
A dimensionally split Cartesian cut

cell method for Computational

Fluid Dynamics

Nandan Bhushan Gokhale

Selwyn College

This dissertation is submitted for the degree of Doctor of Philosophy

June, 2018

ABSTRACT

We present a novel dimensionally split Cartesian cut cell method to compute inviscid,

viscous and turbulent flows around rigid geometries.

On a cut cell mesh, the existence of arbitrarily small boundary cells severely restricts

the stable time step for an explicit numerical scheme. We solve this ‘small cell problem’

when computing solutions for hyperbolic conservation laws by combining wave speed and

geometric information to develop a novel stabilised cut cell flux. The convergence and

stability of the developed technique are proved for the one-dimensional linear advection

equation, while its multi-dimensional numerical performance is investigated through the

computation of solutions to a number of test problems for the linear advection and Euler

equations. This work was recently published in the Journal of Computational Physics [1].

Subsequently, we develop the method further to be able to compute solutions for the

compressible Navier-Stokes equations. The method is globally second order accurate in

the L1 norm, fully conservative, and allows the use of time steps determined by the regular

grid spacing. We provide a full description of the three-dimensional implementation of the

method and evaluate its numerical performance by computing solutions to a wide range

of test problems ranging from the nearly incompressible to the highly compressible flow

regimes. This work was recently published in the Journal of Computational Physics [2].

It is the first presentation of a dimensionally split cut cell method for the compressible

Navier-Stokes equations in the literature.

Finally, we also present an extension of the cut cell method to solve high Reynolds

number turbulent automotive flows using a wall-modelled Large Eddy Simulation (WMLES)

approach. A full description is provided of the coupling between the (implicit) LES solution

and an equilibrium wall function on the cut cell mesh. The combined methodology is used

to compute results for the turbulent flow over a square cylinder, and for flow over the

SAE Notchback and DrivAer reference automotive geometries. We intend to publish the

promising results as part of a future publication, which would be the first assessment of a

WMLES Cartesian cut cell approach for computing automotive flows to be presented in

the literature.

DECLARATION

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration except as declared in the Preface and specified in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently

submitted for a degree or diploma or other qualification at the University of Cambridge or

any other University or similar institution except as declared in the Preface and specified

in the text. I further state that no substantial part of my dissertation has already been

submitted, or, is being concurrently submitted for any such degree, diploma or other

qualification at the University of Cambridge or any other University or similar institution

except as declared in the Preface and specified in the text. It does not exceed the word

limit of 60,000 words as prescribed by the Degree Committee for the Department of

Physics.

Nandan Bhushan Gokhale

June, 2018

ACKNOWLEDGEMENTS

I would like to start by thanking my supervisor, Dr. Nikos Nikiforakis, for his unwavering

support, guidance and encouragement over the course of this PhD. Thanks are also due to

Prof. Rupert Klein, whose encouragement and technical insight were invaluable when I

was proving the numerical properties of the novel cut cell method.

I would also like to acknowledge my laboratory colleagues with whom I have had

countless discussions and debates, all of which ultimately contributed towards increasing

the quality of this work. Special thanks are due to Dr. Philip Blakely for his support

with the parallel AMR code, and to Lukas Wutschitz, Dr. Oliver Stickson and Dr. Paul

Bennett for all the fruitful conversations.

This section would be incomplete if I didn’t express my deep gratitude towards my

friends and family, whose support has been instrumental in allowing me to complete this

work.

Last, but not the least, I would also like to thank the Cambridge Commonwealth,

European & International Trust for financially supporting my research.

CONTENTS

1 Introduction 13

1.1 Thesis structure . 14

1.2 Code development . 17

1.2.1 High-resolution finite volume methods 17

1.2.1.1 MUSCL-Hancock scheme 19

1.2.2 Hierarchical Adaptive Mesh Refinement 21

2 Cut cell mesh generation 23

2.1 Calculation of core geometric parameters 24

2.1.1 Multiply cut cells . 25

2.1.2 Calculation of intersection points 25

2.1.3 Calculation of face fractions . 25

2.1.4 Interface area and normal calculation 25

2.1.5 Volume fraction calculation . 26

2.1.6 Volumetric centroid calculation . 26

2.1.7 Interface centroid calculation . 27

2.2 Calculation of extra geometric parameters 27

2.3 Conclusion . 32

3 A dimensionally split Cartesian cut cell method for hyperbolic conser-

vation laws 33

3.1 Introduction . 33

3.2 Governing equations and solution framework 35

3.3 Numerical method . 37

3.3.1 The KBN flux . 37

3.3.2 The LPFS flux . 39

3.3.3 Multi-dimensional extension . 40

3.3.3.1 Post-sweep correction at concavities 43

3.4 Convergence and stability analysis . 43

3.4.1 ‘Supraconvergence’ property of the LPFS scheme 44

3.4.2 Stability of the LPFS scheme . 48

3.5 Results . 52

3.5.1 Convergence tests . 52

3.5.1.1 One-dimensional advection 53

3.5.1.2 Two-dimensional diagonal advection 54

3.5.1.3 Two-dimensional advection in a sloped channel 57

3.5.2 Shock reflection from a wedge . 61

3.5.3 Subsonic flow over a NACA 0012 aerofoil 63

3.5.4 Shock reflection over a double wedge 66

3.5.5 Shock diffraction over a cone . 68

3.5.6 Space re-entry vehicle simulation 71

3.6 Conclusions . 72

4 A dimensionally split Cartesian cut cell method for the compressible

Navier-Stokes equations 75

4.1 Introduction . 75

4.2 Governing equations and solution framework 77

4.3 Numerical method . 78

4.3.1 Calculation of explicit fluxes . 78

4.3.1.1 Intercell fluxes . 78

4.3.1.2 Boundary fluxes . 80

4.3.2 Flux stabilisation . 82

4.3.3 Multi-dimensional extension . 84

4.4 Results . 84

4.4.1 Re = 20 lid-driven cavity problem 84

4.4.2 Laminar flat plate boundary layer 86

4.4.3 Flow over a circular cylinder . 88

4.4.4 Shock reflection from a wedge . 91

4.4.5 Three-dimensional supersonic flow over a sphere 94

4.5 Conclusions . 96

5 Assessment of a wall-modelled Implicit LES and Cartesian Cut Cell

approach for computing external automotive flows 97

5.1 Theory and numerical method . 98

5.1.1 Turbulence modelling . 98

5.1.2 Wall modelling . 100

5.1.2.1 DES . 101

5.1.2.2 WMLES . 101

5.1.3 Implementation of the wall model 103

5.1.4 Method for specifying the cell size 105

5.2 Results . 105

5.2.1 Turbulent flow over a square cylinder 105

5.2.2 SAE Notchback results . 111

5.2.3 DrivAer results . 116

5.3 Conclusions . 122

6 Conclusions 123

Bibliography 125

CHAPTER 1

INTRODUCTION

Cartesian cut cell approaches offer an attractive alternative to conventional body-fitted

or unstructured meshing techniques due to the ease of automatic mesh generation for

complex geometries, and the computational conveniences offered by the use of Cartesian

grids. The regular data structures used to represent Cartesian grids are simple to handle

programmatically and allow for straightforward grid partitioning in parallel programming

algorithms. Furthermore, the use of powerful Adaptive Mesh Refinement (AMR) techniques

such as that of Berger and Oliger [3] is enabled by the regularity inherent to Cartesian

grids.

With curvilinear body-fitted meshes, suitable mappings from the physical to the

computational domain may be difficult to obtain for complex geometries, particularly

in 3D. At the very least, the process is time-consuming and can result in highly skewed

meshes with unnecessarily fine resolutions in hard to mesh areas such as sharp internal

corners [4]. In an unstructured mesh, the fluid control volumes can be arbitrarily shaped,

with triangular or tetrahedral elements being popular choices. Although the procedure

allows great flexibility in the meshing process, it brings with it the inevitable loss in

the regularity of computational data structures [5]. Furthermore, the generation of a

good quality mesh around a complex geometry typically tends to be an iterative process

involving significant user intervention [6].

The Cartesian cut cell mesh generation procedure involves computationally ‘cutting

out’ the geometry from a background Cartesian grid to produce a resulting mesh with

a sharp representation of the interface. The procedure allows for rapid, automatic mesh

generation for complex geometries while still retaining the computational conveniences

offered by the use of Cartesian grids. Note that although a number of conservative and

13

1.1. THESIS STRUCTURE

non-conservative Cartesian grid based methods to handle embedded boundaries exist

(these are usually clubbed together under the umbrella of ‘immersed boundary methods’

[6]), we use the term ‘cut cell method’ to refer exclusively to finite volume based Cartesian

approaches that are designed to be fully conservative. Fig. 1.1 shows a cut cell grid

generated around the ‘DrivAer’ automotive model [7] in its fastback configuration. The

complexity of the meshing procedure is unaffected by the complexity of the geometry -

in smooth, convex areas (as in Fig. 1.1b), or sharp concave regions (as in Fig. 1.1c-Fig.

1.1e), mesh generation always involves subtracting the geometry from the background

Cartesian grid.

Of course, since the cut cells that are created next to the interface by the meshing

procedure can be arbitrarily small, there is a severe constraint imposed on the explicit

time step by which the solution can be evolved. This is called the ‘small cell problem’ and

the challenge involved in designing a cut cell method is to devise some means of evolving

the solution in the cut cells using a time step governed by the size of the regular, uncut,

Cartesian cells.

A number of different methodologies have been presented in the literature to deal with

the small cell problem in the context of both the compressible Euler and Navier-Stokes

equations. We provide a brief overview of these approaches in Chapter 3 and Chapter 4

respectively. The common aspect to all of them, however, is that they are implemented

largely in an unsplit fashion. We are particularly interested in adopting a dimensionally

split approach which is a convenient way to extend one-dimensional methods to solve multi-

dimensional problems. In this work, we present the development of a novel dimensionally

split Cartesian cut cell method to compute inviscid, laminar and turbulent flows around

rigid embedded boundaries. We believe that our work will be of interest to researchers and

practitioners who currently use, or are interested in using, dimensionally split approaches

for multi-dimensional extensions.

Another point of note is that we focus on solving the compressible governing equations.

In terms of potential applications, this means we deal with supersonic flows (e.g. shock

diffraction over a complex geometry), and subsonic flows where compressibility is important

(e.g. external flows over aerospace or automotive geometries).

1.1 Thesis structure

The rest of this thesis is organised as follows.

1. In Chapter 2, we describe the procedure that we use to generate a Cartesian cut

cell mesh. Note that the approach used to overcome the small cell problem and

14

1.1. THESIS STRUCTURE

compute solutions on the mesh does not depend on the technique used to create the

mesh.

2. In Chapter 3, we present a novel dimensionally split Cartesian cut cell method

to compute solutions for hyperbolic conservation laws. This content was recently

published in the Journal of Computational Physics [1]:

N. Gokhale, N. Nikiforakis, and R. Klein. A dimensionally split Cartesian cut cell

method for hyperbolic conservation laws. Journal of Computational Physics, 364:

186-208, 2018.

3. In Chapter 4, we present an extension of the cut cell method to compute solutions

for compressible Navier-Stokes problems involving rigid embedded boundaries. This

content was recently published in the Journal of Computational Physics [2] and is the

first presentation of a dimensionally split method for the compressible Navier-Stokes

equations in the literature:

N. Gokhale, N. Nikiforakis, and R. Klein. A dimensionally split Cartesian cut cell

method for the compressible Navier-Stokes equations. Journal of Computational

Physics, 375: 1205-1219, 2018.

4. In Chapter 5, we present a wall-modelled Large Eddy Simulation (WMLES) ap-

proach to computing turbulent flows using our dimensionally split cut cell method.

This is achieved by using an Implicit Large Eddy Simulation [8] approach to cal-

culate intercell fluxes, and an equilibrium wall function to compute the wall shear

stresses. We use the approach to calculate flows over idealised and realistic complex

automotive geometries. We expect to present these results, which would be the

first assessment of a WMLES Cartesian cut cell approach for computing automotive

flows, as part of a future publication.

5. Finally, conclusions and areas for future work are presented in Chapter 6.

15

1.1. THESIS STRUCTURE

(a) DrivAer geometry. (b) Wing mirror.

(c) Windscreen. (d) Door handle.

(e) Wheel.

Figure 1.1: Close up of the cut cell mesh around a realistic DrivAer fastback automotive
geometry.

16

1.2. CODE DEVELOPMENT

1.2 Code development

The code used to produce the results for this work was implemented in ‘LSC-AMR’1, an

in-house MPI-parallelised C++ code for Computational Fluid Dynamics developed by the

Laboratory for Scientific Computing at the University of Cambridge. LSC-AMR provides

high-resolution finite volume solvers to solve hyperbolic conservation laws in an explicit

fashion (see Section 1.2.1) on a hierarchical Adaptive Mesh Refinement (AMR) [3] mesh

(see Section 1.2.2). Our main contributions to the code base are the following:

1. Calculation of cut cell geometric parameters from a signed distance function, as

described in Chapter 2.

2. Implementation of the cut cell solver for hyperbolic conservation laws described in

Chapter 3.

3. Implementation of the viscous terms cut cell discretisation and compressible Navier-

Stokes equation cut cell solver described in Chapter 4.

4. Implementation of the equilibrium wall function on a cut cell mesh as described in

Chapter 5.

We also used Python and MATLAB extensively for prototyping and results post-

processing.

Computationally expensive 3D simulations for this work were performed on the Darwin

and CSD3 (launched in November 2017) High Performance Computing clusters located at

the University of Cambridge.

1.2.1 High-resolution finite volume methods

Consider a general system of conservation laws

∂tU(x, t) +∇ · F(U) = 0, (1.1)

where U(x, t) is the vector of conserved variables and F(U) represents the flux tensor.

For the 1D Euler equations, for example, U(x, t) = [ρ, ρu,E]T and F(U) = [ρu, (ρu2 +

p), u(E + p)]T . ρ, u, p and E are the density, velocity, pressure, and total energy per unit

volume respectively, and all four are functions of space and time.

1The primary developers of the code base are Dr. Philip Blakely, a Research Associate in the LSC,
and Dr. Kevin Nordin-Bates. The latter is no longer based at the LSC.

17

1.2. CODE DEVELOPMENT

Integrating Eq. 1.1 over a control volume V (with boundary S) and over a time interval

[t1, t2] gives, after using Gauss’s theorem,∫
V

U(x, t2)−U(x, t1)dV +

∫ t2

t1

∫
S

(F · n̂)dSdt = 0, (1.2)

where n̂ is the outward normal to the control volume. An explicit finite volume scheme to

evolve Eq. 1.2 for the computational cell i takes the form:

Ūn+1
i = Ūn

i +
∆t

∆V

∫
S

(F̄n · n̂)dS, (1.3)

where Ūn
i represents the discrete approximation to the volume averaged conserved variables

in cell i at time level n, F̄n represents the explicit numerical flux functions, ∆t is the

explicit stable time step, and ∆V is the volume of the cell. LSC-AMR provides explicit

numerical solvers of the form Eq. 1.3 to solve systems of conservation laws.

Since we use dimensional splitting to evolve conservation laws in time, we consider the

multidimensional update Eq. 1.3 as split into a series of one-dimensional updates of the

form

Ū∗i = Ūn
i +

∆t

∆V
(Ai−1/2F̄

n
i−1/2 − Ai+1/2F̄

n
i+1/2), (1.4)

where F̄n
i±1/2 are the intercell fluxes at the edge of cell i in the current coordinate direction,

and Ai±1/2 are the corresponding face areas. Ū∗i is the intermediate solution which is used

as the Initial Condition for the next dimensional sweep.

LSC-AMR provides an implementation of a number of ‘high-resolution’ finite volume

methods to compute the explicit intercell fluxes. Such methods are designed to have second

(or higher) order of accuracy in smooth parts of the solution, while also being able to capture

discontinuities without introducing spurious numerical oscillations. For the simulations in

this work, we compute hyperbolic fluxes using the second order MUSCL-Hancock high

resolution scheme [9], which we summarise in Section 1.2.1.1.

18

1.2. CODE DEVELOPMENT

1.2.1.1 MUSCL-Hancock scheme

UL
i

UR
i

UL
i+1

UR
i+1

ŪR
i

ŪL
i+1

i i + 1/2 i + 1

Figure 1.2: Illustration of the intercell flux calculation procedure for the MUSCL-Hancock
method.

Consider Fig. 1.2, which illustrates the procedure used to compute the MUSCL-Hancock

flux at the interface i+ 1/2 between two adjacent cells i and i+ 1 in the current coordinate

direction. Starting from a piecewise constant representation of the solution in each cell,

the first step involves using central differences to compute the slopes,

∆i =
Un
i+1 −Un

i−1

2∆x
, (1.5)

at each cell centre. ∆x is the grid spacing in the current coordinate direction. In order to

produce a Total Variation Diminishing (TVD) scheme that prevents the appearance of

spurious oscillations in the vicinity of discontinuities, ‘limited’ slopes ∆∗i are calculated

using a suitable limiter function ξi, such that

(∆∗i)k = (ξi)k(∆i)k, (1.6)

where k is the vector component index. In this work, we make use of the van Leer limiter,

(ξi)
vl
k =

0 , if rk ≤ 0,

2
1+rk

min(1, rk) , if rk > 0,
(1.7)

19

1.2. CODE DEVELOPMENT

where rk is the ratio of successive gradients,

rk =
(Un

i)k − (Un
i−1)k

(Un
i+1)k − (Un

i)k
. (1.8)

As illustrated in Fig. 1.2, the piecewise linear reconstruction can used to compute the

‘boundary extrapolated values’

UL
i = Ui −

1

2
∆x∆∗i , (1.9)

UR
i = Ui +

1

2
∆x∆∗i , (1.10)

in each cell. These are then evolved by half a time step as follows:

ŪL
i = UL

i +
1

2

∆t

∆x
(F(UL

i)− F(UR
i)), (1.11)

ŪR
i = UR

i +
1

2

∆t

∆x
(F(UL

i)− F(UR
i)). (1.12)

Finally, the Riemann problem defined by the piecewise constant states ŪR
i and ŪL

i+1 is

solved to calculate the intercell flux at the interface i+ 1/2. For the simulations in this

work, we use an exact Riemann solver for the Euler equations. The reader is referred to

Toro [9] for details of its implementation. It may be noted that the calculation of the flux

at the interface i+ 1/2 requires information from two cells on either side of the interface

(i− 1, i, i+ 1 and i+ 2).

20

1.2. CODE DEVELOPMENT

1.2.2 Hierarchical Adaptive Mesh Refinement

(a) Flagging (flagged cells are marked with

filled black circles).

(b) Buffering (cells in the buffer region are

marked with filled white circles).

(c) Clustering (patch boundaries are high-

lighted with bold lines).

(d) Refinement.

Figure 1.3: Illustration of the flagging, buffering, clustering, and refinement procedures
involved in refining around a region of interest in the AMR approach.

LSC-AMR provides an implementation of the Hierarchical Adaptive Mesh Refinement

(AMR) technique of Berger and Oliger [3]. This allows for finer resolutions to be used only

in regions of interest such as at the cut cell interface, or in the vicinity of a shock. We

provide a brief summary of the approach here.

Rectangular patches make up the AMR hierarchy, in which refined patches overlay

coarser ones. The solution is maintained on every AMR level. Consider Fig. 1.3a, which

illustrates the coarsest AMR level on a two-dimensional mesh, and a particular feature of

21

1.2. CODE DEVELOPMENT

interest around which we wish to refine. The feature may be a cut cell interface, or indeed

a shock wave diagonal to the grid.

The first step involves identifying the cells containing the feature, and ‘flagging’ them

for refinement. For the simulations in this work, we always flag all cut cells for refinement.

A cut cell can be identified trivially by comparing its volume to that of an uncut cell.

Furthermore, for subsonic problems, we typically manually specify a boxed region in

which all cells are also flagged for refinement. This is useful, for example, when refining

the region containing the wake behind a bluff body.

For supersonic problems, the cells neighbouring a moving shock wave are identified

dynamically and flagged as per the criteria

|∇ρ|2
ρ2

> Ω, (1.13)

where ρ is the density in the cell, and Ω is a user-defined tolerance.

Fig. 1.3a shows the cells flagged for refinement around the feature of interest. To

prevent having to regrid the AMR hierarchy every time step when tracking moving shock

waves, the flagged cells are padded by a buffer region of additional flagged cells, as

illustrated in Fig. 1.3b. Since the CFL stability condition on explicit numerical schemes

prevents the shock wave from travelling more than one cell width in each time step [9],

the extent of the buffer region is set to correspond to the regridding frequency.

As illustrated in Fig. 1.3c, the flagged cells are then clustered into rectangular patches

for refinement. Fig. 1.3d illustrates the result for a refinement factor of 2. The data in fine

cells is initialised via interpolation of the parent coarse cell data. Note that the method of

Berger and Rigoutsos [10] is the default clustering algorithm used in LSC-AMR.

If additional refinement is required, the same process of flagging, buffering, clustering

and refinement can be carried out on the newly created finer level. When evolving the

entire AMR hierarchy in time, the levels are evolved in the order of coarsest to finest, with

sub-cycling used on the finer levels in order to maintain the stability of the solution across

the hierarchy.

22

CHAPTER 2

CUT CELL MESH GENERATION

In this chapter, we describe the procedure that we use to generate a Cartesian cut cell mesh

around a geometry. As discussed in Chapter 1, this results in the creation of arbitrarily

small cut cells at the interface. The mesh generation technique is independent of the

approach used to efficiently evolve the solution in the cut cells.

In Section 2.1, we provide a description of the approach used to calculate the ‘core’

geometric parameters which would be required by any cut cell method. In Section 2.2, we

describe the calculation procedure for additional geometric parameters required by our

split cut cell scheme.

23

2.1. CALCULATION OF CORE GEOMETRIC PARAMETERS

2.1 Calculation of core geometric parameters

I1 I2

I3 I4

A B

C D

E F

G H

Fluid

Solid

x

y
z

Figure 2.1: Illustration of a cut cell in 3D.

Consider Fig. 2.1, which shows a 3D cut cell where the solid-fluid interface intersects the

cell at four points I1, I2, I3 and I4. The geometric parameters to be calculated are the

following:

(i) The face fraction, β ∈ [0, 1], of each cell face. This represents the fluid area of the

face non-dimensionalised by total cell face area.

(ii) The area, Ab, of the reconstructed interface in the cell and n̂b, the interface unit

normal. The superscript b is short for ‘boundary’.

(iii) The volume fraction, α ∈ [0, 1], of the cell. This is the fluid volume of the cell

non-dimensionalised by the total cell volume.

(iv) The volumetric centroid, xc, of the fluid part of the cell.

(v) The interface centroid, xbc of the reconstructed solid interface.

We proceed by treating the interface implicitly as the zero level-set of a signed distance

function. The technique of Mauch [11] is used to compute the signed distance function,

φ(x), at the vertices of the cell, and this information is used to reconstruct all the

required geometric information. The LSC-AMR code contains parallelised CPU and GPU

implementations of the Mauch algorithm.

24

2.1. CALCULATION OF CORE GEOMETRIC PARAMETERS

2.1.1 Multiply cut cells

Note that the mesh generation procedure that we proceed to describe is only valid when

the intersection of the cell and geometry can be described by a single interface. Sufficient

resolution must therefore be used to ensure that all cut cells are ‘singly cut’. The signed

distance function can be used to deal with ‘split cells’ created by multiple intersections of

the geometry with the cell by using a ‘Marching Cubes’ [12] based approach as in Gunther

et al. [13], but this is beyond the scope of this work.

2.1.2 Calculation of intersection points

Consider edge AE in Fig. 2.1. If it is intersected by the interface, i.e., if the signed

distances at points A and E are of opposite sign, then assuming a linear interface in the

vicinity of the edge, the non-dimensional distance from A to I1 may be calculated to be

AI1

AE
= −

(
φA

φE − φA

)
, (2.1)

where φA and φE are the signed distances at vertices A and E respectively. This approach

can be used to determine the coordinates of all the intersection points.

2.1.3 Calculation of face fractions

With the coordinates of the intersection points identified, calculating the face fractions for

each face in 3D is a matter of making use of the formula for the area, Apoly, of an arbitrary

non-self-intersecting polygon with n ordered vertices (x1, y1), ..., (xn, yn) [14]:

βface =
Apoly

Aface

=
1

2Aface

n∑
i=1

(xiyi+1 − xi+1yi), (2.2)

where we non-dimensionalise the result with the total area of the cell face, Aface. Note

that the summation index is periodic so that (n+ 1) = 1.

In a 2D simulation, on the other hand, the face fractions would be obtained by the

appropriate use of Eq. 2.1.

2.1.4 Interface area and normal calculation

As shown by Pember et al. [15], the unit interface normal (pointing into the solid), n̂bi,j,k,

and the interface area Abi,j,k for a cell (i, j, k) can be computed from the face fractions as

25

2.1. CALCULATION OF CORE GEOMETRIC PARAMETERS

follows:

Abi,j,kn̂
b
i,j,k = ∆y∆z(βi−1/2,j,k − βi+1/2,j,k)̂i

+ ∆x∆z(βi,j−1/2,k − βi,j+1/2,k)̂j (2.3)

+ ∆x∆y(βi,j,k−1/2 − βi,j,k+1/2)k̂.

It may be noted that Eq. 2.3, which is derived from the divergence theorem, reduces

naturally to 2D.

2.1.5 Volume fraction calculation

The volume fraction of the 3D cell can be computed from the formula of the volume of a

general polyhedron with NF faces [16]:

α =
1

3Vcell

∣∣∣∣∣
NF∑
i=1

(x̄i · n̂i)Ai

∣∣∣∣∣ , (2.4)

where x̄i is any point on face i, and n̂i and Ai are the outward unit normal and area of

face i respectively. Note that we non-dimensionalise the result by the total volume of the

cell, Vcell.

Cut cells in 2D are like cut cell faces in 3D so in a 2D simulation, Eq. 2.2 would be

used to compute the volume fraction of the cut cell.

2.1.6 Volumetric centroid calculation

In 3D, the volumetric centroid xc can be calculated using the formula for the centroid of

an arbitrary polyhedron with NF faces [17]

xc =
3

4

[∑NF
i=1(xc

i · n̂i)x
c
iAi

]
[∑NF

i=1(xc
i · n̂i)Ai

] , (2.5)

where xc
i is the centroid of face i (computed by the appropriate use of Eq. 2.6-Eq. 2.7),

and n̂i and Ai are the outward unit normal and area of face i respectively.

In a 2D simulation, the fluid part of a cut cell is a polygon. xc = [xc,x,xc,y]
T can

therefore be worked out using the formula for the centroid of a non-self-intersecting polygon

26

2.2. CALCULATION OF EXTRA GEOMETRIC PARAMETERS

with n ordered vertices (x1, y1), ..., (xn, yn) [18]

xc,x =
1

6Apoly

n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi), (2.6)

xc,y =
1

6Apoly

n∑
i=1

(yi + yi+1)(xiyi+1 − xi+1yi), (2.7)

where Apoly is calculated as in Eq. 2.2. Note that once again, the summation index is

periodic so that (n+ 1) = 1.

2.1.7 Interface centroid calculation

To compute the interface centroid xbc in 3D, we follow the following procedure:

1. Rotate the interface plane with n vertices (x1, y1, z1), ..., (xn, yn, zn) to give a polygon

aligned with the x-y Cartesian plane. This polygon has vertices (xrot
1 , yrot

1 , zrot),

..., (xrot
n , yrot

n , zrot). Note that because the interface reconstructed from the signed

distance function may not be perfectly planar, the z coordinates of the rotated

interface may differ slightly from one another. In practice, we set zrot to be the

numerical average of these varying z coordinates. Note also that the columns of the

required rotation matrix are the unit vectors of the orthonormal coordinate system

with a unit vector pointing normal to the cell interface, and unit vector(s) in the

interface tangential plane.

2. Use Eq. 2.6-Eq. 2.7 on the polygon with ordered vertices (xrot
1 , yrot

1), ..., (xrot
n , yrot

n) to

get xb,rot
c,x and xb,rot

c,y , which are the x and y coordinates of the interface centroid in

the rotated frame, xb,rot
c . Note that xb,rot

c = [xb,rot
c,x ,xb,rot

c,y , zrot]T .

3. Rotate xb,rot
c back to the original frame to give xbc as required.

In 2D, since we assume that cut cells are singly cut, xbc is worked out trivially as the

average of the positions of the two intersection points.

2.2 Calculation of extra geometric parameters

In this section, we describe the calculation procedure of some additional geometric param-

eters required by the split scheme. Consider Fig. 2.2, which illustrates two possible cut

cell configurations for neighbouring cells in an arbitrary dimensional sweep in 2D. Note

that our discussion applies equally to 3D as well.

27

2.2. CALCULATION OF EXTRA GEOMETRIC PARAMETERS

cell L cell R

βC = βUS + βSS,R + βDS

βUS

βSS,R

βDS

βL
βR

αDS
L

αDS
R

dR

αshielded
R

(a) Concave configuration.

cell L cell R

βSS,R

βUS

βSS,L

βL

βR

βC = βSS,L + βUS + βSS,R

αshielded
L

αshielded
R

(b) Narrow channel configuration.

Figure 2.2: Illustration of the additional geometric parameters required by the split cell
method for two configurations.

The split method requires the common face I face
C between the neighbouring cells to be

divided into the following regions:

– The ‘unshielded’ (US) region which does not ‘face’ a boundary in the current sweep

direction.

– The ‘singly-shielded from the left’ (SS,L) region which is ‘covered’ by the boundary

from the left.

– The ‘singly-shielded from the right’ (SS,R) region which is covered by the boundary

from the right.

– The ‘doubly-shielded’ (DS) region which faces the boundary from the left and right.

28

2.2. CALCULATION OF EXTRA GEOMETRIC PARAMETERS

∆x ∆x

US

α∆x ∆x

SS,L

∆x α∆x

SS,R

αL∆x αR∆x

DS

Figure 2.3: One-dimensional stencils corresponding to the unshielded (US), singly-shielded
from the left (SS,L), singly-shielded from the right (SS,R) and doubly-shielded (DS)
configurations.

Each region has its own face fraction, as labelled in Fig. 2.2a and Fig. 2.2b. Consider

Fig. 2.3, which illustrates the one-dimensional stencils corresponding to the four regions.

In the split method, the flux on the unshielded part of the interface does not need to be

stabilised since it corresponds to the 1D configuration where the cells to its immediate

left and right are uncut. The singly-shielded from the left, and singly-shielded from the

right parts, correspond, respectively, to the 1D configurations where a cut cell exists to

the immediate left or right of the interface. The flux acting on that region therefore

needs to be stabilised. The most challenging region for the method to deal with is the

doubly-shielded region, which corresponds to the 1D configuration where cut cells exist to

the immediate left and right of the interface. We describe our flux stabilisation procedure

for all the shielded configurations in Chapter 3.

In a singly-shielded region, αshielded
K (where K=L, R as appropriate) represents the

average distance from I face
C to the boundary in the current coordinate direction, non-

dimensionalised by the corresponding regular cell spacing. αDS
L and αDS

R are the fluid

volume fractions in the doubly-shielded regions of the left and right cells respectively.

29

2.2. CALCULATION OF EXTRA GEOMETRIC PARAMETERS

F

H

G

E

C

D

B

A
facePolyC : ABGH
prjIntL : EFGH
prjIntR : CDGH
facePolyUS : ABCD
facePolyDS : EFGH

cell L cell R

Figure 2.4: Illustration of the deconstruction of I face
C into constituent polygons used for the

calculation of cut cell geometric parameters. The polygon names are shown to the right.

We proceed to outline how all of these additional geometric parameters are computed.

Part of the procedure involves deconstructing I face
C into constituent polygons of interest for

the purpose of calculating the geometric parameters. Fig. 2.4 illustrates this process for a

three-dimensional configuration in an arbitrary dimensional sweep. Note that extensive use

was made of the ‘Boost.Geometry’ [19] part of the Boost C++ Libraries when implementing

the code for this section.

Step 1: Construct the fluid face polygon on I faceC

Use the intersection points of the geometry and the grid on I face
C to construct the polygon

‘facePolyC’ that borders the fluid part of I face
C . In 2D, the fluid part of I face

C is a ‘line’ which

is converted into a polygon using extrusion by unit depth.

Step 2: Projection of the interfaces on I faceC

Project the left and right interface planes on I face
C in the current coordinate direction to

give the polygons ‘prjIntL’ and ‘prjIntR’ respectively. In 2D, note that we extrude the

interface ‘planes’ by a unit depth before carrying out the projection.

Step 3: Calculation of βUS and βDS

Subtract prjIntL and prjIntR, in turn, from facePolyC to give the unshielded polygon

‘facePolyUS’. By ‘subtraction’, we refer to the spatial set theoretic difference of two

geometries. The unshielded face fraction βUS is the area of facePolyUS.

30

2.2. CALCULATION OF EXTRA GEOMETRIC PARAMETERS

The doubly-shielded face fraction βDS is calculated from the area of ‘facePolyDS’,

which is the polygon given by the spatial set theoretic intersection of prjIntL and prjIntR.

Step 4: Calculation of αDS
L and αDS

R

If βDS 6= 0, we also have to compute the doubly-shielded volume fractions. These are given

by the product of βDS and dK (where K=L, R as appropriate). dK is the non-dimensional

distance, measured in the current coordinate direction, from the centroid of facePolyDS to

the interface in the cell. dR is illustrated for the doubly-shielded part of ‘cell R’ in Fig.

2.2a.

Let xDS
c be the position of the centroid of facePolyDS, and xint

P be the position of any

of the intersection points of the interface and the cell of interest. Consider the vector

[xint
P − (xDS

c + dK îd)] which lies in the interface plane. îd is the unit vector pointing in the

current sweep direction. Then,

[xint
P − (xDS

c + dK îd)] · n̂b = 0, (2.8)

where n̂b is the interface unit normal. Re-arranging Eq. 2.8 gives

dk =
(xint

P − xDS
c) · n̂b

n̂b · îd
, (2.9)

which can then be used to calculate the doubly-shielded volume fraction.

Step 5: Calculation of βSS,L and βSS,R

To start with, compute the total shielded face fraction:

βshielded = βC − βUS. (2.10)

Then, βSS,L and βSS,R can be worked out in a straightforward fashion to be

βSS,L = max(0.0, βshielded − (max(βC − βR))), (2.11)

βSS,R = max(0.0, βshielded − (max(βC − βL))). (2.12)

31

2.3. CONCLUSION

Step 6: Calculation of αshielded
L and αshielded

R

αshielded
K (where K=L, R as appropriate) is given by

αshielded
K =

αsingly-shielded
K

βSS,K
, (2.13)

where

αsingly-shielded
K = αK − βK − αDS

K . (2.14)

αK is the volume fraction of the cut cell.

2.3 Conclusion

The procedure described in this chapter can be used to robustly generate a cut cell mesh

as long as sufficient resolution is used to ensure that all cut cells remain singly-cut. We

describe our dimensionally split method to overcome the small cell problem and evolve the

solution on this mesh in the context of the Euler and Navier-Stokes equations in Chapter

3 and Chapter 4 respectively.

32

CHAPTER 3

A DIMENSIONALLY SPLIT CARTESIAN CUT CELL

METHOD FOR HYPERBOLIC CONSERVATION LAWS

In this chapter, we present a novel dimensionally split Cartesian cut cell method that makes

use of local geometric and wave speed information to overcome the small cell problem in

the context of hyperbolic conservation laws. This content was recently published in the

Journal of Computational Physics [1]:

N. Gokhale, N. Nikiforakis, and R. Klein. A dimensionally split Cartesian cut cell

method for hyperbolic conservation laws. Journal of Computational Physics, 364: 186-208,

2018.

3.1 Introduction

Cartesian cut cell methods have been an active area of research since the early 1980s and

a number of strategies to overcome the small cell problem have been published in the

literature. The reader is encouraged to look up the accessible recent book chapter by

Berger [20] for a thorough overview of the methods published to date. In the following,

we highlight and briefly describe some of the noteworthy contributions.

Different methodologies exist to overcome the small cell problem. With cell merging,

as in Clarke et al. [21], or the related cell linking strategy, as employed by Quirk [22],

Kirkpatrick et al. [23] and Hartmann et al. [24], cells with volume lower than a certain

threshold are absorbed into larger neighbouring cells. Based on the static boundary

cut cell formulation of Hartmann et al. [24], it may be noted that Schneiders et al. [25]

have successfully developed a method to compute moving boundary problems in 3D by

33

3.1. INTRODUCTION

introducing an interpolation routine and flux redistribution step. Meinke et al. [26] have

used the developed technique to compute the flow in a relatively complicated engine

geometry involving moving parts.

Another alternative is to use the simplified ‘h-box’ method of Berger and Helzel [27].

Here, the domain of dependence of the intercell flux is extended to the regular cell length,

h, on a virtual grid of h-boxes in such a way that a ‘flux cancellation’ occurs, removing

the dependence on cell volume from the update formula. Although second order accuracy

at the boundary can be achieved with this method, it is quite complicated and has not yet

been implemented in three dimensions.

In the ‘flux redistribution’ approach of Colella et al. [28], conservative but potentially

unstable fluxes are initially computed for each cut cell. A stable but non-conservative part

of the update is applied to the cut cells, and conservation is maintained by redistributing

the remaining part to surrounding cut and uncut cells. A similar approach is the ‘flux

mixing’ technique of Hu et al. [29]. Here, the explicit fluxes are used to update all

cells, following which the solution in the cut cells is mixed with neighbouring cells. This

technique has been extended and used in the context of a number of different applications.

Grilli et al. [30] have successfully used it at the compression ramp geometry in their

study on shockwave turbulent boundary layer interaction. Pasquariello et al. [31] use it

at the interface in the coupled finite volume-finite element method they develop to study

fluid-structure interaction problems. Furthermore, it may be noted that Muralidharan and

Menon [32] have recently managed to use it to develop a third order accurate method.

Another noteworthy approach to obtain high order convergence is the ‘inverse Lax-

Wendroff’ method of Tan and Shu [33]. In a subsequent paper describing an efficient

implementation of the technique, Tan et al. [34] are able to demonstrate fifth order

convergence for two-dimensional problems for the Euler equations.

‘Explicit-implicit’ approaches as developed by Jebens et al. [35], or more recently, by

May and Berger [36], are also an interesting area of development. Here, the attempt is

to develop a combined scheme where regular and cut cells are integrated explicitly and

implicitly in time respectively.

All the aforementioned methods have their own relative merits and are implemented in

an unsplit fashion. As discussed in Chapter 1, we are particularly interested in adopting a

dimensionally split approach which is a simple way to extend one-dimensional methods for

hyperbolic conservation laws to multidimensional problems. To that end, we make use of

the framework introduced by Klein, Bates and Nikiforakis [37] which provides a description

of how cut cell updates can be performed in a split fashion. The stabilised ‘KBN’ cut

cell flux that they devise makes use of local geometric information. In this chapter, we

34

3.2. GOVERNING EQUATIONS AND SOLUTION FRAMEWORK

present a ‘Localised Proportional Flux Stabilisation’ (LPFS) approach which makes use

of local geometric and wave speed information to define a novel cut cell flux. Numerical

tests indicate that the LPFS flux alleviates the problem of oscillatory boundary solutions

produced by the KBN flux at higher Courant numbers, and enables the computation of

more accurate solutions near stagnation points.

The rest of the chapter is organised as follows. We outline the governing equations

and explicit numerical schemes that we use in Section 3.2. In Section 3.3, we describe the

derivation of the KBN and LPFS fluxes, and describe their multi-dimensional extensions

in the framework of Klein et al. In Section 3.4, a theoretical convergence and stability

analysis of the LPFS method for the model one-dimensional linear advection equation is

presented. In Section 3.5, we present numerical solutions for a number of multi-dimensional

test problems to demonstrate the performance of the LPFS method. Finally, conclusions

and areas for future work are provided in Section 3.6.

3.2 Governing equations and solution framework

We use the linear advection equation,

∂tu+ a · ∇u = 0, (3.1)

when proving the convergence and stability of LPFS in Section 3.4, and for some convergence

tests in Section 3.5.1. u is the variable being advected at constant velocity a.

For more challenging tests, we solve the compressible, unsteady, Euler equations

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u + pI) = 0, (3.2)

∂tE +∇ · [(E + p)u] = 0.

In Eq. 3.2, ρ is density, u is velocity, p is pressure and I is the identity matrix. E is

the total energy per unit volume, given by

E = ρ

(
1

2
|u|2 + e

)
, (3.3)

where e is the specific internal energy. To close the system of equations Eq. 3.2-Eq. 3.3

35

3.2. GOVERNING EQUATIONS AND SOLUTION FRAMEWORK

we use the ideal gas equation of state

e =
p

ρ(γ − 1)
, (3.4)

where γ, the heat capacity ratio, is assumed to be 1.4.

We compute explicit fluxes in a Godunov-based finite volume framework using an exact

Riemann solver and the MUSCL-Hancock scheme in conjunction with the van-Leer limiter

[9]. This scheme is second order accurate in smooth regions. The definition of the KBN

and LPFS fluxes are independent of the particular choice of flux method used, however.

We also make use of hierarchical AMR [3] to refine areas of interest such as shock waves,

or the cut cell interface, while allowing the use of coarser resolutions elsewhere for the

sake of computational efficiency. Multi-dimensional updates are performed using Strang

splitting [38] in 2D, and straightforward Godunov splitting [39] in 3D.

The time step, ∆t, is restricted by the CFL condition

∆t = Ccfl min
d,i

(
∆xd,i
Wmax
d,i

)
, (3.5)

where d is the index of the coordinate direction, i is the index of a computational cell, and

∆xd,i and Wmax
d,i are the spatial resolution and max wave speed for cell i in the d direction

respectively. The MUSCL-Hancock scheme has a linearised stability constraint Ccfl ∈ (0, 1]

[9], where Ccfl is the Courant number.

For the Euler equations, the wave speed for cell i in the d direction, Wd,i, is computed

using the following estimate suggested by Toro [9]:

Wd,i = |ud,i|+ ai, (3.6)

where ud,i is the component of the velocity in cell i in the d direction. ai is the speed of

sound in cell i, given by

ai =

√
γpi
ρi
. (3.7)

Domain edge boundary conditions are specified using the ‘fictitious cell’ approach

[9]. Depending on the physics of the particular boundary condition, the flow variables

in the domain edge ghost cells are either fully or partially specified, and any unspecified

variables are extrapolated from the interior of the domain. For a supersonic inflow

boundary condition, for example, the ghost cell states are completely specified because

all characteristics in the solution of the boundary Riemann problem point to the right.

36

3.3. NUMERICAL METHOD

∆x α∆x

∆x

Fn
i−3/2 Fn

i−1/2 Fb,n

i− 1 i

Figure 3.1: Illustration of the KBN flux stabilisation procedure for a boundary cut cell
neighbouring a regular cell in 1D.

Conversely, at a supersonic outlet or ‘transmissive’ boundary, all ghost cell variables

are extrapolated from within the domain. At reflective boundaries, ghost variables are

extrapolated from the domain, but the sign of the normal velocity component is inverted.

The reader is referred to Laney [40] for a comprehensive overview of the topic of enforcing

boundary conditions.

The two other domain edge boundary conditions used in this chapter are subsonic inflow,

and subsonic outflow. We use the specifications implemented in LSC-AMR which were

found to work well in practice. For subsonic inflow, the ghost cell momentum and entropy

are specified, while density is extrapolated from within domain. At a subsonic outflow

boundary, only the ghost pressure is specified with all other values being extrapolated

from the domain.

3.3 Numerical method

In this section, we describe the derivation of the one-dimensional KBN and LPFS fluxes,

as well as their multi-dimensional extensions. A convergence and stability analysis of

LPFS is presented in Section 3.4.

3.3.1 The KBN flux

Consider Fig. 3.1, which shows a boundary cut cell neighbouring a regular cell in 1D. Let

Un
i represent the conserved variable state vector for cell i at time level n, and let Fn

i±i/2
represent the explicit numerical fluxes computed at its ends.

A creative reasoning is used to compute the stabilised cut cell flux, FKBN,n
i−1/2 . In an

explicit finite volume scheme, the state at the new time level is computed from the intercell

fluxes at the old time level. On the other hand, if the state at the new time level were

known, one could work out the stable intercell flux. An estimate of the new state, Ūn+1
i ,

is calculated by extending the ‘influence’ of the cut cell to the regular cell length (this is

37

3.3. NUMERICAL METHOD

i− 1 i

∆x α∆x

α2∆x

∆x

∆t
∆tcc

tn

tn+1

t

x

Figure 3.2: Illustration of the LPFS flux stabilisation procedure for a boundary cut cell
neighbouring a regular cell in 1D.

illustrated by the dotted line in Fig. 3.1):

Ūn+1
i = Un

i +
∆t

∆x
(Fn

i−i/2 − Fb,n). (3.8)

The actual 1D conservative update is:

Ûn+1
i = Un

i +
∆t

α∆x
(FKBN,n

i−1/2 − Fb,n). (3.9)

Equating the right hand sides of Eq. 3.8 and Eq. 3.9 provides the expression for the

stabilised flux:

FKBN,n
i−1/2 = Fb,n + α(Fn

i−i/2 − Fb,n), (3.10)

which is used to update the cut cell and its neighbour (making the scheme conservative)

at the regular time step ∆t. Note that Eq. 3.10 is consistent with respect to the natural

limits of the grid so that as α → 1, FKBN,n
i−1/2 → Fn

i−i/2, and as α → 0, FKBN,n
i−1/2 → Fb,n.

When used to update the cut cell i, the flux FKBN,n
i−1/2 provides stability and conservation

by applying α(Fn
i−i/2 − Fb,n) to the cut cell, and applying the remaining flux difference,

(1− α)(Fn
i−i/2 −Fb,n) to the neighbouring uncut cell. In that respect, the one-dimensional

flux stabilisation approach is related to the flux redistribution approach of Colella et al.

[28].

38

3.3. NUMERICAL METHOD

3.3.2 The LPFS flux

From Eq. 3.10, it may be seen that the KBN flux uses the geometric parameter α to

determine a stabilised flux. Here, we describe the use of geometric and wave speed

information to define a new stabilised cut cell flux.

Consider Fig. 3.2, which shows a boundary cut cell neighbouring a regular cell in the

x-t plane for one time step. ∆t is the global stable time step which is determined in part by

the fastest wave speed in the domain, Wmax (see Eq. 3.5). Intuitively, the CFL time step

restriction requires that no wave from the solution of the local Riemann problems should

travel more than one cell width during the time step. For the configuration of Fig. 3.2, we

illustrate the ‘small cell problem’ at the cut cell as being caused by the left-going wave

from the solution of the boundary Riemann problem. Stability would therefore require the

use of the smaller ∆tcc:

∆tcc = Ccfl
α∆x

Wi

, (3.11)

where Wi is the wave speed for the cut cell.

In the LPFS approach, we use the explicit flux Fn
i−i/2 for the part of the time step for

which it is stable, ∆tcc, and employ a different flux which can maintain stability for the

duration (∆tcc,∆t]. This gives the LPFS method an inherent advantage over the KBN

method in regions of low velocity. Although α < 1 depresses ∆tcc relative to ∆t, part of

the reduction is offset if Wi < Wmax, an effect which is most pronounced in regions of

low velocity near a stagnation point. For larger cut cells, we found the ratio ∆tcc/∆t to

sometimes be greater than 1. The flux in this case requires no stabilisation which we allow

for in LPFS by requiring that ∆tcc/∆t ≤ 1. Although we only deal with inviscid flows in

this chapter, it may be noted that in viscous flows, low velocity regions next to the solid

boundary occur also due to the boundary layer.

There is room for creativity in the definition of the flux used in the interval (∆tcc,∆t],

and we define a modified version of the original KBN flux to be used there. As described

in Section 3.3.1, the KBN flux is derived by extending the influence of the cut cell to the

full cell length. We interpret this idea in the picture of Fig. 3.2 and propose extending the

influence of the cell only as far as necessary so that no wave-interface intersections occur

from the solutions of the cut cell Riemann problems. This means extending the influence

to a length of α2∆x instead of ∆x and results in the definition of a modified KBN flux:

FKBN,mod,n
i−1/2 = Fb,n +

α

α2

(Fn
i−i/2 − Fb,n). (3.12)

Like FKBN,n
i−1/2 , FKBN,mod,n

i−1/2 is still consistent with the natural limits of the grid as α→ 1 and

39

3.3. NUMERICAL METHOD

cell L cell R

βC = βUS + βSS,R + βDS

βUS

βSS,R

βDS

βL
βR

αDS
L αDS

R

αshielded
R

(a) Geometric parameters.

cell L cell R

FUS,n

FSS,R,n

FDS,n

FB,n
L

FB,n
R

(b) Intercell flux components.

Figure 3.3: Illustration of the parameters used in the flux stabilisation process for multi-
dimensional simulations.

α→ 0. From Fig. 3.2, it is also evident that α/α2 is just ∆tcc/∆t.

The LPFS stabilised flux is therefore the following:

FLPFS,n
i−1/2 =

∆tcc

∆t
Fn
i−1/2 +

(
1− ∆tcc

∆t

)
FKBN,mod,n
i−1/2 . (3.13)

Combining Eq. 3.11 and Eq. 3.5 gives the expression for ∆tcc/∆t:

∆tcc

∆t
= ε

αWmax

Wi

. (3.14)

For the non-linear Euler equations, we employ the ‘wave speeds uncertainty’ parameter

ε ∈ [0, 1] to account for any errors arising from the use of Eq. 3.6 to estimate the cut

cell wave speeds. We found setting ε to 0.5 to be a robust choice for the wide range of

problems tackled in this chapter. For the linear advection equation, ε is of course set

precisely to 1 and, in fact, ∆tcc/∆t = α.

Like the KBN flux, the LPFS flux is still only first order accurate at the boundary and

for the simulations in this chapter, we do not even linearly reconstruct the solution in the

cut cells. However, the numerical results indicate that the LPFS flux not only allows the

computation of more accurate solutions near stagnation points as would be expected, but

also alleviates the problem of oscillatory boundary solutions produced by the KBN flux at

higher Courant numbers.

3.3.3 Multi-dimensional extension

The LPFS flux can be implemented for multi-dimensional simulations in the framework of

Klein et al. which requires attention to be given to the irregular nature of the cut cells.

40

3.3. NUMERICAL METHOD

With reference to Fig. 3.3, we explain the flux calculation procedure at the interface I face
C

between two neighbouring cells for an arbitrary dimensional sweep in a 2D simulation.

The procedure is exactly the same for 3D simulations.

The division of I face
C into ‘shielded’ and ‘unshielded’ regions has already been introduced

in Section 2.2, where we also define all the geometric parameters shown in Fig. 3.3a.

The fluxes labelled in Fig. 3.3b are calculated as follows:

– The boundary flux, for example, FB,n
L , is calculated by evaluating the flux acting in

the current coordinate direction for the ‘boundary state’ given by the solution of the

wall normal Riemann problem. For static reflective boundaries, the boundary state

is calculated as follows:

1. Rotate the cut cell state Un
i to produce the state Urot,n

i aligned with the

boundary normal-tangential frame.

2. Invert the sign of the normal velocity component of Urot,n
i to produce the ‘ghost

state’ Urot,n
i,GC.

3. Compute the solution, Urot,B,n
i , to the wall normal Riemann problem defined

by Urot,n
i and Urot,n

i,GC.

4. Rotate Urot,B,n
i to align back with the Cartesian frame to give the ‘boundary

state’ UB,n
i .

Note that in order to maintain conservation in a dimensionally split framework, the

advective boundary fluxes need to be computed using ‘reference’ boundary states

computed at the start of a time step and kept constant in between sweeps. Since the

velocity resulting from the wall Riemann problem is tangential to the wall, the sum

of advective fluxes across the interface accummulated over a full cycle of split steps

cancels exactly, thus ensuring zero net mass flux across the wall. This restriction

does not apply to other fluxes, so that for the Euler equations Eq. 3.2, for example,

the boundary state pressure should be updated in each sweep. A specification of this

non-obvious requirement for computing the boundary fluxes was one of the unique

insights provided by Klein et al. [37].

– FUS,n is taken to be the standard explicit 1D flux for regular cells since it is not

shielded by the boundary. Note that linear reconstruction of the solution to compute

MUSCL-Hancock fluxes is carried out on the 1D strips neighbouring the unshielded

part of the interface.

– The singly-shielded fluxes, FSS,L,n and FSS,R,n, are calculated as one-dimensional

LPFS stabilised fluxes as per Eq. 3.13, with the place of α in Eq. 3.14 being taken

41

3.3. NUMERICAL METHOD

by αshielded
L or αshielded

R respectively. Note that the unstabilised fluxes acting on the

singly-shielded parts are computed using the first order Riemann solver with no

linear reconstruction.

– In the doubly-shielded region, there is a genuine restriction on the time step imposed

by the distance between the two boundaries. Here, we propose the use of a simple

conservative ‘mixing’ flux designed to produce the same volume-averaged solution in

the doubly-shielded parts of the cells over the course of the dimensional sweep:

FDS,n =
1

(αDS
L + αDS

R)

[
αDS
L αDS

R ∆x

βDS∆t
(Un

L −Un
R) + αDS

L FB,n
R + αDS

R FB,n
L

]
. (3.15)

The modified flux Fmodified,n
C at I face

C is taken as an area-weighted sum of the individual

components:

Fmodified,n
C =

1

βC

[
βUSFUS,n + βSS,LFSS,L,n + βSS,RFSS,R,n + βDSFDS,n

]
. (3.16)

The multi-dimensional update formula for a cut cell of index (i, j) in 2D using Godunov

splitting would be:

U
n+ 1

2
i,j = Un

i,j +
∆t

αi,j∆x

[
βi−1/2,jF

modified,n
i−1/2,j − βi+1/2,jF

modified,n
i+1/2,j −

(
βi−1/2,j − βi+1/2,j

)
FB,n
i,j

]
,

Un+1
i,j = U

n+ 1
2

i,j +
∆t

αi,j∆y

[
βi,j−1/2G

modified,n
i,j−1/2 − βi,j+1/2G

modified,n
i,j+1/2 −

(
βi,j−1/2 − βi,j+1/2

)
GB,n
i,j

]
(3.17)

where we use F and G to denote fluxes acting in the x and y directions respectively. As in

Section 2.1, β represents the cell face fraction. βi−1/2,j , for example, is the cell face fraction

of the interface between cells (i− 1, j) and (i, j). Note also that the boundary fluxes FB,n
i,j

and GB,n
i,j are computed using the ‘reference’ boundary states as explained earlier. A 3D

simulation would involve one more sweep using fluxes H acting in the z direction.

Note that the construction principle of the method is to deviate as little from the

standard update for regular cells as possible. Over the unshielded parts of cell faces, the

fluxes do not call for stabilisation, only those across the shielded parts do. This way, we

aim for minimised dissipative impact of the stabilisation method.

42

3.4. CONVERGENCE AND STABILITY ANALYSIS

∆x ∆x αR∆x∆x∆xαL∆x

(N − 3
2
) (N − 1

2
)(N + 1

2
)(1/2)(3/2) (5/2)

N − 2 N − 1 N0 1 2 3

Figure 3.4: 1D mesh with cut cells located at the left and right edges of the domain.

3.3.3.1 Post-sweep correction at concavities

When βL = βR = 0, i.e., when I face
C is completely shielded by the boundary from both

sides, we found that the mixing flux Eq. 3.15 was sometimes unable to maintain stability.

A simple conservative fix for this problem is to merge the solution in such pairs of ‘fully

doubly-shielded’ cells with that of their immediate neighbours in a volume-fraction weighted

manner at the end of the sweep. This is not computationally expensive as the affected

cells can be identified at the flux computation stage and directly targeted after the sweep.

The performance of this strategy is demonstrated through the results of Section 3.5.4

and Section 3.5.6, which contain examples of fully doubly-shielded cells in two and three

dimensions respectively.

The design of a better doubly-shielded flux FDS,n which would avoid the need for

this post-sweep correction is identified as an open research problem. It should be noted,

however, that the correction even as it stands affects only a small number of cells. For

the complex geometry test case of Section 3.5.6, for example, ‘fully doubly-shielded’ cells

make up less than 0.05% of all cut cells in a given dimensional sweep.

3.4 Convergence and stability analysis

In this section, we demonstrate the convergence and stability of the first order LPFS

scheme for the solution of the linear advection equation

ut + aux = 0, (3.18)

on the one-dimensional mesh consisting of N cells shown in Fig. 3.4. The boundary cells

‘1’ and ‘N ’ are both assumed to be cut cells with respective volume fractions αL and αR.

For the purposes of the analysis, we can therefore assume without loss of generality that

a > 0.

43

3.4. CONVERGENCE AND STABILITY ANALYSIS

From Eq. 3.13, the stabilised LPFS flux at interface (3/2) can be worked out to be:

fLPFS,n
3/2 = αLf

n
3/2 + (1− αL)fKBN,n

3/2

= αLf
n
3/2 + (1− αL)[fn1/2 + αL(fn3/2 − fn1/2)]

= (αL − 1)2fn1/2 + αL(2− αL)fn3/2. (3.19)

Similarly, the stabilised LPFS flux at interface (N − 1/2) is:

fLPFS,n
N−1/2 = αRf

n
N−1/2 + (1− αR)fKBN,n

N−1/2

= αRf
n
N−1/2 + (1− αR)[fnN+1/2 + αR(fnN−1/2 − fnN+1/2)]

= αR(2− αR)fnN−1/2 + (αR − 1)2fnN+1/2. (3.20)

The update formulas for cells ‘1’, ‘2’, ‘N − 1’ and ‘N ’ which are affected by the flux

stabilisation are thus:

Un+1
1 = Un

1 + c(2− αL)(Un
0 − Un

1), (3.21)

Un+1
2 = Un

2 + c[(αL − 1)2Un
0 + αL(2− αL)Un

1 − Un
2], (3.22)

Un+1
N−1 = Un

N−1 + c[Un
N−2 − αR(2− αR)Un

N−1 − (αR − 1)2Un
N], (3.23)

Un+1
N = Un

N + c(2− αR)(Un
N−1 − Un

N), (3.24)

where c = a∆t
∆x

is the Courant number. Note that we use capital Un
i to denote the discrete

approximation of the volume averaged solution in cell i at time n.

3.4.1 ‘Supraconvergence’ property of the LPFS scheme

Attempting a truncation error analysis of the scheme in any of the cells ‘1’, ‘2’, ‘N − 1’ and

‘N ’ affected by the flux stabilisation shows an inconsistency with the governing equation

Eq. 3.18. Note that in the following, we use small uni to represent the grid function of the

exact solution u(x, t) in cell i at time n.

Consider, for example, cell N . The truncation error in that cell, LuN , can be found to

44

3.4. CONVERGENCE AND STABILITY ANALYSIS

be:

LuN =
un+1
N − unN

∆t
− (2− αR)a

unN−1 − unN
∆x

= ut(xN , t
n)− (2− αR)a

unN − (1+αR)
2

∆xux(xN , t
n)− unN

∆x
+O(∆t,∆x)

= −aux(xN , tn) + (2− αR)a
(1 + αR)

2
ux(xN , t

n) +O(∆t,∆x)

=
1

2
αR(αR − 1)aux(xN , t

n) +O(∆t,∆x),

so that the scheme is inconsistent unless αR is 1. Therefore, we cannot invoke the ‘Lax

equivalence theorem’ [41] in the analysis.

Despite this inconsistency, numerical tests show that the scheme does, in fact, converge

with first order accuracy (see Section 3.5.1). To prove this ‘supraconvergence’ property of

the method, we follow the approach of Berger et al. [42] who perform a similar analysis

for their h-box method.

The aim is to find another grid function w which differs from the grid function of u by

an O(∆x) amount, and for which the truncation error in all cells is O(∆t,∆x). This gives

|wi − Ui| = O(∆t,∆x) (3.25)

for i = 1, . . . , N . However, since w = u+O(∆x), this would imply that

|ui − Ui| = O(∆t,∆x) (3.26)

for i = 1, . . . , N , i.e. that the scheme does in fact approximate the true solution to first

order despite the inconsistency in the boundary cells and their immediate neighbours.

Let the grid function w be defined as follows:

wni =



uni + αL(αL−1)
2(2−αL)

∆xux(xi, t
n) if i = 1,

uni +
(

1+αR(αR−2)
αR−2

)
∆xux(xi, t

n) if i = N − 1,

uni + 1
2
(αR − 1)∆xux(xi, t

n) if i = N,

uni otherwise,

(3.27)

where we note that w = u+O(∆x) as desired.

45

3.4. CONVERGENCE AND STABILITY ANALYSIS

The truncation error of w in cell ‘1’, Lw1 can be worked out to be:

Lw1 =
wn+1

1 − wn1
∆t

− (2− αL)a
wn0 − wn1

∆x

=
un+1

1 + αL(αL−1)
2(2−αL)

∆xux(x1, t
n+1)− un1 − αL(αL−1)

2(2−αL)
∆xux(x1, t

n)

∆t

− (2− αL)a
un0 − un1 − αL(αL−1)

2(2−αL)
∆xux(x1, t

n)

∆x

=
un1 + ∆tut(x1, t

n) + αL(αL−1)
2(2−αL)

∆xux(x1, t
n)− un1 − αL(αL−1)

2(2−αL)
∆xux(x1, t

n)

∆t

− (2− αL)a
un1 − (1+αL)

2
∆xux(x1, t

n)− un1 − αL(αL−1)
2(2−αL)

∆xux(x1, t
n)

∆x
+O(∆t,∆x)

= ut(x1, t
n)− (2− αL)a

−∆xux(x1,tn)
(2−αL)

∆x
+O(∆t,∆x)

= ut(x1, t
n) + aux(x1, t

n) +O(∆t,∆x) = O(∆t,∆x).

Similarly, the truncation error in cell ‘2’, Lw2 is:

Lw2 =
wn+1

2 − wn2
∆t

− a [(αL − 1)2wn0 + αL(2− αL)wn1 − wn2]

∆x

=
un+1

2 − un2
∆t

− a

[
(αL − 1)2un0 + αL(2− αL)

(
un1 + αL(αL−1)

2(2−αL)
∆xux(x1, t

n)
)
− un2

]
∆x

= ut(x2, t
n)− a [(αL − 1)2(un2 − (1 + αL)∆xux(x2, t

n))]

∆x

− a

[
αL(2− αL)

(
un2 − (1+αL)

2
∆xux(x2, t

n) + αL(αL−1)
2(2−αL)

∆xux(x2, t
n)
)
− un2

]
∆x

+O(∆t,∆x)

= ut(x2, t
n) + aux(x2, t

n) +O(∆t,∆x) = O(∆t,∆x).

46

3.4. CONVERGENCE AND STABILITY ANALYSIS

At the right edge of the domain, the truncation error in cell ‘N − 1’, LwN−1 is:

LwN−1 =
wn+1
N−1 − wnN−1

∆t
− a [wnN−2 − αR(2− αL)wnN−1 − (αR − 1)2wnN]

∆x

=
un+1
N−1 +

(
1+αR(αR−2)

αR−2

)
∆xux(xN−1, t

n+1)− unN−1 −
(

1+αR(αR−2)
αR−2

)
∆xux(xN−1, t

n)

∆t

− a

[
unN−2 − αR(2− αL)

(
unN−1 +

(
1+αR(αR−2)

αR−2

)
∆xux(xN−1, t

n)
)]

∆x

− a
[
−(αR − 1)2

(
unN + 1

2
(αR − 1)∆xux(xN , t

n)
)]

∆x

=
un+1
N−1 +

(
1+αR(αR−2)

αR−2

)
∆xux(xN−1, t

n)− unN−1 −
(

1+αR(αR−2)
αR−2

)
∆xux(xN−1, t

n)

∆t

− a

[
unN−1 −∆xux(xN−1, t

n)− αR(2− αL)
(
unN−1 +

(
1+αR(αR−2)

αR−2

)
∆xux(xN−1, t

n)
)]

∆x

− a

[
−(αR − 1)2

(
unN−1 + (1+αR)

2
∆xux(xN−1, t

n) + 1
2
(αR − 1)∆xux(xN−1, t

n)
)]

∆x

+O(∆t,∆x)

= ut(xN−1, t
n) + aux(xN−1, t

n) +O(∆t,∆x) = O(∆t,∆x).

Similarly, the the truncation error in cell ‘N ’, LwN is:

LwN =
wn+1
N − wnN

∆t
− (2− αR)a

wnN−1 − wnN
∆x

=
un+1
N + 1

2
(αR − 1)∆xux(xN , t

n+1)− unN − 1
2
(αR − 1)∆xux(xN , t

n)

∆t

− (2− αR)a
unN−1 +

(
1+αR(αR−2)

αR−2

)
∆xux(xN−1, t

n)− unN − 1
2
(αR − 1)∆xux(xN , t

n)

∆x

=
un+1
N + 1

2
(αR − 1)∆xux(xN , t

n)− unN − 1
2
(αR − 1)∆xux(xN , t

n)

∆t

− (2− αR)a
unN − (1+αR)

2
∆xux(xN , t

n) +
(

1+αR(αR−2)
αR−2

)
∆xux(xN , t

n)

∆x

− (2− αR)a
−unN − 1

2
(αR − 1)∆xux(xN , t

n)

∆x
+O(∆t,∆x)

= ut(xN , t
n)− (2− αR)a

−∆xux(xN ,t
n)

(2−αR)

∆x
+O(∆t,∆x)

= ut(xN , t
n) + aux(xN , t

n) +O(∆t,∆x) = O(∆t,∆x).

47

3.4. CONVERGENCE AND STABILITY ANALYSIS

For all other cells which are updated with the regular upwind formula, since we define

wni to be equal to uni , the truncation error is again O(∆t,∆x) as desired, which concludes

the proof.

3.4.2 Stability of the LPFS scheme

In the previous Section 3.4.1, we have shown that the computed Un
i approximate the wni

(and hence, the uni) to first order assuming that the scheme is stable. In this section, we

prove that the Un
i approach the wni in a stable manner for c ∈ (0, 1] for all i = 1, . . . , N .

Consider the error function vni = Un
i − wni . Given some sufficiently smooth initial

conditions, v0
i is O(∆t,∆x) for all cells. For the cells unaffected by the flux stabilisation,

stability is already guaranteed for c ∈ (0, 1] since they are updated using the regular

upwind formula. vni in those cells continues to remain first order as n increases.

As before, we therefore need only focus our attention on cells ‘1’, ‘2’, ‘N − 1’ and ‘N ’

and investigate how vni evolves for those cells as n→∞. Recall from the supraconvergence

analysis of Section 3.4.1 that:

wn+1
1 = wn1 + c(2− αL)(wn0 − wn1) +O(∆t,∆x), (3.28)

wn+1
2 = wn2 + c[(αL − 1)2wn0 + αL(2− αL)wn1 − wn2] +O(∆t,∆x), (3.29)

wn+1
N−1 = wnN−1 + c[wnN−2 − αR(2− αR)wnN−1 − (αR − 1)2wnN] +O(∆t,∆x), (3.30)

wn+1
N = wnN + c(2− αR)(wnN−1 − wnN) +O(∆t,∆x). (3.31)

Using Eq. 3.21-Eq. 3.24 and Eq. 3.28-Eq. 3.31, it is straightforward to work out vn1 ,

vn2 , vnN−1 and vnN . At the left edge of the domain,

vn+1
1 = vn1 + c(2− αL)(vn0 − vn1) +O(∆t,∆x),

= vn1 + c(2− αL)(−vn1) +O(∆t,∆x), (3.32)

since vn0 = O(∆t,∆x) by definition (Eq. 3.27). Similarly,

vn+1
2 = vn2 + c[(αL − 1)2vn0 + αL(2− αL)vn1 − vn2] +O(∆t,∆x),

= vn2 + c[αL(2− αL)vn1 − vn2] +O(∆t,∆x). (3.33)

48

3.4. CONVERGENCE AND STABILITY ANALYSIS

At the right edge of the domain,

vn+1
N−1 = vnN−1 + c[vnN−2 − αR(2− αR)vnN−1 − (αR − 1)2vnN] +O(∆t,∆x),

= vnN−1 + c[−αR(2− αR)vnN−1 − (αR − 1)2vnN] +O(∆t,∆x), (3.34)

and

vn+1
N = vnN + c(2− αR)(vnN−1 − vnN) +O(∆t,∆x). (3.35)

We can now use Eq. 3.32, Eq. 3.33, Eq. 3.34 and Eq. 3.35 to write the following linear

inhomogeneous recurrence relation for xn+1 = [vn+1
1 vn+1

2 vn+1
N−1 v

n+1
N]T :

vn+1
1

vn+1
2

vn+1
N−1

vn+1
N


xn+1

=



1− c(2− αL) 0 0 0

cαL(2− αL) 1− c 0 0

0 0 1− cαR(2− αR) −c(αR − 1)2

0 0 c(2− αR) 1− c(2− αR)


A



vn1

vn2

vnN−1

vnN


xn

+



O(∆t,∆x)

O(∆t,∆x)

O(∆t,∆x)

O(∆t,∆x)


bn

.

We therefore have

xn+1 = Axn + bn

= A(Axn−1 + bn−1) + bn = A2xn−1 + Abn−1 + bn

= A3xn−2 + A2bn−2 + Abn−1 + bn

= An+1x0 +
n∑
ν=0

Aνbn−ν ,

where we note that x0 and all the bn−ν vectors are made up of O(∆t,∆x) components.

49

3.4. CONVERGENCE AND STABILITY ANALYSIS

Hence,

|xn+1| ≤ ‖A‖n+1|x0|+ max
k=0,...,n

{|bk|}
n∑
ν=0

‖A‖ν .

In order for |xn+1| to remain a bounded O(∆t,∆x) term, it is clear that we require

‖A‖ < 1 for all c ∈ (0, 1] and αL, αR ∈ (0, 1]. For the first term to the right hand side of

the inequality, this would imply that ‖A‖n+1|x0| < |x0|. The second term on the right

hand side, on the other hand, can be thought of as a geometric series with the ‘common

ratio’ of two consecutive terms being ‖A‖. ‖A‖ < 1 ensures that the series converges to a

finite sum as n→∞.

To study the behaviour of ‖A‖, we make use of the convenient result that the spectral

radius of A, ρ(A), is the infimum of ‖A‖, as ‖ · ‖ ranges over the set of matrix norms [43].

If we can confirm that the eigenvalues of A have magnitude less than 1 for all c ∈ (0, 1]

and αL, αR ∈ (0, 1], we would have proved the stability of the recursion.

Since A is a block diagonal matrix, its eigenvalues will be the union of the eigenvalues

of the following 2× 2 matrices

AL =

1− c(2− αL) 0

cαL(2− αL) 1− c

 , AR =

1− cαR(2− αR) −c(αR − 1)2

c(2− αR) 1− c(2− αR)

 , (3.36)

which are positioned along its main diagonal.

The eigenvalues of AL are

λ1
L = 1− c,
λ2
L = 1− c(2− αL).

It is easy to verify that

1. λ1
L and λ2

L are real,

2. λ1
L ∈ [0, 1) for c ∈ (0, 1], and

3. |λ2
L| < 1 for c ∈ (0, 1] and αL ∈ (0, 1],

so that the eigenvalues of AL have magnitude less than 1 over the full range of c and αL

as desired.

50

3.4. CONVERGENCE AND STABILITY ANALYSIS

The eigenvalues of AR, on the other hand, are

λ1
R =

1

2

[
2− 2c− αRc+ α2

Rc− (αR − 1)

(√
−4 + α2

R

)
c

]
,

λ2
R =

1

2

[
2− 2c− αRc+ α2

Rc+ (αR − 1)

(√
−4 + α2

R

)
c

]
.

Since the
√
−4 + α2

R term is imaginary for all αR ∈ (0, 1], it is clear that λ1
R and λ2

R are

complex conjugates. The square of the magnitude of any one of the eigenvalues, |λR|2, is

then

|λR|2 = λ1
Rλ

2
R = det(AR) > 0. (3.37)

To ensure that |λR| < 1, we therefore only need to check that det(AR) < 1. We have

det(AR) = 1− [2c(1− c) + αRc(1− αR + c)], (3.38)

where it can be noted straightaway that det(AR) < 1 since 2c(1 − c) > 0 and αRc(1 −
αR + c) > 0 for c, αR ∈ (0, 1].

This concludes the proof1. We can therefore confirm that ‖A‖ < 1 for the full range

of c, αL and αR and that the Un
i stably approximate the wni (and hence, the uni) to first

order in all cells as desired. Fig. 3.5 shows a contour plot of the spectral radius of A for

illustrative purposes.

Figure 3.5: Contour plot of the spectral radius of A.

1Note that it was Rupert Klein, one of the co-authors of the paper [1], who proposed the idea of
analysing stability by looking at the growth of the grid error function vni . The present writer carried out
the work of proving the stability of the recursion.

51

3.5. RESULTS

3.5 Results

In this section, we present the results of computations for a number of multi-dimensional

test problems for the linear advection and Euler equations. All simulations were run at

Ccfl = 0.8.

3.5.1 Convergence tests

The numerical order of convergence of LPFS is investigated through a series of advection

tests. Note that for these smooth test problems, we do not use the limiter.

The Lp norm of the error for a variable φ at a resolution ∆x is computed as

L∆x
p =

(
1

N

N∑
i=1

(|φsim
i − φexact

i |)p
) 1

p

, (3.39)

where N is the total number of cells, φsim
i is the numerical solution in cell i, and φexact

i is

the exact solution evaluated at the volumetric centroid of cell i. We note, however, that

on a cut cell mesh, a volume-fraction weighted formula such as

L∆x
p,weighted =

(
1

V

N∑
i=1

(αi|φsim
i − φexact

i |)p
) 1

p

, (3.40)

where V is the total volume of the fluid part of the domain, and αi is the volume fraction

of cell i, may produce more accurate estimates of the convergence order for the method.

For the simulations in this work, however, all Lp norms are calculated using Eq. 3.39 as

in, for example, Meyer et al. [44]. The numerical order of convergence is estimated as

Lp order =
log
(
L2∆x
p

L∆x
p

)
log(2)

. (3.41)

With first order accuracy at the boundary but second order accuracy in regular cells,

we show briefly how the computed order depends on the value of p. Consider that the

total number of cells in the domain scales as O(nD), where n is the number of cells along

one dimension, and D is the number of dimensions, while the number of cut cells scales as

52

3.5. RESULTS

O(nD−1). Further, n scales as O(∆x−1). Substituting these values in Eq. 3.39 gives:

L∆x
p =

(O(∆xpnD−1) +O(∆x2p)[O(nD)−O(nD−1)]

O(nD)

) 1
p

=
(
O(∆xp+1) +O(∆x2p)−O(∆x2p+1)

) 1
p (3.42)

= O(∆x
p+1
p).

Hence, we would expect the L1 norm to converge as O(∆x2), the L2 norm to converge

as O(∆x1.5) and the L∞ norm to converge as O(∆x).

3.5.1.1 One-dimensional advection

This problem involves the linear advection of the smooth profile,

u(x) = sin(2πx), (3.43)

to the right at a speed a = 1.0 in the interval x ∈ [0, 1] with periodic boundary conditions.

The domain edge cells are made to be cut cells with volume fraction α = 10−3. The

simulation is run for 1 period.

Fig. 3.6 shows the results for a resolution of 50 cells. The errors for various resolutions

are shown in Table 3.1, where it may be seen that all the norms converge with the expected

rates. Note that the L∞ norm is the same as the maximum cut cell error.

53

3.5. RESULTS

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

u

Position

Numerical
Exact

Figure 3.6: Comparison of numerical and exact solutions for the one-dimensional advection
problem run with a resolution of 50 cells.

Table 3.1: Error norms and orders of convergence for the one-dimensional advection
problem. The L∞ norm is the same as the maximum cut cell error.

Resolution L1 norm L1 order L2 norm L2 order L∞ norm L∞ order

50 6.33×10−3 - 9.72×10−3 - 3.56×10−2 -

100 1.55×10−3 2.03 3.06×10−3 1.67 1.85×10−2 0.95

200 3.94×10−4 1.98 1.07×10−3 1.51 1.00×10−2 0.88

400 1.00×10−4 1.97 3.82×10−4 1.49 5.29×10−3 0.92

3.5.1.2 Two-dimensional diagonal advection

This problem involves the linear advection of the smooth function,

u(x, y) = sin(2πx) cos(2πy), (3.44)

with a propagation velocity a = [1.0 1.0]T in the interval x ∈ [0, 1], y ∈ [0, 1]. The

boundary conditions are periodic and the domain edge cells are all made to be cut cells

with volume fraction α = 10−3. As shown in Fig. 3.7b, which is an illustration of the

top-right portion of the mesh, the 4 cut cells at the corners of the domain have a volume

fraction of α2 = 10−6.

54

3.5. RESULTS

The simulation is run for 1 period. Fig. 3.7a shows the numerical contours produced

from a 50× 50 cells simulation. Table 3.2 shows the errors, where it may be seen that the

norms all converge with the expected rates. Note that the L∞ norm is the same as the

maximum cut cell error.

To ensure that the measured convergence rate at the cut cells is not influenced favourably

by the use of second order accurate fluxes at uncut cells, we ran the simulations again, this

time using first order fluxes (i.e. without linear reconstruction) to compute the fluxes for

all cells. Table 3.3 shows the errors for these simulations. The convergence of the global

L1 error verifies the use of the first order solver in the entire domain. The convergence of

the cut cells L1 and L∞ errors confirm that the solution in the cut cells converges with

first order accuracy.

55

3.5. RESULTS

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(a) Numerical contours after 1 period from the 50× 50 cells simulation.

x

y

(b) Close-up of the top-right part of the

mesh. The boundary cut cells are illus-

trated with an exaggerated volume frac-

tion.

Figure 3.7: Plot of the numerical solution and an illustration of the cut cell mesh for the
two-dimensional diagonal advection problem.

56

3.5. RESULTS

Table 3.2: Error norms and orders of convergence for the two-dimensional diagonal
advection problem. The L∞ norm is the same as the maximum cut cell error.

Resolution L1 norm L1 order L2 norm L2 order L∞ norm L∞ order

50× 50 6.44×10−3 - 8.75×10−3 - 3.60×10−2 -

100× 100 1.56×10−3 2.04 2.51×10−3 1.80 1.85×10−2 0.96

200× 200 3.92×10−4 1.99 8.21×10−4 1.61 1.00×10−2 0.88

400× 400 9.88×10−5 1.99 2.81×10−4 1.55 5.29×10−3 0.92

Table 3.3: Error norms and orders of convergence for the two-dimensional diagonal
advection problem, in which the fluxes for all cells are computed to first order without
linear reconstruction.

Resolution Global L1

norm

Global L1

order

Cut cells

L1 norm

Cut cells

L1 order

Cut cells

L∞ norm

Cut cells

L∞ order

50× 50 5.56×10−2 - 5.08×10−2 - 1.34×10−1 -

100× 100 3.01×10−2 0.88 2.79×10−2 0.87 7.36×10−2 0.87

200× 200 1.55×10−2 0.96 1.45×10−2 0.94 3.81×10−2 0.95

400× 400 7.88×10−3 0.98 7.39×10−3 0.97 1.94×10−2 0.98

3.5.1.3 Two-dimensional advection in a sloped channel

This test involves solving the full Euler system for the parallel advection of a Gaussian

density profile in a sloped channel. This is a non-trivial problem for the split LPFS scheme

since any errors in the boundary and cut cell flux computations would affect the ability of

the method to maintain the parallel flow.

57

3.5. RESULTS

d

W

θ

(a) Simulation set-up

1.2

1.4

1.6

1.8

2

2.2

2.4

−0.02 −0.01 0 0.01 0.02
ρ

d

(b) Advection profile

Figure 3.8: Illustration of the simulation set-up and the density profile being advected for
the two-dimensional advection in a sloped channel problem.

As illustrated in Fig. 3.8a, the channel with a width W = 0.0141 m makes an angle

θ = 30◦ with the x axis. The pressure and velocity are 101325 Pa and 30 m/s parallel to

the channel wall respectively. The density profile is shown in Fig. 3.8b and described by

the following equation:

ρ(d) = ρ0 + e−(d
0.5W)

2

, (3.45)

where ρ0 = 1.225 kg/m3 and d is distance measured from the centre of the profile in the

direction parallel to the channel wall.

The domain size is [0.0, 0.1] m× [0.0, 0.07] m. At t = 0 s, we position the centre of the

profile at the point [0.035 cos(θ), 0.035 sin(θ)] m. The simulation is run till t = 0.0015

s, by which time, as seen from Fig. 3.9, the profile has traversed a large portion of the

channel and encountered a range of boundary cut cells.

58

3.5. RESULTS

Table 3.4: Error norms and experimental orders of convergence for the two-dimensional
advection in a sloped channel problem. The L∞ norm is the same as the maximum cut
cell error.

Resolution L1 norm L1 order L2 norm L2 order L∞ norm L∞ order

50× 35 1.97×10−2 - 4.59×10−2 - 2.63×10−1 -

100× 70 6.19×10−3 1.67 1.69×10−2 1.44 1.32×10−1 0.99

200× 140 1.72×10−3 1.84 5.75×10−3 1.56 6.09×10−2 1.12

400× 280 4.67×10−4 1.89 1.98×10−3 1.54 2.92×10−2 1.06

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

(a) t = 0.0 s

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

(b) t = 0.0015 s

Figure 3.9: Density contours at the start and end of the simulation for the two-dimensional
advection in a sloped channel problem run at a resolution of 200× 140 cells.

Table 3.4 shows the errors computed for simulations at various resolutions. With

increasing resolution, it may be observed that the norms converge with the expected rates.

Note that the L∞ norm is the same as the maximum cut cell error and that it converges

with first order as expected. Fig. 3.10 shows the final numerical solution along the lower

and upper cut cell boundaries. The convergence of the results towards the exact solution

with increasing resolution is readily observed.

59

3.5. RESULTS

1.2

1.4

1.6

1.8

2

2.2

2.4

−0.02 −0.01 0 0.01 0.02

ρ

Position

50× 35
100× 70

200× 140
400× 280

Exact

(a) Lower boundary.

1.2

1.4

1.6

1.8

2

2.2

2.4

−0.02 −0.01 0 0.01 0.02

ρ

Position

50× 35
100× 70

200× 140
400× 280

Exact

(b) Upper boundary.

Figure 3.10: Comparison of the numerical solutions at various resolutions with the exact
solution along the cut cell boundaries for the two-dimensional advection in a sloped channel
problem.

It is also useful to note that a judicious use of AMR can be used to alleviate the effect

of reduced order of accuracy at the boundary. Table 3.5 shows the errors for a series

of closely related simulations. The first row shows the error norms for a 100 × 70 cells

simulation with no AMR. Using these results as a reference, the second row shows the

reduced norms that would be theoretically expected from a 200× 140 cells simulation if

we had a universally second order method. The errors obtained in practice with the LPFS

60

3.5. RESULTS

Table 3.5: Data illustrating the use of AMR to alleviate the effect of the cut cell method
being first order at the boundaries.

Resolution L1 norm L2 norm L∞ norm

100× 70 (no AMR) 6.19× 10−3 1.69× 10−2 1.32× 10−1

200× 140 (second order, expected) 1.55× 10−3 4.23× 10−3 3.31× 10−2

200× 140 (no AMR) 1.72× 10−3 5.75× 10−3 6.09× 10−2

200× 140 (with cut cells refinement) 1.31× 10−3 3.62× 10−3 2.93× 10−2

method are clearly larger, as shown in the third row. The fourth row shows the norms

from a 200× 140 cells simulation where one level of AMR of refinement factor 2 is used to

refine the cut cells, as shown in Fig. 3.11. When compared to the theoretical results of

the second row, the error norms for this set-up are in fact lower. Of course, we do not lose

sight of the fact that the cut cells from the AMR simulation are at an ‘effective’ resolution

of 400 × 280 cells. The intention here is merely to illustrate how AMR can be used to

alleviate the effect of the method being first order at the boundary.

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

(a) View of entire domain with AMR fine patch bound-

aries highlighted.

0.052 0.054 0.056 0.058 0.06

0.037

0.039

0.041

0.043

0.045

(b) Zoomed in view of AMR mesh.

Figure 3.11: Plots showing the use of AMR to refine around cut cells for the two-dimensional
advection in a sloped channel problem. The base resolution is 200× 140 cells.

3.5.2 Shock reflection from a wedge

The M = 1.7 shock reflection off a 30◦ wedge test problem from Toro [9] is used to

demonstrate the improved performance at the boundary of the LPFS flux compared to

61

3.5. RESULTS

(a) Experimental shadowgraph [9]. (b) Numerical density contours.

Figure 3.12: Comparison of experimental and LPFS simulation results for the shock
reflection from wedge problem.

the KBN flux. The ambient state ahead of the shock has a density and pressure of 1.225

kg/m3 and 101325 Pa respectively. The domain size was [0.0, 16.5] m× [0.0, 25.0] m. A

base resolution of 500× 330 cells was used and two levels of AMR refinement of factor 2

each were employed to resolve the shocks and slip line. The boundary conditions were

transmissive at the left, right and top boundaries, and reflective at the bottom boundary.

Fig. 3.12 shows a comparison of the experimental and numerical results. The simulation

captures all the expected features. The incident shock, reflected shock, and Mach stem

(which is perpendicular to the wedge) meet at the ‘triple point’. The slip line connecting

the triple point to the wedge is also resolved.

Fig. 3.13 shows a comparison of the surface pressure distribution computed using the

LPFS and KBN fluxes. The KBN solution behind the Mach stem is highly oscillatory, and

the issue is greatly alleviated in the LPFS solution. Reducing the Courant number to say,

0.5, would improve the KBN solution, however the intention of this test is to demonstrate

the superior accuracy and robustness of LPFS at higher Courant numbers.

62

3.5. RESULTS

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

p/
p 0

Position

(a) LPFS.

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

p/
p 0

Position

(b) KBN.

Figure 3.13: Comparison of the cut cell pressure results for LPFS and KBN for the shock
reflection from wedge problem. The pressure is plotted against the normalised distance
along the length of the wedge. p0 = 101325 Pa.

3.5.3 Subsonic flow over a NACA 0012 aerofoil

The computation of M = 0.6 subsonic flow over a symmetric NACA 0012 aerofoil with 0

angle of attack is used to demonstrate the increased accuracy of LPFS compared to KBN

near stagnation points.

The aerofoil with a chord length c = 0.127 m is placed at approximately the centre of

a domain having a length and height of 30c. A coarse base resolution of 200× 200 cells is

used to help accelerate convergence to steady state by diffusing waves bouncing off the

domain edge boundaries. The finest resolution simulation employed four AMR levels with

refinement factors of 4, 4, 4 and 2. The free stream density ρ∞ and pressure p∞ are 1.225

kg/m3 and 101325 Pa respectively. Subsonic inflow boundary conditions are used at the

left boundary with outflow conditions specified at the right, top and bottom boundaries

respectively.

Fig. 3.14a is a pseudocolour plot of the pressure ratio p/p∞ near the stagnation

point for the KBN simulation. Fig. 3.14b shows the pressure ratio along the stagnation

streamline in the vicinity of the nose of the aerofoil. The dashed line corresponds to

the theoretical stagnation pressure ratio calculated from the isentropic flow relations [45].

Clearly, the pressure computed with the KBN flux is too low in the stagnation cut cell

63

3.5. RESULTS

and too high in the regular neighbouring cell.

Fig. 3.15 shows the corresponding results computed with the LPFS flux. The solution

looks visibly improved in the pseudocolour plot of Fig. 3.15a, where the limits for the

colour bar have been set to be the same as those in Fig. 3.14a. Fig. 3.15b confirms that

the LPFS stagnation solution shows good agreement with the analytical solution. These

results confirm that the introduction of local wave speeds in the LPFS flux stabilisation

produces the intended effect.

0.87 1.32

(a) Pseudocolour plot of p/p∞.

1.05

1.1

1.15

1.2

1.25

1.3

1.35

−0.15 −0.1 −0.05 0

p/
p ∞

x/c

(b) p/p∞ results along the stagnation streamline in

the vicinity of the aerofoil. The dashed line shows

the analytical stagnation pressure ratio.

Figure 3.14: Pressure results with the KBN flux in the vicinity of the stagnation region
for the subsonic NACA 0012 problem.

64

3.5. RESULTS

0.87 1.32

(a) Pseudocolour plot of p/p∞.

1.05

1.1

1.15

1.2

1.25

1.3

−0.15 −0.1 −0.05 0
p/
p ∞

x/c

(b) p/p∞ results along the stagnation streamline in

the vicinity of the aerofoil. The dashed line shows

the analytical stagnation pressure ratio.

Figure 3.15: Pressure results with the LPFS flux in the vicinity of the stagnation region
for the subsonic NACA 0012 problem.

Fig. 3.16a shows a comparison of the numerical and experimental (see Harris [46])

pressure distributions over the aerofoil. Note that Cp is the non-dimensional pressure

coefficient:

Cp =
p− p∞
1
2
ρ∞u2

∞
, (3.46)

where u∞ is the free stream velocity. The computed solution shows good agreement with

the experimental measurements over the whole of the aerofoil.

Fig. 3.16b shows how the error in the computed drag coefficient, CD, decreases with

increasing resolution. Note that

CD =
FD

1
2
ρ∞u2

∞c
, (3.47)

where FD is the pressure drag force. The theoretically expected drag force for this

non-separating inviscid flow is 0, and any computed positive CD is a measure of the

discretisation error. Fig. 3.16b shows a first order convergence for CD which is in line with

expectations since the cut cell method is first order accurate at the boundary.

65

3.5. RESULTS

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

C
p

x/c

Simulation
Experiment

(a) Experimental [46] vs numerical surface pressure distributions.

0.0001

0.001

0.01

0.1

0.00010.0010.01

E
rr

or

∆x

CD error
First order

(b) Convergence plot of CD computation.

Figure 3.16: Surface pressure and drag results for the subsonic NACA 0012 problem.

3.5.4 Shock reflection over a double wedge

The problem of a M = 1.3 normal shock reflecting over a double wedge is used to

demonstrate the performance of the method for a 2D problem involving concavities. The

simulation set-up is shown in Fig. 3.17, where it may be seen that the wedge and shock

have been rotated in order to create a fully doubly-shielded concavity (see Section 3.3.3.1)

with respect to the grid at point D. Note that points A and B are located upstream of the

wedge leading edge, which is at point C. To resolve the detailed solution structure, a fine

base resolution of 1200×1200 cells is employed with two levels of AMR refinement of factor

66

3.5. RESULTS

2 each. Boundary conditions on the left, right and top boundaries are all transmissive.

6.5 m

6.5 m

2.2 m

A

B
C

D

42.5◦
25◦

60◦

MS = 1.3ρahead = 1.225 kg/m3

pahead = 101325 Pa
uahead = 0.0 m/s
vahead = 0.0 m/s

Figure 3.17: Rotated simulation set-up for the problem of shock reflection over a double
wedge. Note that AB = BC = CD = 1 m.

Fig. 3.18 shows experimental shadowgraphs for this test as measured by Ben-Dor,

Dewey and Takayama [47], who provide detailed explanations of the wave interactions that

lead to the observed solution structures. Numerical schlierens of the computed density

field at t = 0.0044 s and 0.005 s are shown in Fig. 3.19a and Fig. 3.19b respectively. For

ease of comparison, note that we rotate our results to align them with the experimental

frame.

The numerical results show good qualitative agreement with experiment at both times.

From Fig. 3.19a, we see that the simulation captures the Mach reflection over the second

wedge of the Mach stem from the first wedge reflection. The slip line from the first Mach

reflection is also clearly resolved. Noteworthy in Fig. 3.19b is the resolution of the two

triple points and their slip lines. Another feature captured by the AMR is the interaction

of the slip lines with the contact line from the first Mach reflection. This feature is

not discussed by Ben-Dor et al. but may be seen to be just visible in the experimental

shadowgraph.

67

3.5. RESULTS

(a) Mach reflection over the second wedge of

the Mach stem from the first wedge reflection.

(b) Final flow structure.

Figure 3.18: Experimental shadowgraphs [47] for the shock reflection over a double wedge
problem.

(a) Solution at t = 0.0044 s. (b) Solution at t = 0.005 s.

Figure 3.19: Numerical schlierens for the shock reflection over a double wedge problem.

3.5.5 Shock diffraction over a cone

A full 3D simulation of the diffraction of a M = 3.55 normal shock over a cone is used to

validate the three-dimensional implementation of LPFS. Incidentally, this test has also

68

3.5. RESULTS

been used by Yang, Causon and Ingram [48] to validate a cell-merging based cut cell

method.

The right cone of semi-apex angle 35.1◦ and length 2.0 m has its apex situated at the

point (0, 0, 0) m in a [−2.5, 0.6] m× [−2.0, 2.0] m× [−2.0, 2.0] m domain. A base resolution

of 62 × 80 × 80 cells is employed with two AMR levels of refinement factors 4 and 2

respectively. The ambient state ahead of the shock has a density and pressure of 1.225

kg/m3, 101325 Pa respectively.

The experimental schlieren measured by Bryson and Gross [49] is shown in Fig. 3.20a.

Fig. 3.20b shows the computed density contours on the two symmetry planes (x-y and

x-z) of the geometry. All the waves as well as the cut cell boundary are flagged for

refinement by the AMR algorithm. The density contours on the symmetry planes are

shown more clearly in Fig. 3.20c which shows that the simulation successfully captures

the complex three-dimensional Mach reflection pattern. The numerically resolved incident

shock, reflected shock, and Mach stem meeting at the triple point are clearly visible, as is

the contact wave.

69

3.5. RESULTS

(a) Experimental schlieren [49]. I.S. is the

‘incident shock’, R.S. is the ‘reflected shock’,

M.S. is the ‘Mach stem’, C.D. is the ‘contact

discontinuity’, and T.P. is the ‘triple point’.

1.225 10.12

(b) Numerical density contours with AMR patch bound-

aries on the finest level highlighted.

x-y plane

x-z plane

(c) Numerical density contours on the x-y and x-z

symmetry planes.

Figure 3.20: Comparison of experimental and numerical results for the shock diffraction
over a cone problem.

70

3.5. RESULTS

3.5.6 Space re-entry vehicle simulation

The computation of a M = 20 flow over a NASA ‘Orion’ space re-entry vehicle is used to

demonstrate the performance of the 3D LPFS implementation when computing a high

Mach number flow over a realistic complex geometry. A ‘watertight’ stl file of the geometry

was obtained from the NASA 3D Resources website [50]. Fig. 3.21a shows a view of the

geometry from the rear.

In a Mach 20 flow, air molecules undergo dissociation and it is no longer appropriate

to use the ideal gas equation of state Eq. 4.4. We stress, therefore, that the aim of this

section is only to demonstrate the potential of the methodology and not to compute a

physically accurate solution. The simulation is set-up with a supersonic inflow boundary

condition at the inlet and transmissive boundary conditions at all other boundaries. The

geometry is rotated to make an angle of 10◦ with the free stream direction. Since this

problem is sensitive to the ‘carbuncle phenomenon’ [51], we use the HLL Riemann solver

to compute fluxes from the reconstructed states. We let the simulation run until the bow

shock forms ahead of the spacecraft and till the flow impacts all parts of the geometry.

One level of AMR is employed to resolve the solid-fluid interface and the bow shock.

Fig. 3.21b shows the natural log of the computed pressure along a plane passing

through the model centre line. The potential of the methodology to compute the flow

around a complex 3D geometry is apparent from the results. Since we are using an ideal

gas equation of state, however, we make no attempt to further analyse the complicated

flow field.

71

3.6. CONCLUSIONS

(a) Space re-entry vehicle geometry rear

view.

(b) Pseudocolour plot of the natural log of pressure.

Figure 3.21: Geometry rear view and simulation results for the space re-entry vehicle
simulation problem.

3.6 Conclusions

In this chapter, we presented a ‘Local Proportional Flux Stabilisation’ (LPFS) approach

for computing cut cell fluxes when solving hyperbolic conservation laws, and described its

implementation in the dimensionally split framework of Klein et al. [37]. The approach

makes use of local geometric and wave speed information to define a novel stabilised cut

cell flux.

72

3.6. CONCLUSIONS

The convergence and stability of the method was proved for the one-dimensional linear

advection equation, and confirmed numerically for multi-dimensional test problems for the

linear advection and Euler equations.

Compared to the ‘KBN’ cut cell flux described by Klein et al., the LPFS flux is

designed to give improved accuracy at stagnation points, and this was demonstrated via

the computation of a subsonic flow over a NACA 0012 aerofoil. Furthermore, as confirmed

from the results of a shock reflection from wedge problem, the LPFS flux was found to

alleviate the problem of oscillatory boundary solutions produced by the KBN flux at

higher Courant numbers. The performance of the three-dimensional implementation of

the method when computing a high Mach number flow over a realistic complex geometry

was demonstrated by the computation of a Mach 20 flow over a space re-entry vehicle.

For the future, it is clear that extending the flux stabilisation to maintain second

order accuracy at the boundary will yield the greatest improvement in results. The

development of a flux to use at concavities which avoids the need to use the current

post-sweep conservative correction would also be a useful contribution.

73

3.6. CONCLUSIONS

74

CHAPTER 4

A DIMENSIONALLY SPLIT CARTESIAN CUT CELL

METHOD FOR THE COMPRESSIBLE NAVIER-STOKES

EQUATIONS

In this chapter, we present a novel cut cell method to solve compressible Navier-Stokes

problems containing static rigid boundaries. The method is globally second order accurate

in the L1 norm, fully conservative, and allows the use of time steps determined by the

regular grid spacing. This content was recently published in the Journal of Computational

Physics [2] and is the first presentation of a dimensionally split method for the compressible

Navier-Stokes equations in the literature:

N. Gokhale, N. Nikiforakis, and R. Klein. A dimensionally split Cartesian cut cell

method for the compressible Navier-Stokes equations. Journal of Computational Physics,

375: 1205-1219, 2018.

4.1 Introduction

Since the early 1980s, a number of ways have been presented in the literature to deal with

this ‘small cell problem’ in the context of the Euler equations [21, 22, 52, 27, 28, 29]. Over

the past decade, most of these techniques have been extended for solving the compressible

Navier-Stokes equations. Hartmann et al. [24] have used cell linking (which is related to

the intuitive concept of cell merging) to develop a three-dimensional cut cell method that

is implemented in an adaptive octree grid. Using the static boundary cut cell formulation

of Hartmann et al. [24], Schneiders et al. [25, 53] have successfully developed a method to

compute moving boundary problems in 3D by introducing an interpolation routine and flux

75

4.1. INTRODUCTION

redistribution step. Berger et al. [54] use pseudo-time stepping and a multigrid approach

to compute steady state solutions for the 2D Reynolds-averaged Navier-Stokes (RANS)

equations. In a subsequent publication [55], they describe a cut cell implementation of a

novel ODE-based wall model which, unlike conventional equilibrium wall functions, has

the advantage that it can be applied further away from the interface in the wake region of

a turbulent boundary layer. Graves et al. [56] extend the ‘flux redistribution’ technique

of Colella et al. [28] for small cell stability to develop a second order accurate method.

Another high order discretisation was demonstrated by Muralidharan and Menon [32],

who extended the ‘flux mixing’ technique of Hu et al. [29] to develop a third order accurate

scheme.

The aforementioned techniques are all implemented in an unsplit fashion. As discussed

in Chapter 1, we are particularly interested in adopting a dimensionally split approach

which is a convenient way to extend one-dimensional methods to solve multi-dimensional

problems. In that context, Gokhale, Nikiforakis and Klein [1] recently presented a

simple dimensionally split cut cell method for hyperbolic conservation laws using a ‘Local

Proportional Flux Stabilisation’ (LPFS) approach and demonstrated its performance

through the computation of solutions to a number of challenging problems for the Euler

equations. The LPFS method is an improvement on the original split method of Klein,

Bates and Nikiforakis (KBN) [37]. Although both methods are first order accurate at

the interface, LPFS was shown to produce more accurate solutions near boundaries for

hyperbolic problems, and it allows the use of larger Courant numbers [1]. We describe the

LPFS approach in detail in Chapter 3. In this chapter, we combine and extend the LPFS

and KBN methods to solve compressible Navier-Stokes problems involving rigid embedded

boundaries. To the best of our knowledge, this is the first presentation of a dimensionally

split cut cell method for the compressible Navier-Stokes equations in the literature and

we believe that researchers and practitioners who use dimensionally split approaches for

multi-dimensional extensions could find it useful.

The rest of this chapter is organised as follows. In Section 4.2, we outline the governing

equations and solution framework that we use. In Section 4.3, we describe the numerical

method in detail. In Section 4.4, we present numerical solutions for a number of multi-

dimensional test problems to demonstrate the performance of the method. Finally,

conclusions and areas for future work are provided in Section 4.5.

76

4.2. GOVERNING EQUATIONS AND SOLUTION FRAMEWORK

4.2 Governing equations and solution framework

The compressible Navier-Stokes equations are

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u + pI) = ∇ · σ, (4.1)

∂tE +∇ · [(E + p)u] = ∇ · (σu) +∇ · (ξ(∇T)),

where ρ is density, u is velocity, p is pressure, I is the identity matrix, ξ is thermal

conductivity and T is temperature. We assume the fluid under consideration is Newtonian

such that σ, the stress tensor, is

σ = µ(∇u +∇uT) + λ(∇ · u)I, (4.2)

where µ is the dynamic viscosity and we use the Stokes’ hypothesis λ = −2
3
µ. E is the

total energy per unit volume, given by

E = ρ

(
1

2
|u|2 + e

)
, (4.3)

where e is the specific internal energy. To close the system of equations Eq. 4.1-Eq. 4.3

we use the ideal gas equation of state

e =
p

ρ(γ − 1)
, (4.4)

where γ, the heat capacity ratio, is assumed to be 1.4.

We defer our description of the procedure for computing the explicit inviscid (Godunov-

based) and viscous fluxes till Section 4.3.1, although it may be noted that the flux

stabilisation approach is independent of the particular choice of flux methods used. Hier-

archical AMR [3] is used to refine areas of interest such as the cut cell interface, or shock

waves, while allowing the use of coarser resolutions elsewhere for the sake of computational

efficiency. Multi-dimensional updates are performed using Strang splitting [38] in 2D, and

straightforward Godunov splitting [39] in 3D, although Strang splitting could also be used

in 3D if time order of accuracy was important for the problem at hand.

As in Dragojlovic et al. [57], we assume that the global time step, ∆t, is restricted by

77

4.3. NUMERICAL METHOD

the minimum of the hyperbolic and diffusive time steps

∆t = min [∆thyp,∆tdiff] ,

= min

[
Ccfl min

d,i

(
∆xd,i
Wmax
d,i

)
,min
d,i

(
∆x2

d,i

2 max(µi
ρi
, ξi

(ρcp)i
)

)]
, (4.5)

where d is the index of the coordinate direction, i is the index of a computational cell, and

cp is the specific heat at constant pressure. ∆xd,i and Wmax
d,i are the spatial resolution and

max wave speed for cell i in the d direction respectively. As in similar previous works

[57, 24, 25, 32], we operate the algorithm in the region where the hyperbolic condition is

most restrictive, and all simulations in this paper were run using a Courant number of 0.5.

The wave speed for cell i in the d direction, Wd,i, is computed using the following

estimate suggested by Toro [9]:

Wd,i = |ud,i|+ ai, (4.6)

where ud,i is the component of the velocity in cell i in the d direction. ai is the speed of

sound in cell i, given by

ai =

√
γpi
ρi
. (4.7)

Domain edge boundary conditions are specified using the ‘fictitious cell’ approach [9].

In addition to the boundary conditions described in Section 3.2, this chapter also makes

use of the no-slip domain edge boundary condition. This is enforced by extrapolating

ghost cell variables from the domain, inverting the sign of the ghost velocity, and adding

on twice the surface tangential velocity (if the domain boundary is a tangentially moving

wall) [9].

4.3 Numerical method

4.3.1 Calculation of explicit fluxes

In this subsection, we describe the procedure we use to compute the explicit inviscid and

viscous fluxes. Their stabilisation at the cut cells is described in Section 4.3.2.

4.3.1.1 Intercell fluxes

As when computing solutions to the Euler equations in Chapter 3, we compute the inviscid

intercell fluxes that appear in the divergence terms to the left of the equal signs in Eq. 4.1

78

4.3. NUMERICAL METHOD

using an exact Riemann solver and the MUSCL-Hancock scheme in conjunction with the

van-Leer limiter [9]. This scheme is second order accurate in smooth regions.

The calculation of the viscous fluxes that appear in the divergence terms to the right

of the equal signs in Eq. 4.1 requires the computation of ∇u and ∇T at the cell faces. In

Fig. 4.1, we illustrate our procedure for calculating (∇φ)i−1/2,j for a general scalar φ at

the left face of cell (i, j) in an x dimensional sweep in two dimensions.

i− 1

i− 1/2

i

j − 1

j

j + 1

(a) Regular region away from the

interface.

i− 2 i− 1

i− 1/2

i

j − 1

j

j + 1

x

y

(b) Irregular region near the interface.

Figure 4.1: Illustration of the calculation of viscous face derivatives in irregular and regular
regions.

In a regular region away from the interface, the required face derivatives can be worked

out using central differencing as illustrated in Fig. 4.1a. The derivative in the current

coordinate direction is calculated to second order accuracy as(
∂φ

∂x

)
i−1/2,j

=
φi − φi−1

∆x
. (4.8)

The transverse derivative is computed to second order accuracy as the average of the

neighbouring transverse derivatives(
∂φ

∂y

)
i−1/2,j

=
1

2

(
φi−1,j+1 − φi−1,j−1

2∆y
+
φi,j+1 − φi,j−1

2∆y

)
. (4.9)

It may be noted that in 3D, the face derivatives can be calculated analogously on a 2×3×3

point stencil.

The procedure for irregular regions is illustrated in Fig. 4.1b. We start by computing

79

4.3. NUMERICAL METHOD

the inverse distance weighted least squares gradients (∇φ)LS
i−1,j and (∇φ)LS

i,j at the volumetric

centroids of cells (i− 1, j) and (i, j) respectively. Note that the stencil for the weighted

least squares calculations contains all the regular and cut cells from the 8 (26 in 3D)

neighbours of the cell. This is illustrated using dotted lines for cell (i− 1, j) in Fig. 4.1b.

(∇φ)i−1/2,j is calculated as

(∇φ)i−1/2,j =
(∇φ)LS

i−1,j + (∇φ)LS
i,j

2
. (4.10)

As with other cut cell discretisations [24, 54], our approximation of the face derivatives in

irregular regions is only first order accurate. This does not impact the overall accuracy

of the method, however, since the flux stabilisation is also first order accurate at the

boundary.

4.3.1.2 Boundary fluxes

As discussed in Section 3.3.3, in order to ensure conservation in a dimensionally split

scheme, advective boundary fluxes have to be treated differently to the pressure and

diffusive fluxes. The ‘reference’ boundary state used to evaluate the advective boundary

fluxes is calculated using the same approach described in Section 3.3.3 for the Euler

equations. For the Navier-Stokes equations, however, both the boundary pressure and

the boundary stress tensor have to be updated in between sweeps. Updating the latter is

important for computing accurate viscous momentum boundary fluxes. Since we consider

only static (no-slip), adiabatic boundaries in this work, note that there are no viscous

heating or thermal conductivity boundary fluxes to consider for the energy equation.

To compute ∇u at the boundary, we follow the process illustrated for cut cell (i, j) in

Fig. 4.2. Note that in the rest of this section, subscripts specified with greek letters are

assumed to range from 1 to nd, the number of dimensions, and repeated indices of that

kind imply the use of the Einstein summation convention. Let xµ represent a Cartesian

coordinate system, and x̂µ represent an orthonormal coordinate system with a unit vector

pointing normal to the cell interface, and unit vector(s) in the interface tangential plane.

80

4.3. NUMERICAL METHOD

i− 1 i

j

j + 1

xinterp

h

x̂1
x̂2

x

y

Figure 4.2: Illustration of the procedure used to compute ∇u at the boundary of cell (i, j).
u∗µ at xinterp is reconstructed from the weighted least squares gradient computed at the
nearest cell volumetric centroid (filled white circle).

We start by computing the normal boundary derivatives for each velocity component

uµ as (
∂uµ
∂x̂1

)
=
u∗µ − ubµ

h
=
u∗µ
h
, (4.11)

where ubµ, the value of the velocity component at the boundary is 0 as required by the

no-slip boundary condition. u∗µ is the value of the velocity component at the interpolation

point xinterp which is located at a distance h from the interface centroid in the normal

direction. We reconstruct the value of u∗µ using the inverse distance weighted least squares

gradient computed at the cell volumetric centroid closest to xinterp. h is calculated as in

Meyer et al. [44] using

h = 0.5

√
(n̂bν∆xν)

2, (4.12)

where ∆xν is the spatial resolution in the ν coordinate direction. Note that when using a

uniform mesh spacing of ∆x in all coordinate directions, h = 0.5∆x.

With the normal derivatives calculated, and the tangential boundary derivatives known

to be 0 because of no-slip and no space dependent wall motion, we can construct the

tensor ∂uµ/∂x̂ξ at the boundary. However, we want to compute the tensor ∇u which has

Cartesian components ∂uµ/∂xν that are given by

∂uµ
∂xν

=
∂x̂λ
∂xν

∂uµ
∂x̂λ

. (4.13)

∂x̂λ/∂xν can be represented by a matrix whose columns are the unit vectors of the x̂µ

coordinate system. The normal vector n̂b is already known from the information provided

by the signed distance function (see Chapter 2), while the vectors spanning the tangential

81

4.3. NUMERICAL METHOD

plane are calculated from n̂b using a Gram-Schmidt orthogonalisation process. Eq. 4.13

can then be used to compute ∇u, and hence the stress tensor σ at the boundary as

required to compute the momentum diffusion boundary fluxes.

Finally, as discussed in Chapter 5, it may be noted that it is straightforward to

introduce the use of a simple algebraic or ODE-based turbulent wall function into the

above approach when computing a turbulent flow. The reconstructed state at xinterp and

the known state at the wall interface centroid can be used as boundary conditions to

calculate the wall shear stress.

4.3.2 Flux stabilisation

∆x α∆x

∆x

Fn
i−3/2 Fn

i−1/2 Fb,n

i− 1 i

(a) KBN.

i− 1 i

∆x α∆x

α2∆x

∆x

∆t
∆thypcc

tn

tn+1

t

x

(b) LPFS.

Figure 4.3: Illustration of the KBN and LPFS flux stabilisation procedures for a boundary
cut cell neighbouring a regular cell in 1D.

In this subsection, we describe the combination and extension of the KBN and LPFS

methods for the Navier-Stokes equations. Fig. 4.3a and Fig. 4.3b illustrate the one-

dimensional flux stabilisation procedures used in both approaches for a boundary cut cell

i neighbouring a regular cell.

82

4.3. NUMERICAL METHOD

Let Un
i represent the conserved variable state vector for cell i at time level n, and let

Fn
i±i/2 represent the explicit numerical fluxes (inviscid and viscous) computed at its ends.

As described in Section 3.3.1 [1, 37], the stabilised KBN flux can be derived to be

FKBN,n
i−1/2 = Fb,n + α(Fn

i−i/2 − Fb,n). (4.14)

Consider Fig. 4.3b, which shows the boundary cut cell neighbouring the regular cell

in the x-t plane for one time step. ∆t is the global stable hyperbolic time step which is

determined in part by the fastest wave speed in the domain, Wmax (see Eq. 4.5). For

the configuration of Fig. 4.3b, we illustrate the ‘small cell problem’ at the cut cell as

being caused by the left-going wave from the solution of the boundary Riemann problem.

Stability would therefore require the use of the smaller ∆thyp
cc

∆thyp
cc = Ccfl

α∆x

Wi

, (4.15)

where Wi is the wave speed for the cut cell.

As described in Chapter 3 [1], a suitable LPFS flux is

FLPFS,n
i−1/2 =

∆thyp
cc

∆t
Fn
i−1/2 +

(
1− ∆thyp

cc

∆t

)
FKBN,mod,n
i−1/2 , (4.16)

where

FKBN,mod,n
i−1/2 = Fb,n +

α

α2

(Fn
i−i/2 − Fb,n), (4.17)

and
α

α2

=
∆thyp

cc

∆t
= ε

αWmax

Wi

. (4.18)

The ‘wave speeds uncertainty’ parameter ε ∈ [0, 1] is introduced to account for any errors

arising from the use of Eq. 4.6 to estimate the cut cell wave speeds. We found setting ε to

0.8 to be a robust choice for the wide range of problems tackled in this chapter.

The derivation of the LPFS flux Eq. 4.16 implicitly assumes that the cut cell time step

is limited by the local hyperbolic time step ∆thyp
cc . Although the global time step for all

problems in this work is indeed limited by the hyperbolic time step, it is possible for the

local time step at some cut cells to be limited by the local diffusion time step

∆tdiff
cc =

(α∆x)2

2 max(µi
ρi
, ξi

(ρcp)i
)
, (4.19)

in which case one can use the KBN stabilisation Eq. 4.14 but not the LPFS stabilisation.

83

4.4. RESULTS

For a completely stable discretisation, then, we compare the relative magnitudes of

∆thyp
cc and ∆tdiff

cc before deciding how to stabilise the flux. For the usual case ∆thyp
cc ≤ ∆tdiff

cc ,

we use the LPFS flux Eq. 4.16 at the cut cell cell. If ∆tdiff
cc < ∆thyp

cc , on the other hand, we

use the KBN flux Eq. 4.14.

4.3.3 Multi-dimensional extension

The extension of the 1D flux stabilisation approach to multiple dimensions is performed

in exactly the same manner as that described in Chapter 3 for the Euler equations. The

reader is referred to Section 3.3.3 for the details.

4.4 Results

4.4.1 Re = 20 lid-driven cavity problem

The lid-driven cavity problem from Kirkpatrick et al. [23] was used to verify the accuracy

of the numerical discretisation. Fig. 4.4a illustrates the simulation set-up. The left, right

and bottom domain edges are static no-slip boundaries. The top boundary is also no-slip,

but with a parabolic x velocity profile ulid which varies from 0 at the boundary edges to

umax
lid at the centre. umax

lid was set to correspond to M = 0.1. The Reynolds number of the

flow based on the lid length L and umax
lid is 20. A cylinder of diameter L/2 is placed at the

centre of the domain, resulting in the creation of cut cells at the cylinder boundary.

Fig. 4.4a shows the contours of normalised x velocity for the ‘reference’ solution

computed on a fine 400× 400 grid, on which the minimum encountered cut cell volume

fraction was 2.5× 10−5. The simulation was performed at five coarser resolutions, with the

errors for these runs computed relative to the reference solution. The dashed box in Fig.

4.4a shows the region used for the error computations. In Section 3.5.1 [1], we showed

that for a scheme which is first order accurate at the cut cells and second order accurate

elsewhere, the Lp norm of the global solution error converges as O(∆x
p+1
p). As seen in Fig.

4.4b, the computed solution converges with first order at the cut cells, while the global

error measured by the L1 norm converges with second order accuracy as expected. Note

that as discussed in Section 3.5.1, we use Eq. 3.39 to calculate the Lp norm, although it

may be argued that the use of Eq. 3.40 would lead to better estimates of the order of

convergence of the method.

84

4.4. RESULTS

L

L
L/2

ulid

−0.2 1.0

(a) u/umax
lid contours for the 400×400 cells reference solution.

0.001

0.01

0.1

1

10 100

L
1

er
ro

r

N

First order
Cut cell error
Global error

Second order

(b) Convergence of cut cell and global L1 error norms for
velocity magnitude. N is the number of cells along one
coordinate direction.

Figure 4.4: Velocity results for the Re = 20 lid-driven cavity problem.

85

4.4. RESULTS

4.4.2 Laminar flat plate boundary layer

This test involves the computation of a two-dimensional flat plate boundary layer for

M∞ = 0.2 and ReL = 30000. We run the test in configurations with the plate both

coordinate aligned and non-aligned as illustrated in Fig. 4.5. AMR is used to refine the

no-slip region of the plate. Note that a uniform velocity profile is specified at the inflow

boundary so that the boundary layer develops on the no-slip part of the plate.

L

ReL

(a) Grid-aligned plate.

L

ReL

(b) Plate aligned at 5◦ to the horizontal.

Figure 4.5: Grid aligned and non-aligned configurations for the laminar flat plate boundary
layer problem. The shaded region of length L is the no-slip part of the plate. The remainder
of the plate is specified as a slip boundary.

For the grid-aligned configuration, the first row of finite volumes adjacent to the plate

are all cut cells with the same volume fraction. Fig. 4.6a shows a comparison of the

computed boundary layer profile at the centre of the plate for a series of 4 simulations

with progressively smaller cut cell volume fractions. Four levels of AMR are employed

such that on the finest level, there are roughly 30 cells resolving the 99% boundary layer

thickness δ99. All the computed profiles show good agreement with the theoretical Blasius

solution, which is a similarity solution for a steady, two-dimensional laminar boundary

layer forming over semi-infinite plate in an incompressible flow [58].

We use twice the resolution for the non-aligned plate configuration such that there are

roughly 60 cells resolving the δ99 thickness at the centre of the plate. Like Graves et al.

[56], we compare the computed boundary layer velocity profiles along ‘wall normal rays’

emanating from every cut cell in the range 5000 ≤ Rex ≤ 15000, which covers cut cells of

varying shapes and volume fractions. As seen in Fig. 4.6b, the solutions overlay well and

show good agreement with the theoretical Blasius solution.

86

4.4. RESULTS

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

u
/u
∞

η

No cut cells
α = 0.1
α = 0.01
α = 0.001

Blasius

(a) Boundary layer velocity profiles at Rex = 15000

for varying cut cell volume fractions of the lowest row

for the grid-aligned configuration.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

u
/u
∞

η

Simulation
Blasius

(b) Velocity profiles along wall-normal rays emanating

from every cut cell in the range 5000 ≤ Rex ≤ 15000

for the slanted wall configuration with a wall angle

of 5◦.

Figure 4.6: Computed boundary layer profiles for the (a) co-ordinate aligned, and (b)
non-aligned, laminar flat plate boundary layer problem. Note that η = y

√
u
νx
.

87

4.4. RESULTS

D

10D 30D

20D

(a) Domain dimensions (cylinder not to scale).

(b) AMR mesh in the vicinity of the cylinder.

Figure 4.7: Domain dimensions and an illustration of the Adaptive Mesh Refinement used
for the simulations of the flow over a circular cylinder.

4.4.3 Flow over a circular cylinder

The next problem considered is that of two-dimensional flow over a circular cylinder at

Re = 40 and Re = 100. Large amounts of experimental and numerical results exist in

the literature for both cases. At Re = 40, the eddies behind the cylinder are attached

and we can evaluate the accuracy and convergence rate of the computed surface solutions.

At Re = 100, the wake is unstable and we can also compute the frequency of the vortex

shedding process.

The simulation set-up is illustrated in Fig. 4.7a. The left boundary is subsonic inflow

while subsonic outflow boundary conditions are specified on the other domain edges. As

illustrated in Fig. 4.7b, AMR is used to resolve the near wall solution and cylinder wake.

M∞ is set to 0.1.

The simulations for both Reynolds numbers are run at 4 resolutions which are specified

such that there are 40, 60, 80 and 160 cells respectively resolving the cylinder diameter

D on the finest AMR level. At the finest resolution, the minimum encountered cut cell

volume fraction is 6.7× 10−5. The results from the finest resolution simulations are treated

88

4.4. RESULTS

Table 4.1: Comparison of the computed drag coefficient with previous experimental and
numerical studies for the Re = 40 cylinder flow problem.

Study CD
Present work (D/∆x = 160) 1.57

Tritton [59] (experiment) 1.57

Tseng and Ferziger [60] (simulation, resolution: πD/∆x ≈ 72) 1.53

Meyer et al. [44] (simulation, resolution: D/∆x = 72) 1.56

Table 4.2: Comparison of the computed drag coefficient and Strouhal number with previous
experimental and numerical studies for the Re = 100 cylinder flow problem.

Study CD St

Present work (D/∆x = 160) 1.41 0.165

Relf [59] (experiment) 1.39 -

Wieselsberger [62] (experiment) 1.40 -

Williamson [63] (experiment) - 0.165

Tseng and Ferziger [60] (simulation, resolution: πD/∆x ≈ 72) 1.42 0.165

Lai and Peskin [63] (simulation, resolution: D/∆x ≈ 38) 1.45 0.165

as the reference solutions to which errors from the coarser simulations are compared.

As shown in Table 4.1, the computed drag coefficient from the reference solution for

the Re = 40 case is in very good agreement with previous experimental and numerical

studies.

Fig. 4.8a shows the computed pressure distribution over the cylinder for the Re = 40

case. The results compare well with experimental measurements from Grove et al. [61]

over the whole of the cylinder. Furthermore, as shown in Fig. 4.8b the computed drag

coefficient shows the expected first order convergence rate to the reference solution.

At Re = 100, the simulation produces a periodic vortex shedding flow pattern (Fig.

4.9a shows instantaneous computed vorticity contours in the wake of the cylinder). Table

4.2 compares the computed time-averaged drag coefficient CD and Strouhal number St

with previous experimental and numerical studies. The frequency of the vortex shedding

is calculated from the Fourier Transform of the solution for y velocity at a point in the

middle of the wake located a distance of 1.5D behind the cylinder. The simulation results

are in good agreement with the previous studies. As shown in Fig. 4.9b, the computed

drag coefficients also converge with first order as expected.

89

4.4. RESULTS

−1

−0.5

0

0.5

1

1.5

0 45 90 135 180

C
p

θ

Simulation
Experiment

(a) Comparison of the numerical and experimental [61]
surface pressure distributions.

0.01

0.1

40 60 80

E
rr

or

D/∆x

CD error
First order

(b) Convergence plot of CD computation.

Figure 4.8: Results of surface pressure distribution and drag coefficient convergence for
the Re = 40 cylinder flow problem.

90

4.4. RESULTS

(a) Instantaneous vorticity contours

overlaid on the mesh in the vicinity

of the cylinder.

0.01

0.1

40 60 80

E
rr

or

D/∆x

CD error
First order

(b) Convergence plot of CD computation.

Figure 4.9: Results of vorticity and drag coefficient convergence for the Re = 100 cylinder
flow problem.

4.4.4 Shock reflection from a wedge

For the compressible flow problem of the shock reflection from a wedge, we use the

simulation parameters from Graves et al. [56] shown in Table 4.3. As illustrated in Fig.

4.10, the initial conditions are zero velocity with a discontinuity in pressure and density.

The horizontal ground is also discretised with cut cells of volume fraction 10−3. A base

resolution of 1024× 512 cells is employed with two AMR levels of refinement factor 2 each

to resolve the waves and cut cell interfaces. The minimum encountered cut cell volume

fraction on the wedge surface is 4.9× 10−8. The ground (i.e. the bottom boundary) and

wedge are no-slip boundaries, while transmissive boundary conditions are specified at the

left, right and top domain edges.

91

4.4. RESULTS

Table 4.3: Initial conditions (with reference to Fig. 4.10) for the shock reflection from
wedge problem.

Variable Value

p0 (Pa) 1.95× 103

p1 (Pa) 7.42× 105

ρ0 (kg/m3) 3.29× 10−2

ρ1 (kg/m3) 3.61× 10−1

µ (kg/(m s)) 1.21× 10−3

Cv (J/(kg K)) 3.00× 102

ξ (W/(m K)) 1.7× 10−2

γ 5/3

49◦

0.09 m

0.1 m

0.15 m

0.075 m p1, ρ1 p0, ρ0

Figure 4.10: Simulation set-up for the shock reflection from wedge problem.

The solution evolves to form a left-propagating rarefaction and a right-propagating

M = 7.1 shock. A separation bubble is created as the shock reflects off the ground

boundary layer. Subsequent compression from the shock reflected off the wedge causes

boundary layer reattachment. Fig. 4.11 shows density contour plots of the solution at

t = 9.6µs. Note that the extra wave visible behind the shock in Fig. 4.11a is the numerical

‘start-up error’ [64] caused by starting the simulation with sharply discontinuous initial

conditions.

92

4.4. RESULTS

LS

0.360.00

(a) LS is the distance travelled by the Mach stem

up the wedge.

LM

(b) Close-up of the Mach stem of length

LM .

Figure 4.11: Density contour plots at t = 9.6µs of the solution for the shock reflection
from wedge problem.

The parameter of interest is

RM =
LM
LS

, (4.20)

the ratio of the Mach stem length to the distance travelled by the Mach stem up the wedge.

LS is determined from a line-out of the solution taken along the wedge surface. To avoid

ambiguity in the determination of the position of the triple point, we compute LM via

an algebraic approach. Consider Fig. 4.12, which illustrates the position of the incident

shock (ET) and Mach stem (TD) at the end of the simulation. Once distances BD (LS)

and AC are known, TD (LM) and hence, RM can be calculated via trignometry. AC is

determined from another line-out of the solution taken horizontally through the incident

shock. Assuming an error of ±∆x in the determination of the average positions of the

incident shock and Mach stem from the lineouts, we calculate RM = 0.0293± 0.004. Table

4.4 shows a comparison of our computed value for RM with previous numerical studies.

The results from all three studies agree to 1 significant figure - differences in measurement

procedures used in the studies are the most likely explanation for why closer agreement is

not obtained. In our results, for example, ∆x/LM ≈ 6.3%, suggesting that the reported

value for RM is very sensitive to the method used to measure LM .

93

4.4. RESULTS

49◦

E

T

D

A B C

Figure 4.12: Illustration of the positions of the incident shock (ET) and Mach stem (TD)
at the end of the shock reflection from wedge simulation.

Table 4.4: Comparison of the computed value of RM with previous numerical studies for
the shock reflection from wedge problem.

Study RM

Present work 0.0293± 0.004

Graves et al. [56] 0.03

Al-Marouf and Samtaney [65] 0.027

4.4.5 Three-dimensional supersonic flow over a sphere

The final test problem is that of three-dimensional, supersonic flow over a sphere for

M∞ = 2.0 and ReD = 6.5× 105. The sphere of diameter D = 0.1 m is placed at a distance

of 2.5D from the inlet in a domain of size 10D × 5D × 5D. The free stream density

ρ∞, velocity u∞ and temperature T∞ are set to be 0.2199 kg/m3, 527.2 m/s and 173 K

respectively as in Uddin et al. [66]. A supersonic inflow boundary condition is specified

at the inlet, while transmissive boundary conditions are used at all the other domain

boundaries. A base resolution of 100× 50× 50 cells is employed and three levels of AMR

of refinement factor 2 each are used to resolve the interface and sphere bow shock. The

minimum encountered cut cell volume fraction is 2× 10−5. The simulation is run until a

time of t = 100D/u∞. Fig. 4.13 shows a plot of the AMR patches overlaid on contours of

normalised velocity magnitude (|v|/u∞) along the x-y symmetry plane of the sphere at

the end of the simulation. Clearly visible in the figure are the bow shock ahead of the

sphere and the viscous wake behind it.

The two results parameters of interest to us to validate the solution are the shock

94

4.4. RESULTS

standoff distance δ/D, and the drag coefficient CD. δ is the shortest distance from the

shock to the sphere leading edge. As seen in Table 4.5, our computed values for δ/D

and CD show good agreement with previous experimental and numerical studies. Note

that using one less AMR refinement factor produced no change to the drag coefficient

computed to three significant figures, suggesting that our final resolution is sufficient to

produce a numerically converged solution.

Table 4.5: Comparison of the computed shock standoff distance and drag coefficient with
previous experimental and numerical studies for the three-dimensional supersonic flow
over a sphere problem.

Study δ/D CD

Present work 0.175 1.01

Krasil'shchikov and Podobin [67] (experiment) 0.17 1.00

Bailey and Hiatt [68] (experiment) - 1.00

Uddin et al. [66] (simulation) 0.18 1.07

Al-Marouf and Samtaney [65] (simulation) 0.183 0.96

0.00 1.23

Figure 4.13: Plot of AMR patches on the second and third refinement level overlaid on a
contour plot of |v|/u∞.

95

4.5. CONCLUSIONS

4.5 Conclusions

In this chapter, we presented a novel dimensionally split Cartesian cut cell method for

the compressible Navier-Stokes equations. The numerical performance of the scheme was

investigated through a number of test problems ranging from the nearly incompressible to

the highly compressible flow regimes.

The computation of a laminar boundary layer over a flat plate in both horizontal

and inclined configurations was used to demonstrate that the method can handle both

coordinate aligned and non-aligned interfaces. The numerical convergence of the method

was verified explicitly by computing solutions for a Re = 20 lid-driven cavity problem, and

for flow over a circular cylinder at Re = 40 and Re = 100.

For the highly compressible problem of a M = 7.1 shock reflecting off a wedge, the

complex shock boundary layer interaction pattern was accurately captured by the method,

and the computed ratio of the length of the Mach stem to the distance travelled by it

up the ramp showed good agreement with previous numerical investigations. Finally, the

three-dimensional performance of the method was verified by computing a supersonic

flow over a sphere at Re = 6.5 × 105. The computed shock standoff distance and drag

coefficient showed good agreement with previous experimental and numerical studies.

We believe that practitioners who are interested in using dimensionally split approaches

to solve multi-dimensional Navier-Stokes problems in a cut cell code will find this work

useful. It is relatively straightforward to extend it to be applicable for problems in the

turbulent flow regime by adopting an explicit or implicit Large Eddy Simulation approach

combined with a wall function to compute the wall shear stresses. We present the progress

we have made on implementing such a ‘wall-modelled LES’ scheme in the context of the

split method in Chapter 5. For the future, modifying the method to achieve second-order

accuracy at the boundary would also be a very useful contribution.

96

CHAPTER 5

ASSESSMENT OF A WALL-MODELLED IMPLICIT LES

AND CARTESIAN CUT CELL APPROACH FOR

COMPUTING EXTERNAL AUTOMOTIVE FLOWS

In this chapter, we build on the content of the previous chapters to present a wall-modelled

Implicit Large Eddy Simulation (WMLES) approach to computing turbulent flows around

rigid bodies using the dimensionally split cut cell method. Our target application is the

calculation of external flows around automotive geometries.

To date, only Islam and Thornber [69] have published results obtained by using an

Implicit LES approach to compute an automotive flow. They use a body-fitted structured

mesh and present results only for the relatively simple SAE Notchback reference geometry

[70]. With the potential offered by ILES to compute a turbulent automotive flow without

user-adjustable parameters, the methodology deserves further investigation. In Section

5.2.2 and Section 5.2.3 of this chapter, we present our results obtained using the Cartesian

cut cell approach for the SAE Notchback model and the more realistic DrivAer [7] geometry.

Another area in which their work differs from ours is that they use a Detached Eddy

Simulation rather than a WMLES approach at the wall.

Aljure et al. [71] recently presented results for the flow around the DrivAer geometry

using incompressible WMLES on an unstructured mesh. Apart from the type of mesh used,

the main distinctions between our approach and theirs are that we retain compressibility in

the governing equations and use an Implicit LES model so that there are no user-tunable

parameters.

With the potential for automatic mesh generation offered by the Cartesian cut cell

approach, the work described here is of academic and practical interest. Although we

97

5.1. THEORY AND NUMERICAL METHOD

obtain promising results, the contents of this chapter should be looked at as a preliminary

assessment to demonstrate the potential of the methdology. Following a more thorough

assessment (see Section 5.3), we would expect to present these results as part of a future

publication. It would be the first assessment of a WMLES Cartesian cut cell approach for

computing automotive flows to be presented in the literature.

The rest of this chapter is organised as follows. In Section 5.1.1, we introduce the ILES

approach in the context of other turbulence modelling techniques. In Section 5.1.2, we

summarise the Detached Eddy Simulation (DES) and WMLES approaches for modelling

turbulence near a wall and provide specific details of the WMLES strategy that we employ.

Section 5.1.3 and Section 5.1.4 deal, respectively, with the implementation details of the

wall model on a cut cell mesh, and the method we use to set the simulation cell size. In

Section 5.2, we present results for the turbulent flow over a square cylinder, and for flow

over the SAE Notchback and DrivAer geometries. Finally, conclusions and areas for future

work are provided in Section 5.3.

5.1 Theory and numerical method

5.1.1 Turbulence modelling

The Reynolds number,

Re =
ρul

µ
=
ul

ν
, (5.1)

represents the ratio of inertial to viscous forces in a fluid. In Eq. 5.1, ρ is density, u and l

are the characteristic velocity and length scales respectively, µ is dynamic viscosity and ν

is kinematic viscosity.

As described in textbooks on classical turbulence theory (see Davidson [72], for example),

in high Reynolds number flows, instabilities in the mean flow generate swirling structures

called eddies. The larger eddies extract kinetic energy from the mean flow and transfer it

to smaller eddies, setting up an energy cascade which continues down to the Kolmogorov

length scale, η, where eddies have a Re of O(1). Viscous forces just balance the inertial

forces at the Kolmogorov length scale, and the energy is completely dissipated. Flows over

cars are well into the turbulent flow regime.

By using a spatial resolution of ∆x ∼ η, it would seem possible to compute turbulent

flows to a high degree of accuracy via an approach known as ‘Direct Numerical Simulation’

(DNS). Unfortunately, it is possible to show through dimensional analysis [72] that η scales

98

5.1. THEORY AND NUMERICAL METHOD

as
η

l
= Re−3/4, (5.2)

so that the number of cells in a 3D simulation Nx ∼ Re9/4, and the computation time

Tcomp ∼ Re3. (5.3)

The high Reynolds numbers of O(106) which are typically found in automotive flows

[70, 73] make the computation time for a DNS of the flow over a car practically infeasible,

necessating the use of turbulence modelling of some description.

To avoid having to resolve all the length scales, a common approach involves time-

averaging the Navier-Stokes equations and solving the resulting ‘Reynolds Averaged

Navier-Stokes (RANS) Equations’ for the mean flow. The time-averaging operation results

in the creation of six additional unknowns expressed in terms of the fluctuating velocity

components. These ‘Reynolds stresses’ are modelled via user-tunable RANS models, such

as the ‘k-ε’ [74] and ‘Spalart-Allmaras’ [75] models. This approach is usually unable to

capture the solution accurately at all points in the domain, however. While the model

parameters can often be adjusted to predict boundary layer separation well, for example,

they are usually in error in regions of large separation behind a bluff body [76].

Large Eddy Simulation (LES) is a turbulence modelling technique that has resolution

requirements that lie in between full DNS and RANS. In the LES approach, the Navier-

Stokes equations are spatially filtered using a cut off width such that only the larger

more anisotropic eddies are resolved. Spatial filtering results in the creation of unknown

‘sub-grid stresses’ which represent the effects of the smaller nearly isotropic eddies on the

resolved flow. These must be modelled via a sub-grid-scale (SGS) model.

We focus on using the ‘Implicit Large Eddy Simulation (ILES)’ approach to turbu-

lence modelling. Unlike LES where an explicit SGS model is used, ILES relies on the

inherent numerical viscosity in a numerical scheme (caused by even order derivatives in

the truncation error) to act as an ‘implicit’ SGS model. This is where our use of the

MUSCL-Hancock scheme and the van-Leer limiter to compute the the hyperbolic fluxes

becomes important. Since the numerical method is capable of capturing steep solution

gradients (caused by discontinuities such as shocks), it is also capable of capturing the

energy cascade from the large eddies down to the smallest resolved eddies. Oran and Boris

[77] refer to this as a ‘convenient conspiracy’ and present a number of results to support

the idea.

The form of the numerical viscosity also turns out to be convenient. The reader is

referred to Grinstein and Fureby [8] who present a detailed ‘modified equation analysis’

99

5.1. THEORY AND NUMERICAL METHOD

for the case of using of a general high resolution method to solve the compressible Navier-

Stokes equations. They find that the built-in SGS tensor present in the leading order

truncation error terms can be split into 3 parts - one term which is due to the high order

nature of the scheme and would also appear with explicit LES, a ‘slow’ term and a ‘rapid’

term, where we describe the latter terms using the terminology of Shao et al. [78]. The

‘slow’ part of the SGS tensor is responsible for capturing locally isotropic turbulence,

while the ‘rapid’ part relates to the anisotropic inhomogeneous part responsible more for

turbulence production than dissipation.

It may be noted that Garnier et al. [79] have found that the straightforward application

of second order shock capturing schemes in ILES can prove to be overly dissipative for

the small length scales. A number of remedies to this problem have been presented in the

literature, and we briefly mention the noteworthy approaches here. Oßwald et al. [80], for

example, present a modified low-Mach Roe approximate Riemann solver that alleviates

the excessive dissipation problem and produces correct scaling for the discrete pressure at

low Mach numbers. Thornber et al. [81] propose a method that provides similar benefits

but involves modifying the reconstructed velocities at the cell faces. Note that the success

of the latter approach is dependent on the limiter used, and it is not compatible with

the van-Leer limiter. Meinke et al. [82] have proposed the use of a modified version of

the Advection Upstream Splitting Method (AUSM) [83] to alleviate the problem with a

specific focus on LES. Indeed, the technique has subsequently been used in a number of

recent LES studies [84, 85]. Assessing the performance of these techniques is beyond the

scope of this work.

5.1.2 Wall modelling

A fundamental assumption in LES is that the smaller eddies are passive so that their

effect on the larger eddies can be appropriately accounted for via a SGS model. This

assumption breaks down for wall-bounded turbulent flows, however, where dynamically

important anisotropic small eddies exist in the turbulent boundary layer close to the wall.

Resolving these make the resolution requirements quickly approach that of conventional

DNS. Chapman [86], for example, found that for computing flow over an aerofoil with

LES, Nx ∼ Re1.8. To compute an LES of a a high Reynolds number automotive flow,

it is therefore necessary to model, rather than resolve, the region close to the wall. In

this context, we may identify two approaches that are commonly used in the literature:

‘Detached-Eddy Simulation’ (DES) and ‘Wall-Modelled Large Eddy Simulation’ (WMLES).

100

5.1. THEORY AND NUMERICAL METHOD

5.1.2.1 DES

In the DES approach, the attempt is to combine the benefits of RANS and LES techniques

by using unsteady RANS models to compute the solution in the near wall region, and LES

in regions away from the wall. A DES limiter which depends on the grid spacing is used to

switch between the models. With ‘Delayed Detached Eddy Simulation’ (DDES), the limiter

is adjusted to depend also on the solution by using the eddy viscosity to attempt to detect

the presence of the boundary layer [87]. ‘Improved Delayed Detached Eddy Simulation’

(IDDES) [88] introduces additional modifications to the model to alleviate problems such

as the ‘logarithmic-layer mismatch’, where a discrepancy exists between the computed

mean velocity and that provided by the logarithmic law of the wall [72]. The author is

referred to the authoritative review by Spalart [76] for a summary of these techniques.

Indeed, DES has been used extensively in the context of computing automotive flows.

Islam and Thornber [69], for example, employ a DES approach that combines high order

Implicit LES and the Spalart-Allmaras one equation RANS model to compute the flow

over a SAE Notchback model [70]. Ashton et al. [73] use, among others, an incompressible

IDDES (with the SST RANS model) approach to compute the flow over the DrivAer

automotive geometry [7] in its fastback configuration. We present our results for the flow

around these geometries in Section 5.2.2 and Section 5.2.3 respectively.

5.1.2.2 WMLES

The basic idea behind the WMLES approach is to use the Reynolds-Averaged thin boundary

layer equations in the near-wall zone to compute the shear stress at the wall. The most

common approach involves neglecting the unsteady, convective and pressure gradient terms

in the streamwise momentum equation, leading to the equilibrium diffusion ODE

∂

∂y

(
(µ+ µt)

∂u

∂y

)
= 0, (5.4)

where u is the mean streamwise velocity and y represents the wall normal direction. The

turbulent viscosity µt is usually estimated using a mixing length model and a damping

function to ensure the correct behaviour of the turbulent viscosity close to the wall [89]:

µt = κµy+(1− e−y+/A), (5.5)

101

5.1. THEORY AND NUMERICAL METHOD

where κ is the von Karman constant and A is the damping factor model constant. The

non-dimensional height above the plate,

y+ =
yuτ
ν
, (5.6)

where the friction velocity

uτ =

√
τwall

ρ
. (5.7)

The shear stress at the wall,

τwall = µ

(
∂u

∂y

)
y=0

. (5.8)

Note also that the non-dimensional velocity u+ = u/uτ .

Integrating Eq. 5.4 gives the well known solution y+ ≈ u+ for y+ . 5, i.e., in the

viscous sublayer, and the logarithmic law of the wall for y+ & 30 [90]. The boundary

conditions to solve the ODE are provided by the solution state at the coupling point

between the LES and wall models, and the no-slip condition at the wall. In practice, it

only makes sense to undertake the extra expense associated with discretising and solving

the wall ODE if one or more of the unsteady, convective and pressure gradient terms have

been retained, as in Capizzano [91] or Berger and Aftosmis [55].

When using the equilibrium model as we do, it is much more computationally efficient

to use an algebraic relation such as the Spalding wall function [92], which provides the

following equation for the velocity profile in a fully developed turbulent boundary layer:

y+(u+) = u+ + e−κB
(
e−κu

+−1−κu+− 1
2(κu+)

2− 1
6(κu+)

3)
. (5.9)

Given the solution at the LES/wall-model coupling point, Eq. 5.9 can be used to solve

for u+ which allows the computation of the wall shear stress. We use typical values for κ

and B of 0.41 and 5.033 respectively [54]. Fig. 5.1 shows the developed turbulent velocity

profile described by Spalding’s law.

It is reasonable to question the validity of using the equilibrium model when computing

non-equilibrium separating flows. As noted by Larsson et al. [90], however, because the

dynamics of the inner layer occur at a much faster time-scale than the larger scale dynamics

of the outer layer (which the LES can capture), it is not unreasonable to consider the inner

layer as being close to equilibrium even in a separating flow. Furthermore, the convective

and pressure gradient terms will approximately balance each other above the viscous layer

of the boundary layer (in the limit of weak turbulence, the equations reduce to the Euler

equations) so that a WMLES approach based on the equilibrium model is justifiable, even

102

5.1. THEORY AND NUMERICAL METHOD

0

5

10

15

20

25

30

100 101 102 103 104

u
+

y+

Figure 5.1: Turbulent boundary layer profile described by Spalding’s law.

for computing automotive flows.

Perhaps for reasons of computational expense, the WMLES approach has not been as

widely employed in the literature as DES-based methods to compute automotive flows.

There are noteworth exceptions, however. Serre et al. [93] and Aljure et al. [71], for example,

have demonstrated the potential of incompressible WMLES to compute the flow around

the Ahmed [94] and DrivAer reference geometries respectively. The main distinctions

between our approach and these previous studies are that we retain compressibility in

the governing equations, use an Implicit LES model (so that there are no user-tunable

parameters) and compute the solution on a Cartesian cut cell mesh.

5.1.3 Implementation of the wall model

As in Section 4.3.1.2, where we compute boundary fluxes for the Navier-Stokes equations,

the aim is to make use of the wall function to compute the tensor ∇u at the boundary for

each cut cell. We follow the process illustrated for cut cell (i, j) in Fig. 5.2. In the rest of

this section, subscripts specified with greek letters are assumed to range from 1 to nd, the

number of dimensions, and repeated indices of that kind imply the use of the Einstein

summation convention. Let xµ represent a Cartesian coordinate system, and x̂µ represent

an orthonormal coordinate system with a unit vector pointing normal to the cell interface,

and unit vector(s) in the interface tangential plane.

103

5.1. THEORY AND NUMERICAL METHOD

i− 1 i

j

j + 1

xcoupling

h

x̂1
x̂2

x

y

Figure 5.2: Illustration of the procedure used to compute ∇u at the boundary of cell (i, j)
using the Spalding wall function. u∗µ at xcoupling is reconstructed from the weighted least
squares gradient computed at the nearest cell volumetric centroid (filled white circle).

u∗µ is the velocity at the LES-wall model coupling point xcoupling which is located at

a distance of h (calculated as per Eq. 4.12) from the interface centroid in the normal

direction. We reconstruct the value of u∗µ using the the inverse distance weighted least

squares gradient computed at the cell volumetric centroid closest to xinterp. As explained

in Section 4.3.1.2, when using a uniform mesh spacing of ∆x in all coordinate directions,

h = 0.5∆x. Using a fixed coupling height is important because wall models are known to

be sensitive to the location of the first grid point [54], which varies widely from one cell to

another in a cut cell mesh.

The first step is to rotate the velocity components u∗µ at the coupling point to find the

components û∗µ in the normal-tangential frame. The rows of the transformation matrix

MT are the unit vectors of the x̂µ coordinate system. These are calculated as described

earlier in Section 4.3.1.2. The aim is to compute the tensor ∇u at the boundary. It has

Cartesian components ∂uµ/∂xν that are given by

∂uµ
∂xν

=
∂x̂ρ
∂xν

∂uµ
∂x̂ρ

=
∂x̂ρ
∂xν

∂ûσ
∂x̂ρ

∂xµ
∂x̂σ

. (5.10)

For the purposes of implementation, ∂x̂ρ
∂xν

can be represented by a matrix M whose

columns are the unit vectors of the x̂µ coordinate system, while ∂xµ
∂x̂σ

can be represented by

its transpose MT . What remains is to calculate the partial derivatives ∂ûσ
∂x̂ρ

. The tangential

derivatives are already known to be 0 because of no-slip. The normal derivative of the

normal velocity component is computed using finite differences by assuming a simple linear

variation as in Eq. 4.11. For each tangential velocity component, the Spalding law Eq. 5.9

can be used to calculate u+. The corresponding normal derivative then follows from Eq.

104

5.2. RESULTS

5.8.

5.1.4 Method for specifying the cell size

We follow the methodology outlined in [95] to specify the simulation cell size. For y+

between approximately 30 and 500, the mean velocity profile in a turbulent boundary

layer satisfies the logarithmic law of the wall [4]. Beyond this lies the inertia dominated

outer layer. In WMLES, the wall model thickness is usually chosen to fall within the

log-layer [8, 90]. Given a non-dimensional ‘target’ wall model coupling height y+
target, and

since we use half the cell size as the wall model height (see Section 5.1.3), the required

non-dimensional cell size ∆y+ ≈ 2y+
target.

Hence, the required simulation cell size

∆y =
∆y+ν

uτ
= ∆y+ν

√
ρ

τwall

. (5.11)

Consider the non-dimensional friction coefficient [58],

Cf ≡
τwall

1
2
ρU2
∞
, (5.12)

where U2
∞ is the free stream velocity. Given a value for Cf , Eq. 5.11 can be used to

calculate the required cell size.

We estimate Cf for the geometry under consideration by using the formula for the skin

friction for the turbulent boundary layer on a flat plate. Several approximation formulas

exist for the local skin friction coefficient, and we use the relation

Cf
2

=
0.037

Re
1/5
L

(5.13)

from [95]. ReL is the Reynolds number based on the characteristic length L of the geometry.

5.2 Results

5.2.1 Turbulent flow over a square cylinder

The problem of ReL = 21400 flow over a square cylinder is used to conduct an initial

assessment of the performance of the dimensionally split cut cell scheme when computing

a high Reynolds number turbulent flow in conjunction with the Spalding wall function.

105

5.2. RESULTS

Fig. 5.3a shows the domain extents relative to the cylinder length L. Subsonic inflow

conditions are specified at the inlet, while outflow conditions are used for the outlet and

cross-streamwise domain boundaries. The spanwise boundaries are periodic. AMR is used

to refine the cylinder boundary and near wake such that the mesh on the finest level

resolves to x+
target = y+

target = 10, and z+
target = 40. The boundary cells are all cut cells with

those along the top and bottom faces of the cylinder having a volume fraction of 0.143

(3 significant figures). Fig. 5.3b shows a close-up of the AMR mesh and instantaneous

vorticity structure captured by the simulation.

The simulation was run for a time of 170 flow units (L/U) where the reference

streamwise velocity, U , is set to correspond to M = 0.1. Fig. 5.4 shows a comparison

of the computed and experimental mean and RMS streamwise velocity profiles at five

stations situated along the cylinder surface. Fig. 5.5 shows results at the same stations for

the mean and RMS cross-streamwise velocity. The experimental data is taken from the

two-component laser-Doppler measurements of Lyn et al. [96]. The agreement between

simulation and experiment is good and similar, for example, to that obtained from the

LES of Antepara et al. [97].

As shown in Fig. 5.6, good agreement with previous investigations is also obtained for

the mean streamwise velocity in the cylinder wake. The three other LES results plotted in

the figure correspond to one simulation with no explicit subgrid-scale model and a no-slip

condition employed at the cylinder boundary, and two simulations where a wall function

is used at the boundary but where Dynamic and Smagorinsky subgrid-scale models are

used respectively. See Rodi [98] for additional details. The experimental results [96] of

Lyn et al. and Durao et al. are also shown.

Finally, Table 5.1 shows a comparison of the computed force coefficients and Strouhal

number with previous LES and experimental studies. The frequency of the vortex shedding

is calculated from the Fourier Transform of the computed pressure at a point in the middle

of the wake located a distance of 2.5L behind the cylinder. The computed results are

within the range determined by previous studies.

These results demonstrate the possibility of using the cut cell method to compute a

turbulent flow.

106

5.2. RESULTS

L
5L

14L

4L

14L

x

y

z

(a) Illustration of the domain dimensions used. The square cylinder is of side

length L.

(b) Instantaneous snapshot of vortices in the wake identified using the

Q-criterion [99].

Figure 5.3: Domain dimensions and a visualisation of the instantaneous simulation results
for the turbulent square cylinder problem.

107

5.2. RESULTS

0

1

2

3

4

5

−0.5 −0.25 0 0.25 0.5

U/Uref = 0.5

y
/D

x/D

Simulation
Experiment

(a) Mean streamwise velocity profiles.

0

1

2

3

4

5

−0.5 −0.25 0 0.25 0.5

Urms/Uref = 0.1

y
/D

x/D

Simulation
Experiment

(b) RMS streamwise velocity profiles.

Figure 5.4: Comparison of numerical and experimental [96] mean and RMS streamwise
velocity profiles at five stations along the geometry centreline.

108

5.2. RESULTS

0

1

2

3

4

5

−0.5 −0.25 0 0.25 0.5

V/Uref = 1.0
y
/D

x/D

Simulation
Experiment

(a) Mean cross-streamwise velocity profiles.

0

1

2

3

4

5

−0.5 −0.25 0 0.25 0.5

Vrms/Uref = 0.2

y
/D

x/D

Simulation
Experiment

(b) RMS cross-streamwise velocity profiles.

Figure 5.5: Comparison of numerical and experimental [96] mean and RMS cross-streamwise
velocity profiles at five stations along the geometry centreline.

109

5.2. RESULTS

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

U
/U

re
f

x/D

No SGS, No-Slip
Dynamic, WF

Smagorinsky, WF
Present

Experiment (Lyn et al.)
Experiment (Durao et al.)

Figure 5.6: Comparison of the computed mean streamwise velocity profile behind the
cylinder with previous numerical [98] and experimental [96] studies.

Table 5.1: Comparison of the computed mean and rms flow parameters with previous
numerical [98] and experimental [100] studies.

Study CL,mean CL,rms CD,mean CD,rms St

Present work -0.0460 1.07 1.88 0.259 0.130

Experiment - 0.68-1.4 1.9-2.1 0.1-0.23 0.132

No SGS, No-Slip -0.005 1.33 2.58 0.27 0.15

Dynamic, WF 0.0 - 2.02 - 0.09

Smagorinsky, WF -0.04 1.15 2.30 0.14 0.13

110

5.2. RESULTS

5.2.2 SAE Notchback results

Front slant header Rear slant header Backlight

Bootdeck

Base

Roof

Figure 5.7: Geometric features of interest for the SAE Notchback geometry.

The SAE Notchback geometry, like the Ahmed body, is a simplified automotive reference

model. Fig. 5.7 illustrates its geometric features of interest. Unlike the Ahmed body,

however, the SAE body exhibits a more realistic three-dimensional flow pattern which

includes local backlight/bootdeck separation, making it a more relevant geometry to

evaluate the performance of a numerical method with [70]. The relative geometrical

simplicity of the model, however, means it does not necessarily challenge the mesh

generation capability of the Cartesian cut cell method. Experimental data for this test

was obtained from the Loughborough University Institutional Repository [101], which also

contains a ‘watertight’ STL CAD file of the geometry. As described at the beginning of this

chapter, Islam and Thornber have previously studied this test case using an ILES/DES

approach and a body-fitted structured mesh.

111

5.2. RESULTS

7L

5W

5H

Inflow

Outflow

Outflow

Outflow

No-slip

LW

H

xy

z2.5L

Outflow

Figure 5.8: Simulation set-up for the SAE Notchback test case.

In our simulation, the geometry with length L, width W and height H is positioned at

a distance of 2.5L from the inlet in a domain of size 7L× 5W × 5H. Fig. 5.8 illustrates

the simulation set-up. The inlet is specified to be a subsonic inflow boundary with the

streamwise velocity u specified as following the power law

u = U∞min

((y
δ

)1/7

, 1

)
, (5.14)

as in [69]. In Eq. 5.14, the free stream velocity U∞ = 40 m/s as in the experiment, y is

the height above the ground plane, and the boundary layer height δ is specified to be 60

mm to be consistent with experiment. The ground-plane is no-slip, while all remaining

boundaries are specified as subsonic outflow boundaries. The free stream density ρ∞ and

pressure p∞ are set to be 1.225 kg/m3 and 101325 Pa respectively.

AMR is used to to refine the boundary and near wake region such that the mesh on the

finest level resolves to x+
target = y+

target = z+
target = 150, yielding a mesh with approximately

3.5 million cells. Note that the finest mesh used in the study of Islam and Thornber

contains approximately 7.5 million cells.

Fig. 5.9 shows a comparison of the computed and experimental mean pressure distri-

butions in the symmetry plane at the top of the geometry. The pressure reaches a local

112

5.2. RESULTS

minimum at the front slant header as the flow accelerates away from the stagnation point.

Pressure recovery occurs on the roof before decreasing again due to the acceleration caused

by the curvature at the rear slant header. As described by Wood et al. [70], the flow

separates near the top of the backlight, although pressure recovery continues, reaching a

local maximum at the bootdeck where the flow re-attaches and stagnates. The simulation

appears to be able to capture the complicated flow pattern and the results show good

agreement with experiment.

Surface contour plots of the computed and experimental pressure distributions on

the backlight, bootdeck and base are shown in Fig. 5.10a. Note that the experimental

contours are generated using interpolation from the data points which are denoted by

black markers in Fig. 5.10b. The simulation appears able to produce the general trends of

the flow measured in the experiment. In particular, the adverse pressure gradient from the

notch to the middle of the rear slant which is reponsible for flow separation is captured

well. The mean pressure on the vertical ‘base’ of the geometry appears to be slightly

higher than experiment, however.

Given the higher base pressure, the computed mean drag coefficient underestimates the

experimental value by ≈ 14%, as shown in Table 5.2. It may be noted, however, that Islam

and Thornber, who use a higher order solver (fifth order as apposed to second order as we

do) and roughly twice the number of cells as us overestimate the drag by a similar amount

using the DES approach. The computed mean lift coefficient is similar to that obtained

by Islam and Thornber, but in error by almost 24% when compared to experiment. This

is likely to be due to errors in the pressure computed at the bottom of the geometry,

although there is unfortunately no measured experimental data in that region to compare

with. The sensitivity of the lift coefficient to the nature of the flow under the geometry is

seen by the fact that when we ran a simulation with a a uniform inlet velocity (as opposed

to the power law of Eq. 5.14), the computed mean lift coefficient was −0.080 which is

in error by a larger amount (≈ 45%). It is expected that the error to experiment can

be reduced by using additional resolution, particularly in the region below the car, and

by employing the Spalding wall function to compute the shear stress also on the ground

plane. Investigating the effect of these measures is beyond the scope of this preliminary

assessment.

113

5.2. RESULTS

−2

−1.5

−1

−0.5

0

0.5

1

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

C
p

x

Experiment
Simulation

Figure 5.9: Mean pressure distributions in the symmetry plane at the top of the SAE
model.

114

5.2. RESULTS

(a) Simulation.

(b) Experiment [70].

Figure 5.10: Mean surface pressure distributions on the rear of the SAE model.

115

5.2. RESULTS

Table 5.2: Comparison of the computed mean lift and drag coeffients with previous
experimental and numerical studies.

Study CL CD

Present work -0.068 0.18

Experiment [70] -0.055 0.21

Islam and Thornber (Simulation) [69] -0.064 0.24

5.2.3 DrivAer results

Radiator grill

Roof

BacklightBonnet

Windshield

C-pillarsA-pillars

Figure 5.11: Geometric features of interest for the DrivAer geometry.

The DrivAer model is a more realistic automotive reference geometry developed by

the Technical University of Munich (TUM) in conjunction with two major automotive

companies - Audi AG and BMW [7]. The geometry can be constructed in 3 configurations

- Estate, Fastback and Notchback, on top of which additional customisations with respect

to the wheels, wing mirrors, and underbody can be made. Watertight STL files for

all the components can be obtained from TUM [102]. We focus on using the Fastback

configuration with static wheels, wing mirrors, and a smooth underbody configuration.

Fig. 5.11 illustrates its geometric features of interest. A close-up of our generated cut cell

grid was shown in Fig. 1.1.

116

5.2. RESULTS

Inflow

Outflow

Outflow

Outflow

No-slip
W L

H

5W

7L

5H

x

z
y

2.5L

Outflow

Figure 5.12: Simulation set-up for the DrivAer test case.

In our simulation, the geometry with length L, width W and height H is positioned at

a distance of 2.5L from the inlet in a domain of size 7L× 5W × 5H. Fig. 5.12 illustrates

the simulation set-up. The inlet is specified to be a subsonic inflow boundary with uniform

velocity U∞ = 40 m/s as in the experiment. The ground-plane is no-slip, while all other

boundaries are specified as subsonic outflow boundaries. The free stream density ρ∞ and

pressure p∞ are set to be 1.225 kg/m3 and 101325 Pa respectively. The Reynolds number

based on the model height H is 1.48× 106 as in Ashton et al.

AMR is used to to refine the boundary and near wake region such that the mesh on the

finest level resolves to x+
target = y+

target = z+
target = 150, yielding a mesh with approximately

23.3 million cells. Note that Aljure et al. used approximately 59 million cells in their recent

incompressible WMLES study of this geometry, while Ashton et al. used approximately

100 million cells in their study which used IDDES. The current resolution, although on

the coarser side, is sufficient for the purposes of this initial assessment.

Fig. 5.13 shows a comparison of the computed and experimental mean pressure

distributions in the symmetry plane at the top of the geometry. Starting at the stagnation

point, the flow accelerates rapidly over the radiator grill, producing a local minimum,

before rising at a steady rate over the bonnet. A local maximum is produced at the

bonnet/windshield intersection, after which flow acceleration over the windshield leads

to pressure reduction once again. Starting from the roof of the geometry, pressure

recovery begins to take place, and the pressure reaches almost ambient levels behind the

117

5.2. RESULTS

car. Two major areas of discrepancy between simulation and experiment appear at the

windshield/roof intersection, and in the region of pressure recovery over the roof. As

identified by Heft et al. [103] and Aljure et al., these are most likely caused by the presence

of the top retaining strut which is set up in the wind tunnel but not in CFD, as well as

by differences in the experimental and CAD models in that region. In general, however,

the agreement between simulation and experiment is good, and similar to that obtained

by Ashton et al. Results from the incompressible WMLES of Aljure et al. show similar

trends, and for the sake of clarity of presentation, we do not plot them in Fig. 5.13.

Fig. 5.14 and Fig. 5.15 show a comparison of the simulated and experimental

mean surface pressure distributions on the windshield and rear window of the geometry

respectively. Note that the visual appearance of the experimental contours should be

interpreted cautiously as, particularly at the rear window, they have been produced using

interpolation from a fairly sparse set of measurement points which are denoted by black

markers in Fig. 5.14b and Fig. 5.15b.

Good agreement is observed between the computed and experimental surface pressures

on the windshield. The stagnation region near the base of the windshield is clearly visible,

as is the pressure reduction caused by acceleration of the flow towards the roof and A-pillar.

On the rear window, the simulation captures the region of low pressure near the C-pillar

caused by the C-pillar vortex, as well as the region of higher pressure on the lower part of

the backlight which shows the presence of flow reattachment [7].

Finally, as observed in Table 5.3, the computed mean drag coefficient is in very good

agreement with experiment. This is to be expected given the agreement that was shown by

the surface pressure results. Because Aljure et al. use a moving ground simulation in their

incompressible WMLES study, their computed drag coefficient is not directly comparable

with ours and we do not mention it in the table.

118

5.2. RESULTS

−1.2

−0.8

−0.4

0

0.4

0.8

1.2

−400 0 400 800 1200 1600

C
p

x

Experiment
Simulation (Ashton et al.)
Simulation (Present work)

Figure 5.13: Mean pressure distributions in the symmetry plane at the top of the DrivAer
model.

119

5.2. RESULTS

(a) Simulation.

(b) Experiment [7].

Figure 5.14: Mean surface pressure distributions on the windscreen of the DrivAer model.

120

5.2. RESULTS

(a) Simulation.

(b) Experiment [7].

Figure 5.15: Mean surface pressure distributions on the rear window of the DrivAer model.

Table 5.3: Comparison of the computed mean drag coeffient with previous experimental
and numerical studies.

Study CD

Present work 0.252

Experiment [7] 0.254

Ashton et al. (SST IDDES) 0.262

121

5.3. CONCLUSIONS

5.3 Conclusions

In this chapter, we presented an extension of the dimensionally split Cartesian cut cell

method to solve high Reynolds number turbulent automotive flows using an WMLES

approach. The high resolution MUSCL-Hancock scheme provided an implicit LES model,

while the Spalding equilibrium wall function was used to compute the shear stress at the

wall.

For the ReL = 21400 turbulent flow over a square cylinder test problem, the methodol-

ogy produced results for velocities and force coefficients which were in very good agreement

with previous experimental and numerical results. Following this initial validation of the

methodology, it was used to compute results for the SAE Notchback and DrivAer fastback

automotive reference geometries. The latter model is a realistic and relatively complex

geometry which serves as a good test for the Cartesian cut cell mesh generation approach.

For both geometries, the computed surface pressure distributions and force coefficients

compared well to previous experimental and numerical studies.

We intend to publish the results of this chapter as part of a future publication, which

would be the first assessment of a WMLES Cartesian cut cell approach for computing

automotive flows to be presented in the literature. Although we have obtained promising

initial results, additional work is needed to make the material publication-ready. A mesh

resolution study needs to be performed to check whether we have obtained approximate

mesh independence in the computed results. In addition, it would also be useful to

investigate the effect of using non-uniform meshes on the results. For an automotive flow,

for example, it is expected that accuracy will not be affected greatly by sacrificing spanwise

resolution in favour of streamwise and cross-streamwise resolution. Finally, it would

also be desirable to further assess the quality of the unsteady results for the automotive

simulations by examining the RMS results in addition to the mean results.

122

CHAPTER 6

CONCLUSIONS

Cartesian cut cell mesh generation is practically attractive because of the ease with which

meshes can be automatically created around complex geometries. The downside of the

approach, however, is that it leads to the creation of arbitrarily small boundary cut cells

which places a severe restriction on the stable time-step for an explicit numerical scheme.

Since the early 1980s, a number of solutions to this ‘small cell problem’ have been

developed, and they have been implemented largely in an unsplit fashion. In this work,

we presented a novel dimensionally split Cartesian cut cell method to compute inviscid,

viscous and turbulent flows around rigid geometries. Dimensional splitting is a convenient

way to extend one-dimensional methods to solve multi-dimensional problems.

In Chapter 2, we presented a robust cut cell mesh generation technique that uses

the values of the signed distance function at each cell vertex to determine the cut cell

geometric parameters. The technique assumes that sufficient resolution has been used to

ensure that all cells are singly cut.

In Chapter 3, we presented the novel dimensionally split LPFS cut cell method that

solves the small cell problem when computing solutions to hyperbolic conservation laws.

After proving the numerical properties of the method for the model linear advection

equation, we demonstrated its practical performance by computing solutions to a number

of challenging multi-dimensional problems for the Euler equations.

In Chapter 4, we developed the method further to compute solutions for compressible

Navier-Stokes problems, and demonstrated the numerical performance of the method by

computing solutions to a wide range of test problems ranging from the nearly incompressible

to the highly compressible flow regimes. A dimensionally split Cartesian cut cell method

for the compressible Navier-Stokes equations has not been previously presented in the

123

literature.

Finally, in Chapter 5, we extended the method to compute high Reynolds number

automotive flows via a wall-modelled Large Eddy Simulation (WMLES) approach. A

full description was provided of the coupling between the implicit LES solution and the

equilibrium wall function which provides the wall shear stress. The combined methodology

was used to compute solutions for turbulent flow over a square cylinder, and for flow over

the SAE notchback and DrivAer reference geometries. The results of this preliminary

assessment of the technique showed good agreement with previous experimental and

numerical studies. A WMLES Cartesian cut cell technique has not previously been

presented for computing automotive flows in the literature.

Although we have demonstrated the robustness and readiness of the cut cell method for

use in tackling a wide range of practical problems, there is room to develop it further. On

the numerical side, there are two major areas where further research is needed. To start

with, the method as it stands is only first order accurate at the boundary. Extending it to

maintain second order accuracy in the cut cells would be very beneficial. Another useful

contribution would be to develop an alternative to the mixing flux in doubly-shielded

regions that avoids any need for a post-sweep conservative correction procedure. The

development of such a flux in a dimensionally split framework is a challenging research

problem. On the mesh generation side, the technique of Chapter 2 as it stands is unable

to deal with multiply cut cells. Such cells can be difficult to avoid in three-dimensional

simulations, and it would be important to resolve them by using, for example, the ‘Marching

Cubes’ based approach as in Gunther et al. [13].

A number of interesting open questions may also be identified. How does the accuracy

of the split method compare to previously published unsplit methods when using the same

resolution? In practice, how much difference does second order accuracy at the boundary

make when one is using AMR to refine the interface? Can the method be implemented

in conjunction with dual time stepping [104]? The larger time steps that the dual time

stepping approach permits could make the computation of the subsonic automotive flows

of Chapter 5 more computationally efficient.

Clearly, there is no shortage of questions and research topics that need further inves-

tigation. As noted by Berger [20], “cut cells promise to be an exciting research area for

years to come”.

124

BIBLIOGRAPHY

[1] N. Gokhale, N. Nikiforakis, and R. Klein, “A dimensionally split Cartesian cut

cell method for hyperbolic conservation laws,” Journal of Computational Physics,

vol. 364, pp. 186–208, 2018.

[2] N. Gokhale, N. Nikiforakis, and R. Klein, “A dimensionally split Cartesian cut cell

method for the compressible Navier-Stokes equations,” Journal of Computational

Physics, vol. 375, pp. 1205–1219, 2018.

[3] M. J. Berger and J. Oliger, “Adaptive Mesh Refinement for Hyperbolic Partial

Differential Equations,” Journal of Computational Physics, vol. 53, no. 3, pp. 484–

512, 1984.

[4] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid

Dynamics: The Finite Volume Method. Pearson Education, 2007.

[5] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer

Science & Business Media, 2012.

[6] R. Mittal and G. Iaccarino, “Immersed Boundary Methods,” Annu. Rev. Fluid

Mech., vol. 37, pp. 239–261, 2005.

[7] A. I. Heft, T. Indinger, and N. A. Adams, “Introduction of a New Realistic Generic

Car Model for Aerodynamic Investigations,” SAE 2012 World Congress, vol. April

23-26, 2012, Detroit, Michigan, USA, Paper 2012-01-1068.

[8] F. F. Grinstein, L. G. Margolin, and W. J. Rider, Implicit Large Eddy Simulation:

Computing Turbulent Fluid Dynamics. Cambridge University Press, 2007.

125

BIBLIOGRAPHY

[9] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical

introduction. Springer Science & Business Media, 2013.

[10] M. Berger and I. Rigoutsos, “An algorithm for point clustering and grid generation,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 5, pp. 1278–1286,

1991.

[11] S. Mauch, “A fast algorithm for computing the closest point and distance transform,”

Tech. Rep. caltechASCI/2000.077, California Institute of Technology, 2000.

[12] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface

construction algorithm,” in ACM Siggraph Computer Graphics, vol. 21, pp. 163–169,

ACM, 1987.

[13] C. Günther, D. Hartmann, M. Meinke, and W. Schröder, “A Cartesian cut-cell

method for sharp moving boundaries,” in 20th AIAA Computational Fluid Dynamics

Conference, AIAA Paper 2011-3387, Jun 2011.

[14] E. W. Weisstein, “Polygon Area.” From MathWorld–A Wolfram Web Resource. URL

http://mathworld.wolfram.com/PolygonArea.html. Accessed: 20-01-2019.

[15] R. B. Pember, J. B. Bell, P. Colella, W. Y. Curtchfield, and M. L. Welcome, “An

adaptive Cartesian grid method for unsteady compressible flow in irregular regions,”

Journal of Computational Physics, vol. 120, no. 2, pp. 278–304, 1995.

[16] R. N. Goldman, “Area of Planar Polygons and Volume of Polyhedra,” Graphics

Gems II, pp. 170–171, 1991.

[17] Z. Wang, “Improved formulation for geometric properties of arbitrary polyhedra,”

AIAA Journal, vol. 37, no. 10, pp. 1326–1327, 1999.

[18] B. Paul, “Calculating The Area And Centroid Of A Polygon).” URL

http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%

20and%20Centroid.pdf. Accessed: 16-02-2018.

[19] B. Gehrels, B. Lalande, M. Loskot, A. Wulkiewicz, M. Karavelas, and V. Fisikopoulos,

“Boost Geometry Documentation.” URL http://www.boost.org/doc/libs/1_66_

0/libs/geometry/doc/html/index.html. Accessed: 28-03-2018.

[20] M. Berger, “Cut Cells: Meshes and Solvers,” in Handbook of Numerical Analysis,

vol. 18, pp. 1–22, Elsevier, 2017.

126

http://mathworld.wolfram.com/PolygonArea.html
http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf
http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf
http://www.boost.org/doc/libs/1_66_0/libs/geometry/doc/html/index.html
http://www.boost.org/doc/libs/1_66_0/libs/geometry/doc/html/index.html

BIBLIOGRAPHY

[21] D. K. Clarke, H. Hassan, and M. Salas, “Euler calculations for multielement airfoils

using cartesian grids,” AIAA Journal, vol. 24, no. 3, pp. 353–358, 1986.

[22] J. J. Quirk, “An alternative to unstructured grids for computing gas dynamic flows

around arbitrarily complex two-dimensional bodies,” Computers & Fluids, vol. 23,

no. 1, pp. 125–142, 1994.

[23] M. Kirkpatrick, S. Armfield, and J. Kent, “A representation of curved boundaries

for the solution of the Navier–Stokes equations on a staggered three-dimensional

Cartesian grid,” Journal of Computational Physics, vol. 184, no. 1, pp. 1–36, 2003.

[24] D. Hartmann, M. Meinke, and W. Schröder, “A strictly conservative Cartesian

cut-cell method for compressible viscous flows on adaptive grids,” Computer Methods

in Applied Mechanics and Engineering, vol. 200, no. 9, pp. 1038–1052, 2011.

[25] L. Schneiders, D. Hartmann, M. Meinke, and W. Schröder, “An accurate moving

boundary formulation in cut-cell methods,” Journal of Computational Physics,

vol. 235, pp. 786–809, 2013.

[26] M. Meinke, L. Schneiders, C. Günther, and W. Schröder, “A cut-cell method for sharp

moving boundaries in Cartesian grids,” Computers & Fluids, vol. 85, pp. 135–142,

2013.

[27] M. Berger and C. Helzel, “A simplified h-box method for embedded boundary grids,”

SIAM Journal on Scientific Computing, vol. 34, no. 2, pp. A861–A888, 2012.

[28] P. Colella, D. T. Graves, B. J. Keen, and D. Modiano, “A Cartesian grid embedded

boundary method for hyperbolic conservation laws,” Journal of Computational

Physics, vol. 211, no. 1, pp. 347–366, 2006.

[29] X. Hu, B. Khoo, N. A. Adams, and F. Huang, “A conservative interface method for

compressible flows,” Journal of Computational Physics, vol. 219, no. 2, pp. 553–578,

2006.

[30] M. Grilli, P. J. Schmid, S. Hickel, and N. A. Adams, “Analysis of unsteady behaviour

in shockwave turbulent boundary layer interaction,” Journal of Fluid Mechanics,

vol. 700, pp. 16–28, 2012.

[31] V. Pasquariello, G. Hammerl, F. Örley, S. Hickel, C. Danowski, A. Popp, W. A. Wall,

and N. A. Adams, “A cut-cell finite volume–finite element coupling approach for

127

BIBLIOGRAPHY

fluid–structure interaction in compressible flow,” Journal of Computational Physics,

vol. 307, pp. 670–695, 2016.

[32] B. Muralidharan and S. Menon, “A high-order adaptive cartesian cut-cell method

for simulation of compressible viscous flow over immersed bodies,” Journal of

Computational Physics, vol. 321, pp. 342–368, 2016.

[33] S. Tan and C.-W. Shu, “Inverse Lax-Wendroff procedure for numerical boundary

conditions of conservation laws,” Journal of Computational Physics, vol. 229, no. 21,

pp. 8144–8166, 2010.

[34] S. Tan, C. Wang, C.-W. Shu, and J. Ning, “Efficient implementation of high

order inverse Lax-Wendroff boundary treatment for conservation laws,” Journal of

Computational Physics, vol. 231, no. 6, pp. 2510–2527, 2012.

[35] S. Jebens, O. Knoth, and R. Weiner, “Linearly implicit peer methods for the

compressible Euler equations,” Applied Numerical Mathematics, vol. 62, no. 10,

pp. 1380–1392, 2012.

[36] S. May and M. Berger, “A Mixed Explicit Implicit Time Stepping Scheme for

Cartesian Embedded Boundary Meshes,” in Finite Volumes for Complex Applications

VII-Methods and Theoretical Aspects, pp. 393–400, Springer, 2014.

[37] R. Klein, K. Bates, and N. Nikiforakis, “Well-balanced compressible cut-cell sim-

ulation of atmospheric flow,” Philosophical Transactions of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1907,

pp. 4559–4575, 2009.

[38] G. Strang, “On the construction and comparison of difference schemes,” SIAM

Journal on Numerical Analysis, vol. 5, no. 3, pp. 506–517, 1968.

[39] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge

University Press, 2002.

[40] C. B. Laney, Computational Gasdynamics. Cambridge University Press, 2008.

[41] P. D. Lax and R. D. Richtmyer, “Survey of the Stability of Linear Finite Difference

Equations,” Communications on Pure and Applied Mathematics, vol. 9, no. 2,

pp. 267–293, 1956.

128

BIBLIOGRAPHY

[42] M. J. Berger, C. Helzel, and R. J. LeVeque, “H-box methods for the approximation

of hyperbolic conservation laws on irregular grids,” SIAM Journal on Numerical

Analysis, vol. 41, no. 3, pp. 893–918, 2003.

[43] D. Serre, “Matrices: Theory and Applications,” Graduate Texts in Mathematics,

2002.

[44] M. Meyer, A. Devesa, S. Hickel, X. Hu, and N. Adams, “A conservative immersed

interface method for large-eddy simulation of incompressible flows,” Journal of

Computational Physics, vol. 229, no. 18, pp. 6300–6317, 2010.

[45] J. D. Anderson Jr, Fundamentals of Aerodynamics. McGraw-Hill, 2010.

[46] C. D. Harris, “Two-dimensional aerodynamic characteristics of the NACA 0012

airfoil in the Langley 8 foot transonic pressure tunnel,” Tech. Rep. 81927, NASA,

1981.

[47] G. Ben-Dor, J. Dewey, and K. Takayama, “The reflection of a plane shock wave over

a double wedge,” Journal of Fluid Mechanics, vol. 176, pp. 483–520, 1987.

[48] G. Yang, D. Causon, and D. Ingram, “Calculation of compressible flows about

complex moving geometries using a three-dimensional Cartesian cut cell method,”

International Journal for Numerical Methods in Fluids, vol. 33, no. 8, pp. 1121–1151,

2000.

[49] A. Bryson and R. Gross, “Diffraction of strong shocks by cones, cylinders, and

spheres,” Journal of Fluid Mechanics, vol. 10, no. 01, pp. 1–16, 1961.

[50] M. de León, “Orion Capsule (NASA 3D Resources).” URL https://nasa3d.arc.

nasa.gov/detail/orion-capsule. Accessed: 31-10-2016.

[51] J. J. Quirk, “A contribution to the great Riemann solver debate,” International

Journal for Numerical Methods in Fluids, vol. 18, no. 6, pp. 555–574, 1994.

[52] C. Helzel, M. J. Berger, and R. J. LeVeque, “A high-resolution rotated grid method

for conservation laws with embedded geometries,” SIAM Journal on Scientific

Computing, vol. 26, no. 3, pp. 785–809, 2005.

[53] L. Schneiders, C. Günther, M. Meinke, and W. Schröder, “An efficient conservative

cut-cell method for rigid bodies interacting with viscous compressible flows,” Journal

of Computational Physics, vol. 311, pp. 62–86, 2016.

129

https://nasa3d.arc.nasa.gov/detail/orion-capsule
https://nasa3d.arc.nasa.gov/detail/orion-capsule

BIBLIOGRAPHY

[54] M. Berger, M. J. Aftosmis, and S. R. Allmaras, “Progress Towards a Cartesian

Cut-Cell Method for Viscous Compressible Flow,” in 50th AIAA Aerospace Sciences

Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper

2012-1301, Jan 2012.

[55] M. J. Berger and M. J. Aftosmis, “An ODE-based Wall Model for Turbulent Flow

Simulations,” AIAA Journal, vol. 10, no. 2, pp. 700–714, 2017.

[56] D. Graves, P. Colella, D. Modiano, J. Johnson, B. Sjogreen, and X. Gao, “A cartesian

grid embedded boundary method for the compressible Navier–Stokes equations,”

Communications in Applied Mathematics and Computational Science, vol. 8, no. 1,

pp. 99–122, 2013.

[57] Z. Dragojlovic, F. Najmabadi, and M. Day, “An embedded boundary method for

viscous, conducting compressible flow,” Journal of Computational Physics, vol. 216,

no. 1, pp. 37–51, 2006.

[58] P. Kundu and L. Cohen, Fluid Mechanics. Academic Press, 5th ed., 2014.

[59] D. Tritton, “Experiments on the flow past a circular cylinder at low Reynolds

numbers,” Journal of Fluid Mechanics, vol. 6, no. 4, pp. 547–567, 1959.

[60] Y.-H. Tseng and J. H. Ferziger, “A ghost-cell immersed boundary method for flow in

complex geometry,” Journal of Computational Physics, vol. 192, no. 2, pp. 593–623,

2003.

[61] A. S. Grove, F. Shair, and E. Petersen, “An experimental investigation of the steady

separated flow past a circular cylinder,” Journal of Fluid Mechanics, vol. 19, no. 1,

pp. 60–80, 1964.

[62] C. Wieselsberger, “New data on the laws of fluid resistance,” Physikalische Zeitschrift,

vol. 22 (1921).

[63] M.-C. Lai and C. S. Peskin, “An immersed boundary method with formal second-

order accuracy and reduced numerical viscosity,” Journal of Computational Physics,

vol. 160, no. 2, pp. 705–719, 2000.

[64] H. Glaz, P. Colella, I. Glass, and R. Deschambault, “A numerical study of oblique

shock-wave reflections with experimental comparisons,” in Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, vol. 398,

pp. 117–140, The Royal Society, 1985.

130

BIBLIOGRAPHY

[65] M. Al-Marouf and R. Samtaney, “A versatile embedded boundary adaptive mesh

method for compressible flow in complex geometry,” Journal of Computational

Physics, vol. 337, pp. 339–378, 2017.

[66] H. Uddin, R. Kramer, and C. Pantano, “A Cartesian-based embedded geometry

technique with adaptive high-order finite differences for compressible flow around

complex geometries,” Journal of Computational Physics, vol. 262, pp. 379–407, 2014.

[67] A. P. Krasil'shchikov and V. P. Podobin, “Experimental study of sphere aerodynamic

characteristics in free flight up to M ∼ 15,” Fluid Dynamics, vol. 3, no. 4, pp. 132–134,

1972.

[68] A. Bailey and J. Hiatt, “Sphere Drag Coefficients for a Broad Range of Mach and

Reynolds Numbers,” AIAA Journal, vol. 10, no. 11, pp. 1436–1440, 1972.

[69] A. Islam and B. Thornber, “High-order detached-eddy simulation of external aerody-

namics over an SAE notchback model,” The Aeronautical Journal, vol. 121, no. 1243,

pp. 1342–1367, 2017.

[70] D. Wood, M. A. Passmore, and A. K. Perry, “Experimental Data for the Validation

of Numerical Methods - SAE Reference Notchback Model,” SAE Int. J. Passeng.

Cars - Mech. Syst., vol. 7, no. 1, pp. 145–154, 2014.

[71] D. Aljure, J. Calafell, A. Baez, and A. Oliva, “Flow over a realistic car model: Wall

modeled large eddy simulations assessment and unsteady effects,” Journal of Wind

Engineering and Industrial Aerodynamics, vol. 174, pp. 225–240, 2018.

[72] P. Davidson, Turbulence: An Introduction for Scientists and Engineers. Oxford

University Press, 2015.

[73] N. Ashton, A. West, S. Lardeau, and A. Revell, “Assessment of RANS and DES

methods for realistic automotive models,” Computers & Fluids, vol. 128, pp. 1–15,

2016.

[74] B. Launder and D. Spalding, “The numerical computation of turbulent flows,”

Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289,

1974.

[75] P. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic

flows,” in 30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings,

AIAA Paper 92-0439, Jan 1992.

131

BIBLIOGRAPHY

[76] P. R. Spalart, “Detached-Eddy Simulation,” Annual Review of Fluid Mechanics,

vol. 41, pp. 181–202, 2009.

[77] E. S. Oran and J. P. Boris, “Computing Turbulent Shear Flows–A Convenient

Conspiracy,” Computers in Physics, vol. 7, no. 5, pp. 523–533, 1993.

[78] L. Shao, S. Sarkar, and C. Pantano, “On the relationship between the mean flow

and subgrid stresses in large eddy simulation of turbulent shear flows,” Physics of

Fluids, vol. 11, no. 5, pp. 1229–1248, 1999.

[79] E. Garnier, M. Mossi, P. Sagaut, P. Comte, and M. Deville, “On the Use of Shock-

Capturing Schemes for Large-Eddy Simulation,” Journal of Computational Physics,

vol. 153, no. 2, pp. 273–311, 1999.

[80] K. Oßwald, A. Siegmund, P. Birken, V. Hannemann, and A. Meister, “L2Roe: a

low dissipation version of Roe’s approximate Riemann solver for low Mach numbers,”

International Journal for Numerical Methods in Fluids, vol. 81, no. 2, pp. 71–86,

2016.

[81] B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, and R. J. Williams, “An

improved reconstruction method for compressible flows with low Mach number

features,” Journal of Computational Physics, vol. 227, no. 10, pp. 4873–4894, 2008.

[82] M. Meinke, W. Schröder, E. Krause, and T. Rister, “A comparison of second-and

sixth-order methods for large-eddy simulations,” Computers & Fluids, vol. 31, no. 4-7,

pp. 695–718, 2002.

[83] M.-S. Liou and C. J. Steffen Jr, “A New Flux Splitting Scheme,” Journal of

Computational Physics, vol. 107, no. 1, pp. 23–39, 1993.

[84] N. Alkishriwi, M. Meinke, and W. Schröder, “A large-eddy simulation method for

low Mach number flows using preconditioning and multigrid,” Computers & Fluids,

vol. 35, no. 10, pp. 1126–1136, 2006.

[85] A. Pogorelov, M. Meinke, and W. Schröder, “Cut-cell method based large-eddy

simulation of tip-leakage flow,” Physics of Fluids, vol. 27, no. 7, p. 075106, 2015.

[86] D. R. Chapman, “Computational Aerodynamics Development and Outlook,” AIAA

Journal, vol. 17, no. 12, pp. 1293–1313, 1979.

132

BIBLIOGRAPHY

[87] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, and A. Travin,

“A new version of detached-eddy simulation, resistant to ambiguous grid densities,”

Theoretical and Computational Fluid Dynamics, vol. 20, no. 3, p. 181, 2006.

[88] M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “A hybrid RANS-LES

approach with delayed-DES and wall-modelled LES capabilities,” International

Journal of Heat and Fluid Flow, vol. 29, no. 6, pp. 1638–1649, 2008.

[89] D. C. Wilcox, Turbulence Modeling for CFD. DCW Industries, 3rd ed., 2006.

[90] J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno, “Large eddy simulation with

modeled wall-stress: recent progress and future directions,” Mechanical Engineering

Reviews, vol. 3, no. 1, pp. 15–00418, 2016.

[91] F. Capizzano, “Turbulent Wall Model for Immersed Boundary Methods,” AIAA

Journal, vol. 49, no. 11, pp. 2367–2381, 2011.

[92] D. B. Spalding, “A Single Formula for the “Law of the Wall”,” Journal of Applied

Mechanics, vol. 28, no. 3, pp. 455–458, 1961.

[93] E. Serre, M. Minguez, R. Pasquetti, E. Guilmineau, G. B. Deng, M. Kornhaas,

M. Schäfer, J. Fröhlich, C. Hinterberger, and W. Rodi, “On simulating the turbulent

flow around the Ahmed body: A French–German collaborative evaluation of LES

and DES,” Computers & Fluids, vol. 78, pp. 10–23, 2013.

[94] S. R. Ahmed, G. Ramm, and G. Faltin, “Some salient features of the time-averaged

ground vehicle wake,” SAE Transactions, pp. 473–503, 1984.

[95] ANSYS, “Introductory FLUENT Training - Modeling Turbulent Flows.” URL

http://www.southampton.ac.uk/~nwb/lectures/GoodPracticeCFD/Articles/

Turbulence_Notes_Fluent-v6.3.06.pdf. Accessed: 25-04-2018.

[96] D. Lyn, S. Einav, W. Rodi, and J.-H. Park, “A laser-Doppler velocimetry study of

ensemble-averaged characteristics of the turbulent near wake of a square cylinder,”

Journal of Fluid Mechanics, vol. 304, pp. 285–319, 1995.

[97] O. Antepara, O. Lehmkuhl, R. Borrell, J. Chiva, and A. Oliva, “Parallel adaptive

mesh refinement for large-eddy simulations of turbulent flows,” Computers & Fluids,

vol. 110, pp. 48–61, 2015.

[98] W. Rodi, “Comparison of LES and RANS calculations of the flow around bluff bodies,”

Journal of Wind Engineering and Industrial Aerodynamics, vol. 69, pp. 55–75, 1997.

133

http://www.southampton.ac.uk/~nwb/lectures/GoodPracticeCFD/Articles/Turbulence_Notes_Fluent-v6.3.06.pdf
http://www.southampton.ac.uk/~nwb/lectures/GoodPracticeCFD/Articles/Turbulence_Notes_Fluent-v6.3.06.pdf

BIBLIOGRAPHY

[99] J. C. R. Hunt, A. A. Wray, and P. Moin, “Eddies, stream, and convergence zones in

turbulent flows,” Center for Turbulence Research Report CTR-S88, 1988.

[100] W. Rodi, J. Ferziger, M. Breuer, and M. Pourquie, “Status of large eddy simulation:

results of a workshop,” Transactions-American Society of Mechanical Engineers

Journal of Fluids Engineering, vol. 119, pp. 248–262, 1997.

[101] M. A. Passmore, A. K. Perry, and D. Wood, “SAE reference model: 20 degree

notchback validation dataset (reference SAE paper 2014-01-0590).” URL https:

//dspace.lboro.ac.uk/2134/13886. Accessed: 26-04-2018.

[102] TUM, “DrivAer Model.” URL http://www.aer.mw.tum.de/en/research-groups/

automotive/drivaer/. Accessed: 27-04-2018.

[103] A. I. Heft, T. Indinger, and N. A. Adams, “Experimental and numerical investiga-

tion of the DrivAer model,” in ASME 2012 Fluids Engineering Division Summer

Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the

ASME 2012 10th International Conference on Nanochannels, Microchannels, and

Minichannels, pp. 41–51, American Society of Mechanical Engineers, 2012.

[104] A. Jameson, “Time Dependent Calculations Using Multigrid, with Applications to

Unsteady Flows Past Airfoils and Wings,” in 10th Computational Fluid Dynamics

Conference, Fluid Dynamics and Co-located Conferences, 1991.

134

https://dspace.lboro.ac.uk/2134/13886
https://dspace.lboro.ac.uk/2134/13886
http://www.aer.mw.tum.de/en/research-groups/automotive/drivaer/
http://www.aer.mw.tum.de/en/research-groups/automotive/drivaer/

	Introduction
	Thesis structure
	Code development
	High-resolution finite volume methods
	MUSCL-Hancock scheme

	Hierarchical Adaptive Mesh Refinement

	Cut cell mesh generation
	Calculation of core geometric parameters
	Multiply cut cells
	Calculation of intersection points
	Calculation of face fractions
	Interface area and normal calculation
	Volume fraction calculation
	Volumetric centroid calculation
	Interface centroid calculation

	Calculation of extra geometric parameters
	Conclusion

	A dimensionally split Cartesian cut cell method for hyperbolic conservation laws
	Introduction
	Governing equations and solution framework
	Numerical method
	The KBN flux
	The LPFS flux
	Multi-dimensional extension
	Post-sweep correction at concavities

	Convergence and stability analysis
	`Supraconvergence' property of the LPFS scheme
	Stability of the LPFS scheme

	Results
	Convergence tests
	One-dimensional advection
	Two-dimensional diagonal advection
	Two-dimensional advection in a sloped channel

	Shock reflection from a wedge
	Subsonic flow over a NACA 0012 aerofoil
	Shock reflection over a double wedge
	Shock diffraction over a cone
	Space re-entry vehicle simulation

	Conclusions

	A dimensionally split Cartesian cut cell method for the compressible Navier-Stokes equations
	Introduction
	Governing equations and solution framework
	Numerical method
	Calculation of explicit fluxes
	Intercell fluxes
	Boundary fluxes

	Flux stabilisation
	Multi-dimensional extension

	Results
	Re=20 lid-driven cavity problem
	Laminar flat plate boundary layer
	Flow over a circular cylinder
	Shock reflection from a wedge
	Three-dimensional supersonic flow over a sphere

	Conclusions

	Assessment of a wall-modelled Implicit LES and Cartesian Cut Cell approach for computing external automotive flows
	Theory and numerical method
	Turbulence modelling
	Wall modelling
	DES
	WMLES

	Implementation of the wall model
	Method for specifying the cell size

	Results
	Turbulent flow over a square cylinder
	SAE Notchback results
	DrivAer results

	Conclusions

	Conclusions
	Bibliography

