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Fatima Magdi Hamza Baldo 
 
This research aims to utilise ligand-based target prediction to (i) understand the mechanism 
of action of African natural products (ANPs), (ii) help identify patterns of phylogenetic use in 
African traditional medicine and (iii) elucidate the mechanism of action of phenotypically 
active small molecules and natural products with anti-trypanosomal activity.  
 
In Chapter 2 the objective was to utilise ligand-based target prediction to understand the 
mechanism of action of natural products (NPs) from African medicinal plants used against 
cancer. The Random Forest classifier used in this work compares the similarity of the input 
compounds from the natural product dataset with compound-target combinations in the 
training set. The more similar they are in structure, the more likely they are to modulate the 
same target. Natural products from plants used against cancer in Africa were predicted to 
modulate targets and pathways directly associated with the disease, thus understanding their 
mechanism of action e.g. “flap endonuclease 1” and “Mcl-1”. The “Keap1-Nrf2 Pathway” 
and “apoptosis modulation by HSP70”, two pathways previously linked to cancer (which are 
not currently targeted by marketed drugs, but have been of increasing interest in recent years) 
were predicted to be modulated by ANPs.  
 
In Chapter 3, we aimed to identify phylogenetic patterns in medicinal plant use and the role 
this plays in predicting medicinal activity. We combined chemical, predicted target and 
phylogenetic information of the natural products to identify patterns of use for plant families 
containing plant species used against cancer in African, Malay and Indian (Ayurveda) 
traditional medicine. Plant families that are close phylogenetically were found to produce 
similar natural products that act on similar targets regardless of their origin. Additionally, 
phylogenetic patterns were identified for African traditional plant families with medicinal 
species used against cancer, malaria and human African trypanosomiasis (HAT). We 
identified plant families that have more medicinal species than would statistically be expected 
by chance and rationalised this by linking their activity to their unique phyto-chemistry e.g. 
the napthyl-isoquinoline alkaloids, uniquely produced by Acistrocladaceae and 
Dioncophyllaceae, are responsible for anti-malarial and anti-trypanosome activity.  
 
In Chapter 4, information from target prediction and experimentally validated targets was 
combined with orthologue data to predict targets of phenotypically active small molecules 
and natural products screened against Trypanosoma brucei. The predicted targets were 
prioritised based on their essentiality for the survival of the T. brucei parasite. We predicted 
orthologues of targets that are essential for the survival of the trypanosome e.g. glycogen 
synthase kinase 3 (GSK3) and rhodesain. We also identified the biological processes 
predicted to be perturbed by the compounds e.g. “glycolysis”, “cell cycle”, “regulation of 
symbiosis, encompassing mutualism through parasitism” and “modulation of development of 
symbiont involved in interaction with host”.  
 
In conclusion, in silico target prediction can be used to predict protein targets of natural 
products to understand their molecular mechanism of action. Phylogenetic information and 
phytochemical information of medicinal plants can be integrated to identify plant families 
with more medicinal species than would be expected by chance.  
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CHAPTER 1: INTRODUCTION  

1.1 TRADITIONAL AFRICAN MEDICINES 

Humans have used traditional medicines since before written history began, ranging 

from the Neanderthals in the Palaeolithic era1, the Sumerians in Mesopotamia2, Ancient 

Egyptians2, to India since 4000 BC3 and China since 2000 BC. Traditional medicines 

consist of: (a) entire organisms e.g. plant or animal, (b) part of an organism e.g. leaf or 

gland, (c) extracts, (d) exudates, (e) pure compounds or (f) venoms and toxins4. The 

early use of traditional medicines drives our aim to investigate the underlying 

mechanism of action of the NPs they contain. 

 

The WHO5 estimates that more than 30% of the population in developed countries and 

more than 80% of the population in developing countries use herbal medicines either 

to promote and maintain health or as treatments for diseases such as malaria, dysentery, 

and cancer. The significant use of traditional medicine by the population of developing 

countries may be attributed to the inadequate availability of pharmaceuticals in those 

areas, the low purchasing power of these communities, and that these natural products 

seem to work.  

 

Of particular interest to our work are Traditional African Medicines (TAMs). The 

knowledge of African Traditional medicine is passed on from one generation of healers 

to the next by word of mouth, most often in the form of stories6. Prior to gaining access 

to this knowledge, apprentices are initiated into secret societies where they are educated 

in the aspects of TAM7. Traditional healers are known by different names in Africa e.g. 

sangoma, n’anga, and inyanga. 

 

The main difference between TAM and western medicine is that TAM takes a holistic 

approach to treating illness6, much like TCM8 and Ayurveda9. In Africa a person is 

considered to exist in a balance of different aspects. These are shown in Figure 1:1 

below: 
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Figure 1:1 The different aspects that are in harmony in a healthy individual. 

 

In TAM a person is considered to be in good health when the different aspects are in 

harmony. Alternatively, when one or more of these aspects is out of balance, a person 

becomes ill in health and “spirituality”. In such cases, illness is considered to be caused 

by “supernatural ancestor spirit anger”10. During the healing procedure, all aspects 

(“spiritual”, “moral”, “social” or “physical disorders”) are addressed. Thus, the holistic 

regimen taken in TAM includes not only the pharmacology of the medicine, but also 

physical characteristics of the medicine, e.g. aroma, taste, shape and colour, as well as 

attendant rituals, e.g. “incantation and song”11. The work in this thesis focuses on the 

pharmacological aspect of TAMs in the treatment of “physical disorders”. 

 

Plants that are the source of drugs (e.g. atropine, strychnine, the ergot alkaloids, 

physostigmine, d-tubocurarine), used in western medicine to selectively target the cause 

of the disease, are rarely used in TAM. This is due to a lack of precision technology in 

administering controlled doses of the plants6. Nevertheless, drugs have been discovered 

from African medicinal plants (see Table 1:1). This table shows the African medicinal 

plant and the natural products isolated from it that are responsible for medicinal activity. 

There are very few marketed drugs from these medicinal plants; these include 

Vincristine, Vinblastine and Reserpine, used as anti-cancer, anti-hypertensive and anti-

psychotic respectively. The very small number of medicines isolated from the ~45,000 

plants in the African flora11 (5,000 of which have documented medicinal use11) allows 

a great deal of scope for further exploration and exploitation. 
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Table 1:1 Drugs from African medicinal plants 

Plant Activity Natural Product 

Catharanthus roseus L. Anti-cancer 
Vincristine 

Vinblastine 

Combretum caffrum 

(Eckl. & Zeyh.) Kuntze 
Anti-cancer Combretastatins 

Pausinystalia johimbe (K. 

Schum.) Pierre ex Beille 
α-adrenergic agonist Yohimbine 

Physostigma venunosum 

Balf. 
Cholinesterase inhibitor Physostigmine 

Rawolfia vomitoria Afzel. 
Anti-hypertensive 

Anti-psychotic 
Reserpine 

Strophanthus gratus 

(Wall. &Hook.) Baill. 
Cardiotonic Ouabain 

Tabernanthe iboga Baill. Hallucigenic Ibogaine 

 

1.1.1 AFRICAN NATURAL PRODUCTS AND CANCER 

As can be seen from the table above, natural products (which in the context of this work 

are “isolated and purified compounds from plant extracts” and their derivatives) 

isolated from medicinal plants from Africa play a role in the treatment of cancer. Cancer 

is a group of diseases characterised by an abnormal growth of cells. A cancerous growth 

is a malignant tumour whose cells continue to grow and divide uncontrollably and 

without coordination with normal tissues, and can then invade surrounding organs and 

other parts of the body12. According to the WHO, it is the second leading cause of 

death13 after cardiovascular diseases, accounting for 8.8 million deaths in 2015. The 

most prevalent cancers in Africa are cervical cancer, breast cancer, liver cancer and 

prostate cancer, as well as Kaposi’s sarcoma and non-Hodgkin’s lymphoma13. 

 

The biological steps involved in the different stages of human cancer development, 

defined by Hanahan and Weinberg in 200012, are sustaining proliferative signalling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, 

inducing angiogenesis, and activating invasion and metastasis. These were updated in 

201114 to include deregulating cellular energetics and evading immune destruction. 

Modulation of targets involved in the pathways of these hallmarks forms the basis of 

targeted anti-cancer therapy. One of the main aspects to consider when studying NPs 

isolated from traditional medicines used against cancer is the definition of cancer as 
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used by traditional healers. “Cancer” in this case can include tumours, warts, excessive 

growths, excrescences, polyps, pustules and corns 15, 16. These presentations may or 

may not be malignant and may present anywhere in the body. In the context of this 

work, the Western definition of cancer is used when considering plants to be studied. 

 

Eighty-five of the 175 drugs (i.e. 49%) approved by the FDA for cancer treatment 

between 1940-2014 have either been NPs or derived from them17. The alkaloids 5-

methoxymaculine, flindersiamine and 7-hydroxy-8-methoxydictamine from the plant 

Oricia suaveolens (Rutaceae) have shown significant cytotoxicity against lung 

adenocarcinoma cell lines, with IC50 values of 9.5, 7.9 and 8.9 μM respectively18. The 

vinca alkaloids from Catharnathus rosaeus are a prime example of African plants that 

are currently in the market as anti-cancer agents and are used for their antimicrotubule 

activity19. Terpenoids have been shown to supress NF-κB signalling20, which is 

important in the pathogenesis of inflammatory diseases and cancer. These studies and 

others provided in the review by Simoben et al21 and Nwodo et al22 provide a promising 

start to the chance of finding novel NPs from TAMs with anti-cancer activity, as well 

as identifying the mechanism of action of those with activity. 

   

1.1.2 HUMAN AFRICAN TRYPANOSOMIASIS  

TAMs are also used to ameliorate or treat human African trypanosomiasis23. Human 

African trypanosomiasis (HAT) is a parasitic disease transmitted by the tsetse fly 

(Glossina sp) in 36 sub-Saharan African countries. It is caused by two kinetoplastids, 

namely, Trypanosoma brucei gambiense (west Africa) and Trypanosoma brucei 

rhodesiense (central and east Africa).  A summary of the lifecycle of Trypanosoma 

brucei is shown in Figure 1:2. 
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Figure 1:2 Life cycle of Trypanosoms brucei. Human stage: The tsetse fly bites a mammalian host delivering 

growth-arrested metacyclic trypomastigotes into the lymphatic system and eventually the blood stream. The 

metacyclic trypomastigotes differentiate into bloodstream trypomastigotes (long slender forms of the parasite), 

causing a bloodstream infection. They then penetrate the CNS by crossing the BB where they continue to replicate 

by binary fission. Tsetse fly stage: This is initiated when a tsetse fly takes short stumpy forms of the parasite in a 

blood meal from a mammalian host. They are transported to the midgut where they replicate by binary fission into 

procyclic trypomsatigotes and infect the midgut. The midgut procyclic trypomastigotes migrate within the fly to 

reach the proventiculus where they undergo differentiation and assymetric division to produce 1 long epimastigote 

and 1 short epimastigote. They then migrate onwards towards the salivary gland where the short epimastigote 

attaches to the salivary gland epithelium and undergoes assymetric division to metacyclic trypomastigotes, hence 

completing the cycle. (This image is a work of the Centers for Disease Control and Prevention, part of the United 

States Department of Health and Human Services, taken or made as part of an employee's official duties. As a work 

of the U.S. federal government, the image is in the public domain.) 

 

Good control efforts have decreased the number of cases from 50,000 deaths in 2001 

to fewer than 10,000 in 2009 and 2,804 reported cases in 2015. It is estimated that 

11,000 people are currently affected.24 The disease can be characterised by two stages: 

the symptoms of the first stage are fevers, headaches, itchiness and joint pains; and 

symptoms of the second stage (which occur when the parasite crosses the blood brain 

barrier (BBB) by expressing a parasite version of cysteine proteases causing an increase 

https://en.wikipedia.org/wiki/en:Centers_for_Disease_Control_and_Prevention
https://en.wikipedia.org/wiki/en:United_States_Department_of_Health_and_Human_Services
https://en.wikipedia.org/wiki/en:United_States_Department_of_Health_and_Human_Services
https://en.wikipedia.org/wiki/Federal_Government_of_the_United_States
https://en.wikipedia.org/wiki/public_domain
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in the oscillatory pattern of calcium ions in the cell) include confusion and trouble 

sleeping.  

 

Treatment for the first stage is by Pentamidine and Suramin, whereas for the second 

stage, Melarospol, Elfornithine or a combination of Elfornithine and Nifutimox are 

used. Current drugs (i) have toxic side effects, e.g. encephalopathy (Melarospol)25, (ii) 

require skilled workers for administration (all drugs)26, (iii) have complex 

administration regimens (Elfonithine)26 or (iv) are developing resistance 

(Melarospol)26. Potential new drugs for HAT in the drug discovery pipeline include 

Oxaboroles27 (Preclinical), and Fexinidazole28 which is currently in Phase III trials. 

Insufficient market forces could explain the lack of drive for more drugs entering the 

pipeline. 

 

Current approaches to antitrypanosoid drug discovery include target-based screening29 

and phenotypic screening30. Both have advantages and drawbacks, discussed by Field 

et al31 and Pink et al32. The recently published genome sequence of Trypanosoma 

brucei revealed approximately 1,500 genes coding for immunogenic Variant Surface 

Glycoproteins (VSG), which are the targets of vaccines33. For each individual 

organism, only one VSG is expressed at a time34. The VSG changes semi-randomly in 

1 in every 100 cell divisions, meaning the antibodies generated by the body against the 

VSG no longer recognise the surface antigen of the parasite or its progeny as they have 

a new VSG coat35, making it extremely difficult to develop a vaccine against HAT. It 

is thus important to identify new targets for anti-trypanosomals and to understand their 

MoA. The only validated target in HAT is ornithine decarboxylase36, but others are 

suspected to be drug targets e.g. cysteine proteases, responsible for haemoglobin 

degradation, turnover of VSG and crossing of the BBB37; type II enoyl-acyl carrier 

protein reductase, responsible for fatty-acid biosynthesis38; and trypanothone reductase 

,which is responsible for defence against oxidant and chemical stress39. Table 1:2 shows 

the important points as set out by the DDNDi40 for selecting parasite molecular targets 

and ligands.  In order to be considered a viable target, those targets identified to be 

modulated by compounds must be essential for the survival of the parasite. In this work, 

we consider this factor when predicting targets of phenotypically active anti-

trypanosomal compounds. For the ligand, it is important to consider passage across the 
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blood brain barrier (important for stage 2 of the disease when the parasite crosses into 

the brain tissue). This is also a factor that we consider in this thesis when discussing the 

mode of action of phenotypically active anti-tryapanosomal compounds.  

 

Table 1:2 Important points to consider in selecting parasite molecular targets and ligands 

Target Ligand 

Target must be essential to the viability 

of the parasite (essential targets tend to be 

highly conserved among different 

species which causes a problem of 

selectivity) 

Selectively active on parasite target – in 

some cases the host may have a survival 

mechanism e.g. the turnover rate of 

ornithine decarboxylase in humans is 

faster, thus allowing the ligand to be cidal 

to the parasite which is unable to 

regenerate the enzyme at a sufficient 

speed to overcome blockade 

Must be amenable to modulation by 

drug-like ligands 

Permeable in order to be able to access 

the target 

Open to selective inhibition Cross BBB 

Structurally and chemically 

characterised 

Orally active 

Resistance potential e.g. single point 

mutations, over-expression of the target, 

efflux pumps gene amplification of target 

and inactivation of the drug 

 

 

1.1.2.1 NPS FROM AROUND THE WORLD WITH ANTI-TRYPANOSOME ACTIVITY 

Promising results have been achieved by screening NPs from around the world against 

HAT. This is an important starting point to identify lead compounds for drugs against 

this disease. A review41 outlines a range of natural product classes with activity against 

HAT and covers a period from the mid-1980s to 2003. Recently, eight plant extracts 

from North America were shown to have anti-trypanosomal activity with IC50 values < 

1μg/ml and 125 plant extracts had activity with IC50 values < 10μg/ml, with none of the 

extracts showing toxicity towards THP1 cells. In 2017, Afrotryp, a public dataset of 

African compounds active against HAT, was released. The pharmacokinetic properties 

of NPs in this dataset were predicted and they were docked against six trypanosome 

targets, identifying nine compounds suitable for the treatment of stage two HAT, due 

to their low polar surface area. Taken together these results provide a promising start 

for investigating the target space in HAT from NP space, which is what we do in this 

thesis. 
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1.2 AFRICAN NATURAL PRODUCT DATABASES 

Despite containing a plethora of unique phytochemicals with therapeutic value, 

knowledge of the mechanism of action of African phytochemicals remains largely 

unexploited; a point we wanted to address in this work. Recently several electronic 

databases have been created, which group the compounds according to their ethno-

botanical uses and which can now be used together with novel computational tools to 

better understand the mechanism of action of African medicines (Table 1:3). These 

databases comprise in particular NANPDB, ConMedNP, AfroCancer and AfroMalaria 

and they form the basis of the current study. The North African Natural Products 

Database (NANAPDB) was published in 2017 and contains natural products from 4 

Kingdoms (endophytes, animals, fungi, and bacteria) and 146 families with 98 reported 

activities. The North African region consists of Algeria, Egypt, Libya, Morocco, Sudan, 

South Sudan, Tunisia, Western Sahara, and parts of Northern Mali. The biggest classes 

of NP in this dataset are terpenoids (38%), flavonoids (22%) and alkaloids (10%). The 

compounds were collected from literature (links to literature are included in the 

database) as well as PhD theses from 1962-2016. Where available, information about 

the uses of the source species, experimentally verified activities and modes of action is 

also included. Compounds can be accessed via query searches and can be downloaded 

directly from the website. ConMedNP was published in 2014 and contains compounds 

from plants mainly from countries in the Congo Basin (Burundi, Central African 

Republic, Chad, Congo, Equatorial Guinea, Gabon, the Democratic Republic of Congo, 

Rwanda and the Republic of São Tomé and Príncipe). The NPs were collected from a 

literature search and PhD theses published between 1971-2013. These compounds 

come from 376 plant species and 79 plant families. AfroMalaria was also published in 

2014 and contains 265 compounds from 131 species and 44 families from plants across 

Africa. The compounds were collected from literature sources and PhD theses 

published between 1971-2013. The major compound class in this dataset is the 

terpenoids (30.7%), followed by alkaloids (27.7%), flavonoids (12.9%), quinones 

(4.5%) and xanthones (4.5%). Twenty compounds in the datasets showed in vivo anti-

malarial activities, while 278 compounds showed in vitro activities from moderate 

(0.06 μM ≤ IC50 ≤ 5 μM) to very high activities (IC50 < 0.06 μM). AfroCancer, 
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published in 2014, contains compounds collected from literature sources and PhD 

theses between 1971-2014. The compound information, which is available on request 

from the authors, includes plant sources (species, genus and family), traditional uses of 

plant, region of collection of plant material, isolated metabolites, phytochemical class 

(e.g., flavonoid, alkaloid, etc.), and, where available, the measured biological activities 

of isolated compounds. The compounds are stored in SDF format. 

 

It is important to note that these datasets are not complete. For example, not all 

compounds from all medicinal plants used against cancer, malaria or HAT have been 

characterized. Information about which NP is responsible for the activity of the 

medicinal plant is also not fully available. Furthermore, we don’t have quantitative 

information or full bioactivity profiles of all the NPs in these datasets. While there is 

still much information missing, these datasets provide a starting point to understanding 

the mechanism of action of African medicinal plants. 

 

Table 1:3 Datasets of African NPs analysed in the current study 

 

 

 

 

 

 

 

 

 

 

1.3 ADVANTAGES AND LIMITATIONS OF NATURAL PRODUCTS IN DRUG 

DISCOVERY 

The advantages of using natural products isolated from traditional medicines as a 

starting point for drug discovery have been extensively reviewed46. One of the main 

advantages is that, since medicinal plants have been used for many generations to 

alleviate or treat symptoms, their tolerance levels and toxicities are relatively well 

Database Number of 

Compounds 

Notes 

NANPDB42 4469 Natural products from 4 Kingdoms, available 

to download as SMILES, SDF-2D and SDF-

3D 

ConMedNP43 3,177 Compounds available in sdf format 

Annotated bioactivity can be obtained directly 

from the authors 

AfroCancer44 364 Compounds available in .sdf format. 

Annotated bioactivity can be obtained directly 

from the authors. 

Some ligand-target information. 

AfroMalaria45 265 Compounds available in .sdf format. 
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known47. This cannot be said for the NPs isolated from these plants, which is one of the 

reasons why it is important to elucidate their mechanism of action. Another advantage 

of natural products is that they are more likely than synthetic compounds to resemble 

endogenous metabolites and hence are more likely to enter the cells via active 

transport47.  

 

The limitations of natural products in the field of drug discovery were reviewed 48 and 

include (i) difficulty isolating and identifying the active compounds, (ii) synthesis of 

active constituents (too many chiral centres, rings, etc.) and (iii) elucidating and 

validating the mechanism of action.  Another difficulty in the study of traditional 

medicines is that most are used in the form of an extract49. It is not yet understood 

whether the compounds act individually or in synergy with compounds that have little 

or no activity. A prime example of this is the case of the peroxysesquiterpene lactone, 

Artemesinin from the anti-malarial Artemesia annua, which has been found to be 30-

60 times more active in leaf tea than when it is used alone50. The crude extract of the 

triterpenoid acids glycyrrhizin and glycyrrhetinic acid from Glycyrrhiza glabra root has 

been found to inhibit angiogenesis, whereas the isolated compounds promote 

angiogenesis51. Synergy may also play a role in the reduction of the toxicity of the 

isolated active compound as observed with the extract of Rauwolfia serpentina52. 

Another role that synergy may have is the enhancement of absorption of the active 

constituent when it is in the form of an extract. Phospholipids and polysaccharides 

found in the plant extracts may help in the absorption and hence increase in blood levels 

of the compounds compared to when they are administered individually (e.g. in the case 

of flavonoids)53, 54. This may be explained by the NMR studies which reveal that 

interaction occurs between the polar heads of the phospholipids and the phenolic groups 

of the flavonoids50. But most of the phospholipids and polysaccharides are removed 

during the early phases of extraction. Secondary metabolites also have the risk of being 

recognised as xenobiotics and being exported out of the cell. Despite these drawbacks, 

NPs are still an important source for drugs. The limitations need to be considered when 

making choices about which compounds are to be chosen as HIT/lead compounds. 

 

Limitations for natural product drug discovery of particular relevance to Africa are as 

follows: low levels in investment in science and technology, lack of collaboration and 
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coordination between different research groups for various reasons including 

diplomatic and political issues, and limited drug discovery expertise, are among the 

problems faced in the continent55.  Other issues highlighted by Ntie-Kang56 include: 

results obtained in labs not being extrapolated to an industrial setting due to funding 

shortages, results obtained by various research groups in the same field not made public 

and curated in a single repository, and labs not equipped to carry out high throughput 

screens of the isolated and purified active components. The most that can be done in 

terms of research is the collection of information from the local healers, collection of 

the plants from their area of origin, taxonomic identification and extraction of fractions, 

which then need be sent away to European labs for isolation, purification and HTS. 

 

To benefit from the advantages of natural products (NPs) and begin to address some of 

the limitations, it is important to understand their underlying mechanism of action. One 

of the ways of achieving this is to identify the targets and pathways modulated by these 

NPs. This will contribute towards understanding their medicinal activity, metabolic 

profiles as well as their toxicities. In this work we address their medicinal activity.  

 

1.4 MODE OF ACTION ANALYSIS 

Mode of action analysis comprises the study of biochemical and physiological 

mechanisms by which compounds or drugs elicit a response. This step is important for 

elucidating the mechanism of action (MoA) of a drug candidate. The importance of 

elucidating the mechanism of action of NP is two-fold. First, knowing the target, and 

hence the pathway that these NPs modulate, validates the use of the natural products by 

the herbalists and will inform authorities in the regulation of their use. MoA information 

allows medicinal chemists to understand the side effects and toxicity of the NPs. Here 

we will briefly mention the three main approaches to target identification, namely 

biochemical methods, genetic interaction methods and computational inference. 

Computational inference methods will then be discussed in greater detail, as this is the 

area on which the thesis mainly focuses. 
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Biochemical Methods: this involves labelling either the compound or target of interest 

and incubating them together for some time, followed by direct measurement of 

binding57. 

Genetic Interaction: this method involves altering the functions of putative targets by, 

for example, gene knockout, RNAi or small molecules58, 59. This allows for a target 

hypothesis to be generated. 

Computational Inference: In these methods, pattern recognition is used to compare 

the effects of the tested compounds to those with known and validated activities. Here 

hypotheses are made about targets/pathways, but the results remain to be 

experimentally validated. Thus combining computational inference methods with direct 

measurements is a good approach for target convolution for mode of action analysis57. 

 

These methods detect interactions between ligands and targets, and not the actual 

mechanism of action of the ligands. Once a ligand is bound to a target/receptor it can 

act in a number of different ways to elicit a biological response, including but not 

limited to activating the receptor (agonist), blocking or reducing the biological response 

of the receptor (antagonist), or binding to the same receptor as an agonist but producing 

a pharmacological response opposite to that agonist (inverse agonist). 

 

1.5 COMPUTATIONAL METHODS OF TARGET PREDICTION 

1.5.1 LIGAND-BASED TARGET PREDICTION 

There are several chemo-informatic approaches to investigating the potential targets of 

a natural product. These can be broadly divided into three categories, based on 

information used, into single ligand based, multiple ligand based and ligand-target 

based. Single-ligand mechanism of action studies include molecular similarity 

modelling and pharmacophore modelling. Multiple-ligand approaches include machine 

learning and quantitative structure activity relationship (QSAR) modelling. Target-

ligand approaches to mechanism of action studies include proteochemometrics and 

docking studies. These methods are explored further in Table 1:4. 
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1.5.2 MACHINE LEARNING IN LIGAND-BASED TARGET PREDICTION 

Machine learning approaches are currently one of the most important in computer-aided 

drug discovery70. Machine learning techniques use pattern recognition algorithms to 

detect mathematical relationships between empirical observations of small molecules71. 

The relationships are extrapolated to predict chemical, biological and physical 

properties of new compounds. Machine learning is also used to understand and exploit 

the relationship between chemical structures and their bioactivities72, which is what we 

aim to do in this thesis. 

 

Machine learning techniques can broadly be classified into two categories: supervised 

techniques, in which labels are assigned to training data and, after training, the model 

predicts labels for the input data; and unsupervised techniques, which involve learning 

patterns of molecular features directly from unlabelled data73.  

 

The main types of supervised machine-learning techniques used in target identification 

along with their advantages and disadvantages are shown in Table 1:5. In this work, a 

supervised machine-learning model (Random Forest) is used. 
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Numerous target prediction approaches have been published, e.g. SEA (Similarity 

Ensemble Approach)80 and PASS (Prediction of Activity Spectra for Substances)81, that 

predict biological targets of a query ligand,  including natural products. These methods 

rely on training models on bioactivity information of the ligands obtained from 

databases. Some of the open source databases include PubChem82, ChEMBL83 and 

WOMBAT84.  

 

SEA is a molecular similarity method that quantitatively relates proteins to one another 

based on the chemical similarity of their bound ligands85. This method was used to 

predict the anti-malarial activity of the physalins B, D, F and G (isolated from Physalis 

angulata), with B, F and G subsequently showing IC50 values of 2.8μm, 2.2μm and 

6.7μm (respectively) against Plasmodium falciparum86. 

 

Another tool that allows targets to be predicted based on the Tanimoto similarity of 

ligands to ligands associated with the target is TargetHunter87. TargetHunter uses the 

Targets Associated with its MOst Similar Counterparts (TAMOSIC) algorithm to 

predict the biological targets of query ligands. When a query compound is input into 

TargetHunter, the TAMOSIC algorithm generates the fingerprints of the compound 

(chosen by the user, any of ECFP6, ECFP4 and ECFP2) and compares the Tanimoto 

similarity of this compound to compounds in a chemogenomics database, ChEMBL-

11. Targets with the most similar compounds to the query compound are output as the 

predicted targets and ranked according to the similarity scores of the ligands to the input 

compound. TAMOSIC was trained on 117,535 unique compounds from ChEMBL and 

794 targets. TargetHunter obtained 91.1% prediction accuracy of the top 3 targets, i.e. 

91.1% of the compounds are assigned to their known targets in the top 3 predictions. 

TargetHunter was used to identify the mechanism of action of compound CID46907796 

from the PubChem database. This compound was reported in PubChem to display 

cellular apoptosis with AC50 values of 0.4136 and 4.908 μM, but the mechanism of 

action of this compound was not known. TargetHunter predicted the nuclear factor 

erythroid 2-related factor 2 (Nrf2), which is known to have anti-apoptotic activity88 as 

a likely target due to the Tanimoto similarity score of 0.78 and 0.63 to compounds in 

the dataset. 
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A machine learning method, PASS, predicts the biological activity of a compound 

based on its structure81. The principle underlying this method is that biological activity 

equates to structure. This method has been used to predict the anti-oxidant and anti-

microbial activity of the acetogenin alkaloid, neoannonin, from an extract of Annona 

reticulata89. It has also been used by Goel et al90 to predict the mechanism of action of 

natural products  in five plants. The authors generated a prediction coefficient, P, which 

calculates the number of activities predicted by PASS over the number of reported 

activities for the compound. An average prediction co-efficient of 0.66 for the five 

compounds led to the conclusion by the authors that PASS can be applied to predicting 

the MOAs of natural products. 

 

Another machine learning target prediction method, used by Nidhi et al91, uses a 

Laplacian-modified Bayes model to predict biological targets of compounds in the 

MDDR Database.  For every target class in the database, the authors built a Laplacian-

modified Naïve Bayesian model. A query ligand is passed through each Laplacian-

modified Naïve Bayesian model of each target class. The relative estimator score for 

each of the target classes is calculated. The most probable predicted target for that query 

compound is the target with the highest score. The model was trained on 103,735 

compounds annotated to 964 target classes from World of Molecular BioAcTivity 

(WOMBAT)84. It was used to predict the top 3 most likely targets for compounds from 

the MDL Drug Database Report (MDDR) dataset92. The model predicted 77% correct 

targets for compounds from 10 target classes in MDDR. 

 

Self-organising maps (SOMs) have been used to predict ligands of targets as well as 

selective ligands of targets.  Self-organising maps are a type of artificial neural network 

developed by Kohonen in 198293. SOMs learn through unsupervised learning. They are 

essentially a clustering technique used to visualise similarity in the data where 

geometric similarity between nodes indicates similarity. This method of SOM was used 

by Schneider et al94 to correctly predict prosanoid E receptor 3 as a target for the anti-

cancer natural product Doliculide. The authors trained the SOM model, on COBRA 

data, which contains 4,236 drugs and drug candidates95. They computed the p-values 

based on the background distribution of known ligands and drugs to rank the predicted 

targets96. 



 
 
 
 

35 
 

 

In 2017, Huang et al97 proposed the MOst-Similar ligand Target (MOST) based 

approach to predict targets. This method incorporates the explicit bioactivity of the most 

similar ligand. The method is also able to remove false positive predictions due to 

incorporating p-values associated with explicit bioactivity information as an index. The 

method involved training a combination of different machine learning algorithms 

including Naïve Bayes, Logistic Regression and Random Forest using compounds 

characterised by ECFP-4 Morgan-like fingerprints and FP-2 fingerprints. The model 

was trained on 61,937 compounds annotated with 173 targets from ChEMBL-19 and 

validated used 7-fold cross-validation. The dataset comprised 91.3% active compounds 

and 8.7% inactive compounds. The algorithm worked by calculating the Tanimoto 

similarity between the input compounds and annotated ligands of the targets. The 

Tanimoto similarities were then ranked and the most similar ligand was chosen. The 

Tanimoto similarity and pKi (-log dissociation constant) of the most similar ligand were 

fed into the training model to generate the probability of how likely the input compound 

is to be inactive. If the probability of being active is greater than the probability of being 

inactive, then the query compound is classified as active and vice-versa. MOST was 

able to identify the mechanism of action of aloe-emodin by predicting 

acetylincholinesterase as the target, which was validated in vitro. MOST was also able 

to predict novel targets for the drug Fluanisone (not in ChEMBL), where MOST 

correctly predicted adrenoreceptor alpha 1B and adrenoreceptor alpha 1D as the second 

and third most likely targets. These targets were validated by literature to be human 

targets of Fluanisone. 

 

Deep Learning (DL) is a class of machine learning that uses artificial neural networks 

(ANN) with a hierarchy of multiple layers whereby each layer transforms input data 

into more abstract representations98. They contain more layers and more nodes per layer 

than an ANN. The architecture of a DNN consists of many layers, each layer formed of 

a row of neurons. Neurons (or nodes) in each of the layers can either be fully connected 

or partially connected. Each successive layer of the DNN uses the output from the 

previous layer as input. A basic layer of a DNN consists of an:  

(i) input layer, which receives large volumes of data (features) as input in 

different formats, e.g. target descriptors or drug descriptors. 
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(ii) hidden layer(s), which uses several activation functions e.g. rectified linear 

unit (ReLU), Sigmoid, Step function etc. to calculate weighted sums of input 

and add a bias to each layer. The output of the computation determines 

which nodes to fire. The predicted output is compared with the actual output 

and the difference in the output i.e. the error is back-propagated through the 

network and weights are adjusted accordingly. Error in the network is 

calculated using a cost function  

(iii) output layer which generates the desired output i.e. predictions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each input arrow is associated with a weight wi. The neuron is also associated with a 

function f(z) called the activation function and a default bias b. When a vector of 

features X=[x1, x2….xN]T is fed into a neuron, the output can be represented as shown 

in Equation 1: 

 

O = 𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏)𝑁
𝑖=1  

Equation 1 – Neuron Output 

xi refers to the input features, wi, is the weight of input neuron and f is the cost 

function.  

Output 
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xn 

1 

b 

w4 

w3 

w2 

w1 

wn 
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Figure 1:3 Architecture of a single neuron 
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The number of layers, number of neurons in each layer and activation function in each 

neuron need to be pre-specified when training. 

There are two main issues faced when training a DNN. The first involves vanishing 

gradients99, exploding gradients and oscillating gradients100. Vanishing gradients occur 

when small weights are updated during training with repeated multiplication of values 

less than 1 leading to cost functions in lower layers approaching zero. This issue is 

mitigated by either (i) layer-by-layer unsupervised pre-training of the DNN 101, or (ii) 

using benchmark guidelines for choosing hyper parameters102.  

 

The second issue that occurs in DNN is “over-fitting” of the model. This can be 

overcome by “early termination”103. This process involves separating the dataset into a 

training set and a test set, followed by further separating the training set into a training 

set and an external validation set. The DNN is optimised on the training set while 

simultaneously tested on the validation set. As soon as the accuracy drops on the 

validation set, the training is terminated. “ Dropout”104 is another method that is used 

to mitigate “over-fitting” used. In “Dropout” randomly selected neurons in each layer 

vanish (by setting the activation function output=0) at each training round. This leads 

to the nodes competing to learn a general feature independently as they cannot rely on 

the presence of other neurons.  

 

DNNs have been successfully used to predict compound target interaction and activity 

prediction105, 106. A study by Dahl et al102 which applied DNN on the Merck Kaggle 

challenge dataset showed that DNNs can handle thousands of descriptors without prior 

feature selection. They were also able to optimise the performance of the DNN by 

optimising the hyper-parameters of the model (number of layers, number of nodes per 

layer and activation function used). In the study DNNs outperformed RFs in 13 out of 

15 datasets. Other studies have also shown that DNNs outperform commonly used 

machine learning methods like RF, SVM and naïve Bayes regression models107, 108. 

Several studies have shown that multi-task DNN outperform single-task DNN in 

activity and toxicity predictions109, 110. Despite the successes of DNN in activity 

predictions, it will not be the method of choice in this work. This is because DNN 

require a large amount of data for training111 and ANP databases in this study only have 
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between 364-3177 compounds, This is in addition to model training and validation 

being computationally expensive and hyper-parameter optimisation is subjective111. 

 

ECFP4 fingerprints used in the previously mentioned studies do not capture many of 

the important features required for NP activity, including stereochemistry, repeat units, 

etc. This is important because stereoisomers can have very different activities as 

exemplified by the stereomer alkaloids quinidine (antiarrhythmic) and quinine (anti-

malarial). Another case of difference in enantiomer activity can be exemplified by 

cocaine. The naturally occurring (1R,2R,3S,5S)-(-)-cocaine is psychoactive whereas its 

enantiomer is inactive112. This is also the case with the atropine enantiomers: R-(+)-

hyoscyamine is a fairly potent analgesic whereas S-(-)-hyoscyamine is completely 

devoid of such activity113. Nevertheless, it can be seen from the above-mentioned 

implementations that in silico target prediction has been successful in identifying the 

protein targets of ligands including natural products, without need for information about 

the target. 

 

In this work ECFP4 fingerprints were used as the molecular descriptors to transform 

the chemical information of the compounds. ECFP4 fingerprints capture molecular 

features relative to their activity, which is useful for gaining information about activity 

114. The steps to generate ECFP4 fingerprints are: 

1. Each atom in the molecule is assigned an integer identifier these might be e.g. 

atomic numbers of the atoms. These identifiers are collected into an initial 

fingerprint set. 

2. Each atom identifier is iteratively updated to reflect the neighbouring atom 

identifiers. This includes updates identifying structural duplicates of existing 

features. Identifiers of the initial atom and its neighbours are collected into an 

array and a hash function is applied to this array to get a new single integer 

identifier. (ECFP4 hashing generates identifiers that are comparable across 

molecules). This occurs for all the atoms in the molecule. All the old identifiers 

are replaced by the new identifiers, which are subsequently added to the 

fingerprint set. In our case, this iteration is repeated four times (hence ECFP4) 
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3. Upon completion of the four iterations, any duplicate identifiers (multiple 

occurrences of the same feature) are removed. The final ECFP-4 fingerprint is 

comprised of the remaining integer identifiers in the fingerprint set. 

ECFPs have been used for virtual screening 115, SAR modelling 116 and compound 

library analysis 117, 118. 

 

1.5.3 DATABASES USED TO TRAIN LIGAND-BASED TARGET PREDICTION 

ALGORITHMS 

Several databases are available to train ligand-based target prediction models. These 

include PubChem119, ChEMBL83, DrugBank120 and WOMBAT84. These databases 

contain bioactivity data including phenotypic readouts and toxicity readouts as well 

structure information of compounds and drugs. PubChem contains 2,570,179 tested 

compounds, with information on 10,857 protein targets and 22,106 gene targets. 

ChEMBL-23 contains 1,735,442 unique compounds annotated to 11,538 targets and 

14,675,320 bioactivities. DrugBank 5.0 contains information from 11,037 drug entries, 

2,524 approved small molecule drugs with 4,913 proteins annotated to them. 

WOMBAT 2006.1 contains 136,091 unique SMILES and 1,320 unique targets 

annotated to 307,700 activites. 

 

 It is important to note however that the accuracy of predictions of a model is only as 

good as the training set, i.e. the accuracy of the model beyond the training set (outside 

the applicability domain) cannot be guaranteed. Several limitations have been 

highlighted by Kalliokoski et al121 and these are:  

1. Chemical structure related errors;  

2. Transcription errors;  

3. Inaccurate and insufficient target annotations;  

4. Ineffective and incomplete archiving of original data;  

5. Redundancy 

6. Different lab conditions with different protocols for measurement. 
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1.5.4 APPLICABILITY DOMAIN OF TARGET PREDICTION MODELS TO NP 

CHEMISTRY 

When extrapolating the predictions of a QSAR model to compounds outside of the 

training set, it is possible to get good predictions for compounds that are relatively 

similar to the training set122. Predictions may fail for those compounds that are very 

different to those in the training set122. This concept is known as the applicability 

domain of a model and is usually defined using the similarity of molecular structures 

or a similarity measure based on descriptors of the compounds123. Several 

chemoinformatic analyses comparing the properties of different sets of natural products 

and synthetic compounds124-126 found that natural products differ considerably from 

synthetic compounds in several molecular properties. They found that natural products 

on average tend to have: more oxygen atoms, fewer nitrogen atoms, more stereogenic 

centres, more fused rings, but fewer aromatic rings and fewer rotatable bonds. These 

models also use fingerprint similarity to compare training sets to the test compounds. 

This is not the best representation since fingerprints lead to a loss of atom order as well 

as the fact that they do not capture many aspects important for NP activity, e.g. repeat 

units, stereochemistry etc as mentioned above. This leads to one of the limitations of 

utilising ligand-based target prediction trained on ChEMBL, WOMBAT etc. e.g. 

PIDGINv2. Natural products generally do not share the same chemical space as the 

training space of the algorithm. In PIDGIN (the model used in this thesis), the models 

perform better overall, with up to 96% probability scores achieving 0.98 (maximum of 

1) true positive prediction when the similarity between the test and training sets are 

higher than 0.3127. To address this, in this work prediction results for natural products 

were filtered for compounds that fall below a specified (Tc = 0.3) similarity threshold 

to their nearest neighbour in the training set.  

 

1.6 PATHWAY ANNOTATIONS 

When attempting to understand mechanism of action of compounds, studying 

individual target/gene information does not give insight into the underlying mechanistic 

action. In this work we look at biological pathways. These consist of genes, proteins 

and small molecules interacting with each other in a cellular setting to elicit cellular 

change or creating products. The most well-known types of biological pathways are 
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signalling pathways, which move a signal from outside a cell to its interior; metabolic 

pathways, responsible for chemical reactions within the body; and gene-regulatory 

pathways which control the activation and deactivation of genes. We use pathway 

annotations to put the isolated targets into biological context128. This is carried out by 

combining information from databases with statistical testing128. This facilitates both 

the interpretation of isolated target information and generation of a hypothesis of mode 

of action. Pathway annotation can be used to identify the biological roles of candidate 

genes129 (in this work: predicted targets). It has been applied to predicted targets of NPs 

and it improved the mechanistic understanding of the mechanism of action of the 

studied NPs130. Pathway annotation has also been used to identify important targets to 

be modulated in order to elicit a required response, e.g. stop a particular function or 

inhibit a particular mechanism131. 

 

Several databases are available that provide signalling, metabolic and gene-regulatory 

pathway annotations when provided with gene lists, e.g. Reactome132, KEGG133, 134, 

Gene Ontology (GO)135, 136, PANTHER137 and Comparative Toxicogenomics Database 

(CTD)138. In this work we use Gene Ontology (GO) and WikiPathways139. 

 

The Gene Ontology (GO)135, 136 is a large resource that provides a standardised, 

structured and controlled vocabulary of terms for both gene and gene product functions 

across all species. It operates based on the observation that similar genes will often 

display conserved functions in different organisms140. The vocabulary of terms is 

divided into three non-overlapping ontologies, namely, Molecular Function (MF), 

Biological Process (BP) and Cellular Component (CC). It associates each gene with the 

most specific set of terms that describes its functionality140. In this work we use the 

Biological Process ontology in an attempt to understand the mechanism of action of 

phenotypically active anti-trypanosome compounds by analysing the biological 

processes they are predicted to modulate. 

 

WikiPathways is a database of biological pathways, which is maintained by the 

scientific community141. In this work we use WikiPathways due to its clear 

interpretability142. In this work it was accessed by PIDGIN143, via the NCBI 

BioSystems Database144. 
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1.7 PHYLOGENETIC AND ETHNOBOTANICAL BIO-PROSPECTING 

One method of predicting the activity of medicinal plants used in traditional medicine 

is by incorporating a priori information of the phylogenetics of the medicinal plant. 

The rationale behind this is that evolutionarily similar plants will produce NPs with 

similar structure (as measured by the Tanimoto similarity of their ECFP4 fingerprints) 

and therefore (based on the similarity hypothesis) they will have similar activity 

profiles. In previous studies relating phylogeny of plants to their ethnobotanical use, 

Hawkins, J. A. et al145 found that in the genus Pterocarpus (Leguminosease) related 

species were used for similar ethnobotanical uses in different geographical areas. This 

was demonstrated by studying plants from the genus Pterocarpus across Indomalaya, 

Tropical Africa and the Neotropics. Plants with medicinal activity were concentrated 

on specific clades, i.e. they were not randomly distributed. This provided a link between 

biogeography and phylogeny of the plant. 

 

Some studies146, 147 have also looked at the possibility of predicting medicinal potential 

of a plant using its phylogeny. The study by Hawkins et al147 found that phylogenetic 

patterns were shared among the medicinal plant species of the flora of Nepal, New 

Zealand and Cape of South Africa. It was observed that for the geographic areas under 

study, traditional medicine use is not randomly distributed on the phylogenetic tree, but 

rather concentrated on specific nodes. Hot nodes comprised on average 133% more 

medicinal plants than a random sample of the studied floras. They found that on average 

“hot nodes” from one region contain 17% more medicinal plants from another region 

than would be expected by chance. Furthermore, on average, the “hot nodes” from one 

region contain 38% more disease specific medicinal plants from another region. 

 

In a study by Duez et al148 an ethnobotanical study of plants used by Burundian 

traditional healers to treat microbial disease was carried out. They attempted to compare 

the plants used to the plant distribution in the area of interest (Burundi). They found 

that 155 plant species, distributed in 51 families and 139 genera, were used, with the 

most common families being Asteraceae, Fabaceae, Lamiaceae, Rubiaceae, Solanaceae 

and Euphorbiaceae. 
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To our knowledge, none of the phylogenetic studies to date have incorporated or 

integrated the chemical information of the NPs produced in a plant to aid prediction of 

activity, which is what we are aiming to do in this thesis. 

 

1.7.1 PHYLOGENETIC TREES 

To study the evolutionary relationship between the medicinal plants in our datasets, and 

relate this to their activity, we used phylogenetic trees. Phylogenetics is defined as the 

study of the evolutionary history and relationships among individuals or a group of 

organisms149. These relationships are not observed but inferred through two steps: (i) 

identifying homologous characters, e.g. amino acid sequences, nucleotide sequences, 

biochemical pathways or any other homologous character and (ii) reconstructing the 

evolutionary history of the individuals using either distance-based or character-based 

methods.  

 

In distance-based methods, the distance between every pair of sequences is calculated 

to produce a matrix and a cluster algorithm, e.g. neighbour joining (NJ)150, minimum 

evolution (ME)151, 152, or least squares method153 is applied to this matrix to produce the 

resolved phylogeny: see Table 1:6. This relies on the assumption that all sequences are 

homologous. 

 

https://en.wikipedia.org/wiki/Evolution
https://en.wikipedia.org/wiki/Organism
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Table 1:6 Cluster algorithms used to produce resolved phylogenies in disatance-based methods. 

Cluster algorithm Notes 

Neighbour joining (NJ) This algorithm starts with a star tree. Pairs of taxa are chosen based on 

their distances and successively joined together. This is repeated until 

a fully resolved tree is obtained. The pairs of taxa to be joined are 

chosen in order to minimise an estimate of tree length. The distance 

matrix is updated with the new joined taxa (represented by their 

ancestor) replacing the two original taxa. 

Least squares (LS) This method involves minimising the measure of differences between 

the calculated distances in the distance matrix and the expected 

distances in the tree. A score Q is given to the optimised branch lengths 

liking two species for a given tree. The least square estimate for the 

true tree is the tree with the smallest Q score. 

Minimum evolution (ME) This is similar to LS but uses the sum of branch lengths for tree 

selection. Shorter trees are more likely to be correct in ME than longer 

ones. 

 

In character-based methods all sequences in the alignment are compared 

simultaneously, and one site of the alignment is considered at a time to calculate a score 

for the tree. Maximum parsimony154, 155 assigns character states to nodes on the tree to 

minimise the number of changes on a phylogenetic tree. The maximum parsimony tree 

is the tree that minimises the tree score, which is the sum of character lengths (the 

minimum number of changes required for a particular site) over all sites. In brief, the 

maximum likelihood method156 determines the topology of a tree, its branch lengths 

and the parameters of the evolutionary model that maximise the probability of 

observing the given homologous characters, e.g. nucleoside sequences. Bayesian 

inference157-160 involves combining the prior probability of a phylogeny with the tree 

likelihood of the data to produce a posterior probability distribution on trees. The tree 

that best represents the true phylogenetic tree is the one with the highest posterior 

probability. The tree score for maximum parsimony154, 155, maximum likelihood156 and 

Bayesian inference157-160 are “minimum number of changes”, “likelihood value” and 

“posterior probability” respectively161. The advantages and limitations of these methods 

are shown in Table 1:7. 
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Table 1:7 Methods used for phylogenetic inference with their advantages and limitations. (Adapted from 161) 

Method Advantages Limitations 

Distance-based 

methods 

Fast computational speed 

Can be applied to all data types 

Possible to choose models for distance 

calculation to fit available data 

Variance of distance estimates not 

considered 

Divergent sequences and those with 

many alignment gaps are 

problematic 

Negative branch lengths hold no 

information 

Maximum parsimony Simple and intuitive Poorly understood and implicit 

assumptions 

Knowledge of sequence evolution 

cannot be incorporated 

High substitution rates lead to 

underestimated branch lengths 

May suffer from long-branch 

attraction 

Maximum likelihood Biological reality can be represented 

using complete substitution models 

Iteration is computationally 

expensive 

Bayesian inference Biological reality can be represented 

using complete substitution models 

Expert knowledge can be incorporated 

into model via prior probability 

Easy to interpret posterior probabilities 

of trees and clades 

Computationally expensive 

Difficult to identify and rectify 

Markov Chain Monte Carlo 

convergence 

 

In this work, we use a tree generated by Zanne et al162, constructed using the maximum-

likelihood method, to calculate the patristic distance between medicinal plant families 

and relate this information to their traditional use as well as the predicted activity and 

structural similarity of the NPs they contain. 
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1.8 AIMS OF THE THESIS 
 

In this thesis several aims are explored. The first aim, explored in Chapter 2, is to 

explore the chemical space and biological space of African NPs used against cancer, 

and how this differs from the chemical space and biological space of other NPs used 

against cancer as well as cancer drugs in the market.  In this chapter we utilise machine 

learning to understand the mechanism of action of NPs in an attempt to rationalise their 

ethno-botanical use. 

 

In Chapter 3, methods borrowed from the ecology community are used to determine 

phylogenetic patterns of medicinal plant use in the African continent. We will examine 

whether plants closer together on the phylogenetic tree produce similar compounds that 

are predicted to act on similar targets and vice versa; i.e. where plants that are further 

away phylogenetically synthesize chemically diverse NPs with different predicted 

targets. Ultimately, this information is important to determine whether phylogeny, 

along with ligand-based target prediction and knowledge of ethno-botanic use, can be 

integrated to predict the activity of African NPs. 

 

In Chapter 4 we attempt to understand the molecular mode of action of small molecules 

and NPs active against Trypanosoma brucei, the causative parasite of Human African 

Trypanosomiasis (HAT). We also identify which compounds are predicted to cross the 

BBB. Compounds with the ability to traverse the BBB are important because they are 

essential for the treatment of Stage 2 HAT, for which there are currently only 2 drugs, 

used in combination, in the market. Thirdly we explore the biological processes 

enriched in the predicted gene sets to better understand how these compounds exert 

their phenotypic activity. 
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CHAPTER 2: UTILISING TARGET AND PATHWAY 

PREDICTIONS TO SUGGEST MECHANISMS OF 

ACTION OF AFRICAN NATURAL PRODUCTS 

 

2.1 INTRODUCTION 

The WHO encourages African member states to incorporate traditional medicines into 

their health care systems163. In order to implement this, it is important to understand the 

efficacy, safety and mechanism of action of the natural products (NPs) in these 

traditional medicines. 

 

In this work we will use computational approaches to attempt to understand the 

mechanism of action of African natural products that have recently been curated into 

databases, in particular, ConMedNP and AfroCancer. In our approach to understanding 

the mechanism of action we use ligand based machine learning, taking advantage of the 

“similarity principle”, which says that similar molecules having similar 

physicochemical properties 164 will have similar biological activity”61, 164-166. 

 

Traditional medicines provide us with new starting points for drug discovery in both 

chemical and target space17, 167, and the chemistry of African traditional medicines has 

not yet been explored in much detail. Scaffold diversity analysis of NP datasets has 

been carried out168,whilst the diversity of the most frequent scaffolds of African NPs 

have not been previously analysed. To investigate the chemical space covered by 

traditional African medicines, we studied the scaffold diversity of the African 

compounds in both the datasets and related this to approved drugs in the market. We 

carried this analysis out to see if African NPs contain unique scaffolds and chemistry 

that are not found in drugs in the market, which may be exploited for further drug 

discovery experiments. We also compared the scaffold diversity of African NPs used 

against cancer to Malay and Ayurveda NPs used against cancer. 

 

Secondly, we investigated the target space, and hence the mechanism of action of 

African NPs, compared to approved anti-cancer drugs in the market. In this part of the 
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study, ligand-based target prediction was used to investigate the possible mechanism of 

action of compounds from the AfroCancer dataset. Ligand-based target prediction 

involves comparing a novel ligand to a group of ligands that are known to bind to a 

target, either via similarity or machine learning methods127. Several approaches have 

been published, e.g. SEA (Similarity Ensemble Approach)80 and PASS (Prediction of 

Activity Spectra for Substances)81, and they have been used to rationalise the 

mechanism-of-action of NPs from Chinese, Malaysian and Indian traditional medicines 

169-171 169, but not yet to African medicines. These approaches and their limitations have 

been reviewed in170-173. It is important to note that predicting targets for natural products 

is difficult. This is because the training sets are often small synthetic molecules, 

whereas NPs are generally larger, more complex compounds. One way to overcome 

this problem is to fragment the natural products into smaller entities and predict their 

targets by comparing the smaller entities to synthetic drugs with known targets174. 

Another way to do this is to include natural products with experimentally validated 

results in the training set175. In this study, we use a target prediction algorithm that 

contains natural products in the training dataset. Since the fraction of natural products 

trained in PIDGIN is small, predictions were only kept for NPs with Tanimoto 

coefficient (Tc) ≥ 0.3 to compounds in the training set. Jasial et al176 carried out Tc 

similarity value distributions to determine activity-relevant similarity value ranges. 

They found that there is a much higher probability that a comparison of active 

compounds to active compounds yielded a Tc value of at least 0.3 than a comparison 

of active vs. random or random vs. random compounds i.e. 38.2 % of ECFP-4 Tc values 

for a comparison of active compounds reached or exceeded 0.3 but only 0.3% of 

random vs. active reached or exceeded 0.3. This small percentage of 0.3% translates to 

a large number of false negatives since in reality, when searching a large database there 

are more random vs. active than active vs. active compounds. For example, when 

searching through the 1,828,820 compounds in ChEMBL, where for example only 500 

compounds are active against a particular target, a cutoff of 0.3 will result in 191 true 

positive compounds and 549 false positive compounds. A cut-off Tc value of 0.3 is 

used in our work, as this is the smallest value where the maximum number of true 

positives and minimum number of false negatives can be obtained for active vs. random 

compounds.  
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Lastly, we annotate predicted targets with pathways, with the aim of understanding their 

effects of modulating particular proteins in the human body. Previous studies have 

utilised pathway annotations to understand the mechanism of action of TCM and Indian 

traditional medicines130, 170 as target predictions alone do not provide information on 

downstream biological effects. The idea here is that if a NP from medicinal plant “m” 

is predicted to bind targets “x, y and z”, which are involved in pathway “a”, then we 

can infer that medicinal plant “m” mechanistically works by modulating pathway “a”. 

It is important to mention that not all predicted targets will be linked to the mechanism 

of action of the NP. This method of pathway annotation will enable us to infer the 

pharmacological action of the natural products (at a pathway level), explain the 

molecular basis for their ethno-botanical use, and predict new mechanisms of action if 

they exist. 
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2.2 MATERIALS AND METHODS 

2.2.1 DATASETS 

2.2.1.1 DATASETS USED FOR COMPOUNDS IN AFRICAN NPS 

The compounds analysed in this study were obtained from ConMedNP43, which 

contains 3,177 compounds from 79 plant families comprising 376 species, and 

AfroCancer44, which contains 390 compounds from 48 families comprising 102 

species. All compounds in the datasets were used. Compounds from ConMedNP are 

annotated for a wide variety of diseases collected from traditional healers, while the 

compounds from AfroCancer are focused on cancer indications. Only compound 

structures were used from each of the datasets in subsequent analyses. 

 

2.2.1.2 DATASETS USED AS BACKGROUND FOR AND COMPARISON TO AFRICAN 

COMPOUNDS 

We next identified databases to be used as a background in order to assess the properties 

of African compounds with respect to them. 

  

APPROVED DRUG DATASETS 

As the first dataset to compare compounds used traditionally in African medicine (from 

the ConMedNP dataset) all 1,510 approved drugs from DrugBank 4.0120 were retrieved. 

These compounds will be, hereafter, referred to as ‘Approved DrugBank’.  Secondly, a 

list of approved drugs used for cancer treatment was used as a comparison set (reference 

dataset) to AfroCancer. This list was obtained by request from the National Cancer 

Institute (NCI)177. The ChEMBL-19178 database was queried to identify Simple 

Molecular Input-line Entries  (SMILES) strings for each drug from the NCI, and this 

list of 185 compounds (shown in Supplementary Table 1) will from here onwards be 

referred to as ‘NCI Cancer’. The experimentally validated targets of these drugs were 

also extracted from ChEMBL. An IC50 of 10µm was used for activity against any of 

the targets annotated in the database to assign whether a drug is active against a 

particular protein or not. 
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TRADITIONAL MEDICINES DATASETS 

In addition, two traditional medicine datasets were used as background comparisons for 

the AfroCancer dataset, to determine the similarity of African natural products used 

against cancer to others used in different regions of the world. Firstly, 1,091 compounds 

from Malay traditional medicine with reported anti-cancer activity, using the query 

“cancer” and “tumour”, were derived from the commercial database Natural Product 

Discovery System (NADI179), hereafter referred to as ‘Malay Cancer’ dataset. 

Furthermore, 1,043 compounds with reported anti-cancer properties from Ayurveda 

were obtained from Dr. Duke’s Phytochemical and Ethnobotanical Databases180 which 

will from here onwards be referred to as the ‘Ayurveda Cancer’ dataset.  

 

2.2.2 STRUCTURAL PREPROCESSING 

ChemAxon Standardizer181 was used for structure canonicalization, transformation, and 

conversion of compounds from SD format to SMILES. To standardise the compounds 

in ChemAxon Standardizer, the following options were used: Clean 2D, Mesomerize, 

Neutralize, Remove Explicit Hydrogen and Remove Fragment. Duplicate structures in 

each dataset were removed, using ChemAxon JChem Software181, using the command 

“remove duplicates”. In total, this left us with 185 compounds in NCI Cancer, 1,510 

compounds in Approved DrugBank, 1,015 compounds in Malay Cancer and 1,037 

compounds in Ayurveda Cancer. 

 

2.2.3 CHEMICAL SPACE ANALYSIS 

2.2.3.1 MULTI-DIMENSIONAL SCALING 

Multi-Dimensional Scaling (MDS), was used in R182 using library(rgl) based on 

modified Tanimoto similarity matrices comprised of MOLPRINT2D fingerprints of the 

compounds. MOLPRINT_2D183 fingerprints were generated using Canvas184-186. The 

modified Tanimoto coefficient187 was used since both the ON and OFF bits are 

assessed. The Tanimoto coefficient considers only the ON bits and is sensitive to 

unwanted size dependent effects, i.e. the modified Tanimoto reduces size dependence 

of the similarity coefficient187. It was calculated as follows using Canvas184: 
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Modified Tanimoto = ∝ Tanimoto + (1 − ∝))𝑇0 

 

Equation 2 – Modified Tanimoto coefficient 

    

where: 

∝≡  2/3 – (𝑎 +  𝑏)/[6. min (𝑑, 10000)  and, 

𝑇0 ≡  𝑑/ (𝑎 +  𝑏 –  2𝑐 +  𝑑) )  =  Tanimoto of “off” bit 

Let:  

 a  Count of “on” bits in bitset1. 

 b  Count of “on” bits in bitset2. 

 c  Count of bits that are “on” in both bitset1 and bitset2. 

 d  Count of bits that are “off” in both bitset1 and bitset2. 

2.2.3.2 SCAFFOLD DIVERSITY ANALYSIS 

Next, the scaffold diversity was analysed for the three NP datasets related to cancer, 

namely AfroCancer, Malay Cancer and Ayurveda Cancer, and compared to NCI 

Cancer. The purpose of this part was to assess the diversity of the AfroCancer dataset 

in relation to other NPs from plants with anti-cancer activity. In this study the Bermis-

Murcko188 (BM) scaffolds were used to represent the scaffolds of the molecules. These 

frameworks are defined as “the union of rings plus the linker atoms”, as shown in Figure 

2:1 Bemis-Murcko scaffolds. ChemAxon JKlustor181 command-line was used to 

generate the BM frameworks using the function “bm”, then the compounds were sorted 

into clusters according to their scaffolds and written out in SD format, using the 

function “cluster_*.sdf”.  None of the compounds were sorted into more than one 

cluster.  

 

 

a.                           b.   

 
Figure 2:1 Bemis-Murcko scaffolds The cyclic systems in this study were obtained by removing the side chains 

from the entire molecule (a), and leaving the linkers between the rings to get the Bermis-Murcko scaffold (b). 
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The next step involved analysing the diversity of the most frequent scaffolds. The 

Shannon Entropy measure (SE) was used to quantify the distribution of compounds in 

the n most populated scaffolds189, 190. The SE is defined in Equation 3 as: 

 

 

𝑆𝐸 =  − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖:               𝑝𝑖 =  𝑐𝑖 𝑃⁄

𝑛

𝑖=1

 

Equation 3 – Shannon Entropy 

Where:   

pi is the relative frequency of the cyclic systems i in a dataset of P compounds 

that contain n distinct cyclic systems 

ci is the absolute number of compounds containing a cyclic system i 

 

To normalise the results for varying values of n, a Scaled Shannon Entropy 

(SSE)190 was used, which is defined as in Equation 4: 

𝑆𝑆𝐸 =  
𝑆𝐸

𝑙𝑜𝑔2𝑛
 

Equation 4 – Scaled Shannon Entropy 

 

For more diverse indications, the scaffold diversity of the African compounds from 

ConMedNP was also compared to the diversity of the Approved DrugBank database. 

For this purpose, Murcko scaffolds188 were used as generated using DataWarrior, 

version 4.3191. The compounds were then sorted into clusters; according to their 

scaffolds, i.e. all compounds having the same scaffold were placed in the same cluster. 

The diversity of the entire datasets was studied by analysing the diversity of the most 

frequent scaffolds by using the Shannon Entropy (SE) measure, in order to quantify the 

distribution of compounds in the n most populated scaffolds189, 190. This measure 

indicates the global diversity of the datasets. 

 

2.2.4 TARGET PREDICTION – PIDGINV2 

In this work we make use of a Random Forest algorithm (PIDGINv2) trained by Mervin 

et al143 using  ECFP-4 for SAR modelling. Active compounds were extracted from 
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ChEMBL2183 and are those with activity values (IC50/EC50/Ki/Kd) of 10 μM or lower, 

with a confidence score of 5 or greater for ‘binding’ or ‘functional’ human protein 

assays. The active dataset contains 2,089,404 bioactivities across 3,394 proteins. The 

inactive dataset contains 11,829,475 inactives derived from PubChem. PIDGIN v2 is 

therefore capable of predicting both the probability of activity and inactivity for orphan 

compounds against a range of biological targets. The parameters used were: Random 

Forest with 100 trees, class weight = “balanced”, sample weight = ratio inactive:active.  

 

The steps involved in a Random Forest algorithm are192: 

 

Ensemble of Trees: A Random Forest is represented by [T1(X), ..., TB(X)], with B being 

the number of trees and X = [x1, ..., xv] is a v-dimensional vector of molecular 

descriptors or properties associated with a molecule. The ensemble produces B outputs 

[Yˆ1 = T1(X), ..., YˆB ) TB(X)] where Yˆ b, b = 1, ..., B, is the prediction for a molecule 

by the bth tree. Yˆ is the final predicted class as predicted by the majority of the trees.  

 

Training Procedure: For a dataset of n molecules, D = [(X1, Y1), ..., (Xn, Yn)], where 

Xi, i = 1, ..., n, is a vector of descriptors and Yi is the class label (e.g., active:inactive) 

The algorithm functions as follows:  

(1) From the training data of n molecules, draw a bootstrap sample (n samples chosen 

at random, with replacement).  

(2) For each bootstrap sample, grow a tree and at each node, select m random variables 

out of all possible M variables. Select the best split on the selected m variables. 

(3) Grow the trees until no further splits are possible or until a maximum depth specified 

at the start (in this case 100). 

Repeat the steps until a specified number of B trees are grown. A simplified schematic 

of this process is shown in Figure 2:2. 
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Figure 2:2 Schematic showing a simplified Random Forest model. In the Random Forest algorithm, each new 

data point goes from the root node to the bottom until it is classified in a leaf node. It visits all the different trees in 

the ensemble, which are grown using random samples of variables. In this classification model, the function used 

for aggregation is the mode or most frequent class predicted by the individual trees (also known as a majority vote).  

 

The models were scaled using Platt Scaling193. Platt Scaling assigns true positive rate 

(TPR) values to the predictions by splitting the training set into a calibration and 

training set, thereby converting the Random Forest predictions into the corresponding 

TPR for a given threshold. In this work targets were predicted for the input compounds 

with a cut off of 0.9 (meaning that a 10% false positive rate is accepted, which is a 

rather stringent value).  

 

To obtain the enriched targets, the list of predicted targets was compared by Mervin et 

al143 to the predicted targets of a random sample of over 2,000,000 compounds obtained 

from PubChem. The Fisher’s exact test and odds ratio194, 195 were calculated using the 

contingency table for both sets143. A low odds ratio and p-value indicate a higher 

enrichment for a target when compared to targets from a random set. In this work the 

resulting list was filtered for an odd ratio of less than 0.1 and ranked by p-value.  

 

INSTANCE 

Tree 1 Tree 2 Tree n 

Active Inactive Inactive 

Majority Voting 

Prediction 

Random Forest 
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2.2.5 PATHWAY ANNOTATION 

The output from the PIDGIN v2143 pathway prediction results contains pathways 

predicted from NCBI BioSystems pathways. The WikiPathways annotations in 

PIDGIN2 were used for pathway annotation due to their interpretability141, 142. 

 

Figure 2:3 shows a workflow of the work carried out in this chapter. 
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PIDGIN v2 Random 

forest target prediction at 

0.9 predicted true 

positive rate threshold 

NP Databases – all compounds in recorded 

active extract used 

Standardise compounds 

Enriched Pathways 

NCI dataset DrugBank dataset 

Generate Bemis-Murcko Scaffolds 

Enriched 

Targets* 

 

Scaffold Analysis 

- Scaffold diversity 
- Most common scaffolds 

- Unique scaffolds 

MOLPRINT_2D  
fingerprints 

Tanimoto similarity 

Figure 2:3 Workflow illustrating the work carried out in this study. (i) Chemical space of ANPs in 

ConMedNP was studied and compared of the chemical space coverage of approved drugs in DrugBank. 

(ii) Scaffold diversity of ANPs in the AfroCancer and ConMedNP datasets was studied and compared to 

the scaffold diversity of the approved drugs in DrugBank and approved drugs for cancer (NCI). (iii) 

Target and pathway prediction of ANPs was carried out to understand their mechanism of action. These 

predicted targets were compared to the experimentally validated targets of the NCI dataset. Enriched 

targets were only calculated for the ANPs and these were compared to experimentally validated targets 

of the NCI dataset. Enriched pathways were calculated for both the AfroCancer and NCI dataset 

compounds. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 COMPARATIVE CHEMICAL SPACE ANALYSIS 

The distribution of the ConMedNP database in chemical space, in comparison with the 

approved DrugBank compounds, were first compared, using MOLPRINT2D 

fingerprints and multi-dimensional scaling (MDS, Figure 2:4). It can be seen that 

ConMedNP compounds dominate two areas, (shown in red), not populated by many 

compounds from the Approved DrugBank set. The approved drugs that did populate 

this area were also natural products such as Colchicine. The overlap in space may be 

due to the fact that marketed drugs (those in Approved DrugBank) might be influenced 

by natural products. This has been shown by Newman and Cragg17  in their study of the 

sources of drugs between 1981-2014. They found that 26% of new drugs are either 

botanical drugs, unaltered natural product drugs or synthetic drugs derived from natural 

products. Our results indicate that the African compounds occupy a different chemical 

space. The space of Approved DrugBank is not as diverse in chemical space due to the 

fact that compounds are screened for Lipinski’s rule violations early on in the drug 

discovery process. Lipinski’s rule does not apply to natural products because they 

mostly enter the cells via transmembrane transporters and not passive diffusion.196 In 

conclusion we have shown that African NPs and drugs occupy a different chemical 

space. 

 

 

. 
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Figure 2:4 MDS of molprint2d fingerprints of compounds of the CONMEDNP (red) and Approved DrugBank 

(blue). Compounds with unique scaffolds from ConMedNP occupy a different chemical space to those occupied by 

Approved DrugBank compounds. The modified Tanimoto coefficients shown between the pairs of compounds range 

from 0.80 to 0.83 for similar compounds and about 0.35 for structurally dissimilar compounds. Examples of 

bioactive compounds from the ConMedNP dataset are shown in the red and green circles. 
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The range of molecular weights covered by the compounds in both datasets is also 

shown in Figure 2:5. It can be seen that there are more compounds in the ConMedNP 

dataset, with molecular weights raging from 84.16 to 1439.59 with a mean molecular 

weight of 241.75 Daltons. On the other hand, the compounds in the Approved 

DrugBank dataset have molecular weights which range from 17.00 to 1449.27 with a 

mean molecular weight of 354.73 Daltons. 

 
Figure 2:5 Range of molecular weights of compounds in the Approved DrugBank and ConMedNP datasets. 

Molecular weights for the ConMedNP dataset range from 84.16 to 1439.59 with a mean molecular weight of 241.75 

Daltons. Molecular weights for the Approved DrugBank dataset range from 17.00 to 1449.27 with a mean molecular 

weight of 354.73 Daltons. 
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To understand the difference in chemical space covered in the different datasets further 

a scaffold analysis was carried out next. 

 

2.3.2 SCAFFOLD DIVERSITY OF AFRICAN NATURAL COMPOUND DATASETS 

Next, the scaffold diversity of African compounds isolated from traditional medicines 

was quantified. Scaled Shannon Entropy (SSE) was used to analyse the distribution of 

compounds in the scaffolds of the datasets, with a value of 0 indicating that all 

compounds are contained in one cyclic system (representing the lowest possible 

diversity) to 1, indicating that each cyclic system contains an equal number of 

compounds (representing highest possible diversity). Looking at Table 2:1 the SSE 

values for the AfroCancer and NCI Cancer dataset (of 0.94 and 0.89 respectively) 

demonstrate their higher diversity when compared to the other datasets (of 0.73 and 

0.69 for Malaya Cancer and Ayurveda Cancer respectively). ConMedNP and Approved 

DrugBank showed relatively lower (but still high) diversity values of 0.87 and 0.85, 

respectively. These results are in line with results obtained by Schneider et al197 who 

found a greater diversity of ring systems in natural product libraries compared to 

synthetic and combinatorial libraries. Yet this was not the same as results obtained in a 

previous study168, where it was found that the diversity of a combinatorial library was 

higher than that of the natural products they studied. It is surprising that the more 

focused libraries (on cancer) have a larger diversity on this measure than the more 

diverse ones with respect to indications, i.e. ConMedP and Approved Drug Bank. This 

may be because the compounds in the smaller datasets, e.g. AfroCancer and NCI 

Cancer were synthesised through very different routes, e.g. from plants or via organic 

synthesis to specifically inhibit different targets with different roles in cancer. 
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Table 2:1 Scaled Shannon Entropy table for the 6 studied datasets NC: number of compounds in the database; 

NS: number of scaffolds; NS1: number of singletons; NS/NC and NS1/NC: number of scaffolds and number of 

singletons normalised by the number of compounds, respectively; NS1/NS: number of singletons in relation to the 

number of scaffolds; SSE5, SSE10, SSE20: scaled Shannon Entropy at 5, 10 and 20 most populated scaffolds, 

respectively; n5, n10, n20: fraction of compounds contained in the 5, 10 and 20 most populated scaffolds, 

respectively. It can be seen that the AfroCancer and NCI Cancer dataset are more diverse than the other datasets. 
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AfroCancer 364 226 0.62 164 0.73 0.45 0.94 0.97 0.96 0.96 0.13 0.19 0.28 

Malay Cancer 1,043 425 0.41 322 0.76 0.31 0.73 0.80 0.81 0.82 0.18 0.22 0.28 

Ayurveda Cancer 1,091 387 0.35 284 0.73 0.26 0.69 0.71 0.77 0.80 0.17 0.22 0.28 

NCI Cancer 187 124 0.66 100 0.81 0.53 0.89 0.97 0.97 0.99 0.14 0.21 0.31 

ConMedNP 2,647 1,128 0.43 758 0.67 0.29 0.87 0.97 0.92 0.92 0.13 0.17 0.23 

Approved Drugs in 

DrugBank 

1,510 892 0.59 740 0.83 0.49 0.85 0.61 0.69 0.77 0.12 0.15 0.19 

 

We next analysed the Murcko scaffolds of our datasets in order to be able to interpret 

scaffold diversity on the chemical level.  

 

Table 2:2 shows the most frequent Murcko scaffolds in the AfroCancer, NCI Cancer, 

ConMedNP and Approved DrugBank datasets, along with the percentage of the dataset 

covered by that scaffold. The percentage of compounds not containing ring systems 

were 2.19%, 10%, 3.9% and 10% for the AfroCancer, NCI Cancer, ConMedNP and 

Approved DrugBank datasets, respectively. The benzene scaffold is the most populated 

scaffold in both the NCI Cancer and Approved DrugBank datasets, whereas it is less 

populated in both the African datasets (at second place for AfroCancer, and at rank 5 

for ConMedNP, respectively). This was also observed in a recent study198 of all drugs 

in DrugBank (we used only the approved drugs). Eight of the scaffolds in our top ten 

most populated scaffold were present in the top 12 scaffolds of this study. A further 

study identified the top five populated scaffolds of drug and drug-like compounds199. 

Of these, three are present in the top 10 most populated scaffolds of the Approved 

DrugBank dataset. The flavone (rank 1 in the AfroCancer dataset) and isoflavone (rank 

5 in the ConMedNP dataset) scaffolds are also more populated in the African datasets, 

but absent in both drug datasets in total. This is expected because flavonoids fulfil many 
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important functions in plants including anti-oxidant activity and cell signalling200. The 

observation of the presence of flavone and isoflavone scaffolds in the top populated 

scaffolds of the natural product datasets is similar to the observation by Yongye et al168, 

201, 202 that flavones, coumarins and flavanones are the most frequent scaffolds in NP 

datasets. Our analysis shows that the frequent ring systems in African NP datasets are 

consistent with those found in NP datasets in the literature. 
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Table 2:2 Top 10 most common scaffolds in the AfroCancer, NCI Cancer, ConMedNP and Approved 

DrugBank datasets. It can be seen that the benzene scaffold appears in the top 10 most populated scaffolds in all 

datasets. The compounds in the AfroCancer and ChEMBL dataset are more evenly distributed across their scaffolds. 
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Figure 2:6 Overlap of scaffolds between the different datasets and scaffolds representing them. AfroCancer 

and NCI Cancer share six Murcko scaffolds, while the ConMedNP and Approved DrugBank datasets share 33 

Murcko scaffolds. The table shows the five scaffolds shared by all four datasets and the number of compounds in 

each dataset having that scaffold. 

 

We next analysed the scaffolds that were present in all 4 datasets. From Figure 2:6 we 

can see that there are five structures shared between all four datasets. The AfroCancer 

dataset shares six scaffolds with the NCI Cancer dataset, and ConMedNP shares 33 

scaffolds with the Approved DrugBank dataset. For the five-shared scaffolds, structures 

ii, iii and v are simple and we would expect to see them as scaffolds for small molecule 
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drugs198. The anthraquinone (i) and stilbene (iv) scaffolds are more common in the NP 

datasets due to the important role these secondary metabolites play in plants, e.g. 

colouring pigments (anthraquinone) and antimicrobial, cell signalling and antifungal 

roles (stilbenes)203. This finding shows that there is more structural variation and hence 

different chemical space being covered by the different datasets. This can be 

extrapolated to see how many unique scaffolds there are in the AfroCancer and NCI 

Cancer datasets. 99 out of 226 scaffolds (43.8%) were unique to the AfroCancer dataset 

(when compared to the 45 out of 124 scaffolds (36.3%) in the NCI Cancer dataset). 

 

The totality of bioactive medicinal chemical space from African and approved drug 

origins were hence rather distinct on the scaffold level: out of the 1,128 scaffolds in 

ConMedNP, there were 1,095 scaffolds (97%) not present in the Approved DrugBank 

dataset. In turn, for the Approved DrugBank dataset 98% of the scaffolds were not 

present in ConMedNP. These percentages are similar to those obtained previously199 

where it was found that 85-92% of scaffolds are unique to a dataset and not found in 

other datasets. This was also similar to results obtained by Lee and Schneider197. They 

compared scaffolds of natural product libraries and drug libraries, but they cleaved the 

single bonds (we kept single bonds between rings). They found that 17% of NP 

scaffolds were present in the drug dataset, and 35% of the drug scaffolds were present 

in the NP datasets. 

 

As an illustration we investigated one of the scaffolds which is only present in the 

African datasets, and describe its pharmacological activity in the following. This 

scaffold, the flavone scaffold, was the fifth most populated scaffold in the ConMedNP 

dataset (which was not present in Approved DrugBank). Two of the compounds 

possessing this scaffold (whose structures are shown in the green circle in Figure 2:4) 

come from the plant Milletia griffonia, which is used traditionally to relieve menopausal 

symptoms and limit bone resorption, i.e. treat osteoporosis43, 204. Another compound in 

this area is Buesgeniine (structure shown in the red circle in Figure 2:4), which was 

isolated from the stem bark of Zanthoxylem buesegenii, a plant used traditionally to 

treat convulsions43. This illustrates the novelty, as well as diversity, of the bioactivities 

that structures from the plant origins analysed here possess. Previous work had been 

carried out to identify small hetero-cycles (by enumerating all possible hetero-cycles) 
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due to their usefulness in the development of drugs205, and our examples now provide 

a list of hetero-cycles with ethnobotanical evidence of bioactivity. 

 

In general, these results show that the AfroCancer and ConMedNP databases exhibit 

more scaffold diversity than traditional compound databases and comparable scaffold 

diversity to approved drugs. The results also show that the African datasets contain 

unique scaffolds that are not represented in approved drug datasets, which are able in 

turn to convey very diverse bioactivities. 

 

2.3.3 PREDICTING THE MECHANISM-OF-ACTION OF TRADITIONAL AFRICAN 

MEDICINES 

2.3.3.1 TARGET PREDICTION FOR COMPOUNDS IN THE AFROCANCER DATASET 

In order to understand the mechanism of action of NPs used against cancer, we 

implemented a target prediction algorithm (PIDGINv2) on the AfroCancer dataset. We 

compared this to the experimentally validated targets of the NCI dataset to see if the 

two datasets shared any predicted target space or if the African NPs have a different 

mechanism of action. 

 

Target prediction (with the software set to a 0.9 true positive rate, corresponding to a 

90% confidence that positive predictions are true positives127) was carried out on the 

AfroCancer dataset and compared with the experimental targets of the NCI Cancer 

dataset. We found that there are 14 shared targets between the two datasets, with 134 

targets uniquely predicted in the AfroCancer dataset, and 82 unique targets in the NCI 

Cancer dataset (see Supplementary Table 2 for details). We will first analyse trends in 

predicted targets on a higher level, before subsequently moving on to individual targets 

and pathways. 

 

We first analysed targets predicted on the protein family level. Figure 2:7 shows the 

target classes that make up the predicted (AfroCancer) and experimental (NCI Cancer) 

targets in each dataset. All targets were counted with their classes and normalised with 

respect to the total number of predictions. In the NCI Cancer dataset kinases are the 

largest predicted target class (36% of all individual target predictions), in contrast to 
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only 7% of the targets targeted by the AfroCancer set. In turn, 20% of the target classes 

were oxidoreductases in the AfroCancer dataset, while only 6% of the NCI Cancer 

dataset were oxidoreductases. There is similarity in some smaller target classes, e.g. 

Lipases, which comprise 1% in both data sets. On the other hand, there is a distinct 

difference in the distributions between both datasets for the GPCRs and Other target 

classes.  

 

 

 

Figure 2:7 Target classes interacting with compounds in the AfroCancer and NCI Cancer datasets. 34% of 

the targets that bind compounds in the NCI Cancer (dark grey) dataset are kinases and 24% are GPCRs. 20% of the 

targets predicted to bind to the AfroCancer (light grey) compounds are oxidoreductases while only 7% are kinases 

and 3% are GPCRs. 

 

We next analysed the number of times a target was predicted. This was carried out to 

identify and compare the popular targets in each dataset. Whereas Figure 2:7 shows the 

distribution between unique targets predicted, Figure 2:8 (a and b) takes the number of 

times a target was predicted into account.  
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(a) NCI Cancer 

(b) AfroCancer 

Figure 2:8 Number of targets per target class in the NCI Cancer and AfroCancer dataset. Each circle represents 

a target from the target class shown on the x-axis. (a) Shows the percentage of the dataset predicted to bind to the 

different target classes in the NCI Cancer dataset. Less than 10% of the dataset is predicted to bind to kinases, even 

though they make up 36% of the target classes in that dataset. (b) Transferases only make up 5% of the targets 

predicted to bind the AfroCancer compounds, yet we see that many compounds in the dataset were predicted to bind 

to them. More than 30% of the dataset is predicted to bind to isomerases, but they represent only 2% of the target 

classes for this dataset. (The binding frequency is higher in the AfroCancer dataset because these are predicted targets 

whereas in the NCI Cancer set, they are experimentally validated targets). 
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In Figure 2:8 (a) we see that even though kinases make up the majority of the target 

classes in the NCI Cancer dataset, only around 9% of the compounds in the dataset are 

predicted to actually target kinases, with the most targeted kinase being Tyrosine 

protein kinase JAK1. Only 26 small-molecule kinase inhibitors are currently approved 

by the FDA for cancer indications 206. In contrast, almost 15% of the AfroCancer dataset 

are predicted to bind at least one of the kinases in the dataset, with the most targeted 

kinase being galactokinase. On the other hand, 21 FDA approved drugs with anti-

neoplastic activity elicit their effect by modulating 14 GPCRs207 as primary targets. 

From Figure 2:7 and Figure 2:8 it can be seen that just over 3% of the compounds in 

the NCI Cancer dataset modulate 24 GPCRs. Meanwhile, just under 10% of the 

compounds in the AfroCancer dataset are predicted to modulate not more than 3 GPCRs 

in total. There are 48 FDA approved Nuclear receptor agonists and antagonists208. In 

the NCI Cancer dataset, 10 Nuclear Hormone Receptors (NHRs) are targeted by over 

5% of the compounds in the dataset. By comparison, ~25% of the compounds in the 

AfroCancer dataset are predicted to modulate only 7 NHRs. These results show that, 

despite the fact that some target classes known to be involved in cancerogenesis only 

represent a small percentage of the overall classes, e.g. kinases (7%) and isomerases 

(2%), the compounds in the AfroCancer dataset are predicted to bind a wide range of 

target classes.  

 

In our next analysis, we attempt to understand the mechanism of action of NPs in plants 

used against cancer at the target level. To do this, the predicted targets for the 

AfroCancer dataset were arranged in order of decreasing enrichment, and the top 10 

enriched targets were analysed, the results of which are shown in Table 2:3. The top 

100 most enriched targets for the AfroCancer dataset are shown in Supplementary 

Table 3.  
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Table 2:3 Top 10 most enriched targets in the AfroCancer dataset and the roles they play in cancer 

Target AfroCanc

er Hits 

PubChem 

Hits 

P Value Odds 

Ratio  

Role of Target in Cancer 

Heat shock protein 
beta-1 

5 18 6.51E-15 6.46E-04 Overexpressed in range of cancers. Plays role 
in tumor cell proliferation, differentiation, 

invasion, metastasis, death, and recognition 

by the immune system209. 

NADPH oxidase 4 38 350 6.76E-91 1.50E-03 Expression is increased in pre-malignant 
states of lung and liver cancer, and plays a 

role in the production of reactive oxygen 

species by cancer cells210. 

Carbonyl reductase 

[NADPH] 1 

32 473 2.12E-70 2.45E-03 CBR1 reduces apoptosis and promotes cell 

survival in pancreatic b cells by reducing the 

generation of reductive oxygen species211. 

Cytochrome P450 1B1 1 21 1.38E-43 3.57E-03 Role in cancer and effect of inhibition by NPs 

are reviewed in212 

Aldehyde 

dehydrogenase 

21 437 4.00E-03 3.81E-03 May play a role in differentiation and 

progression of cancer cells. Roles reviewed 
in213 

Interleukin-2 1 26 4.90E-03 4.72E-03 Used as an immunotherapy agent to treat 

cancer214 

Thioredoxin reductase 
2 

1 33 6.17E-03 5.99E-03 Involved in tumour oxygenation, roles 
reviewed in215 

Multidrug resistance-

associated protein 1 

37 1790 1.15E-62 7.92E-03 Plays a role in reducing resistance to drugs216. 

Steroid hormone 
receptor 

8 419 2.67E-14 9.32E-03 Overexpression is used as a prognostic 
marker in breast cancer. Roles reviewed in217 

Potassium voltage-

gated channel 
subfamily A member 3 

6 18 5.09E-11 9.49E-03 Controls the cell resting membrane potential, 

cell proliferation and apoptosis. Potential 
new target in lymph node cancer, reviewed 

in218 

 

For all the 10 most enriched targets, links to cancer were identified. The most enriched 

target in the AfroCancer dataset is Heat shock protein beta-1. Hsp27 is a chaperone of 

the small heat shock protein and provides cyto-protection and inhibition of apoptosis 

under stress conditions219. Hsp27 is induced by heat shock, hypoxia and DNA damage 

and is overexpressed in a wide range of cancers209. The NP Quercetin is an effective 

inhibitor of Hsp27220 and sensitizes glioblastoma cells to temozolomide by increasing 

caspase-3 activity and inducing cell apoptosis221. The scaffold of Quercetin, which is a 

flavonoid, is the most abundant scaffold in the AfroCancer database (see Table 2:2). 

This indicates that several other African NPs may share this bioactivity with Quercetin 

as well as sharing the same scaffold. 

 

Another target involved in cancer in the top 10 is Cytochrome P450 1B1, a mono-

oxygenase of endogenous compounds and xenobiotics. It is the most efficient 17β-

estradiol hydroxylase (4-hydroxylation of estrogens is considered to be an important 

step in hormonal carcinogenesis)222. Furthermore, Cyp450 1B1 is involved in the 

metabolism of some cancer drugs, e.g Docetaxel, which leads to drug resistance that is 

associated with the overexpression of CYP1B1223, 224. CYP1B1-null mice show no 
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obvious change in phenotype, which indicates CYP1B1 is not necessary for mammalian 

development225. It is highly expressed in cancers of the breast, colon, esophagus, skin, 

lymph nodes, brain and testicles compared to healthy tissues222. These observations 

indicate that CYP1B1 is a potential target of interest in cancer226.  However, it is 

important to specifically inhibit CYP1B1 because CYP1A1, which displays 41% amino 

acid sequence similarity to CYP1B1, plays a role in the detoxication of environmental 

procarcinogens, and also contributes to the metabolic activation of dietary compounds 

with preventive activity against cancer227. NP inhibitors of this CYP1B1 include 

coumarins, flavonoids, stilbenes and anthraquinones212. The compounds predicted to 

bind to this enzyme from the AfroCancer dataset are stilbenes and flavonoids with a 

hydroxyl and/or methoxy substitution at the 3’ and 4’ positions, which is also required 

for selectivity over CYP1A212. This is beneficial as the CYPs, once modulated by the 

NPs, will be deactivated and hence the xenobiotics, (or other active NPs in this case) 

will not be detoxified in the cells228. 

 

There is evidence from the literature that several of the targets listed in Table 2:3 are 

modulated by natural products. Potassium voltage-gated channel subfamily A member 

3 is important in setting the cell membrane potential and is currently being considered 

as a potentially new anti-cancer target218. It has been found to be overexpressed in 

various cancers including breast, colon, smooth and skeletal muscle and lymph node 

cancers218. Inhibition of this channel arrests the G1 phase of the cell cycle229, thus 

stopping cell proliferation. A recent study found that the flavonoid, 8-prenylnaringenin 

(Humulus lupulus) inhibits the gate at micromolecular concentrations230. DNA 

topoisomerase I and IIα were also predicted to bind compounds from the AfroCancer 

dataset. These enzymes make incisions in the backbone of the DNA, thus catalysing 

the winding and unwinding of the DNA strands. Inhibitors of DNA topoisomerase I 

and DNA topoisomerase II α induce single and double strand breaks respectively, thus 

inhibiting the cell cycle at the G2 stage231. They are both validated anti-cancer targets 

currently inhibited by irinotecan, topotecan and camphotethecin (DNA topoisomerase 

I) and etoposide, doxorubicin and daunorubicin (DNA topoisomerase II). These 

enzymes are also inhibited by phytoalexins, namely genistein232, quercetin233 and 

resveratrol234. Estrogen receptor α and β were predicted to bind compounds in the 

AfroCancer dataset and they are both validated drug targets being inhibited by the pro-

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/detoxication
https://www.sciencedirect.com/topics/chemistry/metabolic-activation
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drug Tamoxifen235 and Fulvestrant236. The phytoestrogens genistein, kaempferol and 

liquiritigenin are known agonists of these proteins 237. 

 

As can be seen from the above, there is broad literature support for NPs acting on the 

predicted targets. The AfroCancer NPs may be acting via the same mechanisms and 

this provides a promising insight into their mechanism of action.  

 

We next investigated which novel proteins (i.e., those not currently targeted by anti-

cancer drugs) are predicted to be targeted by the AfroCancer compounds, in order to 

firstly understand which novel mechanisms might already be used by African 

medicines to treat cancer, and secondly to make concrete suggestions which type of 

chemistry might be active against which target(s) in an in vivo setting.  

 

In this regard, Table 2:4 shows the unique enriched targets and structures (of either the 

top 5 most similar structures or with 0.3 or more similarity to those in the training set, 

whichever is more) that are predicted to bind to them.  

 

NPs in AfroCancer are predicted to bind Mcl-1, which is an anti-apoptotic member of 

the Bcl-2 family. Mcl-1 is a target of interest and inhibitors are being pursued as drugs 

238. Currently, Omacetaxine Mepesuccinate and Seliciclib are marketed drugs that 

inhibit the synthesis of Mcl-,1 but there are no drugs approved as of now that inhibit 

the function of the actual protein. Flap endonuclease is also predicted to be a target. It 

is overexpressed in breast239, prostate240, stomach241, neuroblastoma242, pancreatic243 

and lung cancer244 and is responsible for inaccurate repair of double strand breaks in 

the DNA repair pathway245. Overexpression is associated with cancer because 

inaccurate DNA repair leads to a higher risk of mutations and thus an increased risk of 

cancer. Another unique target predicted for the AfroCancer dataset is HSP70 which 

plays a housekeeping role in conditions of stress. The role of this target and its potential 

as an anticancer target has been recognised and reviewed 246, 247. To date, there are no 

drugs in the market targeting HSP70. NPs from traditional medicines such as the 

datasets analysed here, which are targeting HSP70, could thus be exploited for further 

experimentation to see if they are viable modulators. Tankyrase 1 is another of the novel 

targets predicted for the AfroCancer datasets. Tankyrase 1 binds to telomeric repeat 
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factor 1 (TRF1) which positively regulates telomere length248, 249. It does this by 

poly(ADP-ribosyl)ating TRF1 to release it from telomeres250, hence allowing access of 

telomerase to telomeres. Telomeres consist of tandem repeats of a G base rich DNA 

sequence251. Shortening of the telomeres below a certain threshold leads to end-to-end 

chromosome fusions, cell cycle arrest and/or apoptosis251. Thus, the importance of 

Tankyrase 1 in cancer lies in prevention of telomere shortening and hence prevention 

of cancer cell cycle arrest and apoptosis. Tankyrase is suggested to be a therapeutic 

target252, 253 with one of the reasons being that it was found that inhibition of Tankyrase 

1 accentutated the ability of MST-312 to induce telomere shortening254. Also, over-

expression of Tankyrase 1 was found to promote telomere elongation249. A reduction 

in Tankyrase 1 has been shown by Dynek and Smith255 to cause cells to accumulate in 

the M phase of the cell cycle. It has been found by Chang et al256 to cause abnormal 

spindle structures. Several compounds in the AfroCancer dataset were predicted to bind 

this target. They may be acting by allowing cell cycle arrest and death by inhibiting 

Tankyrase 1. Two mitotic-specific cyclins B2 and B3 were predicted for the 

AfroCancer compounds. They are also involved in control of the cell cycle at G2/M 

transition257. Overexpression of G2/mitotic specific cyclin B2 is associated with poor 

prognosis in patients with non-small cell lung cancer258, whereas a decrease of 

expression leads to an inhibition of both invasion and metastasis in bladder cancer259. 

This means that their modulation by the AfroCancer compounds may lead to cell cycle 

arrest and better prognosis. 

 

Hence, overall it can be seen that NPs from medicinal plants with anti-cancer activity 

are predicted to bind novel cancer-related targets. These results provide insight into 

the mechanism of action of these NPs.
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To determine if there is a relationship between novel scaffolds and novel targets, we 

next study the relationship between the unique targets (predicted for AfroCancer 

compounds and not present in NCI Cancer targets) and the scaffolds of the compounds 

they were predicted to bind. Table 2:5 (a) shows the compounds (and their common 

Murcko scaffold) predicted to bind heat shock protein beta-1.  One of these compounds 

is Quercetin. As this compound has been shown to inhibit heat shock protein by 

Western Blot analysis260, we are confident in the prediction. It is important to note 

however that polyphenols pose as a problem in drug discovery because they bind targets 

promiscuously and have poor pharmacokinetic properties261. Similarly, the scaffold in 

Table 2:5 (b) was unique to the AfroCancer dataset as was the target it was predicted 

to bind, cyclic dependent kinase 14. In Table 2:5 (c) the scaffold from a compound 

predicted to bind G2/mitotic –specific cyclin-B3 was found in both the AfroCancer and 

the Approved DrugBank datasets (yet none of the drugs in the DrugBank dataset are 

known to modulate this target), but not the NCI Cancer dataset. This is relevant since 

we have identified important anti-cancer targets predicted to be modified by compounds 

with unique scaffolds. We have predicted the mechanism of action of NPs of plants 

used against cancer and they have a different mechanism of action to drugs in the 

market, as was predicted due to their different scaffolds.
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Table 2:5 Scaffolds of compounds predicted to bind unique targets. (a) The flavonoid scaffold which is common 

to the three compounds shown in (a) is unique to the AfroCancer dataset. The compounds were predicted to bind 

heat shock protein beta-1. (b) This scaffold was also unique to the AfroCancer dataset. This compound was predicted 

to bind cyclic dependent kinase 14. (c) This scaffold was found in the AfroCancer dataset but not the NCI Cancer 

dataset. It was found in the Approved DrugBank dataset. This compound was predicted to bind G2/mitotic –specific 

cyclin-B3. These unique scaffolds (a and b) are occupied by compounds that are predicted to bind unique targets. 

 

Scaffold Compound 

(a)  

 

 

 

(b)   

                 (c)   
 

2.3.3.2 ANNOTATING TARGET PREDICTIONS FOR THE AFROCANCER DATASET 

WITH PATHWAYS 

We next annotated the predicted targets for the AfroCancer dataset with pathways that 

they are involved in, to further understand their potential molecular mechanism of 

action. From this analysis 102 and 89 WikiPathways were obtained for the 

experimentally validated NCI Cancer targets and predicted AfroCancer targets 
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respectively, and 52 pathways were common to both datasets (see Supplementary Table 

4). 

 

Looking at the pathways modulated by the NCI Cancer compounds (Supplementary 

Table 4) we see that they modulate, among others, the cell cycle and cell death, e.g. 

DNA Replication, Senescence and Autophagy, and Regulation of Microtubule 

Cytoskeleton. The AfroCancer compounds are predicted to also act on the cell cycle, 

but they are predicted do so through different pathways, i.e. G1 to S cell cycle control 

by modulating cyclin-dependent kinase 6 and Apoptosis Modulation and Signalling by 

modulating Bcl2, MAPK3, MCL1 and NFKB1A. 

 

One of the 37 unique pathways modulated by the compounds in the AfroCancer dataset 

with evidence of involvement in cancer is the Keap1-Nrf2 Pathway. The compounds 

are predicted to act by modulating Nrf2 (nuclear factor erythroid 2-related factor 2). 

Nrf2 is highly expressed in pre-malignant and malignant cells and enhances both 

chemo-resistance and growth of tumour cells262. The NP brusatol (a quassinoid isolated 

from Brucea javanica) is known to inhibit Nrf2, and thus increase chemosensitivity and 

reduce tumour size263. The Nrf2 transcription factor is also responsible for 

cytoprotection against chemical and oxidative stress264. No known inhibitors are 

currently in the market due to structural similarity with other bZIP domain containing 

proteins262, causing selectivity problems due to off-target effects. Only one other 

protein, CREBBP, containing the bZip domain was predicted to bind the compounds 

from the AfroCancer dataset and none of the compounds predicted to bind Nrf2 were 

predicted to bind CREBBP, hence indicating possible selectivity (though the target 

prediction models used do not necessarily provide the resolution needed to be certain 

about this type of predictions). These results suggest that the AfroCancer dataset 

comprises some chemopreventive activity through Nrf2 inhibition.  

 

Taken together, these results lead us to believe that the AfroCancer compounds occupy 

a different yet pharmacologically relevant biological space compared to approved 

medicines in the NCI Cancer dataset, and that their activities appear to be achieved by 

somewhat different means, both in target and pathway space.  
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2.3.3.3 CASE STUDY: TARGET PREDICTION OF COMPOUNDS ISOLATED FROM 

PSOROSPERMUM AURANTIACUM 

We then turned our attention to one particular plant in the ConMedNP dataset which 

has a variety of uses, in order to see whether our analyses can provide insight into its 

mode of action. Fruits of the plant Psorospermum aurantiacum, Family Hypericaceae 

are used in Cameroon and other parts of Africa for the treatment of cancer as well as 

gastrointestinal and urinary tract infections, skin infections, venereal diseases, 

gastrointestinal disorder, infertility, epilepsy and microbial infections43. The variety of 

indications seemed surprising to us at first, hence, target prediction was used to shed 

light on why this plant was used for such a wide range of seemingly unrelated 

indications. Results for the target predictions for the 5 NPs isolated and characterised 

from Psorospermum aurantiacum265 are shown in Table 2:6.  
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Compound 1 is predicted to bind to Protein kinase C gamma, and it has previously been 

shown to be linked to keratosis. Neutrophilic cutaneous infiltrates are produced as a 

result of activating Protein kinase C, and they act to prevent relapse of the tumour by 

mediating antibody-dependent cellular toxicity against the tumour cells266, 278. It thus 

appears that the activity of Compound 1 against Protein kinase C gamma may be 

responsible for its utilization for treating skin infections. At the same time, Compound 

1 is also predicted to bind to Leukotriene B4 receptor 1 and Induced myeloid leukaemia 

cell differentiation protein Mcl-1. Elevated levels of Leukotriene B4 receptor 1 have 

been found in a number of inflammatory diseases271, so inhibition may explain the anti-

inflammatory activity associated with this plant. Apart from annotated indications, an 

experimental leukotriene B4 inhibitor was found to inhibit proliferation and induce 

apoptosis in pancreatic cells270, and suppression of induced myeloid leukemia cell 

differentiation protein Mcl-1 is known to induce apoptosis268, so this compound may 

have the potential to also act as an anti-tumour agent. The targets predicted for 

Haronginanthrone can explain the seemingly unrelated annotated bioactivity of this 

plant in treating epilepsy and infertility. This compound was predicted to bind to the 

estrogen receptor and estrogen receptor beta, which play an important role in cancer 279, 

280 and catamenial epilepsy276. More proof that estrogen receptors play a role in epilepsy 

is shown by the fact that reproductive dysfunction is associated with epilepsy281 as well 

as anti-epileptic therapy282. A literature review revealed that estrogen receptor knockout 

mice have been shown to exhibit infertility as well as reduced fertility274. The fact that 

Psorospermum aurantiacum is used to treat infertility indicates that the compounds 

may bind to estrogen receptor β and act as agonists.  

 

Looking at the bioactivity profiles of the compounds in Psorospermum aurantiacum 

and similar compounds in the ChEMBL database we find that these compounds are 

predicted to have activity in a variety of cell lines and targets e.g. Ferruginin C and 

Vismin (>80% similar to compounds in P. aurantiacum) have reported activities 

against cancer lines including MCF-7283.  

 

As we can see, target prediction has allowed us to develop a plausible mode of action 

hypothesis for this plant, despite the rather dissimilar indications for which it is being 

used. Furthermore, combining information from different sources, e.g. ethno-botanical 
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use with target prediction gives further validation and greater confidence in the 

traditional use of these plants as medicines. 
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2.4 CONCLUSION  

In this study we have looked at the scaffolds and the diversity of the African compound 

libraries compared to other NP libraries and approved drugs. We showed that African 

compounds are structurally diverse and share only a proportion of structural space, 

namely 3.6% of scaffolds, with approved drugs. 97% of the scaffolds in ConMedNP 

were unique and not present in the Approved DrugBank compounds, and 43.8% 

scaffolds were unique to the AfroCancer dataset (when compared to the 36.3% 

scaffolds in the NCI Cancer dataset), representing unexplored chemical space with 

some evidence of therapeutically relevant biological activity. We also showed that these 

African compounds share 14 predicted targets with those of the NCI Cancer 

compounds, but that the remainder represents targets with potential novel therapeutic 

value.  

 

Results obtained using the target prediction algorithm gave an indication of the 

mechanism-of-action of the compounds from the AfroCancer dataset. Three targets 

(MCL-1, bcl2 and Flap endonuclease) have been identified as targets that can be 

modulated and the compound-target predictions experimentally validated in further 

studies. Pathway analysis of the AfroCancer dataset revealed 14 cancer related 

pathways similar to those modulated by the cancer drugs in the market, though they 

appear to act via different mechanisms of action as shown by the different targets and 

stages of the pathway modulated. Novel pathways, e.g. the Keap1-Nrf2 Pathway and 

Apoptosis Modulation by HSP70, provide starting points both from the chemical and 

the biological side for future anti-cancer treatments, derived from traditional African 

medicines.  

 

As a more detailed case study, the apparent variety of conditions against which 

Psorospermum aurantiacum is used was also explained using target prediction. This 

finding illustrates the benefit of target-prediction in shedding light into the mechanism 

of action of plants that have not previously been extensively studied. Furthermore, this 

approach can be used to guide the screening of African plants for which no molecular 

targets are currently known.  
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CHAPTER 3: INTEGRATING ETHNO-BOTANICAL 

AND PHYLOGENETIC INFORMATION OF 

MEDICINAL PLANTS WITH THEIR PREDICTED 

MECHANISMS OF ACTION TO IDENTIFY 

PHYLOGENTIC PATTERNS OF USE 

3.1 INTRODUCTION 

The combined knowledge of ethno-medicine and phylogenetic information of plants 

has been utilised to identify promising lineages of medicinal plants for lead 

identification, such as by Hawkins et al145 in the genus Pterocarpus (Leguminosease). 

This was demonstrated by studying plants from the genus Pterocarpus across 

Indomalaya, Tropical Africa and the Neotropics. Plants with medicinal activity were 

concentrated on specific clades, i.e. they were not randomly distributed. This study 

provided a link between biogeography and phylogeny of the plant.  Some studies 146, 

147 have also looked at the possibility of predicting medicinal potential of a plant using 

its phylogeny. The study by Saslis-Lagoudakis et al147 found that phylogenetic patterns 

were shared among the medicinal plant species of the flora of Nepal, New Zealand and 

Cape of South Africa. “Hot nodes”, which are nodes in the phylogenetic tree 

(corresponding to plant families or genera) that are significantly over-represented in 

species with a given property, e.g. anti-Malarial, compared with the rest of the tree, 

comprised on average 133% more medicinal plants than a random sample of the studied 

flora, thus demonstrating that plants descended from related lineages are used for the 

same conditions across continents. A recent study used evolutionary tools to predict 

plant lineages with psychoactive properties284 and narrowed down the prospect of 

psychoactive plants to 8.5% of all land plants. These approaches are based on the 

hypothesis that phylogenetic lineages with plants used in traditional medicine are more 

likely to contain plants with medicinally active products.  

 

The ecology tools used in the studies mentioned above can be applied to TAM, since a 

need exists for more research into TAMs used against endemic disease, e.g. malaria 

and HAT. The hypothesis is that there is a relationship between phylogenetically related 
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plants and their medicinal use in African medicinal flora. Any such relationship is likely 

to be related to the unique metabolites produced by the phylogenetically related plants. 

 

To test this hypothesis, we start by using the newly available NANPDB dataset 42 as a 

background dataset to explore whether plant species in the same family in North Africa 

produce chemically similar natural products (NPs). We then compare the similarity of 

NPs produced by the same family in African, Malay and Ayurveda plants used against 

cancer. Subsequently, we integrate phylogenetic information to determine whether the 

phylogenetic grouping of the plant is correlated with the chemistry and predicted targets 

of the NPs that these plants contain. Next, we identify plant families whose members 

are over-represented as remedies against cancer in African, Malay and Ayurveda 

traditional medicine, and then narrow down the search to the African medicinal flora, 

where we identify the over-represented families used for cancer, malaria and human 

African trypanosomiasis. This is followed by investigating the relationship between the 

unique metabolites produced by the plants, and whether or not this plays a role in their 

over-representation in the medicinal flora of Africa. If present, quantifying this type of 

relationship will have a two-fold benefit: (i) it will guide the phytochemist towards the 

type of plants to explore when looking for modulators of specific targets, and (ii) it will 

help to train prediction models on the type of target classes that compounds from this 

plant may modulate.  

 

3.2 MATERIALS AND METHODS 

3.2.1 DATASETS 

3.2.1.1 ETHNOMEDICINAL INFORMATION - CANCER 

The African compounds analysed in this study were obtained from AfroCancer 44 which 

contains 390 compounds in SD format. The annotations of each compound, containing 

compound name, plant origin and ethnobotanical use, are not freely available and were 

obtained by special permission from the CBIC (Chemical and Bioactivity Information 

Centre, University of Buea, Cameroon). 1,091 compounds from Malay traditional 

medicine, which have reported anti-cancer activity, were derived from the commercial 

database Natural Product Discovery System (NADI)179, hereafter referred to as ‘Malay 
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Cancer’ dataset). 1,043 compounds with reported anti-cancer properties from Ayurveda 

were obtained from Dr. Duke’s Phytochemical and Ethnobotanical Databases180 and 

will henceforth be referred to as the ‘Ayurveda Cancer’ dataset. Structures for the 

compounds from Malay and Ayurveda traditional medicine were downloaded from 

PubChem285, ChemSpider180 or HMDB286, by matching the SMILES strings.  The 

combined NPs from plants from AfroCancer, Malay Cancer and Ayurveda Cancer will 

be referred to as the “AMA” dataset. Plants that have NPs currently used against cancer 

in the market were also added to this dataset, namely Catharanthus roseus and Taxus 

brevifolia. 

 

3.2.1.2 ETHNOMEDICINAL INFORMATION – HAT 

Medicinal plants used traditionally in Africa against HAT were obtained from a recent 

review article23. Here, activity is defined as traditional use against HAT or in vitro and 

in vivo studies. This dataset will be referred to as AfricaTryp.  

 

3.2.1.3 ETHNOMEDICINAL INFORMATION – MALARIA 

Medicinal plants used traditionally in Africa against Malaria were obtained from the 

AfroMalaria dataset by special permission from the CBIC. This dataset contains 

compounds from 95 species and all taxonomic information (family, genus, species) was 

used. 

 

3.2.1.4 INTER-  AND INTRA- FAMILY CHEMICAL SIMILARITY OF NPS IN 

NANPDB AND THE AMA DATASET 

The Northern African Natural Products Database (NANPDB) is a global dataset of 

~4500 North African natural products curated from literature between 1962-2016. In 

an attempt to investigate the relationship between the chemical similarity of compounds 

within plant families and across plant families we used all the NPs in this dataset 

extracted from the Plantae kingdom. Secondary metabolites produced by plants serve 

different purposes in the plant, ranging from defence to pollination. It is therefore 

expected that plants will produce the same or similar compounds regardless of the 

family. At the same time, we know from the study of chemotaxonomy (the process of 
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classifying plants according to the secondary metabolites that they produce and the 

biosynthetic pathways used to produce them) that some plant families and closely 

related families produce unique metabolites. (It is this second fact that we hope to take 

advantage of when using plant phylogeny to predict activity.) To view this information 

we constructed an MDS plot in R182 of the fingerprints of the NANPDB compounds. 

Extended connectivity fingerprints (ECFP_6) 114 were generated using Canvas, version 

1.5, Schrödinger184-186. The structural similarity between the compounds in the AMA 

dataset was visualised in DataWarrior191, generated using 2D RBS (2-dimensional 

rubber band scaling applied as described in 191).  

 

3.2.2 PHYLOGENETIC ANALYSIS AND MANIPULATIONS 

We next analysed the position of phylogenetic clumping in different medicinal groups, 

followed by identifying important families in the African flora for use against cancer, 

malaria and HAT. To this end, metrics from community ecology phylogenetics 

(described below) were used to explore the lineages where the clustering of medicinal 

use is present in the datasets.  

 

To identify the position of phylogenetic clumping from different “medicinal groups” 

on the phylogeny, the “nodesigl” command in Phylocom v4.2287 was used. This 

command identifies nodes that are significantly over-represented in genera having a 

specific medicinal use (i.e. belonging to a “medicinal group”) compared with the rest 

of the tree. In “nodesigl”, the observed pattern for each sample is compared to the 

pattern of random samples using a null model that draws “s” taxa from the phylogeny 

terminals where “s” is the number of taxa in a sample.  The dataset was tested with the 

Zanne162 tree as the background phylogeny to generate the random samples. 

 

To measure the phylogenetic distance between plant families (internal nodes of a 

species tree) we used the dist.nodes function from the “ape” package288 in R182. This 

measures the distances between nodes by computing the pairwise distances between 

the pairs of internal and external nodes from a phylogenetic tree using its branch 

lengths, which in this case each unit correspond to millions of years ago (mya).  
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The phylogenetic similarity between taxa (in this work, plant families) is measured by 

the patristic distance289 calculated from the sum of branch lengths connecting the 

studied taxa. The branch lengths represent the amount of genetic change between the 

taxa studied (family, genus, species etc). Calculating the patristic distance is shown in 

Figure 3:1 below. The patristic distance between terminal taxa (A, B and C) is equal to 

the sum of the branches connecting those taxa. The larger the number, the larger is the 

distance between the taxa and hence the further away they are in evolutionary terms.  

 

Figure 3:1 Calculating the patristic distance. The figure shows an example 

of a simplified phylogenetic tree showing arbitrary branch lengths. The 

pairwise patristic distance calculated between the tree tips A, B and C is 

shown in the table. 

 

3.2.2.1 Binomial analyses 

We next analyse the distribution of medicinal plants in families across the African flora. 

Binomial analysis highlights families that depart from a uniform model of proportion 

of medicinal plants in a given flora- assess the patterns for medicinal plant usage across 

a flora. An exact randomisation Goodness of fit test approximated via Monte Carlo 

simulation was carried out on a contingency table for the African flora (medicinal and 

non-medicinal plants in a family for cancer, malaria and Trypanosoma) to test the 

deviation from the null hypothesis (a uniform proportion of medicinal species among 

families). A small p-value indicates the medicinal (anti-cancer, antimalarial and 

antitrypanosomal) species are not evenly distributed among families in the African 

flora. 

The null hypothesis in our case is; H0: Mi =  pflora x si  ; i.e.  plants belonging to family I 

are no more likely to be used medicinally than would be the case for the flora as a 

whole, i.e. the proportion of medicinal plants in family i(pi) equals the proportion of 

medicinal plants in the total flora (pflora = Σmi/Σsi).  

 A B C 

A 0 10 10 

B 10 0 4 

C 10 4 0 

A B C 

5 

3 

2 2 
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The binomial p-values for over -representation were calculated using the BINMODIST 

in Excel. BINOMDIST gives (a) probability that there are x or fewer successes, and (b) 

that there are exactly X number of successes. The probability of X or more successes 

is (1-(a)) + (b). In this case the number of successes is the number of medicinal species.  

 

The number of species per family for the African flora was curated manually from The 

African Plants Database (version 3.4.0)290.  

 

3.2.3 STRUCTURAL PRE-PROCESSING 

All compounds were obtained from their respective sources in SD format. ChemAxon 

Standardizer181 was used for structure canonicalization, transformation, and conversion 

of compounds in SD format into SMILES.  To standardise the compounds in 

ChemAxon Standardizer, the following options were used: Clean 2D, Mesomerize, 

Neutralize, Remove Explicit Hydrogen and Remove Fragment. Duplicate structures in 

each dataset were removed, using ChemAxon JChem Software181, “remove 

duplicates”. 

 

3.2.4 TARGET AND PATHWAY PREDICTION 

See Section 2.2.4.  

 

3.2.5 CLUSTERING 

The matrix of predicted targets was clustered using pvclust291 in R182. An approximately 

unbiased (AU) p-value of 0.95 was chosen. The AU p-value is calculated by multi-scale 

bootstrap re-sampling. For a cluster with AU p-value > 0.95, the hypothesis that "the 

cluster does not exist" is rejected with significance level 0.05; i.e. it can be assumed 

that these clusters do not only "seem to exist" caused by chance or sampling error, but 

can also be observed if we increase the number of observations.
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3.3 RESULTS AND DISCUSSION 

3.3.1 INTER- AND INTRA- FAMILY STRUCTURAL SIMILARITY OF NATURAL 

PRODUCTS 

We first analysed whether NPs produced in each plant family are more similar to each 

other than those not from the same family, the result of which are shown in Figure 3:2. 

Looking at Figure 3:2, we can see that in structural space NPs from the same family 

share the same structural space. This is important as it indicates that when plants from 

a family are used for a medicinal indication, then NPs from other genera and species in 

that family can be bio-screened, as they will likely occupy the same structural space. A 

few examples have been highlighted in the figure, e.g. NPs from Anacardiaceae (light 

blue) and Chenopodiaceae (black).  In the case of the NPs from Chenopodiaceae it is 

interesting to note that they are in the periphery of the graph, due to their unusual 

chemistry, and all other compounds from that family are clustered in the same area.  
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Figure 3:2 MDS plot of tanimoto similarity between NPs using their Morgan fingerprints. NPs are coloured 

based on plant family. Some NPS from the same families are similar to each other and are clustered together in 

space, whereas others are more diverse and spread out in space.  All metabolites in the dataset were used. 
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Quantifying the results will allow us to draw conclusions about the similarity of natural 

products within a plant family and will aid the hypothesis of the next section of 

identifying patterns in TAM. To this end, we carried out a quantitative chemical 

similarity analysis to better represent this information, the results of which are shown 

in Figure 3:3 and Figure 3:4. The median Tanimoto similarity between compounds in 

each family is much higher, ranging from 0.11 to 0.47 within the same family, but a 

maximum median of only 0.15 for the random samples. A Tanimoto coefficient of 0.3 

between compound pairs is generally accepted to indicate that compounds are 

structurally similar176. In ChEMBL, 95% of compounds had Tc > 0.424 to their active 

nearest neighbours143. These studies increase our confidence in the conclusion natural 

products are more similar within a family than would be expected by chance. 
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Figure 3:3 Average Tanimoto similarity of the compounds produced by the family to each other. The y-axis 

displays the average Tanimoto similarity of compounds within in each family to other compounds in that Family. 

From this figure we see that the median of average similarity ranges from 0.11 to 0.47. This represents NPs with 

high structural similarity within each plant. 
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Figure 3:4 Here random selections of 25 NPs were drawn without replacement from the NANPDB and 

repeated 63 times (number of families studied), to represent a set of randomised plant families. Each boxplot 

represents a different randomised family. The y-axis is the average Tanimoto similarity of each NP in this specific 

randomised family to all other NPs in the other randomised families. From this figure we see that the median of 

average similarity ranges from 0.11 to 0.15. This represents NPs with low structural similarity within a group of 

random NPs representing a family. 

 

We next investigated the bias of families with a higher number of NPs having lower 

Tanimoto coefficient scores and vice versa. We suspected that families with a high 

number of NPs compared to other families would intrinsically have lower Tanimoto 

similarity scores. This is because by chance the more NPs extracted and studied from a 
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plant family, the more structurally diverse they would be, since they would belong to 

different phytochemical classes. This turned out to not always be the case as can be 

seen from Figure 3:5. We found that in some cases families produced up to 75 NPs 

(The majority of the families contained around 25 compounds) and the similarity score 

was still above 0.3. When this was not the case, it was found that the families contained 

more than one phytochemical class with little structural similarity to each other e.g. 

Euphorbiaceae contains 295 natural products that included but were not limited to 

monoterpenes, triterpenoids, coumarins, lignans and flavones. Similarly, Umbelliferae-

Apiaceae, contains 389 NPs that fall into several phytochemical groups including long 

chain unsaturated hydrocarbons, monoterpenes, sesquiterpenes and furocoumarins. The 

large numbers of NPs having different chemical structures within these families 

contributes to the low structural similarity between the natural products.  

 

     

 

Figure 3:5 Number of NPs per family versus the mean Tanimoto similarity of NPs in each family. For most 

cases, the similarity was lowest when the number of NPs was above average (average number of compound per 

family is 74.25). However, in some cases, the Tanimoto similarity remained high despite there being 75 compounds 

in the family. 

In this section we have shown that NPs in a plant family are structurally more similar 

to each other than to NPs produced in other plant families. 
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3.3.2 ROLE OF GEOGRAPHIC ORIGIN OF PLANT ON STRUCTURE AND PREDICTED 

ACTIVITY OF NPS 

 

Plant families with species that display anti-cancer activity are found in different parts 

of the world. To investigate whether use of a plant family in one region of the world 

could help inform use of plants from the same or closely related families in other areas 

of the world we examined whether the increased level of Tanimoto similarity between 

natural products (NPs) within a family, shown in the previous section, is also found for 

NPs produced by members of the same plant family that are found in different 

geographic areas. A global study of the African, Malay and Ayurvadic (AMA) dataset 

was carried out to identify relationships between the chemical structure of NPs, their 

predicted activity and the phylogeny of the plants they are produced by, taking into 

account information about their geographic origin.  
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Figure 3:6 Structural similarities of compounds from families from AfroCancer, Malay and Ayurveda 

libraries. Each data-point represents a compound.  The compounds are clustered by their structural similarity 

calculated using Tanimoto coefficients and coloured according to the family of the plant they come from. Similar 

compounds are clustered together, with connecting lines drawn between those having 95% or higher structural 

similarity. This figure shows that compounds within a family are structurally similar e.g. compounds from 

Simaroubaceae (cluster 1) are grouped together as are those from Lamiaceae (cluster 2). Clusters 3 and 4, contain 

similar compounds from Clusiaceae, while clusters 6 and 7 contain similar compounds from Apocynaceae and 

Leguminoseae respectively. On the other hand, cluster 5 contains compounds that are similar in structure to each 

other but come from more than 5 families. This information can on the one hand be used to suggest novel indications 

for particular plants, and on the other hand to improve the mode of action prediction of compounds from particular 

biological species. 

 

From the plot in Figure 3:6 we see that NPs tend to be grouped together and clustered 

by family regardless of the geographic region from which they originated, e.g. the 

Clusiaceae compounds in clusters 3 and 4 from both the AfroCancer and Malay datasets 

and the Leguminoseae compounds from AfroCancer, Malay and Ayurveda (cluster 7). 

We also see clusters of compounds that are similar in more than one family across all 

three regions, e.g. cluster 5 (structures shown in Table 2). Previously, it has been shown 
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that compounds with Tc ≥ 0.3 display similar bioactivities176. Thus, compounds in the 

AMA dataset that are clustered together in Figure 3:6 are expected to display similar 

bioactivity profiles across the three studied regions. This finding agrees with previous 

studies that show that use of a medicinal plant family in one region of the world can 

predict activity of that family in another region145. 

 

The following Table 3:1 shows a comparison between the similarity of compounds in 

clusters, and those in the periphery of the 2D RBS191 plot. The results from Figure 3:6 

and Table 3:1 are discussed below. 



 
 
 
 

105 
 

Table 3:1 Clusters identified by the 2D RBS plot and the structures of the compounds within those clusters. 

This is not a comprehensive cluster list, but an illustration of structural similarities within clusters with similar 

compounds identified by connecting lines when Tanimoto similarity of ECFP4 fingerprints is over 0.95. 

Cluster 1 

  

   

Cluster 2 

  

 

 
 

Cluster 3 

 

 



 
 
 
 

106 
 

 

 

 

Cluster 4 

 
 

 

 

 
Cluster 5 

 
 

   
Cluster 6 
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Cluster 7 

 

 

 

 
 

 

The alkaloids from Catharanthus roseaus (Family Apocynaceae) are grouped together 

with opaque connecting lines (Cluster 6 -Figure 3:6). These alkaloids exhibit anti-

cancer activity by preventing cell division, eventually leading to apoptosis. They do 

this by binding at the “vinca domain” of the β-subunit of the tubulin protein thus 

disrupting microtubule assembly and preventing cell division during the metaphase 

stage of the cell cycle292, 293. The Simaroubaceae quassinoids (Cluster 1) are also closely 

clustered. They display chemo-protective activities through their inhibition of the 

carcinogenic CYP1A1 enzyme294 and cytotoxicity of Simalikalactone D295. The anti-

tumour properties of the Simaroubaceae quassinoids in our dataset display mainly anti-

leukemic activity296. It is important to note that these compounds have not been taken 

into further stages of drug discovery due to their toxicity. This clustering is also true 

for many families whose plants are used traditionally for cancer but for which there is 

currently no clinical evidence of activity, e.g. Clusiaceaae NPs and their anti-

inflammatory activity297. This clustering of families containing NPs that display similar 

activities also has the potential to help direct selection of isolated compounds for 

screening via the following workflow: if a compound falls within a cluster whose 

activity is previously known (traditionally or through in vivo and in vitro experiments), 

then it would be prioritised for screening. Alternatively, if a compound is found to be 
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too toxic, other compounds from the cluster can be screened to identify non-toxic forms. 

This suggests that the distance between NPs with known bioactivity and new NPs in 

chemical space can inform subsequent screening and characterization.  

 

3.3.2.1 ROLE OF PHYLOGENY OF PLANT IN OBSERVED NP SIMILARITY IN PLANT 

FAMILIES 

In the second part of this analysis, we aimed to investigate the relationship between 

plant phylogeny, NP structure and the predicted protein target activity of NPs from the 

AMA dataset. We proceed by analysing the clustering patterns of plant families that 

have been clustered according to both the Tanimoto similarity of the ECFP4 

fingerprints of their NPs, and also the Tanimoto similarity of the corresponding sets of 

predicted targets (Figure 3:7 and Figure 3:8). The results in these figures allow us to 

analyse whether plants that cluster together in chemical space (with similarity defined 

according to their structural fingerprints) are either (i) also clustered together in the 

space of predicted targets as found in, e.g. the cluster containing Leguminoseae and 

Zingiberaceae as well as the cluster containing Ebenaceae, Rutaceae and Acanthaceae, 

or (ii) found in distinct clusters in predicted target space, e.g. Simaroubaceae, Paceae 

and Apocynaceae, which cluster together in structure space but not in predicted target 

space.  
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Figure 3:7 Plant families clustered according to the similarity of the ECFP4 fingerprints of the NPs that have 

been isolated from them. The vertical branch lengths are arbitrary and represent distances between tips. Here we 

set a significance threshold for cluster existence. The start on the top left clustergram is for a cluster with AU p-

value > 0.95, where the hypothesis that "the cluster does not exist" is rejected with significance level 0.05. 
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Figure 3:8 Plant families clustered according to the similarity of the predicted targets of compounds that have 

been isolated from them. The vertical branch lengths are arbitrary and represent distances between tips. i.e. the 

longer the branch, the more the distance is between the daughter clusters. Here we set a significance threshold for 

cluster existence. The stars on the top left clustergram is for a cluster with AU p-value > 0.95, where the hypothesis 

that "the cluster does not exist" is rejected with significance level 0.05. 
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From Figure 3:7 and Figure 3:8, we can see that Xanthorrhoaeceae does not cluster with 

any of the other families in either structure or predicted target space.  Amaryllidaceae 

is also in its own cluster for predicted target space, and clusters with the large 

Leguminoseae and Zingiberaceae families in structure space. Clusiaceae, 

Simaroubaceae and Meliaceae cluster together in both predicted target space and 

structure space, as do, for example, Acanthaceae, Rutaceae, Apiaceae, Moringaceae, 

Piperacee, Ebenaceae, Compoisitae and Cucurbitaceae. Some plant families that do not 

cluster together in predicted target space and structure space include Solanaceae, 

Annonaceae, Lamiaceae and Meliaceae. Figure 3:9 shows the plant families coloured 

in their respective clusters and projected onto the phylogenetic tree of plants, to show 

the relative position of plants on the tree in relation to the predicted targets and structure 

of the NPs they contain. We can see that some clusters are localised to specific parts in 

the tree (indicated in Figure 3:9) leading to the conclusion that for this dataset, with the 

currently available information, these plants contain chemistries not found in other 

unrelated plants, e.g. the cluster containing Asteraceae and Apiaceae.  
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We next analyse, and incorporate into this analysis, the phylogenetic distances (as 

measured by branch lengths between families in divergence times of million years ago 

(mya)) between plant families and how this relates to both the structures of the NPs 

produced by each family, and the corresponding sets of predicted targets. This is 

inspired by work carried out by Liu et al 298 which classified plants based on their 

metabolite content. Despite working with incomplete data, they found that clustering 

plants according to their metabolite content produced clusters consistent with known 

evolutionary relations of the plant. Here we analyse the plant families in detail. In 

(Table 1 – CD) we report the patristic distances between all pairs of the plant families 

in the AMA dataset, calculated using the Zanne162 tree of land plants, and we report the 

patristic distances between the plants discussed here in Table 3:2. The distances in 

(Table1 - CD) are further clustered in Figure 3:10, revealing the presence of several 

distinct phylogenetic clusters within this set of studied families.  

 

The first cluster contains Rutaceae, Simaroubaceae and Meliaceae; another cluster 

contains Rhizophoraceae, clusiaceae and Achariaceae; a further cluster contains 

Ochnaceae Dichapetalaceae and Phyllanthaceae, with two additional clusters 

containing Anacardiaceae, Sapindaceae and Burseraceae in the first and 

Convuluvlaceae, Plantaginaceae, Rubiaceae, Acanthaceae and Solanacea in the second. 

For all the families in these phylogenetic clusters, we find they also cluster in predicted 

target space and structure space. Therefore, we conclude that among the set of studied 

families, plant families that have both similar compound structures and similar 

predicted targets tend to be closer together on the phylogenetic tree (see Figure 3:9 and 

Figure 3:10). In contrast, those families that have similar compound structures but 

different sets of predicted targets tend to be further apart on the phylogenetic tree.  

 

A closer look at the phytochemical classes responsible for anti-cancer activity reveals 

a putative explanation for the differences and similarities in clustering. We find that 

Apocynaceae, Simaroubaceae and Meliaceae are clustered together according to 

structural similarity but not predicted activity. The high level of structural similarity 

can be explained by the phytochemistry of these plant families. Despite this, the 

families do not all cluster together in predicted target space: Simaroubaceae and 

Meliaceae do cluster together, with a divergence time of 42.82 (mya), as shown in 



 
 
 
 

114 
 

Figure 3:10; however, in the phylogenetic tree, Apocynaceae lies further away from 

Simaroubaceae and Meliaceae (see Figure 3:10). We find that Apocynacea and 

Meliaceae diverged 362.31 (mya), and Apocynaceae and Simaroubaceae 368.04 (mya). 

This observation likely reflects the fact that despite the structural similarity between the 

alkaloids of Apocynanceae and the terpenoids of Simaroubaceae and Meliaceae, they 

exert their activity via different mechanisms of action. The alkaloids inhibit cell 

division by interacting with tubulin and topoisomerase II19, 292, 299, whereas the 

terpenoids and limonoids have been found to inhibit NF-κB 20, 300. In accord with these 

reported findings, in our dataset 58 out of 89 compounds (30.7%) from Simaroubaceae 

and Meliaceae, but only 3 out of 81 (3.7%) of the compounds from Apocynaceae, were 

predicted to modulate NF-κB1. In contrast, 22% of Apocynaceae compounds but just 

4.7% Simaroubaceae and Meliaceae compounds were predicted to modulate tubulin α-

1B chain, and 19 out of 81 (23.5%) of Apocynaceae and 10 out of 189 Simaroubaceae 

and Meliaceae compounds (5.3%) were predicted to bind tubulin α-3C/D chain. 

 

This finding of NPs from Meliaceae and Simaroubaceae acting via different 

mechanisms of action to the NPs in the phylogenetically distant Apocynaceae, despite 

having similar structures, supports the hypothesis that plant families phylogenetically 

further away from each other on the tree are predicted to act by modulating different 

targets. 
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Figure 3:10 Heatmap of the families discussed above; clustered by the phylogenetic distances between them. This 

heatmap shows that the distance between families in the phylogenetic tree can be represented as clusters e.g. the Rutaceae 

and Simaroubaceae cluster. The dark blue represents plant families that are close together phylogenetically, while those in 

yellow and red are further away phylogenetically. The numbers on the coloured bar represent divergence in millions of years 

ago. 
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This analysis supports the hypothesis that the position of a plant on the phylogenetic 

tree, relative to other plants, can help predict the activity of its natural products. When 

plants are close phylogenetically, they produce similar compounds that are predicted to 

act via similar mechanisms of action, as shown by the clustering in Figure 3:7 and 

Figure 3:8. When they are further away phylogenetically, but produce structurally 

similar compounds, they are predicted to act via different mechanisms of action. 

Common processes that occur in different plant species that need to be carried out 

require secondary metabolites to be adapted to the local environment. Our findings 

suggest that these NPs tend to still be structurally similar, while having different 

mechanisms of action. This wide range of chemical space likely gives rise to the 

different predicted mechanisms of action displayed by the AMA plants.   

 

3.3.3 CROSS-CULTURAL PATTERNS IN MEDICINAL FLORAS WITH TRADITIONAL 

ANTI-CANCER ACTIVITY 

In this section we aim to detect plant families whose members are used significantly 

more often in medicinal flora than would be expected by random draw, i.e. families that 

are over-represented in traditional use. First, we wanted to show that NPs within a 

family in the AMA dataset are structurally similar to each other. This would mean that 

when a plant family is identified as over-utilised, then species in that family are 

prioritised for screening because they would produce structurally similar NPs with 

similar activities. In Figure 3:3 we showed that for the NANPDB dataset, species within 

a family tend to produce more similar NPs to each other than would be expected at 

random. The AMA dataset is analysed in detail in Figure 3:6, where NPs produced by 

species within the same family also tend to cluster in structure space. To analyse this in 

more detail, Figure 3:11 displays boxplots that illustrate the Tanimoto similarity of 

natural products within each family of the AMA dataset, and Figure 3:12 shows the 

median Tanimoto similarity of NPs within a family as a function of the number of NPs 

in a plant family.  
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Figure 3:11 Tanimoto similarity of NPs to each other in each family. Each boxplot represents a plant family. 

The y-axis is the average Tanimoto similarity of the compounds produced by the family to each other. From this 

figure we see that the median of average similarity of compounds in the AMA dataset ranges from 0.08 to 0.88. This 

plot shows that NPs within some families have very high Tanimoto similarities to each other, compared to those 

NPs and families analysed above in the NANPDB dataset, where NPs within a family showed a median similarity 

between 0.11 and 0.47, and the random draws only showed median similarity between 0.11 - 0.15.  
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Figure 3:12 Number of NPs per family versus the mean Tanimoto similarity of NPs in each family. For most 

cases, the similarity was lower (less than 0.3) when the number of NPs was above average (average number of 

compound per family is 51.29). However, in some cases, the Tanimoto similarity remained high (0.33) despite there 

being 97 compounds in the family. 

 

The results show that NPs within a plant family are structurally similar to each other 

(Tanimoto coefficient up to 0.88), e.g. Primulaceae contains 6 NPs with median 

Tanimoto similarity of 0.87 to each other and Convulvulacea contains only 3 NPs that 

have a median similarity of 0.87. We also see that the greater the number of NPs per 

family, the lower the similarity, e.g. the 326 NPs in Amaryllidaceae and 278 NPs in 

Xanthorrhoeaceae share a median Tc of only 0.09 and 0.15 respectively. This is not 

always the case, as can be seen for the family Clusiaceae. This family contains 97 NPs 

which have a median Tanimoto similarity of 0.33 to each other. Here we have shown 

that NPs in a family are somewhat structurally similar to each other. 

 

Hot Nodes  

Previous studies147, 284, 301, have looked at the over-representation of medicinal plants 

in different flora across different continents by identifying ‘hot nodes” in plant lineages, 

in order to guide medicinal chemists’ choice of lineages to pursue for drug discovery. 

This previous work has focused on ethno-botanical studies rather than chemistry.  

Moreover, this type of study has not been carried out for African medicinal flora or for 
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medicinal flora from different parts of the world used against cancer. To address these 

questions, we compiled and curated a completely novel dataset of 51 plant families 

(129 species, see Methods), that have been reported to have activity and are used against 

cancer in Africa, Malaysia and India (the AMA dataset). We then analysed this dataset 

to identify phylogenetic lineages in which anti-cancer properties are over-represented. 

Figure 3:13 shows the phylogenetic tree of land plants, with the clades descending from 

the hot nodes coloured in red. In this case we hypothesise that if a node is identified, its 

descendants (terminal taxa) are more likely to belong to the “medicinal use” group (in 

this case against cancer) than would be expected by random chance.  

 

 

Figure 3:13 Distribution of AMA plants and hot nodes on the angiosperm phylogeny. There are 51 plants used 

against cancer in Africa, Malaysia and India (red dots). The hot nodes (red clades) represent lineages that are over-

represented in cancer use. The blue dots represent plant orders that were identified as hot nodes. Blue dots: clades 
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have not been colored in so as not to obscure the families that are over-represented within each clade. This is because 

not all families in the over-represented clade are over-represented for use against cancer in the AMA dataset. 

 

Table 3:3 Hot nodes identified from the AMA dataset. These families are significantly over-represented in genera 

having anti-cancer activity compare with the rest of the tree. The table shows each “hot-node” and the number of 

genera and species within that node. The total species represent 8.5% of land plants that are expected to be of greater 

medicinal value for use against cancer than would be expected by random chance. 

Hot nodes  Genera in node Species in node 

Zingiberaceae 52 1,587 

Clusiaceae 24 1,047 

Ancistrocladaceae 1 21 

Nyssaceae 5 37 

Taxaceae 6 31 

 

Using the 129 cancer-remedying plant species from the AMA dataset, our hot node 

analysis identified 2,574 novel species, which represents ~8.58% of all land plants (see 

Table 3:3). Table 3:3 also contains Nyssaceae and Taxaceae, which do not have any 

plants in the AMA dataset, but were included in the analysis to demonstrate the efficacy 

of the tool and for retrospective validation of the method. We note that Taxol (a 

chemotherapeutic agent) is isolated from various Taxus species that belong to 

Taxaceae, while the quinoline alkaloid Camptothecin (chemotherapeutic agent) is 

produced by both Camptotheca acuminata and Camptothecin lowreyana302 that belong 

to Nyssaceae. The identification of just 2,574 novel species suggests a greatly reduced 

set of plants that could be prioritized for screening for potential anti-cancer activity.  

 

We next look more closely at the taxa identified by the analysis presented above to see 

if there is any primary literature support for anti-cancer activity, since these taxa were 

not represented in the AMA dataset of known anti-cancer plant species compiled from 

existing database resources. This would provide additional confidence in the ability of 

our analysis to identify of taxa with suspected medicinal activity. Table 3:4 shows the 

families identified as “hot-nodes” and other plants in those families that were not 

contained in the AMA dataset, but for which anti-cancer activities have been reported 

in the literature. For example, despite the fact that alkaloids produced by 

Acistrocladaceae member Ancistrocladus korupensis have shown anti-HIV activity303 

as well as anti-malarial activity304, the 30 family members that are not contained in the 
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AMA dataset have not been screened for anti-cancer activity, suggesting that 

Acistrocladaceae alkaloids should be prioritised for anti-cancer screening campaigns. 

 

Table 3:4 Plants with reported anti-cancer activities that were identified by the “hot-nodes”, but were not in 

the input data. 

Family Plants not in dataset with 

reported anti-cancer 

activity 

Zingiberaceae Alpinia galanga305 

Alpinia officinarum306 

Curcuma caesia307 

Curcuma kwangsiensis308 

Curcuma purpurascens309 

Clusiaceae Mesua beccariana310, 311 

Allanblackia gabonensis312 

Garcinia nervosa313 

Garcinia achachairu314 

Acistrocladaceae Ancistrocladus korupensis 

(anti-HIV and anti-malarial 

properties)303, 304 

 

3.3.4 PATTERNS OF AFRICAN MEDICINAL PLANT USE – CANCER, MALARIA AND 

HAT  

The AfroCancer (subset of the AMA dataset - 17 families), AfroMalaria and 

AfricaTryp (see Methods), contain plants with reported activity against endemic 

diseases in Africa, for which the population is highly dependent on traditional medicine. 

We utilised two statistical approaches to better understand the distribution of medicinal 

flora across families and to identify which families are important for cancer, malaria 

and human African Trypanosomiases (HAT) use in Africa. We first establish whether 

specific families are significantly enriched for plant species that are used against cancer, 

malaria and HAT. The goodness of fit test on the collected families showed a significant 

departure of the anti-cancer, anti-malarial and anti-trypanosomal species from 
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homogeneity (for p-values see Table 3:5). The high level of statistical significance 

means that we can now assess the distribution of the medicinal plants within families.  

 

Table 3:5 χ 2 Test for the 3 datasets. We calculated whether the AfroCancer, AfroMalaria and AfricaTryp species 

can be distinguished from the flora as a whole. The chi-square goodness of fit test on the collected families showed 

a significant departure of species from homogeneity (shown by the p-values), i.e. statistically more medicinal 

(cancer, malaria, HAT) species than in the flora as a whole. 

 χ2 p-value 

AfroCancer 69.28 2.07e-12 

AfroMalaria 1039.71 2.20e-16 

AfricaTryp 1378.9 2.20e-16 

 

For the second part of this study, we assessed the distribution of medicinal plants within 

families and how they deviate from a homologous null model of distribution using 

Binomial analysis. This method evaluates the statistical significance of numerical 

deviation from the expected norm. For each of the datasets, the families that statistically 

deviate from the null hypothesis are shown in Figure 3:14, Figure 3:15 and Figure 3:16. 

Significance values (p-values) are only shown for those families that contain more 

medicinal plants than would be expected under the null hypothesis. This is because in 

this study we are looking at plant families that are used medicinally more than would 

be expected by random chance. 
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Figure 3:14 Results of the binomial test on the families in the AfroCancer dataset. p-values less than 0.05 for 

families that are used more than would be expected by random chance are shown. Here, Acistrocladaceae, Clusiaceae 

and Phyllanthaceae depart from a uniform model (over-represented) of proportion of medicinal plants in the African 

flora. 
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Figure 3:15 Results of the binomial test on the families in the AfroMalaria dataset. In this figure p-values less 

than 0.05 for families that are used more than would be expected by random chance are shown. Here, 

Acistrocladaceae, Dioncophyllaceae, Hypericaceae and Zingiberaceae depart from a uniform model (over-

represented) of proportion of medicinal plants in the African flora. 
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Figure 3:16 Results of the binomial test on the families in the AfricaTryp dataset. p-values less than 0.05 for 

families that are used more than would be expected by random chance are shown. Here, Bombaceae, Burseraceae, 

Canellaceae, Clusiaceae, Cochlospermaceae, Combretaceae, Compositae, Cruciferae, LEguminoseae, Meliaceae, 

Moringaceae, Myrtaceae, Rutaceae and Ulmaceae depart from a uniform model (over-represented) of proportion of 

medicinal plants in the African flora. 
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For the medicinal plant families in the AfroCancer dataset, Acitrocladaceae, Clusiaceae 

and Phyllanthaceae were identified by the Binomial method to be over-represented 

medicinally as they differ significantly (p<0.05) from null expectations (Figure 3:14). 

Acistrocladaceae, Dioncophyllaceae, Hypericaceae and Zingiberaceae were identified 

by the Binomial method to be over-represented medicinally for the plant families in the 

AfroMalaria dataset (Figure 3:15). For the AfricaTryp dataset, 14 families were over-

represented medicinally (Figure 3:16). In addition to families that are well known for 

their cancer, malaria and HAT use, e.g. the annonaceous acetognenins from 

Annonaceae are known to display anti-plasmodial activity315 316, and Meliaceae for 

HAT317, 318, we identified others that are less well known, e.g. Acistrocladaceae for 

cancer. Of the identified families, we also found that other species in these plant 

families produce the same active metabolites that are responsible for activity and these 

are discussed in further detail in section 1.3.4.1. This provides a form of validation for 

our approach of narrowing down the search for potential medicinal activity of the 

African flora to the over-represented families and the ones that seem to be overlooked, 

i.e. they contain chemistry with the desired activity, but they are not annotated with a 

potentially suitable use, e.g. Dioncophyllaceae. 

 

Our results are similar to previous studies carried out to investigate phylogeny patterns 

in medicinal plants. Phylogenetic clustering was found when inspecting medicinal 

properties of Plectranthus319 where similar uses were found among the related species. 

This was also the case for Pterocarpus145, Aloes320 and Euphorbia321 genera, where a 

phylogenetic signal was found for medicinal use. Similarly, studies were carried out 

concentrating on plant use for a specific activity, e.g. studies on psychoactive plants284 

and those used against snakebite322. Here the researchers found plant lineages 

displaying over-abundance of plants having psychoactive activity and anti-snakebite 

activity respectively. However, apart from the study on psychoactive plants, no direct 

link was drawn between the chemistry of the secondary metabolites of the plants and 

the observed phylogenetic signal. In the study by Halse-Gramkow et al284 a link 

between the tropane alkaloids produced by the Solanaceae plants and the identified 

psychoactive “hot-node” is made but this is not explored in detail. Following on from 

these studies our results show that for the African medicinal flora, the distribution of 
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medicinal plants departs significantly from a homogenous null model (binomial 

analysis results).  

 

It is important to note here that our analysis relies on data collected from the published 

literature, which suffers from reporting bias. This means that the data is not complete, 

i.e. not all plants in Africa with anti-malarial, anti-trypanosome or anti-cancer activity 

are included in our datasets. 

 

3.3.4.1 RELATIONSHIP BETWEEN UNIQUE METABOLITES AND BIOSYNTHETIC 

PATHWAYS IN OVER-REPRESENTED PLANT FAMILIES AND ACTIVITY 

From the binomial analysis in the previous section, we recovered plant families that are 

over-represented, i.e. used more than would be expected by chance. Acistrocladaceae, 

Rutaceae and Clusiaceae appeared in the results for all three datasets; therefore, a 

literature review was carried out to assess the relationship between the secondary 

metabolites produced by these plant families and their medicinal use. 

 

Ancistrocladaceae and Dioncophyllaceae 

Plants (from our database) in the two small, closely related, tropical Ancistrocladaceae 

and Dioncophyllaceae produce a unique class of compounds called the 

naphthylisoquinolines (NIQs). They are characterised by a biogenetically unique 

scaffold of acetate origin, which has a methyl substituent at C3 and a meta-oxygentation 

pattern at C6 and C8315. The active NPs of these two families, e.g. dioncophyllin A is 

produced by a different biosynthetic pathway to all other isoquinolones in nature and, 

in the plant, the pathway is initiated in response to stress e.g. chemical stress, biotic 

stress or physical stress323. Activity of these NIQs have been reviewed previously, e.g. 

in vivo anti-tumour activity of dioncophylline A22, anti-plasmodial activity of 

dioncophylline C and dioncopeltine A324 and in vitro activity against Trypanosoma 

brucei rhodesiense and Trypanosoma brucei brucei325. The unique chemistry is 

responsible for activity in plants over-represented in medicinal flora. Other species in 

the family producing this unique chemistry are expected to have similar activity. 
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Clusiaceae 

Plants in the Clusiaceae family, as well as the closely related Gentianceae and 

Bannetiaceae (native to neotropics i.e. not present in Africa), uniquely produce 

distinctive xanthones. African plants from Clusiaceae producing xanthones have shown 

in silico binding against tryapanosomal targets, including: xanthchymol326. The in vivo 

anti-tumour activity of xanthones from African NPs have been reviewed21, as has their 

anti-plasmodial activity327. Furthermore, xanthones produced by plants in different 

continents have also been shown to display anti-plasmodial activity, e.g. Swertia alata 

(Gentianceae) in Pakistan328. These findings further increase our confidence in our 

finding that these plant families are used more than average due to their unique 

chemistry. 

 

Rutaceae 

The Rutaceae family is unique in producing C3 substituted coumarins with a 1,1-

dimethylallyl functional group as well as the acridones. The activity of acridones 

isolated from African plants has been reviewed previously, e.g. their potential as cancer 

therapeutics22, and anti-protazoal activity315. Acridone alkaloids isolated from plants 

not indigenous to Africa, e.g. Swinglea glutinosa from the Phillipines329, displayed IC50 

activity of 0.3 to 11.6 μM against Plasmodum falciparum, and five of the acridone 

compounds had IC50 < 10 μM against Trypanosoma brucei rhodesiense. This shows 

that the plant families that we have identified to be used more than average do display 

anti-protozoal activity in other geographic regions of the world. This is useful because, 

knowing that plants from the same families are likely to have NPs with similar structure 

and activity, we can exploit information of known activities from plant families around 

the world and apply this to the African medicinal flora. 
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Table 3:6 Some known NPs from plants in the dataset from the Ancistrocaldaceae, Dioncophyllaceae, 

Clusiaceae and Rutaceae and their predicted or experimental activities. 

Family NP Activity 

Acistrocladaceae 

(NIQs) 

 

 
 

 
 

 

Moderate anti-

protozaol activity 330 

Clusiaceae 

(Xanthones) 

 
 

 
 

Apoptotic and 

antiproliferative 

activities 
331 
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Rutaceae 

(Acridones) 

 

Anti-plasmodial 

activity 332 

 

From the examples in Table 3:6 we can see that NPs that are uniquely produced by the 

over-represented families are responsible for activity and may be responsible for the 

family being over-represented and over-utilised. As such, we can validate our 

recommendation of further investigating plant species in over-represented families in 

the hope of finding novel bioactive NPs. In our study we have shown a phylogenetic 

correlation between African medicinal plants, their secondary metabolites and their 

predicted activities/known activities. To our knowledge this correlation has not been 

made before and none of the previous predictive phylogenetic studies have been carried 

out on African medicinal flora. 
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3.4 LIMITATIONS OF THE STUDY 

Despite the apparent connection that we have found in this study between the 

phylogeny of a plant and its predicted activity, several limitations exist. Firstly, as in 

many studies involving natural product datasets, we are limited by the information 

available in the datasets. In this type of database (e.g. NANPDB) not all secondary 

metabolites in a plant are recorded, as, through bioactivity-guided fractionation, only 

bioactive phyto-constituents are characterised and analysed. Thus, it is not possible to 

predict protein targets for compounds in a plant (which may be active) beyond what is 

available in the dataset. Also, when trying to extrapolate the mode of action of a NP 

from the predicted target, we must keep in mind that ethno-botanic use includes 

ameliorative effects of symptoms associated with a disease and not necessarily 

treatment or cure of a disease. It is also important to note how data for each medicinal 

plant is presented. For each plant (in one of the African medicinal plant datasets) 

annotated with an activity e.g. cancer, all compounds isolated from the active extract 

are included. The active constituent cannot be determined by querying the dataset. 

Furthermore, diverse assays are presented within a database, e.g. for the AfroCancer 

dataset, more than 40 assays are recorded that determine anticancer activity with 

recorded activities being anti-proliferative, cytotoxic etc. on different cell lines 

including ovarian cancer cell line, human colon cancer cell line, fibrosarcoma and 

melanoma. Several activity values e.g. IC50 and ED50 are used. It is thus important to 

determine the mechanism of action of these NPs. 

 

Secondly, for the regression and binomial analysis to identify “hot nodes” it is 

important to remember that not all plants with medicinal activity are recorded and used 

traditionally. This may be due to several reasons, e.g. the plant not being accessible 

geographically. Therefore, lack of ethno-botanic use of a plant does not indicate that 

the NPs in the said plant are inactive for a disease.  

 

Thirdly, we are using the current Angiosperm Phylogney Group (APG) III 

classification system of plants. This classification is constantly being reviewed and 

updated and plants from one family are moved to another family upon discovery of new 

molecular data. As such, the relationships that we draw between phylogeny and 
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predicted activity are not exact; rather, they are based on the currently accessible 

material and the accuracy of the present classification system.
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3.5 CONCLUSION 

In this chapter we have shown that for the NANPDB dataset, compounds share higher 

Tanimoto similarity to compounds in the same family than they do to compounds in 

other families.  We have also shown that plant families produce these similar 

compounds regardless of the geographic origin of the plant, where we see that, e.g. 

Leguminoseae in Africa, Malay and Indian traditional medicine produced structurally 

similar compounds having Tanimoto coefficient 0.95 or more. We have shown that 

compounds that are closely related to each other phylogenetically produce compounds 

that are similar to each other and these compounds bind similar targets. Plants further 

away in the phylogeny tree produce diverse compounds that act on different targets. 

We were able to rationalise when this was not the case. Furthermore, we have 

statistically identified plants that are over-represented and under-represented in African 

traditional medicine for use against cancer, malaria and human African 

trypanosomiases. These families are known to produce unique metabolites via unique 

biosynthetic pathways, e.g. the napthoisoquinolones in Ancistrocladaceae and 

Dioncophyllaceae, and we have made the connection between these unique 

metabolites, bioactivity and over-utilisation. Based on our initial finding that plant 

families produce similar compounds and have similar predicted activities, we 

recommend that these plant families be prioritised for screening for bioactive 

metabolites. 
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CHAPTER 4: INTEGRATING STRUCTURAL AND 

CHEMOGENOMIC SPACE TO PREDICT THE 

MECHANISM OF ACTION OF PHENOTYPICALLY 

ACTIVE SMALL MOLECULES AND NATURAL 

PRODUCTS IN TRYPANOSOMA BRUCEI 

 

4.1 INTRODUCTION 

Human African trypanosomiasis (HAT) is a parasitic disease caused by the protozoan 

parasite Trypanosoma brucei. This disease is fatal if left untreated333. A need exists, in 

particular in Africa, to identify effective drugs for this disease. The current approaches 

to trypanosome drug discovery include: 

(i) Development of new molecules inspired by known anti-trypanosomal 

agents, e.g. the bisamidines that were developed based on the structure of 

Pentamidine. These compounds failed in clinical trials due to 

nephrotoxicity334. 

(ii)  Target based screening, used to identify, e.g. DDD85646, which showed 

activity against N-myristoyltransferase (NMT)335. This compound could not 

penetrate into the CNS therefore was not deemed useful for Stage 2 of the 

disease.  

(iii) Phenotypic screening, used to identify candidates such as Fexinidazole28, 

which entered Phase 2 and Phase 3 trials in 2012 and Oxaborole336, which 

entered clinical trials in March 2012.  

 

Previous work has been carried out to identify targets of compounds that have shown 

activity against several infectious diseases by integrating publicly available structural, 

chemical and bioassay data. Martínez-Jiménez et al337 identified 139 target proteins 

modulated by compounds from an HTS against Mycobacterium tuberculosis by 

integrating bioinformatics and cheminformatics. A study by Spitzmüller and Mestres338 

on results from an HTS on Plasmodium falciparum identified 39 putative targets by 

using computational target prediction to predict protein targets followed by statistical 
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analysis to detect enrichment of the compounds in Plasmodium falciparum targets. 

Ekins et al339 used a Bayesian machine learning algorithm to identify 11 compounds 

which had an EC50 below 10µM on Trypanosoma cruzi, and their potential targets.  

 

Recently, HTS results have been deposited in ChEMBL-NTD to mediate drug 

discovery for HAT. In 2011, the Drugs for Neglected Diseases Initiative (DNDi) 

released the results of a screening and optimization of specific chemical series against 

human African Trypanosomiasis containing 4,927 compounds, 1,415 of which have an 

IC50 below 10µM (IC50 values for the currently marketed HAT drugs Pentamidine, 

Nifurtimox, Eflornithine and Melarsoprol are 0.01 µM26, 5 µM26, 81-693 µM340 and 

2.1ng/ml26 respectively). In 2015 DNDi released the results of an antiprotozoal activity 

profiling of approved drugs. Similarly, the Swiss Tropical and Public Health Institute 

(SwissTPH) released a screening hits dataset containing 28 compounds in 2016. In 

March 2015 GSK deposited the GSK TCAKS Dataset (hits from Leishmania donovani, 

Trypanosoma cruzi and Trypanosoma brucei brucei phenotypic screening). Combining 

the wealth of information in these datasets with literature searches of the results of 

natural product screens against Trypanosoma brucei and target-based assays provides 

a promising starting point for in silico target identification.  

 

In this study we introduce an approach in which bioinformatics and orthology 

information are integrated to predict and prioritise putative targets in Trypanosoma 

brucei. The goal is to elucidate the mechanism of action of these phenotypically active 

compounds. We start by characterising the structural and chemical features of the 

compounds from both the high throughput screens and literature search. A preliminary 

search for activity of the screened compounds on other organisms is carried out, and in 

the case of experimental activity or predicated activity, Trypanosoma brucei 

orthologues (if they exist) are identified. We then predict the protein targets of 

compounds using a ligand-based machine-learning algorithm that uses a Random 

Forest. The predicted protein targets from non-Trypanosomal organisms are then 

projected by orthology onto the Trypanosoma brucei genome to identify putative 

targets within this species. In addition, experimentally validated targets of the 

compounds from the screening datasets and literature review are obtained from 

ChEMBL and their trypanosomal orthologues identified. The biological processes 
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modulated by these predicted targets will also be studied and the difference between 

the NPs and SHs will be compared.  
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4.2 MATERIALS AND METHODS 

4.2.1 DATASETS 

To identify the target space of trypanocidal agents, several datasets comprised of 

phenotypic screen hits were used. These datasets were made up of 3 different datasets 

of compounds screened against Trypanosoma, which were downloaded from 

ChEMBL-NTD (www.ebi.ac.uk/chemblntd). These datasets contain results of 

phenotypic screens carried out on the bloodstream form of Trypanosoma brucei. All 

active and inactive data were pooled together as they were tested on members of the 

same species of Trypanosoma.  The resazurin fuorescent T. brucei whole-cell viability 

assay341 was used to screen compounds in two of the datasets, namely, 

“DNDi_T.b.brucei Dataset” and “GSK TCAKS Dataset”. The cut-off for this assay was 

>80% growth inhibition of the T. brucei parasite. The STIB900 acute mouse model342 

was used to screen the compounds in the “DNDi Dataset: Antiprotozoal activity 

profiling of approved drugs”. Mice in this assay are considered cured when there is no 

parasitaemia relapse detected in tail-blood over a 60-day observation period. For the 

purpose of this study, compounds (from these three datasets) with IC50 <10μm were 

considered active. The datasets are shown in Table 4:1 below and will collectively be 

referred to as the Screen Hits Dataset (SH). 

 

Table 4:1 Datasets downloaded from ChEMBL-NTD for the Screen Hits Dataset (SH) 

Name of Dataset Active 

Compounds 

Inactive 

Compounds 

Reference 

DNDi_T.b.brucei 

Dataset 

638 511 343 

DNDi Dataset: 

Antiprotozoal activity 

profiling of approved 

drugs 

39 66 342 

GSK TCAKS Dataset 249 343 344 

 

A second dataset comprised of NPs screened or traditionally used against HAT was 

also studied. A literature review of articles with the keywords “Africa”, “natural 

product”, “medicinal plant”, “HAT”, “trypanosoma” and “parasite” revealed 862 

compounds 23, 41, 315, 345, 346. Plants used with activity against Trypanosoma brucei from 
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the NPASS347 dataset were also downloaded and added to this dataset. This dataset will 

be referred to as the NP dataset. 

 

A schematic showing the steps taken to identify the predicted target space of 

Trypanosoma brucei interacting with the phenotypically active compounds from the 

NP and SH dataset is shown in Figure 4:1. 

 

 

 

Figure 4:1 Schematic of the steps used to identify the targets of Trypanosoma brucei. For each of the two datasets 

(SH and NP) experimental activity of the active compounds was extracted directly from ChEMBL. In addition, 

targets were also predicted using PIDGIN v2. Trypanosomal targets as well as targets from different organisms were 

identified. Orthologues of the non-trypanosomal targets were obtained from PantherDB. Targets essential for the 

survival of the trypanosome were obtained from TriTrypDB. We obtained the phenotypically relevant target space 

of Trypanosoma brucei by overlapping the predicted and experimental targets with the essential targets.  

 

  

Small Molecules 

(SH) 
     Natural Products 

                         (NP) 

Experimental activity on all organisms Target Prediction 

Trypanosmal targets 

(predicted) 

Trypanosomal  

targets (predicted) 

Other organisms Other organisms 

(predicted) 

Orthologue search 

Trypanosmal targets 

Trypanosmal targets 

Orthologue search 

Apply DDU “essentiality” criteria for ideal trypanosomal targets 

Druggable target space of Trypanosoma brucei 
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4.2.2 STRUCTURAL PRE-PROCESSING 

Compounds in the SH dataset were downloaded in SD Format and converted into 

canonical SMILES using OpenBabel348. Compounds in the NP dataset were converted 

from PDF to canonical smiles using Document2Structure JChem 17.21.0, ChemAxon 

(http://www.chemaxon.com). ChemAxon Standardizer181 was used for structure 

canonicalization, transformation, and conversion of compounds from SD format to 

SMILES. To standardise the compounds in ChemAxon Standardizer, the following 

options were used: Clean 2D, Mesomerize, Neutralize, Remove Explicit Hydrogen and 

Remove Fragment. Duplicate structures in each dataset were removed, using 

ChemAxon JChem Software181, “remove duplicates”.   

 

4.2.3 CHEMICAL SPACE ANALYSIS 

4.2.3.1 FINGERPRINT CALCULATION AND MDS VISUALISATION 

To visualise the chemical space of the two datasets, we calculated the Morgan 

fingerprints349 (radius 2) on KNIME version 3.3.1350 and projected this information on 

an MDS plot in R182. To quantify this information further, the average Tanimoto 

similarity of each compound to all was calculated in KNIME and a density plot was 

constructed to visualise the results using R182.  

 

4.2.3.2 SCAFFOLD GENERATION 

The Murcko scaffolds of the compounds in both datasets were generated using 

Datawarrior191. The options “Analyse Scaffolds” followed by “Murcko Scaffold” were 

used. This was carried out to compare the scaffolds in both datasets to scaffolds of 

compounds with known anti-trypanosomal activity. This gave a table of the generated 

scaffolds and the number of compounds populating those scaffolds. The top 10 

scaffolds were retained and are shown in the results. 

 

4.2.3.3 FRAGMENT ENRICHMENT ANALYSIS 

To obtain the fragments that are more common in one active dataset over the other, the 

compounds were decomposed into fragments using the MoSS351 node in KNIME350. 

The options “ignore pure carbon fragments” and “use ring mining” were used. To 

http://www.chemaxon.com/
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extract the most common fragments in the SH dataset compared to the NP dataset, a 

fragment had to occur in a minimum of 10% of the fragments of the SH dataset and a 

maximum of 5% in the NP dataset. To extract the most common fragments in the NP 

dataset compared to the SH dataset, a fragment had to occur in a minimum of 10% of 

the fragments of the NP dataset and a maximum of 5% in the SH dataset. 

4.2.3.4 PLOGBB CALCULATION 

The log BB, which is a prediction of blood brain barrier permeation, was calculated for 

the active compounds in the SH dataset to predict which of these compounds will cross 

the blood brain barrier, as this is an important feature for drugs required for the phase 

two part of HAT. Compounds with log BB >0.3 cross the blood brain barrier readily, 

whereas those with log BB <-1 do not cross so readily352, 353. The predicted log BB, 

which defined as the logarithm of the ratio of the concentration of a drug in the brain 

and in the blood, measured at equilibrium, was predicted using the QikProp plogBB 

function on Canvas Schrodinger software354.  

 

4.2.4 CHEMOGENOMIC SPACE ANALYSIS 

4.2.4.1 TARGET PREDICTION AND ORTHOLOGUE SEARCH 

PIDGIN v2 355 was used to predict enriched targets and pathways for both the NP and 

the SH datasets. Target enrichment is calculated in PIDGIN v2 using the prediction 

ratio, defined in Equation 5: 

Prediction ratio =  
Ft Nt⁄

Fb Nb⁄
 

Equation 5 – Prediction Ratio 

Where: 

Ft = Frequency of prediction in the test set i.e. the number of active predictions 

[p(activity) above threshold] across the entire set of input molecules. 

Nt = Number of predictions in test set  

Fb = Frequency of prediction in a background distribution set 

Nb = Number of predictions in a background distribution set 
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The lower the prediction ratio, the more enriched the target is in the phenotypic library. 

Since the models vary in size, chemical space and ratio of active:inactive molecules, an 

Odds ratio and Fisher’s exact test is carried out by PIDGIN v2 to correct for over and 

under prediction of promiscuous and/or selective models. The targets and pathways 

with an Odds ratio below 0.1 were kept for all organisms. Orthologues of the predicted 

targets to Trypanosoma targets were identified using PantherDB137.  The “least 

diverged orthologues” (LDO), i.e. genes in two different organisms that have diverged 

the least since their most common recent ancestor (expected to retain similar functional 

activity across organisms), were kept.  

 

4.2.4.2 KNOWN BIOACTIVITY  

For both datasets, the experimentally validated targets against all organisms were 

obtained from ChEMBL356 and the actives were determined using the following 

criteria: IC50 < 10µm, target_type = single protein, confidence score > 8 

activity_comment = active or inhibitor. Trypanosoma brucei orthologues of these 

targets were also obtained from the PantherDB137 and the LDO, i.e. most nearly 

equivalent were kept.   

 

4.2.4.3 TARGET ESSENTIALITY 

In order to identify essential Trypanosoma brucei targets the TDR Targets database 

version 5357 was used and the following criteria were applied: for all queries, target 

organism = Trypanosoma brucei, target is an enzyme, target is a receptor, target is a 

transporter and evidence that target is essential in any species, resulting in 1,809 genes.  

4.2.4.4 NETWORK CONSTRUCTION  

This was carried out to visualise the multi-target prediction of compounds in the small 

molecules hits dataset. Cytoscape358 was used to construct the target-compound 

network of the active screening hits. The target-compound pairs were obtained from 

the PIDGINv2 predictions of the active compounds of the SH dataset as well as the 

bioactivity data of these compounds which was extracted from ChEMBL as described 

above in 4.3.4.2. The network was analysed using the “Network Analyser” function of 
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Cytoscape. The average node degree of the generated network is 22.305, so any node 

with a higher degree (i.e. more connectedness) was considered a “hub” in our analysis.  

 

4.2.4.5 ENRICHED BIOLOGICAL PROCESSES 

For each dataset, the list of trypanosomal orthologues of predicted targets was used to 

obtain a list of enriched Trypanosoma brucei GO biological processes. This was carried 

out using TriTrypDB359, with the option “Analyse Results” to find the biological 

process terms enriched in the gene list at a p-value < 0.05. The p-value is a statistical 

measure of the likelihood that a certain GO term appears among the input genes, more 

often than it appears in the set of all genes in Trypansoma brucei (background). A tree 

map representation of the enriched GO terms was generated using REVIGO360 and 

plotted using R182. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 CHEMICAL SPACE ANALYSIS 

We first analysed the chemical space of the two datasets (SH, 872 molecules and NP, 

826 molecules) to see if they share chemical space or if they occupy different regions 

of chemical space. The results are shown in Figure 4:2. Despite the difficulty of 

representing chemical diversity in low dimensions, it can be seen that compounds from 

the two datasets have little overlap in chemical space, and that the NPs occupy space 

that is not occupied by the SMs. Furthermore, Figure 4:2 suggests that the NPs are more 

spread out in chemical space and are thus more chemically and structurally diverse than 

the SMs. We therefore expect these two datasets to display different mechanisms of 

action since their chemistries appear to be different. 
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Figure 4:2 MDS plot calculated from the Euclidean distance between Morgan fingerprints of the NP and SM 

datasets. Each data point corresponds to a compound in the datasets. Green data points are NP compounds and red 

data points are small molecule hit (SH) compounds. It can be seen from the MDS image that compounds from the 

two libraries share a small amount of chemical space and the NPs expand into an area of space not covered by the 

small molecules. 
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Figure 4:3 Density plot of Tanimoto similarity of all vs all compounds in each dataset. Natural products have 

the lowest intra library similarity compared to the small molecule hits and the combined library. The mean similarity 

for the SH dataset is 0.095 ±0.012, while the mean similarity for the NP dataset is 0.0827 ±0.016. 

 

To quantify this further, the average Tanimoto similarities of each compound to all 

compounds in both its corresponding dataset were calculated and projected onto a 

density plot; see Figure 4:3. Here we see clearly that NPs have lower intra-similarity 

(mean average Tanimoto coefficient of 0.0827 ±0.016) when compared to the SH 

dataset. This indicates that they occupy a broader chemical space and this can also be 

seen in Figure 4:2 where the NPs are more spread out in chemical space. The SH dataset 

has a mean average intra-similarity Tanimoto coefficient of 0.095 ±0.012 indicating 

that they are more similar to each other than members of the NP dataset.  



 
 
 
 

147 
 

A previous study176 identified an activity-relevant Tanimoto coefficient value of ≥ 0.3 

for bioactive compound pairs. The Tanimoto similarities that we have calculated 

suggest both that these two datasets are each chemically diverse, and moreover that the 

datasets occupy different regions of chemical space. 

 

In an effort to understand the chemical diversity present in these datasets in greater 

detail, we decomposed the compounds in the two datasets into their Murcko188 

scaffolds. The NPs were found to have 413 scaffolds whereas the SHs were found to 

occupy 712 scaffolds, with 25 scaffolds shared between the two datasets. 

 

Table 4:2 shows the ten most populated scaffolds in each dataset (active compounds). 

It is important to note that none of the top ten populated scaffolds overlap between the 

two datasets, further illustrating the chemical diversity of the two datasets shown in the 

MDS plot (Figure 4:2). There was an overlap of just 25 scaffolds in total between the 

databases. Ten of these 25 overlapping scaffolds were in the top 100 most populated 

NP scaffolds with only seven of the overlapping scaffolds appearing in the 100 most 

populated SH scaffolds. Further insight into the diversity within the libraries was shown 

by the percentage of scaffolds that were represented by only one compound. This was 

73.4% for the NPs and 87.2% for the SMD. This also explains why the compounds are 

so spread out in the MDS plot. As we have shown above in the Tanimoto coefficient 

density plot, the compounds in the SH dataset are structurally more similar to each 

other, than the NPs are to each other. So, despite having more scaffolds occupied by 

only one compound than the NP dataset, the SH dataset is still less chemically diverse 

than the NP dataset. One reason for this may be that the SH dataset contains compound 

series intentionally designed to have similar scaffolds for high throughput screening.  

 

No evidence of anti-parasitic activity was found for the third, fourth, fifth, sixth, ninth 

and tenth most populated scaffolds in the NP dataset. The top two most populated 

scaffolds in the NP dataset, (flavonoids and isoflavonoids) are occupied by compounds 

that are known to have activity against trypanomastids as well as other parasites, e.g. 

Plasmodium parasites. These are reviewed extensively by Schmidt et al315. Indolizidine 

alkaloids (the seventh most populated scaffold in the NP dataset) have shown activity 

against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium 
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falciparum with IC50 values of between 39-120 ng/ml respectively. (Chloroquine 

standard activity is 17 and 140 ng/ml respectively). The eighth most populated scaffold 

in the NP dataset is also known to have potent anti-trypanosomal activity361. Evidence 

for anti-parasitic activity was found for the ninth and tenth most populated scaffolds in 

the SH dataset. We found that the ninth most populated scaffold in the SH dataset is 

similar in structure to 4-anilinoquinazoline which is a scaffold of compounds known to 

display anti-trypanosomal activity362. The tenth most populated scaffold is an amino 

thiazole, also known to have potent anti-trypanosomal activity361. Taken together these 

results show that even though the scaffolds in the two datasets are different, they are 

nonetheless associated with compounds with known anti-trypanosomal activity. We 

expect them to act by modulating different targets due to the differences in their 

structures. 
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Table 4:2 Top 10 populated Murcko scaffolds in the NP library and small molecule hits library (SH). It can 

be seen that none of the top 10 populated scaffolds are shared between the two datasets. Benzene was not included 

as a scaffold. 

NP Scaffold Frequency SH Scaffold Frequency 

 

60 

 

7 

 

23 

 

7 

 

10 

 

6 

 

10 

 

6 

 

9 

 

6 

 

9 

 

5 

 

9 

 

4 

 

8 

 

4 

 

8 

 

4 
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8 

 

4 

 

To explore the diversity of the chemistry of these compounds even further, the 

molecules in each dataset were decomposed into molecular fragments, and the 

fragments that were most enriched in each dataset were identified (see Methods for 

details of the analysis). Supplementary Table 5 shows the fragments enriched in the SH 

dataset against the NP dataset and Supplementary Table 6 shows the fragments enriched 

in the NP dataset against the SM dataset. Supplementary Table 7 shows the fragments 

enriched in all the active compounds against all the inactive compounds. From 

Supplementary Tables 5 and 6 it is clear that the fragments are different in both datasets. 

The NP fragments tend to be the polyphenols whereas the small molecules are amines. 

This further illustrates the different chemical space of these datasets. The enriched 

fragments shown in Supplementary Table 7 are important because knowing which 

fragments are enriched in phenotypically active compounds can help with the design of 

new screening libraries.  

 

4.3.2 CHEMOGENOMIC SPACE ANALYSIS 

4.3.2.1 TARGET PREDICTION 

In an effort to identify the target space of Trypanosoma brucei, in silico target 

prediction and a database search were carried out on 871 active screen compounds, 569 

inactive screen compounds and 826 active NPs. The NP compounds were enriched 

against a background of over 2,000,000 compounds from PubMed using PIDGIN v2143 

to produce 186 enriched targets (see Methods for details). At least one target was 

predicted for 772 compounds of the active screen dataset and 391 compounds for the 

NPs, thus 11.4% of the screen compounds and 2.5% of the NPs were outside the 

applicability domain of the model. 1,544 proteins were predicted for the active screen 

compounds of which 1,539 were predicted for non-trypanosome organisms and 1,646 

for the NPs, 1,640 of which were for non-trypanosome organisms. An orthologue 

search for these proteins was carried out on Panther DB to map 101 proteins of the 131 
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enriched predicted proteins for the screening compounds and 275 for the NPs; this 

mapping was six for the bioactivity search for the screen compounds and 109 for the 

NP bioactivity search. To obtain a prioritised set of targets, an enrichment calculation 

was carried out between the predicted targets of the active dataset and the inactive 

dataset of the screen compounds. This approach takes advantage of the negative dataset, 

to further prioritise the targets. The active compounds enriched 131 proteins over the 

inactive compounds and only 5 proteins were predicted to bind only the active 

compounds. A full list of enriched targets is provided in the Appendix of the thesis, 

Supplementary Table 11 and 13. 

 

In this work, we assume shared bioactivity between targets from different organisms, 

e.g Homo sapiens, Rattus norvegicus, Bos taurus etc, and their orthologues in T. brucei. 

A recent study143 found that annotations across orthologues are overall compatible, 

where it was found that only 1,363 of 124,540 (1.2%) orthologue bioactivities have 

conflicting annotations with the corresponding compounds inactive in humans.  At the 

target level, 75.9% human-orthologue HomoloGene target pairs were found to be not 

conflicting. Another study363 on ChEMBL bioactivity data found a statistically 

significant relationship between bioactivity in human and rat targets (R=0.71, p<2e-16). 

Furthermore, a recent study involved carrying out a systematic search for bioactive 

small molecules shared by orthologous targets364. This study identified compound-

orthologue pairs, covering 938 orthologues, 358 unique targets across 98 organisms. 

Of these, a total of 158 orthologous target pairs involving human orthologues were 

identified.364 On the other hand, a study365 which generated both phylogenetic and 

bioactivity tree representations of kinases found that in 57% of the studied cases, 

kinases that cluster together in protein structure space do not necessarily cluster 

together in bioactivity space. This study highlights that implicit assumptions of 

bioactivity across orthologues cannot be assumed based on protein structure similarity. 

Taken together, the results from these studies show that bioactivity data can be 

extrapolated with some confidence from one organism to another. This has been 

demonstrated by a study337 that mined Homo sapiens bioactivity data in combination 

with structural and historical assay space searches to identify active target-compound 

links. The data from the targets identified from Homo sapiens targets was used to 

propose the equivalent Mycobacterium tuberculosis targets via an orthology search.  
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4.3.2.1.1 Checking confidence of predictions before analysing target prediction 

results 

We carried out a retrospective confidence check of our predictions in three ways. 

Firstly, we compared the predicted results to the known targets of trypanocidal drugs 

in the market used against HAT (Eflornithine, Pentamidine, Suramin, Melarsoprol and 

Nifurtimox), shown in Supplementary Table 8. Currently, the only validated drug target 

of any of the drugs is ornithine decarboxylase, the target of eflornithine, which was 

correctly predicted for Eflornithine at a tpr >0.9.  

 

Secondly, we compared the chemical similarity of NP in the dataset to experimentally 

validated trypansomal target inhibitors. We looked at two validated trypanosomal 

targets and compared their experimental inhibitors with those predicted from the NP 

dataset. First, we looked at ornithine decarboxylase (ODC), which is the drug target of 

the suicide inhibitor Elfornithine, in which 2 drug moieties irreversibly bind ODC and 

physically block ornithine from binding. Ornithine decarboxylase is an enzyme that 

catalyses the first reaction in polyamine synthesis366. Polyamines are (i) responsible for 

stabilising the structure of DNA, (ii) responsible for the DNA double-strand-break 

repair pathway, and (iii) antioxidants. Lack of ornithine decarboxylase leads to DNA 

damage induced apoptosis. Ornithine decarboxylase is also targeted by the molecule 

Heterophyllin, found in the NP dataset. The flavanol Herbacetin has previously been 

shown to allosterically inhibit ornithine decarboxylase367 and we hypothesise that this 

is also the case for Heterophyllin, since the compounds are similar in structure. The 

structures of these compounds are shown in Table 4:3. 
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Table 4:3 Structure of Ornithine (natural ligand of ornithine decarboxylase), Eflornithine (Stage 2 Human 

African trypanosomiases drug) Heterophyllin (NP previously shown to bind ornithtine decarboxylase) and 

Herbacetin (NP predicted to bind ornithime decarboxylase). 

Name Structure 

Heterophyllin 

 
Herbacetin 

 
Ornithine 

 
Eflornithine 

 
 

We identified mitochondrial Trypanothione reductase (TryR) (Tb10.406.0520) as a 

potential target of the NPs. Trypanosomes have a unique metabolic redox metabolism 

called the trypanothione redox metabolism. This has been investigated as a potential 

therapeutic target due to its essentiality for the survival of the trypanosome39. 

Trypanothione is responsible for defence against oxidative stress, therefore enzymes 

that make and use it can be targeted. Despite numerous efforts, no clinical compounds 

have been developed due to the presence of a large hydrophobic site in TryR. The NP 

cynaropicrin interacts with targets in the trypanosome redox pathway including 

ornithine decarboxylase, trypanothione reductase, trypanothione synthase and 

glutathione-S-transferase to produce anti-trypanosomal activity368. Cynaropicrin has 

been shown to exhibit this anti-trypanosomal activity via its α,β-unsaturated methylene 

moiety which acts as Michael acceptor for glutathione and trypanothione, thus 

depleting intracellular glutathione and trypanothione369. Michael addition is the 

nucleophilic addition of a carbanion or another nucleophile to an α,β-unsaturated 
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carbonyl compound. Xanthohumol also contains an α,β-unsaturated methylene moiety 

and may thus act via the same mechanism as Cynaropicrin. Xanthohumol has 

previously been shown to modify both NF-κB370 and Keap1371 protein by acting as a 

Michael acceptor to cysteine residues in these proteins. The structures of the 

compounds Xanthohumol (identified from the NP dataset) and Cynaropicrin 

(experimentally validated trypanothione redox modulator) are shown in Table 4:4. This 

suggests the mechanism of action of the phenotypically active NP (Xanthohumol) from 

our dataset. 

 

Table 4:4 Structure of Cynaropicrin, a known modulator of the trypanothione redox pathway, and 

Xanthohumol, a NP predicted to modulate trypanothione reductase. 

Name Structure 

Cynaropicrin 

 
Xanthohumol 

 
 

These two examples demonstrate that we can use the target prediction results with some 

confidence in our further analysis, i.e. biological process and mechanism of action 

elucidation. 

 

In order to prioritise the predicted targets for both datasets, and understand their 

underlying molecular mechanism of action, we proceeded to carry out target predictions 

for the five marketed trypanocidal drugs. This analysis allows us to ascertain whether 

potential new molecules have predicted targets that overlap with the predicted targeted 

of these validated drugs, providing greater insight into their mechanism of action. We 

also constructed a list of essential targets of the whole T.brucei genome and compared 

the overlap with our predicted targets from both datasets as well as the 5 drugs. 
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Figure 4:4 Overlap of genes between the different datasets. It can be seen that NPs share 134 predicted targets 

with the TDR Essential dataset. The Screen Hits targets share 43 targets with the TDR Essential targets. There is an 

overlap of 19 targets between the 5 HAT drugs and the NP targets, and 17 targets between the Screen HITS targets 

and the 5 Drugs. 

 

From Figure 4:4 we see that 19 of the targets predicted for the natural products (NPs) 

are shared with the 5 HAT drugs and of these, 11 are in the TDR Essential set. This 

overlap between the predicted targets of the 5 marketed drugs, the TDR essential drugs 

and the predicted targets of the compounds from our datasets serves to increase 

confidence in the predictions. Of the 134 targets shared between NPs and TDR 

Essential, there were targets essential for tryapanosome survival. One of these targets 

shared between NPs and the TDR essential list is rhodesain. This cysteine protease 

plays a role in impassivity (allows BBB crossing), immune evasion (turnover of VSGs) 

and is responsible for degrading host immunoglobulins37. Allicin has been found to 

bind this target with a Ki value of 5.31μm from the NP Bioactivity dataset.  The primary 

carbon atom in the vicinity of the thio-sulphinate sulphur atom is attracted by the 

cysteine residue in the active site of rhodesain. Another protein identified as a target for 

the phenotypically active compounds is the flagellum surface protein, voltage-

dependent calcium channel type A subunit alpha-1 (Tb10.70.4750) identified in both 

datasets (including the screen compounds). This protein is present in the flagellar 

attachment zone (FAZ), which is a unique feature of Trypanosoma brucei 
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trypanomastid. Knockdown studies of this gene resulted in flagellar detachment and 

deficient growth of the trypanomastid372. Another family of targets predicted that are 

also essential are the heat shock proteins. The HAT drug Suramin acts on HSPs. With 

the exception of ornithine decarboxylase, and the heat shock proteins, none of the other 

trypanosomal genes predicted for the NPs or SHs are targeted by drugs in the market. 

 

Here we have predicted that the phenotypically active compounds from both the NP 

dataset and SH datasets exert their anti-trypanosomal activity by modulating targets 

that are essential to the survival of the parasite. 

 

4.3.2.2 Suitability of phenotypically active compounds from SM and NP 

datasets for Stage 2 HAT 

We proceeded to look into the possibility that these compounds have the potential to be 

active against Stage 2 HAT. Stage 2 HAT is characterised by the traversal of the BBB 

by the parasite. Unlike other parasitic diseases, trypanosome traversal is not dependent 

on the level of parasitaemia373, rather, it depends on the host immune response373. In 

order to achieve Stage 2 activity, the compounds must (i) be able to cross the BBB and 

modulate targets that are essential for the survival of the parasite and/or (ii) act on 

human targets involved in the host response system facilitating parasite traversal, e.g. 

chemokines, TNF- α and interferons374. Supplementary Table 14 shows a list of the 

compounds with favourable plogBB values and the essential Trypanosoma brucei 

targets they are predicted to modulate. We therefore deem these compounds favourable 

for prioritisation for in vivo Stage 2 HAT models.  

 

4.3.2.3 ANALYSING MULTI-TARGET ACTIVITY OF PHENOTYPICALLY ACTIVE 

SMALL MOLECULE HITS COMPOUNDS 

It is generally advantageous for therapeutic drugs to target multiple proteins involved 

in multiple stages of the life cycle 375 as trypanosomes have multiple host life cycles 

376. To visualise if the phenotypically active compounds from the SH dataset display 

multiple protein modulation we constructed a target network. The target network 

showing the connections of the 871 phenotypically active SH dataset compounds to the 

enriched set of targets is shown in Figure 4:5. The figure also shows the compounds 
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that are predicted to penetrate the BBB (coloured in red). This is important for the 

treatment of the second stage of the disease, as the parasite crosses into the brain and 

causes mental deterioration followed by the induction of a coma and eventually leading 

to death. Eflornithine is predicted to have a log BB of -0.328 and is one of the drugs 

suitable for use in the second stage of the disease.  

 

From the network we identified several multi-target compound hubs, the most 

prominent of which are labelled in Figure 4:5. In this case, a hub is a node for which 

the number of links exceeds the average number of degrees (connectedness), which in 

this case is 22.305. There were 78 targets that exceeded the average number of degrees, 

ranging from 22.3 to 90 degrees (connections to compounds). The transporters had the 

highest number of degrees at 90. The identified hubs show the most promiscuous targets 

binding to the active compounds in the SH dataset. We predict that compounds from 

the SH dataset are exerting their activity by modulating the targets in these hubs. We 

can also see that unlike the compounds predicted to bind transporters and 

oxidoreductases, some of the compounds binding the kinases have poor distribution in 

the brain.  
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The first multi-target hub identified is of the compounds predicted to bind transporters. 

Several glucose transporters were identified as targets from the phenotypically active 

compounds, shown in Supplementary Tables 12 and 13, namely glucose transporter 

(Tb10.6k15.2030), glucose transporter, putative (Tb927.4.2290) and a hexose 

transporter (Tb10.6k15.2040), all belonging to the family “facilitated glucose 

transporter protein 1”.  This is significant because one of the most important pathways 

in African trypanosomes is glycolysis, the enzymes of which are packaged in the 

glycosome. Blood stage African trypanosomes rely solely on glycolysis for the 

production of ATP, thus enzymes and transporters involved in this pathway represent 

viable drug targets. It is ideal to have compounds, some of which are shown in Figure 

4:4, with the ability to cross the BBB 377 that will target the transporters.  

 

Another set of multi-target compounds of particular relevance to HAT were identified 

in the kinase hub of Figure 4:5. It has been suggested that it would be advantageous to 

develop kinase inhibitors that target multiple kinases within a family378 to reduce 

resistance that arises from point mutations at the residues involved in the binding site 

between the compound and the kinase379. In our predictions we have identified targets 

including serine/threonine kinases, Mitogen activated kinases, and more (shown in 

Supplementary Tables 12 and 13). Similar targets were predicted for Plasmodium 

falciparum 338, including a number of putative protein kinases, serine/threonine kinases 

and MAP kinases. A potential therapeutic kinase target that was predicted (for 

compounds shown in Table 3 – CD) in the kinase hub was Aurora Kinase A, which 

plays an important role in metaphase-anaphase transition and the initiation of 

cytokinesis380. Knockdown studies showed an essential contribution to infection in 

mice380. Small molecule inhibitors, e.g. hesperidin, have been shown to inhibit this 

protein380. 276 phenotypically active compounds from the screen dataset were predicted 

to bind Aurora A; these molecules are shown using the smiles representation in Table 

3 – CD. The fact that they inhibit Aurora A is relevant because it means that we can 

begin to understand the putative mechanisms of action of these compounds.   

 

Glycogen synthase kinase 3 (GSK3) was also identified as a target of 37 compounds. 

This target is present in the list of highly prioritised targets for trypanosoma drug 

discovery. It is expressed in the bloodstream form of Trypanomastids. RNAi 
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knockdown studies of this gene resulted in defects in mitosis and cytokinesis, thus 

leading to GSK3 being investigated as a therapeutic drug target381, 382. During host 

infection, i.e. bloodstream form, the trypanosome relies on the glycolysis of host sugar 

for the production of ATP383. Consequently, enzymes involved in the process have been 

investigated as potential therapeutic targets. Phosphofructokinases catalyse the 

phosphorylation of fructose-6-phosphate to fructose-6-biphosphate, which is the key 

rate-limiting step of glycolysis (the sole pathway for ATP production in African 

trypanosomes). As a consequence, these kinases are being actively pursued as 

targets384, and it is promising that they are predicted by our analysis as members of the 

kinase hub.  

 

It is important to note that there are limitations to targeting kinases. Humans also have 

numerous kinases and the kinome is important for human survival, hence it is important 

to avoid cross-reactivity with members of the human kinome. We are attempting to 

identify targets in Trypanosoms brucei, which is evolutionarily very distant from 

humans. This evolutionary distance suggests that there may be differences between the 

human and trypanosome kinome that can be exploited. For example, the selectivity of 

Eflornithine to trypanosomal ornithine decarboxylase (not a kinase) arises from the 

difference in turnover for this enzyme between humans and the parasite385. In humans 

the turnover is much faster385, and so suicidal binding386 of Eflorntihine to the 

tryapnsome enzyme affects the trypanosome more than the human enzyme. Human 

enzyme activity is maintained by a protein whose turnover is significantly different 

from the trypanosome version. These evolutionary differences will become important 

at the lead optimisation stage, when these compounds would need to be modified in 

such a way that they do not interact in a detrimental way with the human kinome. In 

summary our analysis shows that individual phenotypically active compounds are 

predicted to modulate multiple targets in the trypanosome parasite. These results 

suggest that a number of these compounds may make good potential therapeutic 

candidates.  
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4.3.2.4 ENRICHED BIOLOGICAL PROCESSES 

Target prediction alone does not provide the full picture with respect to understanding 

the mode of action of phenotypically active compounds. To address this question in 

more detail we analysed the enriched Trypanosoma brucei GO biological processes of 

the predicted targets from the two datasets. The results are represented in Figure 4:6.
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Figure 4:6 Treemap showing the biological processes GO term clusters. Each rectangle is a single cluster 

representative. The size of the rectangle represents the p-value of the GO term (all levels were considered). The top 

figure corresponds to the biological processes of the small molecule gene list whereas the bottom figure corresponds 

to the biological processes enriched in the NP genelist. It can be seen that the major difference between the two is 

the absence of “response to stress” and “response to stimulus” in the SM biological process profile. “Biological 

process” as a GO term refers to annotation of gene products whose biological process is unknown. The p-values 

corresponding to these biological processes are shown in Supplementary Tables 15 and 
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Biological processes involved in protein phosphorylation are enriched in both sets of 

gene lists (these gene lists contain the predicted targets and known biological targets of 

both datasets). Protein kinases, which are the enzymes responsible for protein 

phosphorylation, play an important role in many cellular processes. These include, but 

are not limited to, cell cycle propagation and differentiation as well as transcription 

control. Kinases have been the focus of current kinetoplastid drug discovery 

programs361, 387.  The “kinase library” subset of the SH dataset contained compounds 

that were likely to hit kinases388. Here we have identified the genes they are predicted 

to modulate (Supplementary Tables 10-13) and the biological processes that they enrich 

in order to have the observed cidal and static effects reported by Thompson et al387. 

 

We can see from Figure 4:5 that processes which are essential to the survival of the 

parasite such as glucose and folate metabolism389, 390 as well as cell death are predicted 

to be modulated by compounds in both datasets. This is shown by the presence of the 

GO terms “growth”, “metabolism” and the “cell cycle” in both the top and bottom 

panels of Figure 4:5. The cell cycle has been identified as an important target for 

exploitation in other parasitic diseases caused by Plasmodia, Trypanosoma and 

Leishmania391. An interesting set of biological processes that was found for both sets is 

“regulation of symbiosis, encompassing mutualism through parasitism” and 

“modulation of development of symbiont involved in interaction with host”. Disruption 

of these genes has been shown to be vital for quorum sensing signalling in the 

trypanosome392. Deletion of one of these genes, the differentiation inhibitory kinase 

(Tb927.11.9270), has been shown to increase the rate of differentiation between the 

bloodstream form (pathogenic form) to the stumpy non-dividing form393. The genes in 

each dataset responsible for this observation in the small molecules dataset are:  

 CMGC/DYRK protein kinase, putative (Tb927.10.15020),  

 NEK family Serine/threonine-protein kinase, putative (Tb927.10.5940),  

 Serine/threonine-protein kinase NEK17, putative (Tb927.10.5950),  

 Differentiation inhibitory kinase (Tb927.11.9270),  

 5'-AMP-activated protein kinase catalytic subunit alpha, putative 

(Tb927.3.4560) ,  

 Repressor of differentiation kinase 2 (Tb927.4.5310).  
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In the natural product (NP) dataset, the genes were:  

 5'-AMP-activated protein kinase catalytic subunit alpha, putative 

(Tb927.3.4560),  

 Serine threonine-protein phosphatase PP1, putative (Tb927.4.3620),  

 Serine threonine-protein phosphatase PP1, putative (Tb927.4.3630),  

 Serine threonine-protein phosphatase PP1, putative (Tb927.4.3640).  

 

Note that all these targets are putative kinases, further reinforcing the importance of 

kinases as drug targets for Trypanosoma brucei. The most common scaffolds of the 

compounds predicted to bind the genes enriched in these processes is shown in Table 4 

CD. We can see that the compounds share no scaffolds and that they modulate a 

completely different set of trypanosomal genes, yet they are involved in the same 

biological process. An approach to modulate different kinases simultaneously has been 

suggested to be an advantage for kinetoplastid drug discovery as discussed above. A 

combination of molecules from the NP and SH datasets will likely achieve this as we 

have shown they target different genes involved in the same biological processes. 

 

Other processes that are of particular importance to trypanosome integrity were only 

enriched in the SH gene list, e.g. “homeostasis” and “monosaccharide transport”, the 

importance of which was discussed above. In particular, Ca++ homeostasis, which is an 

essential messenger, is important as its disruption causes apoptosis and necrosis (i.e. 

disruption is lethal to the trypanosome). We have already shown that small molecules 

at the molecular level are predicted to regulate transport mechanisms, and here we see 

the biological processes that are affected. Other biological processes were only enriched 

for the NP gene list, e.g. “cytoskeleton organisation” and “sterol metabolism”. This 

finding is in agreement with previous studies, where sterol metabolism has been 

investigated as a target for the closely related Trypanosoma cruzi394 and Leishmania 

species395. Psilostacyn C, a NP sesquiterpene lactone, induced cell death by apoptosis 

in T. cruzi by interfering with sterol synthesis396. One of the drugs used in 

Leishmaniasis is the NP Amphotericin B, which has a high affinity for egosterol and 

thus inhibits sterol metabolism397. The process of cytoskeleton organisation is 

important as it is responsible for orchestrating the extreme changes in cellular 
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morphology of the trypanosome, during both its life cycle and various different cell 

cycles372, 398. These morphological changes require a high level of integration and 

coordination. Disrupting these processes will therefore lead to growth defects372.   

 

Beyond these biological processes, we note that “response to stress”, “organic 

substance metabolism” and “purine-containing compound metabolism” are absent from 

the SH map in Figure 4:6. One reason that these processes are present in the NP map is 

that those compounds responsible for predicting targets enriched in these processes are 

also responsible for similar processes in the plant that the compounds have been 

extracted from. It is well documented that secondary metabolites in plants are 

responsible for defence against stress399. For example, compounds responsible for 

“cellular response to DNA damage stimulus” included flavonoids, glucosides and 

flavonoids, e.g. caffeic acid, sennoside A, sennoside B, shickimic acid and tannic acid. 

These secondary metabolites protect plant cells from UV-a and UV-B stress via various 

mechanisms400. Furano-coumarins were responsible for “DNA repair response”. The 

furano-coumarins are produced in plants in response to UV-A damage. They are 

activated by UV-A and lead to cell death by blocking transcription through inserting 

themselves into the DNA double-helix and binding to the pyramidine bases400.  

 

Here we have shown that phenotypically active compounds are predicted to modulate 

biological processes that are essential for the survival of the Trypanosoma brucei 

parasite. We have predicted their target genes, and identified the biological processes 

that are enriched for those genes. This analysis provides a deeper layer of understanding 

regarding the mechanism of action of the phenotypically active anti-trypanosomal 

compounds in the two datasets. 
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4.4 CONCLUSION 

In this study we have shown that the chemical space spanned by our small molecule 

(SH) and natural product (NP) datasets are quite different, as shown by the spread of 

the compounds on the MDS plot. The density plot in Figure 4:3 reveals that the NP 

molecules have less chemical similarity to each other than the small molecule dataset 

compounds do, despite the fact that the SH datasets compounds also display low 

similarity to one another. This means that while both datasets are highly diverse in 

chemical space, the NP dataset is more diverse than the small molecule one.  

 

We have made use of negative and orthologue data to identify therapeutic targets of 

phenotypically active HITS and NPs. Our analysis identified overlaps between the sets 

of predicted targets and those genes that are essential for the trypanosome, identifying 

these genes as targets that should be highly prioritised. This analysis is timely and 

relevant, in particular because none of these genes are currently targeted by drugs in 

the market. 

 

We predicted the activity of the small compounds in second stage HAT by predicting 

their logBB values, and found not only that some compounds are predicted to penetrate 

the blood brain barrier (important for Stage 2 of the disease) but also that they are 

predicted to modulate multiple targets. We identified multi-target activity of the small 

molecules, where we show that they are predicted to modulate multiple orthologues of 

the same kinase, e.g. Aurora Kinase A and the MAP Kinases. We have identified 

distinct but therapeutically relevant target spaces for members of both the NP and SH 

datasets of compounds.  

 

We have taken this further and explored the biological processes modulated by these 

compounds. The most interesting finding was the enrichment of processes affecting 

host-parasite interaction, namely “regulation of symbiosis, encompassing mutualism 

through parasitism” and “modulation of development of symbiont involved in 

interaction with host”. We found that compounds from both datasets modulate this 

process through their predicted activity against different targets.  
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CONCLUSION 

 

Throughout the studies in this thesis the aim was to utilise in silico target prediction to 

understand the mechanism of action of African natural products.  

 

In Chapter 2, a Random Forest algorithm was used to predict targets and pathways 

modulated by natural products from African medicinal plants with anti-cancer activity. 

From our study we were able to establish several links between the suggested MOAs 

of the natural products with experimental evidence. Compounds from plants used in 

cancer were predicted to bind primary cancer targets, e.g. the apoptosis regulator Bcl2, 

as well as targets involved in the metabolism and hence resistance to cancer drugs, e.g. 

CYP1B1. We also identified targets that may exhibit novel mechanisms of action that 

are not currently targeted by drugs in the market, e.g. Induced myeloid leukaemia cell 

differentiation protein Mcl-1 and Tankyrase 1. Furthermore, we identified the pathways 

that these compounds modulated and not only were some directly involved in cancer, 

e.g. Apoptosis pathways, but some were not modulated by drugs in the market, e.g. the 

Kaep1-Nrf2 pathway. Similar results were obtained in our case study for 

Psorospermum aurantiacum, where the primary targets associated with the medicinal 

uses of the plant were predicted, e.g. protein kinase C gamma type (linked to skin 

infections), oestrogen receptor β (linked to infertility), Mcl-1 (linked to cancer). 

However, there are limitations of applying an in silico target prediction algorithm 

trained on ChEMBL data to natural products, specifically the applicability domain (the 

physic-chemical structural or biological domain for which it is valid to make 

predictions for new compounds). A target prediction algorithm trained on natural 

product data will go towards addressing this problem. This will require access to 

complete (not sparse) databases containing natural product structure data as well as 

bioactivity data. This should be possible in the near future as more databases are curated 

and updated, e.g. NANPDB, NPASS, etc. 

 

In our novel approach to integrate phylogenetic data with in silico target prediction we 

were able to identify relationships between the phylogeny of a medicinal plant and its 

medicinal use. Plant families in this study mostly cluster together in structure space, 

predicted target space and phylogeny space. Furthermore, over-represented plant 
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families were identified for medicinal uses (cancer, malaria and HAT) in Africa 

including Acistrocladaceae, Clusiaceae and Rutaceae. The over-represented presence 

of medicinal plants within these families was directly linked to the unique 

phytochemicals produced by these plants. Taken together these findings provide a basis 

for predicting the use of a medicinal plant based on its phylogenetic relationship to 

other medicinal plants. Limitations to this study include incomplete data and 

experimental annotations of the NPs from the medicinal species of Africa. As more 

information is curated and added to the databases, more concrete results can be 

obtained. 

 

Phenotypic studies have identified both natural products and small molecules with anti-

tryapnosomal activity. In Chapter 4, in silico target prediction, combined with an 

orthology search, revealed predicted Trypanosoma brucei targets and biological 

processes modulated by the phenotypic compounds that are essential for the survival of 

the trypanosome including glycogen synthase kinase. In addition to predicting the 

targets of these compounds, we were able to predict their activity in stage 2 HAT by 

predicting their ability to cross the blood brain barrier. This study elucidates the mode 

of action of ANPs used in HAT as well as identifying the difference in target space 

between NPs and small molecules. The major limitation in this study is the 

extrapolation of orthologue data from different species to Trypansoma brucei. To 

address this limitation, a similarity cut-off of the predicted target to the tryapnosomal 

target can be applied, e.g. >80% sequence similarity.  

 

Despite the limitations discussed above, in silico target prediction can be used to 

elucidate and understand the mechanism of action of African natural products. 
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FUTURE WORK 

 

In Chapter 2 we attempted to elucidate the mechanism of action of NP from TAMs by 

showing that targets predicted to be modulated by NPs from TAM play a role in cancer. 

We have also shown the molecular pathways that these NP are predicted to modulate. 

In order to fully understand the mechanism of action of these compounds it is vital to 

experimentally validate these predictions. The next step after these predictions is to 

predict binding and interaction of the compounds to the targets. Molecular docking of 

NPs to targets will give us a score of the predicted binding affinity and binding mode 

of NPs to their target proteins. Further steps would be taken for the most promising of 

these predictions to experimentally validate binding. Should these opportunities 

become available the two targets to prioritise would be Tankyrase 1 and Thioredoxin 

reductase 2. Assays to validate NP binding to Tankyrase 1 include those developed by 

Thomson et al401 and assays that can be carried out for Thioredoxin reductase 2 include 

those described in 402-404. 

 

As more NP datasets are curated and made public it will be valuable to build a DNN 

model trained on NP data. DNNs have been shown to outperform RF102, 108 on QSAR 

based protocols when trained on ChEMBL data108 but they require a large amount of 

descriptors and features to train a model, which are not available yet for NPs. The 

applicability domain of the model will improve, as the model will be trained on 

compounds with similar chemical space to the test compounds. 

 

In Chapter 3, we identified over-represented families in Africa used against cancer 

malaria and HAT. This knowledge can be use to prioritize screening of plants from 

over-represented families e.g. Acistrocladaceae and Dioncophyllacea for anti-

trypanosomal activity. It would also be useful to identify biosynthetic gene clusters 

(BGC) in plants where it was found that medicinal activity was due to unique 

metabolites e.g. NIQs in Ancistrocladaceae, Xanthones in Clusiaceae and Acridones in 

Rutaceae. Identifying these BGCs in one of the plants known to produce a medicinally 

active NPs is useful when genome mining other plants in the same family for novel 

medicinally active NPs405, 406. 
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In Chapter 4 we predicted the biological targets of phenotypically active compounds. 

The next step would be to validate these predictions. This can be achieved by first 

carrying out docking studies to determine binding affinities and binding modes of 

compounds predicted to bind two prioritized targets. Compounds to be prioritized 

would be those that are predicted to cross the BBB, have good ADMET properties and 

predicted to modulate targets essential to the Trypanosoma bruceii parasite. The two 

targets that can be prioritized from our results are Glucose transporter and hexose 

transporter inhibitor407, 408 and GSK3382, 409.  

 

Another extension of this work would be to expand on the network analysis carried out 

in this Chapter to uncover novel druggable target space in Trypanosoma bruceii. To 

carry this out, a network of the Trypanosoma bruceii proteome, obtained from 

STRING410 database will be constructed. The STRING database contains information 

predicted and known protein-protein interactions. This network can be mapped out, 

visualized and analyzed using Cytoscape358. Several functions scores can be calculated 

including the Betweeness Centrality, which shows which nodes (in this case targets) 

are more likely to be in communication paths between other nodes. It is useful in 

determining which targets can be modulated where the protein network would break 

apart i.e. modulating a target with high Betweeness Centrality will cause a larger 

downstream effect. This measure demonstrates how likely the target is to be the most 

direct route between two targets in the network. Other useful measures that can be 

calculated include Eigenvectors, which determine how well a target is connected to 

other well connected targets and Degree which shows how many targets a particular 

target interacts with directly. 

 

The next step would be to identify which of the compounds in our SH and NP dataset 

are predicted to  (or experimentally known to) modulate these targets (targets with high 

Betweeness Centrality, Eigenvectors and Degree). It would also be useful find out if 

the compounds in the SH and NP datasets bind orthologues in other kinetoplastids of 

these targets.  Experimentally validating these predictions will potentially uncover 

novel target space in Trypanosoma bruceii. 
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SUPPLEMENTARY MATERIAL 

Supplementary Table 1 List of cancer drugs obtained from NCI (NCI Cancer) 

 ChEMBL ID Drug Name Canonical SMILES 

1 CHEMBL34259 Methotrexate 

(BAN, FDA, 

INN, JAN, 

USAN, USP); 

Methotrexate 

Sodium (FDA); 

CN (Cc1cnc2nc (N)nc (N)c2n1)c3ccc (cc3)C 

(=O)N[C@@H] (CCC (=O)O)C (=O)O 

2 CHEMBL428647 Paclitaxel 

(BAN, FDA, 

INN, USAN, 

USP); 

CC (=O)O[C@H]1C (=O)[C@]2 (C)[C@@H] 

(O)C[C@H]3OC[C@@]3 (OC 

(=O)C)[C@H]2[C@H] (OC (=O)c4ccccc4)[C@]5 

(O)C[C@H] (OC (=O)[C@H] (O)[C@@H] (NC 

(=O)c6ccccc6)c7ccccc7)C (=C1C5 (C)C)C 

3 CHEMBL1742994 Brentuximab 

Vedotin (FDA, 

INN, USAN); 

 

4 CHEMBL1398373 Pirarubicin 

(INN, JAN, 

MI); 

COc1cccc2C (=O)c3c (O)c4C[C@] (O) (C[C@H] 

(O[C@H]5C[C@H] (N)[C@H] 

(O[C@H]6CCCCO6)[C@H] (C)O5)c4c (O)c3C 

(=O)c12)C (=O)CO 

5 CHEMBL185 Fluorouracil 

(BAN, FDA, 

INN, JAN, 

USAN, USP); 

FC1=CNC (=O)NC1=O 

6 CHEMBL1908360 Everolimus 

(FDA, INN, 

USAN); 

CO[C@@H]1C[C@H] (C[C@@H] 

(C)[C@@H]2CC (=O)[C@H] (C)\C=C 

(/C)\[C@@H] (O)[C@@H] (OC)C (=O)[C@H] 

(C)C[C@H] (C)\C=C\C=C\C=C (/C)\[C@H] 

(C[C@@H]3CC[C@@H] (C)[C@@] (O) (O3)C 

(=O)C (=O)N4CCCC[C@H]4C 

(=O)O2)OC)CC[C@H]1OCCO 

7 CHEMBL1201258 Pemetrexed 

(BAN, INN); 

Pemetrexed 

Disodium 

(FDA, USAN); 

NC1=Nc2[nH]cc (CCc3ccc (cc3)C (=O)N[C@H] 

(CCC (=O)O)C (=O)O)c2C (=O)N1 

8 CHEMBL852 Melphalan HCl 

(FDA); 

Melphalan 

(BAN, FDA, 

INN, JAN, 

USAN, USP); 

N[C@@H] (Cc1ccc (cc1)N (CCCl)CCCl)C (=O)O 

9 CHEMBL834 Pamidronate 

Disodium 

(FDA, JAN, 

USAN); 

Pamidronic 

Acid (BAN, 

INN, MI); 

NCCC (O) (P (=O) (O)O)P (=O) (O)O 

10 CHEMBL1399 Anastrozole 

(BAN, FDA, 

INN, USAN); 

CC (C) (C#N)c1cc (Cn2cncn2)cc (c1)C (C) (C)C#N 
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11 CHEMBL1200374 Exemestane 

(BAN, FDA, 

INN, USAN); 

C[C@]12CC[C@H]3[C@@H] (CC (=C)C4=CC 

(=O)C=C[C@]34C)[C@@H]1CCC2=O 

12 CHEMBL1201112 Nelarabine 

(BAN, FDA, 

INN, USAN); 

COc1nc (N)nc2c1ncn2[C@@H]3O[C@H] 

(CO)[C@@H] (O)[C@@H]3O 

13 CHEMBL1201836 Ofatumumab 

(FDA, INN, 

USAN); 

 

14 CHEMBL1201583 Bevacizumab 

(FDA, INN); 

 

15 CHEMBL1201604 Tositumomab 

(FDA, INN); 

 

16 CHEMBL513 Carmustine 

(BAN, FDA, 

INN, USAN); 

ClCCNC (=O)N (CCCl)N=O 

17 CHEMBL3039590 Bleomycin 

(INN); 

Bleomycin 

Sulfate (FDA, 

USAN, USP); 

C[C@@H] (O)[C@H] (NC (=O)[C@@H] 

(C)[C@H] (O)[C@@H] (C)NC (=O)[C@@H] (NC 

(=O)c1nc (nc (N)c1C)[C@H] (CC 

(=O)N)NC[C@H] (N)C (=O)N)[C@@H] 

(O[C@@H]2O[C@@H] (CO)[C@@H] (O)[C@H] 

(O)[C@@H]2O[C@H]3O[C@H] (CO)[C@@H] 

(O)[C@H] (OC (=O)N)[C@@H]3O)c4c[nH]cn4)C 

(=O)NCCc5nc (cs5)c6ncc (s6)C (=O)NCCC[S+] 

(C)C 

18 CHEMBL288441 Bosutinib (INN, 

USAN); 

Bosutinib 

Monohydrate 

(FDA); 

COc1cc (Nc2c (cnc3cc (OCCCN4CCN (C)CC4)c 

(OC)cc23)C#N)c (Cl)cc1Cl 

19    

20 CHEMBL1201587 Alemtuzumab 

(BAN, FDA, 

INN, USAN); 

 

21 CHEMBL481 Irinotecan 

(BAN, INN); 

Irinotecan HCl 

(FDA, JAN, 

USAN); 

CCc1c2CN3C (=O)C4=C (C=C3c2nc5ccc (OC 

(=O)N6CCC (CC6)N7CCCCC7)cc15)[C@@] (O) 

(CC)C (=O)OC4 

22 CHEMBL24828 Vandetanib 

(BAN, FDA, 

INN, USAN); 

COc1cc2c (Nc3ccc (Br)cc3F)ncnc2cc1OCC4CCN 

(C)CC4 

23 CHEMBL409 Bicalutamide 

(BAN, FDA, 

INN, USAN); 

CC (O) (CS (=O) (=O)c1ccc (F)cc1)C (=O)Nc2ccc 

(C#N)c (c2)C (F) (F)F 

24 CHEMBL514 Lomustine 

(BAN, FDA, 

INN, USAN); 

ClCCN (N=O)C (=O)NC1CCCCC1 

25 CHEMBL178 Daunorubicin 

(BAN, INN); 

Daunorubicin 

Citrate (FDA); 

Daunorubicin 

HCl (FDA, 

JAN, USAN, 

USP); 

COc1cccc2C (=O)c3c (O)c4C[C@] (O) (C[C@H] 

(O[C@H]5C[C@H] (N)[C@H] (O)[C@H] 

(C)O5)c4c (O)c3C (=O)c12)C (=O)C 



 
 
 
 

202 
 

26 CHEMBL1750 Clofarabine 

(BAN, FDA, 

INN, USAN); 

Nc1nc (Cl)nc2c1ncn2[C@@H]3O[C@H] 

(CO)[C@@H] (O)[C@@H]3F 

27 CHEMBL2105717 Cabozantinib 

(INN, USAN); 

Cabozantinib S-

Malate (FDA, 

USAN); 

COc1cc2nccc (Oc3ccc (NC (=O)C4 (CC4)C 

(=O)Nc5ccc (F)cc5)cc3)c2cc1OC 

28 CHEMBL1554 Dactinomycin 

(BAN, FDA, 

INN, USAN, 

USP); 

Actinomycin D 

(JAN); 

CC (C)[C@H]1NC (=O)[C@@H] (NC (=O)C2=C 

(N)C (=O)C (=C3Oc4c (C)ccc (C 

(=O)N[C@H]5[C@@H] (C)OC (=O)[C@H] (C 

(C)C)N (C)C (=O)CN (C)C 

(=O)[C@@H]6CCCN6C (=O)[C@H] (NC5=O)C 

(C)C)c4N=C23)C)[C@@H] (C)OC (=O)[C@H] (C 

(C)C)N (C)C (=O)CN (C)C 

(=O)[C@@H]7CCCN7C1=O 

29 CHEMBL1743062 Ramucirumab 

(FDA, INN, 

USAN); 

 

30 CHEMBL803 Cytarabine 

(BAN, FDA, 

INN, JAN, 

USAN, USP); 

Cytarabine HCl 

(USAN); 

NC1=NC (=O)N (C=C1)[C@@H]2O[C@H] 

(CO)[C@@H] (O)[C@@H]2O 

31 CHEMBL88 Cyclophospham

ide (BAN, JAN, 

USP, BAN, 

FDA, INN, 

JAN, USP); 

ClCCN (CCCl)P1 (=O)NCCCO1 

32 CHEMBL476 Dacarbazine 

(BAN, FDA, 

INN, JAN, 

USAN, USP); 

CN (C)N=Nc1[nH]cnc1C (=O)N 

33 CHEMBL1201129 Decitabine 

(BAN, FDA, 

INN, USAN); 

NC1=NC (=O)N (C=N1)[C@H]2C[C@H] 

(O)[C@@H] (CO)O2 

35 CHEMBL1201302 Dexamethasone 

Sodium 

Phosphate 

(BAN, FDA, 

JAN, USP); 

C[C@@H]1C[C@H]2[C@@H]3CCC4=CC 

(=O)C=C[C@]4 (C)[C@@]3 (F)[C@@H] 

(O)C[C@]2 (C)[C@@]1 (O)C (=O)COP (=O) (O)O 

39 CHEMBL92 Docetaxel 

(BAN, FDA, 

INN, USAN); 

CC (=O)O[C@@]12CO[C@@H]1C[C@H] 

(O)[C@]3 (C)[C@@H]2[C@H] (OC 

(=O)c4ccccc4)[C@]5 (O)C[C@H] (OC 

(=O)[C@H] (O)[C@@H] (NC (=O)OC (C) 

(C)C)c6ccccc6)C (=C ([C@@H] (O)C3=O)C5 

(C)C)C 

40 CHEMBL53463 Doxorubicin 

(BAN, INN, 

USAN); 

Doxorubicin 

HCl (FDA, 

JAN, USP); 

COc1cccc2C (=O)c3c (O)c4C[C@] (O) (C[C@H] 

(O[C@H]5C[C@H] (N)[C@H] (O)[C@H] 

(C)O5)c4c (O)c3C (=O)c12)C (=O)CO 

41 CHEMBL467 Hydroxycarbam

ide (INN); 

Hydroxyurea 

NC (=O)NO 
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(BAN, FDA, 

USAN, USP); 

42 CHEMBL1201199 Leuprolide 

Acetate (FDA, 

USAN); 

Leuprorelin 

(BAN, INN); 

CCNC (=O)[C@@H]1CCCN1C (=O)[C@H] 

(CCCNC (=N)N)NC (=O)[C@H] (CC (C)C)NC 

(=O)[C@@H] (CC (C)C)NC (=O)[C@H] (Cc2ccc 

(O)cc2)NC (=O)[C@H] (CO)NC (=O)[C@H] 

(Cc3c[nH]c4ccccc34)NC (=O)[C@H] 

(Cc5c[nH]cn5)NC (=O)[C@@H]6CCC (=O)N6 

43 CHEMBL417 Epirubicin 

(BAN, INN); 

Epirubicin HCl 

(FDA, JAN, 

USAN); 

COc1cccc2C (=O)c3c (O)c4C[C@] (O) (C[C@H] 

(O[C@H]5C[C@H] (N)[C@@H] (O)[C@H] 

(C)O5)c4c (O)c3C (=O)c12)C (=O)CO 

44 CHEMBL414804 Oxaliplatin 

(BAN, FDA, 

INN, USAN); 

 

45 CHEMBL2108989 Asparaginase 

(FDA, USAN); 

Colaspase 

(BAN); L-

Asparaginase 

(JAN); 

 

46 CHEMBL1575 Estramustine 

(BAN, INN, 

USAN); 

C[C@]12CC[C@H]3[C@@H] (CCc4cc (OC 

(=O)N 

(CCCl)CCCl)ccc34)[C@@H]1CC[C@@H]2O 

47 CHEMBL1201577 Cetuximab 

(FDA, INN, 

USAN); 

 

48 CHEMBL473417 Vismodegib 

(FDA, INN, 

USAN); 

CS (=O) (=O)c1ccc (C (=O)Nc2ccc (Cl)c 

(c2)c3ccccn3)c (Cl)c1 

49 CHEMBL1863514 Asparaginase 

Erwinia 

Chrysanthemi 

(FDA, USAN); 

 

50 CHEMBL1006 Amifostine 

(BAN, FDA, 

INN, USAN, 

USP); 

NCCCNCCSP (=O) (O)O 

51 CHEMBL44657 Etoposide 

(BAN, FDA, 

INN, JAN, 

USAN, USP); 

COc1cc (cc (OC)c1O)[C@H]2[C@@H]3[C@H] 

(COC3=O)[C@H] 

(O[C@@H]4O[C@@H]5CO[C@@H] 

(C)O[C@H]5[C@H] 

(O)[C@H]4O)c6cc7OCOc7cc26 

52 CHEMBL806 Flutamide 

(BAN, FDA, 

INN, USAN, 

USP); 

CC (C)C (=O)Nc1ccc (c (c1)C (F) (F)F)[N+] 

(=O)[O-] 

53 CHEMBL917 Floxuridine 

(FDA, INN, 

USAN, USP); 

OC[C@H]1O[C@H] (C[C@@H]1O)N2C=C (F)C 

(=O)NC2=O 

54 CHEMBL1655 Toremifene 

Citrate (FDA, 

USAN); 

Toremifene 

(BAN, INN); 

CN (C)CCOc1ccc (cc1)\C (=C 

(\CCCl)/c2ccccc2)\c3ccccc3 
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55 CHEMBL1358 Fulvestrant 

(BAN, FDA, 

INN, USAN); 

C[C@]12CC[C@H]3[C@@H] ([C@H] 

(CCCCCCCCC[S+] ([O-])CCCC (F) (F)C (F) 

(F)F)Cc4cc (O)ccc34)[C@@H]1CC[C@@H]2O 

56 CHEMBL1444 Letrozole 

(BAN, FDA, 

INN, USAN, 

USP); 

N#Cc1ccc (cc1)C (c2ccc (cc2)C#N)n3cncn3 

57 CHEMBL415606 Degarelix (INN, 

USAN); 

Degarelix 

Acetate (FDA, 

USAN); 

CC (C)C[C@H] (NC (=O)[C@@H] (Cc1ccc (NC 

(=O)N)cc1)NC (=O)[C@H] (Cc2ccc (NC 

(=O)[C@@H]3CC (=O)NC (=O)N3)cc2)NC 

(=O)[C@H] (CO)NC (=O)[C@@H] 

(Cc4cccnc4)NC (=O)[C@@H] (Cc5ccc (Cl)cc5)NC 

(=O)[C@@H] (Cc6ccc7ccccc7c6)NC (=O)C)C 

(=O)N[C@@H] (CCCCNC (C)C)C 

(=O)N8CCC[C@H]8C (=O)N[C@H] (C)C (=O)N 

58 CHEMBL1096882 Fludarabine 

(INN); 

Fludarabine 

Phosphate 

(BAN, FDA, 

USAN, USP); 

Nc1nc (F)nc2c1ncn2[C@@H]3O[C@H] (COP 

(=O) (O)O)[C@@H] (O)[C@@H]3O 

60 CHEMBL1201746 Pralatrexate 

(FDA, INN, 

USAN); 

Nc1nc (N)c2nc (CC (CC#C)c3ccc (cc3)C 

(=O)N[C@@H] (CCC (=O)O)C (=O)O)cnc2n1 

61 CHEMBL1743048 Obinutuzumab 

(INN, USAN); 

 

62 CHEMBL888 Gemcitabine 

HCl (FDA, 

USAN, USP); 

Gemcitabine 

(BAN, INN, 

USAN); 

NC1=NC (=O)N (C=C1)[C@@H]2O[C@H] 

(CO)[C@@H] (O)C2 (F)F 

63 CHEMBL1173655 Afatinib 

Dimaleate 

(FDA, USAN); 

Afatinib (INN, 

USAN); 

CN (C)C\C=C\C (=O)Nc1cc2c (Nc3ccc (F)c 

(Cl)c3)ncnc2cc1O[C@H]4CCOC4 

64 CHEMBL941 Imatinib 

mesylate 

(FDA); Imatinib 

(BAN, INN); 

CN1CCN (Cc2ccc (cc2)C (=O)Nc3ccc (C)c 

(Nc4nccc (n4)c5cccnc5)c3)CC1 

66 CHEMBL1683590 Eribulin 

mesylate (FDA, 

USAN); 

Eribulin (INN); 

CO[C@H]1[C@@H] (C[C@H] 

(O)CN)O[C@H]2C[C@H]3O[C@@H] 

(CC[C@@H]4O[C@@H] 

(CC[C@@]56C[C@H]7O[C@@H]8[C@@H] 

(O[C@H]9CC[C@H] (CC 

(=O)C[C@H]12)O[C@@H]9[C@@H]8O5)[C@H]

7O6)CC4=C)C[C@@H] (C)C3=C 

67 CHEMBL1201585 Trastuzumab 

(BAN, FDA, 

INN); 

 

68 CHEMBL1455 Altretamine 

(BAN, FDA, 

INN, USAN, 

USP); 

CN (C)c1nc (nc (n1)N (C)C)N (C)C 

69 CHEMBL84 Topotecan 

(BAN, INN); 

CC[C@@]1 (O)C (=O)OCC2=C1C=C3N (Cc4cc5c 

(CN (C)C)c (O)ccc5nc34)C2=O 
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Topotecan HCl 

(FDA, USAN); 

71 CHEMBL1171837 Ponatinib HCl 

(FDA, USAN); 

Ponatinib (INN, 

USAN); 

CN1CCN (Cc2ccc (NC (=O)c3ccc (C)c 

(c3)C#Cc4cnc5cccnn45)cc2C (F) (F)F)CC1 

72 CHEMBL1117 Idarubicin 

(BAN, INN); 

Idarubicin HCl 

(FDA, INN, 

USAN, USP); 

C[C@@H]1O[C@H] (C[C@H] 

(N)[C@@H]1O)O[C@H]2C[C@@] (O) (Cc3c 

(O)c4C (=O)c5ccccc5C (=O)c4c (O)c23)C (=O)C 

73 CHEMBL1024 Ifosfamide 

(BAN, FDA, 

INN, JAN, 

USAN, USP); 

ClCCNP1 (=O)OCCCN1CCCl 

74 CHEMBL1873475 Ibrutinib (FDA, 

INN, USAN); 

Nc1ncnc2c1c (nn2[C@@H]3CCCN (C3)C 

(=O)C=C)c4ccc (Oc5ccccc5)cc4 

75 CHEMBL1289926 Axitinib (FDA, 

INN, USAN); 

CNC (=O)c1ccccc1Sc2ccc3c 

(\C=C\c4ccccn4)n[nH]c3c2 

76 CHEMBL1201561 Peginterferon 

alfa-2b (BAN, 

FDA, INN); 

 

77 CHEMBL939 Gefitinib (BAN, 

FDA, INN, 

USAN); 

COc1cc2ncnc (Nc3ccc (F)c 

(Cl)c3)c2cc1OCCCN4CCOCC4 

78 CHEMBL1213490 Romidepsin 

(FDA, INN, 

USAN); 

C\C=C\1/NC (=O)[C@@H] (CS)NC (=O)[C@H] 

(CC (=O)C[C@H] (OC (=O)[C@@H] (NC1=O)C 

(C)C)\C=C\CCS)C (C)C 

79 CHEMBL1201752 Ixabepilone 

(FDA, INN, 

USAN); 

C[C@H]1CCC[C@@]2 (C)O[C@H]2C[C@H] 

(NC (=O)C[C@H] (O)C (C) (C)C (=O)[C@H] 

(C)[C@H]1O)\C (=C\c3csc (C)n3)\C 

80 CHEMBL1789941 Ruxolitinib 

Phosphate 

(FDA, USAN); 

Ruxolitinib 

(INN, USAN); 

N#CC[C@H] (C1CCCC1)n2cc 

(cn2)c3ncnc4[nH]ccc34 

81 CHEMBL1201748 Cabazitaxel 

(FDA, INN, 

USAN); 

CO[C@H]1C[C@H]2OC[C@@]2 (OC 

(=O)C)[C@H]3[C@H] (OC (=O)c4ccccc4)[C@]5 

(O)C[C@H] (OC (=O)[C@H] (O)[C@@H] (NC 

(=O)OC (C) (C)C)c6ccccc6)C (=C ([C@@H] 

(OC)C (=O)[C@]13C)C5 (C)C)C 

82 CHEMBL1743082 Ado-

Trastuzumab 

Emtansine 

(FDA); 

Trastuzumab 

Emtansine 

(INN, USAN); 

 

83 CHEMBL451887 Carfilzomib 

(FDA, INN, 

USAN); 

CC (C)C[C@H] (NC (=O)[C@H] (CCc1ccccc1)NC 

(=O)CN2CCOCC2)C (=O)N[C@@H] 

(Cc3ccccc3)C (=O)N[C@@H] (CC (C)C)C 

(=O)[C@@]4 (C)CO4 

84 CHEMBL515 Chlorambucil 

(BAN, FDA, 

INN, USP); 

OC (=O)CCCc1ccc (cc1)N (CCCl)CCCl 

85 CHEMBL1201670 Sargramostim 

(BAN, FDA, 
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INN, USAN, 

USP); 

86 CHEMBL1619 Cladribine 

(BAN, FDA, 

INN, USAN); 

Nc1nc (Cl)nc2c1ncn2[C@H]3C[C@H] 

(O)[C@@H] (CO)O3 

88 CHEMBL1670 Mitotane (FDA, 

INN, JAN, 

USAN, USP); 

ClC (Cl)C (c1ccc (Cl)cc1)c2ccccc2Cl 

89 CHEMBL90555 Vincristine 

Sulfate (FDA, 

JAN, USAN, 

USP); 

Vincristine 

(BAN, INN); 

CC[C@]1 (O)C[C@H]2CN (CCc3c 

([nH]c4ccccc34)[C@@] (C2) (C (=O)OC)c5cc6c 

(cc5OC)N (C=O)[C@H]7[C@] (O) ([C@H] (OC 

(=O)C)[C@]8 

(CC)C=CCN9CC[C@]67[C@H]89)C (=O)OC)C1 

90 CHEMBL1321 Procarbazine 

(BAN, INN); 

Procarbazine 

HCl (FDA, 

JAN, USAN, 

USP); 

CNNCc1ccc (cc1)C (=O)NC (C)C 

91 CHEMBL1201139 Megestrol 

(BAN, INN); 

Megestrol 

Acetate (FDA, 

USAN, USP); 

CC (=O)O[C@@]1 (CC[C@H]2[C@@H]3C=C 

(C)C4=CC (=O)CC[C@]4 

(C)[C@H]3CC[C@]12C)C (=O)C 

92 CHEMBL2103875 Trametinib 

(INN, USAN); 

Trametinib 

Dimethyl 

Sulfoxide 

(FDA, USAN); 

CN1C (=O)C (=C2N (C (=O)N (C3CC3)C 

(=O)C2=C1Nc4ccc (I)cc4F)c5cccc (NC 

(=O)C)c5)C 

96 CHEMBL427 Chlormethine 

(BAN, INN); 

Nitrogen 

Mustard N-

Oxide HCl 

(JAN); 

Mechlorethamin

e HCl (FDA, 

USP); 

CN (CCCl)CCCl 

97 CHEMBL105 Mitomycin 

(BAN, FDA, 

INN, USAN, 

USP); 

Mitomycin C 

(JAN); 

CO[C@]12[C@H]3N[C@H]3CN1C4=C 

([C@H]2COC (=O)N)C (=O)C (=C (C)C4=O)N 

98 CHEMBL820 Busulfan (BAN, 

FDA, INN, 

JAN, USP); 

CS (=O) (=O)OCCCCOS (=O) (=O)C 

99 CHEMBL1201506 Gemtuzumab 

Ozogamicin 

(FDA, INN, 

USAN); 

 

100 CHEMBL553025 Vinorelbine 

(BAN, INN); 

Vinorelbine 

Tartrate (FDA, 

USAN, USP); 

CCC1=C[C@@H]2CN (C1)Cc3c 

([nH]c4ccccc34)[C@@] (C2) (C (=O)OC)c5cc6c 

(cc5OC)N (C)[C@H]7[C@] (O) ([C@H] (OC 

(=O)C)[C@]8 

(CC)C=CCN9CC[C@]67[C@H]89)C (=O)OC 
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102 CHEMBL1201568 Pegfilgrastim 

(BAN, FDA, 

INN, USAN); 

 

103 CHEMBL1201567 Tbo-Filgrastim 

(FDA); 

Filgrastim 

(BAN, FDA, 

INN, USAN); 

Filgrastim-sndz 

(FDA); 

 

104 CHEMBL1336 Sorafenib (INN, 

USAN); 

Sorafenib 

Tosylate (FDA, 

USAN); 

CNC (=O)c1cc (Oc2ccc (NC (=O)Nc3ccc (Cl)c 

(c3)C (F) (F)F)cc2)ccn1 

105 CHEMBL1274 Nilutamide 

(BAN, FDA, 

INN, MI, 

USAN); 

CC1 (C)NC (=O)N (C1=O)c2ccc (c (c2)C (F) 

(F)F)[N+] (=O)[O-] 

106 CHEMBL1580 Pentostatin 

(BAN, FDA, 

INN, JAN, 

USAN); 

OC[C@H]1O[C@H] 

(C[C@@H]1O)n2cnc3[C@H] (O)CNC=Nc23 

107 CHEMBL83 Tamoxifen 

(BAN, INN); 

Tamoxifen 

citrate (FDA, 

JAN, USAN, 

USP); 

CC\C (=C (/c1ccccc1)\c2ccc (OCCN 

(C)C)cc2)\c3ccccc3 

108 CHEMBL58 Mitoxantrone 

(INN); 

Mitoxantrone 

HCl (FDA, 

JAN, USAN, 

USP); 

Mitozantrone 

(BAN); 

OCCNCCNc1ccc (NCCNCCO)c2C (=O)c3c (O)ccc 

(O)c3C (=O)c12 

109 CHEMBL2108546 Pegaspargase 

(FDA, INN, 

USAN); 

 

111 CHEMBL1201550 Denileukin 

diftitox (BAN, 

FDA, INN, 

USAN); 

 

113 CHEMBL705 Alitretinoin 

(BAN, FDA, 

INN, USAN); 

C\C (=C\C=C\C (=C\C (=O)O)\C)\C=C\C1=C 

(C)CCCC1 (C)C 

115 CHEMBL2007641 Pertuzumab 

(BAN, FDA, 

INN, USAN); 

 

116 CHEMBL11359 Cisplatin (BAN, 

FDA, INN, 

JAN, USAN, 

USP); 

 

118 CHEMBL43452 Pomalidomide 

(FDA, INN, 

USAN); 

Nc1cccc2C (=O)N (C3CCC (=O)NC3=O)C 

(=O)c12 
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119 CHEMBL635 Prednisone 

(BAN, FDA, 

INN, USP); 

C[C@]12CC (=O)[C@H]3[C@@H] (CCC4=CC 

(=O)C=C[C@]34C)[C@@H]1CC[C@]2 (O)C 

(=O)CO 

120 CHEMBL1201438 Aldesleukin 

(BAN, FDA, 

INN, USAN); 

 

121 CHEMBL1425 Mercaptopurine 

(BAN, JAN, 

USP, BAN, 

FDA, INN, 

JAN, USP); 

Sc1ncnc2nc[nH]c12 

122 CHEMBL924 Zoledronate 

Trisodium 

(USAN); 

Zoledronate 

Disodium 

(USAN); 

Zoledronic acid 

(BAN, FDA, 

INN, USAN); 

OC (Cn1ccnc1) (P (=O) (O)O)P (=O) (O)O 

123 CHEMBL848 Lenalidomide 

(BAN, FDA, 

INN, USAN); 

Nc1cccc2C (=O)N (Cc12)C3CCC (=O)NC3=O 

125 CHEMBL1201576 Rituximab 

(BAN, FDA, 

INN, USAN); 

 

126 CHEMBL2108508 Interferon Alfa-

2A (BAN, FDA, 

INN, USAN); 

Interferon Alfa-

2A (Genetical 

Recombination) 

(JAN); 

 

128 CHEMBL1680 Octreotide 

Pamoate 

(USAN); 

Octreotide 

(BAN, INN, 

USAN); 

Octreotide 

hydrochloride 

(USAN); 

Octreotide 

Acetate (FDA, 

JAN, USAN); 

C[C@@H] (O)[C@@H] (CO)NC 

(=O)[C@@H]1CSSC[C@H] (NC (=O)[C@H] 

(N)Cc2ccccc2)C (=O)N[C@@H] (Cc3ccccc3)C 

(=O)N[C@H] (Cc4c[nH]c5ccccc45)C 

(=O)N[C@@H] (CCCCN)C (=O)N[C@@H] 

([C@@H] (C)O)C (=O)N1 

130 CHEMBL1421 Dasatinib (FDA, 

INN, USAN); 

Cc1nc (Nc2ncc (s2)C (=O)Nc3c (C)cccc3Cl)cc 

(n1)N4CCN (CCO)CC4 

132 CHEMBL1946170 Regorafenib 

(FDA, INN, 

USAN); 

CNC (=O)c1cc (Oc2ccc (NC (=O)Nc3ccc (Cl)c 

(c3)C (F) (F)F)c (F)c2)ccn1 

133 CHEMBL1201255 Histrelin 

Acetate (FDA); 

Histrelin (INN, 

USAN); 

CCNC (=O)[C@@H]1CCCN1C (=O)[C@H] 

(CCCNC (=N)N)NC (=O)[C@H] (CC (C)C)NC 

(=O)[C@@H] (Cc2cn (Cc3ccccc3)cn2)NC 

(=O)[C@H] (Cc4ccc (O)cc4)NC (=O)[C@H] 

(CO)NC (=O)[C@H] (Cc5c[nH]c6ccccc56)NC 

(=O)[C@H] (Cc7cnc[nH]7)NC 

(=O)[C@@H]8CCC (=O)N8 
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134 CHEMBL535 Sunitinib (INN); 

Sunitinib Malate 

(FDA); 

CCN (CC)CCNC (=O)c1c (C)[nH]c (\C=C\2/C 

(=O)Nc3ccc (F)cc23)c1C 

136 CHEMBL1743070 Siltuximab 

(FDA, INN, 

USAN); 

 

137 CHEMBL46286 Omacetaxine 

Mepesuccinate 

(FDA, INN, 

USAN); 

COC (=O)C[C@] (O) (CCCC (C) (C)O)C 

(=O)O[C@H]1[C@H]2c3cc4OCOc4cc3CCN5CCC

[C@]25C=C1OC 

139 CHEMBL727 Thioguanine 

(FDA, USAN, 

USP); 

Tioguanine 

(BAN, INN); 

NC1=Nc2[nH]cnc2C (=S)N1 

140 CHEMBL2028663 Dabrafenib 

Mesylate (FDA, 

USAN); 

Dabrafenib 

(INN, USAN); 

CC (C) (C)c1nc (c2cccc (NS (=O) (=O)c3c 

(F)cccc3F)c2F)c (s1)c4ccnc (N)n4 

141 CHEMBL553 Erlotinib HCl 

(FDA, INN, 

USAN); 

Erlotinib (INN); 

COCCOc1cc2ncnc (Nc3cccc 

(c3)C#C)c2cc1OCCOC 

142 CHEMBL1023 Bexarotene 

(BAN, FDA, 

INN, USAN); 

Cc1cc2c (cc1C (=C)c3ccc (cc3)C (=O)O)C (C) 

(C)CCC2 (C)C 

143 CHEMBL255863 Nilotinib (INN, 

USAN); 

Nilotinib 

Hydrochloride 

Monohydrate 

(FDA); 

Cc1cn (cn1)c2cc (NC (=O)c3ccc (C)c (Nc4nccc 

(n4)c5cccnc5)c3)cc (c2)C (F) (F)F 

146 CHEMBL810 Temozolomide 

(BAN, FDA, 

INN, USAN); 

CN1N=Nc2c (ncn2C1=O)C (=O)N 

147 CHEMBL671 Thiotepa (BAN, 

FDA, INN, 

JAN, USP); 

S=P (N1CC1) (N2CC2)N3CC3 

148 CHEMBL468 Thalidomide 

(BAN, FDA, 

INN, USAN, 

USP); 

O=C1CCC (N2C (=O)c3ccccc3C2=O)C (=O)N1 

152 CHEMBL1201182 Temsirolimus 

(FDA, INN, 

USAN); 

CO[C@@H]1C[C@H] (C[C@@H] 

(C)[C@@H]2CC (=O)[C@H] (C)\C=C 

(/C)\[C@@H] (O)[C@@H] (OC)C (=O)[C@H] 

(C)C[C@H] (C)\C=C\C=C\C=C (/C)\[C@H] 

(C[C@@H]3CC[C@@H] (C)[C@@] (O) (O3)C 

(=O)C (=O)N4CCCC[C@H]4C 

(=O)O2)OC)CC[C@H]1OC (=O)C (C) (CO)CO 

153 CHEMBL487253 Bendamustine 

HCl (FDA, 

USAN); 

Bendamustine 

(INN); 

Cn1c (CCCC (=O)O)nc2cc (ccc12)N (CCCl)CCCl 

154 CHEMBL1201334 Triptorelin 

(BAN, INN, 

USAN); 

CC (C)C[C@H] (NC (=O)[C@@H] 

(Cc1c[nH]c2ccccc12)NC (=O)[C@H] (Cc3ccc 

(O)cc3)NC (=O)[C@H] (CO)NC (=O)[C@H] 
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Triptorelin 

Pamoate (FDA, 

USAN); 

(Cc4c[nH]c5ccccc45)NC (=O)[C@H] 

(Cc6c[nH]cn6)NC (=O)[C@@H]7CCC (=O)N7)C 

(=O)N[C@@H] (CCCNC (=N)N)C 

(=O)N8CCC[C@H]8C (=O)NCC (=O)N 

156 CHEMBL462019 Trofosfamide 

(INN, MI); 

ClCCN (CCCl)P1 (=O)OCCCN1CCCl 

157 CHEMBL1200978 Arsenic 

Trioxide (FDA, 

JAN, USAN); 

O=[As]O[As]=O 

158 CHEMBL554 Lapatinib 

(INN); 

Lapatinib 

Ditosylate 

(FDA, USAN); 

CS (=O) (=O)CCNCc1oc (cc1)c2ccc3ncnc (Nc4ccc 

(OCc5cccc (F)c5)c (Cl)c4)c3c2 

159 CHEMBL1096885 Valrubicin 

(FDA, INN, 

USAN, USP); 

CCCCC (=O)OCC (=O)[C@@]1 (O)C[C@H] 

(O[C@H]2C[C@H] (NC (=O)C (F) (F)F)[C@H] 

(O)[C@H] (C)O2)c3c (O)c4C (=O)c5c (OC)cccc5C 

(=O)c4c (O)c3C1 

161 CHEMBL1201827 Panitumumab 

(FDA, INN, 

USAN); 

 

162 CHEMBL159 Vinblastine 

Sulfate (FDA, 

JAN, USAN, 

USP); 

Vinblastine 

(BAN, INN); 

CC[C@]1 (O)C[C@@H]2CN (CCc3c 

([nH]c4ccccc34)[C@@] (C2) (C (=O)OC)c5cc6c 

(cc5OC)N (C)[C@H]7[C@] (O) ([C@H] (OC 

(=O)C)[C@]8 

(CC)C=CCN9CC[C@]67[C@H]89)C (=O)OC)C1 

163 CHEMBL325041 Bortezomib 

(BAN, FDA, 

INN, USAN); 

CC (C)C[C@H] (NC (=O)[C@H] (Cc1ccccc1)NC 

(=O)c2cnccn2)B (O)O 

165 CHEMBL38 Tretinoin (BAN, 

FDA, INN, 

USAN, USP); 

C\C (=C/C=C/C (=C/C (=O)O)/C)\C=C\C1=C 

(C)CCCC1 (C)C 

166 CHEMBL1489 Azacitidine 

(FDA, INN, 

USAN); 

NC1=NC (=O)N (C=N1)[C@@H]2O[C@H] 

(CO)[C@@H] (O)[C@H]2O 

169 CHEMBL477772 Pazopanib HCl 

(FDA, USAN); 

Pazopanib 

(INN); 

CN (c1ccc2c (C)n (C)nc2c1)c3ccnc (Nc4ccc (C)c 

(c4)S (=O) (=O)N)n3 

170 CHEMBL452231 Teniposide 

(BAN, FDA, 

INN, USAN); 

COc1cc (cc (OC)c1O)[C@H]2[C@@H]3[C@H] 

(COC3=O)[C@H] 

(O[C@@H]4O[C@@H]5CO[C@H] 

(O[C@H]5[C@H] 

(O)[C@H]4O)c6cccs6)c7cc8OCOc8cc27 

171 CHEMBL1908841 Levoleucovorin 

Calcium (FDA, 

USAN); 

Calcium 

Levofolinate 

(BAN, INN); 

NC1=NC (=O)C2=C (NC[C@H] (CNc3ccc (cc3)C 

(=O)N[C@@H] (CCC (=O)O)C (=O)O)N2C=O)N1 

172 CHEMBL601719 Crizotinib 

(FDA, INN, 

USAN); 

C[C@@H] (Oc1cc (cnc1N)c2cnn 

(c2)C3CCNCC3)c4c (Cl)ccc (F)c4Cl 

173 CHEMBL1773 Capecitabine 

(BAN, FDA, 

INN, USAN); 

CCCCCOC (=O)NC1=NC (=O)N 

(C=C1F)[C@@H]2O[C@H] (C)[C@@H] 

(O)[C@H]2O 
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174 CHEMBL1082407 Enzalutamide 

(FDA, INN, 

USAN); 

CNC (=O)c1ccc (cc1F)N2C (=S)N (C (=O)C2 

(C)C)c3ccc (C#N)c (c3)C (F) (F)F 

175 CHEMBL1789844 Ipilimumab 

(FDA, INN, 

USAN); 

 

176 CHEMBL1742982 Ziv-Aflibercept 

(FDA); 

Aflibercept 

(FDA, INN, 

USAN); 

 

177 CHEMBL1651906 Streptozocin 

(FDA, INN, 

USAN); 

CN (N=O)C (=O)N[C@H]1C (O)O[C@H] 

(CO)[C@@H] (O)[C@@H]1O 

178 CHEMBL1229517 Vemurafenib 

(FDA, INN, 

USAN); 

CCCS (=O) (=O)Nc1ccc (F)c (C (=O)c2c[nH]c3ncc 

(cc23)c4ccc (Cl)cc4)c1F 

179 CHEMBL1201606 Ibritumomab 

tiuxetan (BAN, 

INN, USAN); 

 

180 CHEMBL1201247 Goserelin 

(BAN, INN, 

USAN); 

Goserelin 

Acetate (FDA, 

JAN, JAN); 

CC (C)C[C@H] (NC (=O)[C@@H] (COC (C) 

(C)C)NC (=O)[C@H] (Cc1ccc (O)cc1)NC 

(=O)[C@H] (CO)NC (=O)[C@H] 

(Cc2c[nH]c3ccccc23)NC (=O)[C@H] 

(Cc4cnc[nH]4)NC (=O)[C@@H]5CCC (=O)N5)C 

(=O)N[C@@H] (CCCNC (=N)N)C 

(=O)N6CCC[C@H]6C (=O)NNC (=O)N 

181 CHEMBL98 Vorinostat 

(FDA, INN, 

USAN); 

ONC (=O)CCCCCCC (=O)Nc1ccccc1 

184 CHEMBL2403108 Ceritinib (FDA, 

INN, USAN); 

CC (C)Oc1cc (C2CCNCC2)c (C)cc1Nc3ncc (Cl)c 

(Nc4ccccc4S (=O) (=O)C (C)C)n3 

185 CHEMBL254328 Abiraterone 

(BAN, INN); 

C[C@]12CC[C@H]3[C@@H] (CC=C4C[C@@H] 

(O)CC[C@]34C)[C@@H]1CC=C2c5cccnc5 

 

 
Supplementary Table 2 The predicted and experimental targets for both the AfroCancer and NCI Cancer 

datasets. Targets in bold are shared between both datasets 

AfroCancer predicted target NCI Cancer experimental target 

Bile acid receptor  Bile acid receptor FXR 

Carbonic anhydrase I Carbonic anhydrase I 

Carbonic anhydrase II Carbonic anhydrase II 

Carbonic anhydrase VII Carbonic anhydrase VII 

Carbonic anhydrase XII Carbonic anhydrase XII 

DNA topoisomerase I  DNA topoisomerase I 

DNA topoisomerase II alpha  DNA topoisomerase II alpha 

Estrogen receptor alpha Estrogen receptor alpha 

Estrogen receptor beta  Estrogen receptor beta 

Glucocorticoid receptor  Glucocorticoid receptor 

Receptor-type tyrosine-protein kinase FLT3  Receptor-type tyrosine-protein kinase FLT3  
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Retinoic acid receptor beta  Retinoic acid receptor beta 

Retinoic acid receptor gamma  Retinoic acid receptor gamma 

Steroid 17-alpha-hydroxylase/17,20 lyase  Steroid 17-alpha-hydroxylase/17,20 lyase  

1-phosphatidylinositol 4,5-bisphosphate 

phosphodiesterase gamma-1  

Acetylcholinesterase 

15-hydroxyprostaglandin dehydrogenase [NAD Adenosine A2a receptor 

3-hydroxyacyl-CoA dehydrogenase type-2  Adenosine deaminase 

3-oxo-5-alpha-steroid 4-dehydrogenase 1  ALK tyrosine kinase receptor 

3-oxo-5-alpha-steroid 4-dehydrogenase 2  Androgen Receptor 

5'-AMP-activated protein kinase catalytic 

subunit alpha-2  

Beta-1 adrenergic receptor 

7-dehydrocholesterol reductase  Beta-3 adrenergic receptor 

Acid ceramidase  Carbonic anhydrase IV 

Aldehyde dehydrogenase, mitochondrial  Cholecystokinin A receptor 

Aldo-keto reductase family 1 member B10  Cytochrome P450 11B1 

Aldose reductase  Cytochrome P450 19A1 

Alkaline phosphatase, placental-like  Dihydrofolate reductase 

Alkaline phosphatase, tissue-nonspecific isozyme  Discoidin domain-containing receptor 2 

Amine oxidase [flavin-containing] A  Dopamine D1 receptor 

Amyloid beta A4 protein  Dopamine D2 receptor 

Apoptosis regulator Bcl-2 Dopamine D3 receptor 

Arachidonate 12-lipoxygenase, 12S-type  Dopamine transporter 

Arachidonate 15-lipoxygenase  Dual specificity mitogen-activated protein kinase 

kinase 1 

Arachidonate 5-lipoxygenase  Dual specificity mitogen-activated protein kinase 

kinase 2 

Aryl hydrocarbon receptor  Ephrin type-A receptor 2 

ATP-binding cassette sub-family G member 2  Epidermal growth factor receptor erbB1 

ATP-dependent DNA helicase Q1  Farnesyl diphosphate synthase 

ATPase family AAA domain-containing protein 

5  

Fibroblast growth factor receptor 1 

Beta-glucuronidase  Fibroblast growth factor receptor 2 

Bloom syndrome protein  Fibroblast growth factor receptor 3 

Carbonic anhydrase 13  Glutathione reductase 

Carbonic anhydrase 14  Gonadotropin-releasing hormone receptor 

Carbonic anhydrase 3  Growth hormone-releasing hormone receptor 

Carbonic anhydrase 5A, mitochondrial  Hepatocyte growth factor receptor 

Carbonic anhydrase 5B, mitochondrial  HERG 

Carbonic anhydrase 6  Histamine H2 receptor 

Carbonic anhydrase 9  Histone deacetylase 1 

Carbonyl reductase [NADPH] 1  Histone deacetylase 2 

Casein kinase II subunit beta  Histone deacetylase 3 

Catechol O-methyltransferase  Histone deacetylase 6 

Cocaine esterase  Insulin receptor 

Corticosteroid 11-beta-dehydrogenase isozyme 2  Insulin-like growth factor I receptor 

Cyclin-dependent kinase 14  Kappa opioid receptor 
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Cyclin-dependent kinase 5 activator 1  Macrophage colony stimulating factor receptor 

Cyclin-dependent kinase 6  MAP kinase p38 beta 

Cytochrome P450 1A1  Matrix metalloproteinase-1 

Cytochrome P450 1B1  Mineralocorticoid receptor 

Cytosolic phospholipase A2  Mu opioid receptor 

D-amino-acid oxidase  Muscarinic acetylcholine receptor M1 

DNA polymerase beta  Muscarinic acetylcholine receptor M2 

DNA polymerase eta  Muscarinic acetylcholine receptor M3 

DNA polymerase iota  Neurokinin 1 receptor 

DNA polymerase kappa  Norepinephrine transporter 

DNA- (apurinic or apyrimidinic site) lyase  Platelet-derived growth factor receptor beta 

Dual specificity protein kinase CLK1  Progesterone receptor 

Dual specificity protein kinase CLK3  Receptor protein-tyrosine kinase erbB-2 

Dual specificity tyrosine-phosphorylation-

regulated kinase 2  

Receptor protein-tyrosine kinase erbB-4 

Estradiol 17-beta-dehydrogenase 1  Serine/threonine-protein kinase B-raf 

Estradiol 17-beta-dehydrogenase 2  Serine/threonine-protein kinase RAF 

Flap endonuclease 1  Serotonin 1a (5-HT1a) receptor 

G-protein coupled bile acid receptor 1  Serotonin 2a (5-HT2a) receptor 

G-protein coupled receptor 35  Serotonin 2b (5-HT2b) receptor 

G2/mitotic-specific cyclin-B2 Serotonin 2c (5-HT2c) receptor 

G2/mitotic-specific cyclin-B3 Serotonin transporter 

Galactokinase  Sigma opioid receptor 

Gamma-aminobutyric acid receptor subunit 

beta-1  

Smoothened homolog 

Glutaminase kidney isoform, mitochondrial  Somatostatin receptor 1 

Heat shock 70 kDa protein 1A  Somatostatin receptor 2 

Heat shock protein beta-1  Somatostatin receptor 3 

Heat shock protein HSP 90-alpha  Somatostatin receptor 5 

Heat shock protein HSP 90-beta  Stem cell growth factor receptor 

Hydroxycarboxylic acid receptor 2  Thymidylate synthase 

Induced myeloid leukemia cell differentiation 

protein Mcl-1  

Thyroid stimulating hormone receptor 

Interleukin-2  Tyrosine-protein kinase ABL 

Intestinal-type alkaline phosphatase  Tyrosine-protein kinase BRK 

L-lactate dehydrogenase A chain  Tyrosine-protein kinase BTK 

Lactoylglutathione lyase  Tyrosine-protein kinase FRK 

Lethal (3)malignant brain tumor-like protein 1  Tyrosine-protein kinase HCK 

Lysine-specific demethylase 4E  Tyrosine-protein kinase ITK/TSK 

Lysosomal alpha-glucosidase  Tyrosine-protein kinase JAK1 

Macrophage migration inhibitory factor  Tyrosine-protein kinase JAK2 

Major prion protein  Tyrosine-protein kinase LCK 

Maltase-glucoamylase, intestinal  Tyrosine-protein kinase Lyn 

Microtubule-associated protein tau  Tyrosine-protein kinase receptor RET 

Mitogen-activated protein kinase 3  Tyrosine-protein kinase SRC 
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Multidrug resistance protein 1  Tyrosine-protein kinase TIE-2 

Multidrug resistance-associated protein 1  Vascular endothelial growth factor receptor 2 

NAD (P)H dehydrogenase [quinone] 1   

NADPH oxidase 4   

NF-kappa-B inhibitor alpha   

Nuclear factor erythroid 2-related factor 2   

Oxoeicosanoid receptor 1   

P-selectin   

P2X purinoceptor 1   

Peroxisome proliferator-activated receptor 

gamma  

 

PH domain leucine-rich repeat-containing 

protein phosphatase 2  

 

Poly (ADP-ribose) glycohydrolase   

Potassium voltage-gated channel subfamily A 

member 3  

 

Prostaglandin G/H synthase 1   

Receptor tyrosine-protein kinase erbB-3   

Retinoic acid receptor alpha   

Ribosyldihydronicotinamide dehydrogenase 

[quinone]  

 

Sex hormone-binding globulin   

Sodium/glucose cotransporter 1  

Sodium/glucose cotransporter 2   

Solute carrier family 22 member 3   

Squalene monooxygenase   

Steroid hormone receptor ERR1   

Steroid hormone receptor ERR2   

Tankyrase-1   

Tankyrase-2   

Telomerase reverse transcriptase   

Testosterone 17-beta-dehydrogenase 3   

Thioredoxin reductase 2, mitochondrial   

Thyroid hormone receptor beta   

Transcription factor p65   

Transthyretin   

Troponin C, slow skeletal and cardiac muscles   

Tubulin alpha-1A chain   

Tubulin alpha-1B chain   

Tubulin alpha-1C chain   

Tubulin alpha-3C/D chain   

Tubulin alpha-3E chain   

Tubulin alpha-4A chain   

Tubulin beta chain   

Tubulin beta-1 chain  
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Tubulin beta-2A chain   

Tubulin beta-2B chain  

Tubulin beta-3 chain   

Tubulin beta-4A chain   

Tubulin beta-4B chain   

Tubulin beta-6 chain   

Tubulin beta-8 chain  

Tumor necrosis factor   

Tumor susceptibility gene 101 protein   

Tyrosinase   

Tyrosine-protein phosphatase non-receptor type 

1  

 

Tyrosine-protein phosphatase non-receptor type 

2  

 

Xanthine dehydrogenase/oxidase   

 

 
Supplementary Table 3 Top 100 most enriched targets in the AfroCancer dataset 

 Uniprot 

 
Pref_Name Afro 

Cance

rHits 

Afro 

Cancer % 

Hits 

PubChe

m Hits 

PubChem 

% Hits 

Odds_R

atio 

Fishers 

Test p-

value 

Predi

ction 

Ratio 

P04792 Heat shock protein 
beta-1 

5 0.014 18 0 6.46E-04 6.51E-15 0.001 

Q9NPH5 NADPH oxidase 4 38 0.104 350 0 1.50E-03 6.76E-91 0.002 

P16152 Carbonyl reductase 
[NADPH] 1 

32 0.088 473 0 2.45E-03 2.12E-70 0.003 

P05091 Aldehyde 

dehydrogenase, 
mitochondrial 

1 0.003 21 0 3.81E-03 0.003995

653 

0.004 

Q16678 Cytochrome P450 1B1 21 0.058 437 0 3.57E-03 1.38E-43 0.004 

P60568 Interleukin-2 1 0.003 26 0 4.72E-03 0.004901
533 

0.005 

Q9NNW7 Thioredoxin reductase 

2, mitochondrial 

1 0.003 33 0 5.99E-03 0.006168

385 

0.006 

P33527 Multidrug resistance-
associated protein 1 

37 0.102 1790 0.001 7.92E-03 1.15E-62 0.009 

O95718 Steroid hormone 

receptor ERR2 

8 0.022 419 0 9.32E-03 2.67E-14 0.01 

P22001 Potassium voltage-
gated channel 

subfamily A member 3 

6 0.016 318 0 9.49E-03 5.09E-11 0.01 

Q14534 Squalene 
monooxygenase 

3 0.008 162 0 9.75E-03 4.30E-06 0.01 

P04798 Cytochrome P450 1A1 1 0.003 61 0 1.11E-02 0.011219

729 

0.011 

P0DMV8 Heat shock 70 kDa 
protein 1A 

1 0.003 63 0 1.14E-02 0.011579
558 

0.011 

P37058 Testosterone 17-beta-

dehydrogenase 3 

11 0.03 722 0 1.16E-02 4.22E-18 0.012 

P37059 Estradiol 17-beta-
dehydrogenase 2 

10 0.027 635 0 1.12E-02 1.02E-16 0.012 

P14061 Estradiol 17-beta-

dehydrogenase 1 

12 0.033 853 0 1.25E-02 3.24E-19 0.013 

P15559 NAD (P)H 
dehydrogenase 

27 0.074 1996 0.001 1.25E-02 3.97E-41 0.013 

P47989 Xanthine 

dehydrogenase/oxidase 

33 0.091 2343 0.001 1.18E-02 1.36E-50 0.013 
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[Includes: Xanthine 

dehydrogenase 

P08236 Beta-glucuronidase 3 0.008 234 0 1.41E-02 1.27E-05 0.014 

O95067 G2/mitotic-specific 

cyclin-B2 

6 0.016 480 0 1.43E-02 5.74E-10 0.015 

P14920 D-amino-acid oxidase 8 0.022 718 0 1.60E-02 1.83E-12 0.016 

P19174 1-phosphatidylinositol 

4,5-bisphosphate 
phosphodiesterase 

gamma-1 

21 0.058 1831 0.001 1.50E-02 8.65E-31 0.016 

P54646 5'-AMP-activated 

protein kinase catalytic 
subunit alpha-2 

19 0.052 1852 0.001 1.68E-02 4.42E-27 0.018 

Q8N1Q1 Carbonic anhydrase 13 66 0.181 6604 0.003 1.50E-02 3.36E-91 0.018 

Q9UBM7 7-dehydrocholesterol 

reductase 

6 0.016 670 0 2.00E-02 4.07E-09 0.02 

P15121 Aldose reductase 73 0.201 8866 0.004 1.77E-02 5.31E-95 0.022 

Q86W56 Poly(ADP-ribose) 
glycohydrolase 

3 0.008 365 0 2.20E-02 4.69E-05 0.022 

P10415 Apoptosis regulator 

Bcl-2 

5 0.014 640 0 2.30E-02 1.62E-07 0.023 

P46063 ATP-dependent DNA 
helicase Q1 

79 0.217 10749 0.005 1.95E-02 3.65E-99 0.025 

Q9UNQ0 ATP-binding cassette 

sub-family G member 
2 

41 0.113 5547 0.003 2.19E-02 2.05E-51 0.025 

P10696 Alkaline phosphatase, 

placental-like 

15 0.041 2174 0.001 2.53E-02 3.84E-19 0.026 

P14679 Tyrosinase 20 0.055 2836 0.001 2.44E-02 2.93E-25 0.026 

P08183 Multidrug resistance 

protein 1 

94 0.258 13754 0.007 1.99E-02 1.06E-

115 

0.027 

P80365 Corticosteroid 11-beta-
dehydrogenase 

isozyme 2 

15 0.041 2234 0.001 2.60E-02 5.72E-19 0.027 

O60218 Aldo-keto reductase 
family 1 member B10 

9 0.025 1384 0.001 2.73E-02 8.42E-12 0.028 

P04278 Sex hormone-binding 

globulin 

72 0.198 11279 0.006 2.30E-02 6.59E-86 0.029 

P11387 DNA topoisomerase 1 45 0.124 7117 0.004 2.53E-02 2.10E-53 0.029 

P13866 Sodium/glucose 

cotransporter 1 

23 0.063 3608 0.002 2.68E-02 7.13E-28 0.029 

Q96RI1 Bile acid receptor 27 0.074 4505 0.002 2.82E-02 8.35E-32 0.03 

Q8TDS5 Oxoeicosanoid 

receptor 1 

2 0.005 348 0 3.15E-02 0.001934

041 

0.032 

P11388 DNA topoisomerase 2-
alpha 

114 0.313 20434 0.01 2.26E-02 1.03E-
131 

0.033 

P16083 Ribosyldihydronicotin

amide dehydrogenase 

[quinone] 

6 0.016 1095 0.001 3.27E-02 7.19E-08 0.033 

P23280 Carbonic anhydrase 6 58 0.159 10421 0.005 2.76E-02 1.13E-65 0.033 

P07900 Heat shock protein 
HSP 90-alpha 

34 0.093 6306 0.003 3.07E-02 2.96E-38 0.034 

Q92731 Estrogen receptor beta 88 0.242 17068 0.009 2.70E-02 1.39E-97 0.035 

Q9H2K2 Tankyrase-2 9 0.025 1812 0.001 3.58E-02 8.82E-11 0.037 

O43451 Maltase-glucoamylase, 

intestinal [Includes: 

Maltase 

18 0.049 3864 0.002 3.72E-02 9.97E-20 0.039 

Q6ZVD8 PH domain leucine-

rich repeat-containing 

protein phosphatase 2 

5 0.014 1085 0.001 3.90E-02 2.10E-06 0.039 

P35218 Carbonic anhydrase 
5A, mitochondrial 

52 0.143 11420 0.006 3.45E-02 1.74E-54 0.04 

Q8WWL7 G2/mitotic-specific 

cyclin-B3 

5 0.014 1159 0.001 4.16E-02 2.88E-06 0.042 
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Q92630 Dual specificity 

tyrosine-
phosphorylation-

regulated kinase 2 

6 0.016 1370 0.001 4.09E-02 2.63E-07 0.042 

P03372 Estrogen receptor 69 0.19 16604 0.008 3.58E-02 8.29E-70 0.044 

P16050 Arachidonate 15-

lipoxygenase 

50 0.137 12163 0.006 3.84E-02 2.93E-50 0.044 

Q99714 3-hydroxyacyl-CoA 

dehydrogenase type-2 

59 0.162 14187 0.007 3.69E-02 1.34E-59 0.044 

O75751 Solute carrier family 

22 member 3 

1 0.003 248 0 4.50E-02 0.044305

221 

0.045 

O43570 Carbonic anhydrase 12 43 0.118 10869 0.005 4.08E-02 1.34E-42 0.046 

P21964 Catechol O-

methyltransferase 

8 0.022 2036 0.001 4.53E-02 6.01E-09 0.046 

Q9ULX7 Carbonic anhydrase 14 39 0.107 9912 0.005 4.15E-02 1.30E-38 0.046 

P49761 Dual specificity 

protein kinase CLK3 

4 0.011 1036 0.001 4.66E-02 4.50E-05 0.047 

O95271 Tankyrase-1 6 0.016 1585 0.001 4.73E-02 6.10E-07 0.048 

P43166 Carbonic anhydrase 7 50 0.137 13497 0.007 4.27E-02 4.29E-48 0.049 

Q8TDU6 G-protein coupled bile 

acid receptor 1 

6 0.016 1616 0.001 4.82E-02 6.82E-07 0.049 

Q9HC97 G-protein coupled 

receptor 35 

35 0.096 9609 0.005 4.54E-02 1.28E-33 0.05 

P18054 Arachidonate 12-
lipoxygenase, 12S-

type 

59 0.162 16424 0.008 4.28E-02 5.30E-56 0.051 

P31639 Sodium/glucose 

cotransporter 2 

5 0.014 1424 0.001 5.12E-02 7.74E-06 0.052 

P68371 Tubulin beta-4B chain 22 0.06 6317 0.003 4.93E-02 3.69E-21 0.052 

Q00534 Cyclin-dependent 

kinase 6 

20 0.055 5754 0.003 4.96E-02 2.45E-19 0.052 

Q3ZCM7 Tubulin beta-8 chain 32 0.088 9174 0.005 4.78E-02 2.98E-30 0.052 

Q9UNA4 DNA polymerase iota 64 0.176 18394 0.009 4.35E-02 6.04E-60 0.052 

P27695 DNA-(apurinic or 

apyrimidinic site) 

85 0.234 24806 0.012 4.12E-02 1.33E-79 0.053 

Q9UBT6 DNA polymerase 

kappa 

131 0.36 38150 0.019 3.46E-02 6.61E-

126 

0.053 

P10276 Retinoic acid receptor 

alpha 

5 0.014 1480 0.001 5.32E-02 9.30E-06 0.054 

P54132 Bloom syndrome 

protein 

84 0.231 24829 0.012 4.19E-02 3.45E-78 0.054 

Q13748 Tubulin alpha-3C/D 

chain 

30 0.082 8871 0.004 4.96E-02 4.80E-28 0.054 

P47712 Cytosolic 

phospholipase A2 

2 0.005 612 0 5.54E-02 0.005773

856 

0.056 

Q9BVA1 Tubulin beta-2B chain 32 0.088 9829 0.005 5.12E-02 2.43E-29 0.056 

Q9Y2D0 Carbonic anhydrase 

5B, mitochondrial 

33 0.091 10155 0.005 5.12E-02 3.36E-30 0.056 

P06746 DNA polymerase beta 72 0.198 22605 0.011 4.64E-02 6.22E-65 0.057 

P17706 Tyrosine-protein 

phosphatase non-
receptor type 2 

22 0.06 6832 0.003 5.33E-02 1.90E-20 0.057 

P23219 Prostaglandin G/H 

synthase 1 

20 0.055 6330 0.003 5.46E-02 1.50E-18 0.058 

P11474 Steroid hormone 

receptor ERR1 

5 0.014 1626 0.001 5.84E-02 1.46E-05 0.059 

Q16236 Nuclear factor 

erythroid 2-related 
factor 2 

12 0.033 3871 0.002 5.69E-02 1.41E-11 0.059 

P00338 L-lactate 

dehydrogenase A 
chain 

2 0.005 664 0 6.01E-02 0.006752

025 

0.06 

P13631 Retinoic acid receptor 

gamma 

5 0.014 1653 0.001 5.94E-02 1.57E-05 0.06 
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Q13509 Tubulin beta-3 chain 24 0.066 7901 0.004 5.62E-02 1.29E-21 0.06 

Q13510 Acid ceramidase 6 0.016 2018 0.001 6.03E-02 2.42E-06 0.061 

Q9BQE3 Tubulin alpha-1C 

chain 

35 0.096 11755 0.006 5.56E-02 1.04E-30 0.061 

P08238 Heat shock protein 
HSP 90-beta 

22 0.06 7497 0.004 5.85E-02 1.31E-19 0.062 

Q71U36 Tubulin alpha-1A 

chain 

35 0.096 11903 0.006 5.63E-02 1.57E-30 0.062 

Q9Y468 Lethal(3)malignant 
brain tumor-like 

protein 1 

48 0.132 16453 0.008 5.46E-02 1.90E-41 0.062 

B2RXH2 Lysine-specific 
demethylase 4E 

76 0.209 26131 0.013 5.02E-02 8.93E-66 0.063 

P68363 Tubulin alpha-1B 

chain 

20 0.055 7081 0.004 6.11E-02 1.24E-17 0.064 

Q04760 Lactoylglutathione 

lyase 

4 0.011 1410 0.001 6.35E-02 0.000146

121 

0.064 

P39748 Flap endonuclease 1 96 0.264 34065 0.017 4.84E-02 1.43E-82 0.065 

O14746 Telomerase reverse 
transcriptase 

36 0.099 13044 0.007 5.98E-02 1.92E-30 0.066 

O94921 Cyclin-dependent 

kinase 14 

1 0.003 362 0 6.57E-02 0.063930

888 

0.066 

P14174 Macrophage migration 
inhibitory factor 

29 0.08 10498 0.005 6.10E-02 9.69E-25 0.066 

P36888 Receptor-type 

tyrosine-protein kinase 
FLT3 

7 0.019 2542 0.001 6.49E-02 5.77E-07 0.066 

P00915 Carbonic anhydrase 1 27 0.074 9981 0.005 6.26E-02 6.96E-23 0.067 

P07451 Carbonic anhydrase 3 39 0.107 14977 0.007 6.29E-02 5.55E-32 0.07 

 

 

 

 

 
Supplementary Table 4 Pathways predicted for the AfroCancer and NCI Cancer datasets based 

on the predicted targets of AfroCancer compounds and experimental targets of NCI Cancer 

(Pathways in bold are common to both datasets) 

Pathway_Name NCI 

Cance

r % 

Hits 

PubC

hem 

% 

Hits 

χ 2 

p-

valu

e 

Pathway Name AfroC

ancer 

% Hits 

PubC

hem 

% 

Hits 

χ 2 

p-

valu

e 

AhR pathway 4.88E-

05 

2.96E-

05 

0.00

175

815

2 

AhR pathway 0.0001

31079 

8.48E-

05 

1.86

E-

06 

Allograft Rejection 2.38E-

06 

1.31E-

06 

0.70

695

725

7 

Allograft 

Rejection 

5.74E-

06 

5.56E-

06 

0.88

796

637

6 

BDNF signaling 

pathway 

0.0003

62852 

0.000

35788

6 

0.83

223

544

9 

Androgen 

receptor signaling 

pathway 

9.38E-

05 

7.71E-

05 

0.07

341

290

4 

Corticotropin-

releasing hormone 

0.0001

58227 

0.000

15594

2 

0.90

123

158

6 

B Cell Receptor 

Signaling 

Pathway 

0.0001

89442 

0.000

17122 

0.18

703

313

2 
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Cytoplasmic 

Ribosomal Proteins 

3.33E-

05 

3.33E-

05 

0.92

856

810

9 

BDNF signaling 

pathway 

0.0003

22434 

0.000

30010

5 

0.21

888

231

5 

Delta-Notch Signaling 

Pathway 

0.0001

17778 

8.78E-

05 

0.00

404

665

2 

Cell cycle 0.0001

14813 

8.44E-

05 

0.00

169

192

5 

Estrogen signaling 

pathway 

9.04E-

05 

6.35E-

05 

0.00

251

693

8 

Corticotropin-

releasing 

hormone 

0.0002

06664 

0.000

19251

5 

0.33

743

664

9 

Focal Adhesion 0.0003

92594 

0.000

29735

5 

4.87

E-

07 

Cytokines and 

Inflammatory 

Response 

5.74E-

06 

5.56E-

06 

0.88

796

637

6 

FSH signaling 

pathway 

9.28E-

05 

7.23E-

05 

0.03

174

451

3 

Cytoplasmic 

Ribosomal 

Proteins 

1.05E-

05 

8.55E-

06 

0.63

019

766

1 

Gastric cancer 

network 2 

1.67E-

05 

9.98E-

06 

0.07

765

154 

Delta-Notch 

Signaling 

Pathway 

0.0001

23424 

0.000

11126

7 

0.28

203

785

5 

IL-1 Signaling 

Pathway 

2.02E-

05 

1.54E-

05 

0.32

845

190

6 

Endochondral 

Ossification 

3.35E-

05 

2.22E-

05 

0.02

745

047

7 

IL-5 Signaling 

Pathway 

0.0001

82021 

0.000

17645

5 

0.73

157

457

5 

Estrogen 

metabolism 

5.36E-

05 

3.35E-

05 

0.00

125

467

4 

IL-6 Signaling 

Pathway 

0.0003

21214 

0.000

25619

7 

0.00

022

455 

Estrogen 

signaling pathway 

0.0001

08116 

0.000

10442

5 

0.76

159

597

6 

IL-7 Signaling 

Pathway 

0.0001

65366 

0.000

12839

7 

0.00

325

574

8 

Fluoropyrimidine 

Activity 

6.22E-

05 

5.56E-

05 

0.42

677

733

9 

IL17 signaling 

pathway 

6.66E-

05 

5.95E-

05 

0.44

040

790

3 

Focal Adhesion 7.56E-

05 

6.53E-

05 

0.23

728

502

3 

Integrated Pancreatic 

Cancer Pathway 

0.0004

00922 

0.000

32940

9 

0.00

034

073

3 

FSH signaling 

pathway 

7.18E-

05 

6.51E-

05 

0.45

688

853

1 

MicroRNAs in 

cardiomyocyte 

hypertrophy 

0.0002

2485 

0.000

19000

7 

0.02

274

993

8 

Gastric cancer 

network 2 

1.72E-

05 

1.65E-

05 

0.96

263

463

6 

Mitochondrial Gene 

Expression 

3.57E-

06 

7.10E-

07 

0.01

386

274

7 

Id Signaling 

Pathway 

9.76E-

05 

7.63E-

05 

0.02

119

616 

Neural Crest 

Differentiation 

0.0001

17778 

9.21E-

05 

0.01

663
IL-1 Signaling 

Pathway 

1.91E-

06 

5.99E-

07 

0.35

500
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217

2 

790

4 

Notch Signaling 

Pathway 

1.67E-

05 

9.27E-

06 

0.04

104

129

3 

IL-2 Signaling 

pathway 

0.0001

36819 

0.000

12349

7 

0.26

127

060

4 

Nuclear Receptors 0.0001

40382 

0.000

12235

6 

0.14

859

227

5 

IL-5 Signaling 

Pathway 

0.0002

09534 

0.000

19867

3 

0.47

335

703

6 

Parkin-Ubiquitin 

Proteasomal System 

pathway 

7.38E-

05 

6.27E-

05 

0.22

475

709 

IL-6 Signaling 

Pathway 

0.0002

43022 

0.000

22108 

0.15

986

689 

Pathogenic 

Escherichia coli 

infection 

0.0001

36813 

0.000

10798

8 

0.01

276

706

1 

IL-7 Signaling 

Pathway 

0.0001

1003 

1.00E-

04 

0.35

246

331

3 

RANKL/RANK 

Signaling Pathway 

0.0001

52279 

0.000

11786 

0.00

429

029

5 

IL17 signaling 

pathway 

0.0001

11943 

0.000

10040

6 

0.28

377

489

3 

RB in Cancer 0.0001

05882 

7.74E-

05 

0.00

372

552

4 

Integrated 

Pancreatic 

Cancer Pathway 

0.0006

28603 

0.000

54786

9 

0.00

084

535

4 

Regulation of 

Microtubule 

Cytoskeleton 

0.0001

57038 

0.000

12275

5 

0.00

531

743

6 

Interleukin-11 

Signaling 

Pathway 

0.0001

06202 

0.000

10314

2 

0.80

678

142

5 

Signaling of 

Hepatocyte Growth 

Factor Receptor 

0.0001

02313 

7.95E-

05 

0.02

228

826

5 

MAPK Cascade 5.74E-

05 

5.38E-

05 

0.68

060

627

4 

Signaling Pathways in 

Glioblastoma 

0.0002

85523 

0.000

19517

6 

3.88

E-

09 

MicroRNAs in 

cardiomyocyte 

hypertrophy 

0.0001

38733 

0.000

13179

3 

0.58

471

747

8 

Steroid Biosynthesis 8.33E-

06 

1.82E-

06 

6.06

E-

05 

Mitochondrial 

Gene Expression 

4.78E-

06 

2.48E-

06 

0.28

521

302

2 

TCR Signaling 

Pathway 

0.0001

91539 

0.000

16248

3 

0.04

068

637 

mRNA processing 2.20E-

05 

9.15E-

06 

0.00

015

584

6 

Androgen receptor 

signaling pathway 

0.0001

21347 

9.47E-

05 

0.01

426

924

4 

Neural Crest 

Differentiation 

8.71E-

05 

6.91E-

05 

0.04

198

447

6 

B Cell Receptor 

Signaling Pathway 

0.0003

54525 

0.000

28097

1 

6.60

E-

05 

NOD pathway 7.18E-

05 

6.05E-

05 

0.17

811

168

4 

Cell cycle 0.0001

41572 

0.000

13174

5 

0.46

091

001

5 

Notch Signaling 

Pathway 

8.61E-

06 

6.41E-

06 

0.52

276

36 
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Cytokines and 

Inflammatory 

Response 

2.38E-

06 

1.04E-

06 

0.50

718

705

4 

Nuclear 

Receptors 

0.0003

60705 

0.000

35851

8 

0.93

131

664

2 

Endochondral 

Ossification 

9.04E-

05 

7.71E-

05 

0.18

332

733

8 

Osteoblast 

Signaling 

3.83E-

06 

2.65E-

06 

0.69

885

369

1 

Estrogen metabolism 5.95E-

06 

3.52E-

06 

0.37

173

466

1 

Osteopontin 

Signaling 

0.0001

07159 

9.71E-

05 

0.34

352

365

1 

Fluoropyrimidine 

Activity 

3.21E-

05 

1.43E-

05 

3.01

E-

05 

Oxidative Stress 0.0001

25338 

7.55E-

05 

6.22

E-

08 

Id Signaling Pathway 9.87E-

05 

6.77E-

05 

0.00

068

048

4 

Parkin-Ubiquitin 

Proteasomal 

System pathway 

0.0003

53051 

0.000

2446 

3.12

E-

11 

IL-2 Signaling 

pathway 

0.0001

58227 

0.000

11841

2 

0.00

095

370

5 

Pathogenic 

Escherichia coli 

infection 

0.0003

63576 

0.000

26230

3 

1.98

E-

09 

Interleukin-11 

Signaling Pathway 

0.0001

4752 

0.000

10882

8 

0.00

081

540

7 

Prostate Cancer 0.0001

83701 

0.000

18122

6 

0.88

698

463

7 

MAPK Cascade 7.73E-

05 

5.77E-

05 

0.02

188

457

1 

RANKL/RANK 

Signaling 

Pathway 

0.0001

47344 

0.000

12965

5 

0.14

191

298

5 

mRNA processing 3.57E-

05 

3.55E-

05 

0.94

541

467

8 

RB in Cancer 7.46E-

05 

6.30E-

05 

0.17

498

760

3 

NOD pathway 4.16E-

05 

3.89E-

05 

0.74

853

797

5 

Regulation of 

Microtubule 

Cytoskeleton 

8.71E-

05 

5.64E-

05 

0.00

012

315

9 

Osteoblast Signaling 3.81E-

05 

2.38E-

05 

0.00

996

565

9 

Serotonin 

Receptor 4/6/7 

and NR3C 

Signaling 

7.65E-

05 

6.78E-

05 

0.33

191

772

1 

Osteopontin Signaling 4.64E-

05 

4.45E-

05 

0.85

636

728

3 

Signaling of 

Hepatocyte 

Growth Factor 

Receptor 

7.37E-

05 

6.82E-

05 

0.56

233

162

1 

Oxidative Stress 2.50E-

05 

2.26E-

05 

0.72

356

429

2 

Signaling 

Pathways in 

Glioblastoma 

0.0001

47344 

0.000

14359

5 

0.79

213

587

9 

Prostate Cancer 0.0001

82021 

0.000

17032

8 

0.43

565

208

6 

Steroid 

Biosynthesis 

3.54E-

05 

1.62E-

05 

1.35

E-

05 

Serotonin Receptor 

4/6/7 and NR3C 

Signaling 

7.26E-

05 

6.68E-

05 

0.55

979
TCR Signaling 

Pathway 

0.0001

36819 

0.000

13410

2 

0.85

275
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500

9 

745

2 

TNF-alpha/NF-kB 

Signaling Pathway 

0.0002

39126 

0.000

21121

6 

0.08

489

771

9 

TNF-alpha/NF-

kB Signaling 

Pathway 

0.0002

16232 

0.000

18430

5 

0.02

443

662

1 

TOR signaling 4.64E-

05 

4.57E-

05 

0.98

569

789

1 

TOR signaling 2.58E-

05 

2.45E-

05 

0.86

632

063

3 

TSH signaling 

pathway 

0.0001

61797 

0.000

12260

5 

0.00

139

743

8 

TSH signaling 

pathway 

7.75E-

05 

6.67E-

05 

0.22

115

936

2 

TWEAK Signaling 

Pathway 

9.99E-

05 

9.53E-

05 

0.70

718

973

2 

TWEAK 

Signaling 

Pathway 

0.0001

3969 

0.000

12726 

0.30

305

200

6 

Vitamin A and 

Carotenoid 

Metabolism 

2.74E-

05 

1.31E-

05 

0.00

052

379 

Adipogenesis 0.0001

9614 

0.000

18259

5 

0.34

655

635

4 

Vitamin A and 

carotenoid 

metabolism 

2.74E-

05 

1.31E-

05 

0.00

052

379 

Apoptosis 0.0001

32035 

0.000

11408

9 

0.11

233

806

1 

Alpha6-Beta4 Integrin 

Signaling Pathway 

0.0002

02246 

0.000

13936

6 

1.32

E-

06 

Apoptosis 

Modulation and 

Signaling 

0.0001

21511 

0.000

11032

6 

0.32

201

289

2 

Cardiac Progenitor 

Differentiation 

7.85E-

05 

6.57E-

05 

0.16

549

876

4 

ATM Signaling 

Pathway 

3.83E-

06 

1.80E-

06 

0.29

110

293

8 

DNA damage response 

(only ATM dependent) 

0.0001

16589 

9.63E-

05 

0.06

626

551

8 

Benzo (a)pyrene 

metabolism 

2.77E-

05 

1.76E-

05 

0.02

845

791 

DNA Replication 1.43E-

05 

9.16E-

06 

0.17

142

930

4 

Biogenic Amine 

Synthesis 

5.07E-

05 

4.80E-

05 

0.75

531

041

2 

ErbB signaling pathway 0.0001

4871 

0.000

11589

3 

0.00

607

644

9 

Codeine and 

morphine 

metabolism 

8.99E-

05 

6.28E-

05 

0.00

120

924

3 

Eukaryotic 

Transcription Initiation 

1.43E-

05 

9.66E-

06 

0.23

614

723

8 

Diurnally 

regulated genes 

with circadian 

orthologs 

2.30E-

05 

1.68E-

05 

0.18

075

684

5 

IL-9 Signaling Pathway 8.80E-

05 

6.74E-

05 

0.02

514

327

5 

DNA damage 

response 

9.09E-

05 

7.18E-

05 

0.03

410

743 

Inflammatory Response 

Pathway 

2.14E-

05 

1.06E-

05 

0.00

386

400

2 

Dopamine 

metabolism 

6.98E-

05 

5.35E-

05 

0.03

686

353
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Insulin Signaling 0.0003

49766 

0.000

33471

8 

0.46

889

487

1 

Drug Induction of 

Bile Acid Pathway 

0.0001

66479 

0.000

16147 

0.72

967

349

3 

Integrin-mediated cell 

adhesion 

0.0002

17711 

0.000

17751

8 

0.00

644

098

2 

Energy 

Metabolism 

9.57E-

05 

8.99E-

05 

0.58

705

135

9 

Kit Receptor Signaling 

Pathway 

0.0002

33177 

0.000

15413

9 

6.97

E-

09 

FAS pathway and 

Stress induction of 

HSP regulation 

2.97E-

05 

2.41E-

05 

0.32

111

864

9 

MAPK signaling 

pathway 

0.0003

12886 

0.000

26372

3 

0.00

611

163

2 

Folate Metabolism 4.59E-

05 

4.43E-

05 

0.87

129

036

9 

miRNAs involved in 

DDR 

3.33E-

05 

2.70E-

05 

0.31

523

530

7 

G1 to S cell cycle 

control 

6.22E-

05 

5.56E-

05 

0.42

677

733

9 

Nifedipine Activity 2.26E-

05 

1.28E-

05 

0.01

890

822

6 

G13 Signaling 

Pathway 

2.87E-

06 

2.22E-

06 

0.93

504

249 

NLR proteins 2.26E-

05 

1.80E-

05 

0.38

456

537

2 

Glucocorticoid 

&amp; 

Mineralcorticoid 

Metabolism 

2.87E-

05 

1.68E-

05 

0.00

854

394

7 

Nucleotide Metabolism 1.07E-

05 

1.34E-

06 

3.55

E-

12 

Glycogen 

Metabolism 

6.70E-

06 

2.57E-

06 

0.03

798

366

6 

Oncostatin M Signaling 

Pathway 

0.0001

98677 

0.000

16778

1 

0.03

199

985

4 

Hedgehog 

Signaling Pathway 

2.10E-

05 

1.17E-

05 

0.01

457

435

2 

One Carbon 

Metabolism 

1.78E-

05 

1.97E-

06 

2.40

E-

23 

Influenza A virus 

infection 

4.78E-

06 

3.85E-

06 

0.83

776

983

8 

Physiological and 

Pathological 

Hypertrophy of the 

Heart 

3.81E-

05 

3.48E-

05 

0.67

804

559

5 

Irinotecan Pathway 9.19E-

05 

6.29E-

05 

0.00

055

534

7 

pilocytic astrocytoma 4.76E-

06 

3.00E-

06 

0.53

650

875

3 

Keap1-Nrf2 

Pathway 

3.64E-

05 

2.58E-

05 

0.05

777

093

6 

Proteasome 

Degradation 

9.52E-

06 

7.54E-

06 

0.64

571

576

3 

Matrix 

Metalloproteinases 

1.44E-

05 

7.95E-

06 

0.04

805

673 

Senescence and 

Autophagy 

0.0001

1302 

9.03E-

05 

0.03

306

617

8 

metapathway 

biotransformation 

0.0001

32035 

0.000

10049

1 

0.00

276

133
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AGE/RAGE pathway 0.0002

30798 

0.000

21548 

0.35

785

641

9 

Nicotine Activity 

on Dopaminergic 

Neurons 

1.63E-

05 

1.49E-

05 

0.82

722

882

5 

Angiogenesis 0.0001

499 

9.47E-

05 

2.72

E-

07 

Nuclear receptors 

in lipid metabolism 

and toxicity 

0.0002

27713 

0.000

21338

3 

0.35

575

029

9 

Cholesterol 

biosynthesis 

5.95E-

06 

5.54E-

06 

0.94

105

379

3 

Ovarian Infertility 

Genes 

0.0001

3969 

0.000

12828

7 

0.34

839

192

3 

EBV LMP1 signaling 9.04E-

05 

8.14E-

05 

0.39

289

295

2 

Phase I, non P450 1.34E-

05 

1.26E-

05 

0.93

376

211

6 

EGFR1 Signaling 

Pathway 

0.0002

34367 

0.000

22075

6 

0.42

192

478

4 

Polyol pathway 6.98E-

05 

4.11E-

05 

2.83

E-

05 

EPO Receptor 

Signaling 

8.80E-

05 

6.65E-

05 

0.01

882

975

2 

Prostaglandin 

Synthesis and 

Regulation 

9.19E-

05 

7.18E-

05 

0.02

594

746

6 

Gastric cancer network 

1 

2.02E-

05 

1.34E-

05 

0.12

049

207 

Selenium 

Metabolism and 

Selenoproteins 

5.36E-

05 

5.02E-

05 

0.69

380

685

8 

Heart Development 1.19E-

05 

6.87E-

06 

0.12

107

342

5 

Selenium Pathway 0.0002

10491 

0.000

18635

8 

0.09

190

037

1 

IL-3 Signaling Pathway 0.0003

10507 

0.000

23823

1 

2.07

E-

05 

Striated Muscle 

Contraction 

8.90E-

05 

8.46E-

05 

0.68

040

746

3 

IL-4 signaling Pathway 0.0002

2247 

0.000

18678

7 

0.01

859

774

8 

TGF Beta 

Signaling Pathway 

7.27E-

05 

6.78E-

05 

0.60

402

245

4 

Integrated Breast 

Cancer Pathway 

0.0002

81954 

0.000

23868 

0.01

132

409

8 

Tryptophan 

metabolism 

4.31E-

05 

3.70E-

05 

0.37

900

390

4 

Interferon type I 9.52E-

05 

7.03E-

05 

0.00

793

504

1 

Vitamin B12 

Metabolism 

4.59E-

05 

4.42E-

05 

0.86

128

287

4 

Leptin signaling 

pathway 

0.0001

95108 

0.000

16005 

0.01

252

039 

Wnt Signaling 

Pathway NetPath 

0.0001

3969 

0.000

13350

4 

0.63

168

380

4 

Nucleotide GPCRs 2.50E-

05 

1.84E-

05 

0.19

748

477 

    

Prolactin Signaling 

Pathway 

0.0002

31988 

0.000

22040

7 

0.49

753

    



 
 
 
 

225 
 

557

3 

Regulation of toll-like 

receptor signaling 

pathway 

0.0001

83211 

0.000

17844 

0.77

445

960

8 

    

SRF and miRs in 

Smooth Muscle 

Differentiation and 

Proliferation 

1.07E-

05 

8.59E-

06 

0.63

338

315

4 

    

TFs Regulate miRNAs 

related to cardiac 

hypertrophy 

2.86E-

05 

2.07E-

05 

0.14

486

143

9 

    

TGF-beta Receptor 

Signaling Pathway 

0.0001

87969 

0.000

17412

2 

0.35

722

186

4 

    

Toll-like receptor 

signaling pathway 

0.0001

83211 

0.000

17844 

0.77

445

960

8 

    

TP53 network 2.38E-

05 

1.48E-

05 

0.04

612

208

7 

    

Trans-sulfuration and 

one carbon metabolism 

1.43E-

05 

1.14E-

06 

5.34

E-

27 

    

Trans-sulfuration 

pathway 

1.19E-

06 

4.30E-

07 

0.81

770

729

5 

    

TSLP Signaling 

Pathway 

0.0001

34434 

0.000

13093

3 

0.81

590

106

9 

    

Type II diabetes 

mellitus 

4.88E-

05 

3.85E-

05 

0.15

196

427 

    

Type III interferon 

signaling 

1.78E-

05 

1.59E-

05 

0.75

278

930
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Supplementary Table 8 The predicted targets of the currently marketed HAT drugs at tpr > 0.9. Note that 

ornithine decarboxylase is correctly predicted for only elfornithine. 

Gene Name 

 
Pentamid

ine 

(-2.75) 

Suram

in (-

14.89) 

Nifurti

mox 

(-1.47) 

Elfornith

ine (-

0.33) 

Melarsop

rol 

Cell-division control 

protein 2 homolog 6, 

putative;Tb11.47.0031 

0 0 0 0 1 

Cell division control 

protein 2 homolog 

2;Tb927.7.7360 

0 0 0 0 1 

Cell division related 

protein kinase 2, 

putative;Tb10.70.2210 

0 0 0 0 1 

Protein kinase, 

putative;Tb10.70.1760 

0 0 0 0 1 

Serine/threonine-protein 

kinase, 

putative;Tb10.70.5890 

0 0 0 0 1 

Serine/threonine protein 

kinase, 

putative;Tb927.3.4560 

0 0 0 0 1 

Protein kinase, 

putative;Tb09.160.0570 

0 0 0 0 1 

Protein kinase, 

putative;Tb11.01.0330 

0 0 0 0 1 

Protein kinase, 

putative;Tb927.7.1900 

0 0 0 0 1 

Pteridine reductase, 

putative;Tb927.8.2210 

0 0 0 0 1 

Protein kinase, 

putative;Tb09.211.2260 

0 0 0 0 1 

Glucose 

transporter;Tb10.6k15.2

030 

1 0 0 0 0 

Glucose transporter, 

putative;Tb927.4.2290 

1 0 0 0 0 

Hexose 

transporter;Tb10.6k15.2

040 

1 0 0 0 0 

Glucose 

transporter;Tb10.6k15.2

020 

1 0 0 0 0 

Ornithine 

decarboxylase;Tb11.01.5

300 

0 0 0 1 0 
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Gene Name 

 
Pentamid

ine 

(-2.75) 

Suram

in (-

14.89) 

Nifurti

mox 

(-1.47) 

Elfornith

ine (-

0.33) 

Melarsop

rol 

Cyclin 3;Tb927.6.1460 0 0 0 0 1 

Cyclin 6;Tb11.01.8460 0 0 0 0 1 

NADPH--cytochrome 

p450 reductase, 

putative;Tb09.211.4110 

0 0 0 0 1 

NADPH--cytochrome 

P450 reductase, 

putative;Tb11.01.0170 

0 0 0 0 1 

NADPH--cytochrome 

p450 reductase, 

putative;Tb11.02.5420 

0 0 0 0 1 

NADPH--cytochrome 

p450 reductase, 

putative;Tb09.211.4110 

1 0 0 0 0 

NADPH--cytochrome 

P450 reductase, 

putative;Tb11.01.0170 

1 0 0 0 0 

NADPH--cytochrome 

p450 reductase, 

putative;Tb11.02.5420 

1 0 0 0 0 

NADPH--cytochrome 

p450 reductase, 

putative;Tb09.211.4110 

0 0 0 1 0 

NADPH--cytochrome 

P450 reductase, 

putative;Tb11.01.0170 

0 0 0 1 0 

NADPH--cytochrome 

p450 reductase, 

putative;Tb11.02.5420 

0 0 0 1 0 

Protein kinase, 

putative;Tb09.211.2260 

0 0 0 0 1 

Protein kinase, 

putative;Tb10.329.0030 

0 0 0 0 1 

Mitogen-activated 

protein 

kinase;Tb927.8.3550 

0 0 0 0 1 

Protein kinase, 

putative;Tb927.7.1900 

0 0 0 0 1 

Protein kinase, 

putative;Tb11.01.4130 

0 0 0 0 1 

Protein 

kinase;Tb11.01.1030 

0 0 0 0 1 

Rac serine-threonine 

kinase, 

putative;Tb927.6.2250 

0 0 0 0 1 
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Gene Name 

 
Pentamid

ine 

(-2.75) 

Suram

in (-

14.89) 

Nifurti

mox 

(-1.47) 

Elfornith

ine (-

0.33) 

Melarsop

rol 

Ubiquitin-conjugating 

enzyme E2, 

putative;Tb09.211.0050 

1 0 0 0 0 

Cyclin 3;Tb927.6.1460 0 0 0 0 1 

Cyclin 6;Tb11.01.8460 0 0 0 0 1 

Protein kinase, 

putative;Tb10.70.1760 

0 0 0 0 1 

Serine/threonine-protein 

kinase, 

putative;Tb10.70.5890 

0 0 0 0 1 

Serine/threonine protein 

kinase, 

putative;Tb927.3.4560 

0 0 0 0 1 

NAD-dependent protein 

deacetylase 

SIR2rp1;SIR2rp1 

1 0 0 0 0 

Protein kinase, 

putative;Tb09.160.0570 

0 0 0 0 1 

Protein kinase, 

putative;Tb11.01.0330 

0 0 0 0 1 

Protein kinase, 

putative;Tb927.7.3210 

0 0 0 0 1 
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Supplementary Table 9 Predicted targets common to 5 known drugs and compounds in SH dataset 

Gene ID Gene Name Biological Process 

Tb11.01.8460 Cyclin 6 cell cycle 

Tb11.01.4130 Protein kinase, putative biosynthetic process;cell cycle;nitrogen 

compound metabolic process;phosphate-

containing compound metabolic 

process;regulation of transcription from RNA 

polymerase II promoter;transcription 

elongation from RNA polymerase II promoter 

Tb927.4.2290 Glucose transporter,  

putative 

Tb10.6k15.2040 Hexose transporter 

Tb11.02.5420 NADPH--cytochrome p450  

reductase, putative 

Tb10.70.1760 Non-specific serine/threonine 

protein kinase 

intracellular signal transduction;phosphate-

containing compound metabolic 

process;regulation of biological 

process;response to stimulus 

Tb09.211.4110 NADPH--cytochrome p450 

 reductase, putative 

Tb10.6k15.2030 Glucose transporter 

Tb927.7.3210 Protein kinase, putative cell cycle 

Tb11.01.1030 Protein kinase  

Tb11.01.0170 NADPH--cytochrome p450  

reductase, putative 
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Gene ID Gene Name Biological Process 

Tb11.01.0330 Protein kinase, putative chromatin 

organization;cytokinesis;cytoskeleton 

organization;phosphate-containing 

compound metabolic process;regulation of 

cell cycle 

Tb927.3.4560 Non-specific serine/threonine 

protein kinase 

intracellular signal transduction;phosphate-

containing compound metabolic 

process;regulation of biological 

process;response to stimulus 

Tb927.7.1900 Protein kinase, putative biosynthetic process;cell cycle;nitrogen 

compound metabolic process;phosphate-

containing compound metabolic 

process;regulation of transcription from RNA 

polymerase II promoter 

Tb10.6k15.2020 Glucose transporter 

Tb10.70.5890 Serine/threonine-protein kinase, 

putative 

intracellular signal transduction;phosphate-

containing compound metabolic 

process;regulation of biological 

process;response to stimulus 

Tb927.6.1460 Cyclin 3 cell cycle 

 

 

 

 
Supplementary Table 10 Bioactivity values extracted from ChEMBL for the NP dataset. 

CMPD_CHE

MBLID 

PCHEMBL_

VALUE 

TARGET_CH

EMBLID 

PROTEIN_ACC

ESSION 

PREF_NAME ORGANISM 

CHEMBL624

6 

5 CHEMBL4331 P68871 Hemoglobin beta chain Homo sapiens 

CHEMBL155

3072 

5 CHEMBL12932

31 

P51450 Nuclear receptor ROR-

gamma 

Mus musculus 

CHEMBL168 5.02 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL168 5.02 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL400

074 

5.02 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL624
6 

5.03 CHEMBL3594 Q16790 Carbonic anhydrase IX Homo sapiens 

CHEMBL624

6 

5.03 CHEMBL4362 Q6P6U0 Tyrosine-protein kinase 

FGR 

Rattus norvegicus 

CHEMBL169 5.03 CHEMBL17411
86 

P51449 Nuclear receptor ROR-
gamma 

Homo sapiens 

CHEMBL221

543 

5.03 CHEMBL2581 P07339 Cathepsin D Homo sapiens 

CHEMBL624
6 

5.04 CHEMBL3729 P22748 Carbonic anhydrase IV Homo sapiens 

CHEMBL463

665 

5.04 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL624
6 

5.05 CHEMBL3510 Q9ULX7 Carbonic anhydrase 
XIV 

Homo sapiens 
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CMPD_CHE

MBLID 

PCHEMBL_

VALUE 

TARGET_CH

EMBLID 

PROTEIN_ACC

ESSION 

PREF_NAME ORGANISM 

CHEMBL169 5.05 CHEMBL4696 P00489 Glycogen 
phosphorylase, muscle 

form 

Oryctolagus 
cuniculus 

CHEMBL169 5.05 CHEMBL4696 P00489 Glycogen 
phosphorylase, muscle 

form 

Oryctolagus 
cuniculus 

CHEMBL155

3072 

5.05 CHEMBL12932

31 

P51450 Nuclear receptor ROR-

gamma 

Mus musculus 

CHEMBL624

6 

5.06 CHEMBL2326 P43166 Carbonic anhydrase VII Homo sapiens 

CHEMBL865

9 

5.07 CHEMBL2916 O14746 Telomerase reverse 

transcriptase 

Homo sapiens 

CHEMBL169 5.07 CHEMBL4343 P06766 DNA polymerase beta Rattus norvegicus 

CHEMBL624
6 

5.09 CHEMBL3242 O43570 Carbonic anhydrase XII Homo sapiens 

CHEMBL168 5.1 CHEMBL23665

17 

Q9YQ12 Protease Human 

immunodeficiency 
virus 1 

CHEMBL169 5.1 CHEMBL23665

17 

Q9YQ12 Protease Human 

immunodeficiency 
virus 1 

CHEMBL443

146 

5.1 CHEMBL4078 O42275 Acetylcholinesterase Electrophorus 

electricus 

CHEMBL155
5307 

5.1 CHEMBL4372 P15917 Anthrax lethal factor Bacillus anthracis 

CHEMBL624

6 

5.12 CHEMBL4789 P35218 Carbonic anhydrase VA Homo sapiens 

CHEMBL168 5.12 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL624

6 

5.13 CHEMBL262 P49841 Glycogen synthase 

kinase-3 beta 

Homo sapiens 

CHEMBL822
93 

5.13 CHEMBL3979 Q03181 Peroxisome 
proliferator-activated 

receptor delta 

Homo sapiens 

CHEMBL168 5.13 CHEMBL4343 P06766 DNA polymerase beta Rattus norvegicus 

CHEMBL169 5.14 CHEMBL4903 P24666 Low molecular weight 

phosphotyrosine protein 
phosphatase 

Homo sapiens 

CHEMBL624

6 

5.15 CHEMBL12932

26 

B2RXH2 Lysine-specific 

demethylase 4D-like 

Homo sapiens 

CHEMBL624
6 

5.15 CHEMBL3025 P23280 Carbonic anhydrase VI Homo sapiens 

CHEMBL463

665 

5.15 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL269
277 

5.19 CHEMBL4343 P06766 DNA polymerase beta Rattus norvegicus 

CHEMBL169 5.19 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL624
6 

5.2 CHEMBL2326 P43166 Carbonic anhydrase VII Homo sapiens 

CHEMBL365

375 

5.2 CHEMBL12932

31 

P51450 Nuclear receptor ROR-

gamma 

Mus musculus 

CHEMBL168 5.22 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL168 5.22 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.22 CHEMBL5983 O60218 Aldo-keto reductase 
family 1 member B10 

Homo sapiens 

CHEMBL178

3810 

5.22 CHEMBL23665

17 

Q9YQ12 Protease Human 

immunodeficiency 
virus 1 

CHEMBL168 5.25 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL168 5.26 CHEMBL3807 P17706 T-cell protein-tyrosine 
phosphatase 

Homo sapiens 

CHEMBL865

9 

5.28 CHEMBL3979 Q03181 Peroxisome 

proliferator-activated 

receptor delta 

Homo sapiens 
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CMPD_CHE

MBLID 

PCHEMBL_

VALUE 

TARGET_CH

EMBLID 

PROTEIN_ACC

ESSION 

PREF_NAME ORGANISM 

CHEMBL169 5.28 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL624

6 

5.29 CHEMBL23665

05 

Q76353 Integrase Human 

immunodeficiency 
virus 1 

CHEMBL624

6 

5.29 CHEMBL3471 Q7ZJM1 Human 

immunodeficiency virus 

type 1 integrase 

Human 

immunodeficiency 

virus 1 

CHEMBL822

93 

5.3 CHEMBL4163 O60603 Toll-like receptor 2 Homo sapiens 

CHEMBL169 5.32 CHEMBL4343 P06766 DNA polymerase beta Rattus norvegicus 

CHEMBL168 5.35 CHEMBL3807 P17706 T-cell protein-tyrosine 

phosphatase 

Homo sapiens 

CHEMBL624
6 

5.37 CHEMBL3912 Q8N1Q1 Carbonic anhydrase 
XIII 

Homo sapiens 

CHEMBL624

6 

5.37 CHEMBL4364 Q64725 Tyrosine-protein kinase 

SYK 

Rattus norvegicus 

CHEMBL168 5.37 CHEMBL3807 P17706 T-cell protein-tyrosine 

phosphatase 

Homo sapiens 

CHEMBL168 5.38 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL865

9 

5.39 CHEMBL235 P37231 Peroxisome 

proliferator-activated 

receptor gamma 

Homo sapiens 

CHEMBL169 5.39 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL624

6 

5.4 CHEMBL12932

34 

O97447 Putative fructose-1,6-

bisphosphate aldolase 

Giardia intestinalis 

CHEMBL168 5.4 CHEMBL5983 O60218 Aldo-keto reductase 
family 1 member B10 

Homo sapiens 

CHEMBL169 5.4 CHEMBL5983 O60218 Aldo-keto reductase 

family 1 member B10 

Homo sapiens 

CHEMBL169 5.4 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL178

3811 

5.4 CHEMBL23665

17 

Q9YQ12 Protease Human 

immunodeficiency 
virus 1 

CHEMBL178

3814 

5.4 CHEMBL23665

17 

Q9YQ12 Protease Human 

immunodeficiency 

virus 1 

CHEMBL178

3815 

5.4 CHEMBL23665

17 

Q9YQ12 Protease Human 

immunodeficiency 

virus 1 

CHEMBL624

6 

5.41 CHEMBL4822 P56817 Beta-secretase 1 Homo sapiens 

CHEMBL168 5.41 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.41 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL202

496 

5.41 CHEMBL5077 Q9N1N9 Butyrylcholinesterase Equus caballus 

CHEMBL168 5.42 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.42 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.42 CHEMBL3521 P10586 Receptor-type tyrosine-

protein phosphatase F 

(LAR) 

Homo sapiens 

CHEMBL168 5.43 CHEMBL4343 P06766 DNA polymerase beta Rattus norvegicus 

CHEMBL169 5.43 CHEMBL5983 O60218 Aldo-keto reductase 
family 1 member B10 

Homo sapiens 

CHEMBL202

496 

5.43 CHEMBL5077 Q9N1N9 Butyrylcholinesterase Equus caballus 

CHEMBL169 5.44 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL169 5.44 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 
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CMPD_CHE

MBLID 

PCHEMBL_

VALUE 

TARGET_CH

EMBLID 

PROTEIN_ACC

ESSION 

PREF_NAME ORGANISM 

CHEMBL169 5.44 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL169 5.44 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.44 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL169 5.44 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL624
6 

5.45 CHEMBL1824 P04626 Receptor protein-
tyrosine kinase erbB-2 

Homo sapiens 

CHEMBL169 5.46 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL168 5.47 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL169 5.47 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.47 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL624

6 

5.48 CHEMBL3024 P53350 Serine/threonine-

protein kinase PLK1 

Homo sapiens 

CHEMBL624

6 

5.48 CHEMBL4282 P31749 Serine/threonine-

protein kinase AKT 

Homo sapiens 

CHEMBL269

277 

5.5 CHEMBL12932

31 

P51450 Nuclear receptor ROR-

gamma 

Mus musculus 

CHEMBL624

6 

5.51 CHEMBL2695 Q05397 Focal adhesion kinase 1 Homo sapiens 

CHEMBL169 5.51 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.51 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.51 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.51 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.51 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL168 5.52 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL168 5.52 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL168 5.52 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL168 5.52 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL624

6 

5.53 CHEMBL3788 O00444 Serine/threonine-

protein kinase PLK4 

Homo sapiens 

CHEMBL624
6 

5.53 CHEMBL12932
67 

Q9HC97 G-protein coupled 
receptor 35 

Homo sapiens 

CHEMBL624

6 

5.54 CHEMBL4363 Q07014 Tyrosine-protein kinase 

Lyn 

Rattus norvegicus 

CHEMBL865
9 

5.54 CHEMBL5738 P02692 Fatty acid-binding 
protein, liver 

Rattus norvegicus 

CHEMBL169 5.54 CHEMBL3967 P00599 Phospholipase A2 

isozyme DE-I 

Naja melanoleuca 

CHEMBL169 5.55 CHEMBL5983 O60218 Aldo-keto reductase 
family 1 member B10 

Homo sapiens 

CHEMBL169 5.56 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL365
375 

5.57 CHEMBL12932
28 

P10520 Streptokinase A Streptococcus 
pyogenes serotype 

M1 

CHEMBL822

93 

5.59 CHEMBL3344 P05413 Fatty acid binding 

protein muscle 

Homo sapiens 

CHEMBL168 5.59 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL624

6 

5.6 CHEMBL2185 Q96GD4 Serine/threonine-

protein kinase Aurora-B 

Homo sapiens 

CHEMBL624

6 

5.6 CHEMBL12932

26 

B2RXH2 Lysine-specific 

demethylase 4D-like 

Homo sapiens 
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CMPD_CHE

MBLID 

PCHEMBL_

VALUE 

TARGET_CH

EMBLID 

PROTEIN_ACC

ESSION 

PREF_NAME ORGANISM 

CHEMBL169 5.6 CHEMBL5022 P59264 Phospholipase A2 
isozyme PLA-A 

Trimeresurus 
flavoviridis 

CHEMBL624

6 

5.61 CHEMBL4722 O14965 Serine/threonine-

protein kinase Aurora-A 

Homo sapiens 

CHEMBL169 5.62 CHEMBL3807 P17706 T-cell protein-tyrosine 
phosphatase 

Homo sapiens 

CHEMBL624

6 

5.63 CHEMBL4899 P41279 Mitogen-activated 

protein kinase kinase 
kinase 8 

Homo sapiens 

CHEMBL624

6 

5.64 CHEMBL261 P00915 Carbonic anhydrase I Homo sapiens 

CHEMBL169 5.64 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL169 5.64 CHEMBL4195 Q7T3S7 Phospholipase A2 Echis carinatus 

CHEMBL624

6 

5.66 CHEMBL205 P00918 Carbonic anhydrase II Homo sapiens 

CHEMBL169 5.68 CHEMBL5983 O60218 Aldo-keto reductase 
family 1 member B10 

Homo sapiens 

CHEMBL624

6 

5.7 CHEMBL4241 P52020 Squalene 

monooxygenase 

Rattus norvegicus 

CHEMBL624
6 

5.7 CHEMBL12932
34 

O97447 Putative fructose-1,6-
bisphosphate aldolase 

Giardia intestinalis 

CHEMBL624

6 

5.7 CHEMBL12932

37 

P54132 Bloom syndrome 

protein 

Homo sapiens 

CHEMBL269
277 

5.7 CHEMBL5983 O60218 Aldo-keto reductase 
family 1 member B10 

Homo sapiens 

CHEMBL168 5.7 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.7 CHEMBL5983 O60218 Aldo-keto reductase 
family 1 member B10 

Homo sapiens 

CHEMBL168 5.72 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.72 CHEMBL4235 P28845 11-beta-hydroxysteroid 
dehydrogenase 1 

Homo sapiens 

CHEMBL624

6 

5.74 CHEMBL5147 P54760 Ephrin type-B receptor 

4 

Homo sapiens 

CHEMBL624
6 

5.75 CHEMBL5145 P15056 Serine/threonine-
protein kinase B-raf 

Homo sapiens 

CHEMBL169 5.75 CHEMBL12932

28 

P10520 Streptokinase A Streptococcus 

pyogenes serotype 

M1 

CHEMBL822

93 

5.77 CHEMBL4879 P12104 Fatty acid binding 

protein intestinal 

Homo sapiens 

CHEMBL624
6 

5.81 CHEMBL1955 P35916 Vascular endothelial 
growth factor receptor 3 

Homo sapiens 

CHEMBL865

9 

5.82 CHEMBL2083 P15090 Fatty acid binding 

protein adipocyte 

Homo sapiens 

CHEMBL822
93 

5.82 CHEMBL239 Q07869 Peroxisome 
proliferator-activated 

receptor alpha 

Homo sapiens 

CHEMBL624

6 

5.89 CHEMBL1913 P09619 Platelet-derived growth 

factor receptor beta 

Homo sapiens 

CHEMBL161

0940 

5.9 CHEMBL4261 Q16665 Hypoxia-inducible 

factor 1 alpha 

Homo sapiens 

CHEMBL822

93 

5.92 CHEMBL3674 Q01469 Fatty acid binding 

protein epidermal 

Homo sapiens 

CHEMBL168 5.93 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL624

6 

5.95 CHEMBL12932

27 

O75604 Ubiquitin carboxyl-

terminal hydrolase 2 

Homo sapiens 

CHEMBL624

6 

5.95 CHEMBL12932

37 

P54132 Bloom syndrome 

protein 

Homo sapiens 

CHEMBL168 5.96 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL169 5.98 CHEMBL17411

86 

P51449 Nuclear receptor ROR-

gamma 

Homo sapiens 

CHEMBL168 5.99 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 
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CMPD_CHE

MBLID 

PCHEMBL_

VALUE 

TARGET_CH

EMBLID 

PROTEIN_ACC

ESSION 

PREF_NAME ORGANISM 

CHEMBL168 6 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL169 6 CHEMBL12932

31 

P51450 Nuclear receptor ROR-

gamma 

Mus musculus 

CHEMBL168 6.01 CHEMBL4804 P30305 Dual specificity 
phosphatase Cdc25B 

Homo sapiens 

CHEMBL822

93 

6.03 CHEMBL2083 P15090 Fatty acid binding 

protein adipocyte 

Homo sapiens 

CHEMBL624
6 

6.05 CHEMBL12932
55 

P15428 15-
hydroxyprostaglandin 

dehydrogenase [NAD+] 

Homo sapiens 

CHEMBL624
6 

6.05 CHEMBL12932
55 

P15428 15-
hydroxyprostaglandin 

dehydrogenase [NAD+] 

Homo sapiens 

CHEMBL624

6 

6.1 CHEMBL267 P12931 Tyrosine-protein kinase 

SRC 

Homo sapiens 

CHEMBL624

6 

6.1 CHEMBL279 P35968 Vascular endothelial 

growth factor receptor 2 

Homo sapiens 

CHEMBL624
6 

6.1 CHEMBL12932
26 

B2RXH2 Lysine-specific 
demethylase 4D-like 

Homo sapiens 

CHEMBL624

6 

6.12 CHEMBL5460 P0DMV8 Heat shock 70 kDa 

protein 1 

Homo sapiens 

CHEMBL168 6.14 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL169 6.15 CHEMBL12932

31 

P51450 Nuclear receptor ROR-

gamma 

Mus musculus 

CHEMBL624
6 

6.16 CHEMBL203 P00533 Epidermal growth factor 
receptor erbB1 

Homo sapiens 

CHEMBL168 6.16 CHEMBL335 P18031 Protein-tyrosine 

phosphatase 1B 

Homo sapiens 

CHEMBL168 6.16 CHEMBL335 P18031 Protein-tyrosine 
phosphatase 1B 

Homo sapiens 

CHEMBL169 6.17 CHEMBL17411

86 

P51449 Nuclear receptor ROR-

gamma 

Homo sapiens 

CHEMBL865
9 

6.22 CHEMBL239 Q07869 Peroxisome 
proliferator-activated 

receptor alpha 

Homo sapiens 

CHEMBL865

9 

6.22 CHEMBL239 Q07869 Peroxisome 

proliferator-activated 
receptor alpha 

Homo sapiens 

CHEMBL624

6 

6.24 CHEMBL3717 P08581 Hepatocyte growth 

factor receptor 

Homo sapiens 

CHEMBL624

6 

6.25 CHEMBL12932

36 

P46063 ATP-dependent DNA 

helicase Q1 

Homo sapiens 

CHEMBL624

6 

6.27 CHEMBL12933

08 

Q5A7N4 Likely tRNA 2'-

phosphotransferase 

Candida albicans 

(strain SC5314 / 
ATCC MYA-2876) 

(Yeast) 

CHEMBL624
6 

6.29 CHEMBL5784 O60285 NUAK family SNF1-
like kinase 1 

Homo sapiens 

CHEMBL169 6.3 CHEMBL12932

31 

P51450 Nuclear receptor ROR-

gamma 

Mus musculus 

CHEMBL155

3072 

6.3 CHEMBL340 P08684 Cytochrome P450 3A4 Homo sapiens 

CHEMBL506

814 

6.39 CHEMBL4822 P56817 Beta-secretase 1 Homo sapiens 

CHEMBL312
2152 

6.4 CHEMBL3344 P05413 Fatty acid binding 
protein muscle 

Homo sapiens 

CHEMBL624

6 

6.47 CHEMBL1981 P06213 Insulin receptor Homo sapiens 

CHEMBL624
6 

6.59 CHEMBL4128 Q02763 Tyrosine-protein kinase 
TIE-2 

Homo sapiens 

CHEMBL624

6 

6.6 CHEMBL1957 P08069 Insulin-like growth 

factor I receptor 

Homo sapiens 

CHEMBL624
6 

6.6 CHEMBL4159 Q99714 Endoplasmic reticulum-
associated amyloid 

beta-peptide-binding 

protein 

Homo sapiens 
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CMPD_CHE

MBLID 

PCHEMBL_

VALUE 

TARGET_CH

EMBLID 

PROTEIN_ACC

ESSION 

PREF_NAME ORGANISM 

CHEMBL624
6 

6.7 CHEMBL1900 P15121 Aldose reductase Homo sapiens 

CHEMBL865

9 

6.75 CHEMBL5738 P02692 Fatty acid-binding 

protein, liver 

Rattus norvegicus 

CHEMBL624
6 

6.8 CHEMBL2392 P06746 DNA polymerase beta Homo sapiens 

CHEMBL312

2151 

6.8 CHEMBL3344 P05413 Fatty acid binding 

protein muscle 

Homo sapiens 

CHEMBL624
6 

6.85 CHEMBL12932
58 

P84022 Mothers against 
decapentaplegic 

homolog 3 

Homo sapiens 

CHEMBL169 6.89 CHEMBL17411
86 

P51449 Nuclear receptor ROR-
gamma 

Homo sapiens 

CHEMBL624

6 

6.9 CHEMBL12932

55 

P15428 15-

hydroxyprostaglandin 

dehydrogenase [NAD+] 

Homo sapiens 

CHEMBL624

6 

6.9 CHEMBL12932

36 

P46063 ATP-dependent DNA 

helicase Q1 

Homo sapiens 

CHEMBL624
6 

6.96 CHEMBL12932
67 

Q9HC97 G-protein coupled 
receptor 35 

Homo sapiens 

CHEMBL624

6 

7 CHEMBL10751

38 

Q9NUW8 Tyrosyl-DNA 

phosphodiesterase 1 

Homo sapiens 

CHEMBL624
6 

7 CHEMBL12932
67 

Q9HC97 G-protein coupled 
receptor 35 

Homo sapiens 

CHEMBL168 7.05 CHEMBL5983 O60218 Aldo-keto reductase 

family 1 member B10 

Homo sapiens 

CHEMBL312
2153 

7.13 CHEMBL3344 P05413 Fatty acid binding 
protein muscle 

Homo sapiens 

CHEMBL624

6 

7.15 CHEMBL10751

38 

Q9NUW8 Tyrosyl-DNA 

phosphodiesterase 1 

Homo sapiens 

CHEMBL624
6 

7.4 CHEMBL3629 P68400 Casein kinase II alpha Homo sapiens 

CHEMBL624

6 

7.85 CHEMBL5619 P27695 DNA-(apurinic or 

apyrimidinic site) lyase 

Homo sapiens 

 

 
Supplementary Table 11 Enriched targets predicted for the NP dataset 

PROTEIN_ACCESSI

ON 

PREF_NAME ORGANIS

M 

Trypanosoma brucei 

orthologue 

Gene Name 

P43166 Carbonic anhydrase VII Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

O14746 Telomerase reverse 

transcriptase 

Homo 

sapiens 

Tb11.01.1950 Telomerase reverse 

transcriptase, putative 

P22748 Carbonic anhydrase IV Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

Q9ULX7 Carbonic anhydrase XIV Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

Q16790 Carbonic anhydrase IX Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

O43570 Carbonic anhydrase XII Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

Q8N1Q1 Carbonic anhydrase XIII Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

P35218 Carbonic anhydrase VA Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

P23280 Carbonic anhydrase VI Homo 
sapiens 

Tb11.01.0290 Carbonic anhydrase-like 
protein 

P49841 Glycogen synthase kinase-

3 beta 

Homo 

sapiens 

Tb927.10.13780 Glycogen synthase kinase 3 

O60218 Aldo-keto reductase family 
1 member B10 

Homo 
sapiens 

Tb11.02.3040 Aldo/keto reductase, 
putative 

P10586 Receptor-type tyrosine-

protein phosphatase F 

(LAR) 

Homo 

sapiens 

Tb10.70.0070 Tyrosine specific protein 

phosphatase, putative 

P53350 Serine/threonine-protein 

kinase PLK1 

Homo 

sapiens 

Tb927.7.3210 Protein kinase, putative 
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PROTEIN_ACCESSI

ON 

PREF_NAME ORGANIS

M 

Trypanosoma brucei 

orthologue 

Gene Name 

P53350 Serine/threonine-protein 
kinase PLK1 

Homo 
sapiens 

Tb927.6.5100 Serine/threonine-protein 
kinase, putative 

P53350 Serine/threonine-protein 

kinase PLK1 

Homo 

sapiens 

Tb927.7.6310 Serine/threonine-protein 

kinase PLK 

P41279 Mitogen-activated protein 
kinase kinase kinase 8 

Homo 
sapiens 

Tb11.46.0003 Protein kinase, putative 

Q96GD4 Serine/threonine-protein 

kinase Aurora-B 

Homo 

sapiens 

Tb11.01.0330 Protein kinase, putative 

O14965 Serine/threonine-protein 
kinase Aurora-A 

Homo 
sapiens 

Tb11.01.0330 Protein kinase, putative 

P00915 Carbonic anhydrase I Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

P54132 Bloom syndrome protein Homo 
sapiens 

Tb927.8.6690 ATP-dependent DEAD/H 
DNA helicase recQ, 

putative 

P00918 Carbonic anhydrase II Homo 

sapiens 

Tb11.01.0290 Carbonic anhydrase-like 

protein 

P0DMV8 Heat shock 70 kDa protein 

1 

Homo 

sapiens 

Tb09.160.3090 Heat shock protein, putative 

P27695 DNA-(apurinic or 
apyrimidinic site) lyase 

Homo 
sapiens 

Tb927.8.5510 DNA-(apurinic or 
apyrimidinic site) lyase 

P15121 Aldose reductase Homo 

sapiens 

Tb11.02.3040 Aldo/keto reductase, 

putative 

Q9NUW8 Tyrosyl-DNA 
phosphodiesterase 1 

Homo 
sapiens 

Tb927.2.5750 Tyrosyl-DNA 
Phosphodiesterase (Tdp1), 

putative 

P68400 Casein kinase II alpha Homo 
sapiens 

Tb927.2.2430 Casein kinase II, alpha 
chain 

P68400 Casein kinase II alpha Homo 

sapiens 

Tb09.211.4890 Casein kinase II, putative 

P06746 DNA polymerase beta Homo 
sapiens 

Tb927.5.2780 Mitochondrial DNA 
polymerase beta 

P06746 DNA polymerase beta Homo 

sapiens 

Tb927.5.2790 Mitochondrial DNA 

polymerase beta-PAK 

Q6P6U0 Tyrosine-protein kinase 
FGR 

Rattus 
norvegicus 

Tb927.5.2780 Mitochondrial DNA 
polymerase beta 

Q6P6U0 Tyrosine-protein kinase 

FGR 

Rattus 

norvegicus 

Tb927.5.2790 Mitochondrial DNA 

polymerase beta-PAK 

P06766 DNA polymerase beta Rattus 
norvegicus 

Tb927.5.2780 Mitochondrial DNA 
polymerase beta 

P06766 DNA polymerase beta Rattus 

norvegicus 

Tb927.5.2790 Mitochondrial DNA 

polymerase beta-PAK 

Q07014 Tyrosine-protein kinase 
Lyn 

Rattus 
norvegicus 

Tb11.02.0780 Squalene monooxygenase, 
putative 

P52020 Squalene monooxygenase Rattus 

norvegicus 

Tb11.02.0780 Squalene monooxygenase, 

putative 

 
 

 

Supplementary Table 12 Bioactivity values extracted from ChEMBL for the small molecule hits (SH) 

dataset. 

COMPO

UND_KE

Y 

PUBLISHED

_VALUE(uM) 

TARGET_

CHEMBLI

D 

PROTEIN_

ACCESSIO

N 

PREF_NAME ORGANISM 

SID92764
752 

6.657 CHEMBL42
18 

P06492 Alpha trans-inducing protein 
(VP16) 

Herpes simplex 
virus (type 1 / strain 

17) 

SID56463

673 

0.987 CHEMBL17

41207 

Q96LD8 Sentrin-specific protease 8 Homo sapiens 

SID56463

673 

0.935 CHEMBL17

41207 

Q96LD8 Sentrin-specific protease 8 Homo sapiens 

SID87225

754 

0.125 CHEMBL10

75322 

Q9Y2T6 G-protein coupled receptor 55 Homo sapiens 

SID87225

754 

7.66 CHEMBL12

93267 

Q9HC97 G-protein coupled receptor 35 Homo sapiens 

SID17415

722 

2.534457 CHEMBL10

75322 

Q9Y2T6 G-protein coupled receptor 55 Homo sapiens 
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COMPO

UND_KE

Y 

PUBLISHED

_VALUE(uM) 

TARGET_

CHEMBLI

D 

PROTEIN_

ACCESSIO

N 

PREF_NAME ORGANISM 

SID85774

5 

1.3 CHEMBL23

7 

P41145 Kappa opioid receptor Homo sapiens 

SID85693
8 

2.6 CHEMBL18
59 

O95180 Voltage-gated T-type calcium 
channel alpha-1H subunit 

Homo sapiens 

SID49649

053 

6.84 CHEMBL17

41179 

P31941 Probable DNA dC->dU-editing 

enzyme APOBEC-3A 

Homo sapiens 

SID56373
536 

4.82 CHEMBL59
79 

P05186 Alkaline phosphatase, tissue-
nonspecific isozyme 

Homo sapiens 

SID56373

536 

2.16 CHEMBL34

02 

P10696 Alkaline phosphatase placental-

like 

Homo sapiens 

SID42448
92 

3.14 CHEMBL34
02 

P10696 Alkaline phosphatase placental-
like 

Homo sapiens 

SID11532

948 

2.41 CHEMBL17

41208 

Q96P20 NACHT, LRR and PYD 

domains-containing protein 3 

Homo sapiens 

SID56322

618 

2.226 CHEMBL17

41164 

O60240 Perilipin-1 Homo sapiens 

SID17414

218 

2.32 CHEMBL23

7 

P41145 Kappa opioid receptor Homo sapiens 

SID22411
930 

7.62 CHEMBL17
41208 

Q96P20 NACHT, LRR and PYD 
domains-containing protein 3 

Homo sapiens 

SID14737

257 

6.76 CHEMBL23

7 

P41145 Kappa opioid receptor Homo sapiens 

SID49679
708 

3.179 CHEMBL12
93249 

Q13887 Kruppel-like factor 5 Homo sapiens 

SID24781

162 

1.67 CHEMBL41

58 

P49327 Fatty acid synthase Homo sapiens 

SID24781
162 

0.859 CHEMBL41
58 

P49327 Fatty acid synthase Homo sapiens 

SID85802

6 

7.12 CHEMBL23

7 

P41145 Kappa opioid receptor Homo sapiens 

SID85802
6 

6.831 CHEMBL22
7 

P30556 Type-1 angiotensin II receptor Homo sapiens 

SID85802

6 

0.56 CHEMBL50

23 

Q00987 p53-binding protein Mdm-2 Homo sapiens 

SID49645
303 

9.9 CHEMBL17
41213 

Q9BQF6 Sentrin-specific protease 7 Homo sapiens 

SID24822

843 

9.63 CHEMBL55

73 

P09923 Intestinal alkaline phosphatase Homo sapiens 

SID49649
021 

4.86 CHEMBL23
7 

P41145 Kappa opioid receptor Homo sapiens 

SID56373

639 

3.34 CHEMBL59

79 

P05186 Alkaline phosphatase, tissue-

nonspecific isozyme 

Homo sapiens 

SID92764

752 

7.073 CHEMBL43

74 

Q9Y5X4 Photoreceptor-specific nuclear 

receptor 

Homo sapiens 

SID49827

024 

4.529 CHEMBL22

7 

P30556 Type-1 angiotensin II receptor Homo sapiens 

SID49678

979 

2.8 CHEMBL23

7 

P41145 Kappa opioid receptor Homo sapiens 

SID22412

622 

1.864 CHEMBL12

93249 

Q13887 Kruppel-like factor 5 Homo sapiens 

SID85774

5 

2.761 CHEMBL53

13 

P38532 Heat shock factor protein 1 Mus musculus 

SID85693

8 

0.2667 CHEMBL17

41219 

Q9QUQ5 Short transient receptor potential 

channel 4 

Mus musculus 

SID17414

218 

9.825 CHEMBL53

13 

P38532 Heat shock factor protein 1 Mus musculus 

SID17403

305 

3.3493 CHEMBL17

41219 

Q9QUQ5 Short transient receptor potential 

channel 4 

Mus musculus 

SID85765

9 

0.668 CHEMBL17

41219 

Q9QUQ5 Short transient receptor potential 

channel 4 

Mus musculus 

SID14732

424 

5.308 CHEMBL17

41219 

Q9QUQ5 Short transient receptor potential 

channel 4 

Mus musculus 

SID17432

288 

6.6827 CHEMBL17

41219 

Q9QUQ5 Short transient receptor potential 

channel 4 

Mus musculus 

SID24781

162 

3.637 CHEMBL53

13 

P38532 Heat shock factor protein 1 Mus musculus 

SID24809

545 

5.308 CHEMBL17

41219 

Q9QUQ5 Short transient receptor potential 

channel 4 

Mus musculus 



 
 
 
 

245 
 

COMPO

UND_KE

Y 

PUBLISHED

_VALUE(uM) 

TARGET_

CHEMBLI

D 

PROTEIN_

ACCESSIO

N 

PREF_NAME ORGANISM 

SID49649

021 

5.926 CHEMBL53

13 

P38532 Heat shock factor protein 1 Mus musculus 

SID49665
200 

0.8413 CHEMBL17
41219 

Q9QUQ5 Short transient receptor potential 
channel 4 

Mus musculus 

SID24781

888 

10 CHEMBL21

46304 

P35639 DNA damage-inducible transcript 

3 protein 

Mus musculus 

SID24781
162 

4.21 CHEMBL21
46304 

P35639 DNA damage-inducible transcript 
3 protein 

Mus musculus 

SID85774

5 

2.82 CHEMBL55

67 

P08659 Luciferin 4-monooxygenase Photinus pyralis 

SID49667
183 

3.418 CHEMBL55
67 

P08659 Luciferin 4-monooxygenase Photinus pyralis 

SID49728

456 

3.651 CHEMBL55

67 

P08659 Luciferin 4-monooxygenase Photinus pyralis 

SID49668

938 

9.27 CHEMBL17

41194 

P87108 Mitochondrial import inner 

membrane translocase subunit 

TIM10 

Saccharomyces 

cerevisiae S288c 

SID85644
3 

1.98 CHEMBL17
41194 

P87108 Mitochondrial import inner 
membrane translocase subunit 

TIM10 

Saccharomyces 
cerevisiae S288c 

SID85644

3 

8.24 CHEMBL17

41194 

P87108 Mitochondrial import inner 

membrane translocase subunit 
TIM10 

Saccharomyces 

cerevisiae S288c 

SID85644

3 

4.44 CHEMBL17

41180 

P32897 Mitochondrial import inner 

membrane translocase subunit 
TIM23 

Saccharomyces 

cerevisiae S288c 

SID42448

92 

3.71 CHEMBL10

75257 

P03070 Large T antigen Simian virus 40 

SID17401
675 

7.45 CHEMBL21
46295 

P65502 Probable nicotinate-nucleotide 
adenylyltransferase 

Staphylococcus 
aureus (strain 

N315) 

 

 
 

Supplementary Table 13 Enriched targets predicted for the small molecule hits (SH) dataset 

PROTEIN_A

CCESSION 

PREF_NAME ORGANISM Trypanosoma 

brucei orthologue 

Gene Name 

O95180 Voltage-gated T-type calcium 
channel alpha-1H subunit 

Homo sapiens Tb10.70.4750 Calcium channel 
protein, putative 

Q96P20 NACHT, LRR and PYD domains-

containing protein 3 

Homo sapiens TB927.1.4180 Uncharacterized 

protein 

Q96P20 NACHT, LRR and PYD domains-

containing protein 3 

Homo sapiens Tb927.7.1430 Putative 

uncharacterized 

protein 

Q96P20 NACHT, LRR and PYD domains-
containing protein 3 

Homo sapiens Tb11.02.4230 Putative 
uncharacterized 

protein 

P87108 Mitochondrial import inner 
membrane translocase subunit TIM10 

Saccharomyces 
cerevisiae S288c 

Tb927.7.2200 Putative 
uncharacterized 

protein 
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Supplementary Table 14 Compounds from the SH dataset showing compounds that are predicted to readily 

cross the BBB (plogBB >0.3) and the targets they are predicted to bind. 

Compound Target plogBB 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb09.211.2260 1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb10.70.1760 1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Serine/threonine-protein kinase_ 

putative;Tb10.70.5890 

1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Serine/threonine protein kinase_ 

putative;Tb927.3.4560 

1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb927.8.5730 1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb927.2.2120 1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb927.7.5220 1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb927.3.5650 1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb10.61.2490 1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb10.61.1520 1.23 

CC1(C)CC(CC(C)(C)N1)N1COC2=C(C1)C=

C(Cl)C1=CC=CN=C21 

Protein kinase_ putative;Tb10.6k15.0770 1.23 

CN[C@H]1CC[C@@H](C2=CC=C(Cl)C(Cl

)=C2)C2=CC=CC=C12 

Protein kinase_ putative;Tb927.2.2120 1.14 

CN[C@H]1CC[C@@H](C2=CC=C(Cl)C(Cl

)=C2)C2=CC=CC=C12 

Protein kinase_ putative;Tb927.7.5220 1.14 

CN[C@H]1CC[C@@H](C2=CC=C(Cl)C(Cl

)=C2)C2=CC=CC=C12 

Protein kinase_ putative;Tb927.3.5650 1.14 

CN[C@H]1CC[C@@H](C2=CC=C(Cl)C(Cl

)=C2)C2=CC=CC=C12 

Protein kinase_ putative;Tb10.61.2490 1.14 

ClC1=CC(Cl)=C(OCCCCCN2CCNCC2)C=

C1 

Glucose transporter;Tb10.6k15.2030 0.93 

ClC1=CC(Cl)=C(OCCCCCN2CCNCC2)C=

C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.93 

ClC1=CC(Cl)=C(OCCCCCN2CCNCC2)C=

C1 

Hexose transporter;Tb10.6k15.2040 0.93 

ClC1=CC(Cl)=C(OCCCCCN2CCNCC2)C=

C1 

Glucose transporter;Tb10.6k15.2020 0.93 

CC1=CC(Cl)=CC(Cl)=C1OCCCCCN1CCN

CC1 

Glucose transporter;Tb10.6k15.2030 0.93 

CC1=CC(Cl)=CC(Cl)=C1OCCCCCN1CCN

CC1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.93 

CC1=CC(Cl)=CC(Cl)=C1OCCCCCN1CCN

CC1 

Hexose transporter;Tb10.6k15.2040 0.93 

CC1=CC(Cl)=CC(Cl)=C1OCCCCCN1CCN

CC1 

Glucose transporter;Tb10.6k15.2020 0.93 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Glucose transporter;Tb10.6k15.2030 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Hexose transporter;Tb10.6k15.2040 0.90 
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CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Glucose transporter;Tb10.6k15.2020 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Flap endonuclease 1;FEN1 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb10.329.0030 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Mitogen-activated protein 

kinase;Tb927.8.3550 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb927.3.1610 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb11.01.4250 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb11.01.4230 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb927.7.1900 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase;Tb11.01.1030 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Rac serine-threonine kinase_ 

putative;Tb927.6.2250 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb09.160.0450 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb927.5.2820 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb10.70.0960 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb10.70.0970 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase_ 

putative;Tb11.01.6650 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase A_ 

putative;Tb927.8.7110 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine protein kinase_ 

putative;Tb09.160.1090 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;TB927.1.3130 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase_ 

putative;Tb927.8.1670 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Putative uncharacterized 

protein;Tb11.01.1050 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase_ 

putative;Tb927.8.1690 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb927.7.3580 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase_ 

putative;Tb10.70.6680 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb11.01.2900 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb927.5.3320 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase A_ 

putative;Tb927.4.5310 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb927.8.5730 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb09.160.0570 0.90 
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CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb11.01.0330 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb10.61.1520 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb10.6k15.0770 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase_ 

putative;Tb927.7.4090 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase_ 

putative;Tb927.5.1650 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Protein kinase_ putative;Tb10.70.1760 0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine-protein kinase_ 

putative;Tb10.70.5890 

0.90 

CN1CCN(CC1)NC1=C2C=C3C=CC=CC3=

CC2=NC=C1 

Serine/threonine protein kinase_ 

putative;Tb927.3.4560 

0.90 

ClC1=CC=C2OC3=CC=CC=C3N=C(N3CC

NCC3)C2=C1 

Protein kinase_ putative;Tb09.211.2260 0.84 

CN1CCN(CC1)C1=CC(C)=CC2=C1NC1=C

2C=CC=C1 

Protein kinase_ putative;Tb09.211.2260 0.83 

CN1CCN(CC2=C(O)C3=NC=CC=C3C(Br)=

C2)CC1 

Glucose transporter;Tb10.6k15.2030 0.82 

CN1CCN(CC2=C(O)C3=NC=CC=C3C(Br)=

C2)CC1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.82 

CN1CCN(CC2=C(O)C3=NC=CC=C3C(Br)=

C2)CC1 

Hexose transporter;Tb10.6k15.2040 0.82 

CN1CCN(CC2=C(O)C3=NC=CC=C3C(Br)=

C2)CC1 

Glucose transporter;Tb10.6k15.2020 0.82 

CC1=CC=CC(CN2CCN(CC3=CNC4=CC=C

C=C34)CC2)=C1 

Protein kinase_ putative;Tb09.211.2260 0.81 

CN1C(N(C)C2=CC=CC=C12)C1=CC=C(O)

C=C1 

Flap endonuclease 1;FEN1 0.80 

CN(C)CCCN1C2=CC=CC=C2SC2=CC=CC

=C12 

Flap endonuclease 1;FEN1 0.75 

BrC1=CC=C(C=C1)C1=NC(N2CCNCC2)=C

2C=CC=CC2=N1 

Glucose transporter;Tb10.6k15.2030 0.73 

BrC1=CC=C(C=C1)C1=NC(N2CCNCC2)=C

2C=CC=CC2=N1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.73 

BrC1=CC=C(C=C1)C1=NC(N2CCNCC2)=C

2C=CC=CC2=N1 

Hexose transporter;Tb10.6k15.2040 0.73 

BrC1=CC=C(C=C1)C1=NC(N2CCNCC2)=C

2C=CC=CC2=N1 

Glucose transporter;Tb10.6k15.2020 0.73 

BrC1=CC=C(C=C1)C1=NC(N2CCNCC2)=C

2C=CC=CC2=N1 

Protein kinase_ putative;Tb927.7.1900 0.73 

BrC1=CC=C(C=C1)C1=NC(N2CCNCC2)=C

2C=CC=CC2=N1 

Protein kinase_ putative;Tb09.211.2260 0.73 

CC1=CC(Br)=C(OCCCCCCN2CCNCC2)C(

C)=C1 

Glucose transporter;Tb10.6k15.2030 0.69 

CC1=CC(Br)=C(OCCCCCCN2CCNCC2)C(

C)=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.69 

CC1=CC(Br)=C(OCCCCCCN2CCNCC2)C(

C)=C1 

Hexose transporter;Tb10.6k15.2040 0.69 

CC1=CC(Br)=C(OCCCCCCN2CCNCC2)C(

C)=C1 

Glucose transporter;Tb10.6k15.2020 0.69 

NC1C(CC2=C(Cl)C=C(Cl)C=C2)CC2=CC=

CC=C12 

NADPH--cytochrome p450 reductase_ 

putative;Tb09.211.4110 

0.67 
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NC1C(CC2=C(Cl)C=C(Cl)C=C2)CC2=CC=

CC=C12 

NADPH--cytochrome P450 reductase_ 

putative;Tb11.01.0170 

0.67 

NC1C(CC2=C(Cl)C=C(Cl)C=C2)CC2=CC=

CC=C12 

NADPH--cytochrome p450 reductase_ 

putative;Tb11.02.5420 

0.67 

CCC1=C(Cl)C=CC(OCCCCCN2CCNCC2)=

C1 

Glucose transporter;Tb10.6k15.2030 0.66 

CCC1=C(Cl)C=CC(OCCCCCN2CCNCC2)=

C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.66 

CCC1=C(Cl)C=CC(OCCCCCN2CCNCC2)=

C1 

Hexose transporter;Tb10.6k15.2040 0.66 

CCC1=C(Cl)C=CC(OCCCCCN2CCNCC2)=

C1 

Glucose transporter;Tb10.6k15.2020 0.66 

ClC1=C(OCCCCNCC=C)C=CC(Br)=C1 Glucose transporter;Tb10.6k15.2030 0.66 

ClC1=C(OCCCCNCC=C)C=CC(Br)=C1 Glucose transporter_ 

putative;Tb927.4.2290 

0.66 

ClC1=C(OCCCCNCC=C)C=CC(Br)=C1 Hexose transporter;Tb10.6k15.2040 0.66 

ClC1=C(OCCCCNCC=C)C=CC(Br)=C1 Glucose transporter;Tb10.6k15.2020 0.66 

CNC(C)(C)CC1=C2CCCC2=CC2=C1CCC2 Glucose transporter;Tb10.6k15.2030 0.65 

CNC(C)(C)CC1=C2CCCC2=CC2=C1CCC2 Glucose transporter_ 

putative;Tb927.4.2290 

0.65 

CNC(C)(C)CC1=C2CCCC2=CC2=C1CCC2 Hexose transporter;Tb10.6k15.2040 0.65 

CNC(C)(C)CC1=C2CCCC2=CC2=C1CCC2 Glucose transporter;Tb10.6k15.2020 0.65 

CC(C)(C)C(N)CCC1=C(Cl)C=C(Cl)C=C1 Glucose transporter;Tb10.6k15.2030 0.62 

CC(C)(C)C(N)CCC1=C(Cl)C=C(Cl)C=C1 Glucose transporter_ 

putative;Tb927.4.2290 

0.62 

CC(C)(C)C(N)CCC1=C(Cl)C=C(Cl)C=C1 Hexose transporter;Tb10.6k15.2040 0.62 

CC(C)(C)C(N)CCC1=C(Cl)C=C(Cl)C=C1 Glucose transporter;Tb10.6k15.2020 0.62 

CN(C)CCCNCCCC1=CC=C(C=C1)C(C)(C)

C 

Glucose transporter;Tb10.6k15.2030 0.59 

CN(C)CCCNCCCC1=CC=C(C=C1)C(C)(C)

C 

Glucose transporter_ 

putative;Tb927.4.2290 

0.59 

CN(C)CCCNCCCC1=CC=C(C=C1)C(C)(C)

C 

Hexose transporter;Tb10.6k15.2040 0.59 

CN(C)CCCNCCCC1=CC=C(C=C1)C(C)(C)

C 

Glucose transporter;Tb10.6k15.2020 0.59 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Glucose transporter;Tb10.6k15.2030 0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Hexose transporter;Tb10.6k15.2040 0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Glucose transporter;Tb10.6k15.2020 0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Protein kinase_ putative;Tb09.211.2260 0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Protein kinase_ putative;Tb927.8.5730 0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Protein kinase_ putative;Tb10.61.1520 0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Protein kinase_ putative;Tb10.6k15.0770 0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Protein kinase_ putative;Tb10.70.1760 0.57 
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CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Serine/threonine-protein kinase_ 

putative;Tb10.70.5890 

0.57 

CC1=CC=CC2=CC(C3=CC=CC=C3)=C(N=

C12)N1CCNCC1 

Serine/threonine protein kinase_ 

putative;Tb927.3.4560 

0.57 

ClC1=CC(Cl)=C(CCNCC2=CNC3=CC=CC

=C23)C=C1 

Glucose transporter;Tb10.6k15.2030 0.57 

ClC1=CC(Cl)=C(CCNCC2=CNC3=CC=CC

=C23)C=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.57 

ClC1=CC(Cl)=C(CCNCC2=CNC3=CC=CC

=C23)C=C1 

Hexose transporter;Tb10.6k15.2040 0.57 

ClC1=CC(Cl)=C(CCNCC2=CNC3=CC=CC

=C23)C=C1 

Glucose transporter;Tb10.6k15.2020 0.57 

CN1C2=NC3=CC=CC=C3C2=C(C)C=C1Cl Glucose transporter;Tb10.6k15.2030 0.57 

CN1C2=NC3=CC=CC=C3C2=C(C)C=C1Cl Glucose transporter_ 

putative;Tb927.4.2290 

0.57 

CN1C2=NC3=CC=CC=C3C2=C(C)C=C1Cl Hexose transporter;Tb10.6k15.2040 0.57 

CN1C2=NC3=CC=CC=C3C2=C(C)C=C1Cl Glucose transporter;Tb10.6k15.2020 0.57 

CN1C2=NC3=CC=CC=C3C2=C(C)C=C1Cl Flap endonuclease 1;FEN1 0.57 

CN1C2=NC3=CC=CC=C3C2=C(C)C=C1Cl Protein kinase_ putative;Tb10.70.1760 0.57 

CN1C2=NC3=CC=CC=C3C2=C(C)C=C1Cl Serine/threonine-protein kinase_ 

putative;Tb10.70.5890 

0.57 

CN1C2=NC3=CC=CC=C3C2=C(C)C=C1Cl Serine/threonine protein kinase_ 

putative;Tb927.3.4560 

0.57 

CCCCNCC1=CC(Br)=C(OCC2=CC=C(F)C=

C2)C(OC)=C1 

Glucose transporter;Tb10.6k15.2030 0.56 

CCCCNCC1=CC(Br)=C(OCC2=CC=C(F)C=

C2)C(OC)=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.56 

CCCCNCC1=CC(Br)=C(OCC2=CC=C(F)C=

C2)C(OC)=C1 

Hexose transporter;Tb10.6k15.2040 0.56 

CCCCNCC1=CC(Br)=C(OCC2=CC=C(F)C=

C2)C(OC)=C1 

Glucose transporter;Tb10.6k15.2020 0.56 

CNCCCC1SC2=C(C=CC=C2)C(C)C2=C1C

=CC=C2 

Glucose transporter;Tb10.6k15.2030 0.55 

CNCCCC1SC2=C(C=CC=C2)C(C)C2=C1C

=CC=C2 

Glucose transporter_ 

putative;Tb927.4.2290 

0.55 

CNCCCC1SC2=C(C=CC=C2)C(C)C2=C1C

=CC=C2 

Hexose transporter;Tb10.6k15.2040 0.55 

CNCCCC1SC2=C(C=CC=C2)C(C)C2=C1C

=CC=C2 

Glucose transporter;Tb10.6k15.2020 0.55 

CC1=CC(NCCN2CCCCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Glucose transporter;Tb10.6k15.2030 0.53 

CC1=CC(NCCN2CCCCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.53 

CC1=CC(NCCN2CCCCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Hexose transporter;Tb10.6k15.2040 0.53 

CC1=CC(NCCN2CCCCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Glucose transporter;Tb10.6k15.2020 0.53 

CC1=CC(NCCN2CCCCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Flap endonuclease 1;FEN1 0.53 

CC(C)C1NC(CC(=N1)C1=CC2=C(OCO2)C

=C1)C1=C(O)C=CC(Cl)=C1 

NADPH--cytochrome p450 reductase_ 

putative;Tb09.211.4110 

0.53 

CC(C)C1NC(CC(=N1)C1=CC2=C(OCO2)C

=C1)C1=C(O)C=CC(Cl)=C1 

NADPH--cytochrome P450 reductase_ 

putative;Tb11.01.0170 

0.53 

CC(C)C1NC(CC(=N1)C1=CC2=C(OCO2)C

=C1)C1=C(O)C=CC(Cl)=C1 

NADPH--cytochrome p450 reductase_ 

putative;Tb11.02.5420 

0.53 
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CC1=CC(NCCN2CCOCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Glucose transporter;Tb10.6k15.2030 0.53 

CC1=CC(NCCN2CCOCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.53 

CC1=CC(NCCN2CCOCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Hexose transporter;Tb10.6k15.2040 0.53 

CC1=CC(NCCN2CCOCC2)=C2C=CC3=CC

=CC=C3C2=N1 

Glucose transporter;Tb10.6k15.2020 0.53 

CCOC1=C(OC)C=CC(CNCCC2=CC=CC(Cl

)=C2)=C1 

Glucose transporter;Tb10.6k15.2030 0.53 

CCOC1=C(OC)C=CC(CNCCC2=CC=CC(Cl

)=C2)=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.53 

CCOC1=C(OC)C=CC(CNCCC2=CC=CC(Cl

)=C2)=C1 

Hexose transporter;Tb10.6k15.2040 0.53 

CCOC1=C(OC)C=CC(CNCCC2=CC=CC(Cl

)=C2)=C1 

Glucose transporter;Tb10.6k15.2020 0.53 

CCCCNCC1=C(Cl)C2=CC=CC=C2N1 Glucose transporter;Tb10.6k15.2030 0.52 

CCCCNCC1=C(Cl)C2=CC=CC=C2N1 Glucose transporter_ 

putative;Tb927.4.2290 

0.52 

CCCCNCC1=C(Cl)C2=CC=CC=C2N1 Hexose transporter;Tb10.6k15.2040 0.52 

CCCCNCC1=C(Cl)C2=CC=CC=C2N1 Glucose transporter;Tb10.6k15.2020 0.52 

COC1=CC2=C3CNCC3=C(C)N=C2C(OC)=

C1 

Protein kinase_ putative;Tb10.70.1760 0.51 

COC1=CC2=C3CNCC3=C(C)N=C2C(OC)=

C1 

Serine/threonine-protein kinase_ 

putative;Tb10.70.5890 

0.51 

COC1=CC2=C3CNCC3=C(C)N=C2C(OC)=

C1 

Serine/threonine protein kinase_ 

putative;Tb927.3.4560 

0.51 

NC1CCCC2=C1NC1=CC=C(Cl)C=C21 NADPH--cytochrome p450 reductase_ 

putative;Tb09.211.4110 

0.46 

NC1CCCC2=C1NC1=CC=C(Cl)C=C21 NADPH--cytochrome P450 reductase_ 

putative;Tb11.01.0170 

0.46 

NC1CCCC2=C1NC1=CC=C(Cl)C=C21 NADPH--cytochrome p450 reductase_ 

putative;Tb11.02.5420 

0.46 

CC(C)(C)C1=CC=C(OCCCCCCN2CCNCC2

)C=C1 

Glucose transporter;Tb10.6k15.2030 0.45 

CC(C)(C)C1=CC=C(OCCCCCCN2CCNCC2

)C=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.45 

CC(C)(C)C1=CC=C(OCCCCCCN2CCNCC2

)C=C1 

Hexose transporter;Tb10.6k15.2040 0.45 

CC(C)(C)C1=CC=C(OCCCCCCN2CCNCC2

)C=C1 

Glucose transporter;Tb10.6k15.2020 0.45 

OC1=C2N=CC=CC2=C(CN2CCOCC2)C=C

1Br 

Flap endonuclease 1;FEN1 0.44 

CN1C2=C(C=CC=C2)C2=C1C=C1C=C(C)N

=C(C)C1=C2 

Protein kinase_ putative;Tb927.2.2120 0.44 

CN1C2=C(C=CC=C2)C2=C1C=C1C=C(C)N

=C(C)C1=C2 

Protein kinase_ putative;Tb927.7.5220 0.44 

CN1C2=C(C=CC=C2)C2=C1C=C1C=C(C)N

=C(C)C1=C2 

Protein kinase_ putative;Tb927.3.5650 0.44 

CN1C2=C(C=CC=C2)C2=C1C=C1C=C(C)N

=C(C)C1=C2 

Protein kinase_ putative;Tb10.61.2490 0.44 

CN1C2=C(C=CC=C2)C2=C1C=C1C=C(C)N

=C(C)C1=C2 

Protein kinase_ putative;Tb10.70.1760 0.44 

CN1C2=C(C=CC=C2)C2=C1C=C1C=C(C)N

=C(C)C1=C2 

Serine/threonine-protein kinase_ 

putative;Tb10.70.5890 

0.44 
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CN1C2=C(C=CC=C2)C2=C1C=C1C=C(C)N

=C(C)C1=C2 

Serine/threonine protein kinase_ 

putative;Tb927.3.4560 

0.44 

CN1C2=C(C=CC=C2)C2=C1C=C1C=C(C)N

=C(C)C1=C2 

Protein kinase_ putative;Tb09.211.2260 0.44 

NC1=C(SC=C1)C=CC1=CC=CS1 NADPH--cytochrome p450 reductase_ 

putative;Tb09.211.4110 

0.44 

NC1=C(SC=C1)C=CC1=CC=CS1 NADPH--cytochrome P450 reductase_ 

putative;Tb11.01.0170 

0.44 

NC1=C(SC=C1)C=CC1=CC=CS1 NADPH--cytochrome p450 reductase_ 

putative;Tb11.02.5420 

0.44 

OC1=C2N=CC=CC2=C(CN2CCOCC2)C=C

1Cl 

Flap endonuclease 1;FEN1 0.42 

CCN1CCCC(C1)NC1=C2C=C3C=CC=CC3

=CC2=NC=C1 

Glucose transporter;Tb10.6k15.2030 0.42 

CCN1CCCC(C1)NC1=C2C=C3C=CC=CC3

=CC2=NC=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.42 

CCN1CCCC(C1)NC1=C2C=C3C=CC=CC3

=CC2=NC=C1 

Hexose transporter;Tb10.6k15.2040 0.42 

CCN1CCCC(C1)NC1=C2C=C3C=CC=CC3

=CC2=NC=C1 

Glucose transporter;Tb10.6k15.2020 0.42 

CCN1CCCC(C1)NC1=C2C=C3C=CC=CC3

=CC2=NC=C1 

Protein kinase_ putative;Tb10.329.0030 0.42 

CCN1CCCC(C1)NC1=C2C=C3C=CC=CC3

=CC2=NC=C1 

Mitogen-activated protein 

kinase;Tb927.8.3550 

0.42 

CCN1CCCC(C1)NC1=C2C=C3C=CC=CC3

=CC2=NC=C1 

Protein kinase_ putative;Tb09.160.0570 0.42 

CCN1CCCC(C1)NC1=C2C=C3C=CC=CC3

=CC2=NC=C1 

Protein kinase_ putative;Tb11.01.0330 0.42 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Glucose transporter;Tb10.6k15.2030 0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Hexose transporter;Tb10.6k15.2040 0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Glucose transporter;Tb10.6k15.2020 0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Protein kinase_ putative;Tb927.7.1900 0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Protein kinase_ putative;Tb09.160.0570 0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Protein kinase_ putative;Tb11.01.0330 0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Protein kinase_ putative;Tb10.329.0030 0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Mitogen-activated protein 

kinase;Tb927.8.3550 

0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Cell-division control protein 2 homolog 

6_ putative;Tb11.47.0031 

0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Cell division control protein 2 homolog 

2;Tb927.7.7360 

0.41 

CN1CCN(CC1)C1=NC(NC2=CC=C(F)C=C

2)=NC(NC2=CC=C(F)C=C2)=N1 

Cell division related protein kinase 2_ 

putative;Tb10.70.2210 

0.41 

CC1CCN(CC2=C3C=CC=NC3=C(O)C(Br)=

C2)CC1 

Glucose transporter;Tb10.6k15.2030 0.40 

CC1CCN(CC2=C3C=CC=NC3=C(O)C(Br)=

C2)CC1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.40 
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CC1CCN(CC2=C3C=CC=NC3=C(O)C(Br)=

C2)CC1 

Hexose transporter;Tb10.6k15.2040 0.40 

CC1CCN(CC2=C3C=CC=NC3=C(O)C(Br)=

C2)CC1 

Glucose transporter;Tb10.6k15.2020 0.40 

OC1=C2N=CC=CC2=C(CN2CCCC2)C=C1

Cl 

Glucose transporter;Tb10.6k15.2030 0.40 

OC1=C2N=CC=CC2=C(CN2CCCC2)C=C1

Cl 

Glucose transporter_ 

putative;Tb927.4.2290 

0.40 

OC1=C2N=CC=CC2=C(CN2CCCC2)C=C1

Cl 

Hexose transporter;Tb10.6k15.2040 0.40 

OC1=C2N=CC=CC2=C(CN2CCCC2)C=C1

Cl 

Glucose transporter;Tb10.6k15.2020 0.40 

OC1=C2N=CC=CC2=C(CN2CCCC2)C=C1

Cl 

Flap endonuclease 1;FEN1 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Glucose transporter;Tb10.6k15.2030 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Glucose transporter_ 

putative;Tb927.4.2290 

0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Hexose transporter;Tb10.6k15.2040 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Glucose transporter;Tb10.6k15.2020 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 NADPH--cytochrome p450 reductase_ 

putative;Tb09.211.4110 

0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 NADPH--cytochrome P450 reductase_ 

putative;Tb11.01.0170 

0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 NADPH--cytochrome p450 reductase_ 

putative;Tb11.02.5420 

0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Flap endonuclease 1;FEN1 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Protein kinase_ putative;Tb927.2.2120 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Protein kinase_ putative;Tb927.7.5220 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Protein kinase_ putative;Tb927.3.5650 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Protein kinase_ putative;Tb10.61.2490 0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Serine/threonine-protein kinase_ 

putative;Tb927.7.4090 

0.40 

CC1=CC=C2C=CC3=CC=C(C)N=C3C2=N1 Serine/threonine-protein kinase_ 

putative;Tb927.5.1650 

0.40 

CC(NC1=C2C=CC=CC2=NC(=N1)N1CCN

CC1)C1=CC=CC=C1 

Protein kinase_ putative;Tb927.7.1900 0.40 

CC(NC1=C2C=CC=CC2=NC(=N1)N1CCN

CC1)C1=CC=CC=C1 

Protein kinase_ putative;Tb09.211.2260 0.40 

CC(NC1=C2C=CC=CC2=NC(=N1)N1CCN

CC1)C1=CC=CC=C1 

Protein kinase_ putative;Tb10.70.1760 0.40 

CC(NC1=C2C=CC=CC2=NC(=N1)N1CCN

CC1)C1=CC=CC=C1 

Serine/threonine-protein kinase_ 

putative;Tb10.70.5890 

0.40 

CC(NC1=C2C=CC=CC2=NC(=N1)N1CCN

CC1)C1=CC=CC=C1 

Serine/threonine protein kinase_ 

putative;Tb927.3.4560 

0.40 

COC1=C(OCCCCCN2CCNCC2)C=CC(CC=

C)=C1 

Glucose transporter;Tb10.6k15.2030 0.39 

COC1=C(OCCCCCN2CCNCC2)C=CC(CC=

C)=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.39 

COC1=C(OCCCCCN2CCNCC2)C=CC(CC=

C)=C1 

Hexose transporter;Tb10.6k15.2040 0.39 

COC1=C(OCCCCCN2CCNCC2)C=CC(CC=

C)=C1 

Glucose transporter;Tb10.6k15.2020 0.39 

CN(C)CCCNC1=C2C=CC=CC2=NC(=N1)C

1=CC=C(Cl)C=C1 

Glucose transporter;Tb10.6k15.2030 0.38 
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CN(C)CCCNC1=C2C=CC=CC2=NC(=N1)C

1=CC=C(Cl)C=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.38 

CN(C)CCCNC1=C2C=CC=CC2=NC(=N1)C

1=CC=C(Cl)C=C1 

Hexose transporter;Tb10.6k15.2040 0.38 

CN(C)CCCNC1=C2C=CC=CC2=NC(=N1)C

1=CC=C(Cl)C=C1 

Glucose transporter;Tb10.6k15.2020 0.38 

NCCNCCOC(C1=CC=C(Cl)C=C1)C1=CC=

C(Cl)C=C1 

Glucose transporter;Tb10.6k15.2030 0.35 

NCCNCCOC(C1=CC=C(Cl)C=C1)C1=CC=

C(Cl)C=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.35 

NCCNCCOC(C1=CC=C(Cl)C=C1)C1=CC=

C(Cl)C=C1 

Hexose transporter;Tb10.6k15.2040 0.35 

NCCNCCOC(C1=CC=C(Cl)C=C1)C1=CC=

C(Cl)C=C1 

Glucose transporter;Tb10.6k15.2020 0.35 

NCCNCCOC(C1=CC=C(Cl)C=C1)C1=CC=

C(Cl)C=C1 

NADPH--cytochrome p450 reductase_ 

putative;Tb09.211.4110 

0.35 

NCCNCCOC(C1=CC=C(Cl)C=C1)C1=CC=

C(Cl)C=C1 

NADPH--cytochrome P450 reductase_ 

putative;Tb11.01.0170 

0.35 

NCCNCCOC(C1=CC=C(Cl)C=C1)C1=CC=

C(Cl)C=C1 

NADPH--cytochrome p450 reductase_ 

putative;Tb11.02.5420 

0.35 

CC1=CC2=C(NC3=CC4=C(OCCO4)C=C3)

C=C(C)N=C2C(C)=C1 

Glucose transporter;Tb10.6k15.2030 0.34 

CC1=CC2=C(NC3=CC4=C(OCCO4)C=C3)

C=C(C)N=C2C(C)=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.34 

CC1=CC2=C(NC3=CC4=C(OCCO4)C=C3)

C=C(C)N=C2C(C)=C1 

Hexose transporter;Tb10.6k15.2040 0.34 

CC1=CC2=C(NC3=CC4=C(OCCO4)C=C3)

C=C(C)N=C2C(C)=C1 

Glucose transporter;Tb10.6k15.2020 0.34 

COC1=C(C=CC=C1)N1CCN(CC2=C(O)C3

=NC=CC=C3C(Cl)=C2)CC1 

Glucose transporter;Tb10.6k15.2030 0.34 

COC1=C(C=CC=C1)N1CCN(CC2=C(O)C3

=NC=CC=C3C(Cl)=C2)CC1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.34 

COC1=C(C=CC=C1)N1CCN(CC2=C(O)C3

=NC=CC=C3C(Cl)=C2)CC1 

Hexose transporter;Tb10.6k15.2040 0.34 

COC1=C(C=CC=C1)N1CCN(CC2=C(O)C3

=NC=CC=C3C(Cl)=C2)CC1 

Glucose transporter;Tb10.6k15.2020 0.34 

CC1=CC(Cl)=C2C(N)=C(C)C=C(C)C2=N1 Glucose transporter;Tb10.6k15.2030 0.32 

CC1=CC(Cl)=C2C(N)=C(C)C=C(C)C2=N1 Glucose transporter_ 

putative;Tb927.4.2290 

0.32 

CC1=CC(Cl)=C2C(N)=C(C)C=C(C)C2=N1 Hexose transporter;Tb10.6k15.2040 0.32 

CC1=CC(Cl)=C2C(N)=C(C)C=C(C)C2=N1 Glucose transporter;Tb10.6k15.2020 0.32 

CC1=CC(Cl)=C2C(N)=C(C)C=C(C)C2=N1 NADPH--cytochrome p450 reductase_ 

putative;Tb09.211.4110 

0.32 

CC1=CC(Cl)=C2C(N)=C(C)C=C(C)C2=N1 NADPH--cytochrome P450 reductase_ 

putative;Tb11.01.0170 

0.32 

CC1=CC(Cl)=C2C(N)=C(C)C=C(C)C2=N1 NADPH--cytochrome p450 reductase_ 

putative;Tb11.02.5420 

0.32 

CC1=CC(Cl)=C2C(N)=C(C)C=C(C)C2=N1 Flap endonuclease 1;FEN1 0.32 

OC1=C(CN2CCCCC2)C=CC2=CC=CN=C1

2 

Glucose transporter;Tb10.6k15.2030 0.32 

OC1=C(CN2CCCCC2)C=CC2=CC=CN=C1

2 

Glucose transporter_ 

putative;Tb927.4.2290 

0.32 

OC1=C(CN2CCCCC2)C=CC2=CC=CN=C1

2 

Hexose transporter;Tb10.6k15.2040 0.32 

OC1=C(CN2CCCCC2)C=CC2=CC=CN=C1

2 

Glucose transporter;Tb10.6k15.2020 0.32 
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OC1=C(CN2CCCCC2)C=CC2=CC=CN=C1

2 

Protein kinase_ putative;Tb927.7.1900 0.32 

CCN(CC)CCCC(C)NC1=C2C=CC(Cl)=CC2

=NC=C1 

Glucose transporter;Tb10.6k15.2030 0.31 

CCN(CC)CCCC(C)NC1=C2C=CC(Cl)=CC2

=NC=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.31 

CCN(CC)CCCC(C)NC1=C2C=CC(Cl)=CC2

=NC=C1 

Hexose transporter;Tb10.6k15.2040 0.31 

CCN(CC)CCCC(C)NC1=C2C=CC(Cl)=CC2

=NC=C1 

Glucose transporter;Tb10.6k15.2020 0.31 

NCC(O)(C1=CC=C(Cl)C=C1)C1=CC=C(Cl)

C=C1 

Glucose transporter;Tb10.6k15.2030 0.31 

NCC(O)(C1=CC=C(Cl)C=C1)C1=CC=C(Cl)

C=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.31 

NCC(O)(C1=CC=C(Cl)C=C1)C1=CC=C(Cl)

C=C1 

Hexose transporter;Tb10.6k15.2040 0.31 

NCC(O)(C1=CC=C(Cl)C=C1)C1=CC=C(Cl)

C=C1 

Glucose transporter;Tb10.6k15.2020 0.31 

CC1=C(C=CC=C1)N1SC2=CC=CC=C2C1=

O 

Flap endonuclease 1;FEN1 0.31 

NCC(C1=CC=C(Cl)C=C1)C1=CC=C(C=C1)

C1=CC=CC=C1 

Glucose transporter;Tb10.6k15.2030 0.31 

NCC(C1=CC=C(Cl)C=C1)C1=CC=C(C=C1)

C1=CC=CC=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.31 

NCC(C1=CC=C(Cl)C=C1)C1=CC=C(C=C1)

C1=CC=CC=C1 

Hexose transporter;Tb10.6k15.2040 0.31 

NCC(C1=CC=C(Cl)C=C1)C1=CC=C(C=C1)

C1=CC=CC=C1 

Glucose transporter;Tb10.6k15.2020 0.31 

ClC1=CC(Cl)=C(CN2C3=C(CCC3)C(=N)C3

=C2CCCC3)C=C1 

Glucose transporter;Tb10.6k15.2030 0.30 

ClC1=CC(Cl)=C(CN2C3=C(CCC3)C(=N)C3

=C2CCCC3)C=C1 

Glucose transporter_ 

putative;Tb927.4.2290 

0.30 

ClC1=CC(Cl)=C(CN2C3=C(CCC3)C(=N)C3

=C2CCCC3)C=C1 

Hexose transporter;Tb10.6k15.2040 0.30 

ClC1=CC(Cl)=C(CN2C3=C(CCC3)C(=N)C3

=C2CCCC3)C=C1 

Glucose transporter;Tb10.6k15.2020 0.30 

 

 

 
Supplementary Table 15 P-values of GO biological process fold enrichment of small molecule hits that are 

represented in Figure 4:6 

ID Name P-value 

GO:0006468 protein phosphorylation 2.89E-65 

GO:0016310 phosphorylation 7.30E-60 

GO:0036211 protein modification process 1.68E-48 

GO:0006464 cellular protein modification process 1.68E-48 

GO:0043412 macromolecule modification 2.34E-44 

GO:0006796 phosphate-containing compound metabolic process 4.97E-43 

GO:0006793 phosphorus metabolic process 1.11E-42 

GO:0044267 cellular protein metabolic process 3.59E-35 

GO:0019538 protein metabolic process 3.19E-32 

GO:0044260 cellular macromolecule metabolic process 3.46E-31 
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GO:1901564 organonitrogen compound metabolic process 1.95E-28 

GO:0043170 macromolecule metabolic process 8.74E-24 

GO:0006807 nitrogen compound metabolic process 2.47E-20 

GO:0044237 cellular metabolic process 1.24E-19 

GO:0008152 metabolic process 4.01E-19 

GO:0044238 primary metabolic process 5.43E-19 

GO:0071704 organic substance metabolic process 2.91E-18 

GO:0009987 cellular process 1.57E-16 

GO:0008150 biological process 5.26E-14 

GO:0044145 modulation of development of symbiont involved in interaction with host 2.35E-07 

GO:0043900 regulation of multi-organism process 2.35E-07 

GO:0043903 regulation of symbiosis, encompassing mutualism through parasitism 2.35E-07 

GO:0050793 regulation of developmental process 5.67E-07 

GO:0051726 regulation of cell cycle 1.60E-06 

GO:0007346 regulation of mitotic cell cycle 5.44E-06 

GO:0000278 mitotic cell cycle 7.31E-06 

GO:0010564 regulation of cell cycle process 1.51E-05 

GO:0015758 glucose transport 6.75E-05 

GO:0052106 quorum sensing involved in interaction with host 9.96E-05 

GO:0052097 interspecies quorum sensing 9.96E-05 

GO:0007049 cell cycle 1.04E-04 

GO:0048874 homeostasis of number of cells in a free-living population 1.14E-04 

GO:0048872 homeostasis of number of cells 1.14E-04 

GO:0009372 quorum sensing 1.14E-04 

GO:0044764 multi-organism cellular process 1.14E-04 

GO:1903047 mitotic cell cycle process 2.83E-04 

GO:0044772 mitotic cell cycle phase transition 4.01E-04 

GO:0044770 cell cycle phase transition 6.65E-04 

GO:0051225 spindle assembly 1.38E-03 

GO:0022402 cell cycle process 1.98E-03 

GO:1902412 regulation of mitotic cytokinesis 2.34E-03 

GO:0071900 regulation of protein serine/threonine kinase activity 2.91E-03 

GO:0043549 regulation of kinase activity 2.91E-03 

GO:0051338 regulation of transferase activity 2.91E-03 

GO:0045859 regulation of protein kinase activity 2.91E-03 

GO:0001932 regulation of protein phosphorylation 3.54E-03 

GO:0031399 regulation of protein modification process 4.23E-03 

GO:0032465 regulation of cytokinesis 4.23E-03 

GO:0051302 regulation of cell division 4.23E-03 

GO:0042325 regulation of phosphorylation 4.23E-03 

GO:0007051 spindle organization 4.97E-03 
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GO:0051174 regulation of phosphorus metabolic process 4.97E-03 

GO:0019220 regulation of phosphate metabolic process 4.97E-03 

GO:0042592 homeostatic process 5.46E-03 

GO:1901988 negative regulation of cell cycle phase transition 8.28E-03 

GO:0042327 positive regulation of phosphorylation 8.28E-03 

GO:0043410 positive regulation of MAPK cascade 8.28E-03 

GO:2000045 regulation of G1/S transition of mitotic cell cycle 8.28E-03 

GO:0000082 G1/S transition of mitotic cell cycle 8.28E-03 

GO:0009967 positive regulation of signal transduction 8.28E-03 

GO:1902806 regulation of cell cycle G1/S phase transition 8.28E-03 

GO:0033674 positive regulation of kinase activity 8.28E-03 

GO:0043406 positive regulation of MAP kinase activity 8.28E-03 

GO:0023056 positive regulation of signaling 8.28E-03 

GO:0071902 positive regulation of protein serine/threonine kinase activity 8.28E-03 

GO:0015749 monosaccharide transmembrane transport 8.28E-03 

GO:0034219 carbohydrate transmembrane transport 8.28E-03 

GO:0044131 negative regulation of development of symbiont in host 8.28E-03 

GO:1902807 negative regulation of cell cycle G1/S phase transition 8.28E-03 

GO:0001934 positive regulation of protein phosphorylation 8.28E-03 

GO:2000134 negative regulation of G1/S transition of mitotic cell cycle 8.28E-03 

GO:0044147 
negative regulation of development of symbiont involved in interaction with 

host 
8.28E-03 

GO:0010647 positive regulation of cell communication 8.28E-03 

GO:1902533 positive regulation of intracellular signal transduction 8.28E-03 

GO:0051093 negative regulation of developmental process 8.28E-03 

GO:0010562 positive regulation of phosphorus metabolic process 8.28E-03 

GO:0045860 positive regulation of protein kinase activity 8.28E-03 

GO:0031401 positive regulation of protein modification process 8.28E-03 

GO:0048584 positive regulation of response to stimulus 8.28E-03 

GO:0044127 regulation of development of symbiont in host 8.28E-03 

GO:0051347 positive regulation of transferase activity 8.28E-03 

GO:0045937 positive regulation of phosphate metabolic process 8.28E-03 

GO:0090307 mitotic spindle assembly 8.28E-03 

GO:0044843 cell cycle G1/S phase transition 8.28E-03 

GO:1901991 negative regulation of mitotic cell cycle phase transition 8.28E-03 

GO:0043405 regulation of MAP kinase activity 8.28E-03 

GO:0043408 regulation of MAPK cascade 8.28E-03 

GO:0045926 negative regulation of growth 8.28E-03 

GO:0043901 negative regulation of multi-organism process 8.28E-03 

GO:0008645 hexose transmembrane transport 8.28E-03 

GO:0000281 mitotic cytokinesis 1.40E-02 

GO:0061640 cytoskeleton-dependent cytokinesis 1.40E-02 



 
 
 
 

258 
 

GO:0043085 positive regulation of catalytic activity 1.65E-02 

GO:1901990 regulation of mitotic cell cycle phase transition 1.65E-02 

GO:0044093 positive regulation of molecular function 1.65E-02 

GO:1901987 regulation of cell cycle phase transition 1.65E-02 

GO:0051821 
dissemination or transmission of organism from other organism involved in 

symbiotic interaction 
1.65E-02 

GO:0044008 dissemination or transmission of symbiont from host by vector 1.65E-02 

GO:0045930 negative regulation of mitotic cell cycle 1.65E-02 

GO:0051822 
dissemination or transmission of organism from other organism by vector 

involved in symbiotic interaction 
1.65E-02 

GO:0044007 dissemination or transmission of symbiont from host 1.65E-02 

GO:0000910 cytokinesis 2.22E-02 

GO:0032268 regulation of cellular protein metabolic process 2.22E-02 

GO:0018105 peptidyl-serine phosphorylation 2.47E-02 

GO:0018209 peptidyl-serine modification 2.47E-02 

GO:0035404 histone-serine phosphorylation 2.47E-02 

GO:0032270 positive regulation of cellular protein metabolic process 2.47E-02 

GO:0043987 histone H3-S10 phosphorylation 2.47E-02 

GO:0051247 positive regulation of protein metabolic process 2.47E-02 

GO:0010948 negative regulation of cell cycle process 2.47E-02 

GO:0044839 cell cycle G2/M phase transition 2.47E-02 

GO:0000086 G2/M transition of mitotic cell cycle 2.47E-02 

GO:0016572 histone phosphorylation 2.47E-02 

GO:0050794 regulation of cellular process 2.48E-02 

GO:0065008 regulation of biological quality 2.52E-02 

GO:0051301 cell division 2.86E-02 

GO:0051246 regulation of protein metabolic process 3.02E-02 

GO:0046777 protein autophosphorylation 3.27E-02 

GO:0050790 regulation of catalytic activity 3.37E-02 

GO:0050789 regulation of biological process 3.50E-02 

GO:0065009 regulation of molecular function 3.55E-02 

GO:0055085 transmembrane transport 3.99E-02 

GO:0040008 regulation of growth 4.08E-02 

GO:0007088 regulation of mitotic nuclear division 4.08E-02 

GO:0045786 negative regulation of cell cycle 4.87E-02 

GO:0051783 regulation of nuclear division 4.87E-02 

 

 
 

Supplementary Table 16 P-values of GO biological process fold enrichment of NPs that are represented in 

Figure 4:6 

ID Name P-value 

GO:0006259 DNA metabolic process 1.32E-16 
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GO:0016310 phosphorylation 1.64E-16 

GO:0009987 cellular process 3.10E-15 

GO:0044238 primary metabolic process 3.74E-15 

GO:0071704 organic substance metabolic process 8.72E-15 

GO:0008152 metabolic process 1.16E-14 

GO:0044260 cellular macromolecule metabolic process 2.64E-14 

GO:0044237 cellular metabolic process 1.25E-13 

GO:0006807 nitrogen compound metabolic process 8.95E-13 

GO:0006796 phosphate-containing compound metabolic process 9.16E-12 

GO:0006793 phosphorus metabolic process 1.47E-11 

GO:0043170 macromolecule metabolic process 1.66E-11 

GO:0036211 protein modification process 6.04E-10 

GO:0006464 cellular protein modification process 6.04E-10 

GO:0006468 protein phosphorylation 6.99E-10 

GO:0033554 cellular response to stress 8.87E-10 

GO:0006281 DNA repair 9.48E-10 

GO:0006974 cellular response to DNA damage stimulus 1.28E-09 

GO:0006950 response to stress 1.35E-09 

GO:1901360 organic cyclic compound metabolic process 4.72E-08 

GO:0008150 biological process 4.73E-08 

GO:0043412 macromolecule modification 4.85E-08 

GO:0006265 DNA topological change 1.10E-07 

GO:0006139 nucleobase-containing compound metabolic process 1.55E-07 

GO:0042866 pyruvate biosynthetic process 2.38E-07 

GO:0009135 purine nucleoside diphosphate metabolic process 2.38E-07 

GO:0006096 glycolytic process 2.38E-07 

GO:0046031 ADP metabolic process 2.38E-07 

GO:0006757 ATP generation from ADP 2.38E-07 

GO:0009185 ribonucleoside diphosphate metabolic process 2.38E-07 

GO:0009179 purine ribonucleoside diphosphate metabolic process 2.38E-07 

GO:0006725 cellular aromatic compound metabolic process 2.40E-07 

GO:0046483 heterocycle metabolic process 2.96E-07 

GO:0009166 nucleotide catabolic process 4.27E-07 

GO:0006090 pyruvate metabolic process 4.27E-07 

GO:0016052 carbohydrate catabolic process 5.60E-07 

GO:1901292 nucleoside phosphate catabolic process 5.60E-07 

GO:1901564 organonitrogen compound metabolic process 8.04E-07 

GO:0006165 nucleoside diphosphate phosphorylation 1.19E-06 

GO:0046939 nucleotide phosphorylation 1.19E-06 

GO:0019363 pyridine nucleotide biosynthetic process 1.50E-06 

GO:0019359 nicotinamide nucleotide biosynthetic process 1.50E-06 



 
 
 
 

260 
 

GO:0072525 pyridine-containing compound biosynthetic process 1.87E-06 

GO:0046434 organophosphate catabolic process 1.87E-06 

GO:0090304 nucleic acid metabolic process 3.47E-06 

GO:0006754 ATP biosynthetic process 3.49E-06 

GO:0009132 nucleoside diphosphate metabolic process 4.24E-06 

GO:0009168 purine ribonucleoside monophosphate biosynthetic process 5.11E-06 

GO:0009127 purine nucleoside monophosphate biosynthetic process 5.11E-06 

GO:0009156 ribonucleoside monophosphate biosynthetic process 6.14E-06 

GO:0009124 nucleoside monophosphate biosynthetic process 7.32E-06 

GO:0006091 generation of precursor metabolites and energy 1.01E-05 

GO:0009145 purine nucleoside triphosphate biosynthetic process 1.03E-05 

GO:0009206 purine ribonucleoside triphosphate biosynthetic process 1.03E-05 

GO:0051716 cellular response to stimulus 1.03E-05 

GO:0019362 pyridine nucleotide metabolic process 1.21E-05 

GO:0046496 nicotinamide nucleotide metabolic process 1.21E-05 

GO:0072524 pyridine-containing compound metabolic process 1.41E-05 

GO:0009150 purine ribonucleotide metabolic process 1.49E-05 

GO:0009201 ribonucleoside triphosphate biosynthetic process 1.65E-05 

GO:0009142 nucleoside triphosphate biosynthetic process 1.65E-05 

GO:0019538 protein metabolic process 1.91E-05 

GO:0072330 monocarboxylic acid biosynthetic process 2.22E-05 

GO:0034655 nucleobase-containing compound catabolic process 2.22E-05 

GO:0009152 purine ribonucleotide biosynthetic process 2.55E-05 

GO:0046034 ATP metabolic process 2.55E-05 

GO:0009259 ribonucleotide metabolic process 2.68E-05 

GO:0006163 purine nucleotide metabolic process 2.68E-05 

GO:0006733 oxidoreduction coenzyme metabolic process 2.93E-05 

GO:0009126 purine nucleoside monophosphate metabolic process 3.36E-05 

GO:0009167 purine ribonucleoside monophosphate metabolic process 3.36E-05 

GO:0044270 cellular nitrogen compound catabolic process 3.84E-05 

GO:0019439 aromatic compound catabolic process 3.84E-05 

GO:0009161 ribonucleoside monophosphate metabolic process 3.84E-05 

GO:0044267 cellular protein metabolic process 4.34E-05 

GO:0046700 heterocycle catabolic process 4.36E-05 

GO:0006164 purine nucleotide biosynthetic process 4.36E-05 

GO:1901361 organic cyclic compound catabolic process 4.36E-05 

GO:0009123 nucleoside monophosphate metabolic process 4.95E-05 

GO:0046390 ribose phosphate biosynthetic process 4.95E-05 

GO:0009260 ribonucleotide biosynthetic process 4.95E-05 

GO:0009144 purine nucleoside triphosphate metabolic process 5.60E-05 

GO:0009205 purine ribonucleoside triphosphate metabolic process 5.60E-05 
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GO:0034404 nucleobase-containing small molecule biosynthetic process 5.60E-05 

GO:0046854 phosphatidylinositol phosphorylation 6.10E-05 

GO:0046834 lipid phosphorylation 6.10E-05 

GO:0019693 ribose phosphate metabolic process 6.84E-05 

GO:0034641 cellular nitrogen compound metabolic process 7.20E-05 

GO:0009199 ribonucleoside triphosphate metabolic process 7.98E-05 

GO:0009141 nucleoside triphosphate metabolic process 7.98E-05 

GO:0006732 coenzyme metabolic process 9.94E-05 

GO:0032787 monocarboxylic acid metabolic process 1.11E-04 

GO:0072521 purine-containing compound metabolic process 1.30E-04 

GO:0005975 carbohydrate metabolic process 1.30E-04 

GO:0009108 coenzyme biosynthetic process 1.52E-04 

GO:0072522 purine-containing compound biosynthetic process 1.86E-04 

GO:0017144 drug metabolic process 1.97E-04 

GO:0046394 carboxylic acid biosynthetic process 2.25E-04 

GO:0051188 cofactor biosynthetic process 2.25E-04 

GO:0016053 organic acid biosynthetic process 2.25E-04 

GO:0006996 organelle organization 2.37E-04 

GO:0016043 cellular component organization 2.53E-04 

GO:0006102 isocitrate metabolic process 3.43E-04 

GO:0051186 cofactor metabolic process 4.16E-04 

GO:0006006 glucose metabolic process 4.85E-04 

GO:0006310 DNA recombination 5.33E-04 

GO:0051276 chromosome organization 7.09E-04 

GO:0071103 DNA conformation change 9.00E-04 

GO:0071840 cellular component organization or biogenesis 9.03E-04 

GO:0030258 lipid modification 9.27E-04 

GO:0032006 regulation of TOR signaling 1.02E-03 

GO:0019752 carboxylic acid metabolic process 1.25E-03 

GO:0006470 protein dephosphorylation 1.38E-03 

GO:0043436 oxoacid metabolic process 1.38E-03 

GO:0044283 small molecule biosynthetic process 1.44E-03 

GO:0006082 organic acid metabolic process 1.45E-03 

GO:0048583 regulation of response to stimulus 1.96E-03 

GO:0006476 protein deacetylation 2.01E-03 

GO:0098732 macromolecule deacylation 2.01E-03 

GO:0035601 protein deacylation 2.01E-03 

GO:0071496 cellular response to external stimulus 2.01E-03 

GO:0031668 cellular response to extracellular stimulus 2.01E-03 

GO:0009991 response to extracellular stimulus 2.01E-03 

GO:0052097 interspecies quorum sensing 2.15E-03 
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GO:0052106 quorum sensing involved in interaction with host 2.15E-03 

GO:0044248 cellular catabolic process 2.30E-03 

GO:0009372 quorum sensing 2.43E-03 

GO:0048874 homeostasis of number of cells in a free-living population 2.43E-03 

GO:0048872 homeostasis of number of cells 2.43E-03 

GO:0044764 multi-organism cellular process 2.43E-03 

GO:1901137 carbohydrate derivative biosynthetic process 2.94E-03 

GO:0044145 modulation of development of symbiont involved in interaction with host 3.07E-03 

GO:0043903 regulation of symbiosis, encompassing mutualism through parasitism 3.07E-03 

GO:0043900 regulation of multi-organism process 3.07E-03 

GO:0018342 protein prenylation 3.30E-03 

GO:0097354 prenylation 3.30E-03 

GO:0009056 catabolic process 3.51E-03 

GO:0019318 hexose metabolic process 3.52E-03 

GO:0055114 oxidation-reduction process 4.11E-03 

GO:0006457 protein folding 4.42E-03 

GO:0016126 sterol biosynthetic process 4.89E-03 

GO:0016311 dephosphorylation 4.95E-03 

GO:0050793 regulation of developmental process 5.15E-03 

GO:1901135 carbohydrate derivative metabolic process 5.16E-03 

GO:0005996 monosaccharide metabolic process 6.53E-03 

GO:0016125 sterol metabolic process 6.77E-03 

GO:1901575 organic substance catabolic process 8.69E-03 

GO:1902531 regulation of intracellular signal transduction 8.91E-03 

GO:0072350 tricarboxylic acid metabolic process 1.13E-02 

GO:0010646 regulation of cell communication 1.40E-02 

GO:0009966 regulation of signal transduction 1.40E-02 

GO:0019637 organophosphate metabolic process 1.60E-02 

GO:1901362 organic cyclic compound biosynthetic process 1.64E-02 

GO:0023051 regulation of signaling 1.69E-02 

GO:1903939 regulation of TORC2 signaling 1.86E-02 

GO:0042149 cellular response to glucose starvation 1.86E-02 

GO:0009432 SOS response 1.86E-02 

GO:0007131 reciprocal meiotic recombination 1.86E-02 

GO:0030952 establishment or maintenance of cytoskeleton polarity 1.86E-02 

GO:0035825 homologous recombination 1.86E-02 

GO:1903046 meiotic cell cycle process 1.86E-02 

GO:0030950 establishment or maintenance of actin cytoskeleton polarity 1.86E-02 

GO:0061982 meiosis I cell cycle process 1.86E-02 

GO:0047484 regulation of response to osmotic stress 1.86E-02 

GO:0006278 RNA-dependent DNA biosynthetic process 1.86E-02 
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GO:0010833 telomere maintenance via telomere lengthening 1.86E-02 

GO:0007127 meiosis I 1.86E-02 

GO:0034063 stress granule assembly 1.86E-02 

GO:0140013 meiotic nuclear division 1.86E-02 

GO:0045041 protein import into mitochondrial intermembrane space 1.86E-02 

GO:0007004 telomere maintenance via telomerase 1.86E-02 

GO:0034214 protein hexamerization 1.86E-02 

GO:0009117 nucleotide metabolic process 1.87E-02 

GO:0042592 homeostatic process 2.16E-02 

GO:0055086 nucleobase-containing small molecule metabolic process 2.16E-02 

GO:0006753 nucleoside phosphate metabolic process 2.29E-02 

GO:0006694 steroid biosynthetic process 2.34E-02 

GO:1901293 nucleoside phosphate biosynthetic process 2.36E-02 

GO:0009165 nucleotide biosynthetic process 2.36E-02 

GO:0008202 steroid metabolic process 2.69E-02 

GO:1901617 organic hydroxy compound biosynthetic process 2.69E-02 

GO:0006629 lipid metabolic process 3.09E-02 

GO:0051258 protein polymerization 3.47E-02 

GO:0016569 covalent chromatin modification 3.47E-02 

GO:0034248 regulation of cellular amide metabolic process 3.47E-02 

GO:0006417 regulation of translation 3.47E-02 

GO:0016570 Histone modification 3.47E-02 

GO:0006273 lagging strand elongation 3.68E-02 

GO:1903432 regulation of TORC1 signaling 3.68E-02 

GO:0051321 meiotic cell cycle 3.68E-02 

GO:0009298 GDP-mannose biosynthetic process 3.68E-02 

GO:0034250 positive regulation of cellular amide metabolic process 3.68E-02 

GO:0022616 DNA strand elongation 3.68E-02 

GO:0006271 DNA strand elongation involved in DNA replication 3.68E-02 

GO:0045727 positive regulation of translation 3.68E-02 

GO:0065002 intracellular protein transmembrane transport 3.88E-02 

GO:0044743 protein transmembrane import into intracellular organelle 3.88E-02 

GO:0071806 protein transmembrane transport 3.88E-02 

GO:0065008 regulation of biological quality 3.94E-02 

GO:0007010 cytoskeleton organization 4.07E-02 

GO:0050896 response to stimulus 4.44E-02 

GO:0034654 nucleobase-containing compound biosynthetic process 4.56E-02 

GO:0006626 protein targeting to mitochondrion 4.77E-02 

GO:1990542 mitochondrial transmembrane transport 4.77E-02 
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