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Quantitative evaluation of ontology 
design patterns for combining 
pathology and anatomy ontologies
Sarah M. Alghamdi   1,2, Beth A. Sundberg   3, John P. Sundberg3, Paul N. Schofield   3,4 & 
Robert Hoehndorf   1

Data are increasingly annotated with multiple ontologies to capture rich information about the features 
of the subject under investigation. Analysis may be performed over each ontology separately, but 
recently there has been a move to combine multiple ontologies to provide more powerful analytical 
possibilities. However, it is often not clear how to combine ontologies or how to assess or evaluate the 
potential design patterns available. Here we use a large and well-characterized dataset of anatomic 
pathology descriptions from a major study of aging mice. We show how different design patterns based 
on the MPATH and MA ontologies provide orthogonal axes of analysis, and perform differently in over-
representation and semantic similarity applications. We discuss how such a data-driven approach might 
be used generally to generate and evaluate ontology design patterns.

Ontologies are widely used to characterize experimental data across all domains in the life sciences. There are 
now many ontologies available1 capturing concepts ranging from basic chemical structures2 through biological 
processes and functions3 to behavior4 and disease5. In biology and biomedicine, a single ontology often captures 
only a single kind of concept such as a process, cell type, chemical entity, phenotype, or anatomical structure, and 
efforts are made to ensure that the domains of description of different ontologies are orthogonal1.

When multiple types of data are collected in an experiment or a set of experiments, multiple ontologies may 
be used separately to characterize each feature. For example, annotation of zebrafish mutants with phenotypes 
may combine information about abnormal processes (and therefore use the Gene Ontology3), abnormal ana-
tomical structures (and therefore an anatomy ontology6), and qualities (captured by the PATO ontology7): a 
phenotype from a zebrafish TGF β2 mutant is described as Meckel’s cartilage chondrocyte disorganized, abnor-
mal being composed of the classes Meckels Cartilage (ZFA:0001205), Chondrocyte (ZFA:0009084), Disorganized 
(PATO:0000937), and Abnormal (PATO:0000460).

Ontologies are often used for data analysis8, for example to facilitate enrichment analysis9 and semantic sim-
ilarity computation10. When multiple ontologies are used to characterize data items these analytical methods 
can be performed separately over each ontology, however, combining the different ontologies (and therefore the 
properties they represent) can provide improved performance for knowledge-driven data analysis approaches. 
It is often challenging to identify the right way to combine ontologies, and multiple options can exist that appear 
equally valid.

Ontology design patterns are adopted in constructing ontologies and describing particular phenomena within 
the scope of the ontology11,12; they are usually characterized by recurring axiom patterns, or combinations of axi-
oms, that express certain types of knowledge and satisfy certain desiderata with regard to inferences that can be 
drawn from them. They may also be reused and be applied as a general strategy to structure multiple ontologies 
within the same or related domains. Ontology design patterns are often created around a certain structure inherent 
in a dataset, desired in a particular application, or considered to be intuitive by ontology users or designers13,14. 
However, in many domains it is possible that several patterns or strategies might describe the data equally well yet 
permit different axes of analysis15,16. How to evaluate such alternative design patterns is a difficult challenge.

1King Abdullah University of Science and Technology, Computer, Electrical & Mathematical Sciences and Engineering 
Division, Computational Bioscience Research Center, Thuwal, 23955-6900, Saudi Arabia. 2King Abdul-Aziz University, 
Faculty of Computing and Information Technology, Rabigh, 25732, Saudi Arabia. 3The Jackson Laboratory, 600, 
Main Street, Bar Harbor, ME, 04609, USA. 4Department of Physiology, Development & Neuroscience, University 
of Cambridge, Downing Street, Cambridge, CB2 3EG, UK. Correspondence and requests for materials should be 
addressed to P.N.S. (email: pns12@cam.ac.uk) or R.H. (email: robert.hoehndorf@kaust.edu.sa)

Received: 31 July 2018

Accepted: 14 February 2019

Published: xx xx xxxx

OPEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/187716376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1038/s41598-019-40368-1
http://orcid.org/0000-0001-5544-7166
http://orcid.org/0000-0002-4261-0750
http://orcid.org/0000-0002-5111-7263
http://orcid.org/0000-0001-8149-5890
mailto:pns12@cam.ac.uk
mailto:robert.hoehndorf@kaust.edu.sa


2Scientific Reports |          (2019) 9:4025  | https://doi.org/10.1038/s41598-019-40368-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

When evaluating ontology design patterns we can distinguish between internal evaluation and external eval-
uation. An internal evaluation relies only on the ontologies and the patterns that are applied. It may involve 
automated reasoning to determine consistency and the number of unsatisfiable classes, as well as several metrics 
related to the complexity of the expressed knowledge17. An external evaluation requires a biological hypothesis 
and an additional well-characterized dataset, and involves applying the ontology design patterns to address the 
hypothesis. Common forms of evaluation include the application of semantic similarity as a predictor for a type 
of biological relation.

Here, we demonstrate that we can devise and evaluate alternative design strategies using backgound knowl-
edge from a large biological dataset, and that alternate, validated design patterns can open new axes of analysis. 
Specifically, we show how to combine two ontologies related to anatomy and pathology, the Mouse Anatomy 
Ontology (MA)18 and the Mouse Pathology Ontology (MPATH)19, through ontology design patterns. We apply 
several methods to evaluate the ontology design patterns through application-driven data analysis, i.e., an exter-
nal evaluation of the generated ontologies.

The dataset we use for the external evaluation was derived from a very large aging study of 28 inbred strains 
of laboratory mice carried out at the Nathan Shock Aging Center at The Jackson Laboratory. Over their natural 
lifespan, cohorts of mice were subject to periodic necropsy and complete histopathological workup to determine 
the frequency of spontaneous age-related pathological changes20,21.

In our analysis we perform ontology enrichment analysis by strain and sex for different experimental groups, 
and demonstrate that different ontology design patterns yield different statistical results. We use the impact that 
the ontology structure has on frequently performed data analyses as additional motivation to provide quantitative 
measures for evaluating the design patterns. For this purpose, we compute the semantic similarities between the 
ontology annotations for each individual mouse and apply different clustering methods. We use a cluster purity 
measure with respect to our original input data and define an area under the purity curve as a quantitative meas-
ure that evaluates the quality of the different ontology design patterns. We find that there are differences between 
the four derived ontologies in all analysis approaches. It is well established that individual mice within an inbred 
(i.e., genetically homogeneous) strain exhibit a more similar spectrum of disease than mice in different strains22,23. 
We use semantic similarity measures to confirm this observation and show that some of the ontology design 
patterns generate significantly better results compared to using each ontology individually. Our work introduces 
a repertoire of quantitative ontology evaluation measures that will be useful in different applications and have the 
potential to improve ontology interoperability and data analysis.

Methods
Mouse pathology dataset.  We used a dataset of spontaneous diseases of aging in the mouse24 available 
from the Mouse Phenome Database25. The dataset used provides 20,885 diagnoses for 1740 mice and four differ-
ent experimental datasets, of which we utilize three in this study. The original experimental groups comprised: 
(i) A longitudinal study (LONG), where the group consisted of mice euthanised when they appeared moribund 
thoughout the course of the study; (ii) A cross-sectional study, consisting of groups where mice were sacrificed at 
6 months old (6 m), 12 months old (12 m), and 20 months old (20 m). Because the 6 month study utilised a subset 
of strains and examined limited types of lesions, we did not use this data in our work.

In the the cross-sectional study, at least 15 animals were sacrificed at 12 and 20 months (12 m and 20 m), irre-
spective of health status. After 14 months some strains show considerable attrition due to disease and inter-animal 
aggression and so at the 20 month time point the same number of mice was not available for every strain21.

All animals were subject to complete necropsy and examination and each diagnosis specified using classes 
from MPATH and MA. We used data from 1,595 mice from 28 strains; their counts are shown in Table 1. Strains 
AKR/J, CAST/EiJ, and SJL/J were excluded because most of the animals died early in the experiment due to 
well-characterised severe disease or aggressive behavior. Each mouse can have multiple diagnoses and some of 
the mice have no diagnosis, which we will refer to as healthy mice. As not all strains show high survival rates past 
14 months of age, numbers necropsied for each strain are most variable at 20 months.

Ontologies.  We used two ontologies in this work, the Mouse Pathology Ontology (MPATH)19 and the Mouse 
Anatomy Ontology (MA)18. MPATH describes mouse pathological processes and structures. The version used 
was released on 2018-01-06 and contains 889 classes. MA describes adult mouse anatomy. We used the version 
released on 2017-02-07 and which contains 3,257 classes. As a preprocessing step in all our analyses, we added an 
axiom for each class in MA making them all sub-classes of a common root class, Mouse anatomical entity.

OQuaRE ontology evaluation measures.  The ontology quality requirements and evaluation 
(OQuaRE)26 is a framework which adapts the standard for software quality requirements and evaluation 
(SQuaRE)27. OQuaRE intends to provide a standardized method that is applicable in measuring the quality of 
ontologies. We used three of the metrics of OQuaRE which describes structural characteristic of ontologies. The 
tangledness (TMOnto) measure describes the ratio of multiple parents classes to the total numbers of classes in 
an ontology (see Eqation 1) where Ci is the ith class in the ontology, N is the total number of classes in the ontology, 
and DP(C) equals to one if the class has more than one directed parent and zero otherwise. The weighted method 
count (WMCOnto) is the average depth of a leaf classes (Equation 2) where Nleafs is the number of leaf classes, and 
Ci is the ith leaf class. The depth of the subsumption hierarchy (DITOnto) is the maximum depth of a leaf class 
(Equation 3).
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Enrichment analysis.  We performed enrichment analysis using the tools FUNC28 and OntoFunc4. FUNC is 
a software package that was developed to find significant associations between gene sets and ontological annota-
tions in Gene Ontology, and OntoFUNC is a tool that was developed to extend the use of FUNC tool to perform 
enrichment analysis in ontologies other than GO.

We performed a hypergeometric test using the six different ontologies. We first applied OntoFUNC to each 
of the ontologies separately to generate files that will be used by FUNC. Then we generated an annotation file for 
each strain of mouse for each tested ontology using groovy scripts. The annotation file consists of three columns; 
individual mouse identifier (ID), phenotype from the ontology classes and a binary value that represents whether 
the mouse belongs to the strain of interest or not. Healthy mice, without phenotypes, are added by assigning them 
the root of the tested ontology as their phenotype. For using FUNC we specified the parameters as follows: the 
root for each ontology graph to be owl:Thing, the number of random sets to be 1,000, and ensured that each group 
(case and control) has at least one individual.

Semantic similarity.  We calculated mouse to mouse groupwise semantic similarity10 based on the exist-
ing ontologies MA, MPATH, as well as using the newly generated ontologies MAP, MAPT, PAM and PAMT. 
Generation of the new combined ontologies is described in Results. Briefly, MAP and MAPT are built with the 
MA as the primary axis of classification, and PAM and PAMT using MPATH as the primary axis of classification. 
MAPT and PAMT include additional axioms that base classification on the transitivity (T) of parthood relations.

We used Resnik’s similarity measure29 and best match average (BMA) strategy implemented in the Semantic 
Measures Library (SML)30. Resnik’s similarity method is based on information content (IC) of an ontology class. 

Strain

Number of mice in each strain

Female Male total 12 M 20 M LONG total

129S1/SvImJ 31 40 71 30 28 13 71

A/J 40 32 72 27 16 29 72

BALB/cByJ 41 27 68 28 24 16 68

BTBR T+ tf/J 28 23 51 32 13 6 51

BUB/BnJ 25 12 37 23 11 3 37

C3H/HeJ 28 29 57 23 16 18 57

C57BL/10J 30 35 65 28 26 11 65

C57BL/6J 36 39 75 30 29 16 75

C57BLKS/J 36 43 79 27 28 24 79

C57BR/cdJ 30 34 64 30 26 8 64

C57L/J 31 31 62 30 29 3 62

CBA/J 36 32 68 29 24 15 68

DBA/2J 24 24 48 23 13 12 48

FVB/NJ 28 26 54 29 13 12 54

KK/HlJ 26 22 48 27 14 7 48

LP/J 30 37 67 30 27 10 67

MRL/MpJ 48 31 79 30 17 32 79

NOD.B10Sn-H2/J 25 21 46 24 17 5 46

NON/ShiLtJ 36 28 64 28 25 11 64

NZO/H1LtJ 18 12 30 17 11 2 30

NZW/LacJ 25 27 52 29 18 5 52

P/J 13 9 22 3 16 3 22

PL/J 15 17 32 23 7 2 32

PWD/PhJ 34 28 62 27 23 12 62

RIIIS/J 36 32 68 29 26 13 68

SM/J 28 30 58 28 24 6 58

SWR/J 24 19 43 20 12 11 43

WSB/EiJ 27 26 53 26 22 5 53

Total 829 766 1595 730 555 310 1595

Table 1.  Overview of the strains used in our analysis.
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The information content of a given phenotype class in the ontology is defined as the negative log of its occurrence 
probability31. As shown in Equation 4, the probability of each phenotype is calculated as the sum of each of its 
subclasses’ probabilities where nx is the number of occurrences of the phenotype x in the corpus and ′ ⊆ |x y y x{ } 
and N is the total number of phenotype classes. The similarity between two phenotypes is then calculated as the 
information content of their most informative common ancestor (MICA, see Equation 6).

∑=
′

′p x n
N

( )
(4)x

x

= −IC x log p x( ) ( ( )) (5)

=sim x x IC MICA x x( , ) ( ( , )) (6)Resnik 1 2 1 2

Finally, we used a best matching average method (BMA) to compute mouse-to-mouse similarity. We have 
two sets of ontology-based annotations, those for the first mouse and those for the second. For each annotation 
in either of the two annotation sets, the BMA method looks for the best match in the other set (the class with the 
highest similarity) and averages their similarities. In Equation 7, m1 and m2 are the number of classes associated 
with mouse1 and mouse2, respectively. p1i and p2i refer to the ith annotation of mouse1 and mouse2, respectively.
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We generated mouse-to-mouse similarity scores for six groups of mice where groups are defined based on 
sex and age at the time of inspection. The groups are: twelve month old females (12 m-F) with 372 mice, twelve 
month old males (12 m-M) with 358 mice, twenty month old females (20 m-F) with 281 mice, twenty month old 
males (20 m-M) with 274 mice, longitudinal study females (LONG-F) with 176 mice and longitudinal study males 
(LONG-M) with 134 mice.

Clustering and clustering purity.  We perform clustering based on the similarity matrices generated by 
applying semantic similarity to each pair of mice. We applied K-medoids clustering, complete linkage agglomer-
ative clustering, unweighted pair group method with arithmetic mean (UPGMA), and neighbor joining agglom-
erative clustering (NJ).

K-medoids clustering is very similar to K-means clustering but has some advantages over K-means: it does not 
require an observation matrix and can work directly with the similarity matrix, and it may also be less sensitive 
to outliers.

Hierarchical agglomerative clustering methods start by creating clusters by the number of mice. They then 
group the closest clusters into one cluster one at a time and the distances between this newly generated cluster 
and previously existing ones are calculated. In complete linkage, the maximum distance between points in the 
two clusters is computed32. However, in UPGMA, it is calculated as the average distance between points in the 
two clusters33.

Neighbor joining34 is a method that is used for constructing phylogenetic trees. It starts with a star-like tree 
at every phase of this algorithm and tries to pick the pairs x and y with the smallest sum of branch Sxy and joins 
them.

After clustering, we measure the quality of clusters by the cluster purity35. We calculate the purity based on the 
ground truth of mice and the strains to which they belong, by assigning each cluster to the most frequent strain 
in that cluster. Then, the sum of correctly assigned mice is divided by the total number of mice. Let mi,j be the 
strain of mouse j in cluster i, maxi is the dominant strain in cluster i, and M is the total number of mice then the 
purity is calculated as following equations 8,9. To compare the clustering results quantitatively, we use the area 
under the purity curve using the trapezoidal method divided by the number of mice in the group, as shown in 
equation 10, where M is the number of mice in the group, Purityn is the purity of clusters when the number of 
clusters is set to n.
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ROC analysis.  A receiver operating characteristic (ROC) curve is an evaluation measure for binary classi-
fication problems36. ROC curves visualize the trade-off between positives and negatives in different numerical 
threshold points. This allows a direct comparison between classifiers without setting a specific threshold35. To plot 
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the ROC curve, we compute the true positive rate and false positive rate as shown in equations 11 and 12. This 
tests whether the t highest similar mice to a mouse would be from the same strain or not.
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Rank-based statistics.  The ontology-based analyses that we apply in this work are enrichment and seman-
tic similarity. The enrichment analysis provides a p-value for the classes that are over- and under-represented 
in each mouse strain, and the semantic similarity provides a similarity value for each pair of mice. We can use 
the p-values as well as the similarity score to rank classes for each strain based on their significance for over- or 
under-representation, and we can rank all mice for each mouse based on their pairwise similarity score. This is 
motivated by the practice of considering only the “most significant” or “most similar” entities as relevant, and 
determining how the ontology design patterns effect this kind of scenario. We can determine the strength of the 
effect of the different ontology design patterns based on how much the ranks (of the classes in the enrichment 
analysis, or the pairs of mice in the semantic similarity) change.

We apply several rank-based statistical measures, specifically Kendall’s tau correlation coefficient and the 
Wilcoxon rank-sum test to determine whether different ontology design patterns provide different ranks. All 
tests we apply are non-parametric statistical measures.

Kendall’s τ rank correlation coefficient is a measure of how well two sets of ranks of the same set of objects are 
correlated. To calculate Kendall’s τ we need to first calculate the number of concordant and discordant pairs. For 
each pair of objects this method compares the rank of those objects using the alternative ranking algorithms. If 
the rankings of the two objects are of the same order then they are concordant, if they are different then they are 
discordant. We used the implementation in SciPy37 for Kendall’s tau-b to perform this test.

The Wilcoxon rank sum test, also known as the Mann-Whitney U-test, is a non-parametric alternative to the 
t-test for independent samples. We use the implementation in Matlab to perform this test.

Implementation.  We use several tools and libraries in this work. The OWL API 4.2.538 is used to combine 
ontologies and implement our design patterns, and the FUNC 0.4.728 and OntoFUNC4 tools are used to perform 
the enrichment analysis. To compute semantic similarity between mice based on their annotations, we use the 
semantic measure library (SML)30. For the quantitative and statistical analyses, we use Matlab, R and SciPy (to 
perform clustering, compute ROC curves and area under the ROC curves, calculate purity and rank-based sta-
tistics). All code that is required to reproduce our results, and the generated ontologies, are available at https://
github.com/bio-ontology-research-group/mpath-ma.

Results
Ontology design patterns to combine anatomy and pathology.  In the original application of 
MPATH, the problem of many lesions potentially occurring in many different anatomical locations was dealt with 
at the level of annotation, using classes from two or more ontologies to describe each lesion. This avoids the crea-
tion of all possible compound classes with the inevitable increase in class numbers, making the ontology cumber-
some to use and expensive to compute over. The shortfall of this annotation-based approach is in the difficulty of 
using both ontologies separately in any analysis. Creating what is effectively a precomposed compound ontology 
obviates this problem. There are, however, different possible ways to combine the the MPATH and MA ontolo-
gies. The key problem we address is how to select the primary axis of classification, i.e., whether the classes in the 
combined ontology should represent anatomical entities with particular pathological lesions, or, alternatively, 
pathological lesions that affect particular anatomical locations. In the first case, the MA ontology will provide the 
natural backbone of the combined ontology’s taxonomy, while in the second case the backbone taxonomy will be 
provided by MPATH. A further challenge is how to incorporate information from the ontologies’ axioms in the 
combined ontology; for example, if a pathological lesion affects the left ventricle, we may also wish to classify this 
lesion as a lesion affecting the heart (and therefore utilize anatomical parthood axioms to structure the combined 
ontology). We combine the MPATH and MA ontologies in a data-driven way, using the OWL API38 to generate 
classes for each MPATH–MA pair observed in our mouse dataset.

To generate the first pattern, which we call MAP, we iterate through all pairs of classes from MA and MPATH 
observed in our mouse dataset. For each distinct pair of ?MPATH and ?MA classes, we create a new class ?MAP 
defined as:

≡ ∃. .MAP MA has lesion MPATH? ? _ ? (13)

We generated the second pattern, which we call MAPT, in the same way but instead of the definition in 
Equation 13 we define a MAPT class as in Equation 14, i.e., using the parthood relation. MAP and MAPT are 
ontologies in which classes combine the observation that a certain anatomical entity, or its parts, have a certain 
lesion from MPATH. In MAPT, we reuse the Part-of relation from the MA ontology which will then be used to 
infer that a lesion observed for X is also observed in any part of X. For example, if an adenoma is observed in the 
lungs then it is also observed in some part-of the respiratory system.

https://doi.org/10.1038/s41598-019-40368-1
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MAPT part of MA has lesion MPATH? _ ? _ ? (14)≡ ∃ . ∃ . .

Finally, we also add a “contextualization axiom” as defined in Equation 15, which asserts that everything (that 
falls in the domain of our ontology) has a lesion.

≡ ∃ .has lesion_ (15) 

The MAP and MAPT ontologies contain 1,575 MAP classes. After generating the axioms that form the ontol-
ogy, we used the HermiT reasoner39 to classify the ontology hierarchy.

To generate the third and fourth ontology, which we call PAM and PAMT, we define two classes from each 
pair of inputs to the data set in each ontology. For PAM, we define ?PAM class as defined in 17 and for PAMT 
we defined the ?PAMT class as defined in 16. ?PAM and ?PAMT are classes that combine the observation that a 
certain pathological lesion ?MPATH affected part of the anatomical site ?MA. In ?PAMT classes we reused the 
part-of relation from MA ontology for the same reason illustrated above.

PAMT MPATH affects part of MA? ? _ ? (16)≡ ∃ . ∃ .

PAM MPATH affects MA? ? ? (17)≡ ∃ .

Another axiom that we added is a “contextualization axiom” axiom defined in 18, which indicates that an 
affect of some lesion in any anatomical entity is a type of that thing. For example, an adenoma that affects the 
lung is still a type of adenoma. After PAM, PAMT and MPATH affects classes were asserted we inferred logical 
relations using the HermiT reasoner39. The PAM and PAMT ontologies contains 1,575 classes each.

 ≡ ∃ .affects (18)

OQuaRE Evaluation Measures.  To understand the differences between the new ontologies and the orig-
inal ones, as well as to evaluate the effect of automated reasoning on the newly generated ontologies, we applied 
three methods from the OQuaRE ontology evaluation suite26. The tangledness (TMOnto) measure describes 
the ratio of multiple parents classes to the total numbers of classes in an ontology, the weighted method count 
(WMCOnto) is the average depth of a leaf classes, and we further measure the maximum depth of the subsump-
tion hierarchy (DITOnto). Table 2 shows the OQuaRE metrics for these three measures. Our results demonstrate 
that tangledness in the new classes is higher compared to the original ones, and the maximum depth of the newly 
created ontologies is slightly larger than the original ontologies. We also limit this analysis to newly created classes 
only. We find that PAM and PAMT have a higher average depth than MAP and MAPT (WCMOntoPAM = 6.5022, 
WCMOntoPAMT = 6.7674, WCMOntoMAP = 4.9020 and WCMOntoMAPT = 2.4889). Finally, to illustrate how the 
structure of newly generated ontologies is determined through application of automated reasoning using the 
HermiT reasoner39, in Table 3 we show the three metrics for the original ontologies compared to the inferred ones.

Enrichment analysis.  We performed enrichment analysis to find overrepresented lesions and anatomical 
sites in each strain. We used the original ontologies MA and MPATH and the newly generated ones MAP, MAPT, 
PAM and PAMT. Each ontology showed a characteristically different rank profile of the overrepresented classes.

TMOnto WMCOnto DITOnto

MAP 0.6093 4.3008 11

MAPT 0.3704 3.5914 10

PAM 0.6251 4.6638 11

PAMT 0.5749 4.6701 11

MA 0.0381 1.7033 9

MPATH 0.1025 4.5134 8

Table 2.  OQuaRE measures: tangledness (TMOnto) represents the mean number of classes with more than one 
directed parent, the weighted method count (WMCOnto) is the average depth of leaf classes, and DITOnto is 
the depth of the subsumption hierarchy.

TMOnto WMCOnto DITOnto

inferred asserted inferred asserted inferred asserted

MAP 0.6093 0.0376 4.3008 1.5413 11 9

MAPT 0.3704 0.0376 3.5914 1.5413 10 9

PAM 0.6251 0.0376 4.6638 1.5413 11 9

PAMT 0.5749 0.0376 4.6701 1.5413 11 9

Table 3.  OQuaRE measures: comparison of the inferred axioms using the HermiT reasoner.
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We used Kendall’s rank correlation coefficient τ to quantify how much two ontologies, or two ontology 
design patterns, differ. We found that changing the primary axis between anatomy and pathology yielded highly 
correlated ontologies, for instance, τMAP,PAM = 0.9990 and τMAPT,PAMT = 0.9988. However, the correlation drops 
when using the transitivity of the part_of relation from the MA ontology, for instance, τMAP,MAPT = 0.9130 and 
τPAM,PAMT = 0.9433. Changing both the main axis of classification and using the transitivity further decreases the 
correlation, τMAP,PAMT = 0.9123 and τPAM,MAPT = 0.9145.

Clustering purity.  The driving motivation behind the generation of inbred strains of laboratory mice was 
that genomically identical individual mice within an inbred strain show closely related phenotypes. The pheno-
typic relatedness of mice within the same strain allows for the genetic analysis of genes and variants giving rise 
to those phenotypes22,24,40,41. We therefore expect that once individual mice are phenotypically annotated, these 
annotations should be useable in a classifier to assign each mouse to a specific strain, or at least to cluster together 
mice of genetically related inbred strains23.

Cluster purity provides a method for evaluating whether mice of the same or similar genetic background are 
predisposed to the same or similar lesions at same or similar anatomical sites. We first use a similarity measure 
to generate mouse to mouse disease similarity matrix. To eliminate confounder effects, we distinguish males and 
females and different time points in the study. We convert similarity matrices to distance matrices and applied 
four clustering methods.

The purity metric reflects how well mice of the same strain have been grouped together based solely on their 
phenotypic similarities, using annotation to each of the six different ontologies (i.e., MA, MPATH, MAP, MAPT, 
PAM, PAMT). Depending on the number of clusters, purity will naturally increase, and we determine the overall 
performance of the clustering task through the area under the purity curve. Table 4 shows the area under purity 
curves for all the group. We observe that PAM and PAMT, using the MPATH ontology as their primary axis, 
have the highest average AUC in the UPMGA and complete linkage methods, whereas neighbor joining and K 
medoids methods show MA and MAP, based on the anatomy axis do better on average in all groups.

Semantic Similarity.  Instead of using phenotype-based cluster and measuring the purity, we can also vali-
date the hypothesis that a similar genetic background results in similar lesions directly by determining whether 
mice from the same strain are more phenotypically similar to each other than mice from different strains. In 
particular, instead of identifying how well different mouse strains separate into clusters, we are testing globally 
how much more similar mice in the same strain are to mice in different strains. For this purpose, we treat phe-
notypic similarity as a classifier that identifies mice of the same strain as positives and mice of different strains as 
negatives, and we can compute the true and false positive rates. A receiver operating characteristic (ROC) curve 
is a plot of the true positive rate as a function of the false positive rate. Figure 1 shows the ROC curves36 for the 
tested groups of mice.

We further quantify the differences between the ROC curves using the area under the ROC curves 
(ROCAUC)36. We then calculated the weighted average across the four groups of mice, weighting by the number 
of mice in each group. Table 5 shows the ROCAUC for the four groups of mice as well as their weighted average. 
We find that both MPATH and MA alone achieve a lower average AUC (0.7117 and 0.7290, respectively) than 
MAP (AUC 0.7454), MAPT (AUC 0.7486), PAM (AUC 0.7481), and PAMT (AUC 0.7462). The results show that 
the newly generated ontologies produced higher average area under the curve than MPATH and MA alone.

Complete Linkage UPMGA

MA MAP MAPT PAM PAMT MPATH MA MAP MAPT PAM PAMT MPATH

12m-F 0.6324 0.6624 0.6614 0.6776 0.6740 0.6390 12m-F 0.6093 0.6393 0.6469 0.6539 0.6619 0.6358

12m-M 0.6431 0.6563 0.6572 0.6703 0.6700 0.6487 12m-M 0.6234 0.6346 0.6423 0.6594 0.6586 0.6336

20m-F 0.6532 0.6753 0.6707 0.6997 0.7036 0.6359 20m-F 0.6215 0.6607 0.6582 0.6780 0.6699 0.6148

20m-M 0.6497 0.6959 0.7144 0.7044 0.7026 0.6481 20m-M 0.6253 0.6721 0.6903 0.6907 0.6924 0.6320

LONG-F 0.6654 0.6902 0.7126 0.6973 0.7049 0.6541 LONG-F 0.6496 0.6858 0.7114 0.6733 0.6832 0.6476

LONG-M 0.6041 0.6479 0.6329 0.6127 0.6329 0.5782 LONG-M 0.5927 0.6127 0.6209 0.6046 0.6078 0.5802

weighted average 0.6521 0.6755 0.6793 0.6863 0.6863 0.6432 weighted average 0.6306 0.6546 0.6641 0.6676 0.6692 0.6329

Neighbor-Joining K-medoids

MA MAP MAPT PAM PAMT MPATH MA MAP MAPT PAM PAMT MPATH

12m-F 0.6618 0.6398 0.6644 0.6474 0.6249 0.6494 12m-F 0.6380 0.6598 0.6523 0.6449 0.6468 0.6254

12m-M 0.6361 0.6386 0.6312 0.6132 0.6202 0.6290 12m-M 0.6401 0.6659 0.6596 0.6489 0.6518 0.6296

20m-F 0.6817 0.6686 0.6210 0.6360 0.6434 0.6442 20m-F 0.6366 0.6870 0.6735 0.6776 0.6834 0.6260

20m-M 0.6490 0.6454 0.6397 0.6350 0.6377 0.6570 20m-M 0.6443 0.6706 0.6838 0.7087 0.6931 0.6358

LONG-F 0.5719 0.5927 0.5809 0.5795 0.5832 0.5826 LONG-F 0.6780 0.7112 0.6950 0.7001 0.6938 0.6292

LONG-M 0.5731 0.5753 0.5641 0.5796 0.5704 0.5829 LONG-M 0.6067 0.6312 0.6325 0.5938 0.6091 0.5766

weighted average 0.6454 0.6410 0.6336 0.6287 0.6264 0.6386 weighted average 0.6498 0.6768 0.6708 0.6679 0.6690 0.6319

Table 4.  The area under cluster purity curves, based on four different clustering methods and using annotations 
to all six ontologies.
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Figure 1.  ROC curves for identifying mice from the same strain based on phenotypic similarity, and separated 
by the six groups of mice used in our analysis.

12 m-F 12 m-M 20 m-F 20 m-M LONG-F LONG-M Weighted average

MA 0.6961 0.7038 0.7412 0.7384 0.7430 0.7202 0.6962

MAP 0.7276 0.7287 0.7705 0.7661 0.7658 0.7362 0.7221

MAPT 0.7281 0.7340 0.7701 0.7769 0.7655 0.7345 0.7249

PAM 0.7149 0.7351 0.7824 0.7945 0.7465 0.7129 0.7234

PAMT 0.7126 0.7350 0.7789 0.7938 0.7494 0.7129 0.7224

MPATH 0.6950 0.7098 0.7387 0.7416 0.7044 0.6785 0.6899

Table 5.  Area under the ROC curve.
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To test how the similarities generated by the ontologies for each pair of mice differ, we used a Wilcoxon rank 
sum test to test whether the differences in ROCAUC is significant. We perform the test for each pair of two 
ontologies and adjust p-values using Bonferroni correction. We find that there are significant differences between 
the new ontologies and the original ones: mice from the same strain are ranked significantly more similar than 
mice from different strains when using MAP, MAPT, PAM, and PAMT compared to MPATH (p = 4.5⋅10−10, 
p = 7.5⋅10−9, p = 1.1⋅10−11, and p = 9.1⋅10−12) as well as compared to MA (p = 0.02, p = 0.0272, p = 0.0159 and 
p = 0.0159, respectively). We also find that the difference between the new ontologies and MPATH is larger than 
the difference to MA. Among the four ontologies we generated, only the difference between MAP and MAPT as 
well as between MAPT and PAM/PAMT is significant (p = 0.021 and p = 0.033, respectively).

Discussion
Pattern-based ontology design and evaluation.  In the life sciences it is widely accepted that reference 
ontologies should cover mainly one type of entity, and that multiple, interoperable ontologies can be used to 
characterize the different facets of a biological phenomenon1. Consequently, there is now a large set of ontologies 
available that can capture a wide range of phenomena1,8. As the ontologies are separate and often cover distinct, 
yet related, concepts, it is a common practice to use multiple ontologies in annotating complex datasets. For 
example, in annotation of protein functions, which is mainly based on the Gene Ontology (GO)3, additional 
ontologies are used to provide more complete and accurate descriptions: the Celltype Ontology (CL)42 or the 
Uberon anatomy ontology6 can be used to restrict certain annotations to the context of particular cell types, ana-
tomical structures or developmental processes; the ChEBI ontology of chemical structures2 can provide accurate 
information about environmental exposures or stressors; and further ontologies can provide additional modifiers 
to annotations. Similarly, in the area of systems biology, it is very common to characterize models or the states of 
biological systems through a combination of multiple different ontologies43, and systematically combining these 
ontologies to formally describe the biological system can significantly extend the utility of individual annotations 
to separate ontologies44. Most importantly, multiple ontologies are widely combined in the area of phenotype 
descriptions15 since phenotypes can involve a wide range of morphological, environmental and processual enti-
ties, some very difficult to capture, such as lifestyle and food preferences.

Consequently, it has now become a major challenge to identify ways in which classes from multiple ontolo-
gies can be combined systematically so as to comprehensively and accurately characterize biological phenomena 
while maintaining the interoperability between datasets that ontologies aim to achieve. Ontology design patterns 
(ODPs) are an approach to provide shared, tested, and well-documented axiomatic patterns which can be applied 
recurrently in similar situations and therefore maintain interoperability, even when multiple ontologies are used 
together11. The application of ODPs has a wide range of purposes. The dominant ones in the biomedical sciences 
being patterns for standardization of content, structure and presentation, the aim being to maximize efficiency 
of maintenance and development45. Additional motivations for using ODPs are for the support of reasoning and 
ontology matching. Recently, motivated by the increasing importance of ontology design patterns in achiev-
ing and maintaining ontology and dataset interoperability, pattern libraries such as Dead Simple OWL Design 
Patterns14 have emerged. These libraries collect design patterns that are intended to be reused throughout the life 
sciences. There are often different choices in how to combine classes from different ontologies, and these choices 
depend on a dataset, use case, or application46, and some design patterns may be suited better or worse for par-
ticular applications. It has thus become a challenge to identify ways to evaluate the ontology design patterns and 
their utility in achieving certain outcomes; at the very least, given two choices of patterns to use (as, for example, 
in the area of phenotypes), it would be beneficial to determine whether the choices differ significantly or whether 
they likely lead to the same results.

We see one of our main contributions here as provision of a comprehensive set of evaluation methods for 
different ontology design patterns, and ways of comparing the effect that different ontology design patterns have 
on ontology-based data analysis. We use some of the most common ontology-based analysis methods in our 
evaluation: enrichment analysis and semantic similarity. While enrichment analysis is an exploratory method, 
we compare the ranks assigned through enrichment analysis to quantify how much ontology design patterns 
affect relative enrichment estimates. We use semantic similarity to determine how well the design patterns can 
reproduce a well-established biological hypothesis (i.e., that organisms with the same genotype have similar phe-
notypes) and quantify the effects through statistical measures, specifically, the receiver operating characteristic 
(ROC) curve36. Furthermore, we use clustering to determine if and how the different patterns make different 
groups of biological entities separable, and we introduce the area under the cluster purity curve as a quantitative 
measure.

The ontology design patterns we evaluate here are not only applicable to the two ontologies we use in our 
work. There is significant work on deciding optimal design patterns for combining anatomy and physiology 
ontologies into phenotype ontologies7,16,47,48, and the ontology design patterns that are commonly used are sim-
ilar to the patterns we evaluate here. The main difference between generic phenotype ontologies and our work 
is the use of the Phenotype And Trait Ontology (PATO)15 instead of MPATH, and the use of different anatomy 
ontologies such as the cross-species ontology Uberon6. Our evaluation strategy can therefore also be applied to 
other phenotype ontologies. However, different datasets and applications may yield different evaluation results46.

The findings from our analysis demonstrate that while we obtain a statistically significant improvement 
in most analyses when using the combined ontologies, the differences between them are small in magnitude 
and it is not obvious which design pattern performs better than others. This finding shows the utility of our 
metrics-based approach to evaluation and informs the choice of ontology used in subsequent data analysis. In 
our case it seems that either ontology is better than using the single ontologies but that both would be expected to 
perform equally well. The additional benefits of combining the MA and MPATH ontologies are the ease of data 
annotation with the combined ontologies (in contrast to annotation with two independent ontologies), access to 
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more comprehensive classes that combine anatomy and pathology, and a more comprehensive characterization 
of data. As future research, a similar kind of evaluation can be performed on phenotype ontologies that are used 
to characterize human or mouse phenotypes and employed, for example, to discover gene–disease associations49 
or protein–protein interactions50.

While our aim was to provide evaluation procedures and evaluation results that can be transferred to other 
ontologies and applications, our approach nevertheless has several crucial limitations. Most importantly, our 
evaluations depend on the semantic similarity measure we employ and may not generalize to other similarity 
measures51; our evaluation should be repeated if another similarity measure is chosen. Similarly, we demonstrate 
that the choice of the clustering algorithm changes the results, and while some general trends are observable 
across all algorithms we tested, the actual performance results are dependent on the algorithm. Our results do not 
necessarily generalize to other ontologies or even to other datasets, but demonstrate a set of methods, tools and 
approaches that can be employed to evaluate and test ontology design patterns.

The evaluation methods we introduce can be seen as complementary to evaluation frameworks such as 
OQuarE17 which provide quantitative statistics and measures for evaluating ontologies intrinsically. Our meth-
ods are based on an application in which ontologies are used for the analysis of a specific dataset and can therefore 
provide an external evaluation.

Related approaches to our work are ontology alignment approaches in which relations between classes in 
two or more ontologies are identified. The most common kind of relation identified in ontology alignment is 
an equivalence relation between two classes, and several ontology alignment systems can also identify subclass 
relations52–54. These approaches are well suited for ontologies that overlap–at least partially–in some of their con-
tent but cannot generally find relations between ontologies that do not share a common domain. In these cases, 
inductive logic programming systems for OWL knowledge bases such as the DL-Learner framework55 may be 
applied to find more common patterns through which classes or instances may be related. Finding ontology 
design patterns that optimize particular evaluation metrics (such as cluster purity or area under the ROC curve, 
as in our approach) can further improve our approach.

Annotation challenges in histopathology.  The formal coding of anatomic pathological observations 
needs to reflect the type of lesion observed together with its anatomical location and, where necessary, other 
characteristics such as microscopical anatomical variation, severity, or behavior. Because many lesions can occur 
in multiple tissues, a precomposed ontology to cover all eventualities runs into problems of combinatorial “bloat”, 
which makes the resulting ontology difficult to use either by humans or in computation. The solution to this 
challenge has been to annotate to multiple ontologies, in particular anatomy (in the case of mice to the mouse 
anatomy ontology MA) and pathology (from the mouse pathology ontology, MPATH), and use additional classes 
from PATO56 and other ontologies when necessary. This approach allows for the coding of almost any lesion but 
as the classes are used separately at the level of annotation this limits the kinds of ontology-based analysis that can 
be carried out. For example, even simple tasks such as counting specific lesions in given sites, e.g., determining 
how many mammary gland lesions of all types have been observed, becomes more challenging.

Here, we formally combine MA and MPATH into a compound ontology using two different design patterns, 
one in which MA is used as the ontology framework and the other MPATH. We additionally investigate the 
impact of introducing transitive parthood relationships into the structure of these new ontologies. Generating all 
possible MA and MPATH combinations is avoided by limiting the number of classes to those required to describe 
the dataset, plus a small number of structuring classes. We explore design patterns for compound ontologies and 
evaluate alternative models of representing histopathology data based on anatomical or pathological knowledge. 
We are able to relate the performance of different patterns to external and independently validated concepts, 
namely the expectation that phenotype similarity should correlate with genotype similarity.

The first question we address is whether the compound ontologies provide a better description of the data than 
the single anatomy or pathology ontologies, MA and MPATH, and which of the two designs is better. The sec-
ond question evaluates the impact of introducing transitivity over parthood relations into the ontology axioms. 
As we use completely inbred strains of mice, individuals within the same strain have an identical genotype. We 
utilize assessments of disease status relatedness of individual mice through semantic similarity and test globally 
inter- and intra-strain similarity. We find that the compound ontologies perform better than the individual MA 
and MPATH ontologies in establishing that the mice used show closer phenotypic relatedness within, rather than 
between, strains. Furthermore, using clustering and evaluating cluster purity, we also find that the mice separate 
better in groups based on their background strain using the combined ontologies compared to using either MA 
or MPATH alone.

We next evaluate the primary axis of classification for the combined ontologies, being either MA or MPATH. 
Evaluating these different ways of combining the ontologies has significant implications not only for our dataset 
but also in the area of phenotype ontologies, where different phenotype ontologies have been built based on 
different classification axes15,16,48,57. In our evaluation, when we compare the performance of ranks of classes pro-
duced by the compound ontologies in enrichment analysis, we find that the primary axis of classification has little 
effect on the ranks (at least when using the particular aging dataset on which we rely here). We obtained similar 
results using the evaluation of semantic similarity measures and the clustering.

Conclusions
Using the example of a specific large biological dataset we have shown that the data-driven generation of com-
pound ontologies can yield powerful tools for data analysis. In addition we propose and assess comprehensive 
evaluation procedures for different design patterns for the resulting ontologies. We believe that these strategies 
for ontology generation and evaluation of ontology design patterns are generally applicable, and will be of great 
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utility in dealing with the increasingly complex and multi-dimensional annotation of the large biomedical data-
sets now being widely collected.

Data Availability
All data and software required to reproduce our results are freely available at https://github.com/bio-ontology-re-
search-group/mpath-ma. A preprint of this manuscript is available on bioRxiv58.
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