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Abstract. Traditionally, reasoning about programs under varying eval-
uation regimes (call-by-value, call-by-name etc.) was done at the meta-
level, treating them as term rewriting systems. Levy’s call-by-push-value
(CBPV) calculus provides a more powerful approach for reasoning, by
treating CBPV terms as a common intermediate language which cap-
tures both call-by-value and call-by-name, and by allowing equational
reasoning about changes to evaluation order between or within programs.
We extend CBPV to additionally deal with call-by-need, which is non-
trivial because of shared reductions. This allows the equational reasoning
to also support call-by-need. As an example, we then prove that call-
by-need and call-by-name are equivalent if nontermination is the only
side-effect in the source language.
We then show how to incorporate an effect system. This enables us to
exploit static knowledge of the potential effects of a given expression
to augment equational reasoning; thus a program fragment might be
invariant under change of evaluation regime only because of knowledge
of its effects.

Keywords: Evaluation order · Call-by-need · Call-by-push-value ·
Logical relations · Effect systems

1 Introduction

Programming languages based on the λ-calculus have different semantics de-
pending on the reduction strategy employed. Three common variants are call-
by-value, call-by-name and call-by-need (with the third sometimes also referred
to as “lazy evaluation” when data constructors defer evaluation of arguments
until the data structure is traversed). Reasoning about such programs and their
equivalence under varying reduction strategies can be difficult as we have to
reason about meta-level reduction strategies and not merely at the object level.

Levy [17] introduced call-by-push-value (CBPV) to improve the situation.
CBPV is a calculus with separated notions of value and computation. A charac-
teristic feature is that each CBPV program encodes its own evaluation order. It is
best seen as an intermediate language into which lambda-calculus-based source-
language programs can be translated. Moreover, CBPV is powerful enough that
programs employing call-by-value or call-by-name (or even a mixture) can be
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simply translated into it, giving an object-calculus way to reason about the
meta-level concept of reduction order.

However, CBPV does not enable us to reason about call-by-need evaluation.
An intuitive reason is that call-by-need has “action at a distance” in that re-
duction of one subterm causes reduction of all other subterms that originated
as copies during variable substitution. Indeed call-by-need is often framed using
mutable stores (graph reduction [32], or reducing a thunk which is accessed by
multiple pointers [16]). CBPV does not allow these to be encoded.

This work presents extended call-by-push-value (ECBPV), a calculus similar
to CBPV, but which can capture call-by-need reduction in addition to call-by-
value and call-by-name. Specifically, ECBPV adds an extra primitive Mneedx.N
which runs N , with M being evaluated the first time x is used. On subsequent
uses of x, the result of the first run is returned immediately. The term M is
evaluated at most once. We give the syntax and type system of ECBPV, together
with an equational theory that expresses when terms are considered equal.

A key justification for an intermediate language that can express several
evaluation orders is that it enables equivalences between the evaluation orders
to be proved. If there are no (side-)effects at all in the source language, then call-
by-need, call-by-value and call-by-name should be semantically equivalent. If the
only effect is nondeterminism, then need and value (but not name) are equivalent.
If the only effect is nontermination then need and name (but not value) are
equivalent. We show that ECBPV can be used to prove such equivalences by
proving the latter using an argument based on Kripke logical relations of varying
arity [12].

These equivalences rely on the language being restricted to particular effects.
However, one may wish to switch evaluation order for subprograms restricted to
particular effects, even if the language itself does not have such a restriction.
To allow reasoning to be applied to these cases, we add an effect system [20] to
ECBPV, which allows the side-effects of subprograms to be statically estimated.
This allows us to determine which parts of a program are invariant under changes
in evaluation order. As we will see, support for call-by-need (and action at a
distance more generally) makes describing an effect system significantly more
difficult than for call-by-value.

Contributions We make the following contributions:
– We describe extended call-by-push-value, a version of CBPV containing an

extra construct that adds support for call-by-need. We give its syntax, type
system, and equational theory (Section 2).

– We describe two translations from a lambda-calculus source language into
ECBPV: one for call-by-name and one for call-by-need (the first such trans-
lation) (Section 3). We then show that, if the source language has nonter-
mination as the only effect, call-by-name and call-by-need are equivalent.

– We refine the type system of ECBPV so that its types also carry effect
information (Section 4). This allows equivalences between evaluation orders
to be exploited, both at ECBPV and source level, when subprograms are
statically limited to particular effects.
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2 Extended call-by-push-value

We describe an extension to call-by-push-value with support for call-by-need.
The primary difference between ordinary CBPV and ECBPV is the addition
of a primitive that allows computations to be added to the environment, so
that they are evaluated only the first time they are used. Before describing this
change, we take a closer look at CBPV and how it supports call-by-value and
call-by-name.

CBPV stratifies terms into values, which do not have side-effects, and com-
putations, which might. Evaluation order is irrelevant for values, so we are only
concerned with how computations are sequenced. There is exactly one primitive
that causes the evaluation of more than one computation, which is the compu-
tation M to x.N . This means run the computation M , bind the result to x, and
then run the computation N . (It is similar to M >>= \x -> N in Haskell.) The
evaluation order is fixed: M is always eagerly evaluated. This construct can be
used to implement call-by-value: to apply a function, eagerly evaluate the argu-
ment and then evaluate the body of the function. No other constructs cause the
evaluation of more than one computation.

To allow more control over evaluation order, CBPV allows computations
to be thunked. The term thunkM is a value that contains the thunk of the
computation M . Thunks can be duplicated (to allow a single computation to be
evaluated more than once), and can be converted back into computations with
forceV . This allows call-by-name to be implemented: arguments to functions
are thunked computations. Arguments are used by forcing them, so that the
computation is evaluated every time the argument is used. Effectively, there is
a construct M name x.N , which evaluates M each time the variable x is used
by N , rather than eagerly evaluating. (The variable x is underlined here to
indicate that it refers to a computation rather than a value: uses of it may have
side-effects.)

To support call-by-need, extended call-by-push-value adds another construct
M needx.N . This term runs the computation N , with the computation M being
evaluated the first time x is used. On subsequent uses of x, the result of the first
run is returned immediately. The computation M is evaluated at most once. This
new construct adds the “action at a distance” missing from ordinary CBPV.

We briefly mention that adding general mutable references to call-by-push-
value would allow call-by-need to be encoded. However, reasoning about evalu-
ation order would be difficult, and so we do not take this option.

2.1 Syntax

The syntax of extended call-by-push-value is given in Figure 1. The highlighted
parts are new here. The rest of the syntax is similar to CBPV.1

1 The only difference is that eliminators of product and sum types are value terms
rather than computation terms (which makes value terms slightly more general).
Levy [17] calls this CBPV with complex values.
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V,W ::= c | x | (V1, V2) | fstV | sndV | inlV | inr V

| caseV of {inlx.W1, inr y.W2} | thunkM

M,N ::= x | forceV | λ{i.Mi}i∈I | i‘M | λx.M | V ‘M | returnV

| M to x.N | M need x.N

A,B ::= unit | A1 ×A2 | A1 +A2 | UC

C,D ::=
∏

i∈I Ci | A → C | FrA

Γ ::= ⋄ | Γ, x : A | Γ, x : FrA

Fig. 1: Syntax of ECBPV

We assume two sets of variables: value variables x, y, . . . and computation
variables x, y, . . . . While ordinary CBPV does not include computation variables,
they do not of themselves add any expressive power to the calculus. The ability
to use call-by-need in ECBPV comes from the need construct used to bind the
variable.2

There are two kinds of terms, value terms V,W which do not have side-effects
(in particular, are strongly normalizing), and computation terms M,N which
might have side-effects. Value terms include constants c, and specifically the
constant () of type unit. There are no constant computation terms; value con-
stants suffice (see Section 3 for an example). The value term thunkM suspends
the computation M ; the computation term forceV runs the suspended computa-
tion V . Computation terms also include I-ary tuples λ{i.Mi}i∈I (where I ranges
over finite sets); the ith projection of a tuple M is i‘M . Functions send values
to computations, and are computations themselves. Application is written V ‘M ,
where V is the argument and M is the function to apply. The term returnV is
a computation that just returns the value V , without causing any side-effects.
Eager sequencing of computations is given by M tox.N , which evaluates M until
it returns a value, then places the result in x and evaluates N . For example, in
M to x. return (x, x), the term M is evaluated once, and the result is duplicated.
In M to x. return (), the term M is still evaluated once, but its result is never
used. Syntactically, both to and need (explained below) are right-associative (so
M1 to x.M2 to y.M3 means M1 to x. (M2 to y.M3)).

The primary new construct is M needx.N . This term evaluates N . The first
time x is evaluated (due to a use of x inside N) it behaves the same as the
computation M . If M returns a value V , then subsequent uses of x behave the
same as returnV . Hence only the first use of x will evaluate M . If x is not used
then M is not evaluated at all. The computation variable x bound inside the
term is primarily used by eagerly sequencing it with other computations. For
2 Computation variables are not strictly required to support call-by-need (since we can

use x : U (FrA) instead of x : FrA), but they simplify reasoning about evaluation
order, and therefore we choose to include them.
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example,
M need x. x to y. x to z. return (y, z)

uses x twice: once where the result is bound to y, and once where the result is
bound to z. Only the first of these uses will evaluate M , so this term has the
same semantics as M to x. return(x, x). The term M need x. return () does not
evaluate M at all, and has the same semantics as return ().

With the addition of need it is not in general possible to determine the order
in which computations are executed statically. Uses of computation variables
are given statically, but not all of these actually evaluate the corresponding
computation dynamically. In general, the set of uses of computation variables
that actually cause effects depends on run-time behaviour. This will be important
when describing the effect system in Section 4.

The standard capture-avoiding substitution of value variables in value terms
is denoted V [x 7→ W ]. We similarly have substitutions of value variables in com-
putation terms, computation variables in value terms, and computation variables
in computation terms. Finally, we define the call-by-name construct mentioned
above as syntactic sugar for other CBPV primitives:

M name x.N B thunkM ‘ λy.N [x 7→ force y]

where y is not free in N .
Types are stratified into value types A,B and computation types C,D. Value

types include the unit type, products and sum types. (It is easy to add further
base types; we omit Levy’s empty types for simplicity.) Value types also include
thunk types UC, which are introduced by thunkM and eliminated by forceV .
Computation types include I-ary product types

∏
i∈I Ci for finite I, function

types A → C, and returner types FrA. The latter are introduced by returnV ,
and are the only types of computation that can appear on the left of either
to or need (which are the eliminators of returner types). The type constructors
U and Fr form an adjunction in categorical models. Finally, contexts Γ map
value variables to value types, and computation variables to computation types
of the form FrA. This restriction is due to the fact that the only construct
that binds computation variables is need, which only sequences computations of
returner type. Allowing computation variables to be associated with other forms
of computation type in typing contexts is therefore unnecessary. Typing contexts
are ordered lists.

The syntax is parameterized by a signature, containing the constants c.

Definition 1 (Signature). A signature K consists of a set KA of constants of
type A for each value type A. All signatures contain () ∈ Kunit.

2.2 Type system

The type system of extended call-by-push-value is a minor extension of the type
system of ordinary call-by-push-value. Assume a fixed signature K. There are
two typing judgements, one for value types and one for computation types. The
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Γ ⊢v V : A

Γ ⊢v x : A
if (x : A) ∈ Γ

Γ ⊢v c : A
if c ∈ KA

Γ ⊢ M : C

Γ ⊢v thunkM : UC

Γ ⊢v V1 : A1 Γ ⊢v V2 : A2

Γ ⊢v (V1, V2) : A1 ×A2

Γ ⊢v V : A1 ×A2

Γ ⊢v fstV : A1

Γ ⊢v V : A1 ×A2

Γ ⊢v sndV : A2

Γ ⊢v V : A1

Γ ⊢v inlV : A1 +A2

Γ ⊢v V : A2

Γ ⊢v inr V : A1 +A2

Γ ⊢v V : A1 +A2 Γ, x : A1 ⊢v W1 : B Γ, x : A2 ⊢v W2 : B

Γ ⊢v caseV of {inlx.W1, inr y.W2} : B

Γ ⊢ M : C

Γ ⊢ x : FrA
if (x : FrA) ∈ Γ

Γ ⊢v V : A

Γ ⊢ returnV : FrA

Γ ⊢v V : UC

Γ ⊢ forceV : C

(Γ ⊢ Mi : Ci)i∈I

Γ ⊢ λ{i.Mi}i∈I :
∏

i∈I Ci

Γ ⊢ M :
∏

i∈I Ci

Γ ⊢ i‘M : Ci

Γ, x : A ⊢ M : C

Γ ⊢ λx.M : A → C

Γ ⊢v V : A Γ ⊢ M : A → C

Γ ⊢ V ‘M : C

Γ ⊢ M : FrA Γ, x : A ⊢ N : C

Γ ⊢ M to x.N : C

Γ ⊢ M : FrA Γ, x : FrA ⊢ N : C

Γ ⊢ M need x.N : C

Fig. 2: Typing rules for ECBPV

rules for the value typing judgement Γ ⊢v V : A and the computation typing
judgement Γ ⊢ M : C are given in Figure 2. Rules that add a new variable to
the typing context implicitly require that the variable does not already appear
in the context. The type system admits the usual weakening and substitution
properties for both value and computation variables.

It should be clear that ECBPV is actually an extension of call-by-push-value.
CBPV terms embed as terms that never use the highlighted forms. We translate
call-by-need by encoding call-by-need functions as terms of the form

λx′. (forcex′) need x.M

where x′ is not free in M . This is a call-by-push-value function that accepts a
thunk as an argument. The thunk is added to the context, and the body of the
function is executed. The first time the argument is used (via x), the computation
inside the thunk is evaluated. Subsequent uses do not run the computation again.
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A translation based on this idea from a call-by-need source language is given in
detail in Section 3.2.

2.3 Equational theory
In this section, we present the equational theory of extended call-by-push-value.
This is an extension of the equational theory for CBPV given by Levy [17] to
support our new constructs. It consists of two judgement forms, one for values
and one for computations:

Γ ⊢v V ≡ W : A Γ ⊢ M ≡ N : C

These mean both terms are well typed, and are considered equal by the equa-
tional theory. We frequently omit the context and type when they are obvious
or unimportant.

The definition is given by the axioms in Figure 3. Note that these axioms
only hold when the terms they mention have suitable types, and when suitable
constraints on free variables are satisfied. For example, the second sequencing
axiom holds only if x is not free in N . These conditions are left implicit in the
figure. The judgements are additionally reflexive (assuming the typing holds),
symmetric and transitive. They are also closed under all possible congruence
rules. There are no restrictions on congruence related to evaluation order. None
are necessary because ECBPV terms make the evaluation order explicit: all
sequencing of computations uses to and need. Finally, note that enriching the
signature with additional constants will in general require additional axioms cap-
turing their behaviour; Section 3 exemplifies this for constants ⊥A representing
nontermination.

For the equational theory to capture call-by-need, we might expect compu-
tation terms that are not of the form returnV to never be duplicated, since they
should not be evaluated more than once. There are two exceptions to this. Such
terms can be duplicated in the axioms that duplicate value terms (such as the β
laws for sum types). In this case, the syntax ensures such terms are thunked. This
is correct because we should allow these terms to be executed once in each sepa-
rate execution of a computation (and separate executions arise from duplication
of thunks). We are only concerned with duplication within a single computation.
Computation terms can also be duplicated across multiple elements of a tuple
λ{i.Mi} of computation terms. This is also correct, because only one component
of a tuple can be used within a single computation (without thunking), so the
effects still will not happen twice. (There is a similar consideration for functions,
which can only be applied once.) The remainder of the axioms never duplicate
need-bound terms that might have effects.

The majority of the axioms of the equational theory are standard. Only the
axioms involving need are new; these are highlighted. The first new sequencing
axiom (in Figure 3c) is the crucial one. It states that if a computation will next
evaluate x, where x is a computation variable bound to M , then this is the same
as evaluating M , and then using the result for subsequent uses of x. In particular,
this axiom (together with the η law for Fr) implies that M need x. x ≡ M .



8 D. McDermott, A. Mycroft

Γ ⊢v fst (V1, V2) ≡ V1 : A1

Γ ⊢v snd (V1, V2) ≡ V2 : A2

Γ ⊢v case inlV of {inlx.W1, inr y.W2} ≡ W1[x 7→ V ] : B

Γ ⊢v case inr V of {inlx.W1, inr y.W2} ≡ W2[y 7→ V ] : B

Γ ⊢ force(thunkM) ≡ M : C

Γ ⊢ i ‘ λ{i.Mi}i∈I ≡ Mi : Ci

Γ ⊢ V ‘ λx.M ≡ M [x 7→ V ] : C

Γ ⊢ returnV to x.M ≡ M [x 7→ V ] : C

Γ ⊢ returnV need x.M ≡ M [x 7→ returnV ] : C

(a) β laws

Γ ⊢v () ≡ V : unit

Γ ⊢v (fstV, sndV ) ≡ V : A1 ×A2

Γ ⊢v caseW of {inl y. V [x 7→ inl y], inr z. V [x 7→ inr z]} ≡ V [x 7→ W ] : B

Γ ⊢v thunk(forceM) ≡ M : UC

Γ ⊢ λ{i. i ‘M}i∈I ≡ M :
∏

i∈I Ci

Γ ⊢ λx. x ‘M ≡ M : A → C

Γ ⊢ M to x. returnx ≡ M : FrA

(b) η laws

Γ ⊢ M need x. x to y.N ≡ M to y.N [x 7→ return y] : C

Γ ⊢ M need x.N ≡ N : C

Γ ⊢ λ{i.M to x.Ni}i∈I ≡ M to x. λ{i.Ni}i∈I :
∏

i∈I Ci

Γ ⊢ λy.M to x.N ≡ M to x. λy.N : A → C

Γ ⊢ λ{i.M need x.Ni}i∈I ≡ M need x. λ{i.Ni}i∈I :
∏

i∈I Ci

Γ ⊢ λy.M need x.N ≡ M need x. λy.N : A → C

Γ ⊢ (M1 to x.M2) to y.M3 ≡ M1 to x.M2 to y.M3 : C

Γ ⊢ M1 to x.M2 need y.M3 ≡ M2 need y.M1 to x.M3 : C

Γ ⊢ (M1 need x.M2) to y.M3 ≡ M1 need x.M2 to y.M3 : C

Γ ⊢ (M1 need x.M2) need y.M3 ≡ M1 need x.M2 need y.M3 : C

(c) Sequencing axioms

Fig. 3: Equational theory of ECBPV
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The second sequencing axiom does garbage collection [22]: if a computation
bound by need is not used (because the variable does not appear), then the
binding can be dropped. This equation implies, for example, that

M1 need x1.M2 need x2. · · ·Mn need xn. return () ≡ return ()

The next four sequencing axioms (two from CBPV and two new) state that
binding a computation with to or need commutes with the remaining forms
of computation terms. These allow to and need to be moved to the outside of
other constructs except thunks. The final four axioms (one from CBPV and three
new) capture associativity and commutativity involving need and to; again these
parallel the existing simple associativity axiom for to.

Note that associativity between different evaluation orders is not necessarily
valid. In particular, we do not have

(M1 to x.M2) need y.M3 ≡ M1 to x. (M2 need x.M3)

(The first term might not evaluate M1, the second always does.) This is usually
the case when evaluation orders are mixed [26].

These final two groups allow computation terms to be placed in normal forms
where bindings of computations are on the outside. (Compare this with the
translation of source-language answers given in Section 3.2.) Finally, the β law
for need (in Figure 3a) parallels the usual β law for to: it gives the behaviour of
computation terms that return values without having any effects.

The above equational theory induces a notion of contextual equivalence ∼=ctx

between ECBPV terms. Two terms are contextually equivalent when they have
no observable differences in behaviour. When we discuss equivalences between
evaluation orders in Section 3, ∼=ctx is the notion of equivalence between terms
that we consider.

Contextual equivalence is defined as follows. The ground types G are the value
types that do not contain thunks:

G ::= unit | G1 ×G2 | G1 +G2

A value-term context C[−] is a computation term with a single hole (written
−), which occurs in a position where a value term is expected. We write C[V ]
for the computation term that results from replacing the hole with V . Similarly,
computation-term contexts C[−] are computation terms with a single hole where a
computation term is expected, and C[M ] is the term in which the hole is replaced
by M . Contextual equivalence says that the terms cannot be distinguished by
closed computations that return ground types. (Recall that ⋄ is the empty typing
context.)
Definition 2 (Contextual equivalence). There are two judgement forms of
contextual equivalence.
1. Between value terms: Γ ⊢v V ∼=ctx W : A if Γ ⊢v V : A, Γ ⊢v W : A, and

for all ground types G and value-term contexts C such that ⋄ ⊢ C[V ] : FrG
and ⋄ ⊢ C[W ] : FrG we have

⋄ ⊢ C[V ] ≡ C[W ] : FrG



10 D. McDermott, A. Mycroft

2. Between computation terms: Γ ⊢ M ∼=ctx N : C if Γ ⊢ M : C, Γ ⊢ N : C,
and for all ground types G and computation-term contexts C[−] such that
⋄ ⊢ C[M ] : FrG and ⋄ ⊢ C[N ] : FrG we have

⋄ ⊢ C[M ] ≡ C[N ] : FrG

3 Call-by-name and call-by-need

Extended call-by-push-value can be used to prove equivalences between evalua-
tion orders. In this section we prove a classic example: if the only effect in the
source language is nontermination, then call-by-name is equivalent to call-by-
need. We do this in two stages.

First, we show that call-by-name is equivalent to call-by-need within ECBPV
(Section 3.1). Specifically, we show that

M name x.N ∼=ctx M need x.N

(Recall that M name x.N is syntactic sugar for thunkM ‘ λy.N [x 7→ force y].)
Second, an important corollary is that the meta-level reduction strategies are

equivalent (Section 3.2). We show this by describing a lambda-calculus-based
source language together with a call-by-name and a call-by-need operational se-
mantics and giving sound (see Theorem 2) call-by-name and call-by-need trans-
lations into ECBPV. The former is based on the translation into the monadic
metalanguage given by Moggi [25] (we expect Levy’s translation [17] to work
equally well). The call-by-need translation is new here, and its existence shows
that ECBPV does indeed subsume call-by-need. We then show that given any
source-language expression, the two translations give contextually equivalent
ECBPV terms.

To model non-termination being our sole source-language effect, we use the
ECBPV signature which contains a constant ⊥A : U (FrA) for each value type
A, representing a thunked diverging computation. It is likely that our proofs still
work if we have general fixed-point operators as constants, but for simplicity we
do not consider this here. The constants ⊥A enable us to define a diverging
computation ΩC for each computation type C:

ΩFrA B force⊥A Ω∏
i∈ICi

B λ{i. ΩCi
}i∈I ΩA→C B λx.ΩC

We characterise nontermination by augmenting the equational theory of Sec-
tion 2.3 with the axiom

Γ ⊢ ΩFrA to x.M ≡ ΩC : C (Omega)

for each context Γ , value type A and computation type C. In other words,
diverging as part of a larger computation causes the entire computation to di-
verge. This is the only change to the equational theory we need to represent
nontermination. In particular, we do not add additional axioms involving need.
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3.1 The equivalence at the object (internal) level
In this section, we show our primary result that

M name x.N ∼=ctx M need x.N

As is usually the case for proofs of contextual equivalence, we use logical relations
to get a strong enough inductive hypothesis for the proof to go through. However,
unlike the usual case, it does not suffice to relate closed terms. To see why,
consider a closed term M of the form

ΩFrA need x.N1 to y.N2

If we relate only closed terms, then we do not learn anything about N1 itself
(since x may be free in it). We could attempt to proceed by considering the closed
term ΩFrA needx.N1. For example, if this returns a value V then x cannot have
been evaluated and M should have the same behaviour as ΩFrA need x.N2[y 7→
V ]. However, we get stuck when proving the last step. This is only a problem
because ΩFrA is a nonterminating computation: every terminating computation
of returner type has the form returnV (up to ≡), and when these are bound
using need we can eliminate the binding using the equation

returnV need x.M ≡ M [x 7→ returnV ]

The solution is to relate terms that may have free computation variables (we
do not need to consider free value variables). The free computation variables
should be thought of as referring to nonterminating computations (because we
can remove the bindings of variables that refer to terminating computations).
We relate open terms using Kripke logical relations of varying arity, which were
introduced by Jung and Tiuryn [12] to study lambda definability.

We need a number of definitions first. A context Γ ′ weakens another context
Γ , written Γ ′ ▷ Γ , whenever Γ is a sublist of Γ ′. For example, (Γ, x : FrA) ▷
Γ . We define TermΓ

A as the set of equivalence classes (up to the equational
theory ≡) of terms of value type A in context Γ , and similarly define TermΓ

D for
computation types:

TermΓ
A B {[V ]≡ | Γ ⊢v V : A} TermΓ

D B {[M ]≡ | Γ ⊢ M : D}

Since weakening is admissible for both typing judgements, Γ ′ ▷ Γ implies that
TermΓ

A ⊆ TermΓ ′

A and TermΓ
D ⊆ TermΓ ′

D (note the contravariance).
A computation context, ranged over by ∆, is a typing context that maps

variables to computation types (i.e. has the form x1 : FrA1, . . . , xn : FrAn).
Variables in computation contexts refer to nonterminating computations for the
proof of contextual equivalence. A Kripke relation is a family of binary relations
indexed by computation contexts that respects weakening of terms:
Definition 3 (Kripke relation). A Kripke relation R over a value type A
(respectively a computation type D) is a family of relations R∆ ⊆ Term∆

A×Term∆
A

(respectively R∆ ⊆ Term∆
D × Term∆

D) indexed by computation contexts ∆ such
that whenever ∆′ ▷ ∆ we have R∆ ⊆ R∆′ .
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Note that we consider binary relations on equivalence classes of terms because
we want to relate pairs of terms up to ≡ (to prove contextual equivalence).
The relations we define are partial equivalence relations (i.e. symmetric and
transitive), though we do not explicitly use this fact.

We need the Kripke relations we define over computation terms to be closed
under sequencing with nonterminating computations. (For the rest of this sec-
tion, we omit the square brackets around equivalence classes.)

Definition 4. A Kripke relation R over a computation type C is closed under
sequencing if each of the following holds:

1. If (x : FrA) ∈ ∆ and M,M ′ ∈ Term∆,y:A
C then (x to y.M, x to y.M ′) ∈ R∆.

2. The pair (ΩC , ΩC) is in R∆.
3. For all (M,M ′) ∈ R∆,y:FrA and N ∈ {ΩFrA}∪{x | (x : FrA) ∈ ∆}, all four

of the following pairs are in R∆:

(N need y.M, N need y.M ′) (M [y 7→ N ], M ′[y 7→ N ])

(M [y 7→ N ], N need y.M ′) (N need y.M, M ′[y 7→ N ])

For the first case of the definition, recall that the computation variables in ∆
refer to nonterminating computations. Hence the behaviour of M and M ′ are
irrelevant (they are never evaluated), and we do not need to assume they are
related.3 The second case implies (using axiom Omega) that

(ΩFrA to y.M,ΩFrA to y.M ′) ∈ R∆

mirroring the first case. The third case is the most important. It is similar to the
first (it is there to ensure that the relation is closed under the primitives used to
combine computations). However, since we are showing that need is contextually
equivalent to substitution, we also want these to be related. We have to consider
computation variables in the definition (as possible terms N) only because of
our use of Kripke logical relations. For ordinary logical relations, there would be
no free variables to consider.

The key part of the proof of contextual equivalence is the definition of the
Kripke logical relation, which is a family of relations indexed by value and com-
putation types. It is defined in Figure 4 by induction on the structure of the
types. In the figure, we again omit square brackets around equivalence classes.

The definition of the logical relation on ground types (unit, sum types and
product types) is standard. Since the only way to use a thunk is to force it,
the definition on thunk types just requires the two forced computations to be
related.

For returner types, we want any pair of computations that return related
values to be related. We also want the relation to be closed under sequencing,
3 This is why it suffices to consider only computation contexts. If we had to relate
M to M ′ then we would need to consider relations between terms with free value
variables.
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R∆
A ⊆ Term∆

A × Term∆
A

R∆
unit B {((), ())}

R∆
A1×A2

B {(V, V ′) | (fstV, fstV ′) ∈ R∆
A1

∧ (sndV, sndV ′) ∈ R∆
A2

}

R∆
A1+A2

B {(inlV, inlV ′) | (V, V ′) ∈ R∆
A1

} ∪ {(inr V, inr V ′) | (V, V ′) ∈ R∆
A2

}

R∆
UC B {(V, V ′) | (forceV, forceV ′) ∈ R∆

C }

R∆
C ⊆ Term∆

C × Term∆
C

RFrA B the smallest closed-under-sequencing Kripke relation such that
(V, V ′) ∈ R∆

A ⇒ (returnV, returnV ′) ∈ R∆
FrA

R∆∏
i∈ICi

B {(M,M ′) | ∀i ∈ I. (i‘M, i‘M ′) ∈ R∆
Ci

}

R∆
A→C B {(M,M ′) | ∀∆′, V, V ′. ∆′ ▷ ∆ ∧ (V, V ′) ∈ R∆′

A ⇒ (V ‘M,V ′‘M ′) ∈ R∆′
C }

Fig. 4: Definition of the logical relation

in order to show the fundamental lemma (below) for to and need. We therefore
define RFrA as the smallest such Kripke relation. For products of computation
types the definition is similar to products of value types: we require that each of
the projections are related. For function types, we require as usual that related
arguments are sent to related results. For this to define a Kripke relation, we
have to quantify over all computation contexts ∆′ that weaken ∆, because of
the contravariance of the argument.

The relations we define are Kripke relations. Using the sequencing axioms of
the equational theory, and the β and η laws for computation types, we can show
that RC is closed under sequencing for each computation type C. These facts
are important for the proof of the fundamental lemma.

Substitutions are given by the following grammar:

σ ::= ⋄ | σ, x 7→V | σ, x 7→M

We have a typing judgement ∆ ⊢ σ : Γ for substitutions, meaning in the context
∆ the terms in σ have the types given in Γ . This is defined as follows:

∆ ⊢ ⋄ : ⋄
∆ ⊢ σ : Γ ∆ ⊢v V : A

∆ ⊢ (σ, x 7→V ) : (Γ, x : A)

∆ ⊢ σ : Γ ∆ ⊢ M : FrA

∆ ⊢ (σ, x 7→M) : (Γ, x : FrA)

We write V [σ] and M [σ] for the applications of the substitution σ to value terms
V and computation terms M . These are defined by induction on the structure
of the terms. The key property of the substitution typing judgement is that
if ∆ ⊢ σ : Γ , then Γ ⊢v V : A implies ∆ ⊢v V [σ] : A and Γ ⊢ M : C
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implies ∆ ⊢ M [σ] : C. The equational theory gives us an obvious pointwise
equivalence relation ≡ on well-typed substitutions. We define sets Subst∆Γ of
equivalence classes of substitutions, and extend the logical relation by defining
R∆

Γ ⊆ Subst∆Γ × Subst∆Γ :

Subst∆Γ B {[σ]≡ | ∆ ⊢ σ : Γ}
R∆

⋄ B {(⋄, ⋄)}
R∆

Γ,x:A B {((σ, x 7→V ), (σ′, x 7→V ′)) | (σ, σ′) ∈ R∆
Γ ∧ (V, V ′) ∈ R∆

A}
R∆

Γ,x:FrA B {((σ, x 7→M), (σ′, x 7→M ′)) | (σ, σ′) ∈ R∆
Γ ∧ (M,M ′) ∈ R∆

FrA}

As usual, the logical relations satisfy a fundamental lemma.
Lemma 1 (Fundamental).
1. For all value terms Γ ⊢v V : A,

(σ, σ′) ∈ R∆
Γ ⇒ (V [σ], V [σ′]) ∈ R∆

A

2. For all computation terms Γ ⊢ M : C,

(σ, σ′) ∈ R∆
Γ ⇒ (M [σ],M [σ′]) ∈ R∆

C

The proof is by induction on the structure of the terms. We use the fact that
each RC is closed under sequencing for the to and need cases. For the latter, we
also use the fact that the relations respect weakening of terms.

We also have the following two facts about the logical relation. The first
roughly is that name is related to need by the logical relation, and is true be-
cause of the additional pairs that are related in the definition of closed-under-
sequencing (Definition 4).
Lemma 2. For all computation terms Γ ⊢ M : FrA and Γ, x : FrA ⊢ N : C
we have

(σ, σ′) ∈ R∆
Γ ⇒ ((N [x 7→ M ])[σ], (M need x.N)[σ′]) ∈ R∆

C

The second fact is that related terms are contextually equivalent.
Lemma 3.
1. For all value terms Γ ⊢v V : A and Γ ⊢v V ′ : A, if (V [σ], V ′[σ′]) ∈ R∆

A for
all (σ, σ′) ∈ R∆

Γ then
Γ ⊢v V ∼=ctx V ′ : A

2. For all computation terms Γ ⊢ M : C and Γ ⊢ M ′ : C, if (M [σ],M ′[σ′]) ∈
R∆

C for all (σ, σ′) ∈ R∆
Γ then

Γ ⊢ M ∼=ctx M ′ : C

This gives us enough to achieve the goal of this section.
Theorem 1. For all computation terms Γ ⊢ M : FrA and Γ, x : FrA ⊢ N : C,
we have

Γ ⊢ M name x.N ∼=ctx M need x.N : C
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3.2 The meta-level equivalence

In this section, we show that the equivalence between call-by-name and call-
by-need also holds on the meta-level; this is a consequence of the object-level
theorem, rather than something that is proved from scratch as it would be in a
term rewriting system.

To do this, we describe a simple lambda-calculus-based source language with
divergence as the only side-effect and give it a call-by-name and a call-by-need
operational semantics. We then describe two translations from the source lan-
guage into ECBPV. The first is a call-by-name translation based on the em-
bedding of call-by-name in Moggi’s [25] monadic metalanguage. The second is a
call-by-need translation that uses our new constructs. The latter witnesses the
fact that ECBPV does actually support call-by-need. Finally, we show that the
two translations give contextually equivalent ECBPV terms.

The syntax, type system and operational semantics of the source language
are given in Figure 5. Most of this is standard. We include only booleans and
function types for simplicity. In expressions, we include a constant divergeA for
each type A, representing a diverging computation. (As before, it should not be
difficult to replace these with general fixed-point operators.) In typing contexts,
we assume that all variables are distinct, and omit the required side-condition
from the figure. There is a single set of variables x, y, . . . ; we implicitly map
these to ECBPV value or computation variables as required.

The call-by-name operational semantics is straightforward; its small-step re-
ductions are written e

name⇝ e′.
The call-by-need operational semantics is based on Ariola and Felleisen [2].

The only differences between the source language and Ariola and Felleisen’s
calculus are the addition of booleans, divergeA, and a type system. It is likely
that we can translate other call-by-need calculi, such as those of Launchbury [16]
and Maraist et al. [22]. Call-by-need small-step reductions are written e

need⇝ e′.
The call-by-need semantics needs some auxiliary definitions. An evaluation

context E[−] is a source-language expression with a single hole, picked from
the grammar given in the figure. The hole in an evaluation context indicates
where reduction is currently taking place: it says which part of the expression is
currently needed. We write E[e] for the expression in which the hole is replaced
with e. A (source-language) value is the result of a computation (the word value
should not be confused with the value terms of extended call-by-push-value).
An answer is a value in some environment, which maps variables to expressions.
These can be thought of as closures. The environment is encoded in an answer
using application and lambda abstraction: the answer (λx. a) e means the answer
a where the environment maps x to e. Encoding environments in this way makes
the translation slightly simpler than if we had used a Launchbury-style [16] call-
by-need language with explicit environments. In the latter case, the translation
would need to encode the environments. Here they are already encoded inside
expressions. Answers are terminal computations: they do not reduce.

The first two reduction axioms (on the left) of the call-by-need semantics
(Figure 5d) are obvious. The third axiom is the most important: it states that
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Types A,B ::= bool | A → B
Contexts Γ ::= ⋄ | Γ, x : A
Expressions e ::= x | divergeA | true | false | if e1 then e2 else e3 | λx. e | e1 e2

(a) Syntax

Γ ⊢ x : A
if (x : A) ∈ Γ

Γ ⊢ divergeA : A

Γ ⊢ true : bool Γ ⊢ false : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : A Γ ⊢ e3 : A

Γ ⊢ if e1 then e2 else e3 : A

Γ, x : A ⊢ e : B

Γ ⊢ λx. e : A → B

Γ ⊢ e1 : A → B Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B

(b) Typing

if true then e2 else e3
name⇝ e2

if false then e2 else e3
name⇝ e3

(λx. e) e′
name⇝ e[x 7→ e′]

divergeA
name⇝ divergeA

if divergebool then e2 else e3
name⇝ divergeA

divergeA→B e′
name⇝ divergeB

e1
name⇝ e′1

if e1 then e2 else e3
name⇝ if e′1 then e2 else e3

e1
name⇝ e′1

e1 e2
name⇝ e′1 e2

(c) Call-by-name operational semantics

Evaluation contexts E[−] ::= − | if E[−] then e2 else e3
| E[−] e2 | (λx.E[x])E′[−] | (λx.E[−]) e2

Values v ::= true | false | λx. e
Answers a ::= v | (λx. a) e

if true then e2 else e3
need⇝ e2

if false then e2 else e3
need⇝ e3

(λx.E[x]) v
need⇝ (λx.E[v]) v

(λx. a) e1 e2
need⇝ (λx. a e2) e1

(λx.E[x]) ((λy. a) e)
need⇝ (λy. (λx.E[x]) a) e

divergeA
need⇝ divergeA

E[divergeA]
need⇝ divergeB

e
need⇝ e′

E[e]
need⇝ E[e′]

(d) Call-by-need operational semantics

Fig. 5: The source language
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if the subexpression currently being evaluated is a variable x, and the environ-
ment maps x to a source-language value v, then that use of x can be replaced
with v. Note that E[v] may contain other uses of x; the replacement only oc-
curs when the value is actually needed. This axiom roughly corresponds to the
first sequencing axiom of the equational theory of ECBPV (in Figure 3c). The
fourth and fifth axioms of the call-by-need operational semantics rearrange the
environment into a standard form. Both use a syntactic restriction to answers
so that each expression has at most one reduct (this restriction is not needed to
ensure that need⇝ captures call-by-need). The rule on the right of the Figure 5d
states that the reduction relation is a congruence (a needed subexpression can
be reduced).

The two translations from the source language to ECBPV are given in Fig-
ure 6. The translation of types (Figure 6a) is shared between call-by-name and
call-by-need. The two translations differ only for contexts and expressions. Types
A are translated into value types LAM. The type bool becomes the two-element
sum type unit + unit. The translation of a function type A → B is a thunked
CBPV function type. The argument is a thunk of a computation that returns
an LAM, and the result is a computation that returns a LBM.

For call-by-name (Figure 6b), contexts Γ are translated into contexts LΓ Mname

that contain thunks of computations. We could also have used contexts contain-
ing computation variables (omitting the thunks), but choose to use thunks to
keep the translation as close as possible to previous translations into call-by-
push-value. A well-typed expression Γ ⊢ e : A is translated into a ECBPV
computation term LeMname that returns LAM, in context LΓ Mname. The transla-
tion of variables just forces the relevant variable in the context. The diverging
computations divergeA just use the diverging constants from our ECBPV signa-
ture. The translations of true and false are simple: they are computations that
immediately return one of the elements of the sum type unit+unit. The trans-
lation of if e1 then e2 else e3 first evaluates Le1Mname, then uses the result to
choose between Le2Mname and Le3Mname. Lambdas are translated into computa-
tions that just return a thunked computation. Finally, application first evaluates
the computation that returns a thunk of a function, and then forces this function,
passing it a thunk of the argument.

For call-by-need (Figure 6c), contexts Γ are translated into contexts LΓ Mneed,
containing computations that return values. The computations in the context
are all bound using need. An expression Γ ⊢ e : A is translated to a computationLeMneed that returns LAM in the context LΓ Mneed. The typing is therefore similar
to call-by-name. The key case is the translation of lambdas. These become com-
putations that immediately return a thunk of a function. The function places
the computation given as an argument onto the context using need, so that it is
evaluated at most once, before executing the body. The remainder of the cases
are similar to call-by-name.

Under the call-by-need translation, the expression (λx. e1) e2 is translated
into a term that executes the computation Le1Mneed, and executes Le2Mneed only
when needed. This is the case because, by the β rules for thunks, functions, and
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LboolM B unit+ unit LA → BM B U (U (Fr LAM) → Fr LBM)
(a) Translation LAM of types

Translation LΓ Mname of typing contexts

L⋄Mname B ⋄ LΓ, x : AMname B LΓ Mname, x : U (Fr LAM)
Translation LΓ Mname ⊢ LeMname : Fr LAM of expressions

LxMname B forcex LdivergeAMname B force⊥ALtrueMname B return inl () LfalseMname B return inr ()Lif e1 then e2 else e3Mname B Le1Mname to x. force(casex of

{inl z. thunkLe2Mname, inr z. thunkLe3Mname})Lλx. eMname B return thunk(λx. LeMname)Le1 e2Mname B Le1Mname to z. (thunk Le2Mname) ‘ (force z)

(b) Call-by-name translation

Translation LΓ Mneed of typing contexts

L⋄Mneed B ⋄ LΓ, x : AMneed B LΓ Mneed, x : Fr LAM
Translation LΓ Mneed ⊢ LeMneed : Fr LAM of expressions

LxMneed B x LdivergeAMneed B force⊥ALtrueMneed B return inl () LfalseMneed B return inr ()Lif e1 then e2 else e3Mneed B Le1Mneed to x. force(casex of

{inl z. thunkLe2Mneed, inr z. thunkLe3Mneed})Lλx. eMneed B return thunk(λx′. (forcex′) need x. LeMneed)Le1 e2Mneed B Le1Mneed to z. (thunk Le2Mneed) ‘ (force z)
(c) Call-by-need translation

Fig. 6: Translation from the source language to ECBPV
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returner types:

L(λx. e1) e2Mneed ≡ Le2Mneed need x. Le1Mneed
As a consequence, translations of answers are particularly simple: they have the
following form (up to ≡):

M1 need x1.M2 need x2. · · ·Mn need xn. returnV

which intuitively means the value V in the environment mapping each xi to Mi.
It is easy to see that both translations produce terms with the correct types.

We prove that both translations are sound: if e name⇝ e′ then LeMname ≡ Le′Mname,
and if e need⇝ e′ then LeMneed ≡ Le′Mneed. To do this for call-by-need, we first look
at translations of evaluation contexts. The following lemma says the translation
captures the idea that the hole in an evaluation context corresponds to the term
being evaluated.
Lemma 4. Define, for each evaluation context E[−], the term EyLE[−]Mneed by:

EyL−Mneed B return y

EyLif E[−] then e2 else e3Mneed B ELE[−]Mneed to x. force(casex of

{inl z. thunkLe2Mneed
, inr z. thunkLe3Mneed})

EyLE[−] e2Mneed B EyLE[−]Mneed to z. thunkLe2Mneed ‘ force z

EyL(λx.E[x])E′[−]Mneed B EyLE′[−]Mneed need x. LE[x]Mneed
EyL(λx.E[−]) e2Mneed B Le2Mneed need x. EyLE[−]Mneed

For each expression e we have:

LE[e]Mneed ≡ LeMneed to y. EyLE[−]Mneed
This lemma omits the typing of expressions for presentational purposes. It is
easy to add suitable constraints on typing. Soundness is now easy to show:
Theorem 2 (Soundness). For any two well-typed source-language expressions
Γ ⊢ e : A and Γ ⊢ e′ : A:
1. If e name⇝ e′ then LeMname ≡ Le′Mname.
2. If e need⇝ e′ then LeMneed ≡ Le′Mneed.

Now that we have sound call-by-name and call-by-need translations, we can
state the meta-level equivalence formally. Suppose we are given a possibly open
source-language expression Γ ⊢ e : B. Recall that the call-by-need translation
uses a context containing computation variables (i.e. LΓ Mneed) and the call-by-
name translation uses a context containing value variables, which map to thunks
of computations. We have two ECBPV computation terms of type Fr LBM in
context LΓ Mneed: one is just LeMneed, the other is LeMname with all of its variables
substituted with thunked computations. The theorem then states that these are
contextually equivalent.
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Theorem 3 (Equivalence between call-by-name and call-by-need). For
all source-language expressions e satisfying x1 : A1, . . . , xn : An ⊢ e : B

LeMname[x1 7→ thunkx1, . . . , xn 7→ thunkxn]
∼=ctx LeMneed

Proof. The proof of this theorem is by induction on the typing derivation of e.
The interesting case is lambda abstraction, where we use the internal equivalence
between call-by-name and call-by-need (Theorem 1).

4 An effect system for extended call-by-push-value

The equivalence between call-by-name and call-by-need in the previous section
is predicated on the only effect in the language being nontermination. However,
suppose the primitives of language have various effects (which means that in
general the equivalence fails) but a given subprogram may be statically shown
to have at most nontermination effects. In this case, we should be allowed to
exploit the equivalence on the subprogram, interchanging call-by-need and call-
by-name locally, even if the rest of the program uses other effects. In this section,
we describe an effect system [20] for ECBPV, which statically estimates the side-
effects of expressions, allowing us to exploit equivalences which hold only within
subprograms. Effect systems can also be used for other purposes, such as proving
the correctness of effect-dependent program transformations [29,7]. The ECBPV
effect system also allows these.

Call-by-need makes statically estimating effects difficult. Computation vari-
ables bound using need might have effects on their first use, but on subsequent
uses do not. Hence to precisely determine the effects of a term, we must track
which variables have been used. McDermott and Mycroft [23] show how to
achieve this for a call-by-need effect system; their technique can be adapted
to ECBPV. Here we take a simpler approach. By slightly restricting the effect
algebras we consider, we remove the need to track variable usage information,
while still ensuring the effect information is not an underestimate (an underesti-
mate would enable incorrect transformations). This can reduce the precision of
the effect information obtained, but for our use case (determining equivalences
between evaluation orders) this is not an issue, since we primarily care about
which effects are used (rather than e.g. how many times they are used).

4.1 Effects

The effect system is parameterized by an effect algebra, which specifies the in-
formation that is tracked. Different effect algebras can be chosen for different
applications. There are various forms of effect algebra. We follow Katsumata [15]
and use preordered monoids, which are the most general.

Definition 5 (Preordered monoid). A preordered monoid (F ,≤, ·, 1) con-
sists of a monoid (F , ·, 1) and a preorder ≤ on F , such that the binary operation
· is monotone in each argument separately.
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Since we do not track variable usage information, we might misestimate the
effect of a call-by-need computation variable evaluated for a second time (whose
true effect is 1). To ensure this misestimate is an overestimate, we assume that
the effect algebra is pointed (which is the case for most applications).
Definition 6 (Pointed preordered monoid). A preordered monoid (F ,≤
, ·, 1) is pointed if for all f ∈ F we have 1 ≤ f .

The elements f of the set F are called effects. Each effect abstractly represents
some potential side-effecting behaviours. The order ≤ provides approximation of
effects. When f ≤ f ′ this means behaviours represented by f are included in
those represented by f ′. The binary operation · represents sequencing of effects,
and 1 is the effect of a side-effect-free expression.

Traditional (Gifford-style) effect systems have some set Σ of operations (for
example, Σ B {read,write}), and use the preordered monoid (PΣ,⊆,∪, ∅). In
these cases, an effect f is just a set of operations. If a computation has effect f
then f contains all of the operations the computation may perform. They can
therefore be used to enforce that computations do not use particular operations.
Another example is the preordered monoid (N+,≤,+, 1), which can be used to
count the number of possible results a nondeterministic computation can return
(or to count the number of times an operation is used).

In our example, where we wish to establish whether the effects of an expres-
sion are restricted to nontermination for our main example, we use the two-
element preorder {diveff ≤ ⊤} with join for sequencing and diveff as the unit
1. The effect diveff means side-effects restricted to (at most) nontermination,
and ⊤ means unrestricted side-effects. Thus we would enable the equivalence
between call-by-name and call-by-need when the effect is diveff, and not when
it is ⊤. All of these examples are pointed. Others can be found in the literature.

4.2 Effect system and signature
The effect system includes effects within types. Specifically, each computation of
returner type will have some side-effects when it is run, and hence each returner
type FrA is annotated with an element f of F . We write the annotated type
as ⟨f⟩A. Formally we replace the grammar of ECBPV computation types (and
similarly, the grammar of typing contexts) with

C,D ::=
∏

i∈I Ci | A → C | ⟨f⟩A

Γ ::= ⋄ | Γ, x : A | Γ, x : ⟨f⟩A

(The highlighted parts indicate the differences.) The grammar used for value
types is unchanged, except that it uses the new syntax of computation types.

The definition of ECBPV signature is similarly extended to contain the effect
algebra as well as the set of constants:
Definition 7 (Signature). A signature (F ,K) consists of a pointed preordered
monoid (F ,≤, ·, 1) of effects and, for each value type A, a set KA of constants
of type A, including () ∈ Kunit.
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A <:v B

unit <:v unit

A1 <:v B1 A2 <:v B2

A1 ×A2 <:v B1 ×B2

A1 <:v B1 A2 <:v B2

A1 +A2 <:v B1 +B2

C <: D

UC <:v UD

C <: D

(Ci <: Di)i∈I∏
i∈I Ci <:

∏
i∈I Di

A <:v B C <: D

(B → C) <: (A → D)

A <:v B

⟨f⟩A <: ⟨f ′⟩B
if f ≤ f ′

Fig. 7: Subtyping in the ECBPV effect system

We assume a fixed effect system signature for the remainder of this section.
Since types contain effects, which have a notion of subeffecting, there is a

natural notion of subtyping. We define (in Figure 7) two subtyping relations:
A <:v B for value types and C <: D for computation types.

We treat the type constructor ⟨f⟩ as an operation on computation types by
defining computation types ⟨f⟩C.

⟨f⟩
(∏

i∈I Ci

)
B

∏
i∈I⟨f⟩Ci ⟨f⟩(A→C)BA→⟨f⟩C ⟨f⟩(⟨f ′⟩A)B⟨f ·f ′⟩A

This is an action of the preordered monoid on computation types. Its purpose
is to give the typing rule for sequencing of computations. The sequencing of a
computation with effect f with a computation of type C has type ⟨f⟩C.

The typing judgements have exactly the same form as before (except for the
new syntax of types). The majority of the typing rules, including all of the rules
for value terms, are also unchanged. The only rules we change are those for
computation variables, return, to and need, which are replaced with the first four
rules in Figure 8. We also add two subtyping rules, one for values and one for
computations. These are the last two rules of Figure 8.

The equational theory does not need to be changed to use it with the new
effect system (except that the types appearing in each axiom now include effect
information). For each axiom of the equational theory, the two terms still have
the same type in the effect system. In particular, for the axiom

M need x. x to y.N ≡ M to y.N [x 7→ return y]

if Γ ⊢ M : ⟨f⟩A and Γ, x : ⟨f⟩A, y : A ⊢ N : C then the left-hand side has type
⟨f⟩C. For the right-hand-side, we have Γ, y : A ⊢ N [x 7→ return y] : C, because of
the assumption that the preordered monoid is pointed (which implies return y can
have any effect by subtyping, not just the unit effect 1). Hence the right-hand-
side also has type ⟨f⟩C. This axiom is the reason for our pointedness requirement.
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Γ ⊢ x : ⟨f⟩A
if (x : ⟨f⟩A) ∈ Γ

Γ ⊢v V : A

Γ ⊢ returnV : ⟨1⟩A

Γ ⊢ M : ⟨f⟩A Γ, x : A ⊢ N : C

Γ ⊢ M to x.N : ⟨f⟩C
Γ ⊢ M : ⟨f⟩A Γ, x : ⟨f⟩A ⊢ N : C

Γ ⊢ M need x.N : C

Γ ⊢v V : A

Γ ⊢v V : B
if A <:v B

Γ ⊢v M : C

Γ ⊢v N : D
if C <: D

Fig. 8: Effect system modifications to ECBPV

In particular, if we drop need from the language, the pointedness requirement is
not required. Thus the rules we give also describe a fully general effect system
for CBPV in which the effect algebra can be any preordered monoid.

4.3 Exploiting effect-dependent equivalences

Our primary goal in adding an effect system to ECBPV is to exploit (local, effect-
justified) equivalences between evaluation orders even without a whole-language
restriction on effects. We sketch how to do this for our example.

When proving the equivalence between call-by-name and call-by-need in
Section 3 we assumed that the only constants in the language were () and
⊥A : U (FrA). To relax this restriction, we use the effect algebra with pre-
order {diveff ≤ ⊤} described above, and change the type of ⊥A from U (FrA)
to U (⟨diveff⟩A). We can include other effectful constants, and give them the
effect ⊤ (e.g. write : U (V → ⟨⊤⟩unit)).

The statement of the internal (object-level) equivalence becomes:

if Γ ⊢ M : ⟨diveff⟩A and Γ, x : ⟨diveff⟩A ⊢ N : C then
Γ ⊢ M name x.N ∼=ctx M need x.N : C

The premise restricts the effect of M to diveff so that nontermination is its only
possible side-effect. To prove this equivalence, we need a logical relation for the
effect system, which means we have to define a Kripke relation R⟨f⟩A for each
effect f . For R⟨diveff⟩A we use the same definition as before (the definition of
RFrA). The definition of R⟨⊤⟩A depends on the specific other effects included.

To state and prove a meta-level equivalence for a source language that in-
cludes other side-effects, we need to define an effect system for the source lan-
guage. This would use the same effect algebra as the ECBPV effect system, and
be such that the translation of source language expressions preserves effects. To
do this for the source language of Section 3, we replace the syntax of function
types with ⟨f⟩A f ′

−→ B, where f is the effect of the argument (required due to
lazy evaluation), and f ′ is the latent effect of the function (the effect it has after
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application). The translation is then

L⟨f⟩A f ′

−→ BM B U (U (⟨f⟩LAM) → ⟨f ′⟩LBM)
Just as for the object-level equivalence, the statement of the meta-level equiva-
lence similarly requires the source-language expression to have the effect diveff.
We omit the details here.

5 Related work

Metalanguages for evaluation order Call-by-push-value is similar to Moggi’s
monadic metalanguage [25], except for the distinction between computations
and values. Both support several evaluation orders, but neither supports call-
by-need. Polarized type theories [34] also take the approach of stratifying types
into several kinds to capture multiple evaluation orders. Downen and Ariola [10]
recently described how to capture call-by-need using polarity. They take a differ-
ent approach to ours, by splitting up terms according to their evaluation order,
rather than whether they might have effects. This means they have three kinds
of type, resulting in a more complex language than ours. They also do not ap-
ply their language to reasoning about the differences between evaluation orders,
which was the primary motivation for ECBPV. It is not clear whether their
language can also be used for this purpose.

Multiple evaluation orders can also be captured in a Moggi-style language
by using joinads instead of monads [28]. It is possible that there is some joinad
structure implicit in extended call-by-push-value.

Reasoning about call-by-need The majority of work on reasoning about call-
by-need source languages has concentrated on operational semantics based on
environments [16], graphs [32,30], and answers [3,2,9,22]. However, these do not
compare call-by-need with other evaluation orders. The only type-based analysis
of a lazy source language we know of apart from McDermott and Mycroft’s effect
system [23] is [31,33].

Logical relations Kripke logical relations have previously been applied to the
problems of lambda definability [12] and normalization [1,11]. Previous proofs of
contextual equivalence relate only closed terms. We were forced to relate open
terms because of the need construct.

Reasoning about effects using logical relations often runs into a difficulty
in ensuring the relations are closed under sequencing of computations. We are
able to work around this due to our specific choice of effects. It is possible that
considering other effects would require a technique such as Lindley and Stark’s
leapfrog method [19,18].

Effect systems Effect systems have a long history, starting with Gifford-style
effect systems [20]. We use preordered monoids as effect algebras following Kat-
sumata [15]. Almost all of the previous work on effect systems has concentrated
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on call-by-value only. Kammar and Plotkin [14,13] describe a Gifford-style call-
by-push-value effect system, though their formulation does not generalise to
other effect algebras. Our effect system is the first general effect system for a
CBPV-like language. The only previous work on call-by-need effects is [23].

There has also been much work on reasoning about program transformations
using effect systems, e.g. [29,7,5,8,6,4]. We expect it to be possible to recast
much of this in terms of extended call-by-push-value, and therefore apply these
transformations for various evaluation orders.

6 Conclusions and future work

We have described extended call-by-push-value, a calculus that can be used for
reasoning about several evaluation orders. In particular, ECBPV supports call-
by-need via the addition of the construct M need x.N . This allows us to prove
that call-by-name and call-by-need reduction are equivalent if nontermination is
the only effect in the source language, both inside the language itself, and on the
meta-level. We proved the latter by giving two translations of a source language
into ECBPV: one that captures call-by-name reduction, and one that captures
call-by-need reduction. We also defined an effect system for ECBPV. The effect
system statically bounds the side-effects of terms, allowing equivalences between
evaluation orders to be used without restricting the entire language to particular
effects. We close with a description of possible future work.

Other equivalences between evaluation orders We have proved one example of
an equivalence between evaluation orders using ECBPV, but there are others
that we might also expect to hold. For example, we would expect call-by-need
and call-by-value to be equivalent if the effects are restricted to nondeterminism,
allocating state, and reading from state (but not writing). It should be possible to
use ECBPV to prove these by defining suitable logical relations. More generally,
it might be possible to characterize when particular equivalences hold in terms
of the algebraic properties of the effects we restrict to.

Denotational semantics Using logical relations to prove contextual equivalence
between terms directly is difficult. Adequate denotational semantics would allow
us to reduce proofs of contextual equivalence to proofs of equalities in the model.
Composing the denotational semantics with the call-by-need translation would
also result in a call-by-need denotational semantics for the source language. Some
potential approaches to describing the denotational semantics of ECBPV are
Maraist et al.’s [21] translation into an affine calculus, combined with a semantics
of linear logic [24], and also continuation-passing-style translations [27]. None of
these consider side-effects however.
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