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Mode I crack tip fields: strain gradient plasticity theory
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Abstract

The mode I crack tip asymptotic response of a solid characterised by strain

gradient plasticity is investigated. It is found that elastic strains dominate

plastic strains near the crack tip, and thus the Cauchy stress and the strain

state are given asymptotically by the elastic K-field. This crack tip elas-

tic zone is embedded within an annular elasto-plastic zone. This feature is

predicted by both a crack tip asymptotic analysis and a finite element com-

putation. When small scale yielding applies, three distinct regimes exist: an

outer elastic K field, an intermediate elasto-plastic field, and an inner elas-

tic K field. The inner elastic core significantly influences the crack opening

profile. Crack tip plasticity is suppressed when the material length scale ℓ

of the gradient theory is on the order of the plastic zone size estimation, as

dictated by the remote stress intensity factor. A generalized J-integral for

strain gradient plasticity is stated and used to characterise the asymptotic

response ahead of a short crack. Finite element analysis of a cracked three
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point bend specimen reveals that the crack tip elastic zone persists in the

presence of bulk plasticity and an outer J-field.

Keywords:

Strain gradient plasticity, Length scales, Asymptotic analysis, Finite

element analysis, Fracture

1. Introduction

Strain gradient plasticity is increasingly used in fracture analyses to pre-

dict the stress elevation that accompanies gradients of plastic strain, see, for

example, (Wei and Hutchinson, 1997; Jiang et al., 2001; Komaragiri et al.,

2008; Nielsen et al., 2012; Mart́ınez-Pañeda et al., 2017b) and references therein.

Gradients of plastic strain are associated with lattice curvature and geo-

metrically necessary dislocations (Ashby, 1970), and the increased disloca-

tion density promotes strengthening. Flow stress elevation in the presence

of plastic strain gradients has been observed in a wide range of mechani-

cal tests on micro-sized specimens. Representative examples are indenta-

tion (Poole et al., 1996; Nix and Gao, 1998), torsion (Fleck et al., 1994), and

bending (Stölken and Evans, 1998). These experiments typically predict a

3-fold increase in the effective flow stress by reducing the size of the speci-

men (smaller is stronger). Isotropic, strain gradient plasticity theories have

been developed to capture this size effect. The pivotal step in construct-

ing these phenomenological models is to write the plastic work increment in

terms of both the plastic strain and plastic strain gradient, thereby introduc-

ing a length scale in the material description (Aifantis, 1984; Gao et al., 1999;

Fleck and Hutchinson, 2001; Gurtin and Anand, 2005). Work-conjugate stress
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quantities for plastic strain and plastic strain gradient follow immediately.

The crack tip stress elevation, as predicted by strain gradient plasticity

theory relative to conventional plasticity theory, plays a fundamental role in

the modelling of numerous damage mechanisms (Mart́ınez-Pañeda and Betegón,

2015; Mart́ınez-Pañeda and Niordson, 2016). Examples include fatigue (Brinckmann and Siegmund,

2008; Pribe et al., 2019), notch mechanics (Mart́ınez-Pañeda et al., 2017a),

microvoid cracking (Tvergaard and Niordson, 2008), and hydrogen embrit-

tlement (Mart́ınez-Pañeda et al., 2016a,b).

In the present study, we examine the mode I crack tip field according

to strain gradient plasticity theory (Gudmundson, 2004; Fleck and Willis,

2009). Previous crack tip asymptotic studies considered earlier gradient

plasticity classes, such as couple-stress theories without stretch gradients

(Huang et al., 1997; Xia and Hutchinson, 1996) or models involving the gra-

dients of elastic strains (Chen et al., 1999). For such theories, plastic strains

dominate elastic strains near the crack tip and the asymptotic nature of the

crack tip field can be obtained by neglecting elasticity. This is analogous to

the HRR (Hutchinson, 1968; Rice and Rosengren, 1968) analysis for a con-

ventional elasto-plastic solid.

We shall show in the present study that the crack tip field for Gudmundson-

type strain gradient theories is of a different nature, such that the asymptotic

crack tip field comprises both elastic and plastic straining, and it is not pos-

sible to simplify the crack tip asymptotic state by neglecting elastic strains.
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Instead, the elastic strain εeij scales as r−1/2 with distance r from the crack

tip, whereas the plastic strain tensor ε
∼

p (x) is of the form

ε
∼

p (x) = ε
∼

p (0) + ε̃
∼

p (x) + · · · (1)

The leading order term ε
∼

p (0) has a finite value independent of x. The

next term in the series, ε̃
∼

p (x), scales as r3/2 where r = |x| is the polar coor-

dinate from the crack tip, and ε̃
∼

p (x) also depends upon the polar coordinate

θ. Thus, we can write εpij in polar coordinates as,

− εprr = εpθθ = A cos (2θ) + r3/2f (θ) + · · · (2)

εprθ = A sin (2θ) + r3/2g (θ) + · · · (3)

Later, in the paper, we shall obtain explicit expressions for the angular

functions f (θ) and g (θ). Thus, the elastic strain is more singular than the

plastic strain and the Cauchy stress σij (r, θ) is given by the usual elastic

K-field in the vicinity of the crack tip.

The following simple argument supports the finding that the crack tip is

surrounded by an elastic K-field in an elastic-plastic strain gradient solid.

Introduce a generalized effective plastic strain Ẽp such that

(

Ẽp
)2

=
2

3
εpijε

p
ij + ℓ2εpij,kε

p
ij,k (4)

in terms of a material length scale ℓ; the comma subscript (),k denotes spa-

tial differentiation with respect to the coordinate xk in the usual manner.

Consider the case of a deformation theory solid, and assume that the plastic

strain energy density wp scales as Ẽp(N+1)
in terms of a strain hardening
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exponent N (where 0 ≤ N ≤ 1). We proceed to show that the elastic strain

must dominate the plastic strain. To do so, we shall explore the consequences

of assuming that the plastic strain dominates the elastic strain near the crack

tip. Then, wp must scale as J/r in order for the energy release rate for crack

advance to be finite at the crack tip. Consequently, Ẽp and ℓεpij,k scale as

r−1/(N+1) and εpij scales as rN/(N+1). We conclude that εpij tends to zero as

the crack tip is approached. If the elastic strain is dominated by the plastic

strain then this implies that εeij tends to zero at a faster rate than rN/(N+1),

and the crack tip will have a strain and a stress concentration of zero. This

is implausible on physical grounds. We conclude that the elastic strain field

must dominate the plastic strain field at the crack tip, and the Cauchy stress

and elastic strain are given by the usual elastic K-field.

2. Strain Gradient Plasticity

We idealise strain gradient effects by means of the Gudmundson (2004)

higher order gradient plasticity model, see also Fleck and Willis (2009). A

brief summary of the constitutive and field equations for a flow theory version

of strain gradient plasticity is now presented.

2.1. Variational principles and balance equations

The primal kinematic variables are the velocity u̇i and the plastic strain

rate ε̇pij. Upon adopting a small strain formulation, the total strain rate reads

ε̇ij =
1

2
(u̇i,j + u̇j,i) (5)

and is decomposed additively into elastic and plastic parts,

ε̇ij = ε̇eij + ε̇pij (6)

5



Write the internal work within a volume V as

δW =

∫

V

(

σijδε
e
ij + qijδε

p
ij + τijkδε

p
ij,k

)

dV (7)

where σij denotes the Cauchy stress, qij the so-called micro-stress tensor

(work-conjugate to the plastic strain εpij) and τijk is the higher order stress

tensor (work-conjugate to the plastic strain gradient εpij,k). The volume V

is contained within a surface S of unit outward normal ni. Now make use

of Gauss’ divergence theorem to re-express δW as the external work on the

surface S,

δW =

∫

S

(

σijnjδui + τijknkδε
p
ij

)

dS (8)

to obtain the following equilibrium equations within V :

σij,j = 0

sij = qij − τijk,k (9)

Here, sij is the deviatoric part of the Cauchy stress such that sij = σij −
δijσkk/3. Equations (7) and (8) constitute the Principle of Virtual Work,

∫

V

(

σijδε
e
ij + qijδε

p
ij + τijkδε

p
ij,k

)

dV =

∫

S

(

Tiδui + tijδε
p
ij

)

dS (10)

where Ti = σijnj and tij = τijknk denote the conventional and higher order

tractions, respectively.

2.2. Constitutive laws

The elastic strain εeij gives rise to an elastic strain energy density,

we =
1

2
εeijCijklε

e
kl (11)
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where Cijkl = Cklij is the isotropic elastic stiffness tensor, given in terms

of Young’s modulus E and Poisson’s ratio ν. We identify the elastic work

increment σijδε
e
ij with δwe such that

σij =
∂we

∂εeij
= Cijklε

e
kl (12)

The stresses (qij , τijk) are taken to be dissipative in nature and we assume

that the plastic work rate ẇp reads,

qijδε̇
p
ij + τijkδε̇

p
ij,k = δẇp (13)

where ẇp(Ėp) is given in terms of a combined effective plastic strain rate,

Ėp =

(

2

3
ε̇pij ε̇

p
ij + ℓ2ε̇pij,kε̇

p
ij,k

)1/2

(14)

thereby introducing a material length scale ℓ. The use of (13) implies imme-

diately that

qij =
∂ẇp

∂ε̇pij
=

∂ẇp

∂Ėp

∂Ėp

∂ε̇pij
(15)

and

τijk =
∂ẇp

∂ε̇pij,k
=

∂ẇp

∂Ėp

∂Ėp

∂ε̇pij,k
(16)

Upon introducing an overall effective stress Σ = ∂ẇp/∂Ėp, these expres-

sions reduce to

qij =
2

3

Σ

Ėp
ε̇pij and τijk =

Σ

Ėp
ℓ2ε̇pij,k (17)

Note that Σ is work conjugate to Ėp, such that it satisfies

ΣĖp = qij ε̇
p
ij + τijkε̇

p
ij,k (18)

and, upon making use of (14) and (17) we obtain the relation

Σ =

(

3

2
qijqij + ℓ−2τijkτijk

)1/2

(19)
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3. Asymptotic analysis of crack tip fields

3.1. Deformation theory solid

We begin our study by conducting an asymptotic analysis of the stress

and strain state at the crack tip. As already discussed in the introduc-

tion, consider a deformation theory solid such that the strain energy density

w
(

εeij , ε
p
ij, ε

p
ij,k

)

is decomposed into an elastic part we and a plastic part wp,

w
(

εeij, ε
p
ij, ε

p
ij,k

)

= we
(

εeij
)

+ wp
(

εpij, ε
p
ij,k

)

(20)

The elastic contribution is stated explicitly by (11). For the deformation

theory solid the effective strain quantity Ẽp has already been introduced by

(4). The dissipation potential wp is taken to be a power law function of Ẽp

wp
(

Ẽp
)

=
σY εY
N + 1

(

Ẽp

εY

)N+1

(21)

in terms of a reference value of strength σY , yield strain εY = σY /E and hard-

ening index N (where 0 ≤ N ≤ 1). Upon writing the dissipation increment

δwp as

δwp = qijδε
p
ij + τijkδε

p
ij,k (22)

and upon introducing the notation Σ = ∂wp/∂Ẽp, we have

qij =
∂wp

∂εpij
= Σ

∂Ẽp

∂εpij
=

2

3

Σ

Ẽp
εpij (23)

τijk =
∂wp

∂εpij,k
= Σ

∂Ẽp

∂εpij,k
= ℓ2

Σ

Ẽp
εpij,k (24)

We note in passing that substitution of (23)-(24) into (4) recovers (19),

and the relation between Σ and Ẽp is of power law type, such that

Σ =
∂wp

∂Ẽp
= σY

(

Ẽp

εY

)N

(25)
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via (22).

3.2. Energy boundness analysis

We proceed to obtain the asymptotic nature of εpij (r, θ). The finite ele-

ment solutions presented later in the study consistently reveal that the de-

viatoric Cauchy stress sij scales as r
−1/2. We shall adopt this scaling law for

sij and explore its ramifications. First, note from (23) and (24) that τijk,

and consequently τijk,k, are more singular in r than qij , as the crack tip is

approached. Then, the equilibrium relation (9)b demands that

sij ∼ −τijk,k (26)

to leading order in r, and consequently τijk is of order r1/2. This imposes a

severe restriction on the form of εpij (r, θ). Assume the separation of variables

form for εpij in terms of its Cartesian components

εpij = Aij + rαBij (θ) + · · · (27)

where Aij is taken to be independent of θ and the index α > 0 remains to be

found. First we show that this form satisfies the field equations, and second

we justify this choice. Accordingly, the plastic strain gradient reads

εpij,k = αrα−1B̄ijk (θ) + · · · (28)

where B̄ijk can be expressed in terms of Bij (θ) and its derivatives with respect

to θ. Substitution of (27) and (28) into (4) gives

(

Ẽp
)2

=
4

3
AijAij + · · · (29)
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along with
Σ

Ep

= σY

(

2√
3εY

)N−1

(AijAij)
N−1

2 (30)

Consequently, (26), (24) and (28) give

sij = −ℓ2σY

(

2√
3εY

)N−1

(ApqApq)
N−1

2

(

rα−1B̄ijk (θ)
)

,k
(31)

Upon recalling that sij scales as r−1/2 the above equation implies that

α = 3/2 for consistency. The above solution reveals that the elastic strain

energy density wE scales as r−1 while the plastic strain energy density scales

as r0, upon recalling (21) and (29). Now recall that we require w ∼ J/r in

order for w = we + wp to give a finite energy release rate J at the crack tip.

This is achieved by the elastic field whereas the plastic field is not sufficiently

singular in r to give any contribution to the energy release rate. Alternative

assumptions can be made for the series expansion of εpij in preference to (27).

However, these do not give rise to an equilibrium solution (i.e., Eq. (26) is

not satisfied) or they give solutions that are less singular than that of (29).

For example, if we assume that the Cartesian components Aij are a function

of θ we find that εpij,k scales as r−1 and τijk,k scales as r−(N+1), and the equi-

librium relation (29) for sij is violated. Alternatively, if we take Aij = 0 then

an equilibrium solution for sij is obtained provided we take α = N/(N + 1).

This leads to a higher order term in the series expansion of εpij than that

given by the first two terms of (29). Finally, what is the implication of as-

suming that α < 0 in our asymptotic expression (29)? If we were to assume

α < 0, then the leading order term becomes rαBij (θ). Asymptotic matching

of both sides of the equilibrium relation (26) again results in α = N/(N +1),

which is inconsistent with the initial assumption that α < 0.

10



In summary, the plastic strain field εpij (r, θ) is of the asymptotic form (27)

with α = 3/2, and the crack tip field for Cauchy stress σij (r, θ) and elastic

strain εeij (r, θ) is given by the usual K-field for a mode I crack.

3.3. Asymptotic crack tip fields

Assume that the leading order terms in εpij, in polar coordinates, are of

the form (2)-(3). This choice is consistent with the nature of the symmetry of

the solution of a mode I crack tip problem; εpθθ and εprr are even in θ and give

rise to εpyy = A = −εpxx, ε
p
xy = 0 in Cartesian coordinates. The components

of the plastic strain gradient and the Laplacian of the plastic strain read

εprr,r =
∂εprr
∂r

= −3

2
r1/2f (θ) (32)

εprr,θ =
1

r

(

∂εprr
∂θ

− 2εprθ

)

= −r1/2 [3f ′ (θ)− 2g (θ)] (33)

εprθ,r =
∂εprθ
∂r

=
3

2
r1/2g (θ) (34)

εprθ,θ =
1

r

(

∂εprθ
∂θ

+ 2εprr

)

= r1/2 [g′ (θ)− f (θ)] (35)

and,

εprr,kk =
∂2εprr
∂r2

+
1

r

∂εprr
∂r

+
1

r2
∂2εprr
∂θ2

− 2

r2

(

εprr − εpθθ + 2
∂εprθ
∂θ

)

(36)

= r−1/2

[

7

4
f (θ)− f ′′ (θ) + 4g′ (θ)

]

εprθ,kk =
∂2εprθ
∂r2

+
1

r

∂εprθ
∂r

+
1

r2
∂2εprθ
∂θ2

+
2

r2

(

∂εprr
∂θ

− ∂εpθθ
∂θ

− 2εprθ

)

(37)

= r−1/2

[

−7

4
g (θ) + g′′ (θ)− 4f ′ (θ)

]
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Nowmake use of the higher order equilibrium equation (9)b, which asymp-

totically implies sij ≈ −τijk,k. Note that, as r → 0, Ẽp is of leading order

2A/
√
3 and can therefore be treated as a constant. As argued above and

demonstrated numerically below, the Cauchy stress is characterized by an

inner elastic K-field. Consequently, we make use of the Williams (1957)

solution to write

srr =
KI

4
√
2πr

[

cos

(

θ

2

)

− cos

(

3θ

2

)]

(38)

srθ =
KI

4
√
2πr

[

sin

(

θ

2

)

+ sin

(

3θ

2

)]

(39)

where KI is the mode I stress intensity factor. The higher order equilibrium

follows by suitable substitution of (36)-(39) into (24) and (9)b, to give

KIẼ
p

4Σ
√
2π

[

cos

(

θ

2

)

− cos

(

3θ

2

)]

= −7

4
f (θ) +

∂2f (θ)

∂θ2
+ 4

∂g (θ)

∂θ
(40)

KIẼ
p

4Σ
√
2π

[

sin

(

θ

2

)

+ sin

(

3θ

2

)]

=
7

4
g (θ)− ∂2g (θ)

∂θ2
+ 4

∂f (θ)

∂θ
(41)

In addition, the symmetry condition ahead of a mode I crack tip demands

that f (θ) is an even function of θ. Thus, the solution to the system of

differential equations is given by

f (θ) = − KIẼ
p

16Σ
√
2π

[

2 cos

(

3θ

2

)

+ cos

(

θ

2

)

+ a1 cos

(

θ

2

)

+ a3 cos

(

7θ

2

)]

(42)

g (θ) = − KIẼ
p

16Σ
√
2π

[

2 sin

(

3θ

2

)

− sin

(

θ

2

)

+ a1 sin

(

θ

2

)

+ a3 sin

(

7θ

2

)]

(43)

Now make use of the traction-free boundary conditions trr = tθθ = 0

along the crack flanks (θ = π) to obtain a relation between the constants a1

12



and a3. Free boundary conditions on the higher order traction τθθθ = 0 on

θ = π implies that

f ′ (θ) + 2g (θ) = 0 at θ = π (44)

rendering a1 = 7/3 − a3. Imposition of vanishing higher order traction

τrθθ = 0 on θ = π is identically satisfied and provides no useful additional in-

formation on (a1, a3). It follows that numerical analysis is needed to calibrate

a1 and a3 and obtain a full field solution.

4. Finite element analysis

4.1. Numerical implementation

Wemake use of the finite element implementation of Mart́ınez-Pañeda et al.

(2019) and employ the viscoplastic potential presented by Panteghini and Bardella

(2016). The effective stress is related to the gradient-enhanced effective plas-

tic flow rate through a viscoplastic function,

Σ = σF (Ep) V (Ėp) (45)

where the current flow stress σF depends on the initial yield stress σY and

on Ep via a hardening law. We adopt the following isotropic hardening law,

σF = σY

(

1 +
Ep

εY

)N

(46)

and assume that the yield strain is εY = σY /E = 0.003. The viscoplastic

function V (Ėp) is defined as

V (Ėp) =











Ėp/ (2ε̇0) if Ėp/ε̇0 ≤ 1

1− ε̇0/
(

2Ėp
)

if Ėp/ε̇0 > 1

(47)
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and the rate-independent limit is achieved by choosing a sufficiently small

value of the material parameter ε̇0. The numerical experiments conducted

show that the ratio Ėp/ε̇0 is sufficiently high that V (Ėp) ≈ 1 in the vicinity

of the crack for all remote K values considered.

A mixed finite element scheme is adopted, such that displacements and

plastic strains are treated as primary variables, in accordance with the the-

oretical framework. The non-linear system of equations for a time t +∆t is

solved iteratively by using the Newton-Raphson method,





u

εp





t+∆t

=





u

εp





t

−





Ku,u Ku,εp

Kεp,u Kεp,εp





−1

t





Ru

Rεp





t

(48)

where the residuals comprise the out-of-balance forces,

R
n
u =

∫

V

σijB
n
ij dV −

∫

S

TiN
n
i dS (49)

R
n
εp =

∫

V

[

(qij − sij)M
n
ij + τijkM

n
ij,k

]

dV −
∫

S

tijM
n
ij,k dS (50)

Here, Bij denotes the strain-displacement matrix, and Ni and Mij are the

shape functions for the nodal values of displacement and plastic strain com-

ponents. The components of the consistent stiffness matrix are obtained by

differentiating the residuals with respect to the incremental nodal variables.

The reader is referred to Mart́ınez-Pañeda et al. (2019) for full details.

4.2. The small scale yielding solution

We make use of the so-called boundary layer formulation to prescribe an

outerK-field. Consider a crack with tip at the origin and with the crack plane

14



along the negative axis of the Cartesian reference frame (x, y). A remote K

field is imposed by prescribing the nodal displacements in the outer periphery

of the mesh as,

ui =
K

E
r1/2fi (θ, ν) (51)

where ν is Poisson’s ratio and the functions fi (θ, ν) are given by

fx =
1 + ν√
2π

(3− 4ν − cos θ) cos

(

θ

2

)

(52)

and

fy =
1 + ν√

2π
(3− 4ν − cos θ) sin

(

θ

2

)

(53)

Upon exploiting the symmetry about the crack plane, only half of the

finite element model is analysed. A mesh sensitivity study reveals that it

is adequate to discretise the domain by approximately 5200 plane strain,

quadratic, quadrilateral elements.

A representative small scale yielding solution is now presented in Figs.

1 and 2, for the choice K = 20σY

√
ℓ, N = 0.1, εY = 0.003, and ν = 0.3.

Conventional J2 flow theory implies a plastic zone size R0 of magnitude

R0 =
1

3π

(

K

σY

)2

(54)

and so the choice K = 20σY

√
ℓ implies R0 = 42ℓ. Consequently, the plastic

zone size is much larger than ℓ for the strain gradient solid also. The plastic

zone is plotted in Fig. 1 by showing contours of von Mises plastic strain,

εp =

(

2

3
εpijε

p
ij

)1/2

(55)
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In broad terms, the outer boundary of the plastic zone is given by the con-

tour εp/εY = 0.1. Additional contours for εp/εY = 1 and 3 are included. It

is found that εp/εY attains a plateau value slightly greater than 3 within the

contour εp/εY = 3. Consequently, the stress state within this crack tip zone

is elastic in nature. This finding is supported by a plot of tensile stress σyy as

a function of r directly ahead of the crack tip (y = 0), see Fig. 2a. The stress

component σyy scales as r−1/2 for sufficiently small r. Likewise, the elastic

strain component εeyy scales as r−1/2 for r/ℓ < 1, see Fig. 2b. Farther from

the crack tip (1 < r/ℓ < 10) the stress profile σyy varies with r in the manner

of the HRR field, σθθ ∼ r−N/(N+1). Beyond the plastic zone (r/ℓ > 10) the

stress state again converges to the elastic K-field and σyy scales as r−1/2.

Thus, both an outer and an inner K field exist. The distributions of εeyy(r)

and εpyy(r) are shown in Fig. 2b. Within the elastic zone at the crack tip, and

in the outer elastic zone, we have εeyy >> εpyy. In contrast, within the annual

region of the crack tip plastic zone, the plastic strains dominate and εpyy > εeyy.

The following J-integral argument can be used to show that the magni-

tude of K for the crack tip elastic zone is identical to that in the outer field.

Write the potential energy P of the cracked solid as

P (a) =

∫

V

w dV −
∫

ST

(

T∞

i ui + t∞ij ε
p
ij

)

dS (56)

where (T∞

i , t∞ij ) are the prescribed tractions on a partial boundary ST , with

outward normal ni. Define J as the energy release rate per unit crack exten-

sion, such that

J = −∂P

∂a
(57)
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for a body of unit thickness in the z direction. Note that

∮

(

wnx − σijnjui,x − τijknkε
p
ij,x

)

dS ≡ 0 (58)

for any closed contour in the solid that excludes the crack tip. Also note

that σijnj = 0 and τijknk = 0 on the faces of a traction-free crack. Then, an

evaluation of J for a contour Γ which encloses the crack tip, starts on the

lower crack flank and ends on the upper flank, gives

J =

∫

Γ

(

wnx − σijnjui,x − τijknkε
p
ij,x

)

dS (59)

where the crack lies along the negative x-axis. The proof is straightforward

and follows that outlined by (Eshelby, 1956; Rice, 1968) for the conventional

deformation theory solid, absent strain gradient effects.

Now evaluate the contour integral J assuming that the stress state (and

associated strain energy density w) is given by an elastic K-field. Direct

evaluation gives the Irwin relation EJ/(1− ν2) = K2. Upon performing this

integration within the crack tip elastic zone of the strain gradient solid, and

repeating the evaluation in the outer K-field remote from the crack tip, path

independence of J immediately implies that the magnitude of K is the same

in the two zones.

4.3. Sensitivity of crack tip fields to strain hardening and material length

scale

We proceed to examine the influence of the strain hardening exponent N

upon the crack tip stress state, see Fig. 3a. Consistent with the analytical
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asymptotic analysis of Section 3, the near-tip asymptotic response is inde-

pendent of the value of N and the three regimes (outer K, elastic-plastic field

and inner K) can be readily identified for the three values of N considered.

The strain state near the crack tip is shown in the form of the components εpyy

and εyy versus r/ℓ in Fig. 3b. The asymptotic value of εpyy(r → 0) increases

slightly with decreasing N . The zone of almost constant εpyy near the crack

tip is of similar size for N = 0.1, 0.2 and 0.3: the size of the elastic core

scales with ℓ and is independent of N .

The dependence of εpyy(r → 0) upon K/(σY

√
ℓ) is plotted in Fig. 4 for

selected values of N . At small K/(σY

√
ℓ), negligible plasticity exists near

the crack tip - the plastic zone vanishes. At larger K/(σY

√
ℓ) a plastic zone

exists and εpyy(r → 0) increases.

The tensile stress component σyy is shown as a function of r in Fig. 5 for

several values of ℓ/R0. The reference size of the plastic zone R0 is given by

Irwin’s approximation (54). For the strain gradient solid the plastic zone is

approximately of size R0 since σyy/σY ≈ 1 at r/R0 = 1 for all ℓ/R0 values

considered. Also, the inner elastic zone is of extent ℓ to a good approxima-

tion. Consequently, the active plastic zone exists between r ∼ ℓ and r ∼ R0.

4.4. Influence on the crack profile and in inhibiting plasticity

Strain gradient plasticity influences the crack tip profile δ(r) behind the

crack tip. Fig. 6 shows the crack opening profile for conventional (ℓ = 0)

and strain gradient plasticity (ℓ = 0.05R0), along with the solutions from the

HRR field and from linear elasticity. The HRR field crack opening profile is
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given by

σYEδ

K2
= α

(

rσYE

K2

)
N

N+1

(60)

while the elastic solution reads

σYEδ

K2
= β

(

rσYE

K2

)
1

2

(61)

with α = 0.18 and β = 0.48. The finite element results show large differences

between conventional and gradient-enhanced plasticity solutions. Strain gra-

dient plasticity sharpens the crack profile to resemble that of an elastic solid.

Now consider the sensitivity of the plastic zone size rp to the magnitude

of K/(σY

√
ℓ). We have already noted that, when K/(σY

√
ℓ) is significantly

large, the plastic zone size scales with Irwin’s approximation R0 as given

by (54). In contrast, when K/(σY

√
ℓ) is small, we anticipate that the inner

elastic core of dimension ℓ dominates the plastic zone; this is shown in Fig.

7. In order to define the size of the plastic zone rp, a criterion is needed

for active yielding. Here, we assume that the plastic zone extends to either

the location where εp/εY = 0.1 or 1, see Fig. 7. It is clear from the figure

that the plastic zone size rp scales with K2/σ2
Y in the same manner as the

conventional elastic-plastic solid for sufficiently large K/(σY

√
ℓ). However,

at small K/(σY

√
ℓ), on the order of 5 to 10, the plastic zone vanishes. At an

intermediate value ofK/(σY

√
ℓ) the active plastic zone for the strain gradient

solid is somewhat larger than that predicted for the conventional solid.

4.5. Regime of J-dominance

The small scale yielding (SSY) approach is valid provided the crack

length is much greater than the plastic zone size R0 at the onset of frac-
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ture, a > 7.5πR0. Thus, on a map with axes a/R0 and ℓ/R0 the small scale

yielding regime exists for a/R0 > 7.5π; this is shown explicitly in Fig. 8. If

a/R0 is in the range 75πεY < a/R0 < 7.5π, then a J-field exists near the

crack tip and the valid loading parameter becomes J instead of K. This

regime of J-dominance is also sketched in Fig. 8. We proceed to explore

the stress state near the crack tip for the case of J-dominance. To do so

we consider a deeply notched beam in three point bending and calculate the

tensile stress state ahead of the crack tip.

We follow the ASTM E 1820-01 Standard2 and model a three point single

edge bend specimen, as outlined in Fig. 9. We take advantage of symme-

try and model only half of the specimen, with a total of 24000 quadratic

quadrilateral plane strain elements. The J-integral is computed following

the ASTM E 1820 Standard,

J = Je + Jp (62)

with Je being computed from the remote load and the specimen dimensions

and Jp being calculated from the area below the force versus displacement

curve. A reference length scale R0 can be defined from the estimated value

of J as

R0 =
1

3π (1− ν2)

EJ

σ2
Y

(63)

Crack tip stresses for a/R0 = 0.8 and W/R0 = 1.6 are shown in Fig. 10

for strain gradient plasticity (ℓ/R0 = 0.1) and conventional plasticity theory.

2Standard No. ASTM E 1820-01 “Standard Test Method for Measurement of Fracture

Toughness,” American Society for Testing and Materials, Philadelphia, PA.
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Finite element results reveal that the elastic core is still present for the case

of J-dominance; the strain gradient plasticity prediction exhibits the elastic

1/
√
r singularity as r → 0. Thus short cracks, where small scale yielding

does not apply, also exhibit an elastic stress state near the crack tip.

5. Conclusions

We examine, numerically and analytically, the crack tip asymptotic re-

sponse in metallic materials. The solid is characterised by strain gradient

plasticity theory, aiming to phenomenologically link scales in fracture me-

chanics by incorporating the stress elevation due to dislocation hardening.

Results reveal that an elastic zone is present in the immediate vicinity of

the crack tip. The stresses follow the linear elastic r−1/2 singularity and the

plastic strains reach a plateau at a distance to the crack tip that scales with

the length scale of strain gradient plasticity ℓ. The dominant role of elastic

strains in the vicinity of the crack invalidates asymptotic analyses that ne-

glect their contribution to the total strains. The existence of an elastic core

is reminiscent of a dislocation free zone, as introduced by Suo et al. (1993).

The emergence of an elastic core has important implications on the on-

set of plasticity and the crack opening profile. Numerical predictions show

that strain gradient plasticity sharpens the crack opening profile to that of

an elastic solid. Differences with conventional plasticity are substantial and

results suggest that an experimental characterisation of the crack opening

profile could be used to infer the value of the length scale parameter. On the

other hand, plasticity is precluded if the remote load is not sufficiently large,
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such that the plastic zone size (as given by, e.g., Irwin’s approximation) falls

within the elastic core domain.

In addition, we show that the inner elastic regime is also present when

the crack is small and an outer elastic K field does not exist. A generalised

J-integral is presented for strain gradient solids and the stress fields are

computed under J-dominance conditions in a three point single edge bend

specimen.

Finally, we note that the material length scale ℓ is on the order of a few

microns for most metals. This is roughly the smallest scale at which void

nucleation and growth occur, suggesting that the transition to an inner zone

dominated by elasticity will have important implications in quasi-cleavage

but play a secondary role in ductile fracture.
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Figure 2: Tensile (a) stress and (b) strain ahead of the crack tip for a strain gradient solid
at K = 20σY

√
ℓ. Material properties: N = 0.1, εY = 0.003, and ν = 0.3.
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Figure 3: Tensile (a) stress and (b) strain ahead of the crack tip for a strain gradient
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Figure 4: Crack tip plastic strain component εpyy as a function of the remote load for
different strain hardening exponents. Material properties: εY = 0.003, and ν = 0.3.
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Figure 5: Tensile stress ahead of the crack tip for a strain gradient solid with different
values of the length scale parameter at K = 20σY
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