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Abstract

The installation of smart meters enabling electricity load to be measured with half-hourly
granularity provides an innovative demand-side management opportunity that is likely
to be advantageous for both utility companies and customers. Time-of-use tariffs are
widely considered to be the most promising solution for optimising energy consumption
in the residential sector. Although there exists a large body of research on demand
response in electricity pricing, a practical framework to forecast user adaptation under
different Time-of-use tariffs has not been fully developed. The novelty of this work
is to provide the first top-down statistical modelling of residential customer demand
response following the adoption of a Time-of-use tariff and report the model’s accuracy
and the feature importance. The importance of statistical moments to capture various
lifestyle constraints based on smart meter data, which enables this model to be agnostic
about household characteristics, is discussed. 646 households in Ireland during pre/post-
intervention of Time-of-use tariff is used for validation. The value of Mean Absolute
Percentage Error in forecasting average load for a group of households with the Random
Forest method investigated is 2.05% for the weekday and 1.48% for the weekday peak
time.
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Nomenclature

t Continuous Time index in a day

τ Discrete Time slot index in a day

c = {cd,τ} Matrix which represents the consumption at time stamp τ of dth day

Cτ Consumption at time stamp τ over days

C̄ = {C̄τ} Average half-hourly consumption on previous tariff

C̃ = {C̃τ} Average half-hourly consumption on a new tariff

Ĉ = {Ĉτ} Predicted average daily consumption on a new tariff

C̄
avg

Average C̄ in the group

C̃
avg

Average C̃ in the group

Ĉ
avg

Average Ĉ in the group

µn(cτ ) The nth statistic moment of consumption at time stamp τ

rpeak Average consumption reduction over peak time (Wh)

rpeak(W ) Average power reduction over peak time (W)

mape Mean Absolute Percentage Error

mapeg mape in the group

mapeg,peak mape in the group over peak time

apeg,peak(W ) Absolute Percentage Error in the group over peak time (W)

lr Linear Regression

dt Decision Tree

nn Neural Network
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1. Introduction

Residential energy sectors worldwide are facing the emerging development of smart
meters combined with better techniques for streaming and processing large volumes of
metering data into useful information. The ongoing roll-out of smart meters provides
a clearer impetus for increasing policy support of demand-side management (dsm) so-
lutions than ever before [1]. Time-of-use (tou) tariffs, also known as time-dependent
pricing, are a dsm solution wherein the price of electricity varies depending upon the
time of the day and the day of the week. The tariff structure is designed to yield po-
tential price savings for the end-user, and targets peak electricity load shifting so as to
constrain the electricity load on a given sub-station. Studies have shown that tou tariffs
can be particularly effective in the residential sector, as they offer a more certain finan-
cial incentive to customers than other more complex price-based dsm programs such as
real time pricing [2].

Alongside smart meter installation, by 2020 tou tariffs will become available in most
of the eu, United States, Japan, and Australia [3]. The success of tou tariffs as a dsm
solution depends upon consumers changing the timing of their energy demand based on
a given tariff structure. Recently, large-scale longitudinal studies have been conducted
to evaluate the behavioural change of residential customers pre- and post-intervention
of a tou tariff. The Customer-Led Network Revolution (clnr) project in UK [4] con-
firmed load shifting from peak to off-peak periods throughout a two-year trial with 576
households. Torriti [5] monitored 1446 households in Northern Italy and showed that
while tou tariffs result in a significant level of load shifting in the morning, the evening
peaks do not change and overall consumption is in fact increased by 13.69%. Faruqui
and Malxo [6] examined 15 pilot projects that showed tou rates induce a drop in peak
demand that ranges between 3% and 6%. Wang and Li [7] reported that potential peak
reduction in the residential sector is much smaller than that of the commercial and in-
dustrial sector based on Federal Energy Regulatory Commission survey [8]. On the other
hand, Faruqui et al. [9] concluded that residential customers are more price responsive
than small business customers. They also examined estimates of the price elasticity of
demand across 42 different tou studies, and found a positive relationship between peak
to off-peak price ratio and peak reduction. Gils [10] confirmed that household consumers
hold a large potential load reduction in most European countries.

To date a large scale implementation of tou tariffs has not taken place. In recent
years, researchers have developed modelling frameworks which can allow utility compa-
nies to exploit smart meter data in order to predict potential load shifts when designing
tou tariff structures. These modelling frameworks generally follow one of the three dis-
tinct approaches: econometric models with an emphasis on estimating price-elasticity,
bottom-up dis-aggregation of household consumption according to electrical appliances
and their time of use, and top-down statistical models.

A classical approach estimates price-elasticities of demand distinguishing between
the elasticity of demand due to price changes of the good itself (own-price elasticity)
and of other goods (cross-price elasticity). The own-price elasticity provides an estimate
of the percentage change in usage during a particular period (i.e. day or billing period)
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that results from a 1% change in price during that period. The cross-price elasticity
provides estimates of the elasticity of substitution between peak, mid-peak and off-peak
periods. For example, Kirschen et al. [11] modelled consumer behaviour using a matrix
of own-price and cross-price elasticities and showed the effect of market structure on the
elasticity of the demand for electricity. Goel et al. [12] modelled customer response us-
ing the matrix of own/cross-elasticities, based on the assumption of constant elasticities.
Venkatesan et al. [13] emphasised the importance of distinguishing between different
consumer types considering different scenarios and levels of consumer rationality. Re-
cently, Katz et al. [14] employed a similar approach to evaluate load-shift incentives
for household demand response, comparing the effects of hourly pricing and a simple
rebate scheme. An advantage of these approaches follows from the assumption that
price-elasticities of demand are scale free, and under certain assumptions, are applicable
out of sample. However, most of these studies have been conducted prior to the roll-out
of smart meters. The integration of this classical approach with newly available energy
big data is a new challenge in this field.

An alternative approach considers the potential for load shifting at the level of
individual appliances, utilising information on the dis-aggregation of total household
consumption according to electrical appliances (or activities). The advantage of this
approach is the ability to identify the primary cause of load variation by associating
load-shifting with appliances. For example, Armstrong et al. [15] computed consump-
tion profiles for different types of activities based on publicly available data on energy
use. Gottwalt et al. [16] applied this to evaluate the capability of residential load shifting
when smart appliance and tou tariffs are applied. Shao et al.[17] proposed a physics-
based residential load model at the appliance level based on controllable load such as
space cooling/heating, water heater, clothes dryer, and electric vehicles for demand re-
sponse modelling. McKenna et al. [18] also constructed a bottom-up demand response
model, combining multiple models such as hot water demand model and thermal ap-
pliances. Xu et al.[19] explicitly acknowledged variability across consumer response by
applying a shifting boundary to limit the maximum loaf-shift in certain groups of cus-
tomers.

A disadvantage of this approach is the requirement of ex-ante identification of de-
mographic or appliance variables or the installation of additional sensors to record ac-
tivities that influence consumption. This is difficult to access without dedicated and
costly studies and must be continuously updated as household appliances and activities
change. This point is also emphasised by Armel et al. [20] recommending a 1-minute to
1-second data frequency to infer the usage of key appliances.

The last framework is a top-down approach based on the use of statistical models
using consumption data. A top-down approach usually treats the load at an aggregated
level and does not distinguish energy consumption due to individual consumer or any
appliances (see Swan and Ugursal [21]). The strengths of a number of top-down models
is the emphasis on historical energy consumption which is indicative of the expected pace
of change with regards to energy consumption. This approach is used widely by utility
companies to forecast future energy demand. With the continued fall in computation
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costs, non-linear techniques such as Decision Trees (dt), Artificial Neural Networks
(ann), and Support Vector Machines(svm) have been used for medium-term electric
load forecasting (see Hahn et al. [22] and Hernandez et al [23]). However, the reliance on
historical data can have a number of drawbacks given that there is no in-built capability
to model discontinuous user behaviour such as weather changes, introduction of new
appliances, and an adoption to a tou tariff. Therefore applying a top-down approach
for a problem of forecasting consumer response to tou tariffs is a challenging issue.

This paper presents a new top-down framework for predicting load profiles following
the introduction of a tou tariff, using demographics and historical electricity usage in the
pre-intervention period. The influence of a tou tariff introduction is usually evaluated
with a time-horizon of one month to one year, comparing electricity consumption during
pre/post introduction. In terms of the time-horizon, this work falls into the category
of medium-term load forecasting. This paper emphasises that this forecasting problem
differs from standard medium-term forecasting models given the need to account for
consumer behaviour adaptation to a tou tariff.

The accuracy of a prediction model plays a vital role in making important decisions on
the operation and planning of a power utility system [24]. The measure most frequently
used to assess the accuracy of a medium-term load forecasting model is Mean Absolute
Percentage Error (mape) [22]. However, current studies in tou prediction do not report
the accuracy of their models in a standard form. Without such a standardised measure
of accuracy, it is difficult to compare the performance of the competing tou models.

Although there exists a large body of research on demand response in electricity
pricing, a practical framework to forecast user adaptation under different tou tariffs
has not fully developed. The novelty of this work is to provide the first data driven
modelling of residential customer demand response following the adoption of a tou
tariff. In particular, this study evaluates the importance of lifestyle constraints which
are constructed using statistical moments based on historical usage. The question as to
the relative importance of demographic information and historical load profiles in the
context of forecasting the impact of tou on demand response, is of considerable interest
to both companies and policymakers.

The key contributions of this paper are summarised below.

1. The first top-down statistical model designed to forecast residential customer de-
mand response following the adoption of a tou tariff, and evaluate its predictive
performance accuracy using mape.

2. The first model to explicitly include lifestyle constraints influencing user adaptation
to a tou tariff.

The remainder of this paper is organised as follows. Section 2 introduces the dataset
used to develop and test the modelling framework. In Section 3, the dataset and a list of
relevant features for model development are described. Relevant statistical techniques
and the accuracy of measurements are discussed in the Section 4. In Section 5, a number
of summary measures demonstrate the predictive accuracy, comparing with other studies.
The final Section concludes the paper with limitations and future works. This paper
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focuses exclusively upon active demand response due to behaviour adaptation. As such
it is assumed that no automated energy storage is present in the sample households.

2. Data

The dataset used in this study is taken from the Electricity Smart Metering Customer
Behaviour Trial carried out by the Irish Commission for Energy Regulation (cer) [25].
This dataset consists of half hourly observations for a total of 4232 households, with a
benchmark period of approximately 6 months and a trial period of one year. During
the trial period households were randomly allocated to one of the four tou tariffs (tou-
a, tou-b, tou-c and tou-d) along with billing information as an incentive for load
shifting. cer also collected demographic information via questionnaires to research
participants, such as: gender, socioeconomic classification, age group, income level, list
of appliances, internet access, number of other residents, housing type, employment
status, owner/tenant, education level etc.

Four major demographic features are used in this research: gender, age group, social
class, and number of other residents. In this study, the subset of 646 tou tariff par-
ticipants (households) with the same level of dsm stimuli (bimonthly bill, energy usage
statement and electricity monitor) are used. Similarly, the subset of 929 households who
are not assigned to any tou tariffs are used as a control group.

It is possible that a weather effect might impact the differences in load profiles across
the pre/post observation periods. In this regard the utilisation of a control group, who
by definition are no different from the tou group (apart from facing a constant flat
tariff), can be used to isolate any confounding effect of this type.

In order to further rule out the impact of other changes, such as a change in con-
sumption behaviour on our estimate of the impact of the introduction of tou tariffs, a
subset of the data around the tou introduction on 1st January 2010 is used. Specifically,
two periods of one month each are considered; December 2009, and January 2019. These
make it possible to analyse the pre/post-intervention effect. By limiting the period to
just two months (one month pre/post the introduction of tou tariffs), any seasonality
effect should be minimised, making it easier to isolate the demand response due to the
introduction of the tou tariff.

The structure of tou tariffs and the flat-rate tariff are presented in Table 1. tou
tariffs A, B, C and D have three different rates within a given weekday, and two different
rates within a non-weekday (weekend and bank holidays). Peak ratios are calculated by
taking the ratio of the peak time rate of weekday and non-weekday respectively to the
original flat tariff rate 14.10. Household assigned to the control group remain on the flat
tariff during the post-intervention period.
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Tariff Flat (Control) tou-a tou-b tou-c tou-d

Off-peak 14.10 12.00 11.00 10.00 9.00
Mid-peak 14.10 14.00 13.50 13.00 12.50
Peak 14.10 20.00 26.00 32.00 38.00
Weekday peak ratio 1.00 1.42 1.84 2.27 2.70
Non-weekday peak ratio 1.00 0.99 0.96 0.92 0.89

Table 1: Flat-rate tariff and the four tou tariffs are used in the cer study. The values are cents per
kWh. Off-peak (23:00-08:00), Mid-peak (weekdays 08:00-17:00, 19:00-23:00, non-weekdays 17:00-19:00),
Peak (17:00-19:00).

3. Modelling Framework

An estimate of the impact of the tou tariffs is obtained by comparing, for each
household, the historical load profile generated under a flat tariff (pre-intervention) and
the load profile under the tou tariff (post-intervention). Although this is of interest in
itself, companies and regulators will only observe historical load profiles at the point in
which tou tariffs are actually introduced into the market. In this sense the key objects
that are of interest are the forecasts of the load profiles once households are offered tou
tariffs, particularly in the peak periods for weekdays, where it matters most to both
consumers and energy suppliers.

Figure 1 summarises the key steps of the proposed modelling. Two types of input
data (historical smart meter data, and demographic data) are initially prepared. The
smart meter data over 62 days (December 2009 and January 2010) recorded at half-hour
intervals is split into weekday and non-weekday subsets as the structure of tou tariffs
is different in the given dataset.

Once data is prepared, the statistical model is created, starting from the feature
extraction. Given 646 households on one of the four tou tariffs with 48 half-hourly
electricity consumption, which are aggregated over the periods, there are 31008 data
samples= 646 × 48 half-hour electricity consumption as input samples for the models.
A description of a data sample for one household is given in Table 4. The outputs from
the statistical model are validated using cross-validation. More details are explained in
the Section 4.1.

The output generated from the model is an intra-day predicted load curves for each
household assigned to a tou tariff. This represents average consumption for each of the
half-hour intervals averaged over the prediction period. By utilising error metrics such
as mape with the unseen test data, model performance is evaluated (see 4.2).
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Figure 1: Each step of the proposed model from the input to the performance evaluation.

3.1. Historical consumption

At time t a load history, say ct, ct−1, ct−2, . . ., is observed, where a given element, say
cj , denotes a meter reading recording the total energy consumed in a given time interval
(ie. half-hour). This time series of meter readings is then collected in a D × n matrix
c = {cd,τ}, where τ = 1, ..., n indexes the time stamps for the dth day. Cτ is a D×1 vector
that contains the readings for the τ th time stamp collected over D days. If c is averaged
along the columns then C̄ = {C̄τ} is a n× 1 vector, representing the average intra-day
shape of the electricity demand curve under a flat tariff. C̃ denotes a comparable object
for a tou tariff, where prices vary over the τ intervals. The consumption level during
the τ th interval is considered as a random variable Cτ , with C = {Cτ} a N × 1 random
vector.

In Figure 2, two plots extracted from the dataset are presented. The first presents
the half-hourly consumption corresponding to five consecutive weekdays of electricity
usage for a given customer; each dot represents the consumption measured in a given
half-hour. The second plot shows the historical load profile, C̄ (D = 5), representing
the average half-hour consumption over the same five weekdays.
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Figure 2: Left: half-hourly electricity consumption for five consecutive days for a particular user. Right:
Average intra-day electricity demand curve over the same five weekdays.

3.2. Statistical description of lifestyle

Making inference on consumer lifestyle patterns using smart meter data is a critical
component of energy efficiency programs and other services. Recently, Beckel et al. [26]
inferred household characteristics from electricity consumption data by using statistical
models with a large number of features such as average consumption during different
times of the day, features related to temporal dynamics, and the first ten principal com-
ponents [27]. However, the feature construction processes could be improved accordingly.
First, the importance of each feature to the model performance is not examined. Sec-
ond, some popular metrics in statistics, such as the moments of a distribution, which are
frequently used to capture the shape of a distribution (see the study by William et al.
[28]), are not used. An advantage in the use of statistical moments is that it compresses
all the information contained in the data into a very small number of expressions. This
study utilises the first four moments: mean, variance, skewness and kurtosis, measuring
their importance for the model performance, and comparing against other demographic
characteristics.

For each time stamp τ , the nth moment is derived as

µn(cτ ) =
D∑
d=1

(cd,τ − C̄τ )npτ (cd,τ ) (1)

where pτ (c) is the probability of having consumption c at the time stamp τ . In the
context of the residential electricity consumption, each moment indicates a particular
aspect of consumer behaviour. In this study, the time stamp τ represents a half-hourly
period between midnight (τ = 0) and 11:30pm (τ = 47).

Figure 3 illustrates average consumption C̄τ of a single household at four different
time stamps (τ = 0, 12, 24, 36) during weekdays at the pre-intervention period (December
2009), and Table 2 presents the values for the moments. C̄τ is highest at 18:00, and
lowest at midnight 0:00. A high variance µ2(cτ ), indicates that consumption at time
stamp τ is relatively unpredictable. As expected, in this example consumption is more
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variable at 12:00 and 18:00 than during the time interval 0:00−6:00. Skewness µ3(cτ )
is a measure of the lopsidedness of the distribution. A distribution having a longer tail
on the right will have a positive skewness. This household has a high value of µ3(cτ ) at
12:00 (see Table 2), reflecting occasional energy-intensive activities at midday such as
cooking and laundry. Finally, µ4(cτ ) kurtosis, is a measure of the heaviness of the tail of
the distribution, compared to the normal distribution of the same variance is presented.
The values at 0:00 and 6:00 are much lower than during the day so that the night-
time electricity consumption pattern (most likely sleeping based on low consumption)
is consistent. In summary, these features of load profiles provide valuable information
about household behaviour based on their own past consumption.

Figure 3: Consumption distribution of a single household at different time stamp τ (τ = 0, 12, 24, 36)
during weekdays at the pre-intervention period (December 2009).

Time 0:00 6:00 12:00 18:00

C̄τ 445 527 689 1870
µ2(cτ ) [×105] 2.30 1.43 10.6 6.72
µ3(cτ ) [×108] 3.32 1.20 24.0 6.51
µ4(cτ ) [×1011] 6.34 1.91 80.0 18.6

Table 2: Moments of the consumption distribution (in Wh) of a single household at different time stamp
τ (τ = 0, 12, 24, 36) during weekdays at the pre-intervention period (December 2009).
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3.3. List of Variables

Table 3 summarises the variables used in this analysis. The target variable1 C̃τ
denotes average consumption in Wh under a tou tariff at time stamp τ , a half-hourly
period between midnight (τ = 0) and 11:30pm (τ = 47). Variables C̄τ , µ2(cτ ), µ3(cτ ),
and µ4(cτ ) are used for training and are therefore calculated over the training period
(December 2009); C̃τ is averaged over the evaluation period (January 2010).

The variables used for model development are categorised into three feature groups
(fg)s depending on the nature of the parameters. The first fg includes the first four
statistical moment. Each variable C̄τ , µ2(cτ ), µ3(cτ ) and µ4(cτ ) are standardised by
subtracting the mean from each feature and dividing by its standard deviation. This
technique has been confirmed effective in feature selection by Jennifer and Carla [29].
The second fg includes tariff information including rates under the flat and the tou
tariffs, and the peak ratio. The third fg has the four demographic features, and the
definitions of the each feature are described in Table 3.

Group Variable Number of possible values Description

τ 48 Represents a half-hourly period between midnight (0) and 11:30pm (47)

1 C̄τ Continuous Mean

1 µ2(cτ ) Continuous Variance

1 µ3(cτ ) Continuous Skewness

1 µ4(cτ ) Continuous Kurtosis

2 Flat price Continuous Tariff rate given a specific time under flat tariff

2 tou price Continuous Tariff rate given a specific time under tou tariff

2 Peak ratio Continuous A ratio of the peak time rate to the average rate.

3 Age group 5 0:26-35, 1:36-45, 2:46-55, 3:56-65, 4:65+

3 Gender 2 0:Female, 1:Male

3 Socioeconomic classification 6 AB, C1, C2, DE, F, Refused

3 Other living residents 3 0:Only adults, 1:Adults and children, 2:None

C̃τ Continuous Average consumption in Wh under a tou tariff (target variable).

Table 3: List of variables utilised in this analysis.

Table 4 illustrates that the form of a data sample for a given household comprises the
variables described in Table 3. Note that C̄τ , µ2(cτ ), µ3(cτ ) and µ4(cτ ) are standardised
and C̃τ is not.

τ C̄τ µ2(cτ ) µ3(cτ ) µ4(cτ ) Flat price tou price

13 0.615 0.483 0.078 -0.015 14.1 12.0

Peak ratio Age group Gender
Socioeconomic
classification

Other
living residents

C̃τ

1.67 4 0 C2 2 801

Table 4: One sample data of a household.

1The target has 48 values since this model is interested in forecasting intra-day load profile at every
half-hour point averaging over days.

12



3.4. Performance Metrics

Cappers et al. [30] used two different performance metrics to evaluate demand re-
sponse performance: the one compares the actual load reduction to what was initially
subscribed to a demand response program, and the other one estimates the customer’s
actual demand response load curtailment compared to their peak demand. Similarly in
physics, Energy and Power are two major metrics for quantifying the status of electric-
ity: Energy is the product of power and time (measured in Watt-hours), and Power is
the flow of energy at any one time and is measured in Watts (W). Therefore, to indicate
the peak reduction in Energy and Power, the following two metrics rpeak and rpeak(W )
are used for this paper respectively:

rpeak =
1

npeak

∑
τ∈Peak

C̄avgτ − C̃avgτ

C̄avgτ
, (2)

rpeak(W ) =
maxτ∈Peak C̄

avg
τ −maxτ∈Peak C̃

avg
τ

maxτ∈Peak C̄
avg
τ

(3)

where C̃avgτ = 1
M

∑M
m=1 C̃

(m)
τ , M denotes the number of households, C̃avgτ is the observed

average consumption. npeak is the number of intervals that correspond to peak time
(npeak = 4).

3.5. Preliminary Analysis

A peak reduction effect could be influenced by a number of factors such as weather
conditions, and changes of occupancy behaviour. Limiting the observed period to two
months (one month each for pre/post tou tariff intervention) minimises these external
influences. We also compare the load profiles of the control group during who remain on
the flat tariff in the two periods, to evaluate the potential of these factors to confound
our estimate of the impact of the introduction of tou tariffs on average load profiles.

Figure 4 present the average consumption profiles of tou and the control group
during the pre/post intervention period; Table 5 summarises the peak reduction of each
group relative to the benchmark period. The electricity consumption of the control group
remains unchanged during weekdays, and shows a slight increase during the weekends,
whereas all tou groups show the significant peak reduction during the peak time.

An independent t-test is conducted to compare the differences in the consumption
between the pre and post observation periods for tou and the control group. As a result,
for the tou group, there was a significant difference in the peak consumption during the
pre/post intervention periods (pvalue = 9.9 × 10−6), while there wasn’t for the control
group (pvalue = 0.91).

This result concludes that there are no external factors that brings the peak reduction
during the observation periods, and the tou tariff price signals is considered to be the
sole factor to realise the peak reduction.
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Figure 4: Comparison of average consumption profiles between the tou group and the control group

The extent of load shifting for the tou tariff participants is generally consistent with
the relative magnitude of incentives given by the peak ratios. Customers assigned to
tou tariff D, who are given the highest incentive for load shifting, reveal the largest
demand response with a 16.77% energy reduction and 15.79% power reduction during
the weekdays. During the non-weekdays the reduction is smaller for all tariffs, and
consistent with the relative low peak ratio.

Date type Metric Control tou-a tou-b tou-c tou-d

Weekday Rpeak -0.3 % 12.41 % 12.10 % 12.46 % 16.77 %
Weekday Rpeak(W ) -1.3 % 13.43 % 13.13 % 12.72 % 15.79 %
Non-weekday Rpeak -3.4 % 6.31 % 10.76 % 6.59 % 7.11 %
Non-weekday Rpeak(W ) -3.8 % 7.60 % 12.25 % 8.62 % 7.67 %

Number of households 929 230 93 233 90

Table 5: Overall mean of peak-load reduction.

Figure 5 observes that the distribution of peak reduction is widely spread at the indi-
vidual level across the four tariffs; 265 out of 646 households (41.0%) actually increased
peak consumption despite the penalised peak rate. This indicates that individual load
consumption does not necessarily react to a tou tariff, although the aggregated load
over the same tou tariff group reacts more rationally to minimise the energy bill (Table
5 shows that all tariff groups achieved both Energy and Power reduction at the aggre-
gated level). Therefore the impact of tou tariff should be examined at the aggregated
scale.
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Figure 5: Peak-change at the individual level after an introduction to a tou tariff.

4. Modelling Techniques

This paper utilises three common predictive modelling techniques for load forecast-
ing: lr, ann and dt. Predictive modelling seeks to locate rules for predicting the values
of one or more variables in a data set (outputs) from the values of other variables in the
data set (inputs). These inputs and outputs are the energy consumption data described
in Section 2.

The popularity of the lr model may be attributed to the simplicity and interpretabil-
ity of model parameters. Traditionally this approach has been the most popular mod-
elling technique for utility companies in predicting energy consumption. Ranjan and
Jain [31] demonstrated the application of linear regression models of energy consump-
tion for different seasons in Delhi. Similarly, Al-Garni et al. [32] analysed in Eastern
Saudi Arabia, and Tsuo and Yau [33] did in Hong Kong.

anns somewhat mimic the learning process of a human brain. Instead of complex
rules and mathematical routines, anns are able to learn the key information patterns
within a multidimensional information domain. Kalogirou and Bojic [34] explained the
two key advantages of anns in the context of energy prediction. First, anns operate like
a “black box” model, requiring no information about the system, such as functional form.
Instead, in keeping with a machine learning approach, the ann learns the relationship
between the input parameters and the controlled and uncontrolled variables by studying
historical data. Another advantage is their ability to handle large and complex systems
with many interrelated parameters. The success of anns is based, in part, on an ability
to ignore input data that are of minimal significance and concentrate instead on the
more important inputs.

dt is a non-parametric supervised machine learning method which partitions the
data into “leaves” defined by covariates in order to estimate the individual outcomes.
dt is constructed by recursively splitting the data in order to minimise the mean square
error of estimated outcomes. The method can then be used to predict the value of
a target variable utilising simple decision rules learned from the data features. The
algorithm used in this paper is cart (classification and regression trees) [35].
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Model selection, which in the case of decision trees is the partition that defines the
tree, and estimation are carried out on the training data with the goal of minimising
expected mean squared error in the “holdout” or “test” data. In some cases the selection
and estimation of a model also requires a choice of value for one or more tuning param-
eters. The model conducts a grid search over the maximum depth, whose effectiveness
to avoid over-fitting the model to the training dataset has been shown by Safavian and
Landgrebe [36].

In this analysis 22944 samples, each of which denotes a datum of a single household
at a given time stamp, are generated from 48 half-hour data samples of 646 households as
training data (see Section 4.1). These samples, combined with the 12 features outlined
in Table 3, are used to predict the target variable C̃τ . An example of a tree is illustrated
with the setting of maximum depth of 2 in Figure 6.2 The samples in the top node
are partitioned using recursive binary splitting to generate the prediction in the bottom
node. Features such as X[1] (average consumption C̄) are used for the binary split. In
this analysis, the optimal maximum depth based upon minimum mape, is 30 over the
range 10 to 50.

As noted by Strobl and Zeileis[37], single trees can be unstable such that small
changes in the training data can lead to very different models or trees. This can be
corrected by constructing a large number of dt at training time and outputting the
class that is the mean prediction of the individual trees; this technique is called Random
Forest (rf) [38]. Hence, this paper uses rf instead of dt. Another common way of
preventing this is cross-validation as discussed by Sterlin and Patrick[39]. This will be
explained in the following section.

Figure 6: An example decision tree with the setting of maximum depth of 2.

4.1. Cross validation

As standard in statistical modelling, k-fold cross validation, whose success in accuracy
estimation has been reported by Ron [40], is used to check the accuracy of model outputs
by splitting the data across all tariffs into four equal subsets: three for training and one
for testing. All data samples are split into four groups so that each subset volume is

2A larger number for maximum tree depth generates more granular predictive values.
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almost equal for each tariff (see Figure 7).
The cross validation process is repeated four times (k = 4), so each subset of the

data is used once for validation purposes. As a result, 646 load curves are predicted
from the four folds. These results are then averaged to give a single estimation for each
time period.

Figure 7: Test and training samples for k-fold cross validation (k = 4).

4.2. Evaluation measures

The model accuracy is evaluated using Mean Absolute Percentage Error (mape),
the measure most frequently used to assess the performance of a model in the field of a
medium-term load forecasting such as the study by Hahn et al.[22]. The main objective
is to minimise the mape over household groups, and particularly during the peak time.
Two mape metrics are used:

mapeig =
1

n

n∑
τ=1

∣∣∣∣ C̃avgτ − Ĉavgτ

C̃avgτ

∣∣∣∣, (4)

mapeig,peak =
1

npeak

∑
τ∈Peak

∣∣∣∣ C̃avgτ − Ĉavgτ

C̃avgτ

∣∣∣∣, (5)

where C̃avgτ = 1
M

∑M
m=1 C̃

(m)
τ , M denotes the number of households, i indexes the cross

validation fold, m indexes households, C̃avgτ is the observed average consumption, and
Ĉavgτ is the prediction made with the proposed model. n is the number of half-hour
intervals and npeak is the number of intervals that correspond to the peak time (n = 48,
npeak = 4).

In addition to mape, Absolute Percentage Error (ape) is used to measure the model’s
power(W) prediction. ape is calculated as,

apeig,peak(W ) =

∣∣∣∣maxτ∈Peak C̃
avg
τ −maxτ∈Peak Ĉ

avg
τ

maxτ∈Peak C̃
avg
τ

∣∣∣∣. (6)

Given k = 4 cross validation, the average across the folds is taken as the final mapeg,
mapeg,peak and apeg,peak.
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5. Results

Table 6 presents estimates of mape for the three different techniques (lr, nn and rf).
The rf model outperforms lr and nn for both values of mape, especially in terms of
mapeg,peak during the weekdays, which is the main performance indicator. In forecasting
average load for a group of households rf model yields a mape value of 2.05% for the
weekday and 1.48% for the weekday peak time.

Date type Model lr rf nn

Weekday mapeg 2.95% 2.05% 3.12%
Weekday mapeg,peak 1.78% 1.48% 1.94%
Weekday apeg,peak(W ) 0.60% 0.13% 0.58%
Non-weekday mapeg 7.65% 2.66% 6.15%
Non-weekday mapeg,peak 0.77% 1.61% 0.25%
Non-weekday apeg,peak(W ) 0.64% 1.69% 3.0× 10−4%

Table 6: Comparison of the three statistical models on test data

In using mape as a standardised measure of model performance the proposed model
compares favourably relative to existing medium-term forecast studies with a similar
forecasting time horizon. Pedregal and Trapero [41] demonstrated a comparable finding
with a mape varying between 5% to over 10% based upon medium-term(12 week ahead)
hourly electricity forecasting at an aggregated level. Al-Hamadi and Soliman [42] pre-
sented a model to forecast weekly average intra-day load profile with a time-horizon of
a year, delivering the result that the mape is 3.8%. Given that this forecasting prob-
lem includes the demand response following the introduction of a tou tariff, this model
incorporates additional complexity compared to other existing medium-term load fore-
casting studies. In this respect the accuracy of the proposed model is competitive in
medium-term load forecasting models, and should be of practical use for decision making
to assess the medium-term impact of load adjustment to tou.

Figure 8 presents the intra-day load profiles across the different models. As a refer-
ence point, the line of the actual post-intervention load profile (labelled as ’Post-TOU’,
averaged load curve in January 2010) is also given. All three models forecast the peak
reduction closely.

18



Figure 8: Comparison of post- tou load predictions using three different statistical techniques.

Figure 9 shows the prediction errors between post-intervention load profile and each
prediction. lr and nn have most of their errors at the border of the peak time where
abrupt behavioural changes have been observed. The results consistently favour rf as
the preferred modelling technique.

Figure 9: Prediction error in Wh between actual load profile subsequent to an introduction of tou
tariffs, and predicted load profiles for three different statistical techniques.

5.1. Feature Importance

dt model results provide clear information on the importance of significant factors
for prediction based on Gini coefficient [43]. In regression analysis, its value is calculated
as

G =

n∑
i=1

pi(1− pi), (7)

where n represents the number of total “leaves” and pi is the ratio of the ith leave.
The importance of a feature is computed as the (normalised) total reduction of the

criterion that is attributable to that feature. Table 7 reports this importance of the
rf model. The higher the rating, the more important the feature. Every time a split
of a node is made on variable m the Gini impurity criterion for the two descendent
nodes is less than the parent node. Summing the decreases in the Gini measure for each
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individual variable over all trees in the forest gives a variable importance that is often
very consistent with the permutation importance measure [44].

The paper finds that the average consumption feature is the most important pre-
dictor. It is also noteworthy that the most relevant features are statistical features of
consumption, suggesting the tree strongly uses these features to forecast the load shift-
ing. Although the feature tou price, and peak ratio does not have an influential effect
in this model, it is important to remember that the window of the peak period of four
tou tariffs is fixed under this trial, so that the effectiveness of these two features might
be underestimated. Therefore, further trials with different windows of peak periods is
needed to examine the importance of these parameters.

Feature Importance

average 66.77%
kurtosis 9.87%
time 8.61%
skewness 5.79%
variance 5.73%
tou price 0.90%
other living residence 0.65%
age group 0.62%
social class 0.59%
peak ratio 0.27%
gender 0.19%

Table 7: Features importance according to RF. These variables are summarised in table 3

An additional important finding is that none of the demographic features generate
a significant contribution to the predictive capacity. Eliminating these features with
low importance values could improve the model performance. This method of feature
selection has been utilised by a number of studies. Granitto et al. [45], for instance,
has introduced random forest recursive feature elimination to determine small subsets
of features with high discrimination levels on chemical dataset. Uriarte and Andrés [46]
has also applied this technique for gene selection.

Table 8 shows the rf model performance with/without demographic variables. It
should be noted that the absence of demographic information does not lead to a dete-
rioration in model performance, and the model even works better. A recent study of
electric behavioural analyses conducted by O’Neil and Weeks [47] similarly observed the
similar effect. This finding removes the extra cost for energy companies and analysts
since the collection of demographic data is costly, with a limited ability to increase the
predictive ability of a given model.
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Date type Model With demographic Without demographic

Weekday mapeg 2.05% 1.80%
Weekday mapeg,peak 1.48% 1.11%
Weekday apeg,peak(W ) 0.14% 0.05%

Table 8: Comparison of the RF model performance with/without demographic features

5.2. Prediction of Intra-day Load Profile

The actual and predicted intra-day load profile generated by the rf model are pre-
sented in Figure 10. The results demonstrate that for the peak periods the model
successfully captures the behavioural change for all tariffs.

Figure 10: ‘Pre-tou’ and ‘Post-tou’ actual load under the flat-rate tariff and a tou tariff respectively.
‘Prediction’ is predicted load curve by this model.

The difference between ’Post-tou’ predictions and actual load are demonstrated
in Figure 11 for each group. These lines are more irregular than the similar analysis
in Figure 9, since users are divided into the four tariff groups, where the number of
households in each group relatively small. Each line shows zigzag patterns around the
zero line, and no significant over/underestimation in any particular time periods or any
groups has been observed. The common phenomenon observed across the four groups
is the negative spike at the beginning of the peak period, and positive spike at the end
of the peak period. This indicates customer demand response is not as immediate as
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the model predictions, with around a 30 minutes time lag prior to customer adoption.
This characteristic is not captured by the proposed model, and is the source of the most
significant errors in the modelling performance.

Figure 11: Prediction error in Wh between actual load profile subsequent to an introduction of tou
tariffs, and predicted load profiles for the dt model.

6. Conclusion and Future Works

The model developed in this study can be used to forecast the impact of the intro-
duction of a Time-of-use tariff. The novelty of this study lies in explicitly accounting
for consumer variability by extracting key features from past data. By incorporating
lifestyle constraints, measured by a number of functions of historical load, the proposed
model is able to predict the full intra-day load profiles with low mape. The mape value
in forecasting average load for a group of households with the best model rf is 2.05%
for the weekday and 1.48% for the weekday peak time. Random Forest is the preferred
modelling technique based upon a comparison with Neural Networks and Linear Re-
gression. By comparing the model’s accuracy against a number of important studies of
medium-term load forecasting at an aggregate level, the paper demonstrates that the
model can be of practical use for decision making to assess the medium-term impact of
load adjustment to a tou tariff introduction.

The key findings of this paper can be summarised as follows. First, we show that
top-down statistical modelling of historical smart meter data can be used to forecast
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the effectiveness of a TOU tariff. This can help energy companies to design tou tariffs
and optimise energy sourcing strategy accordingly. Second, the paper demonstrates it
is possible to infer key features from the data that capture lifestyle constraints at an
individual level, and determine the shape of an aggregate load profile; no ex-ante data
on demographics is required to run this model to generate this competitive accuracy.
This removes the additional cost collecting demographic data, unlocking further value
of the metering infrastructure without requiring any changes to the smart meters that
have already been deployed.

Since the proposed model is trained and evaluated based upon smart meter trial data
from Ireland, some extra work to improve external validity is still required if an energy
company seeks to apply this model to their customer base. However, to the best of
authors’ knowledge, this is the first study that reports the model performance in mape,
and the effectiveness of each feature for the load forecasting following the adoption of a
tou tariff.

The main limitation of this paper is forecasting accuracy at the level of the individual
level. Individual load forecasting is not the main interest of energy companies for design
of tou tariffs and optimisation of energy sourcing. However, the likelihood of peak load
reduction following the introduction of a tou tariff across individuals is important for
optimising their marketing scope. Also, it is crucial to understand what the energy bill
looks like with some modification of their daily life patterns for a household. Some types
of households are not suited to such kind of treatment since their life patterns have
limited flexibility to adjust the peak load accordingly. Regulators have shown interest in
protecting vulnerable customers from the widespread roll-out of tou tariffs. This paper
does not examine the causes or likelihood of peak shifting at the individual level, hence
as a future work, further investigations are expected for individual analysis.

Another limitation and future work is the data collection for this tou dataset. To
the author’s best knowledge, CER dataset is the most comprehensive one available to
academic use for this purpose, however, the trial data, collected in 2009 and 2010, might
be outdated. For example, the availability of price/incentive based programmes offered
to the residential sector has since increased. Therefore, up-to-date consumption dataset
which observes pre/post intervention under various price/incentive based demand re-
sponse programme is vital for further investigation of a tou analysis.
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