step, co-expression gene functional modules are identified from the co-expression network

by using available clustering techniques. These co-expressed modules can subsequently
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be correlated to the samples corresponding to a specific condition (e.g., disease status or

tissue type).

Some frequently used pipelines and tools for identifying such co-expressed modules

includes WGCNA [92], CoXpress [93], Di↵CoEx [94] and DINGO [95]. All of them first

identify modules co-expressed across all conditions, and then find the modules associated

with specific conditions. WGCNA is one of the most widely used method for co-expression

analysis. It first constructs a co-expression network using default Pearson Correlation

Coe�cient (PCC) or a custom distance measure, and then performs hierarchical clustering

using tree cutting techniques to identify co-expression gene modules. CoXpress identifies

modules in which the genes are co-expressed in one condition and evaluates whether the

genes are also co-expressed under other conditions. Di↵CoEx uses a similar approach to

WGCNA to identify and cluster di↵erentially co-expressed genes. It identifies modules of

genes that have the same di↵erent partners between two di↵erent conditions. DINGO is

a recent tool that clusters genes based on their di↵erential expression levels in a group

of samples (e.g., under a particular condition) compared with the baseline co-expression

estimated across all samples.

The up-mentioned co-expression analysis methods are developed to identify co-expression

gene modules only using gene expression data, which usually lead to high false positives in

the inferred modules because the curated functional relationships such as protein-protein

interactions and gene-gene functional links between genes have not been taken into account.

In order to integrate such functional information into module identification, many methods

have been developed to integrate gene expression with molecular functional interaction

network to infer co-expressed interacted gene functional modules [96]. For example, two

recent methods, COSINE [97] and BMRF [98], are developed for identification of gene

modules by integrating bi-class condition gene expression data (i.e., case vs. control) and

gene interaction network. COSINE identifies a single optimal subnetwork by a genetic

algorithm maximizing the scoring function with two measures for both nodes (genes) and

edges (co-expressed genes) in change of the expression pattern. BMRF models the gene

expression data and interaction data with Markov Random Field and searches subnetworks

with maximum posteriori estimation using the bagging aggregation scheme algorithm.

Besides, some methods have been developed to address the same tasks for multi-class

condition gene expression data. For example, one of the most recent methods of this

category is developed by Shen et al. [99], which extracts gene modules from multiple

time points gene expression data and gene interaction network. It identifies the active

time points of genes by constructing a co-expression network based on Connected A�nity

Coe�cient and Pearson Correlation Coe�cient measures.

Regarding the up-mentioned typical state-of-art methods for identification of co-

expression gene functional modules, the co-expression analysis methods such as WGCNA
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[92], CoXpress [93], Di↵CoEx [94] and DINGO [95], are developed to identify co-expression

gene modules based on the di↵erential expression of genes between two classes of conditions,

and thus they are well suited the bi-class condition gene expression data analysis. For

the multi-class condition gene expression data, these methods can be used indirectly by

transforming the multi-class condition tasks into bi-class condition tasks, i.e., comparing

one class of condition against all other classes of conditions. However, these methods

only use gene expression data without the combination with gene functional interaction

data, which may lead to high false positives in the identified gene modules. Consequently,

these co-expression only methods are not suitable for the tasks in this chapter. For the

methods that identify gene functional modules by integrating gene expression data with

gene functional interaction data such as COSINE [97] and BMRF [98], they are developed

to work only with bi-class condition gene expression data, and they are therefore not

applicable to tasks in this chapter as the embryonic development gene expression data

include multiple conditions/stages. The method proposed by Shen et al. [99] suits the

multi-class condition tasks, but it is not capable of achieving the goal of the last subtask

in this chapter which aims to select both condition-specific genes and modules. Since the

existing approaches are not established comprehensively to address all the aforementioned

four subtasks of this chapter as a whole pipeline, we aim to develop a novel computational

framework which is capable of addressing all the subtasks by employing common methods

that have been successfully used to address each subtask in the field of computational

biology.

In order to identify functional gene modules associated with human embryonic devel-

opment, we propose an approach for gene module detection by integrating multi-condition

transcriptome data and interactome data using network overlapping module detection

method. It consists of four steps to address the aforementioned four subtasks respectively.

The flowchart of the proposed computational framework is shown in Figure 3.2, including

four steps: (1) construction of gene co-expression network, (2) detection of overlapping

modules, (3) identification of condition-associated modules, and (4) selection of condition-

specific modules and genes. Detailed methodologies for each step are described in the

following sections.

3.3.1 Construction of gene co-expression network

For the first subtask of constructing the co-expression network, the common strategy is to

evaluate the co-expression between each interacted gene pairs in the interactome data and

only the gene pairs that are significantly co-expressed are kept to form the co-expression

network. The co-expression for each gene pair is estimated by the Pearson Correlation

Coe�cient (PCC) which evaluates the linear correlations between two scalar variables. It

is a parametric hypothesis test that requires the two scalar variables both following normal

60



Transcriptome�

Interactome 

1� 2�

3�

Multi-omic data�  Co-expression network�

Multi-condition 
transcriptome data�

Overlapping modules�

Condition-associated modules�

SNUPN

NUP50

NUP62

SNRPB

SNRPD1

SNRPD2

SEH1L

NUP155

POM121

NUP153

ATP6AP2

ATP6V1A

MARCH1

TFRC

IST1

Condition-specific modules�

4�

Figure 3.2: Flowchart of proposed approach to network overlapping module detection for
transcriptome and interactome integration. It consists of four steps: (1) construction of
gene co-expression network by evaluating co-expression correlation coe�cient between
each interacted gene pair based on their gene expression; (2) detection of overlapping
gene modules from the co-expression network using network overlapping module detection
method; (3) identification of condition-associated modules by assessing the significance
of enrichment with condition-associated genes within the modules using ANOVA-GSEA;
(4) selection of condition-specific feature modules and feature genes using GEL logistic
regression with K-fold cross-validation.

distributions. PCC is the most commonly used method for gene co-expression estimation

because the processed gene expression abundances usually follow normal distributions.

The co-expression PCC of a gene pair estimates the concordance of the changing patterns

between the two genes across all samples. A higher PCC suggests the two genes are

co-regulated responsive to the experiment conditions, and thus they are likely involved in

the same biological processes and perform similar functional roles. In the first step of the

approach, we construct a gene co-expression network by integrating gene expression data

and gene interaction data using PCC to evaluate co-expression correlations between genes.

Let X be a matrix of the multi-condition gene expression data with p genes in rows

and n samples in columns. Let xi = (xi1, ..., xin) be a vector of expression values of gene i

across the n samples. Let y = (y1, ..., yn) be a vector of the conditions corresponding to

the samples, which consists of k di↵erent classes of conditions. In the human embryonic

development study, the samples are the embryos and y is the vector of the development

stages corresponding to the embryos, including “oocyte”, “4cell”, “8cell” and “blastocyst”.

Let G = (V,E) be a simple connected graph with p vertices andm edges (|V | = n, |E| =

61



m), which represents the network of human gene interactome including m functional links

among p genes.

A co-expression network across multiple conditions (i.e., human embryonic development

stages) is constructed based on human gene-gene interaction network by evaluating the

correlation between the expression of each linked gene pair. Given an edge e(i, j) in G

which linked gene i and gene j, let xi = (xi1, ..., xin) and xj = (xj1, ..., xjn) be the vectors

of expression values in all samples for gene i and j respectively. Let xi and xj be the

average of xi and xj. The co-expression correlation wij of edge e(i, j) is calculated by

Pearson Correlation Coe�cients (PCC) between xi and xj:

wij =

P
n

k=1(xik � xi)(xjk � xj)pP
n

k=1(xik � xi)2
pP

n

k=1(xjk � xj)2
(3.1)

The statistical significance pij of wij is obtained by the p-value evaluated by the hypothesis

test of PCC. The co-expression network, which is responsive to human embryonic devel-

opment, is constructed by keeping the edges with significant wij whose pij  0.05. The

graph G for the co-expression network is redefined by the mc edges in the co-expression

network, where |E| = mc.

3.3.2 Detection of overlapping modules

On the basis of the co-expression network constructed from the first step, the second

subtask is to detect gene modules from the co-expression network. It can be solved

by employing network module detection algorithms. Network module detection is a

well-studied subfield in the fields of both network science and computational biology.

Numerous network clustering algorithms have been developed to identify co-expression

gene modules from gene expression data [100, 101], which can be generally categorized

as topology-free methods and graph-based methods (see details in Chapter 2.3.7). The

topology-free clustering methods do not take into account the topological characteristics of

nodes in the network, which may ignore some important information because the critical

topological roles of genes in biological networks usually suggest important functional

roles of the genes (see details in Chapter 2.2.1). On the contrary, graph-based clustering

algorithms incorporate the network topology by applying specialized clustering techniques

which are generally fall into four main categories: local neighbourhood density search

(LD) such as MCODE [68], flow simulation (FS) such as MCL [70], link clustering (LC)

such as LinkComm [71], and cost-based local search (CL) such as ModuLand [72] and

OCG [73]. Details of these methods have been described in Chapter 2.3.7. The main

limitation of MCODE and MCL is that they do not allow the participation of a node

to more than one modules. But in practice, there is not clear boundaries for biological

pathways, and they are therefore overlapping to each other. Several multi-function genes
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may take part in multiple biological functions and belong to multiple modules. Thus, a

biological network with a modular structure will contain multiple overlapping modules.

LinkComm, ModuLand and OCG are capable of identifying overlapping modules through

network clustering. In terms of implementation, LinkComm may become computationally

expensive for large dense network [67]. ModuLand and OCG provide a Cytoscape plug-in

and an R package, respectively, for implementation. To address this subtask, the method

OCG is chosen because we implement the proposed approach in R and OCG has provided

an easy-to-use R package. Theoretical details of the OCG algorithm [73] are described in

the following part.

3.3.2.1 Modularity definition

Newman et al. [102] proposed a measure of modularity to evaluate the overall modular

structure of a network, which quantifies the excess of within-group edges relative to the

number of edges expected for a random partition into node groups having the same number

of members.

Let G = (V,E) be a simple connected graph with n vertices and m edges (|V | =
n, |E| = m). Given a strict partition P of G, in which V are divided into p non-overlapped

groups: P = V1, V2, ..., Vp, let eij be the percentage of edges having one end in group Vi

and the other in group Vj : eij = |E \ (Vi ⇥ Vj)|/m. The probability for a random edge to

have one end in Vi is equal to:

ai = eii +

P
j 6=i

eij

2
(3.2)

The modularity M of partition P is defined as:

M(P ) =
pX

i=1

(eii � a2
i
) (3.3)

An equivalent measure has been proposed to extend the modularity M to a partition

with overlapped node groups [103]. To avoid the confusion between non-overlapped

partition and overlapped partition, we refer to an overlapped partition as a cover of G.

Let R be a cover of G, defined by a binary relation ↵: V ⇥ V ! {0, 1}, where ↵ij = 1 if

both node i and node j belong at least once to a common group and 0 otherwise. The

modularity Q of cover R is defined as:

Q(R) =
X

i 6=j

(2mAij � didj)↵ij (3.4)

where di and dj are the degrees of i and j in G and A is its incidence matrix (Aij = 1, if

(i, j) 2 E).
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3.3.2.2 Module detection

The module detection method OCG aims to find the optimal cover R, that is, to find the

matrix ↵ij. OCG starts with an initial cover of the network and then iteratively merges

the gene groups according to a greedy strategy step by step.

The initial cover of the network is built based on three optional overlapped group

systems:

• Edges: The initial cover consists of all edges of the network, where each edge is

considered as a group. The modularity of the initial cover is maximal and the

merging process starts by establishing cliques. The modularity function increases as

long as there is at least one edge connected two groups.

• Maximal cliques: The initial cover is built with list of the maximal cliques calculated

from the network, which cannot be further enlarged given its neighbours. The

maximal modularity Qmax of overlapped group system has been obtained. Any

group fusion will contribute to Q decrease until Qmin =
P

n

i=i
d2
i
.

• Centred cliques: For each node i 2 G, a clique is built using a greedy polynomial

algorithm [73]. As long as a clique is produced, nodes adjacent to i are added in

decreasing order of their relative degree. The resulting clique, containing i, is not

necessarily maximal because a larger one containing i could exist.

At each merging step, the joined two groups are those provide the highest modularity

average gains which is defined as the modularity gain divided by the number of newly

joined vertex pairs:

�Q = (Q(Rm)�Q(R0))/(
X

↵(Rm)�
X

↵(R0)) (3.5)

where R0 is the cover of G before the group fusion, and Rm is the cover after group fusion.

The merging process is stopped when reaching the expected number of modules, or

reaching the maximal size of modules, or reaching no gains to increase �Q, which depends

on the initial cover system.

At the end, a filtering step is added to refine the modules. The contribution of each

node to the modularity of the modules is measured. When negative, the node is transferred

to the module where its contribution is the highest. This refinement permits eliminating

loosely assigned elements and further improving the modularity value.

3.3.3 Identification of condition-associated modules

In this step, we aim to address the third subtask of identifying condition-associated modules

which are significantly related with all classes of conditions across all samples. The modules
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produced by the second step are inferred from the co-expression network based on the

topological characteristics using OCG algorithm. In this step, we identify modules with

potential biological insights by evaluating their associations with embryo development. The

association of each module is evaluated by the over-representation of genes associated with

the overall embryo development stages. We apply gene set enrichment analysis (GSEA)

[104], a most widely used method, to achieve this task. We choose GSEA because it takes

into account not only the numbers of interested genes but also the magnitudes of gene

expressions across all the development stages.

GSEA tests for enrichment of a predefined gene set S among the N background genes.

GSEA first assesses the correlation of each gene with the experiment conditions of all

samples, and ranks the background genes according to their correlations. Based on the

ranked background gene list, it calculates an enrichment score (ES) for the gene set S by

evaluating its over-representation of the correlations among the background genes. The

significances for the over-representation of the modules are evaluated by calculating the

empirical p-values using permutation strategy.

In this step, each module is considered as a predefined gene set S, and the background

genes are the total genes in the co-expression network. GSEA was originally developed

to work with bi-class gene expression data which contains only two types of experiment

conditions. But in this study, the experiment conditions (i.e., development stages) are

multiple, we therefore modify the original GSEA method by incorporating the statistical

method analysis of variance (ANOVA) to suit the gene expression data with multiple

development stages in this study. The modified GSEA method is referred to as ANOVA-

GSEA hereafter. Details of ANOVA-GSEA are described as follows:

3.3.3.1 Rank background gene list

Suppose there are p genes in the co-expression gene network. Based on their expression

abundances, the correlation of each gene with the development stages of all samples

(i.e., embryos) is evaluated by one-way ANOVA F -test. For each gene, ANOVA assesses

whether the expected expression abundances of a gene within a stage class di↵er from other

classes of stages. If there are di↵erences between the four classes of development stages

(oocyte, 4-cell, 8-cell, blastocyst), it suggests that the gene is associated with embryo

development because it is regulated between di↵erent stages during embryo development.

The p background genes are ranked according to the F -statistics assessed by ANOVA.

Larger values of F -statistics represent stronger correlations of the genes with embryo

development.
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3.3.3.2 Calculate enrichment score

Let L be the ranked background gene list of the p genes. As suggested by GSEA, an

enrichment score ES is calculated to evaluate the degree to which a module is over-

represented at the extremes of the ranked gene list L. For a given module S that contains

s genes, the enrichment score ES(S) evaluates the fraction of genes in S (“hits”) weighted

by their F -statistics and the fraction of genes not in S (“misses”) present up to a given

position i in L as follows:

Phit(S, i) =
X

j2S

ji

 
|Fj|/

X

j2S

|Fj|
!

Pmiss(S, i) =
X

j /2S

ji

1

p� s

(3.6)

Then, ES(S) is the maximum deviation from zero, ES(S) = maxi|Phit(S, i)� Pmiss(S, i)|
, which depends on both the weights of the correlations and the positions of the genes in

S relative to all of the genes in L.

3.3.3.3 Assess the significance of modules

For each module, the significance of the observed score ES is assessed by comparing it

with the set of scores ESNULL computed with the permutations of experiment conditions

for the gene expression data. Specifically, the original stage labels are assigned randomly

to embryos. Then the background genes are sorted based on correlations to the permuted

labels, and ES(S) is re-computed. The permutation step is repeated 100 times to create

a null distribution of enrichment scores ESNULL. The empirical p-value of a module

is estimated from ESNULL using the positive or negative portion of the distribution

corresponding to the sign of the observed ES.

By setting a cuto↵ for the p-value, the significant modules with p-values lower than the

cuto↵ are identified as associated with human pre-implantation embryonic development.

The significance suggests general correlation between a module and the overall development

stages, but the specific correlation to a certain stage is not implicated. Consequently, in

the next step, we aim to identify the modules associated with a specific stage, referred to

as condition-specific modules, from these significant modules.

3.3.4 Selection of condition-specific modules and genes

Through the first three steps, we address the first three subtasks and identify gene functional

modules significantly associated with human early embryonic development. Since this is a

multi-class condition gene expression dataset which includes four embryonic development
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stages, we aim to further select key modules and key genes within the modules that are

associated with each specific stage. This subtask can be addresses by applying the bi-level

feature selection techniques such as regularized linear regression. As introduced in Chapter

2.3.1.4, Group Exponential Lasso (GEL) [49] is a common regularized linear regression

method which performs bi-level feature selection. It is capable of group selection as well as

important predictor selection from feature groups. By applying GEL regression method,

we can select the condition-specific modules as well as the key genes within the modules.

Because the significant modules identified from the third step are overlapping, the GEL

regression method can not be applied directly. Besides, the multi-class condition is a

multinomial response variable, so the feature gene and module selection can not be achieved

by linear regression but by logistic regression instead. There is not well-established method

to perform logistic regression with GEL regularization on overlapping feature groups, we

therefore propose a regularized logistic regression framework to select modules that are

associated with a specific condition (i.e., condition-specific modules) from the significant

modules which are identified from last step.

The proposed logistic regularization regression framework performs group variable

selection on the significant modules with the conditions as the response variable. Each

gene is considered as a predictor variable and each module is considered as a group. Group

Exponential Lasso (GEL) penalty [49] is used for the regularization. Thus, we refer to the

proposed framework as GEL logistic regression. The GEL penalty provides a solution of

bi-level sparsity on regression coe�cients. The GEL logistic regression is therefore capable

of selecting both the modules and the important genes within the modules. The GEL

logistic regression is implemented as follows.

3.3.4.1 GEL logistic regression

The vector of response variable y is a multinomial variable with multiple conditions, e.g.,

the embryonic development stages (oocyte, 4-cell, 8-cell and blastocyst). Binomial logistic

regression is performed for each condition to select the condition-specific modules by

transforming y into a binary vector. For example, the binary response vector for a specific

condition, e.g. the oocyte stage, is defined as:

yoocyte =

(
1 if yi = oocyte, i = 1, ..., n

0 otherwise
(3.7)

Given a binary response vector y of a condition, a binomial logistic regression model

describes the relationship between the log odds of probability of “success” response and

the predictors. Let pi = Pr(yi = 1|xi) be the probability of “success” of yi given the
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predictors xi = (xi1, ..., xip), i = 1, ..., n, the logistic model is given by:

logit(pi) = log

✓
pi

1� pi

◆
= �0 + xi� (3.8)

where �0 is the intercept, and � = (�1, ..., �p)T is the vector of coe�cients for the p

predictors. After the transformation, pi is given by:

pi =
e(�0+xi�)

1 + e(�0+xi�)
=

1

1 + e�(�0+xi�)
(3.9)

e(�0+xi�) =
pi

1� pi
(3.10)

Logistic regression estimates the coe�cients using maximum likelihood estimation

(MLE) by maximizing the log-likelihood:

LL(�) =
nX

i=1

yi log pi +
nX

i=1

(1� yi) log(1� pi)

=
nX

i=1

�
yi(�0 + xi�)� log(1 + e(�0+xi�))

 
(3.11)

In order to achieve the goal of group variable selection, the coe�cients are estimated

by the regularized regression which adds the GEL penalty as well as the Ridge penalty

to the negative log-likelihood. The former provides the bi-level sparsity and the latter

provides the smoothness for the coe�cients. The penalty function is defined as:

P (�) = ↵
LX

l=1

✓
�2

✓

⇢
1� exp

✓
�✓||�l||1

�

◆�◆
+ (1� ↵)

pX

j=1

�2
j

(3.12)

where, � and ✓ are the regularization parameters and ↵ is the tuning parameter ranging

from 0 to 1, which controls the trade-o↵ between the two penalty terms. The estimator �̂

is given by:

�̂ = argmin
�

(�LL(�) + P (�)) (3.13)

To overcome the overlapping in groups for regularized logistic regression, the original

coe�cients � = (�1, ..., �p) for the p predictors is decomposed according to the overlapping

groups. For example, suppose that there are four predictors x1, x2, x3, x4 belonging to

three groups S, where S1 = {x1, x2}, S2 = {x2, x3}, S3 = {x1, x3, x4}. Since the predictor

x1 is belonging to both group 1 and group 3, �1 is thus decomposed into �11 + �13. Conse-

quently, the original � = (�1, �2, �3, �4) is decomposed as �̃ = (�11, �13, �21, �22, �32, �33, �4).

Correspondingly, the predictors in each observation are also duplicated to match �̃ as
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x̃i = (xi1, xi1, xi2, xi2, xi3, xi3, xi4), i = 1, ..., n. Based on the coe�cient decomposition, the

aim becomes to estimate �̃. The decomposed coe�cients �̃ of L groups are estimated by

regularized regression using the GEL penalty and Ridge penalty by:

minimize

(
�

nX

i=1

⇣
yi(�0 + x̃i�̃)� log(1 + e(�0+x̃i�̃))

⌘)

subject to

(
↵

LX

l=1

 
�2

✓

(
1� exp

 
�✓||�̃l||1

�

!)!
+ (1� ↵)

p̃X

j=1

�̃2
j

)
 t

(3.14)

3.3.4.2 Tuning parameters for coe�cient estimation

The parameters (↵,�, ✓) for the best fitted logistic regression model are selected by

evaluating the prediction errors using K-fold cross-validation (see details in Chapter 2.3.5).

The prediction output ŷi of an estimated logistic regression model is a probability of

“success”. By setting a cuto↵ of 0.5 for the probability, ŷi can be classified as either

“success” or “failure” as:

ŷi =

(
1 if ŷi > 0.5

0 if ŷi  0.5
(3.15)

Thus, the prediction error is defined as the percentage of misclassified samples out of all

samples:

PE =
# of incorrectly classified samples

total sample size
(3.16)

The parameters (↵,�, ✓) that result in the minimum PE are chosen as the optimal

parameters, which are used to fit the best model on the whole data. The coe�cients

estimated based on this best fitting model are the final results for variable selection.

For each condition, the coe�cients are estimated based on the corresponding best

fitting model. The genes with non-zero � are selected as condition-specific genes which

are associated with the condition, and their corresponding modules are selected as the

condition-specific modules. In the embryonic development study, the stage-specific genes

and modules are selected for each development stage from the stage-associated modules

identified in the third step using the proposed GEL logistic regression.

3.4 Results

3.4.1 Embryonic development stage-specific modules

By applying the proposed approach to the transcriptome data of human embryos, a

gene co-expression network across human pre-implantation embryonic development is

constructed, which consists of 116124 edges among 11269 genes. The degree of the network
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follows power-law distribution, P (d) = cd�↵, with estimated ↵ = 2.09, which suggests that

the co-expression network is a scale-free network. Following the proposed approach, 2531

overlapping modules are detected from the network. There are 347 significant modules

selected as embryonic development stage-associated modules by ANOVA-GSEA. Using

GEL logistic regression with 5-fold cross-validation, 42 modules are identified as embryonic

development stage-specific modules which contain at least one stage-specific genes within

the module. The largest module consists of 42 genes, while the smallest one includes five

genes (defined by arbitrary cuto↵). Table 3.1 summarizes the numbers of stage-specific

genes and modules corresponding to each embryonic development stage.

Table 3.1: Numbers of embryonic development stage-specific genes and modules.
Stage # genes # modules
Oocyte 25 14

4-cell embryo 41 16
8-cell embryo 107 17
Blastocyst 81 14

3.4.2 Functionality of stage-specific modules

To assess the functional coherence of the identified stage-specific modules, we perform

the Gene Ontology (GO) [105] function enrichment for each module, which is a most

popular strategy for functional annotation in the filed of computational biology. GO

provides a system of classifications of gene functions, where genes are assigned to a set of

predefined terms depending on their functional characteristics. If the genes of a module

are significantly enriched in several function terms in GO, it suggests that the module

represents a coherent function unit related with those GO function terms. For each

stage-specific module, an enrichment analysis is performed to find which GO biological

process terms are over-represented for the module.

The enrichment is calculated by hypergeometric test which is a common statistical

method used to evaluate the significance of the enrichment. Given a module containing m

genes and a GO biological process term with k genes, the module and the GO term are

overlapping with n genes. The significance of the representation of the GO term in the

module is calculated as:

p = P (n|m, k,N) = 1�
n�1X

i=0

�
k

i

� �
N�k

m�i

�
�
N

m

� (3.17)

where N is the number of total genes in GO and
�
a

b

�
= a!

b!(a�b)! is the binomial coe�cient.

To address the multiple statistic testing problem, the p-values are adjusted by BH for the

FDR correction [106]. A significant p-value, e.g. p  0.05, suggests that the GO term is
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over-represented for the module, which indicates the functional coherence for the module.

The enriched GO biological process term thus characterizes the functions of the module.

Through the function enrichment analysis, all the 42 stage-specific modules are shown

enriched with at list one GO biological processes, which suggests that the modules are

coherent functional units related with the corresponding biological processes.

3.4.3 Case study of stage-specific modules

The proposed approach is capable of capturing the dynamic expression patterns of the

modules across the multiple development stages. Figure 3.3 shows the case study of a

stage-specific module that is identified associated with oocyte, 4-cell embryo, 8-cell embryo

and blastocyst stages. This module consists of 10 genes as shown in Figure 3.3A, which

is involved in several crucial biological processes during the pre-implantation embryonic

development such as “mitotic nuclear envelope disassembly”, “viral transcription” and

“spliceosomal snRNP assembly” (Figure 3.3B). It is a highly dynamic module that the

genes exhibit di↵erent expression patterns corresponding to di↵erent stages, illustrated in

Figure 3.3C-F.

The module successfully captures the dynamic roles of several nucleoporins (Nups)

such as NUP50, NUP62, NUP153 and NUP155. Nucleoporins are the key components

of the nuclear pore complex (NPC), a large multiprotein assembly embedded within the

nuclear envelope that mediates all transport between the nucleus and the cytoplasm

[107]. The transport of specific macromolecules across the nuclear envelope mediated by

NPC is critical for embryonic development, cell growth and di↵erentiation [108]. The

key components of NPC have been reported to play dynamic and diverse roles during

embryonic development in many species. In this module, NUP62, NUP153, and NUP155

are selected as oocyte stage-specific genes, which suggests that they might be associated

with the early stage of embryonic development. NUP50 is identified as a feature gene

associated with the last three stages but not the first one, which suggests that it might be

associated with the late stage of embryonic development. We perform curated literature

search and find several pieces of evidence for such characteristics:

• Smitherman et al. found that the loss of Nup50 leads to embryonic death during

late gestation in mouse [109], which suggests that Nup50 is associated with the late

embryonic development stages.

• NUP62 was found to associate directly with a similar set of actively transcribed

genes which were predominantly involved in the development and cell cycle in normal

drosophila embryonic cells [110, 111].

• Jacinto et al. found that depletion of Nup153 in mouse embryonic stem cells (mESCs)

causes the de-repression of developmental genes and induction of early di↵erentiation
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Figure 3.3: Case study of a stage-specific module that is identified associated with oocyte,
4-cell embryo, 8-cell embryo and blastocyst stages. (A) Heatmap of gene expression in the
module; (B) Enriched GO biological processes for the module; (C-F) Dynamic expression
pattern of stage-specific genes within the module for the oocyte, 4-cell embryo, 8-cell
embryo and blastocyst stage, respectively. Nodes represent genes and edges represent
co-expressed interactions. Nodes in red represent stage-specific genes positively correlated
with the stage and nodes in blue represent stage-specific genes negatively correlated with
the stage. Edges in solid lines represent positive co-expression and edges in dashed lines
represent negative co-expression.
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4-cell stage-specific module� 8-cell stage-specific module�

Figure 3.4: An example of multi-function gene NCBP1. Figure legends are the same as
Figure 3.3C-F.

[112], which suggests that Nup153 positively regulated the developmental genes in

mouse embryos. In agreement with their discovery, NUP153 is identified negatively

correlated with the first two stages (oocyte and 4-cell embryo), but exhibits an

activation in the subsequent 8-cell embryo stage. Scientific evidence shows that the

activation of human embryo genome happens at 8-cell stage [113], in which many

developmental genes are activated during this process. As a positive regulator of

many developmental genes, the activation of NUP153 at 8-cell stage will result in

the activations of these genes.

• NUP155 has been found to be required in early embryo in vertebrate [114]. Moreover,

Franz et al. found that in the early stage embryos of C. elegans, depletion of

Nup155 caused 100% embryonic lethality and the separation of the pronuclei from

the centrosomes [115].

Besides, scientific evidence has shown that SNRPD2 and SEH1L are related with

late stage of embryonic development. SNRPD2 has been found up-regulated during the

activation of human embryo genome at the 8-cell stage [116], which is successfully captured

by the dynamic module showing that SNRPD2 is positively correlated with the 8-cell

stage and the blastocyst stage but not the first two stages. SEH1L has been reported as a

trophoblast-specific genes which is related with the late development of embryos [117]. In

the identified module, SEH1L shows positive correlation only with the blastocyst stage.

The proposed approach allows overlapping between modules, which is capable to

capture the multi-function genes. In practice, genes usually have complex roles in biological

processes that a gene might involve in multiple biological processes. Identifying these

multi-function genes will help understand the coordination between biological processes.

Figure 3.4 gives an example of a multi-function gene NCBP1 which belongs to two modules
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corresponding to 4-cell stage and 8-cell stage respectively. NCBP1 is located between the

two modules as a bridge, which suggests that it might have the potential role during the

4-cell to 8-cell embryonic development. The gene EIF4A3 is a proved marker of the human

8-cell embryo [113], the co-expressed functional link between NCBP1 and EIF4A3 also

suggests the importance of NCBP1 during embryonic development.

3.4.4 Reproducibility of stage-associated modules

Because module detection is an unsupervised learning task, it is di�cult to assess the

accuracy of the results as there are not prior labels for the gene functional modules.

However, in order to evaluate whether the embryonic development associated modules are

reproducible using the other module detection methods, we perform a comparative study

for embryonic development associated module detection on di↵erent datasets using several

module detection methods as follows:

• OCG: module detection using the proposed approach on our in-house generated

data.

• MCL: module detection using Markov Cluster Algorithm (MCL) [118] on our in-house

generated data.

• ModuLand: module detection using ModuLand [119] on our in-house generated data.

• WGCNA: module detection using Weighted Gene Co-expression Network Analysis

(WGCNA) [77] on our in-house generated data.

• MCL seq: module detection using MCL on a published RNA-seq data of human

pre-implantation embryo transcriptomes [120].

Table 3.2: Overlapping of intra-module genes between di↵erent module detection methods.
The diagonal shows the numbers of total intra-module genes identified by each method; the
lower triangular table shows the numbers of overlapping genes between the corresponding
methods; the upper triangular table shows the significance of the numbers of overlapping
genes assessed by hypergeometric test.

Method OCG MCL ModuLand WGCNA MCL seq
OCG 871 9.96E-07 7.47E-45 1.21E-07 6.52E-16
MCL 103 1072 5.62E-258 6.56E-21 2.74E-05

ModuLand 550 950 5837 4.73E-50 1.62E-03
WGCNA 33 59 181 201 1.24E-09
MCL seq 279 276 1284 79 3012

The overlapping of intra-module genes, which are the genes within all embryonic

development associated modules, identified by di↵erent methods are shown in Table 3.2.
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We observe that the overlapping of intra-module genes are significant between all the

methods. The proposed approach has more overlapping intra-module genes with MCL and

ModuLand than WGCNA. The reason might be that MCL and ModuLand incorporate the

gene-gene interaction network for module detection similar as the proposed approach, but

WGCNA identifies co-expression gene modules from the transcriptome data exclusively.

Such di↵erences in the overlapping of intra-module genes suggest that the interactome

data might introduce intrinsic information of gene functional patterns.

3.5 Implementation

The data sources of the transcriptome and interactome data studied in this chapter are

described in Chapter 3.2.1. We implement the proposed approach in R to study human

embryonic development by integrating the transcriptome and interactome data. The

processed datasets used in this study and the R codes for implementing all the four

steps of the proposed approach can be accessed from https://github.com/bioinfoxh/

condition-specific_module_detection.

3.6 Summary

In this chapter, we propose an approach for gene module detection by integrating multi-

condition transcriptome data and interactome data using network overlapping module

detection method, which consists of four steps: (1) construction of gene co-expression

network by evaluating co-expression correlation coe�cient between each interacted gene

pair based on their gene expression; (2) detection of overlapping gene modules from the co-

expression network using network overlapping module detection method; (3) identification

of condition-associated modules by assessing the significance of enrichment with condition-

associated genes within the modules using ANOVA-GSEA; (4) selection of condition-

specific feature modules and feature genes using GEL logistic regression with K-fold

cross-validation.

We apply the proposed approach to the transcriptome data of human pre-implantation

embryos across multiple development stages and identify human embryonic development

stage-specific modules and genes. Interesting biological insights are revealed from the

dynamic expression patterns of the stage-specific modules and the multiple function genes

located in the overlapping modules, which provides clues for understanding the potential

molecular mechanisms during human pre-implantation embryonic development. To assess

the stability of the modules identified by the proposed approach, we perform similar

module detection studies using several common module detection methods as well as

on di↵erent transcriptome data. We find that the intra-module genes are significantly
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overlapped between di↵erent methods and datasets.

The proposed approach provides an e�cient computational pipeline based on network

clustering for transcriptome and interactome data integration in the field of multi-omics.

It extends the state-of-art approaches by providing a comprehensive and flexible compu-

tational framework, which is capable of identifying both condition-specific modules and

intra-module condition-specific genes by integrating multi-class condition transcriptome

data and interactome data. We believe the proposed approach is a useful tool for the

field of multi-omics, which helps researchers to mine the underlying molecular mechanisms

through integration of transcriptome and interactome data.

This approach could be further improved in two directions. Firstly, the proposed

approach only works with unweighted co-expression network. But in practice, gene co-

expression network is a weighted network, where the edge weights indicate the strength of

co-expression correlations between the interacted genes in the network. A larger weight

usually suggests stronger co-functional roles between the genes. Thus, the edge weights

provide important functional information. Taking into account such information will lead

to more coherent and dynamic functional modules detected from a weighted co-expression

network. This issue can be addressed by employing e↵ective network module detection

algorithms which are capable of extracting modules from weighted network. Secondly, the

proposed approach o↵ers advantage of detecting overlapping modules which is capable of

capturing genes with multiple functions. However, it will result in strong redundancy in

the detected modules, which might bring confusions for interpreting the modules. This

limitation can be solved by simply deleting redundant modules in the results or improving

the module detection algorithm by controlling the overlapping rate between modules

during the module search procedure.
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Chapter 4

Multilayer network module detection

for transcriptome, translatome and

interactome integration

4.1 Introduction

Regulation of gene expression occurs not only at transcription level but also at translation

level. Translational regulation has been proved to play a crucial role in essential biological

processes [121, 122]. Aberrant regulation of translation has been shown to be involved in

the genesis of many human diseases, which may be potential targets for disease therapy

[123, 124]. Compared with the understanding of transcriptional regulation, our knowledge

on translational control of gene expression is relatively limited.

The development of high-throughput Ribosome Profiling technology (Ribo-seq) [25]

has provided great opportunities for exploring translational mechanisms of gene expression.

Ribo-seq experiment is usually accompanied by RNA-seq of the matched biological sample,

which reveals the genome-wide translation e�ciency by comparing the ribosome protected

fragments (RPFs) from translatome with the mRNAs from transcriptome [125, 126].

Alterations in translation e�ciency, that is, the changes in RPF abundances between two

conditions are discordant with the changes in mRNA abundances, suggests the underlying

regulation of translation. To characterize the potential mechanisms associated with such

translational control, the main challenges involve two tasks: identification of di↵erentially

translated gene (DTG) whose di↵erence in RPF abundances cannot be explained by the

di↵erence in corresponding mRNA abundances and detection of functional patterns that

are associated with the di↵erential translation. Several methods have been proposed to

address the first problem, including Babel [127], Xtail [128] and Riborex [129]. However, no

tools have been developed for the second purpose yet and it is therefore still a challenging

task to mine the underlying functional patterns from transcriptome and translatome data.

77



Recently, the multilayer network framework has been successfully used to characterize

responsive functional patterns in complex biological systems, e.g. inference of epigenetic

functional modules from a multiple network constructed based on gene expression and

DNA methylation data [39], detection of dynamic pathways on multiple co-expression

gene networks during multi-stage progression of diseases [130], and identification of cancer

driver genes via community detection from multilayer networks built by integrating multi-

omic data [40], which shows that the multilayer network framework is more e�cient in

capturing characteristics of biological patterns from multi-omic data compared with the

aggregated single-layer network. Therefore, multilayer network would be potential useful

for integrating the transcriptome and translatome data with protein-protein interactome

data to explore the functional patterns such as gene modules which are associated with

translation regulation mechanisms. E�cient methods and tools are in urgent need to

achieve the goal.

4.2 Multi-omics

4.2.1 Multi-omic data

4.2.1.1 Transcriptome and translatome

The transcriptome and translatome datasets studied in this chapter are derived from a

published ribosome profiling data of human prostate cancer cell lines PC3 in response to

mTOR signalling perturbation [131]. mTOR, the mammalian target of rapamycin kinase,

is a master regulator of protein synthesis that couples nutrient sensing to cell growth

and cancer. To explore the crucial role of mTOR in prostate cancer, Hsieh et al. [131]

performed a genome-wide ribosome profiling of PC3 cells with the treatment of PP242, an

inhibitor to mTOR, to study the downstream translational regulation mechanisms that

result in prostate cancer development. The matched transcriptome and translatome data

are measured by RNA-seq and Ribo-seq on two original PC3 cells and two PP242-treated

PC3 cells. In this study, we use the processed RNA-seq data and Ribo-seq data (i.e., the

mRNA read counts and the RPF read counts) downloaded from Xiao et al. [128].

4.2.1.2 Interactome

Human interactome data used in this chapter are the curated protein-protein physical

interactions downloaded from STRING database (v10.5) [132]. The proteins are mapped

to corresponding genes for the integration with transcriptome and translatome data.

Redundant interactions and self-interactions are removed from the interactome data.
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4.2.2 Problem definition

The transcriptome and translatome reflect the genome-wide responses of translation e�-

ciency to the mTOR perturbation by capturing the transcription level (mRNA) expression

and the translation level (RPF) expression. On the basis of the network introduced by

the interactome data, the alterations in mRNA and RPF expression, can be exhibited in

network structure respectively, which form a multilayer network consisting of two layer

networks corresponding to the transcription level and the translation level respectively. A

set of genes, whose expression pattern is discordant between the two layers, are defined as

a translation e�ciency (TE) regulated module. To identify such TE-regulated modules,

the problem can be considered as an unsupervised learning task to detect the functional

gene modules from the multilayer network. A functional gene module in a multilayer

network can be defined as a set of genes whose connectivity within them is stronger than

the outgoing connectivity across all layers of networks. On the basis of such definition,

the problem can be solved by e�cient methods for multilayer network module detection.

4.3 Methodology

Since the research problem of this chapter is defined as a task of inferring gene modules

from multilayer biological networks, it can be solved by using multilayer network module

detection algorithms. Multilayer network is an emerging subfield in the filed of network

science, but it has been successfully applied to biological studies, including but not limited

to, inferring gene modules from multilayer networks by integrating multi-omic data. The

multilayer network module detection algorithms developed for multi-omic study can be

classified into two categories:

• For the first category, the strategy of the algorithms is to perform module detection

in each layer of the multilayer network separately and then merge the signal layer

modules together. A state-of-art algorithm of this category is the consensus clustering

algorithm [40]. Cantini et al. proposed the consensus clustering algorithm to identify

cancer related gene modules by integrating di↵erent layers of genomic information

including transcription factor co-targeting, microRNA co-targeting, protein-protein

interaction and gene co-expression networks [40]. The consensus clustering algorithm

first applies state-of-art community detection methods in each layer to get single

layer gene modules and then uses consensus clustering algorithm to merge the single

layer modules in an iterative way until the consensus modules converge.

• For the other category, the strategy of the algorithms is to perform module detection

by integrating the information across all layers of the multilayer network when

searching for modules. A state-of-art algorithm of this category is the M-module
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algorithm [130]. Ma et al. proposed a clustering algorithm, M-module, to identify

modules from multilayer weighted networks [130]. They define a multilayer network

module, named M-module, as a group of nodes whose within-group connectivity is

stronger than the between-group connectivity across all layer networks. The algorithm

performs greedy search to infer an M-module from the multilayer network using

seed expansion strategy by optimising its modularity quantified by graph entropy.

The M-module algorithm has been successfully applied to identify gene module

associated with disease progression from multiple transcriptome data [130] and to

identify epigenetic regulated gene modules from DNA methylome and transcriptome

data [39].

Although the consensus clustering algorithm and the M-module algorithm are both

e�cient for multi-omic studies, there are still some limitations for the former. In the

consensus clustering algorithm, the fundamental modules are identified from single layer

network separately. It assumes that the di↵erent layers are independent between each

other and ignores the between-layer relationships during the module detection. But in

real multi-omic studies, di↵erent layers of the multilayer network are not independent

but might crosstalk to each other, e.g., DNA methylation plays regulatory roles on gene

expression. On the contrary, the M-module algorithm integrates the information across all

layers of the multilayer network during module inference, which takes into account the

potential between-layer impacts.

In this chapter, the goal is to identify translational regulation related gene modules from

the multilayer network constructed by integrating the mRNA expression measured by RNA-

seq and the RPF expression measured by Ribo-seq. The mRNA layer and the RPF layer

are correlated because there are critical translational regulation mechanisms for translating

mRNAs to proteins through the ribosome protected fragments (RPFs). Considering such

correlated relationship will help to mine the potential regulation mechanisms from the

transcriptome and translatome data. Consequently, the M-module algorithm is the more

appropriate solution to achieve the goal of this chapter.

We propose an approach, based on the M-module algorithm, to identify translation

e�ciency regulated (TE-regulated) modules from the multilayer di↵erential expression

network constructed by integrating transcriptome, translatome and interactome data,

which consists of five steps, illustrated in the flowchart in Figure 4.1: (1) construction

of multilayer network, (2) selection of seed genes, (3) greedy search for modules, (4)

refinement of modules, and (5) visualization of modules.
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Figure 4.1: Flowchart of proposed approach to multilayer network module detection for
transcriptome, translatome and interactome integration. It consists of five steps: (1)
construction of multilayer di↵erential expression network by integrating transcriptome
and translatome with interactome data respectively; (2) selection of seed genes for module
detection by evaluating their degrees of di↵erential translation; (3) detection of modules
from the multilayer network using greedy search for each seed gene by minimizing the
entropy-based local modularity function; (4) identification of translation e�ciency (TE)
regulated modules by the refinements including significance assessment, redundancy
deletion and dynamic evaluation; (5) visualization of TE-regulated modules as graphs
with incorporated multilayer information from the networks.

4.3.1 Construction of multilayer network

In this approach, we use the multilayer network framework to integrate the transcriptome

and translatome data from the same ribosome profiling data. We build a multilayer

network which contains two layers: one layer representing the the transcription level

(mRNA) expression derived from the transcriptome data and the other representing the

translation level (RPF) derived from the translatome data. In the following part of this

section, we describe the details for constructing the multilayer network.

The statistics t-values and p-values of mRNA di↵erential expression between two

conditions for each gene are obtained by use of negative binomial generalized linear models

proposed by DESeq2 [133] which is a common tool for RNA-seq data analysis. Following

the statistical models proposed by DESeq2, for the gene i in sample j, its mRNA read

(a fragment of the mRNA sequence) count mij is modelled following a negative binomial
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distribution with fitted mean µij and a gene-specific dispersion parameter ↵i:

mij ⇠ NB(µij,↵i)

µij = sjqij

log2(qij) = xj�i

(4.1)

where sj denotes a sample-specific size factor and qij is a parameter proportional to the

expected true abundance of mRNA reads for sample j. The coe�cient �i gives the log2

transformed fold changes for gene i, and the vector xj indicates the treatment conditions

for sample j. The expected read counts follows:

log(E(mij)) = xj�i + log(sj) (4.2)

Hypothesis testing is done to test whether the expression levels di↵er between conditions.

Let �g1 and �g2 indicating gene-specific coe�cients for case and control groups respectively,

and the di↵erential expression is evaluated by testing:

H0 : �g1 = �g2

H1 : �g1 6= �g2

On the basis of protein-protein interaction (PPI) network provided by the interactome

data, the mRNA di↵erential expression network is constructed by assigning a weight to

each edge using the t-values of mRNAs. Specifically, for a given edge E(i, j) that connects

gene i and gene j, the weight wij evaluating the mRNA di↵erential expression on E(i, j) is

estimated by the squared harmonic mean of ti and tj . The harmonic mean assigns higher

weights to gene pairs with comparable t-values with larger absolute values because it tends

to mitigate the impact of the larger t and aggravate the impact of the other smaller t. The

weight wij is calculated as:

wij =

s

max(|ti|, |tj|) ⇤
2min(|ti|, |tj|)

|ti|+ |tj|
(4.3)

where ti and tj are the t-values of the mRNA di↵erential expression for gene i and gene j

based on the transcriptome data.

The RPF di↵erential expression network is developed in the same way using the

translatome data.

Consequently, these two networks, the mRNA di↵erential expression network and the

RPF di↵erential expression network, form a multilayer network.
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4.3.2 Selection of seed genes

Genes in the multilayer network are ranked according to the degrees of their di↵erential

translation. Given a gene, if its di↵erence in RPF abundances is not concordant with the

di↵erence in mRNA abundances, it is referred to as a di↵erentially translated gene (DTG).

The top-ranked DTGs are used as the seeds for module inference from the multilayer

network.

Several methods have been published recently for evaluating degrees of di↵erential

translation of genes to identify significant di↵erentially translated genes (DTGs) using

ribosome profiling data. There are three recent common methods, Babel [127], Xtail

[128] and Riborex [129], all of which provide public R packages for users. We compare

the performances of the three methods, aiming to select an e�cient one to be used in

our approach to select the seeds (i.e., top-ranked DTGs). We apply the three methods,

Babel, Xtail and Riborex, respectively, on the published ribosome profiling data that are

mentioned in Chapter 4.2.1.1. Table 4.1 shows the numbers of significant di↵erentially

translated genes identified from the total 10559 genes by the three methods and the

overlaps between them. The comparisons between Babel, Xtail and Riborex reveal that

the significant DTGs identified by the three methods significantly overlap between each

other. The implementations of Babel, Xtail, Riborex take 8376, 341, 7 seconds, respectively,

on the same data using a single core of a MacBook Pro with 2.9 GHz Intel Core i5 and

16GB 1867 MHz DDR3 memory. Through these comparisons, we find that Babel, Xtail

and Riborex provide comparable performances for the identification of DTGs, but Riborex

provides the superior performance in terms of the implementation time. Therefore, we

employ Riborex in our approach.

Table 4.1: Overlapping of significant di↵erentially translated genes (DTGs) identified by
Babel, Xtail and Riborex. The diagonal shows the numbers of total significant DTGs
identified by each method; the lower triangular table shows the numbers of overlapping
DTGs between the corresponding methods; the upper triangular table shows the significance
of the numbers of overlapping genes assessed by hypergeometric test.

Method Babel Xtail Riborex
Babel 540 1e-16 1e-16
Xtail 275 527 1e-16

Riborex 263 392 465

In the following part of this section, we introduce the statistical model proposed by

Riborex that we use to select top-ranked DTGs. We assume a matched transcriptome and

translatome dataset which includes k samples and n genes. For gene i in sample j, its

mRNA read count mij is modelled following a negative binomial distribution with fitted
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mean µij and a gene-specific dispersion parameter ↵i:

mij ⇠ NB(µij,↵i)

µij = sjqij

log2(qij) = xj�i

(4.4)

where sj denotes a sample-specific size factor and qij is a parameter proportional to the

expected true abundance of mRNA reads for sample j. The coe�cient �i gives the log2

transformed fold changes for gene i and the vector xj indicates the treatment conditions

for sample j.

Similarly, the RPF read count rij is modelled with fitted mean ⇡ij and a gene-specific

dispersion parameter ✏i,
rij ⇠ NB(⇡ij, ✏i)

⇡ij = djpij

log2(pij) = xj�i

(4.5)

where dj denotes a sample-specific size factor and pij is a parameter proportional to the

expected true abundance of RPF reads for sample j. The coe�cient �i gives the log2

transformed fold changes for gene i and the vector xj indicates the treatment conditions

for sample j.

The translation e�ciency of the gene is defined as the ratio of RPF and mRNA

expression levels:

tij = pij/qij (4.6)

RPF read counts depends on both translation e�ciency and mRNA expression level.

Taking into account the mRNA level while modelling RPF read counts, the expected RPF

read count for gene i in sample j can be modelled as follows:

log(E(⇡ij)) = log(pij) + log(dj) = log(tij) + log(qij) + log(dj)

= xj�i + xj�i + log(dj)
(4.7)

where log(tij) = xj�i. The coe�cient �i gives the di↵erential translation e�ciency for gene

i and the vector xj indicates the treatment conditions for sample j.

The coe�cient vectors �i and �i can be estimated simultaneously by constructing the

design matrix as follows:

xmRNA
j

= (xj1, ..., xjk, 0, ..., 0)

xRPF
j

= (xj1, ..., xjk, xj1, ..., xjk)
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And the corresponding coe�cient vector is reorganized as:

�i = (�i1, ..., �ik, �i1, ..., �ik)

With the modified design matrix, di↵erential expression of genes can be evaluated using

the established framework of DESeq2. Hypothesis testing is done on �i:

H0 : �i = 0

H1 : �i 6= 0

The DTGs are then ordered by the p-values for the use of seed genes.

4.3.3 Greedy search for modules

To infer TE-regulated modules from the multilayer network, we employ the greedy search

strategy suggested by the M-module algorithm [130].

Following the M-module algorithm, a multilayer network module, named M-module, is

defined as a group of nodes whose within-group connectivity is stronger than the between-

group connectivity across all layer networks. The modularity of an M-module in multilayer

network is quantified by a measure based on graph entropy, which evaluates the skewness

of within-module connectivity versus between-module connectivity.

Let a 3-dimensional matrix A = (aijk)n⇥n⇥M be the adjacent matrix of an M -layer

network Gk = (V,Ek)(1  k  M) with the same n nodes but di↵erent edges in each layer,

where aijk denotes the weight on the edge E(i, j) in the kth network. For a given node i

in an M-module C, let Ik(i) denote the total weight between i and other nodes in C in

the kth network Gk:

Ik(i) =
X

i 6=j,j2C

aijk (4.8)

Similarly, let Ok(i) denote the total weight between i and nodes outside of C:

Ok(i) =
X

i 6=j,j /2C

aijk (4.9)

Then, the connectivity of node i to module C in the network Gk is defined as:

Hk(i, C) = �piklog(pik)� (1� pik)log(1� pik) (4.10)

where pik = Ik(i)/(Ik(i) +Ok(i)). Consequently, the connectivity between i and C across
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all M networks is calculated as:

H(i, C) =
MX

k=1

Hk(i, C) (4.11)

The multilayer network modularity MM of module C across all networks is defined as:

MM(C) =
X

i2C

H(i, C)/|C| (4.12)

Given the MM function, a greedy search is performed starting with a seed to identify

the subnetwork within the multilayer network whose MM is locally minimal. Specifically,

starting with a seed gene, the module C is expanded by iteratively adding neighbour genes

whose addition causes the maximum decrease in the MM function until no decrease is

observed. The modularity score MM of the module is calculated by the final addition.

The greedy search procedure is implemented for each seed gene and the resulted modules

will be assessed by further refinement.

4.3.4 Refinement of modules

4.3.4.1 Selecting modules with significant modularities

The significances of modularities are calculated using a Monte Carlo (MC) randomiza-

tion procedure, which permutes the node statistics around the multilayer network and

recomputes modularities for the modules. The significance of the modularity score MM is

assessed by comparing it with the set of scores MMNULL computed with the permutations

of statistics t-values of transcriptome and translatome data.

The mRNA and RPF t-values are permuted in the same order for genes and a random

multilayer di↵erential expression network is constructed. The modularity score MM for

each module is re-calculated based on the random network. The permutation is repeated for

100 times, and 100 permuted MM (pMM) are obtained, which create a null distribution

of the scores. Finally, the empirical p-value of a module is calculated by the lower portion

of the distribution corresponding to the observed MM .

For the multiple statistic test, the FDR of each module is also calculated based on

the above 100 permutations of t-values. For each module, the observed MM and the 100

permuted pMM scores are normalized to the Z-score of the null distribution, that is, minus

the means of pMM and divided the standard deviation of pMM . And the corresponding

normalized scores are obtained, nMM and npMM . Then, the FDR is calculated by

controlling the ratio of false positives to the total number of modules attaining a fixed

level of significance for nMM and npMM . The null distribution is constructed from the

npMM of all the modules to compute an FDR value, for a given distribution nMM = x.
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The FDR is the ratio of the percentage of all permutations with npMM < x, divided by

the percentage of the modules with nMM , whose nMM < x.

The modules that contain more than five genes and pass a significance threshold (e.g.,

p  0.05) are selected as candidate modules.

4.3.4.2 Removing redundant modules

The greedy search procedure for the seed genes might result in strong overlapping between

the modules. The overlapping between module Ci and module Cj is measured by the

meetmin index which has been proven a good measure for evaluating containment by Zaki

et al. [100]. The meetmin index is calculated as:

meetmin(Ci, Cj) =
|Ci \ Cj|

min(|Ci|, |Cj|)
(4.13)

To reduce the redundancy in the candidate modules, the smaller one of the two overlapping

modules whose meetmin index is greater than a given threshold (e.g. 50%) is removed.

The remaining functional modules are considered as TE-regulated modules, which are

associated the translation e�ciency regulation.

4.3.4.3 Identifying dynamic modules

To evaluate the dynamic patterns of the TE-regulated modules, we use the module dynamic

score (MDS) suggested by Ma et al. [130], to assess the dynamics of a module based on

its connectivities in the networks based on weight di↵erences of the module between layers.

Given a module C which contains k edges, let wm = (wm1, ..., wmk) and wr = (wr1, ..., wrk)

be the weights of the edges in the mRNA di↵erential expression network and the RPF

di↵erential expression network, respectively, the MDS of the module is calculated as

follows:

MDS =

qP
k

i=1(wmi � wri)2

k
(4.14)

The statistical significance of MDS is computed in the same way as that for the modularity

of the module. The empirical p-value and FDR of a MDS is calculated using the same

permutation procedures for evaluating the significance of modularity. A higher MDS of a

TE-regulated module, the stronger association is suggested with the translation regulation

mechanisms.

4.3.5 Visualization of modules

For each TE-regulated module, we provide an intuitive way to visualize it in a graph

by incorporating the multilayer information of di↵erential expression and di↵erential
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translation of each gene into the graph. The module is thus visualized as a graph of

network in which nodes (genes) are coloured and shaped with the attributes of di↵erential

expression and di↵erential translation, and edges are assigned with the width proportional

to the matched weights.

4.4 Results

4.4.1 Seed genes

The processed transcriptome and translatome data provide mRNA and RPF expression of

10559 genes in both the original prostate cancer cells and the PP242-treated prostate cancer

cells. Following the proposed approach, we assess the degrees of di↵erential translation for

each gene. The top 1000 of the most significant di↵erentially translated genes are selected

as the seed genes to search for the gene modules from the multilayer network. Figure 4.2

shows the distributions of mRNA di↵erential expression and RPF di↵erential expression of

the seed genes as well as their involved biological processes. For the seed genes, we observe

obvious discordance between their expression changes in mRNA and RPF levels. As shown

in Figure 4.2A, 580 seed genes (dots in blue) are down-regulated in translation, while

the other 420 genes (dots in red) are up-regulated in translation. Through the function

enrichment analysis (see details in Chapter 3.4.2), the up-regulated translated genes

are associated with functions related with mechanisms of post-translational modification

such as “peptidyl-threonine phosphorylation” and “protein autophosphorylation” (see the

red bars in Figure 4.2B), which are essential procedures after protein translation. The

down-regulated translated genes are associated with the translation processes and several

important metabolic pathways related with protein translation (see the blue bars in Figure

4.2B). The association between the genes and the translation related functions suggests

their potential roles in translational regulation, which will help to mine the underlying

patterns associated with translation regulation.

4.4.2 Evaluation of TE-regulated modules

On the basis of t-values of mRNA and RPF di↵erential expression, a multilayer network

is constructed with 8865 genes and 214350 edges. After the refinement of the modules

searched with 1000 seed genes, 245 modules are identified as TE-regulated modules. The

smallest module consists of six genes, while the largest module includes 183 genes.

Since the proposed approach is the first method for identification of TE-regulated

modules using ribosome profiling data, there is not public method or tool that could be

employed as benchmark to evaluate the e�ciency of the approach. In order to obtain a

general idea about the e↵ectiveness of the proposed approach, we take 10 TE-regulated
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Figure 4.2: Seed genes. (A) Distribution of mRNA di↵erential expression and RPF
di↵erential expression of the seed genes. Red dots represent the up-regulated translation
and blue dots represent the down-regulated translation. (B) Top 5 Gene Ontology biological
processes significantly enriched with up-regulated DTGs (red bars) and down-regulated
DTGs (blue bars), respectively.

modules inferred from the top 10 significant di↵erentially translated seed genes. Table 4.2

shows the di↵erential expression of mRNA and RPF as well as the di↵erential translation

for each seed gene. As shown in Table 4.2, all of the top 10 seed genes are significantly

down-regulated in translation e�ciency (TE) in case samples with the perturbation of

mTOR.

Table 4.2: Top 10 significant di↵erentially translated seed genes of TE-regulated modules.
Seed Genea mRNA log2FCb RPF log2FCc TE log2FCd TE p-valuee Module Sizef

EIF3F 0.140 -1.232 -1.320 1.00E-08 87
PABPC4 0.322 -1.265 -1.403 1.50E-08 49
EIF4B 0.316 -1.022 -1.260 5.76E-08 16
EIF3A 0.302 -0.756 -0.964 4.00E-06 23
CHP1 0.060 -0.843 -0.925 9.00E-05 13
YBX3 0.082 -0.897 -0.974 1.03E-04 17
SPRY2 0.352 1.087 1.011 1.41E-04 6
EEF1B2 0.016 -0.976 -0.885 4.09E-04 9
RPL36 0.096 -0.741 -0.773 8.61E-04 16
RAB3A -0.310 -0.974 -0.881 9.84E-04 7
a The seed genes of TE-regulated modules are ordered by the significance of di↵erential translation.
b Log2 transformed fold change (FC) of mRNA expression in case vs. control.
c Log2 transformed fold change of RPF expression in case vs. control.
d Log2 transformed fold change of RPF FC vs. mRNA FC.
e Significance of di↵erential translation for each seed gene.
f Number of genes within the TE-regulated modules inferred from each seed gene.

For each of the 10 modules, we perform the function enrichment with GO biological

processes (see details in Chapter 3.4.2) to characterize its related functions, and for the

corresponding seed gene, we perform curated literature search to look for scientific evidence
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for its relationship with mTOR and prostate cancer. The evidence for each TE-regulated

module and seed gene is listed as follows:

• EIF3F is eukaryotic translation initiation factor 3 subunit F. The TE-regulated mod-

ule inferred from EIF3F is involved in the biological processes including “ubiquitin-

dependent protein catabolic process” and “protein ubiquitination”, which are related

with the post-translational modifications of the translational machinery. EIF3F is a

subunit of the largest and most complex initiation factor eIF3, which plays critical

roles in translation initiation and carcinogenesis [134]. EIF3F has been proven to

interact with mTOR to regulate protein synthesis [135, 136]. EIF3F has been found

down-regulated in several human cancers [137, 138]. Recently, EIF3F has been found

related with the genesis of prostate cancer [139].

• PABPC4 is poly(A) binding protein cytoplasmic 4. The TE-regulated module

inferred from PABPC4 is involved in the biological processes including “ribonucleo-

protein complex biogenesis” and “rRNA metabolic process”, which are related with

translational mechanisms of protein synthesis. PABPC4 has been reported to be

involved in the initiation of mRNA translation [140] which may be regulated by the

mTOR signalling pathway. PABPC4 has also been found overexpressed in prostate

cancer cells [141], which suggests the potential relationship between PABPC4 and

prostate cancer.

• EIF4B is eukaryotic translation initiation factor 4B. The TE-regulated module

inferred from EIF4B is involved in the biological processes including “apoptotic

signalling pathway”, “cellular component organization or biogenesis”, “formation of

translation initiation ternary complex”, “translational termination” and “transla-

tional elongation”, which are related with essential translational mechanisms. It is

reported that mTOR stimulates the phosphorylation and activity of EIF4B, which

may promote the translation of specific mRNAs, thereby promoting cell growth,

proliferation and tumour progression [142]. EIF4B has been found up-regulated

in several cancers including breast, colon, head and neck, and ovarian carcinoma

and non-Hodgkins lymphoma [134]. It has also been found to be related with the

tumorigenesis of prostatic carcinoma [143].

• EIF3A is eukaryotic translation initiation factor 3 subunit A. The TE-regulated

module inferred from EIF3A is involved in the biological processes including “regu-

lation of metabolic process”, “cellular macromolecule biosynthetic process”, “cell

di↵erentiation” and “DNA damage induced protein phosphorylation”, which are

related with the translational regulation. EIF3A is the largest subunit of eIF3. It

interacts with all other eIF3 subunits and EIF4B, which establishes a direct link
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to mTOR signalling [134]. EIF3A has been found overexpressed in several human

cancers, including breast, cervix, colon, lung, urinary bladder, esophagus, and oral

squamous cell carcinoma [134]. Recently, Yin et al. studied the frequency of EIF3A

somatic alterations in human cancers based on the analysis of catalogue of somatic

mutations in cancer (COSMIC) database, and the results show that the predomi-

nate somatic mutation patterns of EIF3A in prostate cancer are the deletions in

untranslated regions (UTR) [144].

• CHP1 is calcineurin like EF-hand protein 1. The TE-regulated module inferred from

CHP1 is involved in the biological processes including “polysaccharide metabolic

process”, “phospholipid metabolic process” and “post-translational protein modifica-

tion”, which are related with the post-translational modifications of the translational

machinery. CHP1 encodes a phosphoprotein that binds to the Na+/H+ exchanger

NHE1 and serves as an essential cofactor which supports the physiological activity

of NHE1 [145]. NHE1 has been found to be regulated by mTOR, which implicates

the possible downstream e↵ector role of NHE1 contributing to mTOR’s e↵ects on

cell growth, proliferation and tumorigenesis [146]. NHE1 has also been found related

with tumorigenesis of prostate cancer [147], which suggests the potential relationship

between CHP1 and prostate cancer.

• YBX3 is Y-box binding protein 3. The TE-regulated module inferred from YBX3

is involved in the biological processes including “positive regulation of epithelial

cell proliferation”, “transforming growth factor beta receptor signalling pathway”

and “BMP signalling pathway”. YBX3 belongs to the gene family of Y-box binding

protein as well as the well-established oncoprotein YBX1. The synthesis of YBX1

is activated by mTOR signalling [148] and YBX1 has also been found related with

prostate cancer progression [149]. Recently, a novel gene fusion between YBX3 and

STYK1 with clinical relevance has been identified through whole-genome sequencing

of small-cell prostate carcinoma [150], which suggests the potential relationship

between YBX3 and prostate cancer.

• SPRY2 is sprouty RTK signalling antagonist 2. The TE-regulated module inferred

from SPRY2 is involved in the biological processes including “negative regulation

of MAP kinase activity”, “response to fibroblast growth factor” and “Ras protein

signal transduction”, which are related with regulatory mechanisms of translation. It

is reported that the PI3K/AKT/mTOR signalling is a key pathway throughout the

development of prostate cancer [151]. SPRY2 has been proven an important tumour

suppressor in prostate cancer which drives PI3K/AKT/mTOR pathway through its

dysfunction [152].
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• EEF1B2 is eukaryotic translation elongation factor 1 beta 2. The TE-regulated

module inferred from EEF1B2 is involved in the biological processes including

“translational elongation”. Overexpression of EEF1B2 was observed in most of cancer

types [153]. Recently, Hassan et al. found that EEF1B2 was up-regulated in the

high-risk group patients in the survival analysis of prostate cancer, although the

di↵erence between survival outcomes of the two groups was not significant [154].

• RPL36 is ribosomal protein L36. The TE-regulated module inferred from RPL36

is involved in the biological processes including “formation of translation initiation

ternary complex”, “translational termination”, “translational elongation” and “cel-

lular amino acid metabolic process”, which are related with essential translational

mechanisms. A recent cancer cohort study found that RPL36 was up-regulated in

nine cancer clusters arising from thyroid, brain, liver, kidney clear cell, thymoma,

prostate, pancreatic, pheochromocytoma and paraganglioma, and B-cell lymphoma

[155], which suggests the potential relationship between RPL36 and human cancers

including prostate cancer.

• RAB3A is RAB3A, member RAS oncogene family. The TE-regulated module

inferred from RAB3A is involved in the biological processes including “regulation

of translational elongation” and “cellular protein complex disassembly”, which are

related with translational regulation mechanisms. RAB3A has been found up-

regulated in human cancers including insulinoma, breast cancer, hepatocellular

carcinoma, and tumours derived from the neural system [156].

To summarize the above, all of the 10 TE-regulated modules are enriched in biological

processes related with translational mechanisms. Solid evidence or potential evidence

has been found for nine out of the 10 corresponding seed genes, excluding RAB3A, to

support their relationships with mTOR or prostate cancer. Although there is not direct

evidence for the relationship between RAB3A and prostate cancer, but RAB3A has been

reported related with several other human cancers. Consequently, the proposed approach is

e↵ective and capable of mining the underlying functional patterns related with translational

regulation mechanisms from the ribosome profiling data.

4.4.3 Case study of TE-regulated modules

We successfully mine the functional modules associated with key regulators downstream of

mTOR, such as EIF4EBP1, EIF4EBP2 and YBX1, which provides clues for understanding

the translation regulation mechanisms induced by mTOR related with prostate cancer

development.
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Figure 4.3: A TE-regulated module searched by the seed gene GPHN. Nodes represent
genes and edges represent di↵erential expressed interaction between the nodes linked by
the edge. Node colours denote the statistics of di↵erential expression: core and border
for mRNA and RPF, respectively. Square nodes represent the significant di↵erentially
translated genes. Edge width denotes the weights of di↵erential expression on the edges.
The Node with larger size denotes the seed gene.

4.4.3.1 The mTOR module

Figure 4.3 shows a key TE-regulated module identified from the multilayer network

by the seed gene GPHN, which involves the key translation regulator mTOR. In this

functional module, mTOR interacts with the downstream genes EIF4EBP1 and EIF4EBP2.

EIF4EBP1 is a major regulators of protein synthesis downstream of mTOR [157], which

negatively regulates the translation initiation factor eIF4E. Phosphorylation of EIF4EBP1

by mTORC1 leads to its dissociation from eIF4E, which actives translation initiation

[158]. As shown in Figure 4.3, mTOR interacts with both EIF4EBP1 and its homologue

EIF4EBP2, thus treatment with mTOR inhibition significantly a↵ects the activities of

downstream EIF4EBP1 and EIF4EBP2. A key feature of prostate cancer metastasis is the

ability of epithelial cells to migrate and invade, which can be induced by mTOR through

the translational control of pro-invasion mRNAs. In order to investigate whether the

translational regulator EIF4EBP1 and EIF4EBP2 control the expression of the mTOR-

sensitive pro-invasion genes in these PP242 treated prostate cells, Hsieh et al. [131]
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performed knockout experiments on EIF4EBP1 and EIF4EBP2 to explore the potential

mechanisms. They found that the knockout of only EIF4EBP1 does not change the

expression of the mTOR-sensitive pro-invasion genes, but the knockdown of both EIF4EBP1

and EIF4EBP2 reduces the e↵ect of mTOR on the expression of pro-invasion genes. Hsieh

et al. suggested that the reason for no alterations of pro-invasion gene expression on

EIF4EBP1 knockout might be the complementary role of its homologue EIF4EBP2. The

module in Figure 4.3 might provide an evidence for the question because mTOR exhibits

a much stronger functional link with EIF4EBP2 than with EIF4EBP1. It suggests that in

these prostate cancer cells, the translation control between mTOR and the pro-invasion

mRNAs is mainly intermediated by the regulator EIF4EBP2 but not EIF4EBP1, and

therefore, knockout of EIF4EBP1 will not a↵ect the expression of the mTOR-sensitive

pro-invasion genes. Besides, Hsieh et al. [131] showed that a key regulator of prostate

cancer invasion and metastasis, MTA1, is also translational controlled by the oncogenic

mTOR signalling. Although the direct interaction between mTOR and MTA1 is not

revealed in the module, but we observe a strong interaction between mTOR and MTA2, a

homologue to MTA1, which has also been reported significantly overexpressed in metastatic

prostate cancer [159].

4.4.3.2 The YBX1 module

Another important regulator is YBX1, Y box binding protein 1, whose aberrant expression

has been proven associated with cancer proliferation in numerous tissues [160]. YBX1 is

a well-established oncoprotein. The synthesis of YBX1 is activated by mTOR signalling

[148] and YBX1 has also been found related with prostate cancer progression [149]. In this

prostate cancer cell, it has been identified as a significant di↵erentially translated gene,

which suggests that it might be associated with the translation regulation in prostate cancer.

Applying the proposed approach, we mine two functional modules associated with YBX1,

shown in Figure 4.4. The two modules are identified as significant dynamic modules between

the two layers of the multilayer network, which suggests strong associations with the

potential translation regulation mechanisms. For example, the interaction between YBX1

and LARP1 (shown in Figure 4.4A) and the interaction between YBX1 and HNRNPA1

(shown in Figure 4.4B) have been reported in cancer [161, 162]. These functional modules

provide clues for exploring their potential roles in the translational control associated with

prostate cancer genesis.

4.4.4 R package: TERM

We develop TERM, an R package for identification of Translation E�ciency Regulated

Modules, for implementation of the proposed approach. TERM is available from https:
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Figure 4.4: TE-regulated modules involving YBX1. Figure legends are the same as Figure
4.3.
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//github.com/bioinfoxh/TERM. Di↵erent versions of the source code for TERM can be

downloaded from https://github.com/bioinfoxh/TERM/releases. So far, TERM is

the first tool developed for identification of TE-regulated modules by integrating RNA-seq

and Ribo-seq data.

4.4.4.1 Design and implementation of TERM

Since no tools have been developed for identification of TE-regulated modules from

ribosome profiling data, we implement the proposed approach as an R package, TERM, to

provide the first tool for easy use for the scientific fields. TERM implements the proposed

approach in R. The proposed approach aims to identify TE-regulated modules, which can

be divided into three subtasks for implementation:

• Firstly, selecting top ranked di↵erentially translated genes as seed genes (correspond-

ing to Step 2 in Figure 4.1).

• Then, identifying TE-regulated modules using the selected seed genes through

multilayer network analysis (corresponding to Step 1, 3 and 4 in Figure 4.1).

• Finally, visualizing the identified TE-regulated modules as graphs (corresponding to

Step 5 in Figure 4.1).

TERM provides three R functions to achieve the up-mentioned three subtasks, respec-

tively:

• calculateDTE: This R function achieves the subtask 1. It employs the R packages

DESeq2 and Riborex to calculate the fold changes and the significance for the

di↵erential expression of mRNAs and RPFs, as well as the di↵erential translation

of genes. Based on the output of calculateDTE function, the genes can be ordered

according to their significance of di↵erential translation. Consequently, users can

select top ranked genes as seed genes for practical use.

• detectTERM : This R function achieves the subtask 2. It implements the multilayer

network module detection algorithm, M-module, to identify TE-regulated modules.

detectTERM constructs a multilayer network by integrating RNA-seq and Ribo-seq

data with gene-gene interaction network, and searches modules from the multilayer

network using greedy search for the selected seed genes. Then, this function performs

refinements (see details in Chapter 4.3.4) with the modules to identify TE-regulated

modules.

• plotTERM : This R function achieves the subtask 3. It employs the R package

igraph to provide an intuitive way to visualize the TE-regulated modules. For each
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TE-regulated module, plotTERM generates a figure to show the module in a graph

by incorporating the multilayer information of di↵erential expression and di↵erential

translation of each gene. The module is thus visualized as a graph of network in which

nodes (genes) are coloured and shaped with the attributes of di↵erential expression

and di↵erential translation, and edges are assigned with the width proportional to

the matched weights (as illustrated in Figure 4.3).

Besides the up-mentioned R functions, TERM also provides another R function, named

term, which achieves the first two sub-tasks as a whole pipeline by wrapping the functions

calculateDTE and detectTERM together.

4.4.4.2 Installation of TERM

Before using the R package TERM, users need to install it correctly in their R environments.

Because TERM is developed based on some other R packages including DESeq2, igraph,

Matrix and corrplot. So these packages are prerequisite for the installation of TERM. We

recommend users to install them following the instructions for “Installations of Packages”

from CRAN (https://cran.r-project.org/). To install TERM, we advise users to

download the latest version of TERM (e.g., term 1.0.tar.gz) from https://github.com/

bioinfoxh/TERM/releases. In this way, TERM can be installed using the following

command in R:

install.packages(“LocalPath/term 1.0.tar.gz”, repos = NULL)

The LocalPath is the local path where users put the downloaded file term 1.0.tar.gz in

their computers.

4.4.4.3 Instructions for using TERM

TERM takes RNA-seq data, Ribo-seq data and gene-gene interaction data as the input.

To use TERM correctly, the input data should be processed into the following formats:

• Raw read counts matrix of mRNA

The raw read counts matrix of mRNA represents the read counts of genes (in rows)

across all samples (in columns). It is obtained by processing the raw RNA-seq data.

There are many well-established pipelines for processing RNA-seq data, which can

be used to get required mRNA matrix.

• Raw read counts matrix of RPF

The raw read counts matrix of RPF represents the read counts of genes (in rows)

across all samples (in columns). It is obtained by processing the raw Ribo-seq data
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for the matched samples of RNA-seq data. The required RPF matrix can be obtained

in the same way as the RNA-seq data.

• Two columned matrix for gene-gene interaction data

The gene-gene interaction data are processed into a two columned matrix, in which

each line represents the interacted gene pairs.

With the correctly formatted input data, TERM can be implemented in R using the

following commends for the four aforementioned functions including term, calculateDTE,

detectTERM and plotTERM :

term(raw rna, raw ribo, rna label, ribo label, baseLevel, raw ppi,

minCounts = 10,minCountsProportion = 1, num seed = 100,

minModSize = 10, permTimes = 100,modularity p = 0.05,

maxModOvlp = 0.5)

calculateDTE(raw rna, raw ribo, rna label, ribo label, baseLevel,

minCounts = 10,minCountsProportion = 1)

detectTERM(ppi,DEstat, TEstat, num seed = 100,minModSize = 10,

permTimes = 100,modularity p = 0.05,maxModOvlp = 0.5)

plotTERM(TEmodule, layout style = ”layout.fruchterman.reingold”,

gene2symbol = NULL)

The details of the parameters for each function can be accessed using R command

help(function), where function is the name of the function.

As mentioned before, the RNA-seq data and Ribo-seq data include 10559 genes, and

the gene-gene interaction data include 214350 interacted gene pairs. Implementing the

function term on this dataset using a single core of a MacBook Pro with 2.9 GHz Intel

Core i5 and 16GB 1867 MHz DDR3 memory, it takes about 107 minutes to identify the

aforementioned 245 TE-regulated modules. If the gene interactome data are larger, we

would advise to use TERM on high performance servers or clusters with more advanced

computing resources.

4.5 Implementation

The data sources of the transcriptome, translatome and interactome data studied in this

chapter are described in Chapter 4.2.1. We develop an R package TERM for implemen-

tation of the proposed approach, and use TERM to identify gene modules related with
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mTOR translational regulation in human prostate cancer by integrating the transcriptome,

translatome and interactome data. The processed datasets used in this study and the source

code of R package TERM can be accessed from https://github.com/bioinfoxh/TERM.

4.6 Summary

In this chapter, we propose an approach for gene module detection by integrating tran-

scriptome, translatome, and interactome using multilayer network, which consists of five

steps: (1) construction of multilayer di↵erential expression network by integrating tran-

scriptome and translatome with interactome data respectively; (2) selection of seed genes

for module detection by evaluating their degrees of di↵erential translation; (3) detection of

modules from the multilayer network using greedy search for each seed gene by minimizing

the entropy-based local modularity function; (4) identification of translation e�ciency

(TE) regulated modules by the refinements including significance assessment, redundancy

deletion and dynamic evaluation; (5) visualization of TE-regulated modules as graphs

with incorporated multilayer information from the networks.

We apply the proposed approach on a published ribosome profiling data of mTOR

perturbed prostate cancer cells and mine several TE-regulated modules associated with

mTOR perturbation. The translational regulated genes and modules downstream mTOR

provide valuable clues for understanding the mTOR associated translational regulation

mechanisms in prostate cancer genesis and metastasis.

We develop an R package, TERM, for implementation of the proposed approach, which

is capable of evaluating di↵erential translation of genes, identifying TE-regulated modules,

and visualizing the TE-regulated modules. It is a useful tool for exploring translational

regulation mechanisms by integrating transcriptome, tanslatome and interactome data.

This chapter provides an e�cient approach using multilayer network clustering for

transcriptome, translatome and interactome data integration in the field of multi-omics. It

is the first method for identifying translational regulation related gene functional modules

by integrating the transcriptome, translatome and interactome data. We believe the

proposed approach and the R package TERM are valuable tools for the field of multi-omics,

which helps researchers to understand the underlying translational regulation mechanisms

through the data mining from ribosome profiling data combined with interactome data.

This approach could be further improved in two directions. Firstly, to gain a further

understanding of translational regulation mechanisms, the proposed approach can be

extended into three-layer multilayer network by adding a layer for proteome data. Since

the proteome data is the final molecular level of translation, it will provide a more

comprehensive view for understanding translational regulation mechanisms by integrating

proteome with transcriptome and translatome data. Secondly, there is a limitation of the
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proposed approach that it only works with balanced data, i.e., the sample sizes for case

and control are equal in the datasets, due to the limitation of the di↵erential translation

evaluation method in the step of seed gene selection. But in practice, the datasets are

usually with unbalanced sample sizes, and the approach is needed to be applicable to

the unbalanced data. This issue can be addressed by employing e↵ective methods for

di↵erential translation evaluation that can deal with unbalanced data.
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Chapter 5

Network-constrained regression for

transcriptome and interactome

integration

5.1 Introduction

A key problem in transcriptomics research is to select genes whose expression are predictive

for a phenotype or a clinical outcome. A prediction model can be built based on the

selected genes to predict the outcomes for future transcriptome data. The problem can be

considered as a supervised learning problem of classification or regression for predicting

binomial or quantitative outcomes correspondingly. It can in general be formulated as a

prediction problem with n observations of (yi, xi), i = 1...n, where yi is the response and

xi = (xi1, ..., xip) are the p predictors. Considering the standard linear regression model,

the response y is predicted by:

ŷi = �̂0 + xi1�̂1 + · · ·+ xip�̂p (5.1)

where a model-fitting procedure estimates the vector of coe�cients �̂ = (�̂0, �̂1, ..., �̂p).

Predictors with non-zero coe�cients are selected as the predictive features. Coe�cient

estimation can therefore achieve the goals of both prediction and feature selection.

In practice, trancriptome data are high-dimensional data with p � n, which easily

results in overfitting linear models. To overcome this problem, many regularized regression

methods have been proposed to provide solutions for coe�cient sparsity to enable feature

selection from the high-dimensional data, such as Lasso [45], ElasticNet [46], Group Lasso

[47], Sparse-Group Lasso [48] and Group Exponential Lasso [49] (see details in Chapter

2.3.1.4). However, these methods treat all genes equally a priori without utilizing the prior

correlated structures among genes which cannot be ignored in genomic study.
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It is known that in biological systems, molecules do not work independently but

function in a coordinate way through interactions with each other. Molecular interaction

networks formed by interactome data provide comprehensive functional context of genes.

Recently, several e↵ective regularized regression methods, such as Grace [51] and GBL

[52] (see details in Chapter 2.3.1.5), have been developed to take into account such

network structured prior biological knowledge for feature selection, which are referred to

as network-constrained regression. Network-constrained regression performs regularization

on coe�cients incorporating the network correlation structure based on two assumptions:

(i) hub genes are supposed to have larger coe�cients due to more crucial roles in the

network; (ii) two genes that are linked in the network tend to have similar degree-scaled

coe�cients because they are functional correlated to each other.

Network-constrained regression o↵ers a practical way to integrate transcriptome and

interactome data. Although the existing network-constrained regression methods have

proven e↵ective for variable selection in various applications, there is still room for

improvement of e�ciency in feature selection and prediction.

5.2 Multi-omics

5.2.1 Multi-omic data

5.2.1.1 Transcriptome

The transcriptome dataset studied in this chapter consists of A↵ymetrix array transcrip-

tomic profiling of 10 blastocysts which were developed in the EmbryoScope time-lapse

system [163]. The data are provided by our collaborator in EpiHealthNet ITN, Prof Daniel

Brison from The University of Manchester. Genome-wide gene expression values of each

blastocyst are obtained by pre-processing the raw data using RMA [87] and mas5call [88],

which are implemented in R using the a↵y package [89]. Because the manuscript of this

study is in preparation for submission, this gene expression dataset is not public at the

moment, but it will be released as soon as we submit the manuscript.

During the in vitro fertilization (IVF) treatment, the pre-implantation embryos are

developed in the incubators until the late blastocyst stage, and then the ones with good

qualities are selected to implant into the mother’s uterus to get pregnancy. EmbryoScope

is a new type of incubator that maintains the necessary physiological conditions required

by a living embryo while they are in the IVF laboratory. It has an incorporated time-

lapse system that has a camera that continuously captures images and records them

as a video of the embryonic development. Compared with the conventional incubator,

the EmbryoScope time-lapse system o↵ers the advantages that allows embryologists to

monitor embryo development without taking the embryos out of the incubator. Time-lapse
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Figure 5.1: Key time-lapse parameters of human pre-implantation embryonic development.
The image is adapted from [166].

Table 5.1: Key time-lapse parameters.
Parameter Explanation
CC2 Second Cell Cycle, duration of the period as 2-blastomere embryo
CC3 Third Cell Cycle, time taken to develop from 3-blastomere embryo to a

5-blastomere embryo
S2 Synchrony in division from 2-blastomere embryo to a 4-blastomere embryo
T5 Time to 5-cell stage, an annotation point in which the embryo finishes

the division to become 5 cells

technology with image analysis software allows for the tracking of specific timings between

developmental events, which produces the corresponding time-lapse parameters during

the embryo development. The 10 blastocysts in this study encompass a various range

of qualities. For each blastocyst, four key EmbryoScope time-lapse parameters are also

recoded during its development, including CC2, CC3, S2 and T5 (details are shown in

Figure 5.1 and Table 5.1). These four parameters have been reported to be the most

important checkpoints for human embryo development [164, 165], which could serve as

predictors of blastocyst qualities and are therefore used for the clinical embryo selection

during the IVF treatment.

5.2.1.2 Interactome

Human gene interactome data are downloaded from PathwayCommons (version 8) [90],

which is a collection of public available human pathway data. The interactome data
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provides comprehensive functional interactions, such as biochemical reactions, complex

assembly, transport and catalysis events, and physical interactions, among molecules

including proteins, DNA, RNA, small molecules and complexes. All the molecules in the

interactome data are mapped to the corresponding genes. After removing the duplicated

interactions and self-interactions, the remaining interactions form a gene-gene interaction

network.

5.2.2 Problem definition

The EmbryoScope time-lapse system o↵ers advantages of improvement of embryo selection

for IVF treatment. It is reported that EmbryoScope system also result in a higher

portion of good quality embryos than the conventional incubators [167]. Time-lapse

parameters have been shown capable of predicting embryo development to blastocyst

stage in conventional incubators, which is associated with transcriptional patterns [113].

However, such transcriptional patterns for EmbryoScope developed blastocysts have not

been studied yet. Based on the transcriptomes of EmbryoScope developed blastocysts and

the corresponding time-lapse parameters, we aim to identify the important genes whose

expression are associated with the key time-lapse parameter. It is a supervised learning

problem of feature selection, which can be solved by using linear regression methods to fit

a linear model where the time-lapse parameter is the response and the predictors are the

genes.

5.3 Methodology

Since the task of this chapter is feature gene selection from transcriptome data, it can

be addressed by using linear regression methods. But the transcriptome data are high-

dimensional data where the number of genes is too much larger than the sample size,

which easily results in overfitting linear models. Besides, the genes exhibit highly dynamic

correlation patterns in functions during human pre-implantation development, which

suggests a correlated structure among the predictors and can not be ignored when fitting

the linear model. Several regularized linear regression methods and network-constrained

regression methods such as Lasso, ElasticNet, Grace and GBL have been developed

to reduce the overfitting by introducing regularization and incorporating the network

structured correlations between genes for coe�cient estimation. But these state-of-art

methods still su↵er low power and high bias for feature selection. To overcome limitations

of the state-of-art methods, we propose a more e�cient network-constrained regression

method and use it to select time-lapse parameter associated genes by incorporating the

human pre-implantation embryonic development co-expression network constructed in

Chapter 3.
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5.3.1 Network-constrained regression method

In this chapter, we develop a new network-constrained regression method, named as eGBL

which stands for edge-based Generalized Boosted Lasso, to select feature genes whose

expression in blastocysts are associated with a time-lapse parameter.

Let y = (y1, ..., yn)T be a quantitative time-lapse parameter which contains a vector

of time-lapse parameters for n embryos. Let xi = (xi1, ..., xip) be the vector of expression

levels at blastocyst stage for p genes in embryo i, where i = 1, ..., n. Following the linear

regression model introduced in Chapter 2.3.1.1, the simple linear model between yi and xi

is defined as:

yi = �0 + xi� + ✏i, i = 1, ..., n (5.2)

where � = (�1, ..., �p)T are the regression coe�cients to the p genes and �0 is the intercept

of the linear model. The coe�cients can be given by the ordinary least square (OLS)

estimator �̂ which minimizes the loss function L(�) defined by the sum of squared residual

as follows:

�̂ = argmin
�

L(�) = argmin
�

nX

i=1

(yi � xi�)
2 (5.3)

In the transcriptomic studies where the high-dimensional data usually with p � n, the

OLS estimation does not perform well due to the overfitting. Consequently, regularized

regression has been proposed, in which a penalty P (�) is added to the loss function for

regularization of the coe�cients. The estimator �̂ is thus given by:

�̂ = argmin
�

 
nX

i=1

(yi � xi�)
2 + P (�)

!
(5.4)

As introduced in Chapter 2.3.1, several penalized regression methods have been de-

veloped to o↵er the smooth and sparse solutions for coe�cient regularization for the

sake of feature selection, such as Lasso, ElasticNet, Group Lasso, GEL, and the network-

constrained regression methods Grace and GBL that incorporate the network-structured

prior knowledge of genes into the coe�cient regularization. However, there are some

limitations for these existing methods, e.g., the low power for feature selection and the

bias for prediction (see details in Chapter 2.3.1). Consequently, more e�cient regression

methods are needed to be developed, and we propose a new network-constrained regression

method with a more e�cient penalty function modified based on GBL penalty.

Among the up-mentioned penalized regression methods, GBL has been proved capable

of providing better performance than the others in terms of feature selection [52]. The
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penalty function of GBL is defined as follows:

P (�) = �
X

i⇠j

✓
|�i|
di

◆�

+

✓
|�j|
dj

◆��1/�
(5.5)

where � > 1 and � > 0 are two parameters to be specified. This penalty is capable of

variable selection by shrinking the coe�cients on each edge over the network based on

the two assumptions of network-constrained regression: (i) hub genes are supposed to

have larger coe�cients due to more crucial roles in the network, and (ii) two genes that

are linked in the network tend to have similar degree-scaled coe�cients because they are

functional correlated to each other. Specifically, for two linked gene i and j, the penalty

captures grouping e↵ects in shrinking the magnitudes of two scaled estimated coe�cients

towards each other, i.e. |�̂i|/di = |�̂j|/dj, and particularly, enforces �̂i = 0 and �̂j = 0

when �i = �j = 0. The penalty performs regularization on the scaled coe�cients which

allows a predictor with bigger di to have larger �̂i, that is, a hub gene tends to have a

larger coe�cient. This penalty performs well in terms of variable selection, especially if

� ! 1, and the penalty becomes:

P (�) = �
X

i⇠j

max

✓
|�i|
di

,
|�j|
dj

◆
(5.6)

In spite of the success in variable selection, GBL su↵ers a strong bias in prediction errors,

which might be due to the limitations of the penalty. It is worthy to be noted that the

penalty treats each edge equally without utilizing the strength of the correlation between

two linked genes in the network. In practice, particularly in the dynamic biological systems,

the correlations among genes are not simply defined as 0 or 1, but with a continuous

measure denoting the di↵erent strength. Therefore, the edges in the network are assigned

with a weight indicating the strength of the correlation between the two linked genes,

which leads to a weighted network. To take the full advantage of such weighted network

structured knowledge, we proposed an extension for the GBL penalty by incorporating

the weights of edges, named as edge-based GBL (eGBL):

P (�) = �
X

i⇠j

w(i, j)

✓
|�i|
di

◆�

+

✓
|�j|
dj

◆��1/�
(5.7)

where parameter � > 1 and � > 0 are the same as the GBL penalty. w(i, j) denotes the

weight of the edge between gene i and j. When � ! 1, it becomes:

P (�) = �
X

i⇠j

w(i, j)


max

✓
|�i|
di

,
|�j|
dj

◆�
(5.8)
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5.3.2 Evaluation of regression method

We employ the Generalized Boosted Lasso (GBL) algorithm [52, 53] for implementation

of the proposed method eGBL, which uses coordinate descent to learn coe�cients for a

linear model by minimizing the loss function. In order to test the performance of eGBL,

we evaluate it on simulated data using the hold-out validation (see details in Chapter

2.3.5.1). Based on a simulated training set and a simulated test set, the linear model is

fitted on the training set, which is then used to make the predictions on the test set. The

performance can be evaluated by the following measures:

• RMSE

Root Mean Squared Error (RMSE) is the square root of the mean of the squared

errors on training set:

RMSE =

vuut 1

n

nX

i

(yi � ŷi)2 (5.9)

where the predicted response ŷi = xi�̂+ �̂0, �̂ = (�̂1, ..., �̂p) is the vector of estimated

coe�cients for each predictor, and �̂0 is the predicted intercept of the linear model.

• PMSE

Prediction Mean Squared Error (PMSE) is the square root of the mean of the squared

errors on independent test set:

PMSE =

vuut 1

n

nX

i

(yi � ŷi)2 (5.10)

where the predicted response ŷi = xi�̂+ �̂0, �̂ = (�̂1, ..., �̂p) is the vector of estimated

coe�cients for each predictor, and �̂0 is the predicted intercept of the linear model

fitted on the training set.

• corR

The concordance between an estimator �̂ = (�̂1, ..., �̂p) and the actual coe�cients

� = (�1, ..., �p), corR, is calculated by the Pearson Correlation Coe�cient:

corR =

P
p

i=1[�i � �][�̂i � �̂]
qP

p

i=1[�i � �]2
qP

p

i=1[�̂i � �̂]2
(5.11)

• precision, recall, F -score

Let the coe�cient estimation be considered as a classification problem. Given the

actual coe�cients � = (�1, ..., �p), the actual positive feature set and the actual

negative feature set are defined as the predictors with � 6= 0 and � = 0 respectively.
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Similarly, the predicted positive feature set and the predicted negative feature

set are defined as the predictors with �̂ 6= 0 and �̂ = 0 based on the estimator

�̂ = (�̂1, ..., �̂p). The common measures including precision, recall and F -score are

used for evaluating the classification (see details in Chapter 2.3.5.2).

5.4 Results

5.4.1 Simulation study

To evaluate the performance of the proposed network-constrained regression method

eGBL, we set up four simulations similar as that of Li et al. [51]. We first simulate

a weighted gene co-expression network compromised of 50 subnetworks, each of which

includes one hub genes interacting with 10 neighbouring genes with the corresponding

decreasing co-expression weights as w = (0.95, 0.85, ..., 0.05). The resulting simulated

weighted network includes 550 edges among 550 genes. Then, based on the simulated

weighted network, two simulated gene expression datasets are set up with assumptions of

two di↵erent proportions of feature genes.

Simulation set-up 1 The expression levels for the 50 hub genes in the simulated network

follow standard normal, xh ⇠ N(0, 1), h = 1, ..., 50. Given a hub gene xh, the expression

levels of its neighbour genes follow normal distributions with correlations w to standard

normal, that is, the expression levels of the neighbour genes xhj ⇠ N(wj ⇤ xh, 1� w2
j
), j =

1, ..., 10.

We assume that 10% of the genes are features that are related to the response variable

y, and select five hub genes and their neighbour genes assigned with non-zero coe�cients.

The coe�cients of all genes are defined by:

� = (9,
9p
10

, · · · , 9p
10| {z }

10

,�7,
�7p
10

, · · · , �7p
10| {z }

10

, 5,
5p
10

, · · · , 5p
10| {z }

10

,

� 3,
�3p
10

, · · · , �3p
10| {z }

10

, 1,
1p
10

, · · · , 1p
10| {z }

10

, 0, · · · , 0)

The response variable y is derived from a linear model y = x� + ✏, where the noise

✏ ⇠ N(0, �2
e
), �2

e
=
P

n

i=1 �
2
i
/2.

The training set is simulated with 50 samples, n = 50 , corresponding to a “large p,

small n” situation which is common in transcriptomic study. To evaluate the performance

of eGBL on an independent dataset, we simulate another test set in the same way with

n = 100.
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Simulation set-up 2 The second set-up is simulated in the same way as for the first

set-up but with the assumption that 20% of the genes are features. The coe�cients are

defined by:

� = (9,
9p
10

, · · · , 9p
10| {z }

10

,�9,
�9p
10

, · · · , �9p
10| {z }

10

, 7,
7p
10

, · · · , 7p
10| {z }

10

,�7,
�7p
10

, · · · , �7p
10| {z }

10

,

5,
5p
10

, · · · , 5p
10| {z }

10

,�5,
�5p
10

, · · · , �5p
10| {z }

10

, 3,
3p
10

, · · · , 3p
10| {z }

10

,�3,
�3p
10

, · · · , �3p
10| {z }

10

,

1,
1p
10

, · · · , 1p
10| {z }

10

,�1,
�1p
10

, · · · , �1p
10| {z }

10

, 0, · · · , 0)

Simulation set-up 3 The third set-up is simulated in the same way as for the first

set-up but with a di↵erent scale factor for the coe�cients of the genes. The coe�cients

are defined by:

� = (9,
9

10
, · · · , 9

10| {z }
10

,�7,
�7

10
, · · · , �7

10| {z }
10

, 5,
5

10
, · · · , 5

10| {z }
10

,

� 3,
�3

10
, · · · , �3

10| {z }
10

, 1,
1

10
, · · · , 1

10| {z }
10

, 0, · · · , 0)

Simulation set-up 4 The fourth set-up is simulated in the same way as for the third

set-up but taking into account the opposite signs of the coe�cients between two linked

genes. The coe�cients are defined by:

� = (9,
9

10
, · · · , 9

10| {z }
7

,
�9

10
,
�9

10
,
�9

10
,�7,

7

10
,
7

10
,
7

10
,
�7

10
, · · · , �7

10| {z }
7

,

5,
5

10
, · · · , 5

10| {z }
7

,
�5

10
,
�5

10
,
�5

10
,�3,

3

10
,
3

10
,
3

10
,
�3

10
, · · · , �3

10| {z }
7

,

1,
1

10
, · · · , 1

10| {z }
7

,
�1

10
,
�1

10
,
�1

10
, 0, · · · , 0)

For each of the four simulation set-ups, we generate 100 simulated datasets. Each

simulated dataset consists of a training set and a test set. For each simulated dataset, the

linear model is fitted on the training set, which is then used to make the predictions on the

test set for the hold-out validation. The performance measures precision, recall, F -score,

corR and RMSE are calculated based on the training set, while PMSE is calculated

on the test set. We compare the performance of eGBL with four regularized regression
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methods including Lasso, ElasticNet, Grace, and GBL. For both GBL and eGBL, we

perform them with two choices of parameter �, such as GBL2 and eGBL2 with � = 2, and

GBLinf and eGBLinf with � = 1. Table 5.2 summarizes the simulation results for the

four simulation set-ups and Figure 5.2 provides the intuitive comparisons based on the

results.

For all four set-ups, eGBL achieves the comparable superior performance as GBL in

terms of precision, which outperforms Lasso, ElasticNet and Grace. Compared with GBL,

eGBL introduces the edge weights of the network into the penalty function, which results

in obvious increases in recall. It suggests that eGBL gains stronger power for identifying

more true feature genes. Moreover, the slight increases in corR and the decreases in the

prediction errors also suggests that incorporating edge weights into the regularization can

lead to more accurate fitted linear models.

GBL has been reported su↵ering a strong bias in prediction errors compared with

Lasso, ElasticNet and Grace [52]. In our simulation study, we observe the same bias in

RMSE but not in PMSE, that is, the methods Lasso, ElasticNet and Grace provide

relatively low prediction errors on the training set but higher ones on the test set. The big

di↵erences between RMSE and PMSE imply the strong overfitting in the linear models

fitted by Lasso, ElasticNet and Grace. Thus these methods are ine�cient for the variable

selection problem in the high-dimensional transcriptome data.

The simulation set-up 2 is simulated with 20% true feature genes, which is higher

than the proportions of true feature genes in the other three set-ups. Both GBL and

eGBL provide superior performances in precision in set-up 2, but they su↵er dramatical

decreases in recall compared with the other three set-ups. It suggests that the power of

eGBL drops as the proportion of the feature increases. However, in practice, on the basis

of the assumption that there are a very small portion of genes relevant with the response,

eGBL suits the tasks of feature gene selection in transcriptome data.

In the simulation set-up 4, we take into account the situation that the coe�cients of

two linked genes in the network have opposite signs, which is corresponding to the negative

correlations in gene co-expression network. The precision of eGBL is slightly lower than

GBL, but it is not greatly as compared with the gains in recall. Thus, eGBL is capable of

capturing the negative correlations in the network.

Through the simulation study, we observe that eGBL with the parameter � = 1 o↵ers

the overall best performance. As a result, we apply eGBLinf to the real data to select the

time-lapse parameter associated genes.
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Figure 5.2: Barplots of the results of the simulation study. (A) Simulation set-up 1; (B)
Simulation set-up 2; (C) Simulation set-up 3; (D) Simulation set-up 4.
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5.4.2 Real data study

5.4.2.1 Selection of time-lapse parameter associated genes

We apply eGBL on the EmbryoScope blastocyst transcriptomes to select feature genes

associated with each time-lapse parameter listed in Table 5.1. Here, the gene functional

network incorporated in eGBL refers to the gene co-expression network of human pre-

implantation embryonic development constructed in Chapter 3. The co-expression network

is constructed by assigning the Pearson Correlation Coe�cient (PCC) of gene co-expression

across multiple development stages as the weight to each edge in the gene-gene interaction

network formed by the interactome data.

Because the number of genes is exponentially larger than the sample size in the

transcriptome data, we firstly screen the genes to reduce the dimension of the feature space.

For each time-lapse parameter, the correlation between the parameter and each gene is

evaluated by the Spearman’s Rank Correlation Coe�cient (SCC). The genes significantly

correlated with the parameter (SCC p-value  0.05) are selected as the candidate gene

set. eGBL is then applied to the gene expression data of the candidate gene set to select

the feature genes that are associated with the corresponding time-lapse parameter. Table

5.3 shows the numbers of candidate genes and feature genes selected for each time-lapse

parameter.

Table 5.3: Numbers of candidate genes and feature genes for each time-lapse parameter.
Parameter # candidate genes # feature genes

CC2 813 15
CC3 237 22
S2 408 19
T5 267 19

In order to explore the functional involvement of the time-lapse parameters, we perform

the Gene Ontology (GO) enrichment with the feature genes for each time-lapse parameter.

The significantly enriched GO biological process terms indicate the potential associations

between the time-lapse parameter and these function terms, which helps to understand the

crucial roles of the time-lapse parameter in human pre-implantation embryo development.

The feature genes and the enriched GO biological processes for time-lapse parameters

CC2, CC3, S2 and T5 are shown in Figure 5.3, 5.4, 5.5 and 5.6, respectively.

The enriched biological processes obtained through the function enrichment analysis

are involved in several crucial functions related with embryonic development such as

“regulation of transcription”, “cell cycle”, “metabolic process”, “viral life cycle”, “signal

transduction” and “histone modification”. The parameter associated genes selected by

eGBL reveal some interesting biological insights.
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Figure 5.3: Feature genes associated with time-lapse parameter CC2. (A) The feature
genes. Each node represents a gene and the node size is proportional to the absolute
value of its regression coe�cient. Nodes in red represent the positively associated genes
(with � > 0) and nodes in blue represent the negatively associated genes (with � < 0).
Each edge represents the co-expression interaction between two genes and the edge width
is proportional to the co-expression correlation. Edges in red represent the positive co-
expression and edges in blue represent the negative co-expression. (B) Gene Ontology
biological processes enriched by the feature genes.
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Figure 5.4: Feature genes associated with time-lapse parameter CC3. Figure legends are
the same as Figure 5.3.
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Figure 5.5: Feature genes associated with time-lapse parameter S2. Figure legends are the
same as Figure 5.3.

●

●

●

●

●

●

●

●

●

●

●

●

●

CALCOCO2

TIMM44

HENMT1

MIER3

EGFR

TRIM32

DNAJC13

GMDS

HSF2

MAGEA11

CRBN

ATP5SL

ENAH

H2AFJ

ASH1L

RPS24

UBE3A

EXO1

TP53INP1

positive regulation of cell communication

regulation of cellular catabolic process

organelle organization

ubiquitin−dependent protein catabolic process

positive regulation of transcription from RNA polymerase II
promoter

positive regulation of response to stimulus

viral process

regulation of protein catabolic process

positive regulation of catabolic process

response to UV

0 2 4 6 8
−log(Pvalue)

G
O

 b
io

lo
gi

ca
l p

ro
ce

ss
es

 

Figure 5.6: Feature genes associated with time-lapse parameter T5. Figure legends are
the same as Figure 5.3.
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Several genes have been reported to play important roles in early stage of pre-

implantation embryonic development which is the period from oocyte to 8-cell stage,

such as HSF2 [168], H2AFX [169], H2AFJ [170], DIAPH2 [171], ELF4 [172] and RPL19

[173]. The evidence indicates the crucial roles of the key time-lapse parameters during the

early pre-implantation embryonic development.

By contrast, some other genes have been proved associated with the late stage of

embryonic development, such as PARP1 [174], CDX2 [175], ATP5SL [176, 177], PPARD

[178], GRHL2 [179], HAND1 [180] and EGFR [181]. Dysfunction of these genes will

result in low qualities in blastocyst, trophoblast and placenta, which might reduce the

success rate of pregnancy during the IVF treatment. The association between the key

time-lapse parameters and the late stage embryo development related genes accounts for

why the parameters can be used to predict the blastocyst qualities and provides clues for

understanding the underlying molecular mechanisms.

5.4.2.2 Characterization of time-lapse parameter associated genes in the gene

co-expression network of human embryonic development

We incorporate the gene co-expression network of human pre-implantation embryonic

development constructed in Chapter 3 into the selection of feature genes associated with

time-lapse parameters as prior functional relationships of genes. In order to understand

the roles of the selected feature genes during human embryonic development, we annotate

them to the gene co-expression network taking into account the development stage-specific

functional modules identified in Chapter 3.

In Chapter 3, 42 functional gene modules are identified as embryonic development

stage-specific modules from the co-expression network. 14, 17, 16 and 14 modules out of

the 42 modules are specific for oocyte, 4-cell, 8-cell and blastocyst stages, respectively. In

the co-expression network, genes located between the 42 stage-specific modules are referred

to as inter-module genes. If an inter-module gene has at least two links to genes belonging

to a module, the inter-module gene is defined as crosstalking with the module. Such

crosstalks between genes and modules suggest potential functional associations between

them. The inter-module genes crosstalking with more than one module are selected as

pivot genes. Pivot genes that crosstalk with modules associated with di↵erent development

stages tend to play regulatory roles during the development of embryos across the involved

stages.

On the basis of the stage-specific modules and the pivot genes, we annotate the time-

lapse parameter associated genes to the co-expression network, and get the following

interesting topological characteristics:

• The S2 associated gene, PRKCB, is located within a 4-cell stage-specific module.
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• The T5 associated gene, EGFR, is located within a 4-cell stage-specific module.

• The CC3 associated gene, RPS24, is a pivot gene crosstalking with oocyte, 4-cell,

8-cell, blastocyst stage-specific modules.

• The S2 associated genes, RPL19 and SRPK1, are pivot genes crosstalking with 4-cell,

8-cell, blastocyst stage-specific modules.

• The T5 associated gene, EXO1, is a pivot gene crosstalking with oocyte, 4-cell, 8-cell,

blastocyst stage-specific modules.

• The T5 associated gene, HSF2, is a pivot gene crosstalking with 4-cell, 8-cell,

blastocyst stage-specific modules.

• The T5 associated gene, RPS24, is a pivot gene crosstalking with oocyte, 4-cell,

8-cell, blastocyst stage-specific modules.

• The T5 associated gene, UBE3A, is a pivot gene crosstalking with oocyte, 4-cell,

blastocyst stage-specific modules.

For the up-mentioned time-lapse parameter associated genes, their key topological

characteristics in the co-expression network suggest potential critical roles involved in

human pre-implantation embryo development. It provides clues for exploring the underlying

molecular mechanisms that account for the impacts of early stage time-lapse parameters

on late stage embryos (i.e., blastocysts). We take the T5 associated gene UBE3A for a case

study. UBE3A is a pivot gene crosstalking with three embryonic development stage-specific

modules in the co-expression network, as show in Figure 5.7. It has been reported that

UBE3A is expressed throughout human pre-implantation development [182, 183] and is

associated with neurodevelopmental and metabolic disorders in human [184]. As shown in

Figure 5.7, we find UBE3A crosstalks with three modules which are specific for oocyte stage,

4-cell stage and blastocyst stage respectively. It is concordant with the aforementioned

scientific evidence. The crosstalks between UBE3A and the oocyte/4-cell specific modules

suggest the underlying mechanisms explaining the key roles of the parameter T5 during

the early stage of pre-implantation embryonic development, while the crosstalks with the

blastocyst specific module help to understand the impacts of T5 on blastocysts at the

molecular level.

5.5 Implementation

The data sources of the transcriptome and interactome data studied in this chapter

are described in Chapter 5.2.1. The proposed network-constrained regression method,
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Figure 5.7: Crosstalks between pivot gene UBE3A and embryonic development stage-
specific modules. Nodes in square represent pivot genes and nodes in circle represent genes
within modules. Edges in solid lines represent positive co-expression and edges in dashed
lines represent negative co-expression.

eGBL, is implemented in R. We perform the simulation study and real data study using

eGBL. The source codes for eGBL, simulation study and real data study can be accessed

from https://github.com/bioinfoxh/eGBL. Because the manuscript of this study is in

preparation for submission, this gene expression dataset is not public at the moment, but

we will upload the processed datasets to GitHub after we submit the manuscript.

5.6 Summary

In this chapter, we propose an approach for feature selection by integrating transcriptome

and interactome data using network-constrained regression. We develop a more e�cient

network-constrained linear regression method, named eGBL, by incorporating the edge

weights into the GBL network-constrained penalty, which takes the advantage of weighted

network. We evaluate the performance of eGBL on four simulated datasets built with

di↵erent proportions of features, di↵erent magnitudes of coe�cients and di↵erent signs

of coe�cients. We show that eGBL outperforms several common regularized regression
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methods and provides superior performance on feature selection.

We apply eGBL to explore whether the key time-lapse parameters capable of predicting

EmbryoScope blastocyst qualities are associated with transcriptional patterns. For each

time-lapse parameter, we apply eGBL to the transcriptome data of blastocysts to select

the feature genes by fitting the linear model incorporating the human pre-implantation

embryonic development network for regularization. We find scientific evidence that several

selected feature genes play important roles across the stages of embryonic development.

The early stage associated feature genes indicate the crucial roles of the key time-lapse

parameters during the early pre-implantation embryonic development. The late stage

associated feature genes account for the prediction capability of key time-lapse parameters

on blastocyst qualities from the molecular level.

This chapter provides an e�cient approach using network-constrained regression for

transcriptome and interactome data integration in the field of multi-omics. The proposed

network-constrained regression method, eGBL, shows superior capability for selecting

feature genes related with responses from transcriptome data taking into account the

network structured relationship between genes. It keeps comparable precision in feature

selection as the best state-of-art methods, but improves the power. We believe eGBL is

a valuable tool for the field of multi-omics, which helps researchers to obtain clues for

the underlying mechanisms through data mining from transcriptome data combined with

interactome data.

There are still room for further improvement of eGBL. eGBL o↵ers superior per-

formances for feature selection in term of precision, but su↵ers a strong bias in recall

especially in the dataset with a higher proportion of features, which means that eGBL

can provide a correct feature set but missing a certain part of the actual positive features.

More e↵orts will be put in improving the penalty function to gain more power of network-

constrained regression methods which is capable to recall more actual positive features

without sacrifice in the precision.
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Chapter 6

Superlayer neural network for

epigenome and transcriptome

integration

6.1 Introduction

Epigenetic modifications, such as DNA methylation and histone modifications, are re-

versible and heritable modifications on the DNA in a cell that can a↵ect gene expression

without changing the DNA sequence. DNA methylation, a process that occurs by the

addition of a methyl (CH3) group to DNA molecular, has been proved playing impor-

tant roles in regulating gene expressions [22]. Furthermore, increasing scientific evidence

clearly indicates that aberrant DNA methylation can result in human diseases such as

cancer and ageing related disorders [185]. However, the complex mechanisms of how DNA

methylation regulates gene expression is still poorly understood and it is challenging for

the systematic integration between transcriptome data and epigenome data, particularly,

the DNA methylome data.

A big challenge for multi-omic data integration lies in the complexity and heterogeneity

of di↵erent types of omic data. So far, the complex regulation mechanisms between

di↵erent molecular levels have not been su�ciently characterized yet. As a result, the

relationships between the omic data corresponding to the molecular levels are still not well

understood, which might lead to deficiency in developing statistical or machine learning

models for integrating the heterogeneous datasets because of lack of proper assumptions

for appropriate models.

Recent advances in deep learning have impacted various scientific and industrial fields

including computational biology [186, 187]. Artificial neural networks have shown superior

performance in supervised learning with omic data, e.g., using genes as features to predict

the clinical outcome for patients [188, 189]. Taking advantage of the non-linear modelling
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capacity, neural networks have also been well-suited for multi-omic data integration, which

has been successfully applied in cancer diagnosis by integrating multiple omic data such as

gene expression, DNA methylation, gene copy number alteration and miRNA expression

[190, 191, 192]. It is of great importance to figure out how to apply neural network models

to integrate multi-omic data in e↵ective and e�cient ways. In collaboration with a PhD

student, Petar Velickovic, and a Part II student, Ioana Bica, in the Computer Laboratory,

we aim to explore the applicability of neural networks to multi-omic data integration, in

particular, the integration of transcriptome and DNA methylome data in this chapter.

6.2 Multi-omics

6.2.1 Multi-omic data

6.2.1.1 Epigenome

The epigenome data studied in this chapter is the DNA methylation data of human breast

cancer [193], including 760 cancer and 84 normal samples. The DNA methylome data

are measured by the Illumina Human Methylation 450k BeadChip (450K array) and the

preprocessed probe methylation levels are downloaded from The Cancer Genome Atlas

(TCGA) [194]. We only keep the probes mapped to the body region of each gene which is

defined as the region from the 201th nucleotide until the last nucleotide in the sequence of

the gene. The average value of the gene body probes is calculated as the methylation level

for each gene.

6.2.1.2 Transcriptome

The breast cancer transcriptome data for the matched samples of the DNA methylome

data are also downloaded from TCGA. The transcriptome data are measured by RNA-seq

experiments and the FPKM values calculated from the RNA-seq data are downloaded

and used as the expression abundances for each gene.

6.2.2 Problem definition

A proper and e�cient neural network model is critical for DNA methylome and transcrip-

tome data integration for supervised learning problems such as classification. Because of

the di↵erences in biological mechanisms and the measuring techniques, DNA methylation

and gene expression data exhibit di↵erent structures. The raw abundances of gene ex-

pression and DNA methylation follow di↵erent distributions [195] and such heterogeneity

between the two types of omic data should be take into account when developing statistical

and machine learning models to integrate them [196]. Besides, DNA methylation and
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gene expression are not independent because it is reported that DNA methylation play

regulatory roles on gene expression. It thus suggests that there are potential correlated

relationships between the two types of data, particularly, between the gene body DNA

methylation and gene expression which has been reported is not a simple linear correlation

and still poorly understood [197, 198, 199].

A few neural network models have been developed to integrate di↵erent types of omic

data for human cancer classification. The research problem of this chapter is to compare

the performances of existing neural network models as well as other common machine

learning methods for cancer classification by integrating DNA methylation and gene

expression data. Based on the comparative study, we aim to improve the existing neural

network models and propose more e�cient models for integration of DNA methylation

and gene expression data.

6.3 Methodology

6.3.1 Neural network models

On the basis of existing neural network models, there are two ways to integrate the input

multiple omic datasets: series integration and parallel integration.

For the series integration, the multiple omic datasets are simply stacked together by

sample and then the stacked dataset is used as a whole input set for a neural network

model. For example, Chaudhary et al. [191] developed a feedforward neural network with

stacked gene expression, DNA methyaltion and miRNA expression to predict survivals of

liver cancer.

For the parallel integration, the neural network architecture is built based on a hierarchy

structure which consists of several superlayers of neural networks. The hierarchy structure

is similar as the multilayer network framework in the field of network science. Each type

of omic data is considered as the input set for a specific superlayer to be learned in the

corresponding neural network independently. The final predicted output is summarized

from the outputs of all the superlayers. For example, Sun et al. [190] proposed a

multimodal deep neural network for breast cancer prognosis prediction, which consists of

three independent superlayers of neural networks corresponding to gene expression, copy

number alteration and clinical data, respectively, as well as a final output layer fusing the

outputs from the three superlayers. Liang et al. [192] developed another multimodal deep

neural network for ovarian cancer detection based on three omic datasets (gene expression,

DNA methylation and miRNA expression), where the three superlayer neural networks

were merged into a hidden layer followed by an output layer for the entire model. Besides,

Velickovic et al. [200] proposed a cross-modal convolutional neural network (X-CNN)
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inspired by the multilayer network framework, which consists of superlayer convolutional

neural networks capable of multiple type data integration. X-CNN allows the information

flowing between the independent superlayers through the cross-connections between them.

It also introduces a merge-layer that consists of two layers of fully connected feedforward

neurons before the final output layer of the whole model. The cross-modal neural network

architecture is a generalized structure for parallel integration as the cross-connections can

be set into di↵erent hidden layers.

Following the up-mentioned series integration strategy, we apply the feedforward neural

network model, also know as multilayer perceptron (MLP), illustrated in Figure 6.1, to

integrate DNA methylation and gene expression for cancer classification. For the parallel

integration strategy, the X-CNN model is not suitable for multi-omic data integration.

X-CNN is developed based on the convolutional neural network which is used for the image

data with two-dimensional features, and it is thus not suitable for the omic data with

one-dimensional features. Consequently, we propose a new cross-modal neural network

model based on feedforward neural networks for DNA methylation and gene expression

integration, which is referred to as superlayer neural network (SNN), illustrated in Figure

6.2. SNN is the first cross-modal neural network that is developed for multi-omic data

integration.

6.3.1.1 MLP

A multilayer perceptron (MLP) is built for breast cancer classification by series integration

of gene expression and DNA methylation features. It consists of an input layer, four fully

connected hidden layers and an output layer, illustrated in Figure 6.1.

Input layer In the input layer, the DNA methylation features and gene expression

features are stacked together by sample, and passed on to the hidden layers by the 52

nodes within the layer.

Hidden layers The four hidden layers consist of 256, 128, 64 and 32 neurons, respectively,

which are fully connected between the adjacent layers. The ReLU activation function (see

Equation 2.30) is chosen for the neurons in the hidden layers.

Output layer The output layer consists of two neurons and uses the softmax transfor-

mation (see Equation 2.31) as the activation function to provide a probability distribution

over the possible classes.
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Figure 6.1: Illustration of the MLP structure. The MLP consists of an input layer, four
hidden layers and an output layer. Each node represents a neuron. The nodes in orange in
the input layer represent the gene expression features and the nodes in blue represent the
DNA methylation features. The nodes in green represent the hidden layers. The nodes in
grey represent the output layer. The arrows indicate the data flow in the MLP.

6.3.1.2 SNN

The generalized superlayer neural network (SNN) model is illustrated in Figure 6.2, in which

the cross-connections can be assigned at di↵erent hidden layers between two superlayers

according to the task requirements. The structure shown in Figure 6.2 is a SNN model

with cross-connections at the third hidden layers between two superlayers, which we use

for the breast cancer classification task. It is comprised of four parts: the input layers, the

superlayers, the merge layers and the output layer.

Input layers The SNN includes two independent input layers, which receive the gene

expression features and DNA methylation features, respectively, and pass on them to the

corresponding superlayers.

Superlayers The SNN includes two superlayers, each of which consists of a fully con-

nected feedforward neural network including four hidden layers with 128, 64, 32, 16

neurons respectively. The gene expression features and DNA methylation features are

learned by the two superlayers separately. In order to exchange the information between

the two superlayers, cross-model connections are added at the hidden layers between

the superlayers, which allow the information to flow between them after several layers

independent learning. Between the two four-hidden-layered superlayers, there are three

optional locations to add the cross-model connections: at the second hidden layers, at
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Figure 6.2: Illustration of the SNN structure with cross-model connections at the third
hidden layers between the superlayers. The SNN consists of two input layers, two super-
layers, two merge layers and an output layer. Each node represents a neuron. The nodes
in orange represent the superlayer for gene expression and the nodes in blue represent the
superlayer for DNA methylation. The nodes in grey represent the merge layers and the
output layer. The arrows indicate the data flow in the SNN. The arrows between the two
superlayers represents the cross-connections.

the third hidden layers, and at the fourth hidden layers. As illustrated in Figure 6.2, the

cross-model connections are added at the third hidden layers. The operations performed

by the neurons in the third hidden layer based on the cross-connections are defined as

follows:
y1 = w1x1 + w21x2 + b1

y2 = w2x2 + w12x1 + b2
(6.1)

where x1 and x2 are the outputs of the second hidden layers from superlayer 1 and superlayer

2 respectively, and y1 and y2 are the outputs of the third hidden layers correspondingly. w1

and w2 are the within superlayer weights, and b1 and b2 are the within superlayer biases

for the third hidden layer. w12 and w21 are the cross-connection weights.

Merge layers Following the superlayers, the merge layers consist of two fully connected

hidden layers with 64 and 16 neurons respectively. The information from the two superlayers

are combined together in the first hidden layer, where the operations of the neurons are
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defined as:

ym = w1mx1m + w2mx2m + bm (6.2)

where x1m and x2m are the outputs of the two superlayers. w1m and w2m are the combined

weights for superlayer 1 and superlayer 2 respectively. bm is the bias for the first hidden

layer, and ym is the output of the first hidden layer. In both the merge layers and the

superlayers, the ReLU activation function is chosen for the neurons.

Output layer The output layer is the same as the MLP model, which consists of two

neurons and uses the softmax transformation as the activation function to provide a

probability distribution over the possible classes.

6.3.2 Neural network model training and evaluation

To train the MLP and SNN models for the classification task, the feature set is selected as

the 26 genes of the tumour necrosis factor receptor superfamily (TNFRS) which has been

proven to play important roles during tumorigenesis and could be the potential targets

for cancer therapy [201]. These genes are responsible for production of receptors that are

able to bind to tumour necrosis factors (TNFs), proteins capable of inducing cell death

(apoptosis) of tumorous cells, and their activity levels are thus expected to be correlated

with the incidence of specific cancers. The gene expression and DNA methylation of the

TNFRS genes are used as the inputs for the neural network models.

The MLP and SNN models are learned by backpropagation with the gradient descent

optimisation (see details in Chapter 2.3.2.2). The loss function is defined by the cross

entropy loss between the predicted outcome ŷi and the actual outcome yi with a weight

decay regularization as follows:

L(w) = �
kX

i=1

yi log(ŷi) +
�

2
||w||2 (6.3)

where ||w||2 denotes the L2-norm of the weights and � is the tuning parameter for the weight

decay. The L2-norm regularization provides the smooth solution for weight estimation

which avoid the exploding of weights by penalizing the large ones.

The optimal parameters for each neural network model are trained by stratified nested

5-fold cross-validation (see details in Chapter 2.3.5.1) by evaluating their performance

measures accuracy, precision, recall and F -score (see details in Chapter 2.3.5.2).
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6.3.3 Comparison with other common classifiers

We compare the performances of neural network models with some other common classifiers

such as Support Vector Machine (SVM) (see details in Chapter 2.3.3) and Random Forest

(see details in Chapter 2.3.4). The SVM (with RBF kernel) and Random Forest models are

also trained and evaluated on the series integrated DNA methylation and gene expression

data using the same methods as the neural network models, that is, stratified nested 5-fold

cross-validation.

6.4 Results

6.4.1 Overall performances of classification models

To study the performances of the proposed MLP and SNN models as well as the comparisons

with other common classification methods such as SVM and Random Forrest, we train

and evaluate the optimal classifier for each of the following models by stratified nested

5-fold cross-validation, and their performances on breast cancer classification are shown in

Table 6.1.

• MLP-Expr: MLP model for gene expression data exclusively.

• MLP-Meth: MLP model for DNA methylation data exclusively.

• MLP: MLP model for series integration of gene expression and DNA methylation

data.

• SNN-nCC: SNN model without cross-model connections for parallel integration of

gene expression and DNA methylation data.

• SNN-CC2: SNN model with cross-model connections at the second hidden layers for

parallel integration of gene expression and DNA methylation data.

• SNN-CC3: SNN model with cross-model connections at the third hidden layers for

parallel integration of gene expression and DNA methylation data.

• SNN-CC4: SNN model with cross-model connections at the fourth hidden layers for

parallel integration of gene expression and DNA methylation data.

• SVM: SVM model for series integration of gene expression and DNA methylation

data.

• RandomForest : Random Forest model for series integration of gene expression and

DNA methylation data.
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Table 6.1: Performances of MLP models, SNN models, SVM and Random Forest on breast
cancer classification. The performance measures are calculated by the mean of five test
sets in the outer loop of the stratified nested 5-fold cross-validation, where standard errors
are given in parentheses.

Models accuracy precision recall F -score
MLP-Expr 0.983 (0.010) 0.997 (0.003) 0.984 (0.009) 0.991 (0.006)
MLP-Meth 0.982 (0.008) 0.995 (0.003) 0.986 (0.008) 0.990 (0.005)

MLP 0.987 (0.004) 0.997 (0.003) 0.988 (0.005) 0.993 (0.002)
SNN-nCC 0.985 (0.007) 0.995 (0.005) 0.988 (0.009) 0.991 (0.004)
SNN-CC2 0.987 (0.009) 0.997 (0.003) 0.988 (0.009) 0.993 (0.005)
SNN-CC3 0.991 (0.008) 0.999 (0.003) 0.991 (0.010) 0.995 (0.005)
SNN-CC4 0.988 (0.005) 0.997 (0.003) 0.989 (0.007) 0.993 (0.003)

SVM 0.980 (0.007) 0.987 (0.005) 0.991 (0.004) 0.989 (0.004)
RandomForest 0.981 (0.006) 0.984 (0.007) 0.995 (0.003) 0.990 (0.004)

As shown in Table 6.1, all the MLP models, all the SNN models, SVM and Random

Forest provide superior performances on breast cancer classification, and achieve classifi-

cation accuracies higher than 98%. There are two potential reasons for such surprising

high accuracies. The first reason is the feature set. In this study, we use the 26 genes of

the tumour necrosis factor receptor superfamily (TNFRS) as the feature set for breast

cancer classification. The TNFRS has been proven related with cancer progression, which

suggests that the expression and methylation values of the TNFRS genes are strongly

correlated with the outcome classes of the patients, i.e., cancer vs. normal. Such potential

strong correlation between the feature set and the outcome classes is likely to result in the

superior performance for classification. The other reason is the biased sample size of the

training set. The breast cancer data include 760 cancer and 84 normal samples. Thus, the

training set used to train the model is biased in the sample size, in which the cancer class

is much larger than the normal class. Such biased training set tends to result in potential

preference for cancer class when training the classifier. To evaluate the classification tasks

on biased dataset, we need to consider not only the accuracy but also the precision and

recall.

Overall, the neural network models (the MLP models and SNN models) perform better

than the SVM and Random Forest on breast cancer classification in terms of both accuracy

and precision, but provide a slight decrease in recall. The SNN models outperform the

MLP models by providing higher accuaries and recalls as well as comparable precisions.

Among all the models, the SNN-CC3 provides the best performance on breast cancer

classification, with the accuracy, precision and recall all above 99%. It suggests that the

parallel integration using SNN models is the more e�cient strategy for gene expression

and DNA methylation integration than the series integration.
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6.4.2 Performances of MLP models

Three MLP models are trained for breast cancer classification. The MLP-Expr performs

cancer classification using the gene expression data of the 26 TNFRS genes exclusively,

while the MLP-Meth using the DNA methylation data exclusively. The MLP performs

cancer classification using the series integration of gene expression and DNA methylation

data. As shown in Table 6.1, the MLP-Expr and MLP-Meth provide comparable accuracies

for cancer classification, but the MLP outperforms them with increased accuracy and

recall. It suggests that the heterogeneous gene expression and DNA methylation data

contain intrinsic characteristics which are complementary to each other. Integrating such

complementary characteristics of the two types of data using MLP is capable of describing

the non-linear relationships between them, which leads to improved performance for cancer

classification compared with using the gene expression data or DNA methylation data

exclusively.

6.4.3 Performances of SNN models

Four SNN models are trained for breast cancer classification using parallel integration of

gene expression and DNA methylation data with cross-connections at di↵erent positions:

SNN-nCC without cross-connections, SNN-CC2 with cross-connections at the second

hidden layers, SNN-CC3 with cross-connections at the third hidden layers, and SNN-CC4

with cross-connections at the fourth hidden layers. As shown in Table 6.1, the SNN models

with cross-connections (SNN-CC2, SNN-CC3, SNN-CC4) outperform the SNN model

without cross-connection (SNN-nCC). It suggests that the cross-connections exchange the

complementary information between the two heterogeneous data during the independent

training in each superlayer respectively, which results in better performances than the SNN-

nCC without the information exchange. Among the SNN models with cross-connections,

the SNN-CC3, exchanging information at the middle of hidden layers, provides the best

performance on breast cancer classification, with the accuracy, precision and recall all

above 99%. It outperforms the SNN-CC2 and SNN-CC4 which exchange the information

at earlier and later hidden layer respectively.

The superior performances of the SNN models compared with the MLP models suggests

that parallel integration is more e�cient for gene expression and DNA methylation

integration than the series integration. For the series integration in the MLP, since the

gene expression and the DNA methylation are passed on to the neural network as an entire

stacked feature set, the two types of features are nested together in the beginning and

throughout the whole learning process, which ignores their intrinsic properties. Due to the

heterogeneity of gene expression and DNA methylation data, their intrinsic characteristics

provide valuable underlying biological meanings. Ignoring such characteristics might lead
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to loss of information in exploring the relationships between them. By contrast, the

parallel integration in the SNN takes the advantage of the intrinsic properties of the two

types of data. The gene expression features and DNA methylation features are learned

separately in the corresponding superlayer, which is capable of remaining the intrinsic

characteristics within each superlayer. The cross-connections between two superlayers allow

the information exchanging during the independent learning, which takes into account the

potential correlations between the two type of features. Therefore, the SNN is capable

of capturing more underlying information for gene expression and DNA methylation

integration than the MLP.

The cross-connections added at the hidden layers allow the information to flow between

two types of data after several layers independent learning. The positioning of the cross-

connections in the SNN is crucial for the data integration because it determines to which

degrees the two types of data a↵ect each other. In practice, the positioning of the cross-

connections are needed to be carefully considered according to the depth of the superlayer

as well as the heterogeneous properties of the multiple data. If the cross-connections

are assigned to the end of the superlayers as in the SNN-CC4, it will not take the full

advantage of the potential correlations between the two types of data. By contrast, if

the cross-connections happen too early as in the SNN-CC2, it might result in excessive

influence between the data as the two types of features are fused together in the beginning

of the superlayer learning, which is similar as the series integration. The SNN-CC3 assigns

the cross-connections in the middle of the superlayer in order to gain a balance for the

influences between each other. It exchanges information between gene expression and

DNA methylation data at the middle of hidden layers, which allows su�cient independent

learning before and after exchanging the information.

As a result, the SNN-CC3 with parallel integration strategy is recommended for the

neural network based integration of DNA methylome and transcriptome for breast cancer

classification tasks. Moreover, the SNN models can be also extended with extra superlayers

in order to integrate more types of omic data. We believe that the SNN represents a

valuable tool for multi-omic data integration.

6.4.4 Cross-connections in SNN-CC3

In order to understand the contributions of the cross-connections for the classification, the

activations of neurons in specific layers of the SNN-CC3 on the samples in the test set are

visualized using t-SNE [202], which is a dimensionality reduction technique well-suited for

embedding high-dimensional data into a space of two or three dimensions, shown in Figure

6.3. The cross-connections between the two superlayers in the SNN-CC3 happen when the

information is passed on from the second hidden layer to the third hidden layer. After the

activations of neurons in the third hidden layer, the samples in the test set are separated
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Figure 6.3: t-SNE visualization for the activations of SNN-CC3 layers on the test set. Each
node represents a sample in the test set. Nodes in green represent the cancer samples,
while nodes in purple represent the normal samples. The scatter plots illustrate the t-SNE
visualization for the activations of specific layers in the SNN-CC3: (A) The first hidden
layers in the superlayers before cross-connections; (B) The second hidden layers in the
superlayers before cross-connection; (C) The third hidden layers in the superlayers after
cross-connections; (D) The fourth hidden layers in the superlayers after cross-connections;
(E) After the merge layers.

into two clusters corresponding to the cancer samples and the normal samples respectively

(Figure 6.3C). Compared with the embedded distributed cancer and normal samples

based on the activations of the second layer (Figure 6.3B), the cross-connections lead to a

markedly improvement on discriminating cancer samples from the normal samples.

6.5 Implementation

The data sources of the DNA methylome and transcriptome data studied in this chapter are

described in Chapter 6.2.1. The neural network models, including MLP-Expr, MLP-Meth,

MLP, SCC-nCC, SNN-CC2, SNN-CC3 and SNN-CC4, are implemented using TensorFlow

[203] in Python. The SVM and Random Forest are implemented in R using the packages

e1071 and randomForest respectively. The processed datasets used in this study and the

source codes for these models can be accessed from https://github.com/bioinfoxh/SNN.

6.6 Summary

In this chapter, we propose an approach for classification by integrating epigenome and

transcriptome using neural networks. We introduce two neural network models for DNA

methylation and gene expression integration based on two strategies: (i) the multilayer
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perceptron (MLP) for series integration strategy, in which the DNA methylation and gene

expression features are stacked together by samples; (ii) the superlayer neural network

(SNN) for parallel integration strategy, in which the DNA methylation features and gene

expression features are learned separately in superlayers but with cross-connections allowing

the crosstalks between them.

We train the optimal MLP and SNN on a breast cancer dataset using stratified nested

5-fold cross-validation and compare their performances on the cancer patients classification.

The SNN provides superior performances and outperforms the MLP due to its capability of

learning the intrinsic characteristics of the heterogeneous datasets. We compare the neuron

activations between the layers before the cross-connections and after the cross-connections

in the SNN, and find that the cross-connections lead to a markedly improvement on

discriminating the two classes of samples in the latter layer. We recommend the parallel

integration strategy (i.e. the SNN) for the neural network based integration of DNA

methylome and transcriptome data.

This chapter provides an e�cient approach using superlayer neural networks (SNN)

for epigenome and transcriptome data integration in the field of multi-omics. It is the

first cross-modal neural network model for cancer classification by integrating the DNA

methylome and transcriptome data, which outperforms common machine learning classifi-

cation methods and provides superior performances on human breast cancer classification.

We believe the proposed SNN models are useful tools for the field of multi-omics, which

helps researchers to understand the underlying mechanisms through data mining from

epigenome and transcriptome data.

The proposed SNN models could be extended or improved in the following directions.

Firstly, the proposed SNN model can be extended with more superlayers in order to

integrate more types of omic data such as the genome copy number variation and the

somatic mutations data. Secondly, the SNN model can be extended with more advanced

neural network architectures such as RNN and LSTM (see details in Chapter 2.3.2.2),

which is able to deal with data with more complex structures such as the sequential data.

Finally, neural networks are superior prediction tools but su↵er the low interpretability of

the non-linear classification decisions. Recently, advanced neural network models have

been proposed by incorporating real graph structure into neural network architectures,

such as Graph Convolutional Networks (GCN) [204] and GraphSAGE [205]. Inspired

by these graph-based neural network models, it is possible to extend the SNN model by

incorporating graph structures, which is therefore capable of integrating the molecular

networks into SNN to increase the interpretability of the model.
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Chapter 7

Conclusion

7.1 Contributions

In the field of multi-omics, the main goal is to integrate heterogeneous high-throughput

multiple omic data and transform them into biological knowledge about the underlying

mechanisms of biological systems. The biggest challenge for multi-omic data integration

is lack of appropriate and e�cient machine learning and statistical models to integrate

the multiple high-dimensional heterogeneous omic data. It is because of the two inherent

characteristics of multi-omic data: high-dimension and heterogeneity. The high-dimension

of omic data easily leads to overfitting in machine learning models because the features

(i.e., genes) are far more than the samples and the features are usually not independent

but correlated to each other. The heterogeneity of di↵erent types of omic data brings

di�culties for applicabilities of machine learning models because of lack of prior knowledge

about the relationships between the intrinsic characteristics of di↵erent types of omic data.

There is a famous quote “All models are wrong but some are useful” which is attributed to

the famous statistician George Box [206]. The quote is considered to be applicable to not

only statistical models but to scientific models generally. Following this quote, the main

task of multi-omic studies is to find and apply the “useful models” to integrate di↵erent

types of omic data taking into account their intrinsic characteristics. This thesis builds

a bridge between computer science and biology by developing e�cient approaches using

appropriate machine learning models for data mining through multi-omic data integration,

which are capable of transforming multi-omic data into underlying biological insights.

Following the hypothesis stated in Chapter 1.2, this thesis has made contributions on

methodology development for multi-omic data integration with focus on four specialized

topics.

We address the unsupervised learning problem of identifying condition responsive gene

functional modules based on transcriptome and interactome data. Current methods for

this problem are not well established for multi-condition transcriptome data as they are
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developed to identify gene modules based on di↵erential expression of genes between case

and control samples. Besides, most of the methods only select condition associated modules

but ignore the roles of individual genes within the modules. To overcome the limitations,

we propose an approach for gene module detection by integrating multi-condition tran-

scriptome data and interactome data using network overlapping module detection method.

It is capable of identifying condition-specific modules and important genes within the

modules following an e�cient and comprehensive computational framework, which consists

of four steps: (1) construction of gene co-expression network by evaluating co-expression

correlation coe�cient between each interacted gene pair based on their gene expression;

(2) detection of overlapping gene modules from the co-expression network using network

overlapping module detection method; (3) identification of condition-associated modules

by assessing the significance of enrichment with condition-associated genes within the

modules using ANOVA-GSEA; (4) selection of condition-specific feature modules and

feature genes using GEL logistic regression with K-fold cross-validation. We apply the

proposed approach on the transcriptome data of human pre-implantation embryos across

multiple development stages and identify human embryonic development stage-specific

modules and genes. Interesting biological insights are revealed from the dynamic expres-

sion patterns of the stage-specific modules and the multiple function genes located in

the overlapping modules, which provides clues for understanding the potential molecular

mechanisms during human pre-implantation embryonic development.

We address the unsupervised learning problem of identifying translational regulated

gene functional modules based on transcriptome, translatome and interactome data.

Current methods for this problem mainly focus on gene levels which aim to identify

di↵erentially translated genes from transcriptome and translatome data, but none of

them are capable of identifying underlying gene functional patterns. We propose a novel

approach to identify gene functional modules related with translational regulation by

integrating transcriptome, translatome, and interactome data using multilayer network,

which consists of five steps: (1) construction of multilayer di↵erential expression network by

integrating transcriptome and translatome with interactome data respectively; (2) selection

of seed genes for module detection by evaluating their degrees of di↵erential translation; (3)

detection of modules from the multilayer network using greedy search for each seed gene

by minimizing the entropy-based local modularity function; (4) identification of translation

e�ciency (TE) regulated modules by the refinements including significance assessment,

redundancy deletion and dynamic evaluation; (5) visualization of TE-regulated modules as

graphs with incorporated multilayer information from the networks. We also develop an R

package, TERM, for implementation of the proposed approach, which is the first tool for

identifying translational regulated modules from ribosome profiling data. We apply the

proposed approach on a published ribosome profiling data of mTOR perturbed prostate

136



cancer cells and mine several TE-regulated modules associated with mTOR perturbation.

The identified translational regulated genes and modules downstream mTOR provide

valuable clues for understanding mTOR associated translational regulation mechanisms in

prostate cancer genesis and metastasis.

We address the supervised learning problem of selecting feature genes for scalar

responses based on transcriptome and interactome data. Regarding the problem of feature

selection from transcriptome data, the high-dimension and strong correlations of the feature

set (genes) easily result in overfitting of linear regression models. The common linear

regression methods and state-of-art network-constrained regression methods usually su↵er

low power and high bias for feature selection. To overcome these limitations, we develop a

more e�cient network-constrained linear regression method, named eGBL, by incorporating

the edge weights into the GBL network-constrained penalty, which takes the advantage

of weighted network. Simulation studies show that eGBL outperforms several common

regularized regression methods and provides superior performance on feature selection.

We apply eGBL to explore whether the key time-lapse parameters capable of predicting

EmbryoScope blastocyst qualities are associated with transcriptional patterns. For each

time-lapse parameter, we use eGBL on the transcriptome data of blastocysts to select

the feature genes by fitting the linear model incorporating the human pre-implantation

embryonic development network for regularization. We find scientific evidence that several

selected feature genes play important roles across the stages of embryonic development.

The early stage associated feature genes indicate the crucial roles of the key time-lapse

parameters during the early pre-implantation embryonic development. The late stage

associated feature genes account for the prediction capability of key time-lapse parameters

on blastocyst qualities from the molecular level.

We address the supervised learning problem of disease classification based on epigenome

and transcriptome data. Regarding this problem, neural networks have been used to

perform patients classification through multi-omic data integration. But there are some

limitations for the integration strategies of the state-of-art methods. The series integration

strategy, in which the DNA methylation and gene expression features are stacked together

by samples, ignores the intrinsic characteristics of epigenome and transcriptome data. The

parallel integration strategy, in which the DNA methylation features and gene expression

features are learned in separate neural networks followed by an integrated output, ignores

the crosstalks between the two types of data. To overcome the limitations, we introduce

two neural network models for DNA methylation and gene expression integration based on

the two strategies: (i) the multilayer perceptron (MLP) for series integration strategy; (ii)

the superlayer neural network (SNN) for parallel integration strategy, in which the DNA

methylation features and gene expression features are learned separately in superlayers

but with cross-connections allowing the crosstalks between them. We train the optimal
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MLP models and SNN models with cross-connections at di↵erent hidden layers on a

breast cancer dataset for cancer patients classification using stratified nested 5-fold cross-

validation. The SNN model with cross-connections at the middle of hidden layers provides

superior performances and outperforms the MLP as well as other common classification

methods such as SVM and Random Forest due to its capability of learning the intrinsic

characteristics of the heterogeneous datasets.

Our proposed approaches primarily contribute to the fields of bioinformatics and

computer science. The biological insights obtained from the works presented in this

thesis by applying the proposed approaches in multi-omic data of human early embryos

and human cancers also provide interesting clues for the field of biology. This thesis

o↵ers e↵ective and e�cient approaches for integrative analysis of multi-omic data using

appropriate machine learning models. Since the approaches are developed to handle

heterogeneous high-dimensional datasets, they can be applied to datasets of other fields

which present the similar structures. From the computational biology point of view, the

approaches and tools developed in this thesis are generalized analysis frameworks, which

are applicable across a various range of biological systems with the available multi-omic

data. Using the proposed approaches, we assist biologists in transforming their in-house

generated omic data into meaningful biological insights through the integrative analysis

with molecular interaction networks, which provides valuable clues for understanding the

underlying molecular mechanisms in complex biological systems.

7.2 Future work

Future work of multi-omic data integration could be improved or extended in several

directions.

Firstly, the qualities of multi-omic data could be improved by more advanced high-

throughput experiment technologies. Currently, the multi-omic data su↵er high noises

because di↵erent types of omic data come from separate experiments or di↵erent samples

which usually bring in high technical and biological variances. Multi-omic data with high

qualities will improve the e�ciency of machine learning models for the data integration.

This limitation could be improved with the development of advanced high-throughput

experiment technologies such as the single-cell sequencing technologies [207] which measure

a single cell at multiple molecular levels simultaneously and thus reduce the technical

and biological variances. This direction is out of the scope of this thesis because the

development of high-throughput experiment technologies mainly depends on contributions

from the field of biotechnology.

Secondly, network-based approaches for multi-omic data integration could be extended

by adding more levels of data and improved by employing more advanced machine learning
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techniques. For instances, each of the approaches proposed in this thesis could be extended

or improved for better performances. The approach proposed in Chapter 3 could be

improved by employing more e�cient network module detection methods which are

capable of identifying modules from weighted network. The approach proposed in Chapter

4 could be extended to include other types of omic data such as proteome data by adding

more layers in the multilayer network, and be improved by employing more e�cient seed

gene selection methods which are applicable to unbalanced data. The network-constrained

regression method, eGBL, proposed in Chapter 5 could be improved by developing more

e�cient penalty functions to gain higher power for feature selection. The SNN models

proposed in Chapter 6 can be extended with more superlayers to integrate more types of

omic data, and be improved by employing more advanced neural network architectures

such as RNN and LSTM (see details in Chapter 2.3.2) which are applicable to data with

more complex structures.

Finally, besides the network-based approaches, multi-omic data could be integrated by

using other computational models, e.g., mathematical stochastic processes, depends on

the purpose of specific research problems. Recently, we perform a successful multi-omic

study to characterise signalling factors in human diseases by integrating DNA methylation

data and gene expression data using phylogenetic based stochastic processes [208], which

suggests the applicability of a wide range of computational models for multi-omic data

integration.
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[69] László Lovász et al. Random walks on graphs: A survey. Combinatorics, Paul erdos

is eighty, 2(1):1–46, 1993.

[70] Anton J Enright, Stijn Van Dongen, and Christos A Ouzounis. An e�cient algorithm

for large-scale detection of protein families. Nucleic acids research, 30(7):1575–1584,

2002.

[71] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. Link communities reveal

multiscale complexity in networks. nature, 466(7307):761, 2010.
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