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i. Summary 

Haematopoietic stem cells (HSCs) reside at the apex of the haematopoietic hierarchy, 

possessing the ability to self-renew and differentiate towards all mature blood 

lineages. Along with more specialised progenitor cells, HSCs have an essential role in 

maintaining a healthy blood system. Incorrect regulation of cell fate decisions in 

stem/progenitor cells can lead to an imbalance of mature blood cell populations – a 

situation seen in diseases such as leukaemia. Transcription factors, acting as part of 

complex regulatory networks, are known to play an important role in regulating 

haematopoietic cell fate decisions. Yet discovering the interactions present in these 

networks remains a big challenge. Here, we discuss a computational method that uses 

single cell gene expression data to reconstruct Boolean gene regulatory network 

models, and show how this technique can be applied to enhance our understanding of 

transcriptional regulation in haematopoiesis. 
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1. Introduction 

Due to their high turnover, haematopoietic cells require constant replacement in order 

to sustain the blood system throughout adult life. Extensive research over the past 60 

years has revealed that haematopoietic stem and progenitor cells (HSPCs) at different 

stages of commitment can be found in the mammalian bone marrow, with cells from 

specific populations specified towards one or more of the more than 10 different 

lineages of mature blood cells. This led to the popular view of a haematopoietic 

hierarchy, where haematopoietic stem cells (HSCs) can differentiate into increasingly 

specialised progenitor cell populations (Fig. 1A). Due to the accessibility of material 

and the existence of cell surface marker-based sorting strategies, these haematopoietic 

populations can be readily isolated and studied, and so are well-characterised in 

comparison to stem and progenitor cells in many other adult systems. The 

haematopoietic system, therefore, presents attractive opportunities for studying stem 

cell differentiation. 

 

Transcription factors as key regulators of cell fate decisions 

The haematopoietic system must maintain an appropriate balance of all mature cell 

types, as dysregulation of haematopoietic cell fate decisions is linked to potentially 

fatal blood disorders such as acute myeloid leukaemia. It is therefore vital to 

understand how blood stem cells regulate their decision to differentiate towards 

alternative fates. Across many biological systems it is well established that expression 

of genes encoding transcription factors plays an important role in determining cell 

fate decisions [1]. In particular, transcriptional regulation plays a central role in 

determining cell fate decisions and executing lineage differentiation in the blood [2].  

 



Discovering gene regulatory networks 

In their role of driving specific lineage choices, transcription factors act as 

components of complex regulatory relations known as gene regulatory networks. 

Whilst experimental approaches have revealed numerous gene interactions with 

crucial roles in haematopoiesis, relying purely on such time-consuming and expensive 

investigation to discover regulatory relationships is not feasible. Instead, the increased 

availability of high quality gene expression data sets has led many researchers to use 

such data as a starting point for computationally discovering regulatory relationships 

across a variety of biological systems [3].  

 

Modelling gene regulatory networks 

As well as providing a means for discovery, gene regulatory network models enable 

networks to be simulated in an attempt to better understand the role of gene regulation 

in a system. One approach used for modelling transcriptional regulatory networks is 

Boolean abstraction, which has proved popular in studies of the blood system. Here, 

gene expression levels are converted to ON/OFF expression, and regulation between 

genes is described as logical rules. Literature curation has been used to build Boolean 

regulatory network models for common myeloid progenitors [4], lymphoid 

progenitors [5] and in blood stem cells [6]. Boolean models present a powerful tool 

for network modelling as they easily scale to large numbers of components, the effect 

of network perturbations can be easily simulated in silico and network simulation 

relates to experimental approaches that readily translate into laboratory-based 

experiments such as gene knock-outs.  

 

The importance of looking at the single cell level 



The majority of existing models of blood transcriptional regulatory networks are 

based on either literature curation, or experimental approaches using bulk expression 

data. However, investigation at the single cell level is essential, as considering only 

bulk expression data averages over often heterogeneous populations, where 

heterogeneity in gene expression levels is linked to cell fate choices [7]. The power of 

single-cell data in uncovering regulatory relationships is increasingly being 

recognised, for example correlation analysis of single-cell qRT-PCR data has been 

successfully used to identify novel regulatory relationships between transcription 

factors [8, 9]. In systems other than adult haematopoiesis, single-cell expression data 

have been used to infer Boolean network models in embryonic stem cells [10] and 

embryonic blood development [11].  

 

In this chapter, we discuss one approach for reconstructing Boolean gene regulatory 

network models of a haematopoietic differentiation process using snapshot single cell 

gene expression data [12]. 

 

2. Materials 

Single cell gene expression data 

The input for this network inference method is a set of single cell gene expression 

values for cells at different stages of a differentiation process of interest. As the 

method involves calculation of correlations between genes it is beneficial to have a 

high dynamic range for the majority of genes measured. Additionally, when 

modelling the Boolean network genes must ultimately be discretised into “ON” or 

“OFF” states. This requires data with high sensitivity for detecting whether a gene is 

expressed in a given cell. High quality single cell quantitative real-time PCR (qRT-

PCR) data fit both of these requirements. In our case study we used data originally 



published in [7] and supplemented with additional populations in [12]. These data 

sampled cells from haematopoietic stem and progenitor cells using 12 different 

sorting strategies to sample cells at different stages of commitment towards mature 

blood lineages (Fig. 1B). 

 

Ordering cells through differentiation 

Pseudotime describes the concept of ordering single cell molecular profiles based on 

similarities in the expression states of individual cells. The motivation behind this is 

the idea that cells close together in terms of differentiation will have smaller changes 

in gene expression than those further apart (Fig. 1C). This then allows properties such 

as changes in gene expression levels to be visualised across differentiation (Fig. 1D). 

Monocle [13] and Wanderlust [14] were the first algorithms designed to order single 

cell data into trajectories. Since then, improved versions of these algorithms, as well 

as entirely new approaches, have been published, able to cope with complex 

branching trajectories [15–17]. When analysis for our case study was carried out, 

these later algorithms were not available, hence we applied the Wanderlust algorithm 

[14] to our data.  

 

SAT Solver 

The network inference method we describe here involves a step of searching a space 

of possible Boolean functions to find those with the highest score measuring 

agreement with the data. With even a relatively small number of genes the space of 

Boolean functions becomes incredibly large, so in order to make this computationally 

tractable we encode the problem as a Boolean satisfiability problem to find the rules 

on a per gene basis. We implemented this using the Python Z3 solver 



(https://github.com/Z3Prover/z3/), which provides an efficient search for the highest 

scoring functions.  

 

3. Methods 

It has long been recognised that gene expression data provides a powerful way to 

computationally discover transcriptional regulatory relationships, for example by 

considering correlations between genes. More recently, large single cell gene 

expression data sets have proved an effective starting point for building 

transcriptional networks. Here we describe a method for constructing a Boolean 

network model from single cell data. 

 

Data pre-processing 

Single cell gene expression measurements from cells at different stages of some 

differentiation process provide the input for the network inference algorithm (Fig. 

2A). Single-cell qRT-PCR gene expression measurements are well suited to this 

analysis. Data can either be acquired pre-normalised from published studies or Ct 

values can be transformed to ΔCt values by normalisation against housekeeping genes 

on a per cell basis. Any housekeeping genes, as well as genes that fail quality control 

due to technical issues, should then be excluded from downstream analysis. 

 

Identifying possible gene regulation 

The first step in our network inference method is to identify potential regulatory 

relationships between pairs of transcription factor encoding genes.  This is done by 

calculating pairwise partial correlation coefficients across the whole dataset. 

Correlation coefficients are filtered to retain pairs with significant interaction, for 

example using a threshold of p-value < 0.01. Links between the gene pairs are then 



ranked by the magnitude of the correlation coefficients, and the strongest correlations 

retained as edges in a gene correlation network. Positive correlation between gene A 

and gene B is then treated as possible activation of gene A by gene B, or of gene B by 

gene A. Negative correlation is treated as potential repression acting in either 

direction. Potential activating or repressing relationships are combined with self-

activation for each gene, and combinations of these high correlation edges describe a 

set of possible Boolean functions governing the expression of each gene, with each 

rule featuring one or more regulators (Fig. 2B). To reduce the search time of our 

algorithm, we restrict the search to functions of the form 𝐹	 = 𝐹$ 	∧ ¬	𝐹' with each 𝐹( 

a Boolean function made from AND and OR gates with at most two inputs per gate. 

𝐹$ represents the activating part of the function, consisting of at most four activating 

transcription factors for a gene, and 𝐹' the repressing part of the function, formed 

from at most two repressing transcription factors.  

 

Identification of differentiation trajectories 

Whilst high correlation between a pair of genes can be an indication of a regulatory 

relationship, additional information is required to determine if the regulation is direct, 

establish the direction of regulation between genes, and understand if this part of a 

regulatory event that requires the involvement of multiple transcription factors. This 

can be done using expression data from different time points or perturbed 

experimental conditions, yet in many cases these data are not available and would be 

costly and time-consuming to generate. Instead, we exploit the concept of pseudotime 

[13, 14], by using this computational ordering of cells as the basis for a scoring 

mechanism that is applied to the set of possible Boolean functions from the 

correlation network (Fig. 2C). For this we need to order cells from the most immature 

population in the data through to the mature cells along one or more trajectories. A 



separate ordering is required for each ‘end point’ corresponding to a different mature 

population. The first goal is to identify the cells representing the ‘start’ and ‘end’ cells 

for each trajectory. Here, we enlist the help of diffusion maps, a visualisation tool 

which has been successfully applied to single-cell gene expression data to capture 

structure related to differentiation within the data [18]. If cells have been isolated 

from different time points, or are known to be different types (e.g. were captured 

using different surface marker sorting strategies in the blood) then this can be used to 

guide the selection of start and end cells for each trajectory. Alternatively, several 

pseudotime inference algorithms now provide methods for inferring the tip positions 

of trajectories automatically. In the case of data sets where cells can branch to 

multiple cells fates, it is also necessary to identify which cells lie on the 

differentiation trajectory towards a specific end cell. In our case study below, we 

followed a previously described method [19] to assign cells to branches. Again, some 

pseudotime algorithms now provide an inbuilt method for this. 

 

Selecting activating or repressing edges in the network model 

So far the single cell gene expression data has provided both a set of possible Boolean 

functions describing the regulation of each gene, and an ordering of cells from the 

start to the end of a differentiation trajectory. We next describe how to use the gene 

changes along the pseudotime ordering to score the functions on a per gene basis, to 

identify functions that best fit the data. Gene expression in each cell along the 

trajectory is first discretised into “ON” or “OFF” expression states, by setting any 

detected values of gene expression to 1, and any undetected values to 0. Each pair of 

cells positioned 𝑘 steps apart in the pseudotime ordering is then treated as an input-

output pair 𝑃( = 	 (𝐼(, 𝑂() for a Boolean function, where [𝐼(]2 indicates the binary 

expression of gene 𝑔 in input cell 𝐼(. Each function 𝐹 for a gene 𝑔	is given a score 



𝑆(𝐹) = 	∑ 𝑠((𝐹)(  where 𝑠( = 	 7
1, 𝑖𝑓	[𝐹(𝐼()]2 	= 	 [𝑂(]2	
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																			

 for the pseudotime pairs 𝑃( =

	(𝐼(, 𝑂(). This calculates the number of times the value of the gene 𝑔 as predicted by 𝐹 

applied to 𝐼( equals the value of 𝑔 in the corresponding output cell 𝑂(. The top scoring 

functions for each gene can then be considered the ‘best’ functions for that gene. To 

identify the top scoring functions, we encoded the problem as a Boolean satisfiability 

problem, and provide Python code that can be run to identify rules for each gene 

(https://github.com/fionahamey/Pseudotime-network-inference). 

 

Limitations 

As with all computational inference methods, the output from this approach can only 

be considered as a tool for hypothesis generation, either for identifying potential novel 

regulations, or utilising the resulting Boolean network to simulate the outcome of 

scenarios such as overexpression and/or knockdown of specific genes in the network. 

Consequently, some form of experimental validation is nearly always necessary when 

applying such methods.  

 

One major limitation of an approach based on qRT-PCR data is that the network 

model will always be restricted to the genes that have been chosen for profiling in the 

experiment and passed quality control measures. As a result, especially when using 

previously published datasets perhaps not originally designed for a network inference 

study, important regulators may in fact be missing from the network. Nevertheless, 

our approach provides a valuable way for identifying ways in which known regulators 

act as part of a network to control cell fate decisions. 

 

Case study on haematopoietic stem cell differentiation 



To demonstrate our network inference method, we decided to investigate 

transcriptional regulation of cell fate decisions in murine haematopoietic stem and 

progenitor cells. We used previously published single cell qRT-PCR data from 12 

different haematopoietic cell-sorting strategies that profiled long-term HSCs, finite 

self-renewal HSCs, multipotent progenitors, pre-megakaryocyte-erythroid 

progenitors, megakaryocyte-erythroid progenitors (MEP), granulocyte-monocyte 

progenitors, lymphoid-primed multipotent progenitors (LMPP) and common myeloid 

progenitors [7, 12]. These data measured the expression of 42 genes including 32 

transcription factors in each cell. For network inference we chose to focus on two 

trajectories, one from HSCs to MEPs and the other from HSCs to LMPPs. Start and 

end cells for trajectories were selected based on the diffusion map analysis of these 

data (calculated using the destiny R package [20]). We followed a previously 

described method [19] to select cells on two branches from HSCs to MEP and LMPP 

cells. This was done by constructing a 𝑘 = 30 nearest-neighbour graph on 

coordinates of the single cell profiles in the first four diffusion components. Each 

branch was then identified by taking the 100 nearest neighbours of all cells lying on 

the shortest path between the start and end cells. The Wanderlust algorithm [14] was 

used to order cells along this path, assigning a pseudotime value to each individual 

cell. A partial correlation network was calculated on the transcription factor encoding 

genes with edges between the 100 strongest correlating pairs. This correlation 

network and the pseudotime ordering were used as inputs to our network inference 

algorithm, which was applied separately to the two trajectories. A simplified network 

can be viewed in Fig. 3, which indicates the activation or repression between 

transcription factors identified in our model.  

 

4. Notes 



Here we discuss some points for applying the algorithm for network inference to a 

single cell data set. 

 

Pseudotime method 

Although we used the Wanderlust algorithm [14] for ordering cells in pseudotime, 

many more pseudotime inference algorithms have recently been published, and would 

also be suitable for this analysis. In particular, users may find algorithms such as 

diffusion pseudotime [15], which can automatically detect trajectory tips within a data 

set, useful in cases where the start or end of trajectories is not as well understood as in 

haematopoiesis. The Python code provided for network inference takes an ordered list 

of cells along a trajectory as input, hence is compatible with a pseudotime ordering 

from any algorithm. 

 

Input for Python code of network inference algorithm 

Code for our network inference algorithm can be downloaded from github 

(https://github.com/fionahamey/Pseudotime-network-inference) and requires 3 input 

files: the matrix of binary gene expression, the pseudotime ordering of cells on a 

differentiation trajectory, and a list of the possible activators and repressors of each 

gene. Instructions of the format of these files and the parameters for the algorithm are 

provided on the github page. 

 

Speeding up the analysis 

If a gene has many activators or repressors it can vastly increase the search time to 

identify the high scoring functions. To reduce this time some parameters can be 

altered when running the algorithm. Firstly, the maximum numbers of permitted 

activators or repressors can be reduced in order to search for simpler rules. Secondly, 



the threshold and threshold step size can be changed. The algorithm works by first 

searching for any rules that have agreement with a user-defined threshold, for 

example 90%, of the pseudotime input-output pairs. If no rules are found, the 

percentage is lowered and the algorithm iterates. If there are a very large number of 

rules above the starting threshold the algorithm will search for a long time to find all 

of these, but we are only interested in the highest scoring rule of this set. Therefore it 

would reduce the search time to start with a much higher threshold. The threshold 

lowering step size can also be altered in an attempt to limit the number of rules above 

the newly lowered threshold. 

 

Simplifying the resulting rule set 

In many cases, particularly when a gene had a high number of regulators, the 

algorithm returns several rules with equal scores. We first remove any rule with self-

activation that does not score higher than the same rule disregarding self-activation. 

Groups of rules are then simplified to reduce the overall number of rules, discarding 

those contained within other rules in the set to give the smallest and simplest set of 

rules. For example {𝐴 → 𝐶, 𝐵 → 𝐶,	𝐴 ∨ 𝐵 → 𝐶} would be simplified to 𝐴 ∨ 𝐵 → 𝐶. 

Whereas {𝐴 → 𝐶,	𝐴 ∧ 𝐵 → 𝐶} would be reduced to only	𝐴 → 𝐶. 

 

Choice of gene sets for pseudotime ordering and network inference 

In the above case study in mouse bone marrow 42 genes were measured by single-cell 

qRT-PCR, 32 of which were transcription factors. For transcriptional regulatory 

network model inference we were only interested in the expression of transcription 

factor encoding genes, and so limited the analysis to the set of transcription factors. 

However, for diffusion map visualisation and pseudotime ordering the continuous 



expression levels of all genes except housekeeping genes were used, as this gene set 

demonstrated improved separation of different cells types.  
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Figure Captions 

Fig. 1. Single cell snapshot gene expression data can be used to reconstruct the 

transcriptional landscape of haematopoiesis. (A) Haematopoietic stem cells 

(HSCs) reside at the apex of the haematopoietic hierarchy. These cells can 

differentiate towards all of the different blood lineages. Ery, erythroid; Mk, 

megakaryocytic; My, myeloid; Ly, lymphoid. (B) By sampling single cells from the 

bone marrow and profiling their gene expression it is possible to capture cells at 

different stages of differentiation and build up a picture of the underlying 

transcriptional landscape. (C) Cells can be computationally ordered based on 



similarities in their transcriptional profile. This ordering, often described as 

‘pseudotime’, aims to recapitulate molecular changes during differentiation. (D) 

Pseudotime orderings can be used to investigate the ordering of expression changes 

during differentiation for different markers. 

 

Fig. 2. Gene regulatory network models can be inferred from single cell gene 

expression data. (A) The network inference method is based on single cell gene 

expression profiles of cells at different stages of differentiation. (B) A set of possible 

Boolean logic functions describing the regulatory rules of each gene are found by first 

identifying strong positive and negative correlations between pairs of genes. This then 

generates a list of possible functions for each gene. Here A-F represent a set of genes. 

(C) Cells are ordered in pseudotime, and pairs 𝑃( = (𝐼(, 𝑂() constructed by taking cells 

a fixed distance apart in the pseudotime ordering. These cells act as input and output 

to a Boolean function 𝐹. The functions generated by the correlation network are 

scored against all of the pseudotime pairs. 

 

Fig 3. Alternative gene regulatory network models for differentiation towards 

megakaryocyte/erythroid progenitors (MEPs) and lymphoid-primed multipotent 

progenitors (LMPPs) can be identified using single-cell snapshot data from 

mouse bone marrow. Heatmaps indicate interactions present in simplified network 

models, showing activation or repression from source gene (rows) to target gene 

(columns).  
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