
Bayesian Methods and
Machine Learning in

Astrophysics
Edward John Higson

Cavendish Astrophysics Group

Gonville & Caius College

1st October 2018

A dissertation submitted for the degree of Doctor of Philosophy at the

University of Cambridge

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration except as declared in the Preface and specified in the text.

The use of “we” is a stylistic choice.

It is not substantially the same as any that I have submitted, or, is being concurrently

submitted for a degree or diploma or other qualification at the University of Cambridge

or any other University or similar institution except as declared in the Preface and

specified in the text. I further state that no substantial part of my dissertation has

already been submitted, or, is being concurrently submitted for any such degree, diploma

or other qualification at the University of Cambridge or any other University or similar

institution except as declared in the Preface and specified in the text.

It does not exceed the prescribed word limit for the relevant Degree Committee

(60,000 words).

Much of the material in this thesis has also been presented in Higson et al. (2018,

2019a,b,c); this work was done in collaboration with the candidate’s supervisors (An-

thony Lasenby, Mike Hobson and Will Handley).

i

Acknowledgements

I am extremely grateful to Anthony Lasenby and Mike Hobson for all their help and

guidance over the last 3 years. I could not have wished for better supervisors; it has

been a privilege working with them and I have learned an immense amount from the

experience. I am equally grateful to Will Handley for his triple role in my PhD — as a

third supervisor, a perennial code fixer and a friend.

I would also like to take this opportunity to thank the many people who inspired

and fed my interest in physics and research over my many years in education. This

includes (but is by no means limited to) David Wolfe and Anton Machacek at the Royal

Grammar School High Wycombe, Peter Norreys and Raoul Trines at the Rutherford

Appleton Laboratory, and Tony Weidberg, Georg Viehhauser, Devinder Sivia, Andrei

Starinets and Ralph Schönrich at Oxford University.

I am grateful to my officemates Bjoern Soergel, Carina Negreanu, Iulia Simion,

Fruzsina Agocs, Lukas Hergt and Pablo Lemos-Portela for their help with (and distrac-

tion from) various research challenges. Special thanks also goes to my fellow Cambridge-

based expatriates from The Other Place — Jack Anthony, Jacob Swain and Peter Taylor

— for their proof-reading services.

Most importantly I thank my loving parents, Jackie and Mark, for all the unwavering

support (financial, emotional and logistical) they have provided throughout my life.

I dedicate this thesis to Harriet Smith, who has put up with me for 9 years now and

I hope will continue to do so.

iii

Summary

This thesis is concerned with methods for Bayesian inference and their applications

in astrophysics. We principally discuss two related themes: advances in nested sam-

pling (Chapters 3 to 5), and Bayesian sparse reconstruction of signals from noisy data

(Chapters 6 and 7).

Nested sampling is a popular method for Bayesian computation which is widely used

in astrophysics. Following the introduction and background material in Chapters 1

and 2, Chapter 3 analyses the sampling errors in nested sampling parameter estimation

and presents a method for estimating them numerically for a single nested sampling

calculation (this was published in Higson et al., 2018). Chapter 4 introduces diagnostic

tests for detecting when software has not performed the nested sampling algorithm

accurately, for example due to missing a mode in a multimodal posterior, and uses

material from Higson et al. (2019b). The uncertainty estimates and diagnostics in

Chapters 3 and 4 are implemented in the nestcheck (Higson, 2018b) software package.

Chapter 5, presented in Higson et al. (2019a), describes dynamic nested sampling: a

generalisation of the nested sampling algorithm which can produce large improvements

in computational efficiency compared to standard nested sampling. We have imple-

mented dynamic nested sampling in the dyPolyChord (Higson, 2018a) and perfectns

(Higson, 2018c) software packages.

Chapter 6 presents a principled Bayesian framework for signal reconstruction, in

which the signal is modelled by basis functions whose number (and form, if required) is

determined by the data themselves. This approach is based on a Bayesian interpretation

of conventional sparse reconstruction and regularisation techniques, in which sparsity

is imposed through priors via Bayesian model selection. We demonstrate our method

for noisy 1- and 2-dimensional signals, including examples of processing astronomical

images. The numerical implementation uses dynamic nested sampling, and uncertainties

v

https://github.com/ejhigson/nestcheck
https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/perfectns

are calculated using the methods introduced in Chapters 3 and 4. Chapter 7 applies our

Bayesian sparse reconstruction framework to artificial neural networks, where it allows

the optimum network architecture to be determined by treating the number of nodes

and hidden layers as parameters. Chapters 6 and 7 use material from Higson et al.

(2019c).

We conclude by suggesting possible areas of future research in Chapter 8.

vi

Contents

Declaration i

Acknowledgements iii

Summary v

1 Introduction 1

2 Bayesian inference 3

2.1 Bayesians and frequentists . 3

2.2 Applying Bayes’ theorem to data . 8

2.3 Bayesian computation . 10

2.4 Nested sampling . 15

3 Sampling errors in nested sampling parameter estimation 21

3.1 Introduction . 21

3.2 Background: sampling errors in parameter estimation 22

3.3 Sources of sampling errors in nested sampling parameter estimation . . 24

3.4 Estimating sampling errors in nested sampling parameter estimation . . 30

3.5 Numerical tests . 34

3.6 Application to existing nested sampling software 39

3.7 Application gravitational wave data analysis 41

3.8 Conclusion . 44

3.A Relative contributions of different sources of parameter estimation sam-

pling errors . 45

3.B Analysis of the simulated weights method 45

vii

3.C Split runs method . 51

3.D Termination conditions . 52

3.E Additional numerical tests: 3-dimensional Cauchy likelihood 52

4 Diagnostic tests for nested sampling calculations 55

4.1 Introduction . 55

4.2 Measuring implementation-specific effects 57

4.3 Diagnostic plots . 59

4.4 Estimating implementation-specific effects 65

4.5 Diagnostic tests for when few runs are available 68

4.6 Implementation-specific effects in practice 73

4.7 Application to Planck survey data . 81

4.8 Conclusion . 83

4.A Code . 85

4.B Numerical results tables . 85

5 Dynamic nested sampling 87

5.1 Introduction . 87

5.2 Variable numbers of live points . 90

5.3 The dynamic nested sampling algorithm 92

5.4 Numerical tests with perfect nested sampling 96

5.5 Dynamic nested sampling with challenging posteriors 104

5.6 Conclusion . 109

5.A Code . 110

5.B Estimating sampling errors in dynamic nested sampling 111

5.C Effect of varying the number of live points on evidence calculation accuracy111

5.D Tuning for a specific parameter estimation problem 114

5.E Additional numerical tests . 117

5.F Dynamic nested sampling without repeatedly restarting runs 122

6 Bayesian sparse reconstruction 125

6.1 Introduction . 125

6.2 Regression, regularisation and sparsity 127

6.3 A Bayesian approach . 132

viii

6.4 Fitting 1-dimensional data . 138

6.5 2-dimensional image fitting . 147

6.6 Conclusion . 151

6.A Code . 151

6.B Computational resources used . 152

6.C Additional numerical results . 152

7 Bayesian sparse reconstruction with neural networks 159

7.1 Introduction . 159

7.2 Applying Bayesian sparse reconstruction to neural networks 161

7.3 Fitting 2-dimensional images with neural networks 163

7.4 Application to astronomical images . 165

7.5 Conclusion . 166

7.A Code . 168

7.B Computational resources used . 168

8 Conclusion 171

Bibliography 175

ix

Chapter 1

Introduction

As astrophysicists, we aim to create theories which describe the natural phenomena we

observe in the universe. The scientific method requires that we test our hypotheses

empirically; this allows them to be falsified or refined, and enables us to choose between

rival models. Consequently, making inferences from data is fundamental to the research

process.

This empirical scientific method is not new; a detailed account can be found in

Sir Francis Bacon’s 1620 work Novum Organum Scientiarum (“New Instrument of Sci-

ence”). However, modern advances in experiments and computing have made data

analysis techniques more important to scientific research now than ever before. In as-

trophysics in particular, the last two decades have seen order-of-magnitude increases

in the quantity of both data and computational resources available. This has revolu-

tionised our understanding of many aspects of the universe, and made advances in data

analysis techniques and numerical methods central to the progress of the field.

The first theme of this thesis, advances in nested sampling, contributes to solving

the challenges posed by these recent increases in the size and complexity of astronomical

data. After a review of Bayesian inference methods and theory in Chapter 2, Chapters 3

and 4 provide practical tools for assessing the uncertainty and reliability of nested sam-

pling calculations — which are poorly understood compared to many other numerical

methods. Such calculations underpin a large number of recent results in astrophysics,

but their reliability is not guaranteed; properly checking results is therefore of great

scientific importance. Astronomical applications of the techniques introduced can be

found in Sections 3.7 and 4.7.

1

Chapter 5 introduces dynamic nested sampling: a new algorithm which can pro-

vide order-of-magnitude improvements in computational efficiency over standard nested

sampling, permitting the analysis of larger and more complex data sets. Since the pub-

lication of the dynamic nested sampling algorithm, its applications in astronomy have

included constraining the present day stellar mass function (Orazio et al., 2018), fitting

light curves of transient sources (Guillochon et al., 2018) and mapping distances across

the Perseus molecular cloud (Zucker et al., 2018).

The thesis’ second theme, Bayesian sparse reconstruction of signals, introduces a

principled approach for fitting data using machine learning techniques such as regres-

sion1 and neural networks. In Chapter 6 we describe our Bayesian sparse reconstruction

framework, in which signals are fitted using basis functions whose number (and, if re-

quired, form) is determined by the data themselves. We show that this can be done

by treating the type and number of basis functions as integer parameters, then per-

forming Bayesian model selection indirectly by sampling the posterior distribution of

these parameters. Chapter 7 applies this approach to artificial neural networks, where

it allows Bayesian model selection to be performed over the space of possible network

architectures by treating the number of hidden layers and nodes as integer parameters.

Demonstrations of our method in Chapters 6 and 7 include applications to processing

astronomical images.

Our Bayesian sparse reconstruction research is closely linked to recent advances in

computing power and numerical methods such as nested sampling, which have made

this principled approach feasible in the low data regime. We also make use of diagnostic

tests and the dynamic nested sampling algorithm, introduced in Chapters 3 to 5, in

the numerical calculations in Chapters 6 and 7. We intend the examples of Bayesian

sparse reconstruction in this thesis to serve as a proof of principle for a wider range

of astronomical applications, which will be made possible by future improvements in

computational hardware and numerical methods.

1The modern field of “machine learning” incorporates a number of classical statistical techniques
which significantly predate the coining of the term by Arthur Samuel in the 1950s. This includes
regression, the earliest form of which dates back to Legendre (1805).

2

Chapter 2

Bayesian inference

We now provide an overview of Bayesian inference, which is central to the work in

subsequent chapters of this thesis. Many excellent books on this topic exist; in particular

we use Sivia and Skilling (2006) and MacKay (2003). In addition there are some good

review articles on Bayesian methods in the context of astrophysics and cosmology; we

have drawn from Trotta (2008), Loredo (2012) and Sharma (2017). The chapter finishes

with an introduction to nested sampling in Section 2.4, which will provide background

for Chapters 3 to 5. Some sections of this chapter have been adapted from background

material presented in Higson et al. (2018, 2019c).

2.1 Bayesians and frequentists

We first introduce Bayesian inference by contrasting it with the rival frequentist

paradigm.

2.1.1 Probability

The distinction between Bayesians and frequentists can be understood in terms of the

two schools’ differing definitions of probability. A frequentist definition is:

“Probability is an event’s relative frequency in the limit of an infinite number

of independent trials.”

At first glance this definition makes intuitive sense, but it has a number of significant

shortcomings identified by Trotta (2008). These include:

3

1. it cannot formulate perfectly reasonable questions involving unrepeatable events.

For example, “what is the probability that King Richard III arranged the murder

of his two young nephews (the princes in the tower) in 1483?”;

2. to hold exactly it requires an infinite number of trials, which are never available in

practice. Small sample sizes require ad hoc and potentially complex adjustments;

3. it is circular, in that it assumes the event has the same probability of occurring in

each trial when this probability is exactly what we seek to define;

4. it covers only random processes (aleatoric uncertainty), such as the probability of

an atomic nucleus undergoing radioactive decay within some time period. Epis-

temic uncertainty due to a lack of knowledge about a deterministic system is not

included.

As a consequence, this definition of “probability” is often radically different to the word’s

meaning when it is used colloquially. Imagine you suggest to your friend that you leave

a cake in the oven for 45 minutes to bake, and they reply “if we do that, there is a

50% probability we will burn it!” Does your friend mean to tell you that, if you left a

very large number of identical cakes in identical ovens at identical temperatures for 45

minutes, approximately half of them would be burned and half of them not burned? This

seems somewhat unlikely. More plausibly, rather than suggesting the baking process is

stochastic, your friend believes it is broadly deterministic but is unsure of the outcome.

In such a conversation we implicitly assume a Bayesian definition of probability,

which does not suffer from the problems with the frequentist version identified above:

“Probability is a measure of the degree of belief that a proposition is true.”

This definition is not circular, and can clearly be applied to unrepeatable events and

limited numbers of samples. Furthermore, it does not distinguish between uncertainty

due to a process’ intrinsic randomness and due to lack of information.

2.1.2 Bayes’ theorem

In order to use the Bayesian definition of probability to analyse new data, we require a

method for updating our degree of belief in a proposition given new information. The

mathematical formula for this procedure is credited to the Reverend Thomas Bayes

4

(1701(?)-1761), from whom Bayesian statistics takes its name. Bayes’ eponymous the-

orem was published posthumously in 1763, by his friend the philosopher Richard Price

(Bayes and Price, 1763).

Bayes’ theorem can be derived from the axioms required for consistent reasoning

(the “Cox axioms”), which imply that the probabilities of propositions X and Y must

satisfy the sum and product rules (Sivia and Skilling, 2006). The sum rule states

P (X|I) + P (X̄|I) = 1, (2.1)

where X̄ denotes “not X” and P (X|I) ∈ [0, 1]. Here P (X|I) denotes the conditional

probability of X given I, and following Sivia and Skilling (2006) we explicitly include

that all probabilities are conditional on any background information I. Such conditional

probabilities represent logical rather than causal or temporal connections; for example

future events can provide us with more information about the probabilities of past

events. The product rule is

P (X,Y |I) = P (X|Y, I)P (Y |I). (2.2)

Bayes’ theorem can be easily derived from (2.2) by noting P (X,Y |I) = P (Y,X|I),

so

P (X|Y, I)P (Y |I) = P (Y |X, I)P (X|I), (2.3)

and hence

P (X|Y, I) =
P (Y |X, I)P (X|I)

P (Y |I)
. (2.4)

This provides a formula for updating our prior degree of belief P (X|I), termed the

prior, with new information Y . It is worth mentioning that Bayes’ theorem is an

uncontroversial mathematical statement, and the disagreement between Bayesians and

frequentists is about its use as a basis for inference (Trotta, 2008).

Until this point we have focused on “propositions” X and Y which can be true or

false, but Bayes’ theorem (2.4) and the Bayesian definition of probability also extend to

quantities which can take a range of discrete or continuous values. In the discrete case

X takes values in [X1, X2, . . .], and the sum rule (2.1) becomes

∑
i

P (Xi|I) = 1, (2.5)

5

where P (Xi|I) ∈ [0, 1] for all i. In the continuous case X takes values in R and∫ ∞
−∞

P (X|I) dX = 1, (2.6)

where P (X|I) > 0 for all X ∈ R. Another significant result which follows from the

Cox axioms is “marginalisation” (also called the “law of total probability”), which for

continuous variables X and Y can be written as

P (X|I) =

∫ ∞
−∞

P (X,Y |I) dY. (2.7)

This allows the removal (“marginalising out”) of parameters from joint distributions,

and is of great importance for Bayesian inference. We use the notation in this section

for the remainder of this thesis, although more rigorous conventions are common in the

statistics literature.

2.1.3 Practical differences

Perhaps the most commonly cited difference between the Bayesian and frequentist ap-

proaches is the former’s requirement that the initial knowledge of the proposition is

specified mathematically in the prior. This introduces additional subjectivity and com-

plexity, and is often viewed by non-Bayesians as a disadvantage. Indeed simply specify-

ing an absence of knowledge — a non-informative prior — often requires careful analysis

(for some examples see Handley and Millea, 2018; Sivia and Skilling, 2006). However

it can be argued that the inclusion of the prior is not a limitation but a feature of

the Bayesian approach (Trotta, 2008), as it serves to make assumptions explicit and to

model the fact that different scientists can interpret the same data differently given their

distinct previous experiences. In addition there are many circumstances when there is

an uncontroversial basis for the inclusion of prior information, such as when analysing

noisy measurements of a physical variable that we know must be positive or take a value

within some range.

We take the view of Loredo (2012), who argues the most fundamental difference

between calculations using the two approaches is not the modulation by the prior but

the space over which the analysis takes place. Whereas a frequentist calculation takes

place in the sample space (the space of possible measurements), Bayesian computation is

performed in the parameter (hypothesis) space. This perspective elucidates the necessity

6

of the prior to provide a measure over the parameter space to be analysed. If the

prior were not included, inferences about some physical quantity involving averaging

it (integrating its distribution over the parameter space) could be affected by simple

reparameterisations; for an interesting discussion of this see Loredo (2012, p10-12).

The exploration of the parameter space is a key aspect of the Bayesian computation

techniques discussed in Section 2.3.

2.1.4 Why isn’t everyone a Bayesian?

Given the philosophical advantages of the Bayesian approach discussed in Section 2.1.1

and the persuasive arguments presented by Trotta (2008), Sivia and Skilling (2006) and

Loredo (2012) among others, it is reasonable to ask why everyone is not a Bayesian.

In fact, historically, most 19th century scientists used a Bayesian perspective, including

notably Laplace — who derived Bayes’ theorem independently and first expressed it in

its modern form (2.4) (Sivia and Skilling, 2006).

This changed in the 20th century with the introduction of two successful rival fre-

quentist frameworks: Fisher’s “significance testing” and Neyman-Pearson “hypothesis

testing”. These approaches introduce a variety of procedures without a clear overarch-

ing rationale (Sivia and Skilling, 2006). However they claim the advantages of ease of

application and objectivity, in particular in comparison to the careful thought1 often

needed to choose the priors in a Bayesian analysis; interesting discussions can be found

in Efron (1986) and Gelman (2008).

Unsurprisingly many Bayesians dispute these claims, including Loredo (2012) and

Sivia and Skilling (2006). Furthermore frequentist statistics can also lead to subtle

problems when not used carefully, with p-value significance tests believed to be a major

cause of the “replication crisis” currently being experienced in the social sciences (for

more details see the recent American Statistical Association statement by Wasserstein

and Lazar, 2016). We are currently seeing rapid growth in the popularity of Bayesian

methods, in particular in astrophysics, and many predict the 21st century will see a

return to the dominance of the Bayesian school (Loredo, 2012; Lindley, 1975). However,

the debate is far from settled (Trotta, 2008).

1Gelman (2008), writing in the voice of a hypothetical anti-Bayesian, quips that “recommending
that scientists use Bayes’ theorem is like giving the neighborhood kids the key to your F-16.”

7

Having provided some context, the remainder of this chapter and this thesis will

now focus on the Bayesian approach.

2.2 Applying Bayes’ theorem to data

Scientific research is about creating models to explain and understand available data.

Models and their parameters offer a description of the universe, which we use to work

out how likely we are to observe a given set of data values. However, as scientists our

primary goal is to solve the inverse problem — i.e. make an inference about the state of

the universe (which model is correct, and what are the model’s parameter values) given

the data. Such inferences can be divided into parameter estimation and model selection.

Given some model M, parameter estimation involves determining the values of its

parameters θ using the data D. Bayes’ theorem (2.4) can be applied to parameter

estimation by replacing I with the model M, X with the model’s parameters θ and Y

with the data D. This gives

P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
, (2.8)

which we write schematically as

P(θ) =
L(θ)π(θ)

Z . (2.9)

Here the prior

π(θ) ≡ P (θ|M) (2.10)

represents our knowledge of the model’s parameters in the absence of the data. The

model tells the probability of observing data D given some set of parameter values θ,

and can therefore be expressed as a distribution P (D|θ,M) which we term the likelihood

and write as

L(θ) ≡ P (D|θ,M). (2.11)

Thus Bayes’ theorem allows us to update our prior knowledge π(θ) given new informa-

tion D to obtain the posterior distribution

P(θ) ≡ P (θ|D,M). (2.12)

8

| logBjk| Odds Notes

< 1.0 / 3 : 1 Inconclusive
1.0 ≈ 3 : 1 Positive evidence
2.5 ≈ 12 : 1 Moderate evidence
5.0 ≈ 150 : 1 Strong evidence

Table 2.1: The “Jeffreys’ scale” for interpreting the Bayes factor between two models
Mj and Mk, reproduced from Trotta (2007). The first column shows the log Bayes
factor value, the second column shows the approximate relative odds of the two models
being correct and the third column gives a qualitative interpretation.

The Bayesian evidence Z is a normalisation constant, and is computed by averaging

the likelihood L(θ) over the prior π(θ)

Z ≡ P (D|M) =

∫
L(θ)π(θ) dθ. (2.13)

Bayes’ theorem can also be used to compare different modelsM1,M2, . . . and assess

which best describes the data. The posterior probability of a given model is

P (Mj |D) =
P (D|Mj)P (Mj)

P (D)
=

ZjΠj∑
k ZkΠk

, (2.14)

where Πj ≡ P (Mj) denotes the prior probability of each model and the denominator

of the final term sums over all competing models. The evidence Z penalises more

complex models so this approach naturally includes Occam’s razor. Models may also

be compared by computing log posterior odds ratios

Pjk ≡ log

(
P (Mj |D)

P (Mk|D)

)
= log

(Zj
Zk

)
+ log

(
Πj

Πk

)
, (2.15)

where here and in the remainder of this thesis log denotes the natural logarithm. The

ratio of evidences Bjk = Zj/Zk is called a Bayes factor; Bayes factors are independent of

the prior Πj on different modelsMj , but depend on the priors on the models’ parameters

π(θMj) through the calculation of Zj from (2.13). If the prior Πj on different models is

uniform, the Bayes factors are equal to the posterior odds ratios. The “Jeffreys’ scale”

(Jeffreys, 1961) provides a numerically calibrated scale for qualitatively interpreting

Bayes factors; we reproduce a modified version from Trotta (2007) in Table 2.1.

9

2.3 Bayesian computation

In some simple cases, parameter estimation (2.9) and model comparison (2.14) calcula-

tions can be performed analytically. However for most problems in astronomy this is not

possible, and numerical calculations are required. One technique for doing this is nested

sampling, which is a major focus of this thesis. This section provides an overview of some

Bayesian computation techniques which are popular in astrophysics, in order to provide

context for our discussion of nested sampling in Section 2.4. Many excellent guides to

this topic are available; we have used Sharma (2017), Hogg and Foreman-Mackey (2018)

and Feroz (2008).

Likelihoods L(θ) are often computationally expensive functions, so the goal of

Bayesian computation is to obtain posterior inferences using a limited number of eval-

uations of the likelihood function (“likelihood calls”). The number of likelihood calls

required for numerical integration (for example by quadrature) increases exponentially

with the dimensionality of the parameter space, so this approach is typically impractical

except in very low dimensions. As a result Bayesian computation is usually carried out

using Monte Carlo methods, which involve repeated random sampling.

2.3.1 Parameter estimation

Parameter estimation calculations can be performed by generating a set of samples

from the posterior distribution, then using these to make inferences about quantities

of interest such as the posterior means of parameters. Samples can also be used to

numerically estimate the posterior distributions of parameters or functions of parameters

with kernel density estimation.

In astronomy the most popular approach for generating samples is to use Markov

chain Monte Carlo (MCMC); a class of methods for sampling probability distributions

which explore the parameter space via a biased random walk (Hogg and Foreman-

Mackey, 2018). Samples produced by these methods form a Markov chain, meaning

that the probability distribution of the next random variable θi+1 depends only on the

current state θi and is independent of the previous evolution of the sequence. The chains

should have the property that, after a large number of steps from the starting point, the

samples produced will have an invariant limiting distribution which is proportional to

the posterior distribution (hence the chains must be ergodic). This can be achieved if

10

the rule for selecting a new point satisfies certain conditions (see Sharma, 2017; MacKay,

2003, for a detailed discussion). Most MCMC methods satisfy detailed balance, meaning

that the probability of being in one state and transitioning to another state is the same

in either direction and as a result the process is reversible.

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is the

most general MCMC algorithm (Sharma, 2017), and is shown in Algorithm 1. New

points are added via a two step process: first a candidate point is sampled from a

proposal distribution q(θ′|θi), then it is accepted or rejected with a probability which

depends on the value of the posterior at the candidate point P(θ′) relative to the pos-

terior at the previous point P(θi). Most variants use symmetric proposal distribu-

tions which satisfy q(θ′|θi) = q(θi|θ′); this simplifies the condition for acceptance to

U < P(θ′)/P(θi) (where U ∈ [0, 1] is a uniform random variable). In this case, if

P(θ′) > P(θi) then the candidate point is guaranteed to be accepted — but it may be

rejected otherwise. This biases the random walk towards regions where P(θ) is high, and

is the mechanism by which the distribution of samples produced is made proportional

to P(θ).

Result: Samples {θi} from the posterior P(θ).
Input: Posterior distribution function P(θ), starting point θ1, proposal

distribution q(θ′|θi).
for i = 1 to N − 1 do

sample θ′ from q(θ′|θi);
sample uniform random variable U ∈ [0, 1];

if U < P(θ′)q(θi|θ′)
P(θi)q(θ′|θi) then

θi+1 = θ′;
else

θi+1 = θi;
end

end
Algorithm 1: The Metropolis-Hastings algorithm.

There are many variants of the Metropolis-Hastings approach (Algorithm 1). These

include:

Gibbs sampling: different parameters (components of θ) are updated individually

using sampling from conditional distributions (Geman and Geman, 1984). Unlike

in Algorithm 1, all samples are accepted.

11

Adaptive MCMC: the proposal distribution is dynamically adapted based on past

samples (see Andrieu and Thoms, 2008, for a review).

Affine invariant ensemble samplers: an ensemble of interacting Markov chains is

used, and the resulting process’ performance is unaffected by affine transforma-

tions of the parameter space (Goodman and Weare, 2010). The popular emcee

package (Foreman-Mackey et al., 2013) uses this approach.

Hamiltonian Monte Carlo methods: an auxiliary momentum variable is added for

each parameter, and Hamiltonian dynamics are used to assist in the sampling of

new points (for a recent review see Betancourt, 2017). A version by Hoffman and

Gelman (2014), in which the sizes of steps between points are set adaptively, is

used in the popular Bayesian inference package stan.

Parallel tempering: uses an ensemble of samplers which can exchange information

and target different powers of the distribution (“temperatures”) P(θ)1/Ti . The

lowest temperature Tn = 1 samples the posterior and other temperatures Ti 6=n > 1

broaden the target distribution to allow a wider exploration of the parameter space

(Earl and Deem, 2005).

Limitations

The Metropolis-Hastings algorithm has some significant practical difficulties and draw-

backs which are largely shared by similar MCMC approaches. The algorithm requires a

proposal distribution must be specified, which greatly affects the efficiency of the pro-

cess and can be challenging to choose a priori. Furthermore, successive samples in the

chain are correlated, and “convergence diagnostics” are required to work out how long

the process must be run for in order that the samples give a good approximation to the

posterior (for a detailed guide see Cowles and Carlin, 1996). Similarly the first portion

of the samples, which are correlated with the starting point, must be removed (this is

referred to as “burn in”).

However the most significant limitation of the Metropolis-Hastings algorithm is its

inefficiency when exploring multimodal posteriors; it can take an intractably large num-

ber of iterations for a chain to transition between two modes separated by a wide region

of low P(θ) values. Similar problems occur with curving degeneracies, as the small step

12

length required to avoid stepping off the maxima in the directions in which it is thin

means exploration along its length takes a very large number of steps (Feroz, 2008).

Multimodal distributions are problematic for all MCMC approaches; they can be par-

tially addressed with parallel tempering (see above), but this adds computational cost

and complexity (Sharma, 2017).

Another major limitation of the Metropolis-Hastings algorithm is its inability to

effectively compute the Bayesian evidence (2.13), which is used in Bayesian model se-

lection. We now discuss numerical methods for Bayesian model selection.

2.3.2 Model selection

Calculation of the Bayesian evidence (2.13) is computationally challenging since it in-

volves a (possibly high-dimensional) integral over the parameter space. In principle

an estimate of the integral’s value can be found from posterior samples produced by

the Metropolis-Hastings algorithm and similar MCMC methods, but in practice this is

highly computationally inefficient. A major reason for this is that MCMC focuses on

sampling the posterior’s peak, leading to inaccuracies in the integral due to insufficient

samples in the tails of the distribution (Feroz, 2008).

In addition to nested sampling (which will be discussed in the next section), a

number of methods can be used to estimate the evidence or calculate Bayes factors

directly. These include:

Thermodynamic integration (simulated annealing): samples are taken from

L(θ)βπ(θ), with the cooling temperature β raised from 0 (the prior) to 1 (the

posterior). The evidence can then be calculated as logZ =
∫ 1

0 E[logL(θ)]β dβ,

where E[logL(θ)]β is the expectation of logL(θ) over the distribution L(θ)βπ(θ)

(Gelman and Meng, 1998; Kirkpatrick et al., 1983). However this approach is often

computationally expensive compared to nested sampling (Feroz, 2008), and can

fail under certain circumstances due to “phase changes” (see Sivia and Skilling,

2006, Section 9.6.1 for more details).

Sequential Monte Carlo (SMC) samplers: a sequence of probability distributions

is sampled by evolving a “cloud” of weighted random variables (Del Moral et al.,

2006). This approach can be used to provide both posterior samples and an

13

estimate of the Bayesian evidence, and is related to nested sampling (see Salomone

et al., 2018, for more details) but is less popular in astronomy.

Variational Inference: a proxy distribution with some free parameters is proposed

and fitted to the posterior, typically by minimising the Kullback-Leibler diver-

gence. The known properties of the proxy distribution can then be used to esti-

mate the evidence (Blei et al., 2017).

Laplace’s method: estimates the evidence under the assumption that the posterior is

approximately Gaussian (Tierney and Kadane, 1986).

Savage-Dickey density ratio: allows the Bayes factors between two nested models to

be computed, provided one model is contained in the other and the more complex

model is equal to the contained model for some choice of parameters (Verdinelli

and Wasserman, 1995).

MCMC-based methods: techniques exist which allow Bayes factors to be computed

from MCMC chains. These include product space MCMC (Green, 1995), which

allows the sampler to jump between models (subspaces).

For a more detailed review of evidence estimation techniques, see Friel and Wyse (2012).

Bayesian predictive methods provide an alternative approach to model comparison

which does not use (2.14). This involves estimating how well the model will fit new

data, while adjusting for the fact it has been “trained” on the current data, using

theoretically justified information criteria. Examples include the “Akaike information

criterion” (AIC) and the “widely applicable information criterion” (WAIC), which can

be evaluated from posterior samples (Akaike, 1974; Watanabe, 2010). Both of these

criteria have an expected value equal to the Kullback-Leibler divergence of the predicted

posterior from the true posterior, and are equivalent to leave-one-out cross-validation

(LOOCV) in the limit of large sample size (Sharma, 2017). They can be useful when

the goal is to test the predictive performance of models on new data, or when choosing

priors and computing Bayes factors is difficult.

14

2.4 Nested sampling

The remainder of this chapter focuses on nested sampling (Skilling, 2004, 2006); a Monte

Carlo method which simultaneously computes Bayesian evidences (2.13) and samples

from the posterior distribution (2.9). The early development of the nested sampling

algorithm was focused on evidence calculation, which is computationally challenging

(as discussed in the previous section). However, contemporary implementations such as

MultiNest (Feroz and Hobson, 2008; Feroz et al., 2008, 2013) and PolyChord (Handley

et al., 2015a,b) are now also extensively used for parameter estimation from poste-

rior samples (see for example Planck Collaboration, 2016a). Nested sampling compares

favourably to MCMC-based parameter estimation for degenerate, multi-modal likeli-

hoods as it has no “thermal” transition probability and exponentially compresses the

prior distribution to the posterior. Allison and Dunkley (2014) empirically tests nested

sampling parameter estimation against MCMC-based alternatives, and recommends its

use over Metropolis-Hastings sampling (Algorithm 1) in many cases.

The remainder of this chapter provides a description of the nested sampling algo-

rithm, and discusses how it can be implemented. For theoretical treatments of nested

sampling’s convergence properties, see Keeton (2011), Skilling (2009), Walter (2017)

and Evans (2007).

2.4.1 The nested sampling algorithm

Initially n points, termed live points, are sampled randomly from the prior. At each

iteration i, the live point with the lowest likelihood Li is removed and replaced by a

new live point sampled from the prior subject to the constraint that it has a likelihood

higher than Li. Iterating until some termination condition is met generates a list of

discarded samples known as dead points, which are used to estimate the evidence and

make posterior inferences.2 We refer to the completed nested sampling process as a run.

To compute the evidence, the many-dimensional integral (2.13) is reduced to a one-

dimensional integral in terms of the fractional prior volume within an iso-likelihood

contour. We define the fraction of the prior π(θ) with likelihood L(θ) greater than

2The remaining live points at termination can also be used if required, but termination conditions
can be chosen such that this makes a negligible difference to calculation results.

15

0

termination
direction of iteration

mean step size ≈ 1/n

logX

L(X)X

L(X)

samples

Figure 2.1: A schematic representation of nested sampling with a constant number of
live points n. The curve L(X)X shows the relative posterior mass, the bulk of which
is contained in some small fraction of the prior and is only visible on a log scale in
X. The algorithm iterates inwards in X exponentially with stochastic shrinkage ratios
distributed according to (2.18).

some value L∗ as X(L∗), where

X(L∗) ≡
∫
L(θ)>L∗

π(θ) dθ, (2.16)

and X ∈ [0, 1]. Provided the inverse L(X) ≡ X−1(L) exists,3 the evidence (2.13) can

be expressed as

Z =

∫ 1

0
L(X) dX. (2.17)

Given a set of dead points with likelihoods Li, the corresponding prior volumes Xi

are unknown but are modelled statistically as Xi = tiXi−1, where X0 = 1 and each

shrinkage ratio ti is independently distributed as the largest of n random variables from

the interval [0, 1] (Skilling, 2006). Hence:

P (ti) = ntn−1
i , E[log ti] = − 1

n
, Var[log ti] =

1

n2
, (2.18)

and the algorithm samples within an exponentially shrinking part of the prior. This

exponential shrinkage is shown schematically in Figure 2.1.

3A sufficient condition for L(X) ≡ X−1(L) to exist is for L to be continuous and π to have a
connected support. See Chopin and Robert (2010) and Feroz et al. (2013, Appendix C) for a more
detailed measure-theoretic discussion.

16

Evidence estimation

Nested sampling therefore allows one to approximate the evidence (2.17) via a quadra-

ture sum over the dead points

Z(t) ≈
∑
i∈dead

Liwi(t), (2.19)

where t = {t1, t2, . . . , tndead
} are the unknown set of shrinkage ratios for the ndead

iterations of the nested sampling process, and each ti is an independent random vari-

able drawn from distribution (2.18). The shrinkage ratios define the prior volumes via

Xi(t) =
∏i
k=0 tk, and the wi are appropriately chosen quadrature weights roughly cor-

responding to the volume of the “prior shell” to which a given dead point belongs. For

example, using the trapezium rule: wi(t) = 1
2(Xi−1(t)−Xi+1(t)).4

Given that the shrinkage ratios t are a priori unknown, we may quantify our knowl-

edge of Z by simulating sets of t according to (2.18), and working with the distribution

of the resulting set of evidences {Z}t from (2.19) (Skilling, 2006). Typically one then

computes and reports a mean value and error for logZ from this distribution.

Several alternative methods for calculating evidence inferences are reported in the

literature. Skilling (2006) also proposes an error calculation based on relative entropy,

which demonstrates that the uncertainty of logZ is dominated by the Poisson variability

in the number of steps required to reach the bulk of the posterior mass. Keeton (2011)

uses distribution moments and running totals which are updated with each nested sam-

pling step. This method has been extended by Handley et al. (2015b) to allow the

splitting of multi-modal likelihoods into different clusters and the treatment of variable

numbers of live points. For a more detailed discussion of the convergence properties of

nested sampling evidences, see Chopin and Robert (2010).

Thus, the dominant sampling error in the evidence estimate (2.19) from perfect

nested sampling is from statistical variation in the unknown volumes of the prior “shells”

wi(t) that each point represents. The error from approximating the integral for Z with

a sum can be safely neglected unless n is very small5 (Skilling, 2006). There is also some

4For the final dead point, as Xndead+1 is not available, wndead(t) can be approximated with
wndead−1(t). The remaining prior volume after the final dead point can be ignored, or included in
calculations using the live points remaining at termination (a method for doing this is described in
Section 5.2). The trapezium rule weight of the first point can be increased to assign it all prior volume
between X = 1 and X = X1, but this typically makes negligible difference in practice.

5The trapezium rule error is O(1/n2), and if required other methods such as Simpson integration
could be used.

17

error from terminating the algorithm and truncating the sum, but this is can be made

negligible with appropriate termination conditions.

Parameter estimation

One may also perform posterior inference from nested sampling by using the dead points

to construct a set of posterior samples with weights proportional to their share of the

posterior mass (Skilling, 2006):

pi(t) =
wi(t)Li∑
iwi(t)Li

=
wi(t)Li
Z(t)

. (2.20)

As before, t is the set of prior shrinkage ratios and in the trapezium rule case wi(t) =

1
2(Xi−1(t)−Xi+1(t)). The resulting sampling errors are discussed in detail in Chapter 3.

2.4.2 Implementations

Significantly, the nested sampling algorithm as described above does not prescribe any

specific method for generating samples from within iso-likelihood contours. Since nested

sampling’s inception, a variety of techniques have been applied to this problem. Some

popular methods are (Handley et al., 2015b):

• MCMC-based sampling, the method originally envisaged by Skilling, which re-

quires taking a number of steps along the MCMC chain between successive samples

used in the nested sampling run to ensure they are decorrelated. However, tradi-

tional Metropolis-Hastings or Gibbs sampling requires a large amount of tuning of

the proposal distribution to perform the required sampling efficiently (Feroz and

Hobson, 2008). Two alternatives are Hamiltonian nested sampling (Betancourt,

2011) and Galilean nested sampling (Feroz and Skilling, 2013; Skilling, 2012),

which use Hamiltonian Monte Carlo and Galilean Monte Carlo respectively. Both

approaches have momentum-like auxiliary parameters and allow Markov chains

to “bounce” off the hard likelihood constraint. However these approaches re-

quire gradients and a careful choice of step size, and can become inefficient for

iso-likelihood contours which are difficult to bounce back into due to their shape

(Feroz and Hobson, 2008).

• Rejection sampling is used in the popular MultiNest software (Feroz and Hob-

son, 2008; Feroz et al., 2008, 2013), which incorporates and improves an earlier

18

method introduced by Mukherjee et al. (2006). This involves enclosing the iso-

likelihood contour in multiple overlapping ellipsoids, which are calculated using

the live points, then sampling randomly from within this volume. Samples which

do not satisfy the likelihood constraint are discarded. This is highly effective in

modest dimensions, but the acceptance rate decreases exponentially with dimen-

sionality.

• Slice sampling (Neal, 2003) was applied to nested sampling by Aitken and Akman

(2013) and is used by PolyChord (Handley et al., 2015a,b). At each iteration, a

random live point and a random direction are selected. Points are sampled along

the line (“chord”) with the chosen direction which intersects the chosen live point,

in order to establish the bounds at which the line intersects the iso-likelihood

contour. A point is then sampled along this line from within the contour. To

prevent the new point from being correlated with the live point through which

the chord passes, this process is repeated multiple times. While this is less ef-

ficient than rejection sampling in low dimensions, it becomes more efficient for

high dimensional problems; computational costs with PolyChord scale as O(D3)

whereas for MultiNest they scale exponentially. For a more detailed description

of PolyChord’s sampling method, including a diagram illustrating the process, see

Handley et al. (2015b, Section 4).

Furthermore, a number of nested sampling variants have been proposed which al-

ter the algorithm described in Section 2.4.1. Most notably, diffusive nested sampling

(Brewer et al., 2011) uses a number of MCMC chains to sample a mixture of nested

probability distributions. This approach is implemented in the DNest software package

and has been applied to a number of astronomical problems (see for example Pancoast

et al., 2014). In addition, superposition-enhanced nested sampling (Martiniani et al.,

2014) combines nested sampling with global optimization techniques to improve the

algorithm’s ability to find all the modes in highly multimodal spaces. Salomone et al.

(2018) propose another hybrid approach involving Sequential Monte Carlo (mentioned

in Section 2.3).

Having provided an overview of Bayesian inference and nested sampling methods in

this chapter, we next present our work on estimating the uncertainty and reliability of

nested sampling calculations in Chapters 3 and 4. This is followed in Chapter 5 by a

19

description of our dynamic nested sampling algorithm, which can greatly increase the

computational efficiency of nested sampling calculations.

20

Chapter 3

Sampling errors in nested

sampling parameter estimation

This chapter provides the first explanation of the two main sources of sampling errors in

nested sampling parameter estimation, and presents a new diagrammatic representation

for the process. We find no previously existing method can accurately measure the

parameter estimation errors of a single nested sampling run, and propose a method

for doing so using a new algorithm for dividing nested sampling runs. The material

presented is an edited version of Higson et al. (2018).

3.1 Introduction

Sampling errors in nested sampling parameter estimation differ from those in Bayesian

evidence calculation, but have been little studied in the literature. As a result these

errors are poorly understood compared to other numerical methods, despite the growing

popularity of the technique and its widespread use in astronomy.

Correctly quantifying uncertainty due to sampling errors is vital for identifying spu-

rious results. Conversely, finding such errors are very small may imply an unnecessarily

large amount of computational resource is being used for the calculation. This chapter

has two goals: to provide an explanation of the sources of these errors and an empir-

ical technique for estimating them. One obvious method is to repeat the analysis a

number of times, although this increases the computational cost by a corresponding

factor. Interestingly, we find no current method can accurately estimate these errors

21

on parameter estimates from a single analysis, and so we present a new method for

doing this. Our approach uses a new algorithm for dividing a single nested sampling

run into multiple valid nested sampling runs; these can then be recombined in different

combinations using resampling techniques such as the bootstrap. We test our results

and new method empirically.

The chapter begins with background on sampling errors in parameter estimation

from posterior samples. We then explain the two main sources of sampling errors in

nested sampling parameter estimation in Section 3.3, and present a new diagrammatic

representation of the process (illustrated in Figures 3.2a to 3.2e). Section 3.4 describes

our new method for measuring sampling errors from a single nested sampling run, using

our new algorithm for division of such runs.

We empirically test our method’s accuracy in Section 3.5 with the help of analytical

cases in the manner described by Keeton (2011). Here one can obtain uncorrelated

samples from the prior space within some likelihood contour using standard techniques,

and we term the resulting procedure perfect nested sampling. Results in Section 3.5 were

calculated using an early version of the perfectns software package (Higson, 2018c).

In Section 3.6 we test sampling error estimates from our method for PolyChord calcu-

lations, and Section 3.7 describes the application of these sampling error estimates to

gravitational waves in Chua et al. (2018). Our approach accurately quantifies uncer-

tainties on parameter estimates from the stochasticity of the nested sampling algorithm,

but software used for practical problems may produce additional errors from correlated

samples within likelihood contours that are specific to a given implementation — these

are discussed in detail in Chapter 4. Our method gives superior performance to the

current approach and can be easily be applied to existing nested sampling software; we

have implemented it in the nestcheck software package (Higson, 2018b).

3.2 Background: sampling errors in parameter

estimation

Sampling techniques such as nested sampling provide information about a posterior

distribution P(θ) by producing a set of weighted samples

S = {(θs, ps), s = 1, . . . , nsamp}, (3.1)

22

https://github.com/ejhigson/perfectns
https://github.com/ejhigson/nestcheck

where each θs is drawn from P(θ) with probability proportional to ps × P(θs), and∑
s∈S ps = 1. Numerical results are then computed from the samples S. For example,

the posterior expectation of a function of the parameters f(θ) can be estimated as

E[f(θ)] =

∫
f(θ)P(θ) dθ ≈

∑
s∈S

psf(θs). (3.2)

In this case the sampling error is the difference between
∑

s∈S psf(θs) and the exact

value of E[f(θ)]. Often the posterior distributions of parameters θ are of interest, and

are estimated numerically from the samples by dividing the parameter space into cells

or via kernel density estimation.

There have been many works on approximating MCMC sampling errors, including

investigation of quantiles and the amount of computation required to reach some level

of accuracy — see for example Doss et al. (2015), Flegal et al. (2008) and Liu et al.

(2016). In particular Sequential Monte Carlo samplers (mentioned in Section 2.3) have

similarities with nested sampling, and their sampling errors are better understood. For

some related methods such as the Tootsie Pop algorithm (Huber and Schott, 2014)

and accelerated simulated annealing (Bezáková et al., 2008) the error distribution is

known exactly, although these techniques are less widely used. This chapter introduces

empirically tested techniques for quantifying sampling errors from the nested sampling

algorithm.

In nested sampling parameter estimation, the sample weights (2.20) present a de-

parture from traditional sampling approaches in that the wi(t) are random variables,

with their stochasticity determined by (2.18). When computing expectations (3.2) there

is now an additional error associated with our lack of knowledge of the precise values

pi(t). Nested sampling software packages such as MultiNest and PolyChord produce

posterior files containing only the expected values

E[pi(t)] =
e−i/nLi∑
j e−j/nLj

. (3.3)

To account for the stochasticity in the weights pi, Skilling (2006) suggests simulating

the prior volume shrinkage ratios t in the same manner as for evidence estimation

(mentioned in Section 2.4.1), and using these simulations to calculate a set of values

for estimators such as (3.2). The sampling error should then be estimated from the

variation within this sample; we term this the simulated weights method. We believe

23

this procedure is the only estimate of sampling errors in parameter estimation from

a single nested sampling run proposed in the literature. However it is in general an

underestimate, as can be seen in the numerical tests in Section 3.5. Appendix 3.B

discusses this underestimation of errors in detail.

We now describe why the simulated weights method does not capture all sources of

sampling errors, and in Section 3.4 we propose a new method for correctly computing

these errors.

3.3 Sources of sampling errors in nested sampling

parameter estimation

In order to understand why the simulated weights method underestimates sampling

errors, we require a result from Chopin and Robert (2010). They show that the expec-

tation integral (3.2) may be re-phrased in terms of the prior volume X via:

E[f(θ)] =

∫
f(θ)P(θ) dθ =

∫
f(θ)

L(θ)π(θ)

Z dθ =
1

Z

∫
f̃(X)L(X) dX, (3.4)

where f̃(X) is the prior expectation of f(θ) on some iso-likelihood contour L(θ) = L(X),

f̃(X) ≡ Eπ[f(θ)|L(θ) = L(X)]. (3.5)

The simulated weights approach amounts to discretising the integral (3.4) as

1

Z

∫
f̃(X)L(X) dX ≈ 1

Z
∑
i

f̃(Xi) Li
1

2
(Xi−1 −Xi+1), (3.6)

and, most importantly, further requiring that we may use f(θi) as a proxy for f̃(Xi)

at each point Xi. In some special cases f(θi) = f̃(Xi) for all θ and this approach is

valid, for example when f(θi) = f̃(Xi) ∝ − logLi (entropy computation), but in general

it is not. This can cause significant inaccuracies as iso-likelihood contours often span

wide ranges of different parameter values, as illustrated in Figure 3.1 (based on Figure

1 in Handley et al., 2015a). There are also some errors from discretising the integral

in (3.6) using the trapezium rule, but these are typically small unless the number of live

points n is low. Furthermore, errors due to the truncation of the sum in (3.6) when the

algorithm terminates can be made negligible with appropriate termination conditions.

To summarise, the dominant sampling errors in estimating some parameter or func-

tion of parameters from perfect nested sampling typically come from two sources:

24

θ2

θ1

5

43

2

1

Figure 3.1: Nested sampling dead points and iso-likelihood contours for a two-
dimensional multi-modal likelihood L(θ); darker shading shows higher likelihoods. Iso-
likelihood contours can pass through a wide range of different parameter values.

(i) approximating the unknown prior volumes wi(t) with their expectation E[wi(t)]

using (2.18);

(ii) approximating the mean value of a function of parameters over an entire iso-

likelihood contour f̃(Xi) with its value at a single point f(θi).

Errors from (i) are also present in evidence calculation; in the parameter estimation

case they are typically smaller as results depend only on the relative weights of the

samples. In contrast (ii) is only present in parameter estimation, where it is typically

a significant or dominant source of sampling errors. The relative contributions of (i)

and (ii) are empirically tested in Appendix 3.A, where they are calculated for analytical

cases by using exact values for weights wi(t) and by replacing f(θi) with f̃(Xi). The

simulated weights method underestimates sampling errors in parameter estimation as

it ignores errors from (ii).

We now introduce a new diagrammatic representation of nested sampling parameter

estimation to illustrate the two different sources of sampling errors.

25

3.3.1 Diagrammatic representation

Nested sampling transforms evidence calculations of any dimension into a 1-dimensional

problem1 in L(X) which can be entirely represented on a diagram like Figure 2.1. An

analogous diagram for parameter estimation must also illustrate sampling a single point

f(θi) on each iso-likelihood contour L(θ) = L(Xi) from the distribution P (f(θ)|Xi).

We propose a generalisation of Figure 2.1 for visualising parameter estimation prob-

lems, and present it in Figures 3.2a to 3.2e. The top panel in each figure is similar to

Figure 2.1 and shows the relative posterior mass L(X)X at each value of logX. The

lower central panel shows the probability distribution P (f(θ)|X) and its mean f̃(X).

The posterior distribution is shown on the left — this is equal to the distributions

P (f(θ)|X) (the lower central panel) marginalised over X in proportion to the posterior

weight at each X (the top panel).

For these example plots we use d-dimensional spherical unit Gaussian likelihoods

L(θ) = (2π)−d/2e−|θ|
2/2 (3.7)

and d-dimensional spherical unit Cauchy likelihoods

L(θ) =
Γ(1+d

2)

π(d+1)/2

(
1 + |θ|2

)−(d+1
2

)
, (3.8)

with d-dimensional co-centred spherical Gaussian priors

π(θ) = (2πσ2
π)
−d/2

e−|θ|
2/2σ2

π . (3.9)

Here Γ denotes the gamma function, and in this chapter all Gaussian priors (3.9) use

σπ = 10. We denote the first component of the θ vector as θ1̂, although by symmetry

the results will be the same for any component. θ1̂ and θ2
1̂

are the first and second

moments of the posterior distribution of θ1̂.

The form of the distribution P (f(θ)|X) as X varies depends on the likelihood only

through the shape of the iso-likelihood contours L(θ) = L(X). Therefore the lower

central panel of the diagrams for some f(θ) is the same for any likelihoods with the

same contours — this can be seen in Figures 3.2a and 3.2b, where the differences in

1For practical nested sampling problems implementation-specific errors can differ for two likelihoods
with the same L(X). For example if one likelihood has a much higher dimension and a much larger
number of modes than the other, it may have larger errors from the software failing to explore the
parameter space fully.

26

relative posterior mass

−16 −14 −12 −10 −8 −6 −4 −2 0

logX

f̃(X)

E[f(θ)|L, π]

posterior

−10

−5

0

5

10

f
(θ

)
=
θ 1̂

1σ

2σ

3σ

(a) f(θ) = θ1̂ with a 5-dimensional Gaussian likelihood (3.7) and a Gaussian prior (3.9).

relative posterior mass

−16 −14 −12 −10 −8 −6 −4 −2 0

logX

f̃(X)

E[f(θ)|L, π]

posterior

−10

−5

0

5

10

f
(θ

)
=
θ 1̂

1σ

2σ

3σ

(b) f(θ) = θ1̂ with a 5-dimensional Cauchy likelihood (3.8) and a Gaussian prior (3.9).

relative posterior mass

−16 −14 −12 −10 −8 −6 −4 −2 0

logX

f̃(X)

E[f(θ)|L, π]

posterior

−10

−5

0

5

10

f
(θ

)
=
θ 1̂

1σ

2σ

3σ

(c) f(θ) = θ1̂ with a 3-dimensional Gaussian likelihood (3.7) and a Gaussian prior (3.9).

27

relative posterior mass

−16 −14 −12 −10 −8 −6 −4 −2 0

logX

f̃(X)

E[f(θ)|L, π]

posterior

0

2

4

6

8

10

f
(θ

)
=
θ
2 1̂

1σ

2σ

3σ

(d) f(θ) = θ1̂
2 with a 5-dimensional Gaussian likelihood (3.7) and a Gaussian prior (3.9).

relative posterior mass

−16 −14 −12 −10 −8 −6 −4 −2 0

logX

f̃(X)

E[f(θ)|L, π]

posterior

0

2

4

6

8

10

f
(θ

)
=
|θ
|

1σ

2σ

3σ

(e) f(θ) = |θ| (i.e. the radial distance from the likelihood’s maximum) with a 5-dimensional
Gaussian likelihood (3.7) and a Gaussian prior (3.9). In this case f(θi) = f̃(Xi) for all θ and
sampling errors are only from uncertainty in prior volume shrinkages and the trapezium rule
approximation.

Figure 3.2: Nested sampling parameter estimation diagrams: in each case the top panel
shows the relative posterior mass at each value of logX (∝ L(X)X). The lower central
panel shows the distribution P (f(θ)|X) of values f(θ) on each iso-likelihood contour
L(θ) = L(X); the dashed line shows the expectation of this distribution which we
defined in (3.5) as f̃(X). The left panel shows the posterior distribution of f(θ), with
the dotted line showing its posterior expectation. The colour scale shows the fraction
of the cumulative probability distribution lying between some region and the median.

28

the posterior (left panel) are due only to the different posterior weights in logX (top

panel). Adapted versions of these diagrams which can be easily made from the samples

produced by nested sampling software for a priori unknown likelihoods are introduced

in Chapter 4.

3.3.2 Transforming a parameter estimation problem into 2

dimensions

As illustrated by our diagrams, nested sampling parameter estimation is fundamentally

a 2-dimensional problem in L(X) and P (f(θ)|X). In fact a perfect nested sampling pa-

rameter estimation calculation for some f(θ) given L(θ) is equivalent to a 2-dimensional

problem for f∗(θ∗) given L∗(θ∗) when

L∗(θ∗) = L(X), (3.10)

P (f∗(θ∗)|X) = P (f(θ)|X), (3.11)

for all X. Any transformation satisfying (3.10) and (3.11) will leave our proposed

diagram for the calculation unchanged. Parameter estimation can also be represented

as a 1-dimensional problem in L∗(θ∗) = L(X) combined with a univariate stochastic

process for each dead point i with the distribution P (f(θ)|Xi).

One way to express a general nested sampling calculation in 2 dimensions is to map

it onto the unit square θ∗ = (X,Y) with uniform priors X,Y ∈ [0, 1] and a likelihood

L∗(θ∗) = L(X) which is independent of Y and satisfies (3.10). In this case X is, as

before, the remaining fractional prior volume and Y parameterises each iso-likelihood

contour. Using inverse transform sampling, for a general f(θ) a corresponding f∗(θ∗)

satisfying (3.11) is

f∗(θ∗) = f∗(X,Y) = F−1(Y |X), (3.12)

where F−1(Y |X) is the inverse of the cumulative distribution

F (Y |X) =

∫ Y

−∞
P (f(θ) = h|X) dh. (3.13)

As an example let us consider d-dimensional spherically symmetric likelihoods such

as (3.7) or (3.8) with co-centred spherically symmetric priors such as (3.9). Then X(θ) is

a function only of the radial distance from the centre |θ|, and the iso-likelihood contours

L(θ) = L(X) are hyperspherical shells of some radius |θ|X . The probability distribution

29

of a single parameter θ1̂ (a single component of θ) on such an iso-likelihood contour is

then

P (θ1̂|X) =


Γ(d2)

|θ|X Γ(1
2

) Γ(d−1
2)

(
1− θ2

1̂

|θ|2X

) d−3
2

if − |θ|X < θ1̂ < |θ|X ,

0 otherwise.

(3.14)

θ1̂ can be sampled directly or used to calculate the inverse cumulative distribution

which together with knowledge of the function L(X) allows the parameter estimation of

a d-dimensional Gaussian to be transformed into a 2-dimensional problem on the unit

square.

Samples from (3.14) can be generated efficiently using the symmetry around θ1̂ = 0

and the change of variables Θ = θ2
1̂
/|θ|2X to give a Beta distribution

P (Θ|X) =


Γ(d2)

Γ(1
2) Γ(d−1

2)
Θ−

1
2 (1−Θ)

d−3
2 if 0 < Θ < 1,

0 otherwise,
(3.15)

Θ ∼ Beta

(
1

2
,
d− 1

2

)
. (3.16)

This technique is used for the numerical tests in Section 3.5 with perfectns, and allows

the efficient sampling of high dimensional spherically symmetric distributions where

only a few parameters are of interest without generating all the remaining uninteresting

parameters.

3.4 Estimating sampling errors in nested sampling

parameter estimation

Following the discussion of sources of sampling errors in Section 3.3, we seek a method for

correctly calculating parameter estimation sampling errors from a single nested sampling

run. As no additional samples θi are available, a natural starting point is to utilise

resampling techniques such as the jackknife (Tukey, 1958), bootstrap (Efron, 1979) and

Bayesian bootstrap (Rubin, 1981), which estimate the uncertainty on inferences from a

set of samples by calculating the variation when samples are re-weighted.

However, as described in Section 2.4.1, the uncertainty in nested sampling weights

wi(t) produces additional sampling errors which are unique to the nested sampling

30

https://github.com/ejhigson/perfectns

process. These are not accounted for by näıvely applying jackknives and bootstraps to

posterior samples produced by nested sampling, and these approaches fail when tested

numerically. We instead require a method for dividing runs in a manner that preserves

the statistical properties of nested sampling. No such method exists in the literature,

so we present one in the remainder of this section.

3.4.1 Dividing runs into threads

Skilling (2006) describes how several nested sampling runs r = 1, 2, . . . with n(r) live

points may be combined simply by merging the dead points and sorting by likelihood

value. The combined sequence of dead points is equivalent to a single nested sampling

run with n =
∑

r n
(r) live points.

In fact, as we show now, the reverse procedure is also possible. A nested sampling

run with n points can be unwoven into a set of n valid nested sampling runs, each

with n(r) = 1. We term these single live point runs threads. During nested sampling,

each dead point i is replaced by a new point sampled uniformly within its iso-likelihood

contour L(θ) = Li. Starting from each initial live point that is generated, one may follow

this sequence of replacements down the set of dead points. This sub-sequence of dead

points is in fact a nested sampling run with n = 1. Our algorithm for dividing a nested

sampling run into its constituent threads is presented more formally in Algorithm 2.

Result: n threads.
Data: Dead points and the iterations at which they were sampled for a nested

sampling run with n live points.
Rank dead points by likelihood in ascending order;
while i ∈ n do

make a new stack i;
select one of the initial points sampled at the start of the run;
move the point out to the stack i;
while iteration < final iteration do

select point sampled at the iteration where previous point was replaced
(“died”);

move the point to the stack i;

end

end
Algorithm 2: Splitting a nested sampling run into threads.

A few points are worthy of note:

31

1. splitting a run by randomly selecting some fraction of the dead points will not

produce threads (i.e. single point nested sampling runs);

2. one may split a given nested sampling run into separate runs with n(r) 6= 1 by first

separating into threads, and then recombining threads as desired;

3. the algorithm can be easily adapted for varying numbers of live points by permit-

ting it to select multiple points on contours where n increases. This can result

in constituent threads stopping or dividing into multiple threads part of the way

through the run;

4. typically there is only one point which was sampled uniformly from the prior

volume within each dead point i’s iso-likelihood contour L(θ) = Li — the point

which replaced i. A sufficient condition for a nested sampling run to only have

one unique division into threads is that L(X) is an injective function;

5. in order for the threads to be true nested sampling runs, care must be taken with

the termination conditions conditions used. See Appendix 3.D for a full discussion.

Given that threads represent independent nested sampling runs, one may apply stan-

dard resampling techniques to the set of threads and approximate the entire sampling

error distribution without making assumptions about its form. This works as the logXi

values of the dead points i from some run with n live points form a Poisson process with

rate n, meaning the logXj values of the dead points j of a single thread are a Poisson

process of rate 1. For typical problems with computationally expensive likelihoods the

computational cost of even a large number of resampling replications is negligible.

Having introduced a framework for applying resampling to nested sampling param-

eter estimation we now present an example method using bootstrap resampling.

3.4.2 Bootstrap estimate of sampling errors

Given n observations x = (x1, . . . , xn), the bootstrap (Efron, 1979) creates new data sets

x∗b by drawing n samples from x with replacement. This corresponds to approximating

the probability distribution of a single data point x as

P (x) ≈ 1

n

n∑
i=1

δ(x− xi), (3.17)

32

where δ(x) is the Dirac delta function (Ivezić et al., 2014).

As the form of the distribution of sampling errors for a general nested sampling

parameter estimation problem is not known, we use the non-parametric bootstrap. In

this case the uncertainty on a quantity T (x) calculated from the data can be estimated

by calculating T (x∗b) for a number of resampled data sets b = 1, . . . , B. For example the

bootstrap estimate of the standard error on T (x) is

St.Dev.[T (x)] =

√√√√ 1

B − 1

B∑
b=1

(
T (x∗b)− T (x∗b)

)2
, where T (x∗b) =

1

B

B∑
b=1

T (x∗b).

(3.18)

There are many methods for calculating approximate credible intervals on T (x)

from bootstrap replications {T (x∗b)} — see Efron and Tibshirani (1986) for a detailed

discussion. A simple approach from Johnson (2001) is to estimate the boundaries of the

100α% and 100(1− α)% credible regions2 as

C.I.100α% (T (x)) = 2T (x)−G−1(1− α), (3.19)

C.I.100(1−α)% (T (x)) = 2T (x)−G−1(α), (3.20)

where G−1(x) is the inverse cumulative distribution of the bootstrap samples {T (x∗b)}.
B = 50 is typically sufficient for an estimate of the standard deviation of a parameter

estimate due to sampling errors, but depending on the method used credible intervals

on parameter estimates may require 1,000 bootstrap replications or more (Efron and

Tibshirani, 1986).

When the bootstrap is applied to nested sampling each observation xi is a thread,

and the number of observations is n. Calculating the quantity T (x) involves first com-

bining the set of threads x into a single run using Skilling (2006)’s method (described in

Section 3.4.1), then performing a standard nested sampling calculation including esti-

mating the weight of each point wi(t) statistically. Including the same thread multiple

times does not cause problems — repeated dead points θi = θi+1 are simply assigned

the weights wi(t) and wi+1(t) respectively. Algorithm 3 provides a set of bootstrap

replications and an estimate of the standard deviation of sampling errors.

We find that bootstrap resampling gives better results than jackknife resampling,

which fails to calculate sampling errors on credible intervals of posterior distributions
2If the distribution of bootstrap replications T (x∗b) is skewed then the implied probability distribu-

tion of T is skewed in the opposite direction, as can be seen from (3.19) and (3.20). See Loredo (2012,
Section 2) for a discussion.

33

Result: Sampling errors and bootstrap replications for the nested sampling
calculation T (dead points,weights).

Data: List of dead points and the steps they were sampled at.
Divide dead points into a list of threads x using Algorithm 2;
while b ∈ B do

create a list of n threads x∗b by sampling x with replacement;
calculate T (x∗b) ≡ T (dead points∗b ,weights∗b);

end

calculate St.Dev.[T (x)] =

√
1

B−1

∑B
b=1

(
T (x∗b)− T (x∗b)

)2
.

Algorithm 3: Bootstrap sampling error calculation.

of parameters such as C.I.84%(θ1̂). The Bayesian bootstrap was not used as it gives

each observation a non-integer weight, which requires modifying nested sampling’s use

of dead points to statistically estimate prior volume shrinkages.

Resampling techniques such as the bootstrap can generate many simulated runs

with the same number of live points n as the original run. In comparison sampling

error estimates from simply splitting a run into many smaller runs and assessing their

variation perform poorly, as shown in Appendix 3.C.

3.5 Numerical tests

Following Keeton (2011) we first test our new method using analytic cases where uncor-

related samples can be easily obtained from the prior within an iso-likelihood contour,

allowing us to perform perfect nested sampling. This ensures our results are not affected

by imperfect implementation of the nested sampling algorithm by a specific software.

These numerical tests used an earlier version of the perfectns software package.

As discussed in Section 3.3, perfect nested sampling parameter estimation problems

depend on the likelihood L(θ) and prior π(θ) only through the distribution of posterior

mass L(X) and the distribution of parameters on iso-likelihood contours P (f(θ)|X),

both of which are functions of both L(θ) and π(θ). We therefore empirically test our

method using a wide range of distributions of posterior mass, and examine several

functions of parameters f(θ) in each case. We construct such tests using Gaussian

likelihoods (3.7) and Cauchy likelihoods (3.8) of a variety of dimensions d, each with

a Gaussian prior (3.9). The different distributions of posterior mass for different d

34

https://github.com/ejhigson/perfectns

−30 −25 −20 −15 −10 −5 0

logX

re
la

ti
v
e

p
o
st

er
io

r
m

a
ss

Gaussian: d = 2

Gaussian: d = 6

Gaussian: d = 10

Cauchy: d = 2

Cauchy: d = 6

Cauchy: d = 10

Figure 3.3: Relative posterior mass as a function of logX (∝ L(X)X) for Gaussian
likelihoods (3.7) and Cauchy likelihoods (3.8) of different dimensions d with Gaussian
priors (3.9). The lines are scaled so that the area under each of them is equal.

are illustrated in Figure 3.3; the Cauchy distributions have extremely fat tails with

significant sample weights throughout the range of logX values explored.

We use the termination conditions described by Handley et al. (2015b, Section 3.4),

stopping when the estimated evidence contained in the live points is less than 10−4 times

the evidence contained in dead points (see Appendix 3.D for a discussion of termina-

tion conditions for nested sampling parameter estimation). Numerical calculations for

high-dimensional cases are performed in two dimensions using the technique described

in Section 3.3.2.

As in Section 3.3 we denote the first component of the θ vector as θ1̂, although

by symmetry the results will be the same for any component. θ1̂ and θ2
1̂

are the first

and second moments of the posterior distribution of θ1̂, and the one-tailed Y% upper

credible interval C.I.Y%(θ1̂) is the value θ∗
1̂

for which P (θ1̂ < θ∗
1̂
|L, π) = Y/100.

3.5.1 3-dimensional Gaussian example

We first test our bootstrap approach to estimating sampling errors on a 3-dimensional

Gaussian likelihood (3.7) — Figure 3.4 illustrates sampling errors on the posterior dis-

tributions of parameters in this case. Unlike the simulated weights method, the mean

estimates of sampling errors from our method are very close to measurements of sam-

pling errors from repeated calculations — this is shown in the second row of Table 3.1.

Furthermore the fractional variation of estimates from single runs around the mean es-

35

−2 0 2

θ3̂

−2

0

2

θ 2̂

−2 0 2

θ1̂

−2

0

2

θ 3̂

−2 0 2

θ2̂

Posterior

Nested
sampling
with
n = 100

Figure 3.4: Sampling errors in a perfect nested sampling calculation for a 3-dimensional
Gaussian likelihood (3.7) and a uniform prior. The shading and black lines show the
analytic posterior distribution and the 68% and 95% credible intervals. The red lines
show the calculated posterior credible intervals for a nested sampling run with n = 100,
and differ from the analytic answer due to sampling errors.

timate is similar to that from the simulated weights method, as shown in the fourth

and fifth rows, indicating our method will give a reasonable estimate of sampling errors

when only a single nested sampling run is available.

The final two rows of Table 3.1 show the empirical coverage rates for bootstrap

credible intervals are very close to their nominal values. Figure 3.5 shows estimates

of the full sampling error distribution from a single run nested sampling run using the

bootstrap and simulated weights methods; the bootstrap results are much closer to the

sampling errors observed in repeated calculations, and give accurate estimates of the 1σ

and 2σ credible intervals.

Appendix 3.E shows similar numerical tests for a 3-dimensional Cauchy likeli-

36

θ1̂ θ2
1̂

C.I.84%(θ1̂)

Repeated runs St.Dev. 0.032(0.2) 0.050(0.4) 0.055(0.4)
BS St.Dev. / Repeats St.Dev. 1.003(7) 0.998(7) 1.008(8)
Sim St.Dev. / Repeats St.Dev. 0.715(5) 0.882(6) 0.785(7)
BS St.Dev. estimate variation 7.5(1)% 8.6(1)% 17.7(3)%
Sim estimate variation 6.0(1)% 7.3(1)% 19.7(3)%
BS C.I.95% 0.053(3) 1.080(5) 1.077(7)
BS Mean±1St.Dev. coverage 68.4% 68.2% 68.9%
BS C.I.95% coverage 95.0% 93.4% 93.1%

Table 3.1: Sampling errors for a 3-dimensional Gaussian likelihood (3.7), a Gaussian
prior (3.9) and n = 200. The first row shows the standard deviation of 10,000 nested
sampling calculations. The second and third rows show the mean of 2,000 error esti-
mates from the bootstrap and simulated weights methods respectively as a ratio to the
error observed from repeated calculations; 200 weight simulations and 200 bootstrap
replications were used for each run. The fourth and fifth rows show the standard devia-
tions of sampling error estimates for both methods as a percentage of the mean estimate.
The sixth row shows the mean of 100 bootstrap estimates of the one-tailed 95% credible
interval on the calculation result given the sampling error, each using 1,000 bootstrap
replications. The final two rows show the empirical coverage of the bootstrap stan-
dard error and 95% credible interval from the 10,000 repeated calculations. Numbers
in brackets show the error on the final digit.

hood (3.8). Even for this challenging, fat-tailed distribution our method performs

similarly to the Gaussian case, giving accurate mean error estimates and estimates

of credible intervals with measured coverage similar to their nominal coverage.

3.5.2 Sampling errors in different dimensions

We now verify the bootstrap method’s accuracy for Gaussian (3.7) and Cauchy (3.8)

likelihoods of between 2 and 50 dimensions. Figure 3.6 shows bootstrap sampling error

estimates accurately match the errors measured from repeated calculations, even for the

challenging fat-tailed Cauchy distribution. In contrast the simulated weights method

consistently underestimates the sampling errors in parameter estimation, although as

expected it is accurate for errors on the evidence logZ. See Appendix 3.B for a detailed

discussion of the simulated weights method.

As the dimension d increases, Figure 3.6 shows parameter estimation errors decreas-

ing and the evidence errors increasing (with a constant number of live points n). This

37

re
p

ea
ts

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

b
o
o
ts

tr
a
p

θ1̂

si
m

u
la

te
d

re
p

ea
ts

0.7

0.8

0.9

1.0

1.1

1.2

1.3

b
o
o
ts

tr
a
p

θ2
1̂

si
m

u
la

te
d

re
p

ea
ts

0.7

0.8

0.9

1.0

1.1

1.2

1.3

b
o
o
ts

tr
a
p

C.I.84%(θ1̂)

si
m

u
la

te
d

1σ

2σ

3σ

Figure 3.5: Estimated distributions of sampling errors for parameter estimation with a 3-
dimensional Gaussian likelihood (3.7) for perfect nested sampling with n = 200. For each
estimator the first plot uses values from 5,000 nested sampling runs; the second and third
plot are calculated from a single nested sampling run and use 5,000 simulated weights
and bootstrap replications. The bootstrap distributions are calculated using (3.19)
and (3.20). The simulated weights and bootstrap values were adjusted by subtracting
the difference between their run’s expected value for each estimator and its analytical
value to line up the distributions. The colour scale shows the fraction of the cumulative
probability distribution lying between some region and the median.

effect is due to the posterior being contained in a smaller fraction of the prior volume

in higher dimensions. In the spherically symmetric cases considered, the range of logX

to be explored increases approximately linearly with the dimension d, as can be seen

in Figure 3.3. With a constant number of live points, the number of samples is therefore

also approximately proportional to d.

In parameter estimation from posterior samples only points’ relative weights matter,

so the increased number of samples in higher dimension problems typically increases

accuracy as can be seen in Figures 3.6a and 3.6b. However for high dimensional Cauchy

likelihoods (3.8) the posterior mass is spread over a wide range of logX values, so errors

in the relative weights of points become large in high dimensions.3

3When the errors in points’ relative weights become dominant the simulated weights method cap-
tures the majority of the sampling error, as can be seen for high dimensional Cauchy distributions
in Figure 3.6b.

38

For logZ the dominant error is in the absolute value of point weights, which is

approximately proportional to the square root of the number of steps required to reach

the posterior (Skilling, 2006). logZ errors are therefore approximately proportional to
√
d when n is constant, as can be seen in Figure 3.6c.

3.6 Application to existing nested sampling software

Nested sampling software can be easily modified to output information about the step at

which dead points were sampled, which enables sampling error estimates using bootstrap

resampling of threads. This has been incorporated into the most recent versions of

MultiNest and PolyChord, and the nested sampling run division and sampling error

estimates introduced in this chapter can be applied to results produced with these

packages using nestcheck.

Sampling error estimates from our approach will be accurate provided the software

is performing nested sampling approximately correctly. However such software can only

approximately sample randomly from the prior within iso-likelihood contours — this

may result in additional errors which are specific to a given implementation and which

may not be captured by resampling threads. These additional errors are discussed in

detail in Chapter 4.

We now demonstrate our method’s application to nested sampling results produced

with PolyChord.

3.6.1 Sampling errors on data fitting with PolyChord

We fit a set of points D = {xi, yi} with normally distributed errors σy on the y values

using a sinusoid

y(x) = A sin(ωx+ φ). (3.21)

The likelihood is then

L(θ) =
∏
i

1√
2πσy2

e−(yi−y(x))2/2σ2
y , (3.22)

where θ = (A,ω, φ) and we use a uniform prior for A ∈ (0, 1), ω ∈ (0, 10) and φ ∈
(−π/2, π/2). Numerical tests use 40 data points sampled from y(x) = 1

2 sin(2πx) with

Gaussian noise of size σy = 0.2 added to the y values; y(x) and the data points are shown

39

https://github.com/ejhigson/nestcheck

5 10 15 20 25 30 35 40 45 50

dimension d

0.00

0.02

0.04

0.06

0.08

0.10

st
a
n

d
a
rd

d
ev

ia
ti

o
n

θ1̂: repeats

θ1̂: bootstrap

θ1̂: simulated wi

C.I.84%(θ1̂): repeats

C.I.84%(θ1̂): bootstrap

C.I.84%(θ1̂): simulated wi

(a) Parameter estimation sampling errors for Gaussian likelihoods (3.7).

5 10 15 20 25 30 35 40 45 50

dimension d

0.00

0.05

0.10

0.15

0.20

0.25

st
a
n

d
a
rd

d
ev

ia
ti

o
n

θ1̂: repeats

θ1̂: bootstrap

θ1̂: simulated wi

C.I.84%(θ1̂): repeats

C.I.84%(θ1̂): bootstrap

C.I.84%(θ1̂): simulated wi

(b) Parameter estimation sampling errors for Cauchy likelihoods (3.8).

5 10 15 20 25 30 35 40 45 50

dimension d

0.0

0.2

0.4

0.6

0.8

1.0

st
a
n

d
a
rd

d
ev

ia
ti

o
n

Gaussian logZ: repeats

Gaussian logZ: bootstrap
Gaussian logZ: simulated wi

Cauchy logZ: repeats

Cauchy logZ: bootstrap
Cauchy logZ: simulated wi

(c) Evidence sampling errors for Gaussian (3.7) and Cauchy (3.8) likelihoods.

Figure 3.6: Sampling errors for likelihoods of different dimensions d; all use use d-
dimensional Gaussian priors (3.9) and n = 100. Solid lines show the standard deviation
of the results of 2,000 calculations. Dashed and dotted lines show the mean of 500 stan-
dard error estimates using the bootstrap and simulated weights methods respectively.

40

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

y = 1
2 sin(2πx)

Noisy data

Figure 3.7: The true y(x) function and
the 40 data points used in numerical tests.
Data has Gaussian noise of size σy = 0.2.

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

1σ

2σ

Figure 3.8: Posterior distribution on y(x)
given the data D. The colour scale indi-
cates credible intervals on y(x).

in Figure 3.7 and the posterior distribution of y(x) given the data is shown in Figure 3.8.

Posterior distributions on A, ω and φ can be calculated with nested sampling — these

are illustrated in Figure 3.9 along with example sampling errors.

Table 3.2 shows sampling errors from PolyChord with num repeats = 15 — the

default value for a 3-dimensional problem. As in perfect nested sampling, our bootstrap

estimates of the standard error agree with the variation in results observed, and the

observed coverage of credible intervals is close to their nominal coverage. This implies

that num repeats = 15 is sufficient for PolyChord to perform parameter estimation

accurately in this case.

3.7 Application gravitational wave data analysis

The method for error estimation introduced in this chapter has a wide variety of possible

applications in astronomy due to the widespread use of nested sampling parameter esti-

mation in the field. As an example, we briefly describe our use of bootstrap resampling

error estimates in Chua et al. (2018); more details can be found in the paper (on which

the candidate is an author).

The first detection of gravitational waves by LIGO (LIGO Scientific Collaboration

and Virgo Collaboration, 2016) heralded the dawn of a new era of astronomy, promis-

ing powerful new tests for probing fundamental physics. Future space-based detectors

such as LISA (LISA Collaboration, 2017) will be able to detect binary mergers with

extreme-mass-ratio inspirals, in which stellar-origin black holes or neutron stars merge

41

−0.3 0.0 0.3 0.6

φ

5.5

6.0

6.5

7.0

ω

0.4 0.5 0.6 0.7

A

−0.3

0.0

0.3

0.6

φ

5.5 6.0 6.5 7.0

ω

Posterior

Nested
sampling
with
n = 100

Figure 3.9: Posterior distributions and sampling errors from fitting a sinusoid to
data (3.22) using PolyChord. The shading and black lines show an accurate calcu-
lation of posterior distribution and the 68% and 95% credible intervals from combining
1,000 nested sampling runs with n = 100. The red lines show the calculated posterior
credible intervals for a single nested sampling run with n = 100, and differ from the
true posterior due to sampling errors.

with massive black holes in galactic nuclei. As these events involve a large number of

observable orbits during which the smaller object is in the strong gravitational field of

the larger object, they can permit stringent tests of general relativity (Chua et al., 2018;

Barack and Cutler, 2007; Gair et al., 2013).

Chua et al. (2018) trials testing for deviations from general relativity with a gener-

alised extreme mass ratio inspiral waveform (Gair and Yunes, 2011) using the Bayesian

null hypothesis test framework introduced for LIGO sources (Li et al., 2012). This in-

volves adding N deformation parameters to the waveform from general relativity, which

can be either be included or omitted (set to zero). The null hypothesis (general rela-

42

A ω C.I.84%(ω)

Repeated runs St.Dev. 0.247(6) · 10−2 0.012(0.3) 0.019(0.4)
BS St.Dev. / Repeats St.Dev. 0.98(2) 0.98(2) 0.97(2)
Sim St.Dev. / Repeats St.Dev. 0.71(2) 0.71(2) 0.73(2)
BS St.Dev. estimate variation 8.8(2)% 9.3(2)% 19.1(4)%
Sim estimate variation 6.4(1)% 6.6(1)% 21.5(5)%
BS C.I.95% 0.577(0.2) 6.370(0.8) 6.632(1)
BS Mean±1St.Dev. coverage 69.4% 69.3% 66.9%
BS C.I.95% coverage 93.4% 95.0% 95.1%

Table 3.2: Sampling errors for the sinusoid fitting likelihood (3.22) using PolyChord

with n = 100. The first row shows the standard deviation of 1,000 nested sampling
calculations. The second and third rows show the mean of 1,000 error estimates from the
bootstrap and simulated weights methods respectively as a ratio to the error observed
from repeated calculations; 200 weight simulations and 200 bootstrap replications were
used for each run. The fourth and fifth rows show the standard deviations of sampling
error estimates for both methods as a percentage of the mean estimate. The sixth row
shows the mean of 100 bootstrap estimates of the one-tailed 95% credible interval on
the calculation result, each using 1,000 bootstrap replications. The final two rows show
the empirical coverage of the bootstrap standard error and 95% credible interval from
the 1,000 repeated calculations. Numbers in brackets show the error on the final digit.

tivity) model represents the case without any deformation parameters, and the 2N − 1

other models each involve some departure from general relativity.

One way to perform Bayesian model selection over the 2N models is to calculate the

Bayesian evidence for each independently (we term this the vanilla method). However,

the vanilla method is extremely computationally expensive for this application. An

alternative approach is the adaptive method, in which a single analysis is performed over

a “meta-model” with an integer parameter which labels the different models. A sample’s

likelihood is evaluated by first selecting the model indicated by the integer parameter

then evaluating the likelihood using that model and the remaining parameters (this

approach is discussed in more detail in Section 6.3.4). Posterior odds ratios and Bayes

factors for the different models can be calculated via parameter estimation over the

integer parameter. Chua et al. (2018) used nested sampling and the adaptive method to

test the models including deformation parameters against the general relativity model;

as this is a parameter estimation problem, the associated errors are of the type discussed

in this chapter.

43

Numerical calculations in Chua et al. (2018) used PolyChord, and uncertainties were

evaluated using an earlier version of nestcheck; this proved useful as due to computa-

tional expense it was not possible to measure uncertainties accurately by repeating the

analysis many times. The major result of the paper was the reduced uncertainty for

a given computational cost possible using the adaptive method, with the reduction in

uncertainty calculated using the methods introduced in this chapter.

3.8 Conclusion

Sampling errors in nested sampling parameter estimation arise principally from two

sources: uncertain sample weights wi(t), and approximating the average of a function

of parameters on each iso-likelihood contour f̃(Xi) with a single sample f(θi). The

latter error is not present in evidence calculation and has been previously ignored. The

added stochasticity from sampling each iso-likelihood contour makes nested sampling

parameter estimation a 2-dimensional problem, with a dependence on both the distri-

bution of posterior mass L(X) and the distribution of parameter values P (f(θ)|X) on

each iso-likelihood contour. We proposed a new diagram for representing both aspects

of the calculation, and presented it in Figures 3.2a to 3.2e.

Estimating sampling errors is vital for interpreting the results of a nested sampling

calculation, as well as for allocating computational resources — for example by choos-

ing an appropriate number of live points. However the previously available approach

(the simulated weights method) underestimates sampling errors as it does not account

for approximating f̃(Xi) with a single sample f(θi). We proposed a new method for

estimating sampling errors using our new algorithm (Algorithm 2) for dividing a nested

sampling run into single live point runs (“threads”), which can then be resampled with

techniques such as the bootstrap. This works as the logXi values of the dead points i

from some nested sampling run with n live points form a Poisson process with rate n,

meaning the logXj values of the dead points j of a single thread are a Poisson process

of rate 1.

Our method shows accurate estimation of sampling errors in parameter estimation

in empirical tests, and compares favourably to the other methods discussed. Further-

more we have successfully applied the new method in the development of data analysis

techniques for testing general relativity with gravitational waves. Our method can be

44

https://github.com/ejhigson/nestcheck

easily used together with existing nested sampling software, and will be reliable pro-

vided the implementation is performing the nested sampling algorithm accurately. The

nested sampling run division and sampling error estimates introduced in this chapter

are implemented in the nestcheck software package.

Appendix 3.A Relative contributions of different sources

of parameter estimation sampling errors

The relative contributions of sampling errors from unknown prior weights of points wi(t)

and from taking a single sample θi on each iso-likelihood contour (discussed in Sec-

tion 3.3) can be calculated by using exact values for weights wi(t) and replacing f(θi)

with f̃(Xi). For a Gaussian likelihood (3.7) and Gaussian prior (3.9) both wi(t) and

f̃(Xi) can be calculated analytically for each θi — sampling errors from calculations

using this additional information are shown in Figure 3.10 and Table 3.3.

When calculating logZ, as expected, using exact weights wi(t) reduces uncertainty

to the small trapezium rule error and using f̃(Xi) has no effect. However for param-

eter estimation significant error remains when using exact wi(t) values.4 The relative

contribution to sampling errors from estimating weights statistically is greatest when

f̃(X) has a strong dependence on X over the interval in X containing the bulk of the

posterior mass. In contrast when f(θ) = θ1̂ then f̃(X) = 0 for all θ, and the analysis

using f̃(Xi) always gives the analytically correct answer of zero. In all cases, when both

exact wi(t) and samples from f̃(Xi) are used the sampling error is reduced to close to

zero.

Appendix 3.B Analysis of the simulated weights method

The simulation method underestimates sampling errors in nested sampling parameter

estimation, as shown by the numerical tests in Tables 3.1 and 3.2 and Figure 3.6. This

is because it assumes that for each dead point f(θi) ≈ f̃(Xi), neglecting the sampling

errors from taking a single sample on each iso-likelihood contour which are described in

Section 3.3. However some of this error is captured because repeatedly simulating points’

4For f(θ) = θ1̂ the error increases when exact wi(t) values are used. This is because the true weights
are more variable than the expected ones and this reduces the information content (entropy) of the set
of samples.

45

https://github.com/ejhigson/nestcheck

n
o
rm

a
l

−9.0

−9.5

−10.0

−10.5

ex
a
ct
w
i
(t

)

f̃
(X

i
)

logZ

b
o
th

n
o
rm

a
l−0.2

−0.1

0.0

0.1

0.2

ex
a
ct
w
i
(t

)

f̃
(X

i
)

θ1̂

b
o
th

n
o
rm

a
l0.8

0.9

1.0

1.1

1.2

ex
a
ct
w
i
(t

)

f̃
(X

i
)

θ2
1̂

b
o
th

1σ

2σ

3σ

Figure 3.10: Sources of sampling error in perfect nested sampling with a 3-dimensional
Gaussian likelihood (3.7), a Gaussian prior (3.9) and n = 200. Each plot shows the
distribution of the results of 5,000 nested sampling calculations. For each estimator the
first bar is from standard nested sampling, the second bar uses analytically calculated
prior volumes for its sample weights wi(t) and the third bar uses f̃(Xi) instead of f(θ)
to calculate estimates. The fourth bar uses both analytical wi(t) and f̃(Xi) values —
the error in this case is very small and calculation results are all close to the analytic
answer. The colour scale shows the fraction of the cumulative probability distribution
lying between some region and the median.

St.Dev.[{logZ}] St.Dev.
[{
θ1̂

}]
St.Dev.

[{
θ2

1̂

}]
Normal runs 0.169(2) 0.033(3) 0.051(0.5)
Exact wi(t) 0.394(4) · 10−5 0.040(4) 0.040(0.4)

Sampling f̃(Xi) 0.169(2) 0.000(0) 0.038(0.4)

Exact wi(t) and f̃(Xi) 0.394(4) · 10−5 0.000(0) 0.330(3) · 10−5

Table 3.3: The standard deviations of the sampling error distributions in Figure 3.10;
numbers in brackets show the error on the final digit. For f(θ) = θ1̂, f̃(X) = 0 for all

X(θ) and so when f̃(Xi) values are used every calculation gives θ1̂ = 0 without any
sampling error.

46

weights behaves like a resampling scheme, with similarities to the Bayesian bootstrap

(Rubin, 1981). Resampling estimates the uncertainty on inferences from a set of samples

by calculating its variation when data points are re-weighted, but the simulated weights

method does so in a way that systematically underestimates sampling errors. This

behavior has not been documented in the literature.

For example, consider the case f(θ) = θ1̂ with a Gaussian likelihood (3.7) and

Gaussian prior (3.9) — here f̃(X) = 0 for all X(θ). If f̃(Xi) is used instead of f(θi)

there is no sampling error on estimates of θ1̂ regardless of any uncertainty in the weights

of each point pi, as can be seen in Figure 3.10 and Table 3.3. However the simulated

weights method gives a non-zero estimate which on average differs from the sampling

errors measured by repeated calculations by a factor of very close to 2−
1
2 = 0.707, as

shown in the third row of Table 3.1.

Further numerical tests show that in special cases when f̃(X) is the same at all X

the ratio of sampling errors from the simulated weights method to the error observed

in repeated calculations has a value close to 2−
1
2 . We give an analytical explanation

for this result below. However we note that for practical problems f̃(X) is a priori

unknown and likely varies in X, meaning the true sampling error cannot be predicted

by adjusting estimates from the simulated weights method.

3.B.1 Sampling error estimates for special cases when f̃(X) is

constant for all X

Variance of sampling error distribution

Nested sampling calculates the expected value of a function of parameters as
∑

i pif(θi).

Here the sampling error is the difference between the exact value of E[f(θ)] from the

posterior, and is distributed as

sampling error ∼ P

(∑
s∈S

psf(θs)− E[f(θ)]

)
. (3.23)

The variance of this distribution provides a measure of the size of the sampling error. As

the nested sampling estimator is unbiased, the variance of the sampling error distribution

is equal to the variance of the results of repeated calculations:

Var

[∑
i

pi(t)f(θi)

]
=
∑
i,j

Cov [pi(t)f(θi), pj(t)f(θj)] . (3.24)

47

Expanding and dropping the explicit dependence of pi and fi on t and θi for brevity

gives

Cov [pifi, pjfj] = E[pi]E[pj]Cov[fi, fj] + E[pi]E[fj]Cov[fi, pj]+

E[fi]E[pj]Cov[pi, fj] + E[fi]E[fj]Cov[pi, pj]+

E[(∆pi)(∆pj)(∆fi)(∆fj)] + E[pi]E[(∆fi)(∆pj)(∆fj)]+

E[fi]E[(∆pi)(∆pj)(∆fj)] + E[pj]E[(∆pi)(∆fi)(∆fj)]+

E[fj]E[(∆pi)(∆fi)(∆pj)]− Cov[pi, fi]Cov[pj , fj],

(3.25)

where ∆y ≡ y − E[y].

Each fi is an independent random variable from the distribution P (f(θ)|Xi), so

the expectation of products of ∆pi∆fj are zero for all i, j. Furthermore expectation of

products ∆fi∆fj and the covariance Cov[fi, fj] are zero for i 6= j.

The weights pi have a dependence on X, but in the case f̃(Xi) is the same for all X

the covariance terms Cov[fi, pj] are also zero for all i, j. (3.25) therefore simplifies to

∑
i

∑
j

Cov [pifi, pjfj] =
∑
i

Var [pifi] +
∑
i 6=j,j

[E[fi]E[fj]Cov[pi, pj]] . (3.26)

Expanding the variance term on the right hand side when f̃(X) is constant and fi and

pi are therefore independent gives

∑
i,j

Cov [pifi, pjfj] =
∑
i

[
E[pi

2]Var[fi]
]

+
∑
i,j

[E[fi]E[fj]Cov[pi, pj]] . (3.27)

Simulated weights method variance estimate

The simulated weights method corresponds to fixing the fi values while retaining the

stochastic dependence of pi on t. This means taking E[fi]sim = fi, Var[fi]sim = 0, which

combined with (3.27) gives

Varsimulated =
∑
i,j

fifjCov[pi, pj]. (3.28)

Taking the expected values for fi and fj this becomes

E[Varsimulated] =
∑
i,j

E[fi]
2Cov[pi, pj] +

∑
i

(
E[f2

i]− E[fi]
2
)

Var[pi]. (3.29)

48

Using that by definition
∑

i pi = 1 so
∑

i,j Cov[pi, pj] = Var[
∑

i pi] = 0,

E[Varsimulated] =
∑
i

Var[fi]Var[pi]. (3.30)

In contrast the repeated runs method retains the sampling error of fi on θi and uses

the expected values of the weight E[pi]. Hence for a large number of trials E[fi]rep =

E[fi] = f̃(Xi), Var[fi]rep = Var[fi] for all i. Subbing into (3.27) gives

E[Varrepeats] =
∑
i

Var[fi]E
[
pi

2
]

+
∑
i,j

E[fi]
2Cov[E[pi], E[pj]] . (3.31)

Using that
∑

i,j Cov[E[pi], E[pj]] = Var[
∑

iE[pi]] = 0,

E[Varrepeats] =
∑
i

Var[fi]E
[
pi

2
]
. (3.32)

Ratio of simulated weights and repeated runs variance estimates

Combining equations (3.30) and (3.32) gives the ratio of the simulated weights method

and repeated runs variances as

E[Varsimulated]

E[Varrepeats]
=

∑
i Var[fi]Var[pi]∑
i Var[fi]E [pi2]

=

∑
i Var[fi]

(
E
[
pi

2
]
− E [pi]

2
)

∑
i Var[fi]E [pi2]

. (3.33)

If Var[P (f(θ)|X)] is the same for all X this simplifies to

E[Varsimulated]

E[Varrepeats]
=

∑
i E
[
pi

2
]
− E [pi]

2∑
i E [pi2]

. (3.34)

By definition the normalised weights pi ≡ wi(t)
Z(t) so

E [pi] = E [wi] E
[
Z−1

]
+ Cov

[
wi,Z−1

]
, (3.35)

E
[
p2
i

]
= E

[
w2
i

]
E
[
Z−2

]
+ Cov

[
w2
i ,Z−2

]
. (3.36)

Numerical results suggest that for a range of problems pi and Z are approximately

independent, in which case

E[Varsimulated]

E[Varrepeats]
≈
∑

i Var[fi]
[
(E
[
wi

2
]
− E [wi]

2) + Var[Z−1]
E[Z−2]

E
[
w2
i

]]∑
i Var[fi]E [wi2]

. (3.37)

Typical problems with a large n often also have Var
[
Z−1

]
� E

[
Z−2

]
, in which case

E[Varsimulated]

E[Varrepeats]
≈
∑

i Var[fi]
[
E
[
wi

2
]
− E [wi]

2
]

∑
i Var[fi]E [wi2]

. (3.38)

49

Keeton (2011) gives expressions for the weights as5

E [wi] =E[Li]
1

n

(
n

n+ 1

)i
, (3.39)

E
[
w2
i

]
=E[Li]2

2

n(n+ 1)

(
n

n+ 2

)i
. (3.40)

For a general likelihood the summation in (3.38) cannot be found exactly. However

one can estimate the ratio for each live point

E
[
wi

2
]
− E [wi]

2

E [wi2]
=

2
n(n+1)

(
n
n+2

)i
− 1

n2

(
n
n+1

)2i

2
n(n+1)

(
n
n+2

)i (3.41)

=
2− n+1

n

(
1− 1

(n+1)2

)i
2

(3.42)

≈ 1

2
when n� 1 and i� n2. (3.43)

This supports the observation that the ratio of simulated weights method estimates of

the standard deviation of stochastic errors to measurements from repeated runs is close

to 2−1/2 for special cases such as calculating the mean of a parameter for spherically

symmetric likelihoods with spherically symmetric co-centred priors.

Ratio in the special case where L(X) and P (f(θ)|X) are constant for all X

If the likelihood L is constant6 throughout the parameter space and Var[P (f(θ)|X)]

is the same for all X then the likelihood terms in the numerator and denominator

of (3.38) cancel and the summation can be found exactly. Furthermore estimates of Z
are very precise in this case as there is no stochastic variation in {Li}, justifying the

approximation (3.38). In this case the ratio is

E[Varsimulated]

E[Varrepeats]
≈
∑

i E
[
wi

2
]
− E [wi]

2∑
i E [wi2]

(3.44)

=

∑
i

[
1
n

(
n
n+1

)i
+ 1− 2

n(n+1)

(
n
n+2

)i]
∑

i
2

n(n+1)

(
n
n+2

)i (3.45)

=
1

2 + 1
n

, (3.46)

5These formulae omit the trapezium rule and for brevity take wi(t) = Li(Xi−1 − Xi) — this
approximation has little effect on the results.

6We assume L(X) has an infinitesimal slope to give direction to nested sampling’s inward iteration.

50

Z θ1̂ C.I.84%(θ1̂)

Repeats St.Dev. 0.111(1) · 10−4 0.032(0.2) 0.055(0.4)
Split St.Dev. / Repeats St.Dev. 1.332(15) 1.012(8) 0.972(8)
BS St.Dev. / Repeats St.Dev. 1.009(8) 1.003(7) 1.008(8)
Split St.Dev. estimate variation 37.9(6)% 16.4(3)% 16.1(3)%
BS St.Dev. estimate variation 17.6(3)% 7.5(1)% 17.7(3)%

Table 3.4: Test of the split analysis method using perfect nested sampling with a 3-
dimensional unit Gaussian likelihood (3.7), a Gaussian prior (3.9) and n = 200. The first
row shows the standard deviation of results from 10,000 nested sampling calculations.
The second row shows the mean estimate of sampling error standard deviation from
2,000 individual runs using the split method, breaking each run into 20 smaller runs
with n = 10. The third row shows the mean of 2,000 bootstrap estimates of the sampling
errors for comparison. The fourth and fifth row shows the standard deviation of error
estimates from the split method and bootstrap method as a percentage of the mean
estimate. Numbers in brackets show the error on the final digit.

where the final step sums the geometric series and neglects terms from the truncation

of the sum due to termination of the nested sampling run.

Appendix 3.C Split runs method

Instead of spending all available computational resources on a single nested sampling

run with n live points, one might consider performing N smaller runs with n/N live

points and estimating the sampling error from the variation of the smaller runs —

for example as 1/
√
N times their sample standard deviations. However this provides

a limited number of sub-runs, and does not give accurate credible interval estimates.

Furthermore while sampling errors in nested sampling are typically proportional to

1/
√
n, this breaks down when the number of samples is small due to trapezium rule

errors in sample weights which are O(1/n2). As a result multiple runs are best analysed

by combining them into a single run (Skilling, 2006).

Sampling error estimates from taking the standard deviation of the results of N = 20

sub-runs and multiplying by 1/
√
N are shown in Table 3.4. The split runs method is

inaccurate for the approximately log-normally distributed sampling errors in Z as well

as for credible intervals on distribution tails such as C.I.84%(θ1̂), as can be seen in the

third row of Table 3.4.

51

Appendix 3.D Termination conditions

The sensitivity to termination conditions can be far higher for parameter estimation

than for evidence calculation. This is both because parameter estimation can have

much smaller sampling errors, and because the region close to the likelihood peak can

have very high weight for some f(θ). For example for the Gaussian likelihood (3.7) an

estimator such as f(θ) = |θ|−1 may show significant errors due to termination conditions

which were perfectly adequate for calculating logZ. Numerical tests in this chapter use

the termination conditions described by Handley et al. (2015b, Section 3.4), stopping

when the estimated evidence contained in the live points is less than 10−4 times the

evidence contained in dead points.

When splitting runs into their constituent threads (Section 3.4.1) then even in per-

fect nested sampling termination conditions must be chosen carefully to avoid causing

differences between threads from different runs which terminate at different likelihoods.

This typically happens when

1. termination conditions are worked out from the current set of dead points — e.g.

estimating the evidence Z remaining as in Handley et al. (2015b, Section 3.4).

This means some runs continue for longer than others;

2. the final point which violates the condition is kept. This means threads from

small runs are much more likely to have final points far exceeding the termination

condition than threads from large runs.

When comparing threads from different nested sampling runs, their equivalence can

be maintained by using a termination condition which does not infer anything from

the previous points, such as setting a fixed likelihood value Lterm for termination and

discarding any point that exceeds it. As we do not mix threads from different runs in

our numerical tests we do not need this approach.

Appendix 3.E Additional numerical tests: 3-dimensional

Cauchy likelihood

Table 3.5 shows numerical tests of sampling error estimates with a 3-dimensional Cauchy

likelihood (3.8) with a Gaussian prior (3.9). As in the 3-dimensional Gaussian case

52

θ1̂ θ2
1̂

C.I.84%(θ1̂)

Repeated runs St.Dev. 0.044(0.3) 0.573(4) 0.119(0.8)
BS St.Dev. / Repeats St.Dev. 1.005(7) 1.003(8) 1.002(8)
Sim St.Dev. / Repeats St.Dev. 0.717(5) 0.994(8) 0.926(7)
BS St.Dev. estimate variation 9.3(1)% 12.7(2)% 16.9(3)%
Sim estimate variation 8.0(1)% 12.0(2)% 17.4(3)%
BS C.I.95% 0.072(5) 6.70(7) 1.69(2)
BS Mean±1St.Dev. coverage 68.6% 68.8% 68.7%
BS C.I.95% coverage 95.1% 92.1% 92.1%

Table 3.5: Sampling errors for a 3-dimensional Cauchy likelihood (3.8), a Gaussian
prior (3.9) and n = 200. The first row shows the standard deviation of 10,000 nested
sampling calculations. The second and third rows show the mean of 2,000 error esti-
mates from the bootstrap and simulated weights methods respectively as a ratio to the
error observed from repeated calculations; 200 weight simulations and 200 bootstrap
replications were used for each run. The fourth and fifth rows show the standard devia-
tions of sampling error estimates for both methods as a percentage of the mean estimate.
The sixth row shows the mean of 100 bootstrap estimates of the one-tailed 95% credible
interval on the calculation result given the sampling error, each using 1,000 bootstrap
replications. The final two rows show the empirical coverage of the bootstrap stan-
dard error and 95% credible interval from the 10,000 repeated calculations. Numbers
in brackets show the error on the final digit.

shown in Table 3.1, the mean estimates of sampling errors from our bootstrap method

are very close to measurements of sampling errors from repeated calculations — this can

be seen in the second row of Table 3.5. Again the empirical coverage rates for bootstrap

credible intervals are close to their nominal values, as shown in the final two rows.

53

Chapter 4

Diagnostic tests for nested

sampling calculations

This chapter introduces new diagnostic tests to assess the reliability both of parameter

estimation and evidence calculations using nested sampling software, and demonstrates

them empirically. We present two new diagnostic plots for nested sampling, and give

practical advice for nested sampling software users. The material presented is an edited

version of Higson et al. (2019b).

4.1 Introduction

Methods for numerically estimating the uncertainty in nested sampling results due to

the stochasticity of the nested sampling algorithm are now available for both evidence

calculations (see Skilling, 2006; Keeton, 2011) and parameter estimation (see Chap-

ter 3). However, all of these techniques assume that the nested sampling algorithm

was executed perfectly — which requires sampling randomly from the prior within a

hard likelihood constraint. This can only be done exactly in special cases, such as for

spherically symmetric calculations using perfectns (Higson, 2018c). Nested sampling

software used for practical problems can only perform such sampling approximately and

as a result may produce additional errors — for example due to correlations between

samples, or due to sampling from only part of the prior volume contained within a

likelihood constraint. We term these additional errors implementation-specific effects to

distinguish them from the intrinsic stochasticity of the nested sampling algorithm.

55

https://github.com/ejhigson/perfectns

Diagnosing whether significant implementation-specific effects are present is of great

practical importance for researchers as they can cause large uncertainty in results and

lead to potentially incorrect conclusions — such as, for example, if the calculation misses

a significant mode1 in a multimodal posterior. Conversely, if implementation-specific

effects are shown to be negligible, users can simply increase the number of live points for

more accurate results and can confidently use standard techniques to estimate numerical

uncertainty from the nested sampling algorithm.

Typically software has settings which the user can adjust to reduce implementation-

specific effects at the cost of increased computation, such as PolyChord’s num repeats

and MultiNest’s efr (see Section 4.6 for more details). Assessing if the software is

able to explore the posterior reliably is therefore particularly useful when taking signifi-

cantly more samples is computationally costly, as is often the case for high-dimensional

problems. In our experience, software users typically try to check their results by run-

ning a calculation several times and qualitatively assessing if the posterior distributions

look similar in each case. However this is not very reliable and does not differentiate

between implementation-specific effects and the expected variation from the inherent

stochasticity of the nested sampling algorithm.

We are not aware of any diagnostic tests in the literature for checking calculation re-

sults for practical problems for implementation-specific effects, although Buchner (2016)

proposes a diagnostic for evidence calculations which uses analytically solvable test prob-

lems. In contrast Markov chain Monte Carlo (MCMC)-based methods, which do not

require sampling within a hard likelihood constraint, have an extensive literature on

diagnostics for practical problems (see for example Cowles and Carlin, 1996; Hogg and

Foreman-Mackey, 2018).

This chapter introduces new heuristic tests and diagrams to check the reliability of

nested sampling results for practical problems, and to determine if the software settings

should be changed. It is also intended to serve as a practical guide for nested sampling

practitioners based on our experience using nested sampling software. We begin dis-

cussing the challenges of detecting implementation-specific effects in Section 4.2. We

1Here we refer to cases where the software does not detect the mode and, as a result, samples are
not drawn from the entire prior volume within specified likelihood constraints. Another less common
problem is that, if the number of live points is very low, a given run might not contain a single sample
within a particular mode even when the nested sampling algorithm is performed perfectly; this is not
an implementation-specific effect according to our definition.

56

then introduce our new diagnostic tests:

• Section 4.3 discusses diagnostic plots and presents two new diagrams for nested

sampling (illustrated in Figures 4.2 to 4.4);

• Section 4.4 describes how the implementation-specific effects can be measured

from a number of nested sampling runs;

• Section 4.5 introduces diagnostic tests which can be applied to pairs of nested

sampling runs and are useful when few runs are available.

We empirically test the effects of changing nested sampling software settings and the

dimension of the problem on both implementation-specific effects and total calculation

errors using PolyChord in Section 4.6, and summarise our practical advice for software

users in Section 4.6.5. Finally in Section 4.7 we apply our methods to astronomical

data from the Planck survey. Our diagnostic tests and diagrams are implemented in

nestcheck (Higson, 2018b); an open-source Python package for analysing nested sam-

pling calculations, which is compatible with output from MultiNest and PolyChord.

4.2 Measuring implementation-specific effects

This chapter is concerned with developing practical diagnostics for assessing whether

nested sampling calculation results contain implementation-specific effects due to im-

perfect execution of the nested sampling algorithm. It is important to emphasis that

diagnosing such effects without additional information about the likelihood and prior

is very challenging problem, and it is impossible to conclude a priori with certainty

that they are not present. For example, one cannot eliminate the possibility of missing

an extremely narrow mode for a general posterior without an exhaustive search of the

parameter space (Wolpert and Macready, 1997). Hogg and Foreman-Mackey (2018, Sec-

tion 5) provide an interesting and analogous discussion of the similarly heuristic nature

of MCMC convergence tests. In addition, nested sampling’s iteration towards succes-

sively higher likelihoods means it never reaches a steady state — so heuristics based on

autocorrelation of samples (which are used in testing for MCMC convergence) cannot

be applied.

57

https://github.com/ejhigson/nestcheck

The main idea behind the diagnostic tests we present is to assess if the variation

of the results of different nested sampling runs is consistent with the statistical proper-

ties expected of nested sampling without implementation-specific effects. Consequently,

these diagnostics require multiple nested sampling runs. A limitation of this approach is

that a systematic bias in the calculation results will lead to the implementation-specific

effects being underestimated, although they are still likely to be detectable. Such cases

have been observed in the literature for evidence calculations with challenging posteriors

(see for example Beaujean and Caldwell, 2013); we discuss systematic bias in detail in

Section 4.6.3. Furthermore our diagnostics are unable to detect implementation-specific

effects which do not change the variation of the runs, although we have not come across

such a case in practice. A theoretical example would be if every run available missed a

significant mode while exploring all the rest of the parameter space correctly.

4.2.1 Test problems

We now introduce two test problems, which we will use to demonstrate the diagnostic

tests presented in the following sections.

As an example of a simple likelihood, we consider a simple d-dimensional Gaussian

with σ = 1 centred on the origin

L(θ) = (2π)−d/2e−|θ|
2/2. (3.7 revisited)

We also use the challenging LogGamma-Gaussian mixture model likelihood introduced

by Beaujean and Caldwell (2013), which was designed to represent a particle physics

problem involving heavy-tailed distributions and several distinct modes. In this case

L(θ) =
∏d
i=1 L(θî) with

L(θ1̂) =
1

2
LogGamma(θ1̂ − 10|1, 1) +

1

2
LogGamma(θ1̂ + 10|1, 1),

L(θ2̂) =
1

2
Normal(θ2̂ − 10|0, 1) +

1

2
LogGamma(θ2̂ + 10|0, 1),

and, if d > 2,

L(θî) =

LogGamma(θî|1, 1) for 3 ≤ i ≤ d+2
2 ,

Normal(θî|0, 1) for d+2
2 ≤ i ≤ d.

(4.1)

Here the number of dimensions d is even and the LogGamma distribution is

LogGamma(x|α, β) =
eβxe−ex/α

αβΓ(β)
, (4.2)

58

where Γ denotes the gamma function.

Our numerical tests all use uniform priors ∈ [−30, 30] for each parameter. As (4.1)

and (3.7) are both normalised to 1 and there is negligible posterior mass outside the

prior, in both cases the evidence is almost exactly equal to the normalisation constant

on the uniform prior — i.e.

Ztrue = 60−d. (4.3)

4.3 Diagnostic plots

Before discussing quantitative diagnostics in Sections 4.4 and 4.5, we first introduce

some diagnostic plots which illustrate nested sampling and its associated errors. It is

good practice for users of sampling software to represent their results visually, in order

to assess if they are reasonable given background knowledge about the problem. Many

software packages exist for plotting 1- and 2-dimensional marginalised distributions from

weighted samples using kernel density estimation. As an example, Figure 4.1 shows

posterior distributions for the LogGamma mixture likelihood (4.1); this was made using

getdist with a zero-centred Gaussian kernel and the default settings.

While plots like Figure 4.1 are useful, it is unclear to what extent the differences be-

tween the two nested sampling runs are due to implementation-specific effects or merely

what is expected from the stochasticity of the nested sampling algorithm. Furthermore,

these plots do not illustrate the distinctive manner in which nested sampling iterates

towards higher likelihoods. We therefore propose two additional diagnostic plots in

Sections 4.3.1 and 4.3.2, which can be calculated from nested sampling runs to show

this extra information. These are focused on distributions of parameters and so do

not directly assess evidence calculations, but any significant inconsistencies in sample

allocations observed between runs may also impact evidence estimates.

4.3.1 Plotting the uncertainty on posterior distributions

The uncertainty on the posterior distributions due to nested sampling stochasticity can

be estimated from a run by creating bootstrap resamples of the run using the procedure

described in Section 3.4.2. This uncertainty can be visually represented by plotting the

distribution of the posteriors obtained from each resample (which is a nested sampling

run) to give an uncertainty distribution on the posterior distribution. Such plots can

59

−5 0

θ3̂

−12

0

12

θ 2̂

−16 0

θ1̂

−7.5

−5.0

−2.5

0.0

2.5

θ 3̂

−12 0 12

θ2̂

Run 1

Run 2

Figure 4.1: Triangle plot of the posterior distributions for two nested sampling runs (red
and blue lines), calculated using the 10-dimensional LogGamma mixture likelihood (4.1)
and a uniform prior. The on-diagonal plots show 1-dimensional marginalised posterior
distributions on the first three parameters, and the remaining plots show calculated
2-dimensional 68% and 95% credible intervals on the joint posterior distribution. The
results for the two runs differ due to errors from both the intrinsic stochasticity of the
nested sampling algorithm and implementation-specific effects. Each nested sampling
run has 250 live points, and uses the PolyChord setting num repeats = 20 — this low
setting is deliberately chosen to illustrate large implementation-specific effects.

60

be used for assessing if the calculation error is sufficiently small for the given use case,

and are illustrated in Figure 4.2. If they are of interest, the posterior distributions of

functions of parameters can also be plotted; Figures 4.2a and 4.2b both show the radial

coordinate |θ| = (
∑

i θ
2
î
)
1/2

. The coloured contours are plotted using the fgivenx

package (Handley, 2018).2

Plotting results from multiple runs on the same axis allows visual assessment of

whether implementation-specific effects are present. If posterior distributions differ by

more than would be expected from their bootstrap sampling error distribution, then

implementation-specific effects are likely to be the cause. For example the top left panel

of Figure 4.2b, in which the coloured distributions are clearly separated, suggests large

implementation-specific effects are present in this case with the settings used. Figure 4.2

deliberately uses low values for the PolyChord num repeats and number of live points

settings to illustrate implementation-specific effects; these effect can be reduced with a

more appropriate choice of settings (discussed in Section 4.6).

4.3.2 Plotting distributions of samples in logX

We now propose a diagram to illustrate the distinctive manner in which a nested sam-

pling run progresses by sampling from the prior with successively higher likelihood

constraints, based on the plots shown in Figure 3.2. This involves plotting sample pa-

rameters and weights against the fraction of the prior volume remaining, X, which is

defined in (2.16). A log scale is used as the shrinkage in X at each step is exponential.

In each plot the top right panel shows the relative posterior mass L(X)X (i.e. the

weight assigned to samples in that logX region) on a relative scale; this is similar

to Figure 2.1. The logX co-ordinates of the samples are estimated statistically, with

their uncertainty distribution displayed using coloured contours. Each subsequent row

represents a parameter or function of parameters, with the right panel showing the

parameter value of each sample on the same logX scale.3 The left panel is the same

2When calculating plots like those in Figure 4.2, the posterior distribution for each bootstrap repli-
cation must be calculated from the weighted samples without reducing them to evenly weighted samples
in a stochastic manner — such as by including each sample with probability proportional to its weight
— as this adds extra variation. nestcheck contains an implementation of 1-dimensional kernel den-
sity estimation which takes sample weights as an argument, and does not require conversion to evenly
weighted samples.

3The scatter plots in the right column of Figures 4.3 and 4.4 can be replaced with a colour plot of
the estimated distribution of values at each logX using kernel density estimation (similar to the colour

61

https://github.com/ejhigson/nestcheck

−4 −2 0 2
θ1̂

p
ro

b
a
b
il
it

y

0.0 1.5 3.0 4.5 6.0

|θ|

1σ

2σ

3σ

(a) Posterior distributions of the first parameter and the radial coordinate |θ| for a 10-
dimensional Gaussian likelihood (3.7).

−16 −8 0 8 16
θ1̂

p
ro

b
a
b
il
it

y

−16 −8 0 8 16
θ2̂

1σ

2σ

3σ

−6 −4 −2 0 2
θ3̂

p
ro

b
a
b
il
it

y

10 12 14 16 18 20

|θ|

1σ

2σ

3σ

(b) Posterior distributions of the first 3 parameters and |θ| for a 10-dimensional LogGamma
mixture likelihood (4.1). The nested sampling runs are the same ones used in Figure 4.1 with
the corresponding colours.

Figure 4.2: Diagrams of posterior distributions for two nested sampling runs (red and
blue), showing the uncertainty due to the stochasticity of the nested sampling algorithm.
Each run uses 250 live points, and has num repeats = 20 deliberately set to a low value
to illustrate implementation-specific effects. The coloured contours show iso-probability
credible intervals on the marginalised posterior probability density function at each
parameter value. The dashed dark blue and dark red lines show the estimated posterior
means of each parameter for the blue and red runs respectively.

62

p
o
st

er
io

r
m

a
ss

−3

0

3

θ 1̂

0

5

10

|θ
|

−40 −30 −20 −10 0

logX

1σ

2σ

3σ

Figure 4.3: Diagram of samples’ distributions in logX for a single run with a 10-
dimensional Gaussian likelihood (3.7). The top right panel shows the relative posterior
mass (total weight assigned to all samples in that region) as a function of logX. The
next two rows show the first parameter and the radial coordinate |θ|; for each the
right panel plots its sampled values against logX and the left panel shows its posterior
distribution in the same way as Figures 4.2a and 4.2b. The coloured contours show iso-
probability credible intervals on the marginalised posterior probability density function
at each parameter or logX value. The nested sampling run shown uses 250 live points
and num repeats = 20. The solid black line shows the evolution of an individual thread
(chosen at random). The estimated mean value of the posterior distribution for each
row is marked with a dashed line.

as the plots in the previous section (Figures 4.2a and 4.2b), and shows the posterior

distribution on the parameter values on a shared scale with the right panel (including

the uncertainty due to the stochasticity of the nested sampling algorithm).

Our proposed diagram is illustrated in Figures 4.3 and 4.4. The lower limit of the

logX axis is chosen to include all points with non-negligible posterior mass, and the

upper limit is set to 0 (the start of the nested sampling run). The y-axis limits of the

plots in the right column are simply chosen to include all samples with non-negligible

posterior weight, or which are otherwise of interest.

In addition, the evolution of individual threads can be traced by drawing lines linking

their constituent points.4 This shares similarities with MCMC trace plots but, unlike

distributions shown in Figure 3.2). However doing this accurately is computationally challenging and
requires a lot of samples, so simple scatter plots are typically more convenient for checking calculation
results.

4Plots which trace individual threads in logX are also produced by the dynesty dynamic nested
sampling package. See https://github.com/joshspeagle/dynesty for more information.

63

https://github.com/joshspeagle/dynesty
https://github.com/joshspeagle/dynesty
https://github.com/joshspeagle/dynesty

p
o
st

er
io

r
m

a
ss

−20

0

20

θ 1̂

−15

0

15

θ 2̂

−4

0

θ 3̂

12

16

|θ
|

−40 −30 −20 −10 0

logX

1σ

2σ

3σ

Figure 4.4: Diagram of samples’ distributions in logX for two nested sampling runs
from a 10-dimensional LogGamma mixture likelihood (4.1). The two runs (shown in
red and blue) are the same ones used for Figure 4.1 and Figure 4.2b; each uses 250
live points and num repeats = 20. The top right panel shows the relative posterior
mass (total weight assigned to all samples in that region) as a function of logX. The
next four rows show the first 3 parameters and the radial co-ordinate |θ|; for each the
right panel plots its sampled values against logX and the left panel shows its posterior
distribution in the same way as Figures 4.2a and 4.2b. The coloured contours show iso-
probability credible intervals on the marginalised posterior probability density function
at each parameter or logX value. In each row, the estimated posterior means for the
blue and red runs are shown with dashed dark blue and dark red lines. The solid and
dot dash black lines show the evolution of an individual thread chosen at random from
the red and blue runs respectively.

64

for a converged MCMC chain, the distribution of parameters changes as the algorithm

iterates over different logX values. Furthermore, as the algorithm progresses towards

lower values of logX it moves from right to left in the diagram; in MCMC trace plots,

chains typically move from left to right.

Figures 4.3 and 4.4 are useful for visualising the nested sampling process and parts

of the posterior such as degeneracies and modes with which nested sampling software

may struggle. Furthermore if additional information about the posteriors is available,

such as that they should have certain symmetries or be unimodal, this type of diagram

can be useful in working out where the sampler is not behaving as expected. For exam-

ple Figure 4.4 clearly shows the multi-modality of the LogGamma mixture likelihood, as

well as giving an indication of when in the nested sampling process the modes separate.

In addition the bottom right panel of Figure 4.3 shows that the radial coordinate |θ|
has negligible spread at any given logX value in this case; this is due to the likelihood

and prior’s spherical symmetry.

Furthermore, multiple nested sampling runs can be added to the same axis — as

shown in Figure 4.4. This allows comparison of where runs differ; for example one may

be able to see on the plot that one of the runs had missed a mode which the other run

found (although in Figure 4.4 the samples from the two runs overlap). One can also

see from Figure 4.4 that the two runs agree closely on the relative weights assigned at

different logX values (top panel), meaning that the difference between the posterior

distributions (left panels) is due to the parameter values sampled in each logX region

rather than the distribution of posterior mass.

4.4 Estimating implementation-specific effects

Following the diagnostics plots of the previous section, the remainder of this chapter

discusses quantitatively measuring implementation-specific effects. The total error on

nested sampling calculations can be estimated by measuring the variation of results when

a calculation is repeated multiple times, as this includes both implementation-specific

effects and the intrinsic stochasticity of the algorithm. This provides a lower bound on

the total error, but will underestimate it in the case that implementation-specific effects

cause calculation results to be systematically biased.

While the nature of implementation-specific effects depends on the specific software

65

used, they are very likely to be uncorrelated with the errors from the stochasticity of

the nested sampling algorithm — which can be calculated using the bootstrap resam-

pling approach. Assuming that they are indeed uncorrelated, the variance in posterior

inferences (such as the calculated values of parameter means or the Bayesian evidence)

due to implementation-specific effects σ2
imp is related to the variance estimated from

bootstrap resampling σ2
bs and the variance of calculation results σ2

values by the standard

relation for the sum of the variances of uncorrelated random variables (the Bienaymé

formula)

σ2
values = σ2

bs + σ2
imp. (4.4)

Using this result, we propose calculating the standard deviation of the uncertainty

distribution due to implementation-specific effects σimp as

σimp =


√
σ2

values − σ2
bs ifσ2

values > σ2
bs,

0 otherwise.
(4.5)

If a number of nested sampling runs are available, the implementation-specific effects

on calculations of scalar quantities such as the mean and median of parameters can be

calculated directly from (4.5) and compared to the variation of results. One can also

estimate the fraction of the observed variation which is due to implementation-specific

effects σimp/σvalues — when implementation-specific effects are large this is easy to

measure accurately as the variation of results is much greater than the bootstrap error

estimates and

σimp

σvalues
=

√
σ2

values − σ2
bs

σvalues
= 1− σbs

2σvalues
+O

(
σ2

bs

σ2
values

)
. (4.6)

The number of runs required to estimate σimp is primarily determined by the accuracy

of the sample standard deviation σvalues. Ahn and Fessler (2003) give a formula for

the fractional uncertainty of the sample standard deviation as a function of the number

of data points; for computationally expensive problems in our research, we typically

use ∼ 10 runs to estimate σimp. In practice σbs makes a negligible contribution to the

uncertainty on σimp; it can be estimated accurately from a single run, and the accuracy

can be further improved by averaging estimates from all the runs available.

Figure 4.5 shows the ratio of the inferred implementation error to the total varia-

tion of results for 100 nested sampling runs using 10-dimensional Gaussian (3.7) and

66

logZ θ1̂ θ2̂ θ3̂

0.00

0.25

0.50

0.75

1.00

σ
im

p
/
σ

v
a
lu

e
s σimp = σbs

Gaussian

LogGamma

Figure 4.5: Ratios of estimated implementation-specific effects (4.5) to variation of re-
sults for 10-dimensional Gaussian (3.7) and LogGamma mixture (4.1) likelihoods. The
dashed horizontal line at σimp/σvalues = 1√

2
shows the level where implementation-

specific effects and the stochasticity of the nested sampling algorithm make equal con-
tributions to the total error; ratios above this value imply the majority of the error is
due to implementation-specific effects. Each bar is calculated using 100 PolyChord runs,
each with 250 live points and num repeats = 50. Results are shown for the log-evidence,
the mean of the two parameters, the mean radial coordinate and the second moment
of θ1̂. The numerical results plotted in this figure are given in Tables 4.1 and 4.2 in
Appendix 4.B.

LogGaussian mixture (4.1) likelihoods. As for Figures 4.1 to 4.4 we use the PolyChord

setting num repeats = 20, which is deliberately chosen to be low in order to illustrate

implementation-specific effects. The numerical results plotted in Figure 4.5 are given

in Tables 4.1 and 4.2 in Appendix 4.B, along with the absolute values of the varia-

tion of results, root-mean-squared-errors and implementation error estimates. With

these PolyChord settings, implementation-specific effects are the dominate source of

parameter estimation errors for the LogGamma mixture likelihood. However, the im-

plementation fraction of the error for the log-evidence calculations is significantly lower

than for parameter estimation; this is because errors from the stochasticity of the nested

sampling algorithm are much larger for evidence calculation than for parameter estima-

tion.

The mean calculated value of logZ for the LogGamma mixture likelihood (4.1),

shown in Table 4.2, differs by 0.10 ± 0.03 from the true value from (4.3) of logZtrue =

−d log(60). This systematic bias is due to PolyChord failing to consistently explore the

posterior in this challenging case with the deliberately low setting num repeats setting

used — it can be reduced by increasing num repeats. However despite the bias, our

approach successfully detected implementation-specific effects in this case. Furthermore,

using the true value, we can calculate an estimate of the implementation-specific effects

67

which accounts for the bias by replacing the standard deviation of results in (4.5) with

the root-mean-squared-error (RMSE). Using the RMSE,

σimp,RMSE =


√

RMSE2 − σ2
bs if RMSE2 > σ2

bs,

0 otherwise,
(4.7)

where for some quantity with true value ytrue the RMSE for a set of N calculated values

ŷ1, . . . , ŷN is

RMSE =

√∑N
n=1 (ŷn − ytrue)

2

N
. (4.8)

In this case the estimated σimp/σvalues ratio of 0.43± 0.23 shown in Figure 4.5 is only a

small underestimate compared to σimp,RMSE/RMSE = 0.50± 0.14. Assessing results for

systematic bias when an analytical value is not available is discussed in Section 4.6.3.

Skilling (2006) recommends that inferences from multiple nested sampling runs are

made by combining them into a single run rather than simply averaging the results from

each run, as this allows more accurate estimation of sample weights. If implementation-

specific effects are negligible then uncertainty estimates can be calculated from the

combined run using standard techniques, but this will be inaccurate if implementation-

specific effects are the dominant source of error. In the latter case, the approximate

error on the combined inference σcombined from N nested sampling runs with the same

settings can be roughly estimated as

σcombined = σvalues/
√
N. (4.9)

This may be an overestimate as it does not including the benefits of combining the runs,

but in practice this effect is likely to be small compared to the uncertainty in the sample

standard deviation of the separate runs σvalues unless N is very large.

4.5 Diagnostic tests for when few runs are available

For computationally expensive problems there may not be enough nested sampling

runs available to calculate the implementation-specific effects directly using the method

described in the previous section. In Sections 4.5.1 and 4.5.2 we therefore consider

diagnostics which assess whether two nested sampling runs have consistently explored

a parameter space while accounting for the stochastic nature of the nested sampling

68

algorithm. Due to the relatively small amount of information available in this case, it is

useful to also consider qualitative comparisons using diagnostic plots of the types shown

in Section 4.3 as well as any problem-specific knowledge of what the results should be.

If N > 2 runs are available then
(
N
2

)
pairwise tests can be computed and their results

combined for greater accuracy.

4.5.1 Testing for correlations between threads in two different runs

We now introduce a test to assess whether nested sampling software is consistently

exploring a posterior by comparing the statistical properties of the set of constituent

threads (single live point runs) of two nested sampling runs. Each thread represents a

valid nested sampling run and can be used to make posterior inferences about quanti-

ties such as the evidence and the mean and median of parameters. The actual values

calculated from each thread will have large errors due their small number of samples,

but this does not matter for testing if the distributions of values obtained from each

run’s threads are consistent.

We propose applying the 2-sample Kolmogorov-Smirnov (KS) test (Massey, 1951)

to different runs’ constituent threads by using each thread to calculate an estimate of a

scalar quantity of interest (such as parameter means or the Bayesian evidence Z) with

the following procedure:

1. divide the first nested sampling run into its n1 constituent threads, and calculate

an estimate of the quantity from each;

2. divide the second nested sampling run into its n2 constituent threads, and calculate

an estimate of the quantity from each;

3. apply the 2-sample KS test to the n1 and n2 values calculated from the first and

second runs respectively.

As a test statistic for distributions p(x) and q(x), the KS test uses the maximum distance

between their cumulative distributions Fp(x) and Fq(x)

Dp,q = sup
x
|Fp(x)− Fq(x)|, (4.10)

69

where sup is the supremum. If n1 and n2 samples from p(x) and q(x) respectively are

used, the corresponding p-values are

α = 2 exp

(
− 2n1n2

n1 + n2
D2
p,q

)
. (4.11)

In this case the p-value produced represents the probability of observing a KS statistic

Dp,q of this size or greater if the threads in the two runs were drawn from the same

distribution. A p-value close to zero implies that the values obtained from the threads

in the two runs are statistically inconsistent, and hence that implementation-specific

effects are likely to be present. This procedure can also be used with other distribution-

free tests such as the 2-sample Anderson-Darling test (Scholz and Stephens, 1987) as

an alternative to the KS test.

Figure 4.6 shows distributions of the p-values computed by applying this procedure

to different pairs of nested sampling runs. For the LogGamma mixture likelihood the

median p-values for θ1̂ and θ2̂ are 2×10−4 and 5×10−5 respectively, strongly suggesting

that implementation-specific effects are present (in agreement with Figure 4.5). How-

ever, the approach is not able to detect significant evidence of implementation-specific

effects in logZ calculations, as implementation-specific effects comprise only a fraction

of the total variation of results in this case so the pairs of runs do not provide enough

information.

In addition there are many quantities which can be tested — for example the

Bayesian evidence and the mean, median, higher moments and credible intervals

of each parameter.5 Considering a number of quantities allows sensitive testing

for implementation-specific errors from only two nested sampling runs, even if the

implementation-specific effects are smaller than in the LogGamma mixture case. One

could also test multiple quantities together using a multi-dimensional KS test, although

this is computationally challenging — see Fasano and Franceschini (1987) for a more

detailed discussion.

For MultiNest runs using the setting mmodal=True, when a new mode is recognised,

the run is split and live points assigned to the mode remain in that mode and evolve

independently from the remainder of the run. As a result, even when there are no

implementation-specific effects, the threads within such a run are not independently

drawn from the same distribution and the KS test will not give correct p-values. The

5Tests on functions of the same parameter will not be independent.

70

0.0 0.5

KS p-value

0

250

500

F
re

q
u

en
cy logZ

0.0 0.5

KS p-value

θ1̂

0.0 0.5 1.0

KS p-value

θ2̂

(a) 10-dimensional Gaussian likelihood (3.7).

0.0 0.5

KS p-value

0

2000

4000

F
re

q
u

en
cy logZ

0.0 0.5

KS p-value

θ1̂

0.0 0.5 1.0

KS p-value

θ2̂

(b) 10-dimensional LogGamma mixture likelihood (4.1).

Figure 4.6: Distributions of KS p-values from pairwise comparison of different runs’
constituent threads, using logZ and the first two parameters. A p-value of 0 means
the quantities calculated from threads in the two runs are from different distributions,
implying the threads within each run are correlated with each other and implementation-
specific effects are present. The black dashed line shows the median p-value for each
plot. The nested sampling runs are the same ones that were used for Figure 4.5 — the
100 runs allow

(
100
2

)
= 4, 950 pairwise statistics to be computed.

test is valid for PolyChord runs and MultiNest runs with mmodal=False as in these

cases threads move between modes; this can be seen in Figure 4.4.

It is important to note that the KS p-value only determines whether implementation-

specific effects are present and does not provide information about the size of implemen-

tation error, which must be assessed to determine if they are problematic for a given

use case.6 This can be done with the help of bootstrap resamples, as discussed in the

next section.

4.5.2 Distributions of sampling errors from bootstrap resamples

Our second diagnostic assesses whether calculations of scalar quantities from the two

different runs differ by more than would be expected given the estimated uncertainties

from the intrinsic stochasticity of the nested sampling algorithm. These uncertainty

6In particular with enough data (threads) one can get very low p-values even if the implementation-
specific effects are relatively small and/or not important for the practical problem being examined.

71

−42.0 −40.5

logZ
−0.1 0.0 0.1

θ1̂

0.0 0.1

θ2̂

−0.08 0.00

θ3̂

(a) 10-dimensional Gaussian likelihood (3.7).

−42.0 −40.5

logZ
−5 0

θ1̂

−3.0 −1.5

θ2̂

−0.7 −0.6 −0.5

θ3̂

(b) 10-dimensional LogGamma mixture likelihood (4.1).

Figure 4.7: Plots of the sampling errors distribution calculated from bootstrap resam-
pling threads for different quantities. Each plot shows 2 nested sampling runs (repre-
sented by different line colours), each with 250 live points and num repeats = 20. The
kernel density estimation of the posterior distributions use a Gaussian kernel with the
bandwidth selected using Scott’s rule (Scott, 2015).

distributions on posterior point estimates can be calculated from bootstrap resamples

using the method described in Section 3.4.2, and are illustrated in Figures 4.7a and 4.7b.

This has some similarities with Figures 4.2a and 4.2b but differs in that, in order to

more easily quantify the comparison between runs, we are now considering only errors on

single numbers rather than on whole posterior distributions. As a result this approach

can also be applied to the Bayesian evidence Z, which is a number rather than a

distribution.

Bootstrap error distributions on point estimates for different runs like those in Fig-

ure 4.7 can be assessed for consistency qualitatively, or their tension can be quantified

by calculating measures of the statistical distance between the distributions. As with

the comparisons of threads in Section 4.5.1 it may be hard to draw conclusions from

any one quantity, but the two runs can be compared using many different posterior es-

timates. Quantification may be more convenient than plotting graphs when comparing

many different quantities or pairs of runs.

We use the KS statistic (4.10) as a statistical distance measure; this constitutes a

metric as it is non-negative, zero if and only if the distributions are equal, symmetric

and satisfies the triangle inequality. Its numerical values are also easy to interpret, with

a value of 0 meaning the distributions are the same and a value of 1 meaning they

72

do not overlap. KS statistical distances between bootstrap uncertainty distributions

on posterior point estimates are shown in Figure 4.8. These distributions show strong

evidence for implementation-specific effects in parameter estimation for the LogGamma

mixture case, with calculations of θ1̂ and θ2̂ having 65.7% and 67.9% of their pairwise

statistical distances equalling 1 respectively. However, as for the diagnostic introduced

in Section 4.5.1, two runs do not provide enough information to detect the relatively

weaker implementation-specific effects in the LogGamma mixture logZ estimates.

The KS statistical distances are more difficult to interpret than the p-values in Sec-

tion 4.5.1, but have the advantage that together with plots like Figure 4.7 they contain

information about the size of any implementation-specific effects as well as testing if

implementation-specific effects are present. In this context, the KS statistic values are

simply used as a distance measure and cannot be interpreted as p-values; even without

implementation-specific effects, nested sampling runs will differ due to the stochasticity

of the algorithm and so bootstrap resamples of different runs are always drawn from

different distributions.

4.6 Implementation-specific effects in practice

Having introduced our diagnostic tests, we now empirically test how different software

settings and problem dimension affect the size of implementation-specific effects using

PolyChord. The section finishes with a summary of our practical advice for software

users.

4.6.1 Effect of sampling efficiency settings

Nested sampling software packages typically have settings controlling the process of

sampling within a hard likelihood constraint which can reduce implementation-specific

effects at the cost of increased computation. PolyChord’s num repeats setting controls

the number of slice samples taken before sampling each new live point — increasing

this value reduces correlation between points and increases the accuracy with which

PolyChord performs the nested sampling algorithm. Other examples of similar param-

eters include MultiNest’s efr, which controls the efficiency of its rejection sampling al-

gorithm by determining the size of the ellipsoid within which MultiNest samples. If efr

is lowered, samples are drawn from a larger ellipsoid, increasing the rejection rate whilst

73

0.0 0.5

KS Distance

0

250

500

F
re

q
u

en
cy logZ

0.0 0.5

KS Distance

θ1̂

0.0 0.5 1.0

KS Distance

θ2̂

(a) 10-dimensional Gaussian likelihood (3.7).

0.0 0.5

KS Distance

0

2000

4000

F
re

q
u

en
cy logZ

0.0 0.5

KS Distance

θ1̂

0.0 0.5 1.0

KS Distance

θ2̂

(b) 10-dimensional LogGamma mixture likelihood (4.1).

Figure 4.8: Distributions of KS statistical distances (4.10) between bootstrap uncer-
tainty distributions on point estimates the type shown in Figure 4.7. For each likelihood,
the 3 columns show results for logZ calculations and for the mean of the parameters
θ1̂ and θ2̂. The nested sampling runs are the same ones that were used for Figure 4.5;
the 100 runs are compared pairwise to give

(
100
2

)
= 4,950 KS statistical distances for

each quantity. A KS statistic of close to 1 means there is little overlap between the
distributions, implying that the differences in the runs’ values cannot be explained by
the intrinsic stochasticity of the nested sampling algorithm and that implementation-
specific effects are present. The black dashed line shows the median KS distance for
each plot.

consequently decreasing the chance of missing part of the parameter space within the

iso-likelihood contour. Hence, in contrast with num repeats, implementation-specific

effects are made smaller by reducing efr.

Figure 4.9 shows the effect on calculation errors of PolyChord’s num repeats setting.

As expected, we see that as num repeats is increased the implementation-specific effects

are reduced — showing PolyChord is performing the nested sampling algorithm with

increasing accuracy. However, the num repeats value required for implementation-

specific effects to be a small fraction of the total error is highly problem dependent,

even for the same number of dimensions. For the 10-dimensional Gaussian likelihood

num repeats = 10 is easily sufficient, but for the challenging 10-dimensional LogGamma

likelihood num repeats > 103 is needed. num repeats can be tuned by, for example,

doubling it until results show small implementation errors. In principle a sufficiently

74

σbs σimp σimp,RMSE

0.0

0.2

0.4 logZ

0.00

0.05
θ1̂

101 102 103

PolyChord num repeats

0.00

0.05
θ2̂

(a) 10-dimensional Gaussian likeli-
hood (3.7) with a uniform prior.

0.0

0.5

1.0

1.5

logZ

0

2
θ1̂

101 102 103

PolyChord num repeats

0

2
θ2̂

(b) 10-dimensional LogGamma mix-
ture (4.1) with a uniform prior.

Figure 4.9: The effect of PolyChord’s num repeats setting on results errors; each sub-
figure shows calculations of the log-evidence and the mean of the first two parameters.
Results for every num repeats value were calculated using 100 nested sampling runs,
each with 250 live points. Blue solid lines show the mean bootstrap error estimate and
orange dashed lines show implementation-specific effect estimates from (4.5). Green
dotted lines show the implementation-specific effects calculated using the root-mean-
squared-error (4.7); where the green and orange lines are equal, there is no systematic
bias in the results. Error bars show the uncertainty on results for each num repeats

value considered.

75

high num repeats value can make such errors negligible even for challenging likelihoods,

but this will become impractically computationally expensive and gives diminishing

returns in cases like the LogGamma mixture shown in Figure 4.9b. Once num repeats

is high enough that the calculations are not systematically biased, simply repeating the

calculation many times is more efficient at improving accuracy.

4.6.2 Effect of the number of live points

In addition to software specific settings, the main choice a nested sampling user must

make is the number of live points, which controls the resolution of sampling and is

proportional to the expected number of samples produced. For simplicity we consider

only runs with a constant number of live points n, although our conclusions also ap-

ply to dynamic nested sampling (introduced in Chapter 5) — in which the number

of live points varies. The changes in calculation errors with changes in the number

of live points used is shown in Figure 4.10. As expected, increasing the number of

live points reduces the implementation-specific effects, as well as the errors from the

stochasticity of the nested sampling algorithm (measured by bootstrap resampling)

which are approximately proportional to 1/
√
n. The fraction of the total error made

up by implementation-specific effects does not necessarily decrease with increased n —

this depends on how the implementation-specific effects scale with n. For the Gaussian

likelihood, implementation-specific effects cause only a small part of the total variation

of results, whereas for the more challenging LogGamma mixture likelihood they are the

main source of errors.

Given that increasing n reduces both implementation-specific effects and errors from

the stochasticity of the nested sampling algorithm, this is often a better way to reduce

total errors for the same computational cost than increasing num repeats. However

while increasing n may make the absolute errors small enough for the given use case, it

is not guaranteed to reduce the fraction of errors from implementation-specific effects;

as a result techniques for estimating nested sampling errors which do not account for

implementation-specific effects may not be accurate.

76

σbs σimp σimp,RMSE

0

1

2

3

logZ

0.0

0.1

θ1̂

101 102 103

PolyChord nlive

0.0

0.1

θ2̂

(a) 10-dimensional Gaussian likeli-
hood (3.7) with a uniform prior.

0

1

2

3

logZ

0

10
θ1̂

101 102 103

PolyChord nlive

0

10
θ2̂

(b) 10-dimensional LogGamma mix-
ture (4.1) with a uniform prior.

Figure 4.10: The effect of the number of live points on errors in PolyChord calculations;
the two subfigures both show calculations of the log-evidence and the mean of the first
two parameters. Results for each number of live points considered were calculated
using 100 nested sampling runs with num repeats = 10. Blue solid lines show the
mean bootstrap error estimate and orange dashed lines show implementation-specific
effect estimates from (4.5). Green dotted lines show the implementation-specific effects
calculated using the root-mean-squared-error (4.7); where the green and orange lines
are equal, there is no systematic bias in the results. Error bars show 1σ uncertainties
on results for each number of live points considered.

77

4.6.3 Calculation results with a systematic bias

Figures 4.9 and 4.10 show that for logZ calculations, if nlive and num repeats are

set too low, estimates of the implementation-specific effects using the standard devia-

tion of results and the root-mean-square error can start to differ. This is due to the

algorithm failing to fully explore the posterior and iterating inwards too quickly, which

leads to a systematic bias in logZ (this is discussed in detail in Buchner, 2016). The

nlive and num repeats settings required to remove the bias depend on the posterior,

with challenging multimodal or degenerate posteriors needing more samples (as for

implementation-specific effects). The challenging LogGamma mixture likelihood shows

a bias with the default PolyChord settings (as shown in Table 4.2 in Appendix 4.B),

but this is small compared to the standard deviation of calculation results and can be

reduced by increasing num repeats or the number of live points. Systematic biases in a

parameter estimation calculations are also possible with inappropriate settings, but in

our experience this is much rarer.

The failure to fully explore the posterior which causes a systematic bias typically

also results in differences between runs which are not explained by the stochasticity of

the nested sampling algorithm — these implementation-specific effects can be detected

by the diagnostic tests presented in this chapter. However, the bias causes these diag-

nostics to underestimate the size of the implementation-specific effects. If significant

implementation-specific effects are detected in runs and the results of logZ calculations

are of interest, one can check for bias by repeating the calculation with higher nlive

and num repeats settings and checking if the mean calculated result changes.

4.6.4 Effect of dimensionality

Figure 4.11 shows implementation errors for the Gaussian and LogGamma mixture

likelihoods for different numbers of dimensions d. Each calculation uses the PolyChord

default settings of 25 × d live points and num repeats = 5 × d; the defaults are pro-

portional to d in order to give approximately constant errors in logZ (Handley et al.,

2015b), with the additional samples produced for higher d leading to lower parameter

estimation errors. With these settings, as d increases, our plot shows no strong upwards

or downwards trend in the implementation error. Furthermore, the small bias in the

logZ calculation results for the LogGamma mixture likelihood (shown by the difference

78

σbs σimp σimp,RMSE

0.0

0.2

0.4 logZ

0.00

0.05

θ1̂

0 20 40

number of dimensions d

0.00

0.05

θ2̂

(a) 10-dimensional Gaussian likeli-
hood (3.7) with a uniform prior.

0.0

0.2

0.4 logZ

0

1

θ1̂

0 20 40

number of dimensions d

0

2
θ2̂

(b) 10-dimensional LogGamma mix-
ture (4.1) with a uniform prior.

Figure 4.11: The effect of increasing the dimension d on errors in PolyChord calculations:
each subfigure shows calculations of the log-evidence and the mean of the first two
parameters. Results for every dimension d use the PolyChord default settings of 25 ×
d live points and num repeats = 5 × d. Blue solid lines show the mean bootstrap
error estimate and orange dashed lines show implementation-specific effect estimates
from (4.5). Green dotted lines show the implementation-specific effects calculated using
the root-mean-squared-error (4.7); where the green and orange lines are equal, there
is no systematic bias in the results. Error bars show 1σ uncertainties on results for
different numbers of dimensions.

79

between the green and orange lines in the top panel of Figure 4.11b) remains much

smaller than the standard deviation of the results values σvalues =
√
σ2

bs + σ2
imp.

4.6.5 Practical advice for software users

We finish by giving a summary of our approach to checking nested sampling calculations

for challenging likelihoods where implementation errors may be present, based on our

experience using nested sampling software.

We advise performing multiple nested sampling runs, and plotting the results to first

assess their variation by eye as described in Section 4.3. If the results appear reasonable,

one can perform a rough check for implementation-specific effects using the techniques

described in Section 4.4 and/or Section 4.5, depending on how many runs are available.

If implementation-specific errors are negligible:

• accuracy can be increased by simply calculating more runs and/or increasing the

number of live points;

• the computational cost of future runs can be reduced by reducing the compu-

tational effort spent decorrelating samples (for example reducing PolyChord’s

num repeats, increasing MultiNest’s efr or changing the equivalent setting in

the software package used). After large changes to the settings, the new results

should be checked for implementation-specific effects;

• uncertainties on the results can be calculated using standard nested sampling

methods such as the bootstrap resampling of threads, which will be accurate in

this case.

In contrast, if implementation-specific effects are significant or are the dominant source

of error:

• results should be recalculated with more live points and/or using more computa-

tional effort decorrelating samples (i.e. increasing PolyChord’s num repeats, re-

ducing MultiNest’s efr or changing the equivalent setting in the software used).

If the calculation is already very computationally costly, increasing the number

of live points is typically the best option as this will also reduce errors from the

stochasticity of the nested sampling algorithm;

80

• there may be an additional systematic bias present in the results of evidence

calculations. The mean calculated value for results using the new settings should

be checked to see if it is significantly different to the mean result produced with

the previous settings;

• the uncertainty on the combined results from the nested sampling runs can be

roughly estimated from (4.9).

4.7 Application to Planck survey data

We now apply the tests introduced in this chapter to astronomical data from the Planck

survey, which measures anisotropies in the cosmic microwave background (CMB). A

detailed description of the associated cosmology and the ΛCDM concordance model is

beyond the current scope; for this we refer the reader to Planck Collaboration (2013).

Given the ΛCDM concordance model, we can describe the universe’s cosmology

using only six parameters. Four of these are “late-time” parameters, governing the

physics of the universe during and after reionisation: the present-day values of the

Hubble constant H0, the baryonic and cold dark matter fractions Ωb and Ωc, and the

optical depth of the CMB τ . The remaining two parameters delineate the primordial

universe through the amplitude As and tilt ns − 1 of the power spectrum of comoving

curvature perturbations. To aid with MCMC sampling techniques, cosmomc (Lewis

and Bridle, 2002) reparameterises the matter fractions as Ωbh
2 and Ωch

2 in terms of

the reduced Hubble constant h, defined by H0 = 100h km/s/Mpc, and in place of the

Hubble constant uses 100θMC (100× the ratio of the approximate sound horizon to the

angular diameter distance). For more details about the parameters, see the first Planck

parameters paper (Planck Collaboration, 2013).

Given a set of cosmological parameters, using a Boltzmann code such as camb (Lewis

et al., 2000), one may compute theoretical CMB power spectra, which are then pro-

vided as inputs to cosmological likelihoods derived from CMB observations. We use

the Plik lite TT likelihood detailed by Planck Collaboration (2016b) and the default

CosmoChord priors (see Handley et al., 2015a, for more information); these were used

in Planck Collaboration (2016a). The likelihood introduces a single additional nuisance

parameter for measurement calibration, increasing the dimensionality of the parameter

space to seven.

81

σbs σimp σimp,RMSE

0e+00

2e-01
logZ

0e+00

3e-05 Ωbh2

0e+00

3e-04 Ωch2

2 4 10 20 40

PolyChord num repeats

0e+00

2e-03

τ

0e+00

5e-05
100θMC

0e+00

5e-03
log(1010As)

0e+00

5e-04
ns

2 4 10 20 40

PolyChord num repeats

0e+00

5e-02

H0

Figure 4.12: Implementation-specific effects in calculations using Planck data for dif-
ferent PolyChord num repeats settings. The left column shows results for the evidence
logZ and the mean of the present day Baryon density Ωbh

2, present day cold matter
density Ωch

2 and Thompson scattering optical depth of the CMB τ . The right column
shows results for calculations of the mean of the ratio of the sound horizon to angular
distance (scaled by 100) 100θMC , the log power of the primordial curvature perturba-
tions log(1010As), the spectral index of the scalar primordial power spectrum ns and
the present day Hubble constant (derived from the other parameters) H0. Results for
every num repeats value were calculated using 25 nested sampling runs, each with 500
live points. Blue solid lines show the mean bootstrap error estimate and orange dashed
lines show implementation-specific effect estimates from (4.5). Green dotted lines show
the implementation-specific effects calculated using the root-mean-squared-error (4.7);
where the green and orange lines are equal, there is no systematic bias in the results.
Error bars show the 1σ uncertainty on results for each num repeats value considered.

82

Figure 4.12 shows estimates of implementation-specific effects for calculations using

the Planck likelihoods and priors. As expected, there is a clear trend showing in-

creasing num repeats reduces implementation-specific effects. Furthermore in this case

PolyChord default setting of num repeats = 35 (5 times the number of dimensions) is

sufficient to make such effects small or negligible for all the calculations shown.

However, as in the test cases in previous sections, significant implementation-specifics

are present in the calculations if num repeats is set too low. This is illustrated in

Figure 4.13 for num repeats = 1; with this setting the two runs (in red and blue) differ

by more than the uncertainty expected from the stochasticity of the nested sampling

algorithm shown by the coloured distributions. Such implementation-specific effects can

also be detected in plots of the type introduced in Section 4.3.2 and with the diagnostic

tests described in Section 4.5 (we do not show these for brevity).

It should be noted that in cosmology one traditionally uses likelihoods with many

more nuisance parameters than in this analysis. One of the innovations that PolyChord

provided to the Planck collaboration was its ability to exploit a fast-slow hierarchy

of parameter speeds (Lewis, 2013). In this context, nuisance parameters that do not

require recomputation of expensive parts of the likelihood may be varied at negligible

cost in comparison with the slower cosmological parameters. Increasing the number

of steps in nuisance parameters directions greatly aids mixing and the reduction of

implementation-specific errors. However, a full analysis of this specific case is beyond

the scope of this chapter.

4.8 Conclusion

In this chapter we introduced diagnostic tests for nested sampling software, which uses

numerical techniques to generate approximately uncorrelated samples within hard likeli-

hood constraints. As a result, for challenging problems such as those with multimodal or

degenerate posteriors, additional errors may be produced which would not be present if

the nested sampling algorithm was performed perfectly; we term these implementation-

specific effects. Detecting the presence of significant implementation-specific effects is

of great importance for software users as it determines whether results and estimates of

uncertainties can be relied upon, and if the settings should be changed.

We suggested two new diagnostic diagrams for visualising nested sampling results

83

0.022 0.023

Ωbh
2

p
ro

b
a
b
il
it

y

0.110 0.115 0.120 0.125 0.130

Ωch2

1σ

2σ

3σ

0.00 0.05 0.10 0.15 0.20

τ

p
ro

b
a
b
il
it

y

66 68 70

H0

1σ

2σ

3σ

Figure 4.13: As for Figure 4.2 but using the Planck survey likelihood and prior. The first
row shows the present day Baryon density Ωbh

2 and the present day cold matter density
Ωch

2; the second row shows the optical depth of the CMB τ and the present day Hubble
constant H0. Each run uses 500 live points, and has num repeats = 1 — the low value
is chosen to illustrate implementation-specific effects. The coloured contours show iso-
probability credible intervals on the marginalised posterior probability density function
at each parameter value due to the stochasticity of the nested sampling algorithm.
The dashed dark blue and dark red lines show the estimated posterior means of each
parameter for the blue and red runs respectively.

and uncertainties and for comparing nested sampling runs; these are shown in Figures 4.2

to 4.4. Section 4.4 introduced a quantitative measure of implementation-specific effects,

which can be used to estimate them directly if enough nested sampling runs are available

to estimate the standard deviation of results. In addition, Section 4.5 provided two

diagnostic tests which can be applied with only two nested sampling runs. We find

that due to the larger errors from the stochasticity of the nested sampling algorithm in

evidence calculations, implementation-specific errors form a smaller fraction of the total

error in this case — and are consequently less important and harder to detect than in

parameter estimation.

In Section 4.6 we empirically tested the effects of software settings and the number

of dimensions on implementation-specific effects, and discussed dealing with cases where

nested sampling results are systematically biased. Our practical advice for nested sam-

pling software users based on our experience is summarised in Section 4.6.5. Finally,

Section 4.7 demonstrated the application of our diagnostics to an astronomical problem

using data from the Planck survey.

84

logZ θ1̂ θ2̂ θ3̂

Analytic Value -40.9434 0.0000 0.0000 0.0000
Mean Result -40.93(3) 0.002(2) 0.000(2) 0.000(2)
σvalues 0.33(2) 0.022(2) 0.019(1) 0.019(1)
σbs 0.326(3) 0.0223(2) 0.0223(2) 0.0221(2)
σimp 0.07(11) 0.000(7) 0.000(3) 0.000(3)
σimp/σvalues 0.20(33) 0.00(34) 0.00(17) 0.00(17)
Values RMSE 0.33(2) 0.022(2) 0.019(1) 0.019(1)
σimp,RMSE 0.06(11) 0.000(7) 0.000(2) 0.000(3)
σimp,RMSE/RMSE 0.17(33) 0.00(34) 0.00(17) 0.00(19)

Table 4.1: Calculation error results for the 100 nested sampling runs with a Gaussian
likelihood shown in Figure 4.5. The first two rows shows the analytical value for each
estimator and the mean calculation result. The next three rows show the bootstrap
error estimate, implementation error estimate (4.5) and the ratio of the implementation
estimate to the standard deviation of results. The final three rows show the root-mean-
squared-error, the implementation-specific effects estimate from (4.7), and the ratio of
the two. Columns show results for the log-evidence and the mean of the first three
parameters. Numbers in parentheses show the 1σ numerical uncertainty on the final
digit.

We have written a publicly available software package nestcheck (Higson, 2018b),

which performs diagnostics on input nested sampling runs and produces plots like Fig-

ures 4.2 to 4.4; it can be downloaded at https://github.com/ejhigson/nestcheck.

Appendix 4.A Code

The code used to perform the numerical tests and generate the results in this chapter can

be downloaded at https://github.com/ejhigson/diagnostic; this provides examples

of the use of the nestcheck package.

Appendix 4.B Numerical results tables

Tables 4.1 and 4.2 given numerical results for the nested sampling runs plotted in Fig-

ure 4.5.

85

https://github.com/ejhigson/nestcheck
https://github.com/ejhigson/nestcheck
https://github.com/ejhigson/nestcheck
https://github.com/ejhigson/diagnostic
https://github.com/ejhigson/diagnostic
https://github.com/ejhigson/nestcheck

logZ θ1̂ θ2̂ θ3̂

Analytic Value -40.9434 -0.5772 0.0000 -0.5772
Mean Result -40.84(3) -0.49(18) -0.22(18) -0.572(3)
σvalues 0.34(2) 1.78(13) 1.81(13) 0.032(2)
Values RMSE 0.36(2) 1.77(12) 1.81(10) 0.032(2)
σbs 0.309(3) 0.217(2) 0.215(2) 0.0300(3)
σimp 0.15(8) 1.76(13) 1.80(13) 0.01(1)
σimp/σvalues 0.43(23) 0.993(1) 0.993(1) 0.31(30)
σimp,RMSE 0.18(6) 1.76(13) 1.80(10) 0.011(9)
σimp,RMSE/RMSE 0.50(14) 0.992(1) 0.9930(8) 0.33(28)

Table 4.2: As in Table 4.1 but for calculations using the LogGamma mix likelihood (4.1).

86

Chapter 5

Dynamic nested sampling

This chapter introduces dynamic nested sampling: a generalisation of the nested sam-

pling algorithm in which the number of live points varies to allocate samples more effi-

ciently. In empirical tests the new method significantly improves calculation accuracy

compared to standard nested sampling with the same number of samples; this increase

in accuracy is equivalent to speeding up the computation by factors of up to ∼ 72 for

parameter estimation and ∼ 7 for evidence calculations. Several dynamic nested sam-

pling software packages are now publicly available1 and the algorithm has been applied

to a variety of astronomical problems. This chapter is an edited version of Higson et al.

(2019a).

5.1 Introduction

Nested sampling explores the posterior distribution by maintaining a set of samples from

the prior, called live points, and iteratively updating them subject to the constraint that

new samples have increasing likelihoods. Conventionally a fixed number of live points

is used; we term this standard nested sampling. In this case the expected fractional

shrinkage of the prior volume remaining is the same at each step, and as a result many

samples are typically taken from regions of the prior that are remote from the bulk

1Dynamic nested sampling packages include:
dyPolyChord (https://github.com/ejhigson/dyPolyChord); Python, C++ and Fortran likelihoods and
priors, based on PolyChord.
dynesty (https://github.com/joshspeagle/dynesty); pure Python.
perfectns (https://github.com/ejhigson/perfectns); pure Python, spherically symmetric likeli-
hoods and priors only.

87

https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord
https://github.com/joshspeagle/dynesty
https://github.com/joshspeagle/dynesty
https://github.com/joshspeagle/dynesty
https://github.com/ejhigson/perfectns
https://github.com/ejhigson/perfectns
https://github.com/ejhigson/perfectns

of the posterior. The allocation of samples in standard nested sampling is set by the

likelihood and the prior, and cannot be changed depending on whether calculating the

evidence or obtaining posterior samples is the primary goal.

We propose modifying the nested sampling algorithm by dynamically varying the

number of live points in order to maximise the accuracy of a calculation for some number

of posterior samples, subject to practical constraints. We term this more general ap-

proach dynamic nested sampling, with standard nested sampling representing the special

case where the number of live points is constant. Dynamic nested sampling is partic-

ularly effective for parameter estimation, as standard nested sampling typically spends

most of its computational effort iterating towards the posterior peak. This produces

posterior samples with negligible weights which make little contribution to parameter

estimation calculations, as discussed in Chapter 3. We also achieve significant improve-

ments in the accuracy of evidence calculations, and show both evidence and parameter

estimation can be improved simultaneously. Our approach can be easily incorporated

into existing standard nesting sampling software; we have created the dyPolyChord

package (Higson, 2018a) for performing dynamic nested sampling using PolyChord.

In this chapter we demonstrate the advantages of dynamic nested sampling relative

to the popular standard nested sampling algorithm in a range of empirical tests. An

empirical comparison of nested sampling with alternative methods such as MCMC-based

parameter estimation and thermodynamic integration is beyond the current scope —

for this we refer the reader to Allison and Dunkley (2014), Murray (2007) and Feroz

(2008).

The chapter begins with an overview of some related methods, then Section 5.2

establishes useful results about the effects of varying the number of live points. Our

dynamic nested sampling algorithm for increasing efficiency in general nested sampling

calculations is presented in Section 5.3; its accurate allocation of live points for a priori

unknown posterior distributions is illustrated in Figure 5.3. We first test dynamic

nested sampling using perfectns (Higson, 2018c), which able to perform perfect nested

sampling in both standard and dynamic versions. This allows us to conduct a wide

range of tests without prohibitive computational costs, and avoids implementation-

specific effects — which will vary between different software packages. These tests are

described in Section 5.4, which includes a discussion of the effects of likelihood, priors

and dimensionality on the improvements from dynamic nested sampling. In particular

88

https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/perfectns

we find large efficiency gains for high-dimensional parameter estimation problems.

Section 5.5 discusses applying dynamic nested sampling to challenging posteriors, in

which results from nested sampling software may include implementation-specific effects

(see Chapter 4 for a detailed discussion). We describe the strengths and weaknesses

of dynamic nested sampling compared to standard nested sampling in such cases, and

perform numerical tests with a multimodal Gaussian mixture model using dyPolyChord.

We find that dynamic nested sampling also produces significant accuracy gains for this

more challenging posterior, and that it is able to reduce implementation-specific effects

compared to standard nested sampling.

5.1.1 Other related work

Other variants of nested sampling include diffusive nested sampling (Brewer et al.,

2011) and superposition enhanced nested sampling (Martiniani et al., 2014), which were

mentioned in Section 2.4.2 and have been implemented as stand-alone software packages.

In particular, dynamic nested sampling shares some similarities with DNest4 (Brewer

and Foreman-Mackey, 2018), in which diffusive nested sampling is followed by additional

sampling targeting regions of high posterior mass. However dynamic nested sampling

differs from these alternatives as, like standard nested sampling, it only requires drawing

samples within hard likelihood constraints. As a result dynamic nested sampling can

be used to improve the efficiency of popular standard nested sampling implementations

such as MultiNest (rejection sampling), PolyChord (slice sampling) and constrained

Hamiltonian nested sampling (Betancourt, 2011) while maintaining their strengths in

sampling degenerate and multimodal distributions.

It has been shown that efficiency can be greatly increased using nested importance

sampling (Chopin and Robert, 2010) or by performing nested sampling using an auxil-

iary prior which approximates the posterior as described in Cameron and Pettitt (2014).

However, the efficacy of these approaches is contingent on having adequate knowledge

of the posterior (either before the algorithm is run, or by using the results of previous

runs). As such, the speed increase on a priori unknown problems is generally lower

than might be suggested by toy examples.

Dynamic nested sampling is similar in spirit to the adaptive schemes for thermo-

dynamic integration introduced by Hug et al. (2016) and Friel et al. (2014), as each

involves an initial run followed by additional targeted sampling using an estimated er-

89

https://github.com/ejhigson/dyPolyChord

ror criteria. Furthermore, dynamically weighting sampling in order to target regions of

higher posterior mass has also been used in the statistical physics literature, such as in

multi-canonical sampling (see for example Okamoto, 2004).

5.2 Variable numbers of live points

Before presenting our dynamic nested sampling algorithm in Section 5.3, we first es-

tablish some basic results for a nested sampling run in which the number of live points

varies. Such runs are valid as successive shrinkage ratios ti are independently dis-

tributed (Skilling, 2006). For now we assume the manner in which the number of live

points changes is specified in advance; adaptive allocation of samples is considered in

the next section.

Let us define ni as the number of live points present for the prior shrinkage ra-

tio ti between dead points i − 1 and i.2 In this notation all information about the

number of live points for a nested sampling run can be expressed as a list of numbers

n = {n1, n2, . . . , nndead
} which correspond to the shrinkage ratios t = {t1, t2, . . . , tndead

}.
ni and n are distinguished from the symbol n used to denote a constant number of live

points in previous chapters by their subscript and bold font respectively. Nested sam-

pling calculations for variable numbers of live points differ from the constant live point

case only in the use of different ni in calculating the distribution of each ti from (2.18).

Skilling (2006)’s method for combining constant live point runs, mentioned in Sec-

tion 3.4.1, can be extended to accommodate variable numbers of live points by requiring

that at any likelihood value the live points of the combined run equals the sum of the

live points of the constituent runs at that likelihood value (this is illustrated in Fig-

ure 5.1). Variable live point runs can also be divided into their constituent threads

using the algorithm in Section 3.4.1. However, unlike for constant live point runs, the

threads produced may start and finish part way through the run and there is no longer

a single unique division into threads on iso-likelihood contours where the number of live

points increases. The technique for estimating sampling errors by resampling threads

introduced in Section 3.4.2 can also be applied for nested sampling runs with variable

2In order for (2.18) to be valid, the number of live points must remain constant across the shrinkage
ratios ti between successive dead points. We therefore only allow the number of live points to change on
iso-likelihood contours L(θ) = Li where a dead point i is present. This restriction has negligible effects
for typical calculations, and is automatically satisfied by most nested sampling implementations.

90

n
(a)
1

Run b

Run c

Run a

n
(c)
1 = n

(a)
1 + n

(b)
1 n

(c)
3 = n

(a)
2 + n

(b)
2

n
(a)
3

n
(b)
2 n

(b)
3n

(b)
1

n
(a)
2

n
(c)
2 = n

(a)
2 + n

(b)
1 n

(c)
4 = n

(a)
2 + n

(b)
3

n
(c)
5 = n

(a)
3 + n

(b)
3

Likelihood LLmin

Figure 5.1: Combining nested sampling runs a and b with variable numbers of live points
n(a) and n(b) into a single nested sampling run c; black dots show dead points arranged
in order of increasing likelihood. The number of live points in run c at some likelihood
value equals the sum of the live points of run a and run b at that likelihood value.

numbers of live points (see Appendix 5.B for more details), as can the diagnostic tests

for implementation-specific effects described in Chapter 4.

In addition, the variable live point framework provides a natural way to include the

final set of live points remaining when a standard nested sampling run terminates in

a calculation. These are uniformly distributed in the region of the prior with L(θ) >

Lterminate, and can be treated as samples from a dynamic nested sampling run with the

number of live points reducing by 1 as each of the points remaining after termination

is passed until the final point i has ni = 1. This allows the final live points of standard

nested sampling runs to be combined with variable live point runs.

The remainder of this section analyses the effects of local variations in the number

of live points on the accuracy of nested sampling evidence calculation and parameter

estimation. The dynamic nested sampling algorithm in Section 5.3 uses these results to

allocate additional live points.

5.2.1 Effects on calculation accuracy

Nested sampling calculates the evidence Z as the sum of sample weights (2.19); the

dominant sampling errors are from statistically estimating shrinkage ratios ti which

affect the weights of all subsequent points. In Appendix 5.C we show analytically that

the reduction in evidence errors achieved by taking additional samples to increase the

local number of live points ni is inversely proportional to ni, and is approximately

proportional to the evidence contained in point i and all subsequent points. This makes

91

sense as the dominant evidence errors are from statistically estimating shrinkages ti

which affect all points j ≥ i.
In nested sampling parameter estimation, sampling errors come both from taking a

finite number of samples in any region of the prior and from the stochastic estimation

of their normalised weights pi from (2.20). Typically standard nested sampling takes

many samples with negligible posterior mass as illustrated in Figure 2.1; these make

little contribution to estimates of parameters or to the accuracy of samples’ normalised

weights. From (2.18) the expected separation between points in logX (approximately

proportional to the posterior mass they each represent) is 1/ni. As a result, increasing

the number of live points wherever the dead points’ posterior weights pi ∝ Liwi are

greatest distributes posterior mass more evenly among the samples. This improves the

accuracy of the statistically estimated weights pi, and can dramatically increase the

information content (Shannon entropy of the samples)

H = exp

(
−
∑
i

pi log pi

)
, (5.1)

which is maximised for a given number of samples when the sample weights are equal.

Empirical tests of dynamic nested sampling show that increasing the number of live

points wherever points have the highest pi ∝ Liwi works well as regards increasing

parameter estimation accuracy for most calculations.

As the contribution of each sample i to a parameter estimation problem for some

quantity f(θ) is dependent on f(θi), the precise optimum allocation of live points is

different for different quantities. In most cases the relative weight pi of samples is a

good approximation for their influence on a calculation, but for some problems much of

the error may come from sampling logX regions containing a small fraction of the pos-

terior mass but with extreme parameter values. Appendix 5.D discusses estimating the

importance of points to a specific parameter estimation calculation and using dynamic

nested sampling to allocate live points accordingly.

5.3 The dynamic nested sampling algorithm

This section presents our algorithm for performing nested sampling calculations with a

dynamically varying number of live points to optimise the allocation of samples.

92

Since the distribution of posterior mass as a function of the likelihood is a priori un-

known, we first approximate it by performing a standard nested sampling run with some

small constant number of live points ninit. The algorithm then proceeds by iteratively

calculating the range of likelihoods where increasing the number of live points will have

the greatest effect on calculation accuracy, and generating an additional thread running

over these likelihoods. If required some nbatch additional threads can be generated at

each step to reduce the number of times the importance must be calculated and the

sampler restarted. We find in empirical tests that using nbatch > 1 has little effect on

efficiency gains from dynamic nested sampling when the number of samples taken in

each batch is small compared to the total number of samples in the run.

From the discussion in Section 5.2.1 we define functions to measure the relative

importance of a sample i for evidence calculation and parameter estimation respectively

as

IZ(i) ∝ E[Z≥i]
ni

, whereZ≥i ≡
∑
k≥i
Lkwk(t), (5.2)

Iparam(i) ∝ Li E[wi(t)]. (5.3)

Alternatively (5.2) can be replaced with the more complex expression (5.22) derived in

Appendix 5.C, although we find this typically makes little difference to results. Modi-

fying (5.3) to optimise for estimation of a specific parameter or function of parameters

is discussed in Appendix 5.D.

The user specifies how to divide computational resources between evidence calcula-

tion and parameter estimation through an input goal G ∈ [0, 1], where G = 0 corre-

sponds to optimising for evidence calculation and G = 1 optimises for parameter esti-

mation. The dynamic nested sampling algorithm calculates importance as a weighted

sum of the points’ normalised evidence and parameter estimation importances

I(G, i) = (1−G)
IZ(i)∑
j IZ(j)

+G
Iparam(i)∑
j Iparam(j)

. (5.4)

The likelihood range in which to run an additional thread is chosen by finding all

points with importance greater than some fraction f of the largest importance. Choosing

a smaller fraction makes the threads added longer and reduces the number of times the

importance must be recalculated, but can also cause the number of live points to plateau

for regions with importance greater than that fraction of the maximum importance (see

93

the discussion of Figure 5.3 in the next section for more details). We use f = 0.9 for

results in this chapter, but find empirically that using slightly higher or lower values

make little difference to results. To ensure any steep or discontinuous increases in the

likelihood L(X) are captured we find the first point j and last point k which meet this

condition, then generate an additional thread starting at Lj−1 and ending when a point

is sampled with likelihood greater than Lk+1. If j is the first dead point, threads which

initially sample the whole prior are generated. If k is the final dead point then the

thread will stop when a sample with likelihood greater than Lk is found.3 This allows

the new thread to continue beyond Lk, meaning dynamic nested sampling iteratively

explores higher likelihoods when this is the most effective use of samples.

Unlike in standard nested sampling, more accurate dynamic nested sampling results

can be obtained simply by continuing the calculation for longer. The user must specify

a condition at which to stop dynamically adding threads, such as when fixed number of

samples has been taken or some desired level of accuracy has been achieved. Sampling

errors on evidence and parameter estimation calculations can be estimated from the dead

points at any stage using the method described in Chapter 3. We term these dynamic

termination conditions to distinguish them from the type of termination conditions used

in standard nested sampling. Our dynamic nested sampling algorithm is presented more

formally in Algorithm 4.

Output : Samples and live points information n.
Input : Goal G, ninit, dynamic termination condition.

Generate a nested sampling run with a constant number of live points ninit;
while dynamic termination condition not satisfied do

recalculate importance I(G, i) of all points;
find first point j and last point k with importance of greater than some
fraction f (we use f = 0.9) of the largest importance;

generate an additional thread (or alternatively nbatch additional threads)
starting at Lj−1 and ending with the first sample taken with likelihood
greater than Lk+1

4;

end
Algorithm 4: Dynamic nested sampling.

3We find empirically that one additional point per thread is sufficient to reach higher likelihoods if
required. This is because typically there are many threads, and for each thread (which has only one live
point) the expected shrinkage between samples (2.18) of E[log ti] = −1 is quite large.

94

5.3.1 Software implementation

Since dynamic nested sampling only requires the ability to sample from the prior within

a hard likelihood constraint, implementations and software packages developed for stan-

dard nested sampling can be easily adapted to perform dynamic nested sampling. We

demonstrate this with the dyPolyChord package, which performs dynamic nested sam-

pling using PolyChord and is compatible with Python, C++ and Fortran likelihoods.

PolyChord was designed before the creation of the dynamic nested sampling al-

gorithm, and is not optimized to quickly resume the nested sampling process at an

arbitrary point to add more threads. dyPolyChord, which performs nested sampling

with PolyChord, minimises the computational overhead from saving and resuming by

using Algorithm 5 — a modified version of Algorithm 4 described in Appendix 5.F.

After the initial exploratory run with ninit live points, Algorithm 5 calculates a dynamic

allocation of live points and then generates more samples in a single run without re-

calculating point importances. This means only the initial run provides information

on where to place samples, and as a result the allocation of live points is slightly less

accurate and a higher value of ninit is typically needed.

Dynamic nested sampling will be incorporated in the forthcoming PolyChord 2

software package, which is currently in development and is designed for problems of up

to ∼ 1, 000 dimensions — dynamic nested sampling can provide very large improvements

in the accuracy of such high-dimensional problems, as shown by the numerical tests in

the next section. Furthermore, we anticipate reloading a past iteration i of a PolyChord

2 nested sampling run in order to add additional threads will be less computationally

expensive than a single likelihood call for many problems. Nevertheless, it is often more

efficient for dynamic nested sampling software to generate additional threads in selected

likelihood regions in batches rather than one at a time; this approach is used in the

dynesty5 dynamic nested sampling package.

4If k is the final dead point, the additional thread terminates after the first point with likelihood
greater than Lk.

5See https://github.com/joshspeagle/dynesty for more information.

95

https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord
https://github.com/joshspeagle/dynesty
https://github.com/joshspeagle/dynesty
https://github.com/joshspeagle/dynesty

5.4 Numerical tests with perfect nested sampling

As discussed in Chapter 3, perfect nested sampling calculations depend on the likelihood

L(θ) and prior π(θ) only through the distribution of posterior mass L(X) and the

distribution of parameters on iso-likelihood contours P (f(θ)|L(θ) = L(X)), each of

which is a function of both L(θ) and π(θ). We therefore empirically test dynamic nested

sampling using likelihoods and priors with a wide range of distributions of posterior

mass, and consider a variety of functions of parameters f(θ) in each case.

We first examine perfect nested sampling of d-dimensional spherical unit Gaussian

likelihoods centred on the origin

L(θ) = (2π)−d/2e−|θ|
2/2. (3.7 revisited)

For additional tests using distributions with lighter and heavier tails we use d-

dimensional exponential power likelihoods

L(θ) =
dΓ(d2)

π
d
2 21+ 1

2bΓ(1 + n
2b)

e−|θ|
2b/2, (5.5)

where b = 1 corresponds to a d-dimensional Gaussian (3.7). All tests use d-dimensional

co-centred spherical Gaussian priors

π(θ) = (2πσ2
π)
−d/2

e−|θ|
2/2σ2

π . (3.9 revisited)

The different distributions of posterior mass in logX for (3.7) and (5.5) with dimensions

d are illustrated in Figure 5.2. As in previous chapters we denote the first component of

the θ vector as θ1̂, although by symmetry the results will be the same for any component.

θ1̂ is the mean of the posterior distribution of θ1̂, and the one-tailed Y% upper credible

interval C.I.Y%(θ1̂) is the value θ∗
1̂

for which P (θ1̂ < θ∗
1̂
|L, π) = Y/100.

Tests of dynamic nested sampling terminate after a fixed number of samples, which

is set such that they use similar or slightly smaller numbers of samples than the standard

nested sampling runs we compare them to. Dynamic runs have ninit set to 10% of the

number of live points used for the standard runs. Standard nested sampling runs use the

termination conditions described by Handley et al. (2015b, Section 3.4), stopping when

the estimated evidence contained in the live points is less than 10−3 times the evidence

contained in dead points (the default value used in PolyChord). This is an appropriate

termination condition for nested sampling parameter estimation, but if only the evidence

96

−35 −30 −25 −20 −15 −10 −5 0

logX

re
la

ti
v
e

p
o
st

er
io

r
m

a
ss

Gaussian: d = 2

Exp Power: b = 2, d = 2

Exp Power: b = 3
4

, d = 2

Gaussian: d = 10

Exp Power: b = 2, d = 10

Exp Power: b = 3
4

, d = 10

Figure 5.2: Relative posterior mass (∝ L(X)X) as a function of logX for Gaussian
likelihoods (3.7) and exponential power likelihoods (5.5) with b = 2 and b = 3

4 . Each
has a Gaussian prior (3.9) with σπ = 10. The lines are scaled so that the area under
each of them is equal.

is of interest then stopping with a larger fraction of the posterior mass remaining will

have little effect on calculation accuracy.

The increase in computational efficiency from our method can be calculated by

observing that nested sampling calculation errors are typically proportional to the square

root of the computational effort applied (Skilling, 2006), and that the number of samples

produced is approximately proportional to the computational effort. The increase in

efficiency (computational speedup) from dynamic nested sampling over standard nested

sampling for runs containing approximately the same number of samples on average can

therefore be estimated from the variation of results as

efficiency gain =
Var [standard NS results]

Var [dynamic NS results]
. (5.6)

Here the numerator is the variance of the calculated values of some quantity (such as

the evidence or the mean of a parameter) from a number of standard nested nested

sampling runs, and the denominator is the variance of the calculated values of the same

quantity from a number of dynamic nested sampling runs. When the two methods use

different numbers of samples on average, (5.6) can be replaced with

efficiency gain =
Var [standard NS results]

Var [dynamic NS results]
× Nsamp,sta

Nsamp,dyn

, (5.7)

where the additional term is the ratio of the mean number of samples produced by the

standard and dynamic nested sampling runs.

97

5.4.1 10-dimensional Gaussian example

We begin by testing dynamic nested sampling on a 10-dimensional Gaussian likeli-

hood (3.7) with a Gaussian prior (3.9) and σπ = 10. Figure 5.3 shows the relative

allocation of live points as a function of logX for standard and dynamic nested sam-

pling runs. The dynamic nested sampling algorithm (Algorithm 4) can accurately and

consistently allocate live points, as can be seen by comparison with the analytically cal-

culated distribution of posterior mass and posterior mass remaining. Dynamic nested

sampling live point allocations do not precisely match the distribution of posterior mass

and posterior mass remaining in the G = 1 and G = 0 cases because they include the

initial exploratory run with a constant ninit live points. Furthermore as additional live

points are added where the importance is more than 90% of the maximum importance,

the number of live points allocated by dynamic nested sampling is approximately con-

stant for regions with importance of greater than ∼ 90% of the maximum — this can be

clearly seen in Figure 5.3 near the peak number of live points in the G = 1 case. Similar

diagrams for exponential power likelihoods (5.5) with b = 2 and b = 3
4 are provided in

Appendix 5.E.1 (Figures 5.12 and 5.13), and show the allocation of live points is also

accurate in these cases.

The variation of results from repeated standard and dynamic nested sampling calcu-

lations with a similar number of samples is shown in Table 5.1 and Figure 5.4. Dynamic

nested sampling optimised for evidence calculation (G = 0) and parameter estimation

(G = 1) produce significantly more accurate results than standard nested sampling. In

addition, results for dynamic nested sampling with G = 0.25 show that both evidence

calculation and parameter estimation accuracy can be improved simultaneously. Equiv-

alent results for 10-dimensional exponential power likelihoods (5.5) with b = 2 and b = 3
4

are shown in Tables 5.6 and 5.7 in Appendix 5.E.1. The reduction in evidence errors for

G = 0 and parameter estimation errors for G = 1 in Table 5.1 correspond to increasing

efficiency by factors of 1.40± 0.04 and up to 4.4± 0.1 respectively.

5.4.2 Efficiency gains for different distributions of posterior mass

Efficiency gains (5.6) from dynamic nested sampling depend on the fraction of the logX

range explored which contains samples that make a significant contribution to calcula-

tion accuracy. If this fraction is small most samples taken by standard nested sampling

98

samples logZ θ1̂ median(θ1̂)

St.Dev. standard 15,189 0.189(2) 0.0158(2) 0.0194(2)
St.Dev. G = 0 15,152 0.160(2) 0.0180(2) 0.0249(2)
St.Dev. G = 0.25 15,156 0.179(2) 0.0124(1) 0.0163(2)
St.Dev. G = 1 15,161 0.549(5) 0.00834(8) 0.0104(1)
Gain G = 0 1.40(4) 0.77(2) 0.60(2)
Gain G = 0.25 1.11(3) 1.62(5) 1.42(4)
Gain G = 1 0.119(3) 3.6(1) 3.5(1)

(continued) C.I.84%(θ1̂) |θ| median(|θ|)
St.Dev. standard 0.0253(3) 0.0262(3) 0.0318(3)
St.Dev. G = 0 0.0301(3) 0.0292(3) 0.0335(3)
St.Dev. G = 0.25 0.0204(2) 0.0205(2) 0.0239(2)
St.Dev. G = 1 0.0132(1) 0.0138(1) 0.0152(2)
Gain G = 0 0.71(2) 0.80(2) 0.90(3)
Gain G = 0.25 1.54(4) 1.64(5) 1.77(5)
Gain G = 1 3.7(1) 3.6(1) 4.4(1)

Table 5.1: Test of dynamic nested sampling for a 10-dimensional Gaussian likeli-
hood (3.7) and a Gaussian prior (3.9) with σπ = 10. The first row shows the standard
deviation of 5, 000 calculations for standard nested sampling with a constant number of
live points n = 500. The next three rows show the standard deviations of 5, 000 dynamic
nested sampling calculations with a similar number of samples; these are respectively
optimised purely for evidence calculation accuracy (G = 0), for both evidence and pa-
rameter estimation (G = 0.25) and purely for parameter estimation (G = 1). The final
three rows show the computational efficiency gain (5.6) from dynamic nested sampling
over standard nested sampling in each case. The first column shows the mean number
of samples for the 5, 000 runs. The remaining columns show calculations of the log
evidence, the mean, median and 84% one-tailed credible interval of a parameter θ1̂, and
the mean and median of the radial coordinate |θ|. Numbers in brackets show the 1σ
numerical uncertainty on the final digit.

99

−35 −30 −25 −20 −15 −10 −5 0

logX

0

500

1000

1500

2000

2500

3000

n
u

m
b

er
o
f

li
v
e

p
o
in

ts

standard

dynamic G = 0

dynamic G = 0.25

dynamic G = 1

relative posterior mass

posterior mass remaining

Figure 5.3: Live point allocation for a 10-dimensional Gaussian likelihood (3.7) with
a Gaussian prior (3.9) and σπ = 10. Solid lines show the number of live points as a
function of logX for 10 standard nested sampling runs with n = 500, and 10 dynamic
nested sampling runs with ninit = 50, a similar number of samples and different values
of G. The dotted and dashed lines show the relative posterior mass ∝ L(X)X and the

posterior mass remaining ∝
∫ X
−∞ L(X ′)X ′ dX ′ at each point in logX; for comparison

these lines are scaled to have the same area under them as the average of the number
of live point lines. Standard nested sampling runs include the final set of live points at
termination, which are modeled using a decreasing number of live points as discussed
in Section 5.2. Similar diagrams for exponential power likelihoods (5.5) with b = 2 and
b = 3

4 are presented in Figures 5.12 and 5.13 in Appendix 5.E.1.

contain little information, and dynamic nested sampling can greatly improve perfor-

mance. For parameter estimation (G = 1), only logX regions containing significant

posterior mass (∝ L(X)X) are important, whereas for evidence calculation (G = 0)

all samples taken before the bulk of the posterior is reached are valuable. Both cases

benefit from dynamic nested sampling using fewer samples to explore the region after

most of the posterior mass has been passed but before termination.

We now test the efficiency gains (5.6) of dynamic nested sampling empirically for a

wide range of distributions of posterior mass by considering Gaussian likelihoods (3.7)

and exponential power likelihoods (5.5) of different dimensions d and prior sizes σπ.

The results are presented in Figures 5.5 and 5.6, and show large efficiency gains from

dynamic nested sampling for parameter estimation in all of these cases.

Increasing the dimension d typically means the posterior mass is contained in a

smaller fraction of the prior volume, as shown in Figure 5.2. In the spherically symmetric

100

−33.0 −32.5 −32.0

logZ
−0.05 0.00 0.05

θ1̂

−0.05 0.00 0.05
median(θ1̂)

0.9 1.0
C.I.84%(θ1̂)

3.0 3.1

|θ|
3.0 3.1

median(|θ|)

standard

G = 0

G = 0.25

G = 1

Figure 5.4: Distributions of results for the dynamic and standard nested sampling cal-
culations shown in Table 5.1, plotted using kernel density estimation. Black dotted lines
show the correct value of each quantity for the likelihood and prior used. Compared
to standard nested sampling (blue lines), the distributions of results of dynamic nested
sampling with G = 1 (red lines) for parameter estimation problems show much less
variation around the correct value. Results for dynamic nested sampling with G = 0
(orange lines) are on average closer to the correct value than standard nested sampling
for calculating logZ, and results with G = 0.25 (green lines) show improvements over
standard nested sampling for both evidence and parameter estimation calculations.

cases we consider, the range of logX to be explored before significant posterior mass is

reached increases approximately linearly with d. This increases the efficiency gain (5.6)

from dynamic nested sampling for parameter estimation (G = 1) but reduces it for

evidence calculation (G = 0). In high-dimensional problems the vast majority of the

logX range explored is usually covered before any significant posterior mass is reached,

resulting in very large efficiency gains for parameter estimation but almost no gains

for evidence calculation — as can be seen in Figure 5.5. For the 1,000-dimensional

exponential power likelihood with b = 2, dynamic nested sampling with G = 1 improves

parameter estimation efficiency by a factor of up to 72±5, with the largest improvement

for estimates of the median the posterior distribution of |θ|.

Increasing the size of the prior σπ increases the fraction of the logX range explored

before any significant posterior mass is reached, resulting in larger efficiency gains (5.6)

from dynamic nested sampling for parameter estimation (G = 1) but smaller gains for

101

dimension d

0

20

40

60

80

effi
ci

en
cy

g
a
in Exp Power b = 2

G = 0: logZ
G = 1: θ1̂

G = 1: median(θ1̂)

G = 1: C.I.84%(θ1̂)

G = 1: |θ|
G = 1: median(|θ|)

dimension d

0

2

4

6

8

effi
ci

en
cy

g
a
in

Exp Power b = 3
4

100 101 102 103

dimension d

0

10

20

effi
ci

en
cy

g
a
in Gaussian

Figure 5.5: Efficiency gain (5.6) from dynamic nested sampling compared to standard
nested sampling for likelihoods of different dimensions; each has a Gaussian prior (3.9)
with σπ = 10. Results are shown for calculations of the log evidence, the mean, median
and 84% one-tailed credible interval of a parameter θ1̂, and the mean and median of
the radial coordinate |θ|. Each efficiency gain is calculated using 1, 000 standard nested
sampling calculations with n = 200 and 1, 000 dynamic nested sampling calculations
with ninit = 20 using a similar or slightly smaller number of samples.

102

10−1 100 101 102

σπ

0

2

4

6

effi
ci

en
cy

g
a
in

Exp Power, b = 2, G = 0: logZ
Exp Power, b = 3

4
, G = 0: logZ

Gaussian, G = 0: logZ

Exp Power, b = 2, G = 1: θ1̂

Exp Power, b = 3
4

, G = 1: θ1̂

Gaussian, G = 1: θ1̂

Figure 5.6: Efficiency gain (5.6) from dynamic nested sampling for Gaussian priors (3.9)
of different sizes σπ. Results are shown for calculations of the log evidence and the
mean of a parameter θ1̂ for 2-dimensional Gaussian likelihoods (3.7) and 2-dimensional
exponential power likelihoods (5.5) with b = 2 and b = 3

4 . Each efficiency gain is
calculated using 1, 000 standard nested sampling calculations with n = 200 and 1, 000
dynamic nested sampling calculations with ninit = 20 using a similar or slightly smaller
number of samples.

evidence calculation (G = 0). However when σπ is small the bulk of the posterior mass

is reached after a small number of steps, and most of the logX range explored is after

the majority of the posterior mass but before termination. Dynamic nested sampling

places fewer samples in this region than standard nested sampling, leading to large

efficiency gains for both parameter estimation and evidence calculation. This is shown

in Figure 5.6; when σπ = 0.1, dynamic nested sampling evidence calculations with

G = 0 improve efficiency over standard nested sampling by a factor of approximately 7

for all 3 likelihoods considered. However we note that if only the evidence estimate is

of interest then standard nested sampling can safely terminate with a higher fraction of

the posterior mass remaining than 10−3, in which case efficiency gains would be lower.

103

L(θ) = L(Xsplit)

θ1̂ log(X) 0

Region B

Region CRegion A

θ2̂
Standard

Dynamicli
v
e
p
o
in
ts

Figure 5.7: Dynamic and standard nested sampling’s relative ability to discover hard
to locate modes is determined by the number of live points present at the likelihood
L(Xsplit) at which a mode splits from the remainder of the posterior (illustrated on the
left). In the schematic graph on the right we would expect dynamic nested sampling to
be better at finding modes than standard nested sampling in region B (where it has a
higher number of live points) but worse in regions A and C.

5.5 Dynamic nested sampling with challenging posteriors

Nested sampling software generally uses the population of dead and live points to sam-

ple within iso-likelihood contours, and so taking more samples in the region of an iso-

likelihood contour will reduce the sampler’s implementation-specific effects. As a result

dynamic nested sampling typically has smaller implementation-specific effects than stan-

dard nested sampling in the regions of the posterior where it has a higher number of live

points, but conversely may perform worse in regions with fewer live points. For highly

multimodal or degenerate likelihoods it is important all modes or other regions of sig-

nificant posterior mass are found by the sampler — dynamic nested sampling performs

better than standard nested sampling at finding hard to locate modes which become

separated from the remainder of the posterior at likelihood values where it has more

live points,6 as illustrated schematically in Figure 5.7.

Provided no significant modes are lost we expect dynamic nested sampling to have

lower implementation-specific effects than standard nested sampling, as it has more live

points — and therefore lower implementation-specific effects — in the regions which

have the largest effect on calculation accuracy. If modes separate at likelihood values

where dynamic nested sampling assigns few samples, ninit must be made large enough to

ensure no significant modes are lost. For highly multimodal posteriors, a safe approach

6However, if a mode is only discovered late in the dynamic nested sampling process then it may still
be under-sampled due to not being present in threads calculated before it was found.

104

is to set ninit high enough to find all significant modes, in which case dynamic nested

sampling will use the remaining computational budget to minimise calculation errors.

Even if, for example, half of the computational budget is used on the initial exploratory

run, dynamic nested sampling will still achieve over half of the efficiency gain compared

to standard nested sampling that it could with a very small ninit.

5.5.1 Numerical tests with a multimodal posterior

We now use dyPolyChord to numerically test dynamic nested sampling on a challenging

multimodal d-dimensional, M -component Gaussian mixture likelihood

L(θ) =

M∑
m=1

W (m)
(

2πσ(m)2
)−d/2

exp

(
−|θ − µ

(m)|2

2σ(m)2

)
. (5.8)

Here each component m is centred on a mean µ(m) with standard deviation σ(m) in all

dimensions, and the component weights W (m) satisfy
∑M

m=1W
(m) = 1. For comparison

with the perfect nested sampling results using a Gaussian likelihood (3.7) in Section 5.4,

we use d = 10, σ(m) = 1 for all m and a Gaussian prior (3.9) with σπ = 10. We consider

a Gaussian mixture (5.8) of M = 4 components with means and weights

W (1) = 0.4, µ
(1)

1̂
= 0, µ

(1)

2̂
= 4,

W (2) = 0.3, µ
(2)

1̂
= 0, µ

(2)

2̂
= −4,

W (3) = 0.2, µ
(3)

1̂
= 4, µ

(3)

2̂
= 0, (5.9)

W (4) = 0.1, µ
(4)

1̂
= −4, µ

(4)

2̂
= 0,

and µ
(m)

k̂
= 0 for all k ∈ (3, . . . , d), m ∈ (1, . . . ,M).

The posterior distribution for this case is shown in Figure 5.8.

As in Section 5.4, we compare standard nested sampling runs to dynamic nested

sampling runs which use a similar or slightly smaller number of samples. dyPolyChord

uses Algorithm 5, meaning only the initial run provides information on where to place

samples, so we set ninit to 20% of the number of live points used in standard nested

sampling runs they are compared to, instead of the 10% used in the perfect nested

sampling tests in Section 5.4.

The allocation of live points from dyPolyChord runs with the Gaussian mixture

likelihood (5.8) is shown in Figure 5.9. As in the tests with perfect nested sampling,

105

https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord

Figure 5.8: Posterior distributions for the 4-component 10-dimensional Gaussian mix-
ture model (5.8) with component weights and means given by (5.9), and a Gaussian
prior (3.9). By symmetry the distributions of θk̂ are the same for k ∈ (3, . . . , d), so
we only show only the first 4 components of θ; 1- and 2-dimensional plots of other
parameters are the same as those of θ3̂ and θ4̂.

the numbers of live points with settings G = 1 and G = 0 match the posterior mass

and posterior mass remaining respectively despite the more challenging likelihood. The

live point allocation is not as precise as in Figure 5.3 due to dyPolyChord only using

information from the initial exploratory run to calculate all the point importances.

Another difference is that the truncation of the peak number of live points in the G = 1

in Figure 5.3 is not present for dyPolyChord runs, as this is due to Algorithm 4 adding

new points where the importance is within 90% of the maximum.

Table 5.2 shows the variation of repeated calculations for dynamic nested sampling

for the 10-dimensional Gaussian mixture model (5.8) with dyPolyChord. This shows

106

https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord

−35 −30 −25 −20 −15 −10 −5 0

logX

0

500

1000

1500

2000

2500

3000

n
u

m
b

er
o
f

li
v
e

p
o
in

ts

standard

dynamic G = 0

dynamic G = 0.25

dynamic G = 1

relative posterior mass

posterior mass remaining

Figure 5.9: Live point allocation as in Figure 5.3 but with a 10-dimensional Gaus-
sian mixture likelihood (5.8), with component weights and means given by (5.9) and a
Gaussian prior (3.9) with σπ = 10. The 10 standard nested sampling runs shown were
generated using PolyChord with n = 500, and 10 dynamic nested sampling runs with
each G value were generated using dyPolyChord with a similar number of samples and
ninit = 100. The dotted and dashed lines show the relative posterior mass ∝ L(X)X

and the posterior mass remaining ∝
∫ X
−∞ L(X ′)X ′ dX ′ at each point in logX; for com-

parison these lines are scaled to have the same area under them as the average of the
number of live point lines.

significant efficiency gains (5.6) from dynamic nested sampling of 1.3 ± 0.1 for evi-

dence calculation with G = 0 and up to 4.0± 0.4 for parameter estimation with G = 1,

demonstrating how dynamic nested sampling can be readily applied to more challenging

multimodal cases. In Appendix 5.E.2 we empirically verify that dynamic nested sam-

pling does not introduce any errors from sampling bias (which would not be captured

by efficiency gains (5.6) based on the variation of results) using analytically calculated

true values of the log evidence and posterior means. Table 5.8 shows that the mean

calculation results are very close to the correct values, and hence the standard deviation

of the results is almost identical to their root-mean-squared-error, meaning efficiency

gains (5.6) accurately reflect reductions in calculation errors (as for perfect nested sam-

pling).

Table 5.3 shows estimated implementation-specific effects for the results in Table 5.2;

these are calculated using the procedure described in Chapter 4, which estimates the

part of the variation of results which is not explained by the intrinsic stochasticity of

107

https://github.com/ejhigson/dyPolyChord

samples logZ θ1̂ θ2̂

St.Dev. standard 14,739 0.181(6) 0.057(2) 0.126(4)
St.Dev. G = 0 14,574 0.160(5) 0.076(2) 0.176(6)
St.Dev. G = 0.25 14,628 0.170(5) 0.046(1) 0.105(3)
St.Dev. G = 1 14,669 0.36(1) 0.032(1) 0.069(2)
Gain G = 0 1.3(1) 0.56(5) 0.51(5)
Gain G = 0.25 1.1(1) 1.5(1) 1.5(1)
Gain G = 1 0.25(2) 3.3(3) 3.4(3)

(continued) median(θ1̂) C.I.84%(θ1̂) |θ|
St.Dev. standard 0.035(1) 0.170(5) 0.0196(6)
St.Dev. G = 0 0.048(2) 0.229(7) 0.0222(7)
St.Dev. G = 0.25 0.0293(9) 0.138(4) 0.0156(5)
St.Dev. G = 1 0.0203(6) 0.085(3) 0.0110(3)
Gain G = 0 0.53(5) 0.55(5) 0.78(7)
Gain G = 0.25 1.4(1) 1.5(1) 1.6(1)
Gain G = 1 3.0(3) 4.0(4) 3.2(3)

Table 5.2: Tests of dynamic nested sampling as in Table 5.1 but with a 10-dimensional
Gaussian mixture likelihood (5.8), with component weights and means given by (5.9)
and a Gaussian prior (3.9) with σπ = 10. The first row shows the standard deviation
of 500 PolyChord standard nested sampling calculations with a constant number of live
points n = 500. The next three rows show the standard deviations of 500 dyPolyChord

calculations with a similar number of samples; these are respectively optimised purely
for evidence calculations (G = 0), for both evidence and parameter estimation (G =
0.25) and purely for parameter estimation (G = 1). The final three rows show the
computational efficiency gain (5.6) from dynamic nested sampling over standard nested
sampling in each case. The first column shows the mean number of samples produced
by the 500 runs. The remaining columns show calculations of the log evidence, the mean
of parameters θ1̂ and θ2̂, the median and 84% one-tailed credible interval of θ1̂, and the
mean radial coordinate |θ|. Numbers in brackets show the 1σ numerical uncertainty on
the final digit.

108

https://github.com/ejhigson/dyPolyChord

logZ θ1̂ θ2̂

Implementation St.Dev. standard 0.02(4) 0.044(2) 0.115(4)
Implementation St.Dev. G = 0 0.06(2) 0.062(3) 0.163(6)
Implementation St.Dev. G = 0.25 0.03(4) 0.035(2) 0.095(4)
Implementation St.Dev. G = 1 0.00(8) 0.024(1) 0.062(2)

(continued) median(θ1̂) C.I.84%(θ1̂) |θ|
Implementation St.Dev. standard 0.022(2) 0.138(7) 0.005(3)
Implementation St.Dev. G = 0 0.033(2) 0.191(9) 0.005(5)
Implementation St.Dev. G = 0.25 0.018(2) 0.110(6) 0.002(4)
Implementation St.Dev. G = 1 0.013(1) 0.065(4) 0.000(2)

Table 5.3: Estimated implementation-specific effects for the Gaussian mixture likelihood
results shown in Table 5.2, calculated using the method described in Chapter 4.

perfect nested sampling. Dynamic nested sampling with G = 1 and G = 0.25 both

reduce implementation-specific effects in all of the parameter estimation calculations

as expected. However we are not able to measure a statistically significant difference

in implementation-specific effects for logZ with G = 0; this is because for evidence

calculations implementation-specific effects represent a much smaller fraction of the

total error.

The efficiency gains in Table 5.2 are slightly lower than those for the similar unimodal

Gaussian likelihood (3.7) used in Table 5.1; this is because of the higher ninit value

used, and because while implementation-specific effects are reduced by dynamic nested

sampling they are not reduced by as large a factor as errors from the stochasticity of

the nested sampling algorithm.

5.6 Conclusion

This chapter began with an analysis of the effects of changing the number of live points

on the accuracy of nested sampling parameter estimation and evidence calculations.

We then presented dynamic nested sampling (Algorithm 4), which varies the number of

live points to allocate posterior samples efficiently for a priori unknown likelihoods and

priors.

Dynamic nested sampling can be optimised specifically for parameter estimation,

showing increases in computational efficiency over standard nested sampling (5.6) by

109

factors of up to 72 ± 5 in numerical tests. The algorithm can also increase evidence

calculation accuracy, and can improve both evidence calculation and parameter esti-

mation simultaneously. We discussed factors effecting the efficiency gain from dynamic

nested sampling, including showing large improvements in parameter estimation are

possible when the posterior mass is contained in a small region of the prior (as is typi-

cally the case in high-dimensional problems). Empirical tests show significant efficiency

gains from dynamic nested sampling for a wide range likelihoods, priors, dimensions and

estimators considered. Another advantage of dynamic nested sampling is that more ac-

curate results can be obtained by continuing the run for longer, unlike in standard nested

sampling. Finally we applied dynamic nested sampling software to a challenging mul-

timodal posterior, with empirical tests showing that it gives similar performance gains

to the unimodal cases and that it also reduced errors due to implementation-specific

effects compared to standard nested sampling.

The many popular approaches and software implementations for standard nested

sampling can be easily adapted for dynamic nested sampling, since it too only requires

samples to be drawn randomly from the prior within some hard likelihood constraint.

As a result, our new method can be used to increase computational efficiency while

maintaining the strengths of standard nested sampling. Publicly available dynamic

nested sampling packages include dyPolyChord, dynesty and perfectns.

Dynamic nested sampling has been applied to a variety of research problems in

astrophysics, including astronomical image reconstruction (see Chapters 6 and 7), con-

straining the present day stellar mass function (Orazio et al., 2018), fitting light curves

of transient sources (Guillochon et al., 2018) and mapping distances across the Perseus

molecular cloud (Zucker et al., 2018).

Appendix 5.A Code

The code used to generate the numerical results and plots in this chapter is available at

https://github.com/ejhigson/dns.

110

https://github.com/ejhigson/dyPolyChord
https://github.com/joshspeagle/dynesty
https://github.com/ejhigson/perfectns
https://github.com/ejhigson/dns
https://github.com/ejhigson/dns

Appendix 5.B Estimating sampling errors in dynamic

nested sampling

The technique for estimating sampling errors by resampling threads introduced in Chap-

ter 3 can be applied to dynamic nested sampling runs with variable numbers of live

points. Table 5.4 shows numerical tests of the bootstrap error estimates for dynamic

nested sampling, calculated using the nestcheck package (Higson, 2018b). The results

use G = 1 — this the most challenging case as most of the threads only cover part of

the logX range explored by the run. The bootstrap error estimates match the sampling

errors observed when the calculation is repeated many times, in agreement with the

results for standard nested sampling in Chapter 3.

When ninit is low and G = 1, bootstrap replications may contain zero (or very few)

threads which begin by sampling the whole prior. This typically does not matter for

calculating parameter estimation errors as only the relative weights of points are used,

but may lead to inaccurate estimates of evidence errors. In this case the threads from

the initial exploratory run can be sampled separately (with replacement), ensuring every

bootstrap replication contains ninit such threads — this approach was used for Table 5.4.

When ninit is close to 1, estimates of logZ uncertainties with this approach become

imprecise, and the simulated weights method (see Chapter 3 for more details) may

perform better.

Appendix 5.C Effect of varying the number of live points

on evidence calculation accuracy

Nested sampling estimates the Bayesian evidence Z as the expectation of (2.19), as

described in Section 2.4.1. The dominant source of uncertainty is the unknown shrinkage

ratios ti, which are independent random variables with probability density functions

P (ti) given in (2.18). We now investigate the effect of increasing the number of live

points ni across some shrinkage ti by considering (2.19) with all tj 6=i marginalised out

and conditioned on ti, defining

Z(ti) ≡
∫ ∑

j

wj(t)Lj

∏
j 6=i

P (tj) dtj . (5.10)

111

https://github.com/ejhigson/nestcheck

logZ θ1̂ median(θ1̂)

Mean result -9.710(7) 0.0002(3) 0.0003(3)
Repeated runs St.Dev. 0.464(5) 0.0184(2) 0.0234(2)
Bootstrap St.Dev. / Repeats St.Dev. 0.99(1) 1.02(1) 1.00(1)
Bootstrap St.Dev. variation 17.1(2)% 6.07(6)% 11.5(1)%
Bootstrap C.I.95% -8.94(2) 0.0304(8) 0.038(1)
Bootstrap ±1St.Dev. coverage 67.7% 68.6% 68.4%
Bootstrap C.I.95% coverage 95.6% 94.9% 94.7%

(continued) C.I.84%(θ1̂) |θ| median(|θ|)
Mean result 0.9904(4) 1.5890(3) 1.5316(3)
Repeated runs St.Dev. 0.0294(3) 0.0195(2) 0.0232(2)
Bootstrap St.Dev. / Repeats St.Dev. 1.03(1) 1.01(1) 1.00(1)
Bootstrap St.Dev. variation 13.1(1)% 6.69(7)% 10.9(1)%
Bootstrap C.I.95% 1.038(1) 1.6209(9) 1.569(1)
Bootstrap ±1St.Dev. coverage 70% 68.5% 69.0%
Bootstrap C.I.95% coverage 95.0% 95.2% 94.8%

Table 5.4: Bootstrap sampling error estimates for dynamic nested sampling of a 3-
dimensional Gaussian likelihood (3.7) and a Gaussian prior (3.9) The table shows results
from 5,000 dynamic nested sampling runs generated with perfectns using G = 1,
ninit = 20 and with the same total number of samples as standard nested sampling
with a constant n = 200 live points. The first two rows show the mean and standard
deviation of the results of the 5, 000 calculations. The third row shows the mean of
the error estimates from the bootstrap resampling technique for each run (using 200
replications), divided by the error observed from repeated calculations. The fourth row
shows the standard deviations of bootstrap error estimates for single runs as a percentage
of the mean estimate. The fifth row shows the mean of 500 bootstrap estimates of the
one-tailed 95% credible interval on the calculation result given the sampling error, each
using 1, 000 bootstrap replications. The final two rows show the empirical coverage
of the bootstrap standard error and 95% credible interval from the 5, 000 repeated
calculations. Numbers in brackets show the 1σ numerical uncertainty on the final digit.

112

https://github.com/ejhigson/perfectns

For brevity in the remainder of this section we omit the explicit dependence of quantities

such as point weights wi(t) on the shrinkage ratios t.

For simplicity instead of using the trapezium rule we calculate point weight as

wi = Xi−1 −Xi = (1− ti)
∏
k<i

tk. (5.11)

In this case uncertainty in ti causes sampling errors in the weight of point i and all

subsequent points7 and

∑
j

wjLj =

∑
j<i

wjLj

+ (1− ti)
[
wiLi
1− ti

]
+ ti

∑
j>i

wjLj
ti

 , (5.12)

where the terms in square brackets are independent of ti. Substituting (5.12) into (5.10)

and integrating gives

Z(ti) = E[Z<i] + (1− ti)E
[Liwi

1− ti

]
+ tiE

[Z>i
ti

]
, (5.13)

where we have defined Z>i ≡
∑

k>i Lkwk and Z<i ≡
∑

k<i Lkwk. The second term can

be simplified by observing that as the shrinkage ratios are independent Liwi/(1 − ti)
is uncorrelated with (1 − ti), and that from (5.11) Liwi ∝ (1 − ti). Two uncorrelated

random variables A and B must satisfy E[A] = E[AB]/E[B], so hence

E

[Liwi
1− ti

]
=

E[Liwi]
E[1− ti]

=
E[Liwi]
1− E[ti]

. (5.14)

Similarly Z>i/ti is uncorrelated with ti and from (5.11) Z>i ∝ ti, so

E

[Z>i
ti

]
=

E[Z>i]
E[ti]

. (5.15)

Hence (5.13) can be rewritten as

Z(ti) = E[Z<i] + (1− ti)
E[Liwi]

(1− E[ti])
+ ti

E[Z>i]
E[ti]

. (5.16)

Furthermore, from the distribution of the shrinkage ratios (2.18)

E[ti] =
ni

1 + ni
, St.Dev.[ti] =

ni
1/2

(ni + 1)(ni + 2)1/2
. (5.17)

7If the trapezium rule is used ti also affects the weight of the previous point i− 1, but this has little
effect on the results.

113

Substituting this into (5.16) gives

Z(ti) =

(
E[Z<i] + E[Liwi](ni + 1)

)
+ ti

(
ni + 1

ni
E[Z>i]− (1 + ni)E[Liwi]

)
, (5.18)

where terms in large brackets are independent of ti. Using the expression for St.Dev.[ti]

from (5.17), the standard deviation of Z(ti) is

St.Dev.[Z(ti)] =
1

ni1/2(ni + 2)1/2
E[Z>i]−

n
1/2
i

(ni + 2)1/2
E[Liwi]. (5.19)

The expected number of samples (computational work) needed to increase the number

of live points over some interval (La,Lb) is proportional to the log prior shrinkage

logX(La)− logX(Lb). Hence the expected extra samples ∆Ns required to increase the

local number of live points ni is proportional to the interval log ti, which has an expected

size of 1/ni. The change in the error on the evidence with extra samples is therefore

d

dNs
St.Dev.[Z(ti)] =

dni
dNs

d

dni
St.Dev.[Z(ti)] (5.20)

∝ ni
d

dni
St.Dev.[Z(ti)] (5.21)

∝ − ni + 1

ni1/2(ni + 2)3/2
E[Z>i]−

n
1/2
i

(ni + 2)3/2
E[Liwi]. (5.22)

This quantity can be easily calculated for a set of dead points with little computational

cost. Typically ni � 2, in which case the following relation approximately holds:

d

dNs
St.Dev.[Z(ti)] ∝ −

E[Z≥i]
ni

, (5.23)

where Z≥i ≡
∑

k≥i Lkwk(t). Thus the accuracy gained from taking additional samples

is approximately proportional to the evidence contained in subsequent dead points. This

makes sense as the dominant evidence errors are from statistically estimating shrinkages

ti which affect all subsequent points j ≥ i.

Appendix 5.D Tuning for a specific parameter estimation

problem

Dynamic nested sampling improves parameter estimation efficiency by placing more

samples in logX regions with significant posterior mass and fewer in regions with little

114

posterior mass. However, for some likelihoods and parameter estimation problems a

large contribution to errors comes from samples in logX regions containing extreme

or highly variable parameter values but little posterior weight (see Figure 3.2 for a

diagrammatic illustration). In this case the expression for sample importances (5.3) can

be modified to favour points with parameter values which will have a large effect on the

calculation.

For example, when estimating the global mean of some parameter or function of

parameters E[f(θ)] =
∑

i f(θi)Liwi, one could place additional weight on regions with

parameter values that have a large effect on results by calculating importances as

Iparam(i) ∝ |f(θi)− E[f(θ)]| Liwi. (5.24)

This expression is highly variable as each point i is a single sample from an iso-likelihood

contour L(θ) = Li which may cover a wide range of parameters. However dynamic

nested sampling (Algorithm 4) uses only the first and last points of high importance

in allocating new threads, so (5.24) captures logX regions in which some samples have

extreme or highly variable parameter values. When tuning dynamic nested sampling

for calculating the mean of a parameter θ1̂, (5.24) becomes

Iparam(i) ∝
∣∣∣θi,1̂ − θ1̂

∣∣∣Liwi, (5.25)

where θ1̂ is the global mean of θ1̂ and θi,1̂ is the ith sample’s θ1̂ value.

We illustrate tuning for a specific parameter by using dynamic nested sampling with

a d-dimensional spherical unit Cauchy likelihood

L(θ) =
Γ(1+d

2)

π(d+1)/2

(
1 + |θ|2

)−(d+1
2

)
. (3.8 revisited)

The Cauchy likelihoods have extremely heavy tails and (except in high dimensions) have

significant posterior mass present across almost the entire range of logX explored, as

shown in Figure 5.10. We therefore expect relatively low efficiency gains for dynamic

parameter estimation (G = 1) in this case, but use it for a proof of principle.

For a Cauchy likelihood (3.8) with a co-centred spherically symmetric uniform prior,

the analytic value of E[θ1̂] is 0 and each iso-likelihood contour L(θ) = L(X) is a spheri-

cally symmetric surface with radius |θ|. The expectation of |θî| on such an iso-likelihood

contour is |θ|/
√
d, so the analytical expectation of the importance (5.25) is

Iparam(X) ∝ |θ|XL(X)/
√
d. (5.26)

115

−35 −30 −25 −20 −15 −10 −5 0

logX

re
la

ti
v
e

p
o
st

er
io

r
m

a
ss

Gaussian: d = 2

Cauchy: d = 2

Gaussian: d = 10

Cauchy: d = 10

Figure 5.10: Relative posterior mass (∝ L(X)X) as a function of logX for Cauchy
likelihoods (3.8), with Gaussian likelihoods (3.7) shown for comparison. Each has a
Gaussian prior (3.9) with σπ = 10. The lines are scaled so that the area under each of
them is equal.

Figure 5.11 shows the allocation of live points by dynamic nested sampling with and

without tuning. The numbers of live points as a function of logX for the tuned runs

are consistent with (5.26), showing that samples can be allocated accurately when the

tuned importance function is used.

Table 5.5 shows the efficiency gain for dynamic nested sampling for a 10-dimensional

Cauchy likelihood (3.8) with a Gaussian prior (3.9) and σπ = 10. When estimating θ1̂ the

calculation is dominated by samples in the tails of the distribution with low likelihoods.

As a result, compared to standard nested sampling, dynamic nested sampling with

G = 1 slightly increases the variation of results — giving an efficiency gain (5.6) of less

than 1. Tuned dynamic nested sampling is able to improve the efficiency gain for θ1̂,

as shown in the final row of Table 5.5, although for the Cauchy likelihood the resulting

gain is still small. Using the tuned importance function affects the performance gain

for other quantities — for example in this case it significantly improves estimates of the

second moment of the distribution θ2
1̂

in comparison to the G = 1 case without tuning,

but reduces the accuracy of estimates of the 84% credible interval of θ1̂.

116

−40 −35 −30 −25 −20 −15 −10 −5 0

logX

0

500

1000

1500

2000

n
u

m
b

er
o
f

li
v
e

p
o
in

ts

standard

dynamic G = 0

dynamic G = 1

tuned dynamic G = 1

relative posterior mass

posterior mass remaining

tuned importance

Figure 5.11: Live point allocation for a 10-dimensional Cauchy likelihood (3.8) with a
Gaussian prior (3.9) and σπ = 10. Solid green lines show the number of live points as a
function of logX for 10 standard nested sampling runs. Solid yellow, blue and purple
lines show 10 dynamic nested sampling runs with G = 0, G = 1 and G = 1 with a
tuned importance function (5.25) respectively. Dynamic runs use a similar number of
samples to standard runs. The dotted, dashed and dot-and-dash lines show the relative
posterior mass ∝ L(X)X, the posterior mass remaining ∝

∫ X
−∞ L(X ′)X ′ dX ′ and the

analytical expectation of the tuned importance function (5.26). For comparison these
lines are scaled to have the same area under them as the average of the number of live
point lines.

Appendix 5.E Additional numerical tests

5.E.1 Exponential power likelihoods

This section contains additional tests of dynamic nested sampling using 10-dimensional

exponential power likelihoods (5.5) with b = 2 and b = 3
4 ; compared to Gaussian

likelihoods (3.7) these have lighter and heavier tails respectively. As in Section 5.4, each

test uses a Gaussian prior (3.7) with σπ = 10.

Figures 5.12 and 5.13 show that the dynamic nested sampling algorithm can ac-

curately and consistently allocate live points for these likelihoods. Tables 5.6 and 5.7

show the reduction in errors from dynamic nested sampling compared to standard nested

sampling in these two cases, as measured by repeated calculations. This corresponds to

increases in efficiency (5.6) for evidence calculation (G = 0) and parameter estimation

(G = 1) by factors of 1.25± 0.04 and up to 6.8± 0.2 respectively in the b = 2 case, and

by factors of 1.62± 0.05 and up to 3.11± 0.09 in the b = 3
4 case.

117

−40 −35 −30 −25 −20 −15 −10 −5 0

logX

0

1000

2000

3000

4000

5000

n
u

m
b

er
o
f

li
v
e

p
o
in

ts

standard

dynamic G = 0

dynamic G = 0.25

dynamic G = 1

relative posterior mass

posterior mass remaining

Figure 5.12: As in Figure 5.3 but with a 10-dimensional exponential power likeli-
hood (5.5) with b = 2.

−30 −25 −20 −15 −10 −5 0

logX

0

500

1000

1500

2000

2500

n
u

m
b

er
o
f

li
v
e

p
o
in

ts

standard

dynamic G = 0

dynamic G = 0.25

dynamic G = 1

relative posterior mass

posterior mass remaining

Figure 5.13: As in Figure 5.3 but with a 10-dimensional exponential power likeli-
hood (5.5) with b = 3

4 .

118

samples logZ θ1̂ θ2
1̂

St.Dev. standard 18,209 0.167(4) 0.0124(3) 0.238(5)
St.Dev. G = 0 18,165 0.133(3) 0.0119(3) 0.214(5)
St.Dev. G = 1 18,181 0.320(7) 0.0128(3) 0.236(5)
St.Dev. G = 1 tuned 18,181 0.244(5) 0.0106(2) 0.185(4)
Gain G = 0 1.6(1) 1.08(7) 1.23(8)
Gain G = 1 0.27(2) 0.94(6) 1.01(6)
Gain G = 1 tuned 0.46(3) 1.35(9) 1.6(1)

(continued) C.I.84%(θ1̂) |θ| median(|θ|)
St.Dev. standard 0.055(1) 0.180(4) 0.165(4)
St.Dev. G = 0 0.056(1) 0.173(4) 0.165(4)
St.Dev. G = 1 0.044(1) 0.157(4) 0.125(3)
St.Dev. G = 1 tuned 0.045(1) 0.141(3) 0.130(3)
Gain G = 0 0.97(6) 1.08(7) 0.99(6)
Gain G = 1 1.6(1) 1.32(8) 1.7(1)
Gain G = 1 tuned 1.5(1) 1.6(1) 1.6(1)

Table 5.5: Test of tuned dynamic nested sampling with a 10-dimensional Cauchy like-
lihood (3.8), and a Gaussian prior (3.9) with σπ = 10. The first four rows show the
standard deviation of 1, 000 calculations for standard nested sampling and dynamic
nested sampling with G = 0, G = 1 and with a tuned importance function (5.25) and
G = 1. The final three rows show the computational efficiency gain (5.6) from dynamic
nested sampling over standard nested sampling in each case. The first column shows the
mean number of samples for the 1, 000 runs. The remaining columns show calculations
of the log evidence, the mean, second moment and 84% one-tailed credible interval of
the parameter θ1̂, and the mean and median radial coordinate |θ|. Numbers in brackets
show the 1σ numerical uncertainty on the final digit.

5.E.2 Gaussian mixture likelihoods

Table 5.8 shows comparisons of dynamic nested sampling results with analytically calcu-

lated values for the Gaussian mixture likelihood (5.8) with a Gaussian prior (3.9). The

mean results are very close to the correct values, showing that there is no significant

sampling bias. As a result the root-mean-squared-errors and standard deviations are

almost identical, meaning efficiency gain estimates from (5.6) can be used reliably (as

for perfect nested sampling).

119

samples logZ θ1̂ median(θ1̂)

St.Dev. standard 18,093 0.228(2) 0.00870(9) 0.0110(1)
St.Dev. G = 0 18,052 0.204(2) 0.0107(1) 0.0147(1)
St.Dev. G = 0.25 18,056 0.228(2) 0.00587(6) 0.00777(8)
St.Dev. G = 1 18,058 0.686(7) 0.00363(4) 0.00471(5)
Gain G = 0 1.25(4) 0.66(2) 0.56(2)
Gain G = 0.25 1.00(3) 2.20(6) 2.01(6)
Gain G = 1 0.110(3) 5.7(2) 5.5(2)

(continued) C.I.84%(θ1̂) |θ| median(|θ|)
St.Dev. standard 0.0133(1) 0.00809(8) 0.0102(1)
St.Dev. G = 0 0.0169(2) 0.00917(9) 0.0108(1)
St.Dev. G = 0.25 0.00906(9) 0.00547(5) 0.00654(7)
St.Dev. G = 1 0.00549(5) 0.00338(3) 0.00391(4)
Gain G = 0 0.62(2) 0.78(2) 0.88(2)
Gain G = 0.25 2.14(6) 2.19(6) 2.41(7)
Gain G = 1 5.8(2) 5.7(2) 6.8(2)

Table 5.6: As in Table 5.1 but with a 10-dimensional exponential power likelihood (5.5)
with b = 2

samples logZ θ1̂ median(θ1̂)

St.Dev. standard 12,855 0.157(2) 0.0261(3) 0.0320(3)
St.Dev. G = 0 12,824 0.123(1) 0.0283(3) 0.0391(4)
St.Dev. G = 0.25 12,827 0.138(1) 0.0222(2) 0.0289(3)
St.Dev. G = 1 12,833 0.432(4) 0.0160(2) 0.0194(2)
Gain G = 0 1.62(5) 0.85(2) 0.67(2)
Gain G = 0.25 1.30(4) 1.39(4) 1.22(3)
Gain G = 1 0.132(4) 2.66(8) 2.70(8)

(continued) C.I.84%(θ1̂) |θ| median(|θ|)
St.Dev. standard 0.0439(4) 0.0545(5) 0.0657(7)
St.Dev. G = 0 0.0487(5) 0.0574(6) 0.0651(7)
St.Dev. G = 0.25 0.0374(4) 0.0454(5) 0.0522(5)
St.Dev. G = 1 0.0266(3) 0.0342(3) 0.0372(4)
Gain G = 0 0.81(2) 0.90(3) 1.02(3)
Gain G = 0.25 1.38(4) 1.44(4) 1.58(4)
Gain G = 1 2.71(8) 2.54(7) 3.11(9)

Table 5.7: As in Table 5.1 but with a 10-dimensional exponential power likelihood (5.5)
with b = 3

4

120

logZ θ1̂ θ2̂ θ3̂ θ4̂

Analytic values -32.3442 0.3980 0.3980 0 0
Mean standard -32.351(8) 0.397(3) 0.388(6) 0.0012(7) -0.0004(7)
Mean G = 0 -32.352(7) 0.393(3) 0.380(8) 0.0011(8) -0.0002(8)
Mean G = 0.25 -32.336(8) 0.397(2) 0.386(5) -0.0001(6) -0.0007(5)
Mean G = 1 -32.34(2) 0.399(1) 0.385(3) 0.0003(4) -0.0004(4)
St.Dev. standard 0.181(6) 0.057(2) 0.126(4) 0.0146(5) 0.0161(5)
St.Dev. G = 0 0.160(5) 0.076(2) 0.176(6) 0.0182(6) 0.0178(6)
St.Dev. G = 0.25 0.170(5) 0.046(1) 0.105(3) 0.0134(4) 0.0123(4)
St.Dev. G = 1 0.36(1) 0.032(1) 0.069(2) 0.0087(3) 0.0089(3)
RMSE standard 0.181(6) 0.057(2) 0.127(4) 0.0147(4) 0.0161(5)
RMSE G = 0 0.160(5) 0.076(3) 0.177(6) 0.0182(6) 0.0178(6)
RMSE G = 0.25 0.170(5) 0.046(1) 0.106(3) 0.0134(5) 0.0123(4)
RMSE G = 1 0.36(1) 0.032(1) 0.070(2) 0.0086(3) 0.0089(3)
St.Dev. gain G = 0 1.3(1) 0.56(5) 0.51(5) 0.64(6) 0.82(7)
St.Dev. gain G = 0.25 1.1(1) 1.5(1) 1.5(1) 1.2(1) 1.7(2)
St.Dev. gain G = 1 0.25(2) 3.3(3) 3.4(3) 2.9(3) 3.3(3)
RMSE gain G = 0 1.3(1) 0.56(6) 0.51(5) 0.65(6) 0.82(7)
RMSE gain G = 0.25 1.1(1) 1.5(1) 1.4(1) 1.2(1) 1.7(2)
RMSE gain G = 1 0.25(2) 3.3(3) 3.3(3) 2.9(3) 3.3(3)

Table 5.8: Comparison of results from the nested sampling runs used in Table 5.2 with
analytically calculated values for different quantities (shown in the first row). The
next 12 rows show mean, the standard deviation and root mean squared errors for the
standard nested sampling runs and the dynamic nested sampling runs with G = 0,
G = 0.25 and G = 1. The final 6 rows show efficiency gains calculated with the
standard deviation as in (5.6), and using the root-mean-squared-error instead of the
standard deviation. Columns show calculations of the log evidence and the mean of
the first 4 parameters. The mean dynamic nested sampling results agree closely with
the analytic values, indicating that there is no significant sampling bias. Numbers in
brackets show the 1σ numerical uncertainty on the final digit.

121

Appendix 5.F Dynamic nested sampling without

repeatedly restarting runs

This section describes the alternative dynamic nested sampling algorithm used by

dyPolyChord to avoid frequent resuming of the nested sampling process part way

through the run. After the initial exploratory run with ninit live points, an alloca-

tion of live points which varies with likelihood n(L) is calculated and used to generate

all the remaining samples in a single run. The number of live points is increased during

the run by sampling more than one live point from within a given iso-likelihood contour,

and reduced by not replacing dead points when they are removed. The user must specify

the approximate total number of samples to be taken, Ntotal, either as a constant or a

function of the number of samples taken by the initial run Ninit.

The target number of live points n(L) is calculated using importances (5.4) of the

dead points in the initial run; as the number of live points ninit is constant, the sam-

ples are evenly distributed in logX and the point importances are proportional to the

importances of each logX region. n(L) is calculated piecewise at each point i as

n(Li) =

K I(G, i)− ninit if K I(G, i) > ninit,

0 otherwise,
(5.27)

where I(i, G) is point i’s relative importance, and each n(Li) rounded to the nearest

integer. The constant K is chosen so that approximately the right number of samples

is taken — i.e. so that n(L) satisfies∫
n(L)

dlogX(L)

dL dL ≈ Ntotal −Ninit. (5.28)

If Ntotal � Ninit, (5.27) allocates live points approximately in proportion to the impor-

tances calculated from the initial run. Otherwise n(L) is only non-zero in the region

of high importance (where I > ninit/K), and will result in approximately equal sample

weights in this region in the final combined run with lower weights elsewhere. Given

the samples already taken by the initial exploratory run and the number of remaining

samples available Ntotal − Ninit, (5.27) approximately maximises the information con-

tent (Shannon entropy of the samples) (5.1). In practice estimates of n(L) from (5.27)

contain random noise from the stochasticity of the nested sampling algorithm. For bet-

ter results the piecewise importance function can be smoothed before calculating n(L);

122

https://github.com/ejhigson/dyPolyChord

by default dyPolyChord uses a Savitzky-Golay filter (Savitzky and Golay, 1964) with

polynomial order 3 and window size 2ninit + 1.

This procedure is set out more formally in Algorithm 5; for an example implemen-

tation see the dyPolyChord package and its documentation.

Output : Samples and live points information n.
Input : Goal G, ninit, approximate number of samples to take

Ntotal.

Generate an initial nested sampling run with a constant number of live points
ninit;

calculate n(L) from (5.27) using point importances I(G, i) and the number of
samples in the initial run Ninit;

perform nested sampling run with n(L) live points, beginning by resuming
initial the run at the first point where n(Li) > 0 and terminating8 after the
last point where n(Li) > 0;

merge the nested sampling runs generated and return the combined run.

Algorithm 5: The alternative dynamic nested sampling algorithm used by
dyPolyChord.

8In principle n(L) may drop to zero then, at some larger likelihood, become non-zero again —
although this is very unlikely in practice. In this case the run can terminate when n(L) = 0, then be
restarted at the higher likelihood when n(L) is again non-zero by resuming the initial exploratory run
at this later point.

123

https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord

Chapter 6

Bayesian sparse reconstruction

This chapter presents a principled Bayesian framework for signal reconstruction, in

which the signal is modelled by basis functions whose number (and form, if required) is

determined by the data themselves. Furthermore, by using a product-space approach,

the number and type of basis functions can be treated as integer parameters and their

posterior distributions sampled directly. We show that order-of-magnitude increases in

computational efficiency are possible from this technique compared to calculating the

Bayesian evidences separately, and that further computational gains are possible using

it in combination with dynamic nested sampling. We demonstrate our method for noisy

1- and 2-dimensional signals, including astronomical images. This chapter is an edited

version of the first part of Higson et al. (2019c).

6.1 Introduction

Sparse signal processing and Bayesian inference are both well-established methods for

data analysis, and have a considerable amount in common. However, these two ap-

proaches are often considered somewhat distinct from one another, and this is often

reflected in the relatively small overlap of the communities who develop and apply each

technique. Nevertheless Bayesian interpretations of sparse signal processing techniques

have been pursued by a number of authors in the signal processing community — for

example sparsity-promoting Bayesian approaches to compressed sensing, regression and

classification, and basis selection can be found in Ji et al. (2008), Tipping (2001) and

Wipf and Rao (2004) respectively. In addition, Bayesian inference with imposed spar-

125

sity has been applied to a variety of astronomical problems. These include inferring the

temperature structure of the solar corona (Warren et al., 2017), estimating photomet-

ric redshifts of blended sources (Jones and Heavens, 2018), and imaging solar flares by

representing them as a collection of geometric shapes (Sciacchitano et al., 2019).

In this chapter we outline a principled Bayesian approach for simultaneously im-

posing sparsity and performing dictionary learning to determine the optimal basis set

for representing the signal, and discuss how Bayesian inference provides a very natural

framework for sparsity. In our method a signal is modelled as the superposition of a

set of basis functions, whose number and form are determined by the data themselves.

Sparsity can be imposed directly via the prior on the number of basis functions N , while

simultaneous dictionary learning is performed through the estimation of parameters de-

scribing the location and shape of the basis functions.

The optimum number of basis functions N with which to model a signal can be

determined using Bayesian model selection by calculating the Bayesian evidence for

each value. However it is equivalent (and often more computationally efficient and

convenient) to treat N as an integer parameter, and sample directly from the joint

posterior of N and the other parameters describing the N basis functions. The final

inference may then be obtained by either by choosing the maximum a posteriori value

of N or, better, by marginalising over N to give a multi-model solution (Parkinson and

Liddle, 2013) with the fit for each number of basis functions weighted by its posterior

probability. This method can be further generalised to select from a variety of types of

basis functions T (such as Gaussians, Fourier modes, wavelet families, shapelets, etc.),

with the full version involving inference over the joint space of T , N and the basis

functions’ parameters.

While our principled approach is computationally expensive, we show that it is

practical in the low data regime using current numerical methods at reasonable com-

putational cost (see Table 6.2 in Appendix 6.B for details of the number of core hours

used to produce our results). In addition, this chapter is intended as a proof of principle

for applications where our method is not currently feasible but will be made so in the

future by advances in numerical methods and increases in computational power.

The chapter proceeds as follows: Section 6.2 describes standard regression tech-

niques, regularisation and sparsity. Section 6.3 then provides a Bayesian perspective

on these topics — including introducing our formulation of “Bayesian sparse recon-

126

struction” and a discussion of how it can be implemented numerically. Sections 6.4

and 6.5 demonstrate applying our approach to 1- and 2-dimensional signal processing,

including of astronomical images from the Hubble Space Telescope eXtreme Deep Field

(Illingworth et al., 2013).

6.2 Regression, regularisation and sparsity

We begin by presenting some background on standard approaches to regression, regu-

larisation and sparsity. This provides context for the Bayesian framework presented in

Section 6.3, in which all these methods may be reinterpreted. This section is intended

to draw out the common themes in numerous popular signal reconstruction methods,

and describe them in a unified manner.

6.2.1 Standard non-parametric regression

Regression involves using data points {xd, yd} (including random noise) to reconstruct

some function y = f(x;θ), where θ is some number of free parameters and the semicolon

separates variables from parameters. Such inverse problems are common in science, and

are typically ill-posed1. For example, in monochrome image reconstruction each data

point is a pixel with 2-dimensional (centre) position x and scalar intensity value y. In

general x and y can be vectors of any dimension, but for simplicity in this chapter we

consider only scalar outputs y. The results easily generalise to vector outputs.

When a good model for the data is not available a priori, a traditional non-

parametric approach is to use a free-form solution (Sivia and Skilling, 2006) in which

the function is pixelated and the value at each pixel is fitted. This is a standard way

of performing “brute-force” numerical calculations on computers, and is equivalent to

fitting a delta function (or more accurately “top-hat”) basis function centred on each

of the M pixels with their amplitudes as free parameters, giving M degrees of freedom.

Ironically, such “non-parametric” approaches thus contain many parameters — typi-

cally far more than “parametric” approaches. The free form approach is illustrated for

1-dimensional input x in Figure 6.1 (which is based on Figure 6.1 of Sivia and Skilling,

2006), but can be performed in arbitrary dimensions.

1An “ill-posed” problem does not satisfy all three of the conditions for a problem to be “well-posed”
outlined by Hadamard (1902). The conditions are: a solution exists, the solution is unique and the

127

x1 xj xM

x

y

a1

aM

aj

y = f(x)

Figure 6.1: Free-form decomposition of a 1-dimensional function y = f(x) into M pixels
with amplitudes (free parameters) θ = (a1, a2, . . . , aM).

x1 xj xM

x

y

a1

aM
aj

y = f(x)

Figure 6.2: Free-form decomposition of a 1-dimensional function y = f(x) into M Gaus-
sian basis functions with standard deviation σ, each centred on a pixel, with amplitudes
(free parameters) θ = (a1, a2, . . . , aM).

Smoothness can be encoded into the solution by replacing the delta functions with

broader basis functions φ(x;xj , σ), with fixed centres xj located on each of the M

pixels and their width determined by a shared shape parameter σ. For Gaussian basis

functions:

f(x;a, σ) =
M∑
j=1

ajφ(x;xj , σ) =
M∑
j=1

aj exp

(
−|x− xj |

2

2σ2

)
. (6.1)

This is illustrated for a 1-dimensional input x in Figure 6.2 (based on Figure 6.7 of Sivia

and Skilling, 2006).

128

p = 0 p = 1
2 p = 1 p = 2 p = 4

Figure 6.3: Lp = 1 surfaces in 3 dimensions for different values of p, with L0 representing
the number of non-zero components of the vector.

6.2.2 Optimisation and regularisation

The values of the parameters θ are typically chosen by minimising the squared L2

norm of the differences between the model and the data (also referred to as the squared

residuals or χ2). Here the Lp norm of a vector is defined for p > 0 as ‖v‖p ≡ (
∑

i |vi|p)
1/p

and the L0 norm is the number of non-zero components; this is illustrated for different

values of p in Figure 6.3. The squared L2 norm approach yields the maximum likelihood

estimate (MLE) for θ under certain restrictive conditions,2 although it is commonly

applied when these are not met; see Sivia and Skilling (2006, Chapter 8) for a more

detailed discussion and recommended modifications to the least squares procedure for

different types of data.

When using the squared L2 norm, the optimisation is

min
θ

D∑
d=1

(yd − f(xd;θ))2 = min
θ
‖y − ŷ‖22, (6.2)

where y = {y1, . . . , yD} are the data values and ŷ = {f(x1), . . . , f(xD)} are the fit

values. For simplicity we assume for the moment that the shape of the basis functions

is fixed and only the amplitudes are free parameters, in which case

min
θ
‖y − ŷ‖22 = min

a∈RM
‖y − Φa‖22, (6.3)

where the vector a = (a1, a2, . . . , aM) determines the basis functions’ amplitudes and

Φ = (φ1, φ2, . . . , φM) is a D ×M basis matrix.

Typically a regularisation term is added to penalise more complex models; this is to

prevent the analysis fitting noise in the data set and producing a result which will not

generalise to new data sets (“overfitting”). Some popular choices are:

behaviour of the solution changes continuously with changes in the parameters and data.
2These include that the residuals on each data point must be independently normally distributed,

and that there are no errors in the independent variables x.

129

• The (squared) L2 norm — used in the Wiener filter (Wiener, 1949) and ridge

regression (Hoerl and Kennard, 1970):

min
a∈RM

‖y − Φa‖22 + λ‖a‖22. (6.4)

• The L1 norm — used in the Lasso (Tibshirani, 1996), compressed sensing and for

imposing sparsity:

min
a∈RM

‖y − Φa‖22 + λ‖a‖1. (6.5)

• The L0 norm — used in matching pursuit (Mallat and Zhang, 1993), iterative

thresholding (Elad et al., 2007), compressed sensing and for imposing sparsity:

min
a∈RM

‖y − Φa‖22 + λ‖a‖0, (6.6)

where ‖a‖0 simply counts the number of non-zero elements in the amplitude vector

a.

• The entropy — used in the maximum entropy method (MEM):

min
a∈RM

‖y − Φa‖22 − λS(a), (6.7)

S(a) =

M∑
i=1

ai −mi − ai ln

(
ai
mi

)
, (6.8)

where mi is a (model) amplitude value assigned to each basis function (Ables,

1974; Gull and Daniell, 1978).

In principle, such optimisations define a “solution curve” â(λ). To obtain a particular

solution one must choose a value for the regularisation parameter λ, which determines

the relative importance of the accuracy of the fit to the data and the value of the

regularising function; it is often chosen a priori but can be determined using heuristics

or cross-validation. For example, the regularisation constant for MEM has historically

been chosen so the residual statistic equals its expectation value — i.e. so χ2 = D where

D is the number of data points (Sivia and Skilling, 2006). A more modern approach is

to choose the value of λ which maximises the Bayesian evidence; this can also be used

to select quantities such as the width σ of the basis functions shown in Figure 6.2 (Sivia

and Skilling, 2006).

130

a1

a2

||a||2

a1

a2

||a||1

Figure 6.4: Illustration of Lp norms promoting sparsity when p < 2. The blue circle on
the left plot shows the region of the parameter space (a1, a2) with an L2 norm less than
some maximum value, and the blue diamond on the right plot shows the region with
an L1 norm less than some maximum value. The black contours on each plot show an
objective function to be optimised. Due to its angular shape, the region constrained by
a maximum L1 norm is more likely to have its maximum value of the objective function
at a coordinate where one of the parameters is zero than the L2 region.

It is worth noting that Equations (6.4) to (6.7) refer to the synthesis formulation

which optimises over the parameters a. An alternative is the analysis approach in which

the optimisation is performed directly with respect to the (vectorised) function f(x),

and a is replaced in Equations (6.4) to (6.7) with Φ−1f(x). This technique is commonly

used in radio interferometry — see for example Maisinger et al. (2004), McEwen and

Wiaux (2011) and Cai et al. (2018).

6.2.3 Sparse representations

In many practical signal and image processing applications we can use prior knowledge

that the physical signals have “sparse” representations in which they have very few non-

zero components (a low L0 norm). For example, astronomical images with many pixels

can often be well represented by a relatively small number of point sources or wavelets.

Sparse solutions are promoted by choosing a regularisation term Lp with p < 2, in

which case Lp surfaces have singular points at sparse solutions (Bach et al., 2012); this

is illustrated graphically in Figure 6.4.

Sparsity is key to compressed sensing (Candès et al., 2006a,b; Donoho, 2006): a

popular signal processing technique for efficiently recovering high-dimensional vector

signals under the assumption that they are sparse in some basis (see Eldar and Kutyniok,

131

2012, for an introduction). Sparse solutions can be found by L0-optimisation, but this is

computationally challenging and is non-convex, meaning standard convex optimisation

cannot be used. The success of compressed sensing is based on instead using the L1-

norm — the smallest p for which the Lp norm is convex. Compressed sensing theory

shows that in some cases the L1-norm can give an identical solution to the L0-norm, and

that in other cases the difference between the solutions is bounded. Compressed sensing

has been applied successfully to a variety astronomical problems; see for example Bobin

et al. (2008) and Wiaux et al. (2009).

6.2.4 Adaptive basis functions and dictionary learning

In order to find representations for data sets which are sparse (use relatively few basis

functions) we now generalise the reconstructions described in (6.2.1) by allowing each

basis function’s location and shape to be determined by parameters pi and fitted to the

data. The signal is reconstructed as

f(x;a,p1, . . . ,pN) =
N∑
i=1

aiφ(x;pi), (6.9)

where now the number of basis functions N can easily be much smaller than the number

of pixels M .

For a given data set, some types of basis function will provide more natural and

sparse representation than others. We can further generalise (6.9) using parameterised

dictionary learning, by fitting different families of standard basis functions (determined

by a categorical variable T). The optimisation then determines T , as well as each basis

function’s amplitude ai and parameters pi by reconstructing the signal as

f(x;T,a,p1, . . . ,pN) =
N∑
i=1

aiφ
(T)(x;pi). (6.10)

Commonly used basis function families include Gaussians, wavelets and shapelets.

6.3 A Bayesian approach

6.3.1 Bayesian formulation of regression and regularisation

Before introducing our full Bayesian sparse reconstruction framework in Section 6.3.3, we

first give a Bayesian formulation of the regression and regularisation problems discussed

132

in Sections 6.2.1 and 6.2.2 as the comparison is very informative. In these cases the

number, type and shape of basis functions are fixed and the only parameters of the

model are the amplitudes — i.e. θ = a.

In general, defining the likelihood of the basis function fit given some data D requires

knowledge of how measurement errors are distributed. For example, a common assump-

tion in the literature is that there are independent Gaussian errors on the signal values

{yd}, and no errors on the data points’ coordinates {xd}. In this case the likelihood of

the data given the model is

L(a) = P (D|a,M) =

D∏
d=1

1√
2πσ2

y

exp

(
−(yd − f(xd;a))2

2σ2
y

)

∝ exp

(
−‖y − Φa‖22

2σ2
y

)
,

(6.11)

recovering the (exponentiated) least squares objective function from (6.3). Of course

this assumption may be inappropriate for some data sets. For example, for low-level

photon-counting measurements a Poisson likelihood function (or similar) may be re-

quired. Although the Bayesian formulation can naturally accommodate other likelihood

functions, for simplicity we will henceforth consider only independent Gaussian errors.

In order for the Bayesian approach to give the same maximum a posteriori param-

eter values as the optimisation in Section 6.2.2, the prior π(a) must correspond to the

exponential of the regularisation terms in (6.4-6.7). For a more formal derivation of this

result in the context of the Wiener filter, see Hobson et al. (1998) and Lasenby et al.

(2001).

In the Bayesian framework, the different regularisation techniques in (6.4-6.7) are

analogous to the following choices of priors:

• L2 (squared) regularisation (6.4) corresponds to a Gaussian prior:

π(a) ∝ exp(−λ‖a‖22). (6.12)

• L1 regularisation (6.5) corresponds to a Laplacian prior:

π(a) ∝ exp(−λ‖a‖1). (6.13)

133

• L0 regularisation (6.6) corresponds to an exponential prior on the number of non-

zero components of a:

π(a) ∝ exp(−λ‖a‖0) = exp(−λN), (6.14)

where N is the number of basis functions used in the signal reconstruction.

• Entropy regularisation (6.7) corresponds to an entropic prior

π(a) ∝ exp(λS(a)), (6.15)

where S(a) is defined in (6.7).

More generally other priors can be used. For example, one may promote sparsity by

using any prior which has fatter tails than a Gaussian and is also more concentrated

at zero — such priors prefer to shrink amplitudes to zero while also being lenient in

allowing larger amplitudes. Thus, as an alternative to the Laplacian distribution (6.13),

one could use for example a Cauchy distribution

π(a) =
M∏
j=1

λ

π

1

λ2 + a2
j

. (6.16)

In addition, the L2 regularisation prior (6.12) can be generalised to include some

covariance matrix C, which may be a function of some further parameters θ,

π(a) ∝ exp(−λaᵀC−1a). (6.17)

This form can be used to reconstruct a signal as a Gaussian process (see Rasmussen,

2004, for an introduction), with C representing its correlation structure. When perform-

ing the optimisation, the basis matrix Φ most naturally contains Fourier modes. The

optimisation is typically performed by selecting both θ and λ to maximise the Bayesian

evidence (sometimes the value of λ is chosen a priori). Indeed, Gaussian processes

could be further generalised by using a different form for the prior term — for example

“entropic processes” with π(a) ∝ e−λS(La), where S is defined as in (6.7) and C = LLᵀ

is the Cholesky decomposition of the signal correlation matrix (Hobson et al., 1998).

134

6.3.2 Sampling and model selection

Maximum a posteriori estimates of the parameters a can be found from the poste-

rior distribution ∝ L(a)π(a) in an analogous manner to the optimizations in (6.3-6.7).

However, a major advantage of the Bayesian approach is that it provides a generative

model and allows the full posterior distribution to be sampled. This provides additional

information such as posterior distributions on the weights a and other quantities of

interest.

Furthermore, the posterior distribution allows the appropriate number of basis

functions to be chosen via Bayesian model selection by calculating posterior odds ra-

tios (2.15). This naturally penalises more complex models and, with an appropriate

choice of priors, provides a principled Bayesian method for creating models with the

level of complexity which is justified by the data. Finally one can either choose the

maximum a posteriori number of basis functions or, better, marginalise over N so the

fit with each number of basis functions is weighted in proportion to its posterior proba-

bility. Any a priori expectation of the degree of sparsity can be included in the priors,

and there is no need for an additional regularization term.

6.3.3 Bayesian sparse reconstruction

Following the discussion in the previous sections, we propose reconstructing the rela-

tionship y = f(x) as a sum of N basis functions φ(T) of type T with weights ai and

shape and location parameters pi as

f(x;T,N,a,p1, . . . ,pN) =
N∑
i=1

aiφ
(T)(x,pi). (6.18)

One can then perform Bayesian inference over the full parameter space of θ =

(T,N,a,p1, . . . ,pN).

This approach has the desirable properties that:

• full posterior distributions on parameters can be recovered by sampling (rather

than simply optimizing);

• sparsity can be enforced directly through priors on the total number of basis

functions N ;

• there are a variable number of basis functions with variable positions;

135

• there is no need to choose a regularisation constant λ;

• families and/or shapes of basis functions are determined and can be marginalised

over;

• arbitrary constraints can be imposed on the reconstruction (not just positivity);

• any type of noise can be included — e.g. Gaussian, Poisson, etc. If the size

or nature of the noise is unknown, it can be expressed in terms of additional

parameters which can be marginalised over;

• missing and/or irregular data can be accommodated;

• the model is generative and can easily be extended to deconvolution.

The remainder of this section discusses how Bayesian sparse reconstructions can be

computed, with numerical tests presented in the following section.

6.3.4 Vanilla and adaptive methods

Given some noisy signal to be reconstructed, Bayesian model selection can be used to de-

termine an appropriate type T and number N of basis functions to use by calculating the

Bayesian evidence ZT,N for the fit using each combination (model) T,N . Using (2.14),

the posterior probability of each model is proportional to ZT,NΠT,N , where ΠT,N is

the prior probability of the model and over-complex models are penalised by lower ev-

idences. We term this the vanilla method. One can then either select the model with

the highest posterior probability or, better, use a combination of all models weighted

by their posterior probability (“multi-model analysis”).

The adaptive method (mentioned in Section 3.7) is an alternative product-space ap-

proach, which analyses a “meta-model” containing one or more discrete parameters with

values corresponding to each individual model. The likelihood of a sample is found by

selecting the model indicated by the discrete parameters, then working out the likeli-

hood for this model using the remaining parameters. A fixed dimensionality which is

sufficient for the individual model with the most parameters is used; for models with

fewer parameters, the likelihood is independent of the remaining unneeded parameters.

This is an alternative to transdimensional sampling methods such as reversible-jump

136

MCMC (Green, 1995). Hee et al. (2016, 2017) used the adaptive method in recon-

structing 1-dimensional signals by linearly interpolating between N points (“nodes”),

with their co-ordinates as free parameters. We generalise this approach by letting the

integer parameter N represent the number of basis functions (of any dimension) to

be used, and when needed also including a second integer parameter T to determine

the form of the basis functions. Posterior distributions of T and N are found using

parameter estimation.

6.3.5 Practical considerations for sampling the posterior

The posterior is typically of moderate to large dimensionality, and will be non-convex

and multimodal with pronounced degeneracies. Furthermore, due to the integer param-

eters T and N , methods requiring gradients cannot be used. We explore the posterior

using nested sampling (Skilling, 2006), which is well suited to such problems and can

be performed using software packages such as MultiNest (Feroz and Hobson, 2008;

Feroz et al., 2008, 2013) or PolyChord (Handley et al., 2015a,b). The adaptive method

calculates posterior odds ratios indirectly via parameter estimation by sampling the in-

teger parameters T and N , and as a result its sampling errors have the characteristics

described in Chapter 3. In contrast the vanilla method uses direct evidence calculations.

Dynamic nested sampling (discussed in Chapter 5) gives large efficiency gains for

parameter estimation, meaning it works well with the adaptive method. In contrast

the efficiency gains for evidence calculations are relatively modest (except in low di-

mensions), so dynamic nested sampling only produces small speedups for calculations

of posterior odds with the vanilla method and we do not use it in this case. Results in

this chapter were calculated using dyPolyChord (Higson, 2018a) — a dynamic nested

sampling package based on PolyChord. Due to the challenging multimodal posteriors

produced by the integer parameter in the adaptive method, we use a large fraction

(50%) of the total computational budget for each calculation on dyPolyChord’s initial

exploratory run. This reduces the possible efficiency gain, but dyPolyChord is still able

to produce significant speedups compared to standard nested sampling.

137

https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord

6.4 Fitting 1-dimensional data

We first demonstrate Bayesian sparse reconstruction by finding the dependence of some

scalar quantity y on another scalar variable x, and to make the example more challenging

we allow errors on both the data values yd and positions xd.

If each measurement has an independent error distribution P (xd, yd|Xd, Yd) about

its true value Xd, Yd then the probability of the observed data given some set of true

values is

P (D|{Xd, Yd}) =
D∏
d=1

P (xd, yd|Xd, Yd). (6.19)

The unknown true data values Xd, Yd are then marginalised out using the basis fitting

model by taking Yd = f(Xd;T,N,a,p1, . . . ,pN) and integrating over the distribution

of the x coordinates at which data points were sampled P (Xd). Hence each likelihood

call involves an integral for every data point:

P (D|P (Xd), T,N,a,p1, . . . ,pN) =
D∏
d=1

∫
P (xd, yd|Xd, f(Xd))P (Xd) dXd, (6.20)

where for brevity we have omitted the dependence of f(Xd;T,N,a,p1, . . . ,pN) on the

parameters T,N,a,p1, . . . ,pN .

We first consider samples to be taken uniformly in the range X− < Xd < X+ with

independent Gaussian x and y errors of size σx and σy. In this case (6.20) gives the

likelihood (Hee et al., 2016)

L(T,N,a,p1, . . . ,pN) =P (D|T,N,a,p1, . . . ,pN)

=

D∏
d=1

∫ X+

X−

exp
[
− (xd−Xd)2

2σ2
x
− (yd−f(Xd))2

2σ2
y

]
2πσxσy(X+ −X−)

dXd.
(6.21)

The priors on the parameters and models can be specified as required, and together

with the likelihood can be used to sample numerically from the posterior and calculate

evidences. As f(x;T,N,a,p1, . . . ,pN) is typically invariant under interchange of basis

function index the prior space can be shrunk by a factor of N ! by enforcing ordering

using “forced identifiability” (sorted) priors; see Handley et al. (2015b, Appendix A2)

for a more detailed discussion.

138

−2 0 2

x

0.0

0.5

1.0

y
=

e−
(−
|x
−
µ
|/
σ

)β

β = 1
2

β = 1

β = 2

β = 4

β = 8

(a) Generalised Gaussians (6.22) for different
values of β; each has µ = 0 and σ = 1.

−2 0 2

x

−1

0

1

y
=

ta
n

h
(w
x

+
b)

w = −8

w = −2

w = − 1
2

w = 1
2

w = 2

w = 8

(b) tanh functions (6.23) with different values
of w. All the lines shown use b = 0.

Figure 6.5: Illustrations of 1-dimensional basis functions.

6.4.1 Basis functions

The likelihood (6.21) applies for mixture models with any 1-dimensional basis function;

we demonstrate it using 1-dimensional generalised Gaussians

φ(g1d)(x;p) = φ(g1d)(x, µ, σ, β) = e−(|x−µ|/σ)β (6.22)

and 1-dimensional tanh functions

φ(t1d)(x,p) = φ(t1d)(x,w, b) = tanh(wx+ b). (6.23)

Their shape and location are determined by parameters p = (µ, σ, β) and p = (w, b)

respectively; the effects of different parameters are illustrated in Figure 6.5. The mag-

nitude of each basis function in the fit is controlled by an amplitude parameter a.

When β = 2, (6.22) is proportional to a normal distribution with variance σ2/2, and

when β = 1 it is proportional to a Laplace distribution. For large values of β, (6.22) is

approximately uniform ∈ [µ− σ, µ+ σ] and zero elsewhere. The normalisation constant

β/(Γ(1
β)2σ) is omitted from (6.22) as it causes pronounced degeneracies in the joint

posterior distributions of a, β and σ due to all 3 parameters affecting the height of the

basis function at its centre.

The priors used for the basis functions are shown in Table 6.1. The exponential

prior on the amplitudes a of the generalised Gaussians has the desirable property that

139

Parameter Prior Type Prior Parameters

1-dimensional generalised Gaussian (6.22)
N Uniform (integer) ∈ Z ∩ [1, 5]
a Sorted Exponential λ = 1
µ Uniform ∈ [0, 1]
σ Uniform ∈ [0.03, 1.0]
β Exponential λ = 0.5

1-dimensional tanh (6.23)
N Uniform (integer) ∈ Z ∩ [1, 5]
a Sorted Half Gaussian µ = 0, σ = 5
w Gaussian µ = 0, σ = 5
b Gaussian µ = 0, σ = 5

Adaptive basis function family selection
T Uniform (integer) ∈ Z ∩ [1, 2]

2-dimensional generalised Gaussian (6.25)
N Uniform (integer) ∈ Z ∩ [1, 5]
a Sorted Exponential λ = 1
µ1 Uniform ∈ [0, 1]
µ2 Uniform ∈ [0, 1]
σ1 Uniform ∈ [0.03, 0.5]
σ2 Uniform ∈ [0.03, 0.5]
β1 Exponential λ = 0.5
β2 Exponential λ = 0.5
Ω Uniform ∈ [−π/4, π/4]

Table 6.1: Priors on basis function parameters used in this chapter. Sorted priors have
ordering enforced; see Handley et al. (2015b, Appendix A2) for more details. The half
Gaussian prior on the amplitudes of the tanh basis functions is truncated at zero and
permits only positive values.

140

it is a function of only the sum of the amplitudes and does not vary based on how

the total is split between basis functions. We use a uniform prior on the generalised

Gaussians’ σ, rather than a scale prior favouring smaller values, as we find the latter

causes overfitting by encouraging the addition of narrow generalised Gaussians to fit

noise in the data. The priors on the tanh basis functions are chosen for consistency with

the neural networks discussed in Chapter 7.

6.4.2 Numerical results

We first illustrate Bayesian sparse reconstruction using simulated 1-dimensional data

points sampled from basis function mixture models. Independent Gaussian x- and y-

errors of size σx = σy = 0.07 are added to each data point.

Figure 6.6 show the results from fitting different Gaussian mixture models; plots of

the posterior distribution of y were created using the fgivenx package (Handley, 2018).

Despite the large measurement noise and visually similar data in Figures 6.6a to 6.6c,

our approach is able to correctly reconstruct the different true signals and identify the

increasing number of basis functions required to model each signal.

Figure 6.7 shows examples of signal reconstructions conditioned on specific numbers

of basis functions, and illustrates the effect of increasing N on the fit produced. Such

plots can be calculated from adaptive method nested sampling runs by marginalising

over different values for the integer parameter N . However, we use the vanilla method

runs to make these plots as the adaptive method dedicates relatively few samples to

exploring the highly disfavoured N values with make negligible contribution to the

overall fit. This is a desirable feature which makes fitting with the adaptive method

more efficient, but as a consequence the vanilla method can produce more accurate plots

conditioned on disfavoured values of N .

Figures 6.8 and 6.9 show examples of fitting tanh basis functions to 1-dimensional

data, and are similar to Figures 6.6 and 6.7. As for the generalised Gaussian basis

functions, our approach is able to accurately reconstruct the true signal from the noisy

data and identify the increasing complexity of the successive signals in Figures 6.8a

to 6.8c. However it is not necessarily the case that the most probable a posteriori value

of N , given the noisy data and priors, is the same as the number of basis functions from

which the data was sampled; in Figure 6.8c, P (N = 4|L, π) and P (N = 5|L, π) are

greater than P (N = 3|L, π).

141

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

true signal

0.0 0.2 0.4 0.6 0.8

x

noisy data

0.0 0.2 0.4 0.6 0.8 1.0

x

fit

1σ

2σ

3σ

1 2 3 4 5

number of basis functions N

0.0

0.5

1.0

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(a) Data from a single generalised Gaussian.

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

true signal

0.0 0.2 0.4 0.6 0.8

x

noisy data

0.0 0.2 0.4 0.6 0.8 1.0

x

fit

1σ

2σ

3σ

1 2 3 4 5

number of basis functions N

0.0

0.2

0.4

0.6

0.8

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(b) Data from the sum of two generalised Gaussians.

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

true signal

0.0 0.2 0.4 0.6 0.8

x

noisy data

0.0 0.2 0.4 0.6 0.8 1.0

x

fit

1σ

2σ

3σ

1 2 3 4 5

number of basis functions N

0.0

0.5

1.0

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(c) Data from the sum of three generalised Gaussians.

Figure 6.6: Fitting generalised Gaussian basis functions to 100 data points sampled from different com-
binations of basis functions. In each row the first plot shows the true signal (a sum of basis functions);
where this contains more than one basis function, the individual components are shown with dashed lines.
The data, which includes added normally distributed x- and y-errors with σx = σy = 0.07, is show in
the second plot. The third plot shows the fit calculated using the adaptive method with dynamic nested
sampling; coloured contours represent posterior iso-probability credible intervals on y(x). The bar plots
on the right display the posterior distribution for different numbers of basis functions N ; values calculated
using the vanilla method and using the adaptive method with standard nested sampling are also included
for comparison. Results shown for the adaptive method use a combined inference from 5 runs, each of
which computes a full posterior on N and uses 1,000 live points; adaptive runs using dynamic nested
sampling have dyPolyChord settings ninit = 500 and dynamic goal = 1. Results for the vanilla method
use 5 separate runs, each with 200 live points, to compute the evidence for each value of N . All runs use
the setting num repeats = 100. The parameters of the basis functions in the true signal and numerical
results for the computational efficiency of the different methods are shown in Table 6.3 and Table 6.6
respectively in Appendix 6.C.

142

https://github.com/ejhigson/dyPolyChord

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

N = 1

0.0 0.2 0.4 0.6 0.8

x

N = 2

0.0 0.2 0.4 0.6 0.8

x

N = 3

0.0 0.2 0.4 0.6 0.8

x

N = 4

0.0 0.2 0.4 0.6 0.8 1.0

x

N = 5

1σ

2σ

3σ

Figure 6.7: Fits of the data shown in Figure 6.6c conditioned on different numbers N of
basis functions. These plots are made using the vanilla method nested sampling runs, as
the adaptive method runs contain relatively few samples from the heavily disfavoured
values of N .

6.4.3 Adaptive basis function families

We now illustrate including a second integer parameter T which selects the basis function

family, in addition to N which selects the number of basis functions given the family.

Figure 6.10 shows fits using both generalised Gaussians (T = 1) and tanh functions

(T = 2), with a uniform prior on T ∈ Z ∩ [1, 2].

The generalised Gaussians are a much better fit for the data in Figure 6.10a, with

posterior probability from the adaptive method with dynamic nested sampling of P (T =

2|L, π) = (1 ± 1) × 10−7. In contrast the two families are competitive for the data in

Figure 6.10b, with P (T = 2|L, π) = 0.6 ± 0.1 indicating only a weak favouring of the

tanh basis function. These results are, however, highly dependent on the priors used for

the basis functions’ parameters.

A possible application of this adaptive selection of basis function families T would

be to compare different parametric models for sources in astronomical images in which

the true number of sources is unknown. In this case computing a posterior distribution

on T would not only marginalise over the distributions of the sources’ parameters, but

also over the unknown number of sources N .

6.4.4 Comparison of vanilla and adaptive results

The adaptive method allows significant improvements in accuracy of the overall fit for

a given computational cost by allocating fewer samples into disfavoured models which

make a small or negligible contribution to the output. In addition, by transforming the

model selection from evidence calculations (as in the vanilla method) to a parameter

143

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

true signal

0.0 0.2 0.4 0.6 0.8

x

noisy data

0.0 0.2 0.4 0.6 0.8 1.0

x

fit

1σ

2σ

3σ

1 2 3 4 5

number of basis functions N

0.0

0.2

0.4

0.6

0.8

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(a) Data from a single tanh basis function.

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

true signal

0.0 0.2 0.4 0.6 0.8

x

noisy data

0.0 0.2 0.4 0.6 0.8 1.0

x

fit

1σ

2σ

3σ

1 2 3 4 5

number of basis functions N

0.0

0.2

0.4

0.6

0.8

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(b) Data from the sum of two tanh basis functions.

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

true signal

0.0 0.2 0.4 0.6 0.8

x

noisy data

0.0 0.2 0.4 0.6 0.8 1.0

x

fit

1σ

2σ

3σ

1 2 3 4 5

number of basis functions N

0.0

0.2

0.4

0.6

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(c) Data from the sum of three tanh basis functions.

Figure 6.8: As for Figure 6.6 but using tanh basis functions instead of generalised Gaussians. The
parameters of the tanh basis functions in true signal are shown in Table 6.4 in Appendix 6.C.

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

N = 1

0.0 0.2 0.4 0.6 0.8

x

N = 2

0.0 0.2 0.4 0.6 0.8

x

N = 3

0.0 0.2 0.4 0.6 0.8

x

N = 4

0.0 0.2 0.4 0.6 0.8 1.0

x

N = 5

1σ

2σ

3σ

Figure 6.9: Fits of the data sets shown in Figure 6.8c conditioned on different numbers N of basis functions.

144

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

true signal

0.0 0.2 0.4 0.6 0.8

x

noisy data

0.0 0.2 0.4 0.6 0.8 1.0

x

fit

1σ

2σ

3σ

1,1 1,2 1,3 1,4 1,5 2,1 2,2 2,3 2,4 2,5

family and number T,N

0.0

0.5

1.0

P
(T
,N
|L
,π

)

posterior distribution of T,N

vanilla
adaptive
dyn. adap.

(a) Data used in Figure 6.6a from a single generalised Gaussian.

0.0 0.2 0.4 0.6 0.8

x

0.00

0.25

0.50

0.75

1.00

y

true signal

0.0 0.2 0.4 0.6 0.8

x

noisy data

0.0 0.2 0.4 0.6 0.8 1.0

x

fit

1σ

2σ

3σ

1,1 1,2 1,3 1,4 1,5 2,1 2,2 2,3 2,4 2,5

family and number T,N

0.0

0.2

0.4

0.6
P

(T
,N
|L
,π

)
posterior distribution of T,N

vanilla
adaptive
dyn. adap.

(b) Data used in Figure 6.8a from a single tanh function.

Figure 6.10: Fitting generalised Gaussian and tanh basis functions to data in a fully adaptive manner with
the family determined by an integer parameter T . In each row the first plot shows the true signal (a sum
of basis functions). The data, shown in the second plot, contains normally distributed x- and y-errors with
σx = σy = 0.07. The third plot shows the fit calculated using the adaptive method with dynamic nested
sampling; coloured contours represent posterior iso-probability credible intervals on y(x). The bar plots on
the right display the posterior posterior distribution on different families T and numbers of basis functions
N ; values calculated using the vanilla method and using the adaptive method with standard nested
sampling are also included for comparison. Results for the adaptive method use a combined inference
from 5 runs, each of which computes a full posterior on T,N and uses 1,000 live points; adaptive runs
using dynamic nested sampling have dyPolyChord settings ninit = 500 and dynamic goal = 1. Results
for the vanilla method use separate runs, each with 200 live points, to compute the evidence for each
combination of T and N . All runs use the setting num repeats = 100.

145

https://github.com/ejhigson/dyPolyChord

estimation problem on N , the adaptive method changes the nature of the sampling

errors. Uncertainty in the rate of shrinkage at each step before any significant posterior

mass is reached — the dominant source of error in nested sampling evidence calculations

— has a negligible effect on parameter estimation of the posterior distribution of N .

This can allow order-of-magnitude gains in computational efficiency of posterior odds

ratios from the adaptive method compared to the vanilla method, as observed by Chua

et al. (2018). However, a downside of the method is that including all the models and

the integer parameter makes the posterior distribution highly multimodal and more

challenging for the sampler to explore.

Following (5.7), we measure the computational efficiency gains from alternative

methods compared to the vanilla method with standard nested sampling as

efficiency gain =
Var[vanilla NS results]

Var[method NS results]
× Nsamp,van

Nsamp,meth

. (6.24)

Here the first term is the ratio of the estimated variance of the results of repeated

calculations using the vanilla method and the alternative method; the second term is

the ratio of the mean number of samples from the nested sampling runs using each

method. Numerical results for the efficiency gains from the different methods are show

in Table 6.6 in Appendix 6.C. These use estimates of the variance of results calculated

using the bootstrap resampling method described in Chapter 3, which avoids the need

to compute large numbers of nested sampling runs but also does not include additional

errors due to implementation-specific effects. As described in Appendix 6.C, we find

that the sampler is not able to explore the parameter space perfectly with the settings

used, meaning the true variance of results is higher than the bootstrap estimates. As a

result, given the adaptive method’s more complex posterior distribution, the efficiency

gains of factors of up to 14 ± 3 for the adaptive method and 46 ± 9 for the adaptive

method using dynamic nested sampling are likely to be overestimates. These efficiency

gains are best viewed as an indication of what is possible using the method with more

computational power — such as using a higher value for dyPolyChord’s num repeats

setting.

146

https://github.com/ejhigson/dyPolyChord

6.5 2-dimensional image fitting

We now demonstrate Bayesian sparse reconstruction for monochrome images. Here, for

each data point (pixel) d, xd = (x1, x2)d is the pixel location and yd ∈ [0, 1] is the scalar

signal. For simplicity we assume that the errors in the pixel positions xd are negligible,

and consider the case that the signal yd for each pixel contains independent Gaussian

noise with size σy = 0.2 — in this case the likelihood is given by (6.11).

We define 2-dimensional generalised Gaussians as the product of two 1-dimensional

generalised Gaussians (6.22) rotated by angle Ω around their mean µ:

φ(g2d)(a,p) = φ(g2d)(x,µ,σ,β,Ω)

= φ(g1d)(x′1, µ1, σ1, β1)× φ(g1d)(x′2, µ2, σ2, β2)

where x′ = µ+ (x− µ)

(
cos(Ω) − sin(Ω)

sin(Ω) cos(Ω)

)
.

(6.25)

The priors used are shown in Table 6.1.

Figure 6.11 show examples of Bayesian sparse reconstruction fitting 2-dimensional

images. The fits show the mean values predicted for each pixel, averaged over all

the samples produced in proportion to their posterior weight. Using the mean value

avoids overfitting — which would occur if, for example, the fit was simply calculated

from the sample with the highest likelihood (the maximum likelihood estimate). The

samples provide a full posterior distribution on the parameters and output signal, so

other quantities such as the uncertainty on each pixel can also be easily calculated.

Figure 6.12 shows fits conditioned on specific values of N , and illustrates how increasing

the number of basis functions allows increasingly complex structure to be included in

the recovered image.

As in the 1-dimensional case, our approach is able to faithfully reconstruct the

signal from the noisy data and the numbers of basis functions with the highest posterior

probability (shown in the bar charts on the right of each subfigure) match the number

of components in the mixture model used for the signal. Furthermore, Table 6.7 in

Appendix 6.C shows efficiency gains (6.24) from the adaptive method of up to 10 ± 2

and from the adaptive method with dynamic nested sampling of up to 16 ± 3 in these

cases. However, as discussed in Section 6.4.4, these numbers may overestimate the

efficiency gains observed in practice with the settings used.

147

x1

x
2

true signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1 2 3 4 5

number of basis functions N

0.0

0.5

1.0

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(a) Image of a single 2-dimensional generalised Gaussian.

x1

x
2

true signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1 2 3 4 5

number of basis functions N

0.0

0.5

1.0

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(b) Image of the sum of two 2-dimensional generalised Gaussians.

x1

x
2

true signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1 2 3 4 5

number of basis functions N

0.0

0.2

0.4

0.6

0.8

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(c) Image of the sum of three 2-dimensional generalised Gaussians.

Figure 6.11: Fitting 2-dimensional generalised Gaussian basis functions to 32 × 32 images of mixtures
of generalised Gaussians. In each row the 2 plots on the left show the true signal and the data, which
includes added normally distributed y-errors with σy = 0.2. The third column shows the mean value
of y(x) from the posterior samples produced using the adaptive method with dynamic nested sampling.
The bar plots on the right display the posterior distribution for different numbers of basis functions N ;
values calculated using the vanilla method and adaptive method without dynamic nested sampling are
also included for comparison. Results for the adaptive method show a combined inference from 5 runs,
each of which computes a full posterior on N and uses 2,000 live points; adaptive runs using dynamic
nested sampling have dyPolyChord settings ninit = 1, 000 and dynamic goal = 1. Results for the vanilla
method use 5 separate runs, each with 400 live points, to compute the evidence for each value of N . All
runs use the setting num repeats = 250. The parameters of the basis functions in the true signal and
numerical results for the computational efficiency of the different methods are shown in Table 6.3 and
Table 6.6 respectively in Appendix 6.C.

148

https://github.com/ejhigson/dyPolyChord

x1

x
2

N = 1

0.0

0.2

0.4

0.6

0.8

1.0

x1

N = 2

x1

N = 3

x1

N = 4

x1

N = 5

Figure 6.12: Fits of the data in Figure 6.11c conditioned on different numbers N of
basis functions; these plots use results from the vanilla method.

6.5.1 Application to astronomical images

We now apply the 2-dimensional fitting techniques from the previous section to as-

tronomical images from the Hubble Space Telescope eXtreme Deep Field (Illingworth

et al., 2013). These are not “true signals” as in the previous examples because the

images contain some measurement uncertainty, but this is relatively small compared to

our added Gaussian errors of σy = 0.2. We therefore use them as an approximation

of a realistic physical signal for testing our method. Furthermore, for this first trial

application of our method, we provide only a visual demonstration of the accuracy of

our image reconstructions (to be assessed qualitatively). A more quantitative evaluation

can be performed in the future using simulations where the noise-free signal values are

available.

Figure 6.13 shows fitting images of galaxies from the Hubble deep field using 2-

dimensional generalised Gaussians (6.25), and Figure 6.14 shows fits of specific numbers

of basis functions (marginalised for different values of N). Our method is able to faith-

fully reconstruct the signal from the noisy data, as can be seen from a visual comparison

of the fit and the signal. In this case, with the settings used, the posterior distributions

of N show some inconsistencies between the different methods. These occur as in order

to explore the challenging posterior consistently, PolyChord and dyPolyChord require

higher live points and/or num repeats setting than those used; this leads to additional

random errors. However this lack of precision in the posterior probabilities of N has

little negative impact on the overall fit, as in each case all the posterior mass is allocated

to values of N which provide good representations of the data.

The posterior probabilities of different values of N (shown on the right of each row

of Figure 6.13) provide a measure of the complexity of the model justified by the data.

149

https://github.com/ejhigson/dyPolyChord

x1

x
2

signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1 2 3 4 5

number of basis functions N

0.0

0.5

1.0

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(a) Image of an irregularly shaped galaxy.

x1

x
2

signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1 2 3 4 5

number of basis functions N

0.0

0.5

1.0
P

(N
|L
,π

)
posterior distribution of N

vanilla
adaptive
dyn. adap.

(b) Image containing several galaxies.

x1

x
2

signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1 2 3 4 5

number of basis functions N

0.0

0.5

1.0

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(c) Another image containing several galaxies.

Figure 6.13: As for Figure 6.11 but fitting 32×32 images from the Hubble Space Telescope eXtreme Deep
Field (Illingworth et al., 2013); each pixel has added normally distributed y-errors with σy = 0.2.

150

x1

x
2

N = 1

0.0

0.2

0.4

0.6

0.8

1.0

x1

N = 2

x1

N = 3

x1

N = 4

x1

N = 5

Figure 6.14: Fits of the data in Figure 6.13c conditioned on different numbers of basis
functions N ; these plots use results from the vanilla method.

However, unless each basis function represents a justified physical model for the sources

in the image, N cannot necessarily be interpreted as the number of sources; for example

a single source with a non-Gaussian structure may be represented by several Gaussian

basis functions.

6.6 Conclusion

We have introduced Bayesian sparse reconstruction; a principled framework for signal

reconstruction which allows the model’s complexity to be determined by the data. Our

approach performs well at fitting noisy 1- and 2-dimensional test data from mixture

models, as well as reconstructing astronomical images.

While the techniques described in this chapter are computationally expensive (see

Appendix 6.B for details of the compute used to produce our results), we show that

they are now feasible in the low data regime with current software and are capable of

producing excellent results. Furthermore, we intend this work to provide a proof of

principle for future application of our approach to larger datasets, when advances in

numerical techniques and increases in computational power make this feasible.

Appendix 6.A Code

The code used to make the results and plots in this chapter can be downloaded at

https://github.com/ejhigson/bsr (this also includes the code used in Chapter 7).

151

https://github.com/ejhigson/bsr
https://github.com/ejhigson/bsr

Appendix 6.B Computational resources used

Table 6.2 shows the approximate number of core hours used for each calculation in

this chapter, and is intended to provide a rough guide to the computational cost of

our method. We used the CDS3 Peta4 cluster, which has 2.6GHz 16-core Intel Xeon

Skylake 6142 processors (2 processors and 32 cores per node). Note that the number of

core hours used can vary significantly when the same calculation is repeated.

Vanilla and adaptive calculations use PolyChord and dynamic adaptive calculations

use dyPolyChord. dyPolyChord performs dynamic nested sampling by saving and re-

suming PolyChord runs; this is not yet parallelised in the current version of PolyChord

and can become a bottleneck when running with large numbers of processes, increas-

ing the amount of core hours required for this method. We intend this process to be

more computationally efficient in future dynamic nested sampling software. All calcu-

lations use C++ likelihoods except the adaptive and dynamic adaptive selection of T in

Figure 6.8, which were run using a Python likelihood and consequently required more

computation time. The code used can be downloaded from the link in Appendix 6.A.

When fitting the same basis functions to different data sets, reconstructing more

complex signals requires more computation — this can be seen in Table 6.2 for Fig-

ures 6.6a to 6.6c and Figures 6.8a to 6.8c.

Appendix 6.C Additional numerical results

This Appendix contains details of the parameters of the mixture models used to generate

true signals in the numerical examples, as well as tables comparing the computational

efficiency of results calculated through the adaptive and vanilla methods.

6.C.1 Parameters for test signals

Tables 6.3 to 6.5 show the parameters of the mixture models used for the signals in

Figures 6.6, 6.8 and 6.11 respectively.

6.C.2 Efficiency gain results

Tables 6.6 and 6.7 show numerical values for the mean fit at the centre of the signal’s

domain for Figures 6.6 and 6.11, as well as estimates of the efficiency gain (6.24) from

152

https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord

vanilla adaptive dynamic adaptive

Fitting 1d generalised Gaussians (Figure 6.6)
Figure 6.6a 1 1 3
Figure 6.6b 1.5 1.5 4
Figure 6.6c 2 2 4

Fitting 1d tanhs (Figure 6.8)
Figure 6.8a 1 1 3
Figure 6.8b 1.5 1.5 4
Figure 6.8c 3 3 5

Fitting 1d basis functions with adaptive T (Figure 6.10)
Figure 6.10b 2 20 20
Figure 6.10a 2 20 20

Fitting 2d generalised Gaussians (Figures 6.11 and 6.13)
Figure 6.11a 5 7 50
Figure 6.11b 10 14 70
Figure 6.11c 12 20 80
Figure 6.13a 8 26 70
Figure 6.13b 11 60 100
Figure 6.13c 10 40 80

Table 6.2: Approximate numbers of core hours used per calculation for results shown
in this chapter; these were run on the CDS3 Peta4 cluster, which has 2.6GHz 16-core
Intel Xeon Skylake 6142 processors (2 processors and 32 cores per node). For adaptive
results, each calculation is a single nested sampling run. For vanilla runs a calculation
involves a separate nested sampling run for each value of N — the values of the table
show the total core hours used by these. For calculations fitting basis functions to 1-
dimensional signals (Figures 6.6, 6.8 and 6.10) num repeats=100, vanilla runs use 200
live points and adaptive runs use 1,000. For calculations fitting 2-dimensional images
(Figures 6.11 and 6.13) num repeats=250, vanilla runs use 400 live points and adaptive
runs use 2,000. Note that plots of results all use combined inferences from 5 calculations.

153

functions a µ σ β

1 0.75 0.4 0.3 2

2 0.2 0.4 0.6 5
0.55 0.4 0.2 4

3 0.2 0.4 0.6 5
0.35 0.6 0.07 2
0.55 0.32 0.14 6

Table 6.3: Parameters for the sum of 1-dimensional generalised Gaussian basis func-
tions (6.22) from which the data shown in Figure 6.6 was sampled.

functions a b w

1 0.8 0 1.5

2 0.7 -1 3
0.9 2 -3

3 0.6 -7 8
1 -1 3
1.4 2 -3

Table 6.4: Parameters for the sum of 1-dimensional tanh basis functions (6.23) from
which the data shown in Figure 6.8 was sampled.

functions a µ1 µ2 σ1 σ2 β1 β2 Ω

1 0.8 0.6 0.6 0.1 0.2 2 2 π/10

2 0.5 0.5 0.4 0.4 0.2 2 2 0
0.8 0.5 0.6 0.1 0.1 2 2 0

3 0.5 0.3 0.7 0.2 0.2 2 2 0
0.7 0.7 0.6 0.15 0.15 2 2 0
0.9 0.4 0.3 0.1 0.1 2 2 0

Table 6.5: Parameters for the sum of two-dimensional generalised Gaussian basis func-
tions (6.25) from which the data shown in Figure 6.11 was sampled.

154

the adaptive method (with and without dynamic nested sampling) compared to the

vanilla method. Efficiency gains reported use results’ estimated variation, calculated

from bootstrap resampling using the nestcheck package (Higson, 2018b).

Bootstrap resampling allows the variation of results due to the stochasticity of the

nested sampling algorithm to be determined accurately without the need to perform

the computation many times. However this does not include added variation due to

implementation-specific effects (discussed in Chapter 4), which can lead to additional

errors. These implementation-specific effects can be reduced by changing the software

settings; for PolyChord and dyPolyChord this entails increasing the num repeats set-

ting and/or the number of live points. Diagnostics provided by nestcheck indicate the

presence of such additional variation in our results; it also explains how estimates of

the fit y(0.5;θ) and y(0.5, 05;θ) using different methods, in Tables 6.6 and 6.7 respec-

tively, sometimes differ by slightly more than would be expected from their bootstrap

uncertainties. As the posterior is more challenging and complex in the adaptive method

than the vanilla method, this is likely to mean the efficiency gain observed in practice is

lower than the estimates using the bootstrap estimates of variation with the settings we

use. However we include it as a rough estimate and an indication of the efficiency gain

which could be achieved with more live points and/or a higher num repeats setting.

155

https://github.com/ejhigson/nestcheck
https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/nestcheck

vanilla adaptive dynamic adaptive

Data from 1 generalised Gaussian (shown in Figure 6.6a)
samples 128,719 114,507 116,867
y(0.5;θ) 0.6526(4) 0.6517(3) 0.6527(1)
efficiency gain 1.7(4) 46(9)

Data from 2 generalised Gaussians (shown in Figure 6.6b)
samples 128,052 133,061 131,637
y(0.5;θ) 0.6340(3) 0.6351(1) 0.6338(1)
efficiency gain 14(3) 4.3(9)

Data from 3 generalised Gaussians (shown in Figure 6.6c)
samples 152,516 171,853 173,959
y(0.5;θ) 0.4040(3) 0.4029(2) 0.4072(2)
efficiency gain 2.5(5) 2.7(6)

Table 6.6: Numerical values for the accuracy of the mean fit at x = 0.5 using the
data and nested sampling runs shown in Figure 6.6. The columns show results for the
vanilla and adaptive methods using standard nested sampling and the adaptive method
using dynamic nested sampling. For each data set, the first two rows show the total
number of samples used by the nested sampling runs, and the mean value of y(0.5;θ).
The next two rows show the efficiency gain (6.24) of the adaptive method with and
without dynamic nested sampling; these are calculated using estimates of the standard
deviation of results from bootstrap resampling 100 bootstrap replications. The numbers
in brackets show 1σ errors on the final digit.

156

vanilla adaptive dynamic adaptive

Data from 1 2d generalised Gaussian (shown in Figure 6.11a)
samples 377,360 324,294 322,799
y(0.5, 0.5;θ) 0.3353(3) 0.3360(2) 0.3359(1)
efficiency gain 3.7(7) 16(3)

Data from 2 2d generalised Gaussians (shown in Figure 6.11b)
samples 476,932 520,691 503,380
y(0.5, 0.5;θ) 0.6850(5) 0.6853(2) 0.6856(1)
efficiency gain 10(2) 12(2)

Data from 3 2d generalised Gaussians (shown in Figure 6.11c)
samples 562,830 652,359 656,852
y(0.5, 0.5;θ) 0.1435(1) 0.1438(1) 0.1437(1)
efficiency gain 1.2(2) 4.3(9)

Table 6.7: Numerical values for the accuracy of the mean fit at x = (0.5, 0.5) using the
data and nested sampling runs shown in Figure 6.11. The columns show results for the
vanilla and adaptive methods using standard nested sampling and the adaptive method
using dynamic nested sampling. For each data set, the first two rows show the total
number of samples used by the nested sampling runs, and the mean value of y(0.5, 0.5;θ)
produced. The next two rows show the efficiency gain (6.24) of the adaptive method
with and without dynamic nested sampling; these are calculated using estimates of the
standard deviation of results from bootstrap resampling. The numbers in brackets show
1σ errors on the final digit.

157

Chapter 7

Bayesian sparse reconstruction

with neural networks

We now apply our Bayesian sparse reconstruction framework introduced in Chapter 6 to

artificial neural networks, where it allows a dynamic selection of the optimum network

architecture. This chapter is an edited version of the latter part of Higson et al. (2019c).

7.1 Introduction

Artificial neural networks (hereafter neural networks) are a popular machine learning

technique loosely inspired by biological brains. MacKay (2003, Section V) provides a

good introduction; for a detailed Bayesian reference see Neal (2012). Neural networks

have been successfully applied to many areas of astronomical data analysis, including

to image processing (see for example Graff et al., 2014; Ball and Brunner, 2010).

Neural networks are made up of nodes (“neurons”) which receive input signals and

map them to a scalar signal (“activation”), which is then passed to other nodes. We

restrict our analysis to “fully-connected” “feed-forward” networks, in which nodes are

arranged in layers and each node receive inputs from every node the previous layer and

passes its output to every node in the following layer (in this case the network is a

directed acyclic graph). Layers of nodes between the network’s input and output are

termed “hidden layers”, as their outputs are not directly specified by the signal.

Following the neural network literature, we denote the activation of the jth node

in the lth layer as a
[l]
j ; this is differentiated from the basis function amplitudes used in

159

Chapter 6 by the superscript label in square brackets and by the context. The activation

of each node is computed as

a
[l]
j = φ[l]

(
N∑
i=1

a
[l−1]
i w

[l]
ji + b

[l]
j

)
, (7.1)

where w
[l]
j1, . . . , w

[l]
jN are the weights assigned to the activations of the N nodes in the

previous layer and conventionally an additional parameter b
[l]
j (referred to as the “bias”)

is included. The activation function φ[l] is typically non-linear function of the inputs such

as tanh or rectifier functions.1 For a feed-forward neural network with a d-dimension

input x and one hidden layer containing N nodes, the activations are:

a
[1]
j = φ[1]

(
d∑
i=1

xiw
[1]
ji + b

[1]
j

)
, (7.2)

yj = a
[2]
j = φ[2]

(
N∑
i=1

a
[1]
i w

[2]
ji + b

[2]
j

)
. (7.3)

Such a network with a single output y is illustrated in Figure 7.1.

Values for the network parameters can be selected using gradient-based optimisation

and regularisation — this is useful for “deep learning”, in which networks have large

numbers of hidden layers (are “deep”) and sampling the posterior distribution over the

full parameter space is not computationally feasible. Often some part of the data set is

held back and used for selecting the regularisation parameter.

Bayesian methods also provide a natural framework for neural networks, and simpli-

fied Bayesian computation can be performed in the space of neural network parameter

values using techniques such as Bayes by backprop (Blundell et al., 2015) and Gaussian

approximations (Mackay, 1995). In addition, many regularisation techniques commonly

applied to neural networks can be interpreted from a Bayesian perspective (see for ex-

ample Gal, 2016).

1Rectifier functions such as φ(x) = max(0, x) are now popular for deep neural networks, as they
make it easier to optimise the network’s weights with gradient-based methods because their gradient
does not become small when x is large (Lecun et al., 2015). This chapter uses the hyperbolic tangent
function as we do not rely on gradient-based optimisation and our networks only have one or two hidden
layers.

160

Input

Hidden Layer

Output

x1

x2 y

a
[1]
1

a
[1]
3

a
[1]
2

+1

+1

Figure 7.1: A feed-forward neural network with 2 inputs, a single hidden layer with 3
nodes and a scalar output y. Circles labelled +1 and the arrows leading from them

represent the bias parameters b
[l]
j .

7.2 Applying Bayesian sparse reconstruction to neural

networks

To illustrate the connection between neural networks and the basis function fitting in

Chapter 6, consider fitting a scalar signal y using a signal hidden layer neural network

in which the output layer has an identity activation function φ[2](x) = x and its bias

parameter b[2] set to zero. In this case the output (7.3) is simply a sum of basis functions.

If a tanh activation function is used for the nodes in the hidden layer and there is a

scalar input x, such a network is equivalent to fitting 1-dimensional tanh basis functions

as shown in Figures 6.8 and 6.9. In this case, determining the value of N using the

framework introduced earlier in Chapter 6 represents Bayesian inference on the optimum

number of nodes in the hidden layer given the data.

When there is more than one hidden layer, the output is no longer a direct sum

of the inputs but our Bayesian sparse reconstruction framework can still be readily

applied. Furthermore the number of hidden layers L can be determined by treating it

as an integer parameter, in the same way as the basis function family was represented

by the integer parameter T in Section 6.4.3. We use the same number of nodes N in

each hidden layer, but if required one could allow the hidden layers to have different

numbers of nodes governed by multiple integer parameters N [1], . . . , N [L]. We consider

only a single output for simplicity, but our results easily generalises to neural networks

161

Parameter Prior Type Prior Parameters

L Uniform (integer) ∈ Z ∩ [1, 2]
N Uniform (integer) ∈ Z ∩ [1, 10]
σw Uniform in σ−2

w (7.5) ∈ [0.1, 10]

output weights w
[L+1]
ij Sorted Gaussian2 µ = 0, σ = σw

other weights & biases Gaussian µ = 0, σ = σw

Table 7.1: Priors on neural network parameters. Sorted priors have ordering enforced;
see Handley et al. (2015b, Appendix A2) for more details.

with multiple outputs (y1, y2, . . .) and to classification problems in which the output

takes only discrete values.

We now apply our Bayesian sparse reconstruction framework to neural networks,

and show that this approach for principled adaptive Bayesian selection of network ar-

chitecture without Gaussian approximations works well for “shallow” neural networks

with a small number of hidden layers. We use tanh activation functions for the nodes

in the L hidden layers, and a sigmoid activation function for the output

φ[L+1](x) = sigmoid(x) =
1

1 + e−x
=

ex

1 + ex
. (7.4)

This conveniently maps the output y into [0, 1], which is the range of the target signal

in the numerical examples.

We use Gaussian priors on the neural network’s weight parameters, as summarised

in Table 7.1. Due to the difficulty in selecting the priors’ scale a priori, we use a

hyperparameter σw for the width of the Gaussian priors on the weights — this can be

marginalised out when calculating posterior inferences. Following Mackay (1995) we use

a uniform prior on σ−2
w , meaning

π(σw) =
3σ−3

w

σ−2
w,min − σ−2

w,max
(7.5)

where σw > 0.

2For neural networks with only one hidden layer, following Mackay (1995), priors on the weights
leading to the output are further restricted to only be non-zero in the positive half of the Gaussian.
This exploits a symmetry in the parameter space as tanh(x) is symmetric under changes of sign in x.

162

7.3 Fitting 2-dimensional images with neural networks

Figure 7.2 shows signal reconstruction with neural networks, including Bayesian infer-

ence on the number of hidden layers L and nodes per hidden layer N , using our Bayesian

sparse reconstruction framework. Readers who are less familiar with neural networks

might expect them to struggle to fit the challenging data set (the same one used in

Figure 6.11c) using their tanh activation functions. However we see that our approach

yields good results, and the network is able to reconstruct the generalised Gaussians in

the signal by overlaying 2-dimensional tanh functions from different nodes. How it does

this is illustrated in Figure 7.3, which shows fits conditioned on different values of L and

N . The first two rows with L = 1 represent a network with a single hidden layer, and

show how increasing N allows the tanh functions to first create a triangle around the

three maxima and then to represent the maxima themselves. The second two rows use

L = 2; a comparison with the L = 1 plots shows how the two hidden layer architecture

allows more complex signal structure to be represented using a given value of N . The

posterior distribution of L heavily favours two hidden layers, with the adaptive method

using dynamic nested sampling giving P (L = 2|L, π) = 0.984± 0.007.

The network with L = 2 hidden layers and N = 10 nodes per hidden layer has

151 weight parameters plus the hyperparameter σw and the integer parameters L and

N ; the resulting parameter space is 154-dimensional, as well as highly multimodal and

degenerate. The default PolyChord and dyPolyChord settings for this dimensionality

are 25×d = 3, 850 live points and 5×d = 770, so it is not surprising that with the settings

used our results show large inconsistencies in the calculated posterior distribution of L

and N due to implementation-specific effects (see Chapter 4 for a detailed discussion).

However our approach is still able to allocate almost all the posterior mass to L,N

combinations which are good fits for the data, leading to good results and demonstrating

the robustness of the method.

Furthermore, neural network and basis function fits can be compared using the

adaptive method. For example one could include an additional integer parameter T , with

values T = 1 and T = 2 representing fitting with 2-dimensional generalised Gaussians

and with neural networks respectively.

163

https://github.com/ejhigson/dyPolyChord

x1

x
2

true signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1,4 1,5 1,6 1,7 1,8 1,91,102,4 2,5 2,6 2,7 2,8 2,92,10

hidden layers and nodes per layer L,N

0.0

0.5

1.0

P
(L
,N
|L
,π

)

posterior distribution of L,N

vanilla
adaptive
dyn. adap.

Figure 7.2: Fitting neural networks with the number of hidden layers L and nodes per
hidden layer N determined through Bayesian inference. The first two colour plots show
the true signal and the data, which includes added normally distributed y-errors with
σy = 0.2; these are the same as in Figure 6.11c. The third colour plot shows the mean
value of y(x) from the posterior samples produced using the adaptive method with
dynamic nested sampling. The bar plot displays the posterior distribution on L,N ;
values calculated using the vanilla method and the adaptive method without nested
sampling are also included for comparison. Bars showing posterior probabilities for
N = 1, N = 2 and N = 3 are omitted for brevity as they contain negligible posterior
mass for both L = 1 and L = 2. Adaptive results use a combined inference from
5 runs, each of which computes a full posterior on L,N and uses 2,000 live points;
adaptive runs using dynamic nested sampling have dyPolyChord settings ninit = 1, 000
and dynamic goal = 1. Results for the vanilla method use 5 separate runs, each with
400 live points, to compute the evidence for each combination L,N . All runs use the
setting num repeats = 250

164

https://github.com/ejhigson/dyPolyChord

x
2

L = 1, N = 1

0.0

0.2

0.4

0.6

0.8

1.0
L = 1, N = 2 L = 1, N = 3 L = 1, N = 4 L = 1, N = 5

x
2

L = 1, N = 6

0.0

0.2

0.4

0.6

0.8

1.0
L = 1, N = 7 L = 1, N = 8 L = 1, N = 9 L = 1, N = 10

x
2

L = 2, N = 1

0.0

0.2

0.4

0.6

0.8

1.0
L = 2, N = 2 L = 2, N = 3 L = 2, N = 4 L = 2, N = 5

x1

x
2

L = 2, N = 6

0.0

0.2

0.4

0.6

0.8

1.0

x1

L = 2, N = 7

x1

L = 2, N = 8

x1

L = 2, N = 9

x1

L = 2, N = 10

Figure 7.3: Fits from Figure 7.2 conditioned on different numbers of hidden layers L
and nodes per hidden layer N . The plots use results from the vanilla method.

7.4 Application to astronomical images

We now apply neural networks to the Hubble Space Telescope eXtreme Deep Field

images used in Section 6.5.1. We find the adaptive selection of L for these data sets

strongly favours L = 2 over L = 1, so for simplicity we show only results using 2 hidden

layers.

Figure 7.4 shows results from fitting neural networks with 2 hidden layers to the data

used in Figure 6.13, with fits conditioned on specific values of N shown in Figure 7.5.

As for the 2-dimensional Gaussian basis functions, a visual assessment shows the neural

networks are able to faithfully reconstruct the true image from the noisy data with

165

good accuracy. However the neural networks (with tanh activation functions) do not

provide as natural a representation of the blob-shaped sources as the 2-dimensional

generalised Gaussians, so the fits are not as good as those shown in Figures 6.13 and 6.14.

Nevertheless the example provides a proof of principle, and the versatility of neural

networks means they can be applied to a wide range of data sets using this technique.

The posterior distributions of the number of nodes in each hidden layer N , shown

on the right of each row of plots in Figure 7.4, illustrate the number of nodes (degree

of complexity of the model) which is justified by the astronomical image. However,

unlike the basis functions, the contributions of each individual node to the output fit

is not readily interpretable. As in the previous section, we find that the network’s fits

of the images are good — despite inconsistencies in the posterior probabilities of differ-

ent values of N between the different methods due to implementation-specific effects.

The posterior distribution of N can be calculated more precisely using more computa-

tional resources (for example by increasing PolyChord and dyPolyChord’s num repeats

settings).

7.5 Conclusion

We have demonstrated the application of the Bayesian sparse reconstruction framework

to neural networks — a popular and versatile machine learning technique. Our approach

allows Bayesian inference to be performed over the space of network architectures in

a principled Bayesian manner; this has many possible uses in astronomy and beyond.

One appealing possible application is to autoencoders; a type of neural network which is

used to learn an efficient representation of a signal (for more details and an astronomical

application, see Graff et al., 2014). In this context, Bayesian sparse reconstruction will

allow the architecture of the network used to encode a signal to be determined by the

data.

As with the basis function fits in Chapter 6, the examples in this chapter are intended

as a proof of principle. Future advances in computational hardware and numerical

techniques will allow this approach to neural network fitting to be applied to larger and

more complex data sets.

166

https://github.com/ejhigson/dyPolyChord

x1

x
2

signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1 2 3 4 5 6 7 8 9 10

nodes per hidden layer N

0.0

0.2

0.4

0.6

0.8

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(a) Image containing several galaxies.

x1

x
2

signal

0.0

0.2

0.4

0.6

0.8

1.0

x1

noisy data

x1

fit

1 2 3 4 5 6 7 8 9 10

nodes per hidden layer N

0.0

0.5

1.0

P
(N
|L
,π

)

posterior distribution of N

vanilla
adaptive
dyn. adap.

(b) Another image containing several galaxies.

Figure 7.4: Fitting 32×32 images from the Hubble Space Telescope eXtreme Deep Field (Illingworth
et al., 2013) using neural networks with two hidden layers. In each row the 2 plots on the left show
the true signal and the data, which includes added normally distributed y-errors with σy = 0.2. The
third column shows the mean value of y from the posterior samples produced using the adaptive
method with dynamic nested sampling. The bar plots display the posterior distribution for different
numbers of nodes per hidden layer N ; values calculated using the vanilla method and the adaptive
method without dynamic nested sampling are also included for comparison. Adaptive results show
a combined inference form 5 runs, each of which computes a full posterior on N and uses 2,000 live
points; adaptive runs using dynamic nested sampling have dyPolyChord settings ninit = 1, 000 and
dynamic goal = 1. Results for the vanilla method use separate runs, each with 400 live points, to
compute the evidence for each value of N . All runs use the setting num repeats = 250.

167

https://github.com/ejhigson/dyPolyChord

x
2

N = 1

0.0

0.2

0.4

0.6

0.8

1.0
N = 2 N = 3 N = 4 N = 5

x1

x
2

N = 6

0.0

0.2

0.4

0.6

0.8

1.0

x1

N = 7

x1

N = 8

x1

N = 9

x1

N = 10

Figure 7.5: Fits of the data sets shown in Figure 7.4b conditioned on different numbers
of nodes per hidden layer N . The plots use results from the vanilla method.

Appendix 7.A Code

The code used to make the results and plots in this chapter can be downloaded at

https://github.com/ejhigson/bsr (this also includes the code used in Chapter 6).

Appendix 7.B Computational resources used

Table 7.2 shows the approximate number of core hours used for each calculation in

this chapter, and is intended to provide a rough guide to the computational cost of

our method. We used the CDS3 Peta4 cluster, which has 2.6GHz 16-core Intel Xeon

Skylake 6142 processors (2 processors and 32 cores per node). Note that the number of

core hours used can vary significantly when the same calculation is repeated.

Vanilla and adaptive calculations use PolyChord and dynamic adaptive calculations

use dyPolyChord; all results in this chapter use C++ likelihoods. dyPolyChord performs

dynamic nested sampling by saving and resuming PolyChord runs; this is not yet paral-

lelised in the current version of PolyChord and can become a bottleneck when running

with large numbers of processes, increasing the amount of core hours required for this

method. We intend this process to be more computationally efficient in future dynamic

nested sampling software.

168

https://github.com/ejhigson/bsr
https://github.com/ejhigson/bsr
https://github.com/ejhigson/dyPolyChord
https://github.com/ejhigson/dyPolyChord

vanilla adaptive dynamic adaptive

Fitting neural networks with adaptive L (Figure 7.2)
Figure 7.2 150 200 300

Fitting neural networks with 2 hidden layers (Figure 7.4)
Figure 7.4a 100 100 200
Figure 7.4b 100 100 200

Table 7.2: Approximate numbers of core hours used per calculation for the neural
network fits shown Figures 7.2 and 7.4; these were run on the CDS3 Peta4 cluster,
which has 2.6GHz 16-core Intel Xeon Skylake 6142 processors (2 processors and 32
cores per node). For adaptive results, each calculation is a single nested sampling run.
For vanilla runs a calculation involves a separate nested sampling run for each value
of N — the values of the table show the total core hours used by these. Vanilla runs
use 400 live points and adaptive runs use 2,000; all calculations used num repeats=250.
Note that plots of results all use combined inferences from 5 calculations.

169

Chapter 8

Conclusion

We now conclude this thesis by reviewing the work presented and suggesting possible

areas of future research.

Chapter 3 analysed sampling errors in nested sampling parameter estimation, and

introduced a method for estimating the sampling errors from the output of a single

nested sampling run. This was then used in Chapter 4 to create diagnostic tests for

assessing whether or not software had performed the nested sampling algorithm accu-

rately. Given the popularity of nested sampling in astronomy, these methods can be

used in future research in a wide range of areas (example applications involving gravita-

tional waves and Planck survey data are given in Sections 3.7 and 4.7). In addition to

the material contained in this thesis, a significant part of the contribution of this work is

the open-source software package nestcheck (Higson, 2018b). This provides well-tested

implementations of these methods for use by researchers, and is actively maintained

and improved. In particular, the diagnostic tests in Chapter 4 are — to the best of our

knowledge — the first such tests for implementation-specific effects in nested sampling

runs which can be applied to practical problems. Given the challenges of detecting these

effects, more work is needed to further test our methods in current research applications

and refine them — or produce better alternatives.

The work in Chapters 3 and 4 grew from our efforts to understand the sampling er-

rors present when using the adaptive method in earlier versions of the Bayesian sparse

reconstruction framework (presented in Chapter 6), and our primary goal was to be able

to numerically estimate uncertainties for calculations used in our astrophysics research.

While this might seem sufficient from the perspective of a physicist, further theoreti-

171

https://github.com/ejhigson/nestcheck

cal work is also needed to improve the understanding of nested sampling’s statistical

properties to the level of most alternative numerical methods. Salomone et al. (2018)

cites the lack of understanding of the distinctive errors in parameter estimation and due

to implementation-specific effects as two important reasons why nested sampling is not

more popular with statisticians; Chapters 3 and 4 make some contribution to this but

are more focused on practical applications than theoretical proofs. In our opinion the

degree to which this highly general technique for Bayesian computation is principally

used by physicists (and in particular astrophysicists) is somewhat anomalous, and is

likely due in large part to its historic development by astrophysicists. More theoret-

ical work and interdisciplinary collaboration on nested sampling will help contribute

to a more widespread adoption of the technique, and has the potential to benefit all

concerned.

Dynamic nested sampling, introduced in Chapter 5, grew directly from our efforts

to understand the sources of sampling error in nested sampling parameter estimation

(presented in Chapter 3). The algorithm offers order-of-magnitude increases in compu-

tational efficiency over standard nested sampling for many problems, in particular for

high-dimensional parameter estimation. Dynamic nested sampling has been applied to a

variety of problems in astrophysics (see for example Orazio et al., 2018; Guillochon et al.,

2018; Zucker et al., 2018), and has the potential to be widely used for applications in

astronomy and beyond. For this to happen, the most important target of future research

is the development of next-generation dynamic nested sampling software. dyPolyChord

(Higson, 2018a) provides the current state-of-the-art nested sampling computational per-

formance for many problems, but is limited by certain aspects of PolyChord (which was

designed before the creation of the dynamic nested sampling algorithm). These include

relatively high computational costs of saving, loading and resuming runs. PolyChord

2, which is currently in development, will be able to handle problems with ∼ 1, 000

dimensions and is designed to incorporate dynamic nested sampling — allowing large

increases in efficiency. PolyChord 2 will also be optimised for fast saving and resuming

of runs; we estimate that for many practical problems resuming the nested sampling

process will have a lower computational cost than a single likelihood call. In addition

to its implementation, future research could allow improvements to be made to the dy-

namic nested sampling algorithm; tuning for a specific parameter estimation problem

(discussed in Appendix 5.D) is one promising possibility.

172

https://github.com/ejhigson/dyPolyChord

The second theme of this thesis is sparse reconstruction of noisy signals. Chapter 6

introduced our Bayesian sparse reconstruction methodology, in which the signal is recon-

structed by basis functions whose number and (if needed) form are determined by the

data themselves. This principled Bayesian approach also provides a natural framework

for reinterpreting conventional sparse reconstruction and regularisation techniques. We

showed our approach is feasible with current numerical methods and that, in addition

to being philosophically appealing, it is also capable of producing excellent reconstruc-

tions from challenging data. Furthermore, by using the adaptive method, the number

and type of basis functions to be used in the signal reconstruction can be treated as

an integer parameters and the calculation of posterior odds can be performed by pa-

rameter estimation. This offers large potential increases in computational efficiency and

can be effectively combined with dynamic nested sampling. We successfully applied our

approach to 2-dimensional image reconstruction, including of astronomical images from

the Hubble Space Telescope eXtreme Deep Field (Illingworth et al., 2013).

Future research should aim to apply the Bayesian sparse reconstruction framework

to more complex and varied astronomical applications, and should include quantitative

tests of the quality of the fit. Additional applications include fitting vector signals y(x),

such as colour images — where each pixel can be expressed as a 3-dimensional signal

with red, green and blue intensities. Another possibility is to apply the method to

deconvolution. Since more complex applications will be more computationally challeng-

ing, future research in this area will also be greatly helped by advances in numerical

methods such as next-generation dynamic nested sampling software.

In Chapter 7 we showed our Bayesian sparse reconstruction framework also natu-

rally applies to neural networks, and allows Bayesian inference over the space of possible

network architectures by treating the number of nodes and hidden layers as parameters.

The technique was demonstrated using challenging 2-dimensional image reconstruction

problems. Like the basis function reconstructions in Chapter 6, this principled ap-

proach to neural networks has a wide variety of potential uses; a particularly appealing

possibility is applying the method to autoencoders (mentioned in Section 7.5).

This thesis has presented work on two connected themes: advances in nested sam-

pling and Bayesian sparse reconstruction of signals. These are timely topics of research

given the strong current interest in Bayesian astrostatistics, and the continued growth

in the quantity of data and computational power available to astronomers. We hope

173

this work will make some modest contribution to meeting the challenges posed by future

astronomical data sets.

174

Bibliography

J. G. Ables. Maximum Entropy Spectral Analysis. Astronomy and Astrophysics Sup-

plement, 15:383–393, 1974.

S. Ahn and J. Fessler. Standard Errors of Mean, Variance, and Standard Deviation

Estimators. EECS Department, University of Michigan, pages 1–2, 2003.

S. Aitken and O. E. Akman. Nested sampling for parameter inference in systems biology:

application to an exemplar circadian model. BMC systems biology, 7:72, 2013. doi:

10.1186/1752-0509-7-72.

H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on

Automatic Control, 19(6):716–723, 1974. doi: 10.1109/TAC.1974.1100705.

R. Allison and J. Dunkley. Comparison of sampling techniques for Bayesian parameter

estimation. Monthly Notices of the Royal Astronomical Society, 437(4):3918–3928,

2014. doi: 10.1093/mnras/stt2190.

C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing,

18(4):343–373, 2008. doi: 10.1007/s11222-008-9110-y.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with Sparsity-Inducing

Penalties. Foundations and Trends in Machine Learning, 4(1):1–106, 2012. doi:

10.1561/2200000015.

F. Bacon. Novum Organum Scientiarum, 1620.

N. M. Ball and R. J. Brunner. Data Mining and Machine Learning in Astronomy.

International Journal of Modern Physics D, 19(07):1049–1106, 2010. doi: 10.1142/

S0218271810017160.

175

L. Barack and C. Cutler. Using LISA extreme-mass-ratio inspiral sources to test off-

Kerr deviations in the geometry of massive black holes. Physical Review D, 75(4):

1–12, 2007. doi: 10.1103/PhysRevD.75.042003.

T. Bayes and R. Price. An Essay Towards Solving a Problem in the Doctrines of

Chances. Philosophical Transactions of the Royal Society of London, 53:370–418,

1763. doi: 10.1093/biomet/45.3-4.293.

F. Beaujean and A. Caldwell. Initializing adaptive importance sampling with Markov

chains. arXiv preprint arXiv:1304.7808, 2013.

M. Betancourt. Nested sampling with constrained Hamiltonian Monte Carlo. In AIP

Conference Proceedings, volume 1305, pages 165–172, 2011. ISBN 9780735408609.

doi: 10.1063/1.3573613.

M. Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv preprint

arXiv:1701.02434, 2017.

I. Bezáková, D. Stefankovic, V. V. Vazirani, and E. Vigoda. Accelerating simulated

annealing for the permanent and combinatorial counting problems. SIAM, 37(5):

1429–1454, 2008. doi: 10.1137/050644033.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational Inference: A Review for

Statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

doi: 10.1080/01621459.2017.1285773.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight Uncertainty in

Neural Networks. In Proceedings of the 32nd International Conference on Machine

Learning, pages 1613–1622. PMLR, 2015.

J. Bobin, J. L. Starck, and R. Ottensamer. Compressed sensing in astronomy. IEEE

Journal on Selected Topics in Signal Processing, 2(5):718–726, 2008. doi: 10.1109/

JSTSP.2008.2005337.

B. J. Brewer and D. Foreman-Mackey. DNest4: Diffusive Nested Sampling in C++ and

Python. Journal of Statistical Software, Articles, 86(7):1–33, 2018. doi: 10.18637/jss.

v086.i07.

176

B. J. Brewer, L. B. Pártay, and G. Csányi. Diffusive nested sampling. Statistics and

Computing, 21(4):649–656, 2011. doi: 10.1007/s11222-010-9198-8.

J. Buchner. A statistical test for Nested Sampling algorithms. Statistics and Computing,

26(1-2):383–392, 2016. doi: 10.1007/s11222-014-9512-y.

X. Cai, M. Pereyra, and J. D. McEwen. Uncertainty quantification for radio inter-

ferometric imaging - I. Proximal MCMC methods. Monthly Notices of the Royal

Astronomical Society, 480(3):4154–4169, 2018. doi: 10.1093/mnras/sty2004.

E. Cameron and A. Pettitt. Recursive Pathways to Marginal Likelihood Estimation

with Prior-Sensitivity Analysis. Statistical Science, 29(3):397–419, 2014. doi: 10.

1214/13-STS465.

E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal re-

construction from highly Incomplete Frequency Information. IEEE Transactions on

Information Theory, 52(2):489–509, 2006a. doi: 10.1109/TIT.2005.862083.

E. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and in-

accurate measurements. Communications on Pure and Applied Mathematics, 59(8):

1207–1223, 2006b. doi: 10.1002/cpa.20124.

N. Chopin and C. P. Robert. Properties of nested sampling. Biometrika, 97(3):741–755,

2010. doi: 10.1093/biomet/asq021.

A. J. K. Chua, S. Hee, W. J. Handley, E. Higson, C. J. Moore, J. R. Gair, M. P. Hobson,

and A. N. Lasenby. Towards a framework for testing general relativity with extreme-

mass-ratio-inspiral observations. Monthly Notices of the Royal Astronomical Society,

478(1):28–40, 2018. doi: 10.1093/mnras/sty1079.

M. K. Cowles and B. P. Carlin. Markov chain Monte Carlo convergence diagnostics:

a comparative review. Journal of the American Statistical Association, 91(434):883–

904, 1996.

P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of

the Royal Statistical Society. Series B: Statistical Methodology, 68(3):411–436, 2006.

doi: 10.1111/j.1467-9868.2006.00553.x.

177

D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):

1289–1306, 2006. doi: 10.1109/TIT.2006.871582.

C. Doss, J. Flegal, G. Jones, and R. Neath. Markov chain monte carlo estimation

of quantiles. Electronic Journal of Statistics, 8:2448–2478, 2015. doi: 10.1214/

14-EJS957.

D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and new

perspectives. Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005. doi:

10.1039/b509983h.

B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics,

7(1):1–26, 1979. doi: 10.1214/aos/1176344552.

B. Efron. Why isn’t everyone a Bayesian? American Statistician, 40(1):1–5, 1986. doi:

10.1080/00031305.1986.10475342.

B. Efron and R. Tibshirani. Bootstrap Methods for Standard Errors, Confidence In-

tervals, and Other Measures of Statistical Accuracy. Statistical Science, 1(1):54–77,

1986. doi: 10.1214/ss/1177013815.

M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky. A Wide-Angle View at Iterated

Shrinkage Algorithms. Proc. SPIE, Wavelets XII, 6701:1–19, 2007. doi: 10.1117/12.

741299.

Y. Eldar and G. Kutyniok. Compressed Sensing: Theory and Applications. Cambridge

University Press, 2012. ISBN 1107005582. doi: 10.1017/cbo9780511794308.

M. Evans. Discussion of Nested sampling for Bayesian computations by John Skilling.

Bayesian Statistics, 8:491–524, 2007.

G. Fasano and A. Franceschini. A multidimensional version of the Kolmogorov-Smirnov

test. Monthly Notices of the Royal Astronomical Society, 225:155–170, 1987. doi:

10.1007/s10342-011-0499-z.

F. Feroz and M. P. Hobson. Multimodal nested sampling: An efficient and robust

alternative to Markov Chain Monte Carlo methods for astronomical data analyses.

Monthly Notices of the Royal Astronomical Society, 384(2):449–463, 2008. doi: 10.

1111/j.1365-2966.2007.12353.x.

178

F. Feroz, M. P. Hobson, and M. Bridges. MultiNest: an efficient and robust Bayesian

inference tool for cosmology and particle physics. Monthly Notices of the Royal Astro-

nomical Society, 398(4):1601–1614, sep 2008. doi: 10.1111/j.1365-2966.2009.14548.x.

F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt. Importance Nested Sampling

and the MultiNest Algorithm. arXiv preprint arXiv:1306.2144, 2013.

F. Feroz. Bayesian Methods for Astrophysics and Particle Physics. PhD thesis, Univer-

sity of Cambridge, 2008.

F. Feroz and J. Skilling. Exploring multi-modal distributions with nested sam-

pling. In AIP Conference Proceedings, volume 1553, pages 106–113, 2013. ISBN

9780735411791. doi: 10.1063/1.4819989.

J. M. Flegal, M. Haran, and G. L. Jones. Markov Chain Monte Carlo: Can We Trust

the Third Significant Figure? Statistical Science, 23(2):250–260, 2008. doi: 10.1214/

08-STS257.

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The MCMC

Hammer. Publications of the Astronomical Society of the Pacific, 125:306–312, 2013.

doi: 10.1086/670067.

N. Friel and J. Wyse. Estimating the evidence - a review. Statistica Neerlandica, 66(3):

288–308, 2012. doi: 10.1111/j.1467-9574.2011.00515.x.

N. Friel, M. Hurn, and J. Wyse. Improving power posterior estimation of statis-

tical evidence. Statistics and Computing, 24(5):709–723, 2014. doi: 10.1007/

s11222-013-9397-1.

J. R. Gair and N. Yunes. Approximate Waveforms for Extreme-Mass-Ratio Inspirals

in Modified Gravity Spacetimes. Physical Review D, 84(6), 2011. doi: 10.1103/

PhysRevD.84.064016.

J. R. Gair, M. Vallisneri, S. L. Larson, and J. G. Baker. Testing general relativity with

low-frequency, space-based gravitational-wave detectors. Living Reviews in Relativity,

16, 2013. doi: 10.12942/lrr-2013-7.

Y. Gal. Dropout as a Bayesian approximation: Representing model uncertainty in deep

learning. In International Conference on Machine Learning, volume 48, 2016.

179

A. Gelman. Objections to Bayesian statistics. Bayesian Analysis, 3(3):445–450, 2008.

doi: 10.1214/08-BA318.

A. Gelman and X.-L. Meng. Simulating normalizing constants: from importance sam-

pling to bridge sampling to path sampling. Statistical Science, 13(2):163–185, 1998.

doi: 10.1214/ss/1028905934.

S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, PAMI-6(6):721–741, 1984. doi: 10.1109/TPAMI.1984.4767596.

J. Goodman and J. Weare. Ensemble samplers with affine invariance. Communications

in Applied Mathematics and Computational Science, 5(1):65–80, 2010. doi: 10.2140/

camcos.2010.5.65.

P. Graff, F. Feroz, M. P. Hobson, and A. Lasenby. SKYNET: An efficient and robust

neural network training tool for machine learning in astronomy. Monthly Notices of

the Royal Astronomical Society, 441(2):1741–1759, 2014. doi: 10.1093/mnras/stu642.

P. J. Green. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian

Model Determination. Biometrika, 82(4):711–732, 1995. doi: 10.1093/biomet/82.4.

711.

J. Guillochon, M. Nicholl, V. A. Villar, B. Mockler, G. Narayan, K. S. Mandel, E. Berger,

and P. K. G. Williams. MOSFiT: Modular Open-Source Fitter for Transients. The

Astrophysical Journal Supplement Series, 236(1):6, 2018. doi: 10.3847/1538-4365/

aab761.

S. F. Gull and G. J. Daniell. Image reconstruction from incomplete and noisy data.

Nature, 272(5655):686–690, 1978. doi: 10.1038/272686a0.

J. Hadamard. Sur les Problemes aux Derivees Partielles et Leur Signification Physique.

Princeton University Bulletin, 13:49–52, 1902.

W. Handley, M. Hobson, and A. Lasenby. PolyChord: Nested sampling for cosmology.

Monthly Notices of the Royal Astronomical Society: Letters, 450(1):L61–L65, 2015a.

doi: 10.1093/mnrasl/slv047.

180

W. Handley, M. Hobson, and A. Lasenby. PolyChord: next-generation nested sampling.

Monthly Notices of the Royal Astronomical Society, 15:1–15, 2015b. doi: 10.1093/

mnras/stv1911.

W. Handley. fgivenx: A Python package for functional posterior plotting. Journal of

Open Source Software, 3(28):849, 2018. doi: 10.21105/joss.00849.

W. J. Handley and M. Millea. Maximum entropy priors with derived parameters in a

specified distribution. arXiv preprint arXiv:1804.08143, 2018.

W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their

Applications. Biometrika, 57(1):97–109, 1970. doi: 10.2307/2334940.

S. Hee, W. Handley, M. Hobson, and A. Lasenby. Bayesian model selection without

evidences: Application to the dark energy equation-of-state. Monthly Notices of the

Royal Astronomical Society, 455(3):2461–2473, 2016. doi: 10.1093/mnras/stv2217.

S. Hee, J. Vázquez, W. Handley, M. Hobson, and A. Lasenby. Constraining the dark

energy equation of state using Bayes’ theorem and the Kullback-Leibler divergence.

Monthly Notices of the Royal Astronomical Society, 466(1):369–377, 2017. doi: 10.

1093/mnras/stw3102.

E. Higson. dyPolyChord: dynamic nested sampling with PolyChord. Journal of Open

Source Software, 3(29):965, 2018a. doi: 10.21105/joss.00965.

E. Higson. nestcheck: error analysis, diagnostic tests and plots for nested sampling

calculations. Journal of Open Source Software, 3(29):916, 2018b. doi: 10.21105/joss.

00916.

E. Higson. perfectns: perfect dynamic and standard nested sampling for spherically

symmetric likelihoods and priors. Journal of Open Source Software, 3(30):985, 2018c.

doi: 10.21105/joss.00985.

E. Higson, W. Handley, M. Hobson, and A. Lasenby. Sampling errors in nested

sampling parameter estimation. Bayesian Analysis, 13(3):873–896, 2018. doi:

10.1214/17-BA1075.

181

E. Higson, W. Handley, M. Hobson, and A. Lasenby. Dynamic nested sampling: an

improved algorithm for parameter estimation and evidence calculation. Statistics and

Computing, 2019a. doi: 10.1007/s11222-018-9844-0.

E. Higson, W. Handley, M. Hobson, and A. Lasenby. nestcheck: diagnostic tests for

nested sampling calculations. Monthly Notices of the Royal Astronomical Society, 483

(2):2044–2056, 2019b. doi: 10.1093/mnras/sty3090.

E. Higson, W. Handley, M. Hobson, and A. Lasenby. Bayesian sparse reconstruction: a

brute-force approach to astronomical imaging and machine learning. Monthly Notices

of the Royal Astronomical Society, 483(4):4828–4846, 2019c. doi: 10.1093/mnras/

sty3307.

M. Hobson, A. Jones, A. Lasenby, and F. Bouchet. Foreground separation methods for

satellite observations of the cosmic microwave background. Monthly Notices of the

Royal Astronomical Society, 300:1–29, 1998. doi: 10.1046/j.1365-8711.1998.01777.x.

A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation for Nonorthog-

onal Problems. Technometrics, 12(1):55–67, 1970. doi: 10.1080/00401706.1970.

10488634.

M. D. Hoffman and A. Gelman. The No-U-Turn Sampler: Adaptively Setting Path

Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):

1593–1623, 2014.

D. W. Hogg and D. Foreman-Mackey. Data Analysis Recipes: Using Markov Chain

Monte Carlo. The Astrophysical Journal Supplement Series, 236(1):11, 2018. doi:

10.3847/1538-4365/aab76e.

M. Huber and S. Schott. Random construction of interpolating sets for high-dimensional

integration. Journal of Applied Probability, 51(1):92–105, 2014. doi: 10.1239/jap/

1395771416.

S. Hug, M. Schwarzfischer, J. Hasenauer, C. Marr, and F. J. Theis. An adap-

tive scheduling scheme for calculating Bayes factors with thermodynamic integra-

tion using Simpson’s rule. Statistics and Computing, 26(3):663–677, 2016. doi:

10.1007/s11222-015-9550-0.

182

G. D. Illingworth, D. Magee, P. a. Oesch, R. J. Bouwens, I. Labbé, M. Stiavelli, P. G.

van Dokkum, M. Franx, M. Trenti, C. M. Carollo, and V. Gonzalez. the Hst Extreme

Deep Field (Xdf): Combining All Acs and Wfc3/Ir Data on the Hudf Region Into the

Deepest Field Ever. The Astrophysical Journal Supplement Series, 209(1):6, 2013.

doi: 10.1088/0067-0049/209/1/6.

Z. Ivezić, A. Connolly, J. VanderPlas, and A. Gray. Statistics, Data Mining, and Ma-

chine Learning in Astronomy. Princeton University Press, 2014. ISBN 9788578110796.

doi: 10.1088/1751-8113/44/8/085201.

H. Jeffreys. Theory of probability. Oxford University Press, London, 1961.

S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Transactions on Signal

Processing, 56(6):2346–2356, 2008. doi: 10.1109/TSP.2007.914345.

R. W. Johnson. An Introduction to the Bootstrap. Teaching Statistics, 23(2):49–54,

2001. doi: 10.1111/1467-9639.00050.

D. M. Jones and A. F. Heavens. Bayesian photometric redshifts of blended sources.

Monthly Notices of the Royal Astronomical Society, 483(2):2487–2505, 2018. doi:

10.1093/mnras/sty3279.

C. R. Keeton. On statistical uncertainty in nested sampling. Monthly Notices of the

Royal Astronomical Society, 414(2):1418–1426, 2011. doi: 10.1111/j.1365-2966.2011.

18474.x.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated Annealing. Sci-

ence, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.

A. N. Lasenby, R. B. Barreiro, and M. P. Hobson. Regularization and Inverse Problems.

In Mining the Sky, pages 15–32. Springer, 2001. doi: 10.1007/10849171 2.

Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

doi: 10.1038/nature14539.

A. M. Legendre. Nouvelles methodes pour la determination des orbites des cometes. F.

Didot, 1805.

183

A. Lewis. Efficient sampling of fast and slow cosmological parameters. Physical Review

D, 87(10):103529, 2013. doi: 10.1103/PhysRevD.87.103529.

A. Lewis and S. Bridle. Cosmological parameters from CMB and other data: a Monte-

Carlo approach. Physical Review D, 66(10):103511, 2002. doi: 10.1103/PhysRevD.

66.103511.

A. Lewis, A. Challinor, and A. Lasenby. Efficient Computation of Cosmic Microwave

Background Anisotropies in Closed Friedmann-Robertson-Walker Models. The As-

trophysical Journal, 538(2):473–476, 2000. doi: 10.1086/309179.

T. G. F. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch,

K. Grover, T. Sidery, R. Sturani, and A. Vecchio. Towards a generic test of the

strong field dynamics of general relativity using compact binary coalescence. Physical

Review D, 85(8):082003, 2012. doi: 10.1103/PhysRevD.85.082003.

LIGO Scientific Collaboration and Virgo Collaboration. Observation of gravitational

waves from a binary black hole merger. Physical Review Letters, 116(6):1–16, 2016.

doi: 10.1103/PhysRevLett.116.061102.

D. V. Lindley. The Future of Statistics: A Bayesian 21st Century. Advances in Applied

Probability, 7:106–115, 1975. doi: 10.2307/1426315.

LISA Collaboration. Laser Interferometer Space Antenna Simulator. arXiv preprint

arXiv:1702.00786, 2017.

J. Liu, D. J. Nordman, and W. Q. Meeker. The Number of MCMC Draws Needed to

Compute Bayesian Credible Bounds. The American Statistician, 06340:1–27, 2016.

doi: 10.1080/00031305.2016.1158738.

T. J. Loredo. Bayesian astrostatistics: a backward look to the future. Astro-

statistical Challenges for the New Astronomy, pages 15–40, 2012. doi: 10.1007/

978-1-4614-3508-2 2.

D. J. C. Mackay. Probable networks and plausible predictions - a review of practical

Bayesian methods for supervised neural networks. Network: Computation in Neural

Systems, 6(3):469–505, 1995. doi: 10.1088/0954-898X 6 3 011.

184

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge

University Press, 2003. ISBN 9780521642989.

K. Maisinger, M. P. Hobson, and A. N. Lasenby. Maximum-entropy image reconstruction

using wavelets. Monthly Notices of the Royal Astronomical Society, 347(1):339–354,

2004. doi: 10.1111/j.1365-2966.2004.07216.x.

S. G. Mallat and Z. Zhang. Matching Pursuits With Time-Frequency Dictionaries. IEEE

Transactions on Signal Processing, 41(12):3397–3415, 1993. doi: 10.1109/78.258082.

S. Martiniani, J. D. Stevenson, D. J. Wales, and D. Frenkel. Superposition enhanced

nested sampling. Physical Review X, 4(3), 2014. doi: 10.1103/PhysRevX.4.031034.

F. J. Massey. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the

American Statistical Association, 46(253):68– 78, 1951. doi: 10.1080/01621459.1951.

10500769.

J. D. McEwen and Y. Wiaux. Compressed sensing for wide-field radio interferometric

imaging. Monthly Notices of the Royal Astronomical Society, 413(2):1318–1332, 2011.

doi: 10.1111/j.1365-2966.2011.18217.x.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-

tion of state calculations by fast computing machines. The Journal of Chemical

Physics, 21(6):1087–1092, 1953. doi: 10.1063/1.1699114.

P. Mukherjee, D. Parkinson, and A. R. Liddle. A Nested Sampling Algorithm for

Cosmological Model Selection. The Astrophysical Journal, 638(2):L51–L54, 2006.

doi: 10.1086/501068.

I. Murray. Advances in Markov chain Monte Carlo methods. PhD thesis, University

College London, 2007.

R. Neal. Bayesian learning for neural networks. Springer Science & Business Media,

2012. ISBN 1461207452.

R. M. Neal. Slice Sampling. Annals of statistics, 31(3):705–741, 2003. doi: 10.1214/

aos/1056562461.

185

Y. Okamoto. Generalized-ensemble algorithms: Enhanced sampling techniques for

Monte Carlo and molecular dynamics simulations. In Journal of Molecular Graphics

and Modelling, volume 22, pages 425–439, 2004. ISBN 1093-3263. doi: 10.1016/j.

jmgm.2003.12.009.

J. D. Orazio, A. Loeb, and J. Guillochon. Constraining the Stellar Mass Function from

the Deficiency of Tidal Disruption Flares in the Nuclei of Massive Galaxies. arXiv

preprint arXiv:1807.00029, 2018.

A. Pancoast, B. J. Brewer, T. Treu, D. Park, A. J. Barth, M. C. Bentz, and J. H. Woo.

Modelling reverberation mapping data - II. Dynamical modelling of the Lick AGN

Monitoring Project 2008 data set. Monthly Notices of the Royal Astronomical Society,

445(3):3073–3091, 2014. doi: 10.1093/mnras/stu1419.

D. Parkinson and A. R. Liddle. Bayesian Model Averaging in Astrophysics: A Review.

Statistical Analysis and Data Mining: The ASA Data Science Journal, 6(1):3–14,

2013. doi: 10.1002/sam.11179.

Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astronomy

& Astrophysics, 571:1–69, 2013. doi: 10.1051/0004-6361/201321591.

Planck Collaboration. Planck 2015. XX. Constraints on inflation. Astronomy & Astro-

physics, 594:A20, 2016a. doi: 10.1051/0004-6361/201525898.

Planck Collaboration. Planck 2015 results XI. CMB power spectra, likelihoods, and

robustness of parameters. Astronomy and Astrophysics, 594:A11, 2016b. doi: 10.

1051/0004-6361/201526926.

C. Rasmussen. Gaussian processes in machine learning. In Advanced lectures on machine

learning, pages 63–71. Springer, 2004. doi: 10.1007/978-3-540-28650-9 4.

D. B. Rubin. The Bayesian Bootstrap. Annals of Statistics, 9(1):130–134, 1981. doi:

10.1214/aos/1176345338.

R. Salomone, L. F. South, C. C. Drovandi, and D. P. Kroese. Unbiased and Consistent

Nested Sampling via Sequential Monte Carlo. arXiv preprint arXiv:1805.03924, 2018.

186

A. Savitzky and M. J. Golay. Smoothing and Differentiation of Data by Simplified

Least Squares Procedures. Analytical Chemistry, 36(8):1627–1639, 1964. doi: 10.

1021/ac60214a047.

F. W. Scholz and M. A. Stephens. K-sample AndersonDarling tests. Journal of the

American Statistical Association, 82(399):918–924, 1987. doi: 10.1080/01621459.1987.

10478517.

F. Sciacchitano, S. Lugaro, and A. Sorrentino. Sparse Bayesian Imaging of Solar Flares.

SIAM Journal on Imaging Sciences, 12(1):319–343, 2019. doi: 10.1137/18M1204103.

D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization.

John Wiley & Sons, 2015. ISBN 9781118575536.

S. Sharma. Markov Chain Monte Carlo Methods for Bayesian Data Analysis in As-

tronomy. Annual Review of Astronomy and Astrophysics, pages 213–259, 2017. doi:

10.1146/annurev-astro-082214-122339.

D. Sivia and J. Skilling. Data analysis: A Bayesian Tutorial. OUP Oxford, 2006. ISBN

0198568320. doi: 10.2307/1270652.

J. Skilling. Nested Sampling. In 24th International Workshop on Bayesian Inference and

Maximum Entropy Methods in Science and Engineering, volume 735, pages 395–405,

2004. ISBN 0735402175. doi: 10.1063/1.1835238.

J. Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1

(4):833–860, 2006. doi: 10.1214/06-BA127.

J. Skilling. Nested sampling’s convergence. In AIP Conference Proceedings, volume

1193, pages 277–291, 2009. ISBN 9780735407299. doi: 10.1063/1.3275625.

J. Skilling. Bayesian computation in big spaces-nested sampling and Galilean Monte

Carlo. In AIP Conference Proceedings, volume 1443, pages 145–156, 2012. ISBN

9780735410398. doi: 10.1063/1.3703630.

R. Tibshirani. Regression Selection and Shrinkage via the Lasso. Journal of the Royal

Statistical Society B, 58(1):267–288, 1996. doi: 10.2307/2346178.

187

L. Tierney and J. B. Kadane. Accurate Approximations for Posterior Moments and

Marginal Densities. Journal of the American Statistical Association, 81(393):82–86,

1986.

M. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine. Journal of

Machine Learning Research, 1:211–244, 2001. doi: 10.1162/15324430152748236.

R. Trotta. Applications of Bayesian model selection to cosmological parameters. Monthly

Notices of the Royal Astronomical Society, 378(1):72–82, 2007. doi: 10.1111/j.

1365-2966.2007.11738.x.

R. Trotta. Bayes in the sky: Bayesian inference and model selection in cosmology.

Contemporary Physics, 49(2):71–104, 2008. doi: 10.1080/00107510802066753.

J. W. Tukey. Bias and Confidence in Not-Quite Large Samples. The Annals of Mathe-

matical Statistics, 29:614, 1958. doi: 10.2307/2237363.

I. Verdinelli and L. Wasserman. Computing Bayes Factors Using a Generalization of

thhe Savage-Dickey Density Ratio. Journal of the American Statistical Association,

90(430):614–618, 1995.

C. Walter. Point process-based Monte Carlo estimation. Statistics and Computing, 27

(1):219–236, 2017. doi: 10.1007/s11222-015-9617-y.

H. P. Warren, J. M. Byers, and N. A. Crump. Sparse Bayesian Inference and the

Temperature Structure of the Solar Corona. The Astrophysical Journal, 836(2):215,

2017. doi: 10.3847/1538-4357/aa5c34.

R. L. Wasserstein and N. A. Lazar. The ASA’s Statement on p-Values: Context, Process,

and Purpose. The American Statistician, 70(2):129–133, 2016. doi: 10.1080/00031305.

2016.1154108.

S. Watanabe. Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable

Information Criterion in Singular Learning Theory. Journal of Machine Learning

Research, 11:3571–3594, 2010.

Y. Wiaux, L. Jacques, G. Puy, A. Scaife, and P. Vandergheynst. Compressed sensing

imaging techniques for radio interferometry. Monthly Notices of the Royal Astronom-

ical Society, 395(3):1733–1742, 2009. doi: 10.1111/j.1365-2966.2009.14665.x.

188

N. Wiener. The interpolation, extrapolation and smoothing of stationary time series.

MIT Press Cambridge, MA, 1949. ISBN 978-0262730051.

D. P. Wipf and B. D. Rao. Sparse Bayesian learning for basis selection. IEEE Transac-

tions on Signal Processing, 52(8):2153–2164, 2004. doi: 10.1109/TSP.2004.831016.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67–82, 1997. doi: 10.1109/4235.

585893.

C. Zucker, E. F. Schlafly, G. M. Green, J. S. Speagle, S. K. N. Portillo, D. P. Finkbeiner,

and A. A. Goodman. Mapping Distances across the Perseus Molecular Cloud Using

CO Observations, Stellar Photometry, and Gaia DR2 Parallax Measurements. The

Astrophysical Journal, 869(1):83, 2018. doi: 10.3847/1538-4357/aae97c.

189

	Declaration
	Acknowledgements
	Summary
	Introduction
	Bayesian inference
	Bayesians and frequentists
	Applying Bayes' theorem to data
	Bayesian computation
	Nested sampling

	Sampling errors in nested sampling parameter estimation
	Introduction
	Background: sampling errors in parameter estimation
	Sources of sampling errors in nested sampling parameter estimation
	Estimating sampling errors in nested sampling parameter estimation
	Numerical tests
	Application to existing nested sampling software
	Application gravitational wave data analysis
	Conclusion
	Relative contributions of different sources of parameter estimation sampling errors
	Analysis of the simulated weights method
	Split runs method
	Termination conditions
	Additional numerical tests: 3-dimensional Cauchy likelihood

	Diagnostic tests for nested sampling calculations
	Introduction
	Measuring implementation-specific effects
	Diagnostic plots
	Estimating implementation-specific effects
	Diagnostic tests for when few runs are available
	Implementation-specific effects in practice
	Application to Planck survey data
	Conclusion
	Code
	Numerical results tables

	Dynamic nested sampling
	Introduction
	Variable numbers of live points
	The dynamic nested sampling algorithm
	Numerical tests with perfect nested sampling
	Dynamic nested sampling with challenging posteriors
	Conclusion
	Code
	Estimating sampling errors in dynamic nested sampling
	Effect of varying the number of live points on evidence calculation accuracy
	Tuning for a specific parameter estimation problem
	Additional numerical tests
	Dynamic nested sampling without repeatedly restarting runs

	Bayesian sparse reconstruction
	Introduction
	Regression, regularisation and sparsity
	A Bayesian approach
	Fitting 1-dimensional data
	2-dimensional image fitting
	Conclusion
	Code
	Computational resources used
	Additional numerical results

	Bayesian sparse reconstruction with neural networks
	Introduction
	Applying Bayesian sparse reconstruction to neural networks
	Fitting 2-dimensional images with neural networks
	Application to astronomical images
	Conclusion
	Code
	Computational resources used

	Conclusion
	Bibliography

