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Abstract 
For the design of ground-source heat pumps (GSHPs), two design parameters, namely the ground thermal conductivity 

and borehole thermal resistance are estimated by interpreting thermal response test (TRT) data using a physical model. In 
most cases, the parameters are fitted to the measured data assuming that the chosen model can fully reproduce the actual 
physical response. However, two significant sources of error make the estimation uncertain: random error from experiments 
and structural bias error that describes the discrepancy between the model and actual physical phenomena. Generally, these 
two error sources are not evaluated separately. As a result, the suitability of selected models to correctly infer parameters 
from TRTs are not well understood. In this study, the Bayesian calibration framework proposed by Kennedy and O’Hagan 
is employed to estimate the GSHP design parameters and quantify the random and structural errors in the inference. The 
calibration framework enables us to examine structural errors in the commonly used infinite line source model arising due 
to the conditions in which the TRT takes place. Two in situ TRT datasets were used: TRT1, influenced by contextual 
disturbances from the outdoor environment, and TRT2, influenced by a strong groundwater flow caused by heavy rainfall. 
We show that the Bayesian calibration framework is able to quantify the structural errors in the TRT interpretation and 
therefore can yield more accurate estimates of design parameters with full quantification of uncertainties.  
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Nomenclature 
𝐶𝐶 volumetric heat capacity (J/(m3∙K)) 
𝐸𝐸 expectation 
Ei exponential integral 
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 global solar irradiance (W/m2) 
𝑛𝑛𝑥𝑥 number of scenario parameters  
𝑛𝑛𝜃𝜃 number of calibration parameters 
𝑝𝑝 probability distribution  
𝑞𝑞 heat rate per unit length of BHE (W/m) 
𝑞𝑞� averaged heat rate per unit length of BHE (W/m) 
𝑟𝑟𝑏𝑏 radius of borehole (m) 
𝑅𝑅𝑏𝑏 borehole thermal resistance (m∙K/W) 
𝑡𝑡 time or elapsed time after heat injection (s) 
𝑇𝑇 temperature (°C) 
𝑇𝑇� mean fluid temperature (°C) 
𝑇𝑇𝐷𝐷𝐷𝐷 dry-bulb temperature (°C)   
𝑣𝑣 precision parameter of covariance function  
𝑉̇𝑉 volumetric flow rate (m3/s) 
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x scenario variable 
𝑦𝑦𝑐𝑐 simulation output 
𝑦𝑦𝑓𝑓 field measurement data  

𝑦𝑦 augmented observation vector, 𝑦𝑦 = �𝑦𝑦𝑓𝑓𝑇𝑇 ,𝑦𝑦𝑐𝑐𝑇𝑇�
𝑇𝑇
 

 
Subscripts 
𝑏𝑏 model inadequacy (bias) function 
𝑐𝑐 computer data 
𝑓𝑓 field data 
𝑖𝑖𝑖𝑖 inlet 
𝑛𝑛 time step 
𝑁𝑁 total number of data (time steps)  
𝑜𝑜𝑜𝑜𝑜𝑜 outlet 
𝑠𝑠 soil or ground 
0 initial 
𝛿𝛿 bias (model inadequacy) function 
𝜂𝜂 computation model, GP emulator  
 
Superscripts 
𝑇𝑇 transpose of vector or matrix 
 
Greek letters 
𝛼𝛼 thermal diffusivity (m2/s) 
𝛽𝛽 correlation parameter of covariance function 
𝛿𝛿 model bias  
𝜀𝜀 observation (random) error 
𝜀𝜀𝑛𝑛 numerical (random) error 
𝜁𝜁 real (unobservable) physical process 
𝜂𝜂 model emulator term 
θ calibration parameters 
𝜃𝜃∗  randomly generated parameters by LHS method 
𝜎𝜎 standard deviation 
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  effective thermal conductivity (W/(m∙K)) 
Σ covariance function of Gaussian process 
 
Acronyms, abbreviations 
BC  Bayesian calibration 
BI  Bayesian inference 
CI  credible interval 
GP  Gaussian process 
LHS  Latin hypercube sampling 
MAP  maximum a posteriori 
MCMC Markov chain Monte Carlo 
PM  posterior mean 
PPDF  posterior probability density function 
 
(All bold characters in the manuscript denote a vector or matrix.)  
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1. Introduction 
Ground-source heat pump (GSHP) systems that utilize the shallow part of the ground as a heat source or sink have 

witnessed widespread use in recent years. The ground is not only a spatially inhomogeneous composite medium but also a 
porous medium. Therefore, subsurface heat transfer involves conduction and advection (e.g., forced convection by 
groundwater flow and natural convection). Identifying and measuring dominant heat transfer processes in the subsurface, 
where the ground heat exchangers (GHEs) are installed, is difficult and expensive compared to quantifying them for the 
load side of the GSHP, where the energy is supplied. This intrinsic nature of geothermal applications leads to significant 
uncertainties in the design and operation of GSHPs.  

Research on uncertainty quantification of GSHP system performance follows the framework of the ISO’s Guide to the 
Expression of Uncertainty in Measurement (GUM) [1]. The GUM framework emphasizes uncertainties associated with 
sensor data. GUM has been used to quantify uncertainties for various GSHP configurations and operation strategies. 
Notable studies include uncertainty analysis of the thermodynamic performance of a GSHP [2,3], uncertainty in 
performance of a hybrid GSHP combined with a solar thermal collector [4], and uncertainty in evaluating the energy 
balance of a GSHP’s load and source sides [5].  

In GSHP systems, the uncertainty associated with ground-related parameters is particularly important. These include the 
ground thermal conductivity and borehole thermal resistance. Both parameters have a significant impact on the design 
length of the GHE: Incorrect estimation can lead to a large increase in initial costs due to oversizing, or system failure 
during operation due to undersizing [6]. The GUM framework has also been used to quantify the uncertainties in these 
GSHP design parameters [7,8]. However, current work only considers sensor error as the main source of uncertainty and 
not the estimation process as a whole. The design parameters of a GSHP system are typically estimated via an inverse 
model using measured temperatures from thermal response tests (TRTs).  

In inverse problems, such as in the inference of GSHP design parameters, the first task is to match the experimental 
conditions to the assumptions and boundary conditions made in the physical model (e.g., analytical or numerical). It 
involves selecting or developing a physical model that best represents the experiment and thus enables accurate inference 
of relevant parameters. However, often the physical model only partially represents the actual physical phenomena being 
measured. This may be due to lack of information on the system of interest or simplifications necessary in the modelling 
process.  

A closer examination of the commonly used forward model for interpreting TRTs further highlights instances where 
experimental conditions do not match the physical model; in the uncertainty quantification literature, this is termed “model 
inadequacy.” For instance, the commonly used infinite line source (ILS) model [9,10] and infinite cylindrical source (ICS) 
model [9] for interpreting TRTs assume that a TRT is conducted under the following conditions: the ground surface is 
adiabatic and the heat flux from the source is constant. However, at an actual TRT site where the TRT setup is fully exposed 
to the outdoor environment, such assumptions are usually violated by the fluctuation of the supply voltage [11,12], the heat 
exchange between the aboveground TRT setup and the outdoor environment [13,14], and heat transfer in the ground surface 
[15]. 

This mismatch between the model assumptions and the experimental conditions are well acknowledged and many studies 
have investigated this issue. For example, related to the unstable power rate issue, Shonder and Beck [11] developed a 
parameter estimation method that includes a one-dimensional numerical model as a forward model to consider the 
fluctuating power input. Hu et al. [12] proposed a data processing method that uses the Gaussian kernel regression method 
to eliminate the high frequency noise in the heat rate. Witte et al. [16] tried to solve the unstable power issue by using a 
special TRT apparatus equipped with a water-to-air heat pump, buffer tank, regulating valves, and control components. 
Because the apparatus could maintain a constant heat rate by mechanical control, very stable estimation behavior was 
achieved. Additionally, efforts have been made to study the effect of aboveground thermal disturbance caused by the heat 
exchange between the aboveground TRT setup and the outdoor environment because it can result in inaccurate inference 
of ground thermal properties [17]. The disturbance is generally perceived as a part to be removed, and thus studies have 
been conducted to remove the disturbed portion from the measured heat rate [18,19]. However, this approach leads to more 
complex inverse problems that require an additional measurement during TRT related to the radiative, convective, and 
conductive heat transfers in the experimental setup. On the contrary, Choi and Ooka [20] considered the fluctuating heat 
rate as known experimental boundary conditions that contain all contextual disturbances during TRTs. By applying a 
parameter estimation method that combines the quasi-Newton method with the temporal superposed ILS model, they 
showed that the estimation can be very stable without an explicit analysis of disturbances.   

A third common instance where model inadequacy becomes important is when the TRT may be significantly influenced 
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by groundwater flow. Some analytical models (particularly so-called moving line source (MLS) models) have been 
developed that can account for the effects of groundwater based on the moving point source [9] and moving infinite line 
source [9,21]. For example, the moving infinite line source model on transient condition [22], the moving finite line source 
model for homogeneous groundwater flow [23], and the moving finite line source model for inhomogeneous groundwater 
flow [24] are representative analytical models that can consider the advection effect by subsurface groundwater flow. 
However, inverse application of these models for the estimation of GSHP design parameters poses several difficulties: First, 
in the estimation using an MLS model, two inter-dependent parameters, the ground thermal conductivity and Darcy velocity 
must be estimated simultaneously. A more fundamental problem in the estimation using an MLS model is the absence of 
information about the subsurface. When TRT is conducted in the field, one generally has very limited information (if any) 
on groundwater flow, groundwater temperature, temporal changes in groundwater velocity, and the spatial distribution of 
hydraulic properties. However, all these features need to be provided to perform the estimation using an MLS model by 
applying appropriate assumptions on the Darcy velocity. Therefore, the ILS is still the favored model for inverse estimation 
of ground-related GSHP design parameters. However, the ground thermal conductivity in a conduction-only model may 
be overfitted to the temperature response data without proper consideration of the external disturbances and groundwater 
flow. This work, thus tests and proposes a new framework for inverse estimation of ground thermal properties that enables 
explicit consideration of model inadequacy along with full quantification of uncertainties.  

Thus far, uncertainty analyses for TRTs have ignored this consideration of model inadequacy and have only analyzed 
the intrinsic random errors of measurement on the basis of frequentist statistics. This has crucial limitations in two respects. 
First, such analyses are based on the assumption that a model itself can perfectly reproduce actual physical phenomena; 
however, it is already known that no model is perfect [25]. Furthermore, the main factors of uncertainty in the estimation 
of GSHP design parameters are the lack of knowledge about the unknown physical phenomena influencing the TRT rather 
than the intrinsic random error of measurement. Therefore, investigating the model inadequacy is essential for 
comprehensive uncertainty analysis and constitutes the main objective of this paper. We show that by doing so, one can 
obtain a more accurate estimation with reduced uncertainty and gain insights for improving the model to better match the 
actual phenomena. Second, we argue that frequentist techniques applied thus far for uncertainty analysis of ground thermal 
properties may not be suitable because they are suitable for events that can be repeated an infinite number of times under 
identical conditions [26]. However, TRTs cannot usually be conducted an infinite number of times and the environmental 
conditions differ each time; they are a one-time experiment. Therefore, this paper argues that Bayesian techniques are more 
suitable for uncertainty analysis in this context – especially when experimental data is limited.  

Kennedy and O'Hagan [27] presented a Bayesian statistical framework (hereafter, KOH framework) for the calibration 
of computer models. Their framework facilitates the inference of the uncertain input parameters in computer models 
together with the quantification of the model inadequacy through a term called the model bias function. In this paper, we 
apply the KOH framework to infer the inadequacy of the ILS model along with the two unknown GSHP design parameters: 
effective ground thermal conductivity and borehole thermal resistance. Two different TRT datasets are selected for this 
purpose; TRT1 is affected by contextual disturbance and TRT2 is affected by a strong groundwater flow caused by heavy 
rainfall. The Bayesian calibration for TRT1 were conducted using two different forms of the ILS model to compare the 
magnitude of uncertainties and difference in the estimation results: 1) constant heat rate form; and 2) temporal superposition 
applied form for the consideration of the variable heat rate. The Bayesian calibration for TRT2 examines the situation when 
there is a significant discrepancy between the ILS conduction only model and the actual subsurface heat transfer owing to 
groundwater flow. These two TRT datasets thus include a representative model inadequacy that we typically encounter in 
TRT estimations. By applying the Bayesian calibration framework to the two TRTs, we show improved inference of ground 
thermal properties and their uncertainty range when model inadequacy is considered. 

 
2. Methodology  

2.1 Two datasets from thermal response tests  
The experimental system for the TRTs was constructed at Inage Ward, Chiba, Japan, in January 2014. Except for the top 

ground layer of clay and loam (to a depth of 8 m), the site mainly comprises a fine sand having a porosity of 0.35 and 
hydraulic conductivity of 2.1×10-4 m/s. Two boreholes with a diameter of 165 mm and a depth of 52 m were drilled, and 
a single high-density polyethylene U-tube (outer and inner diameters of 34 and 27 mm, respectively) was inserted into each 
borehole. The two BHEs had the same effective length of 50 m and the same geometry, but their filling materials were 
different; one BHE was grouted with Portland cement mixed with 20% silica sand and the other BHE was filled with gravel 
having a grain size range of 8–15 mm. The TRT apparatus can generate up to 7 kW of heat. Well-calibrated Pt-100 sensors 
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and an electromagnetic flow meter were installed to measure the fluid temperature and flow rate, respectively. The 
hydraulic circuit that connects the BHE and TRT apparatus and the entire apparatus were insulated with 10-mm-thick 
polyethylene foam with a thermal conductivity of 0.04 W/(m∙K). Moreover, the surface of the insulation was covered with 
white tape to increase radiation reflectance. The entire aboveground TRT setup was exposed to the outdoor environment 
and an installation photo can be found in Ref. [20].  

Using this experimental setup, more than 30 TRTs were carried out from January 2014 to February 2017 (details 
regarding the experimental setup can be found in Ref. [28]). Two TRTs were chosen for this study, namely TRT1 and TRT2. 
TRT1 and TRT2 were conducted using the cement-grouted BHE and gravel-backfilled BHE, respectively. The experimental 
conditions of the two TRTs are summarized in Table 1, and the fluid temperatures, dry-bulb temperatures, and heat injection 
rates are shown in Fig. 1. The TRTs have the following characteristics:     

• TRT1: It was subject to strong contextual disturbance due to sunny weather during the TRT; the diurnal air 
temperature difference was ~7–11 °C and the amount of solar irradiance was ~1000 W/m2 (presented later in Fig. 
6(a)). These are the cause of the fluctuating heat injection rate across the TRT period as shown in Fig. 1(a). 

• TRT2: Nine days before the start of this TRT, there was heavy rainfall for five days owing to a stationary weather 
front. During these rainy days, the maximum hourly and daily precipitations were 25 mm/h and 117 mm/day, 
respectively, and the average rainfall for five days was 56 mm/day (presented later in Fig. 10). The heavy rainfall 
led to an unusual strong groundwater flow. Moreover, there was rainfall on the second and third days of the TRT 
period. 

As aforementioned, neither external contextual disturbances (high solar irradiance and air temperature in this case) nor 
groundwater flow are represented in the ILS model. Hence, the two TRTs serve well to test the KOH framework for 
correctly quantifying these model inadequacies.  

 
Table 1. Experimental conditions of two in situ TRTs (𝑞𝑞�: average heat injection rate, 𝑉̇𝑉: volumetric flow rate, 𝑇𝑇0: initial 

ground temperature).  
Experiment 
name 

BHE type Start time Duration [h] 𝑞𝑞� [W/m] 𝑉̇𝑉 [L/min] 𝑇𝑇0 [°C] 

TRT1 Cement-grouted 23:00 Jul 9, 2015 96 46.00 20.13 17.2 
TRT2 Gravel-backfilled 00:00 Sep 16, 2015 96 44.91 20.03 17.0 

 
 

   
Fig. 1. Measured fluid temperature, dry-bulb temperature, and heat injection rate of two in situ thermal response tests: 

(a) TRT1 (dominated by conduction with contextual disturbances) and (b) TRT2 (affected by a strong advection caused by 
a heavy rainfall).  

 
2.2 Computational model of the thermal response test  
To infer the parameters from the TRT data, a physical model (computation model) is defined. The temperature response 

of a borehole heat exchanger (BHE) can be modeled using analytical or numerical methods. Each model has its own 
advantages and disadvantages in terms of complexity, accuracy, and computation costs, but most models assume that the 
mode of subsurface heat transfer is conduction only. Although some models such as the moving line source [9,21,22] and 
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moving finite line source [23,24] consider advection effects of groundwater flow, it is difficult to use them for inverse 
problems because of limitations in available information about the subsurface conditions, such as the permeability, 
hydraulic head, porosity, and hydraulic conductivity; in general, there are many unknown parameters to be estimated. 
Therefore, a computational model based on conduction only is used as the forward model here, which indirectly signifies 
that there is a high probability of structural error in the inverse estimation of parameters due to the inconsistency between 
the physical phenomenon and the chosen forward model.  

Two different forms of the ILS model were used: the original form that uses a constant heat rate 𝑞𝑞� and the temporal 
superposed form that considers a variable heat rate. They are expressed with respect to the mean fluid temperature 𝑇𝑇� by 
Eqs. (1) and (2), respectively: 

 

𝑇𝑇� =
𝑞𝑞�

4𝜋𝜋𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒
Ei�

𝐶𝐶𝑠𝑠𝑟𝑟𝑏𝑏2

4𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 
� + 𝑅𝑅𝑏𝑏𝑞𝑞� + 𝑇𝑇0 (1) 

 

𝑇𝑇� = ��
(𝑞𝑞𝑛𝑛 − 𝑞𝑞𝑛𝑛−1)

4𝜋𝜋𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒
Ei�

𝐶𝐶𝑠𝑠𝑟𝑟𝑏𝑏2

4𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑁𝑁 − 𝑡𝑡𝑛𝑛−1)��
𝑁𝑁

𝑛𝑛=1

+ 𝑅𝑅𝑏𝑏𝑞𝑞𝑁𝑁 + 𝑇𝑇0 (2) 

 
Hereafter, Eqs. (1) and (2) are referred to as the constant model and the variable model, respectively.  
 
2.3 Bayesian calibration with the KOH framework  

Overview of Bayesian calibration framework  
The Bayesian calibration framework developed by Kennedy & O’Hagan [27] enables us to make inferences about the 

unknown calibration (model) parameters 𝜃𝜃 while considering different errors terms, such as the random observation error 
and structural model inadequacy or model bias. In this study, the calibration parameters 𝜃𝜃 consist of the effective thermal 
conductivity 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and the borehole thermal resistance 𝑅𝑅𝑏𝑏. The approach is based on Bayes’ theorem (Eq. (3)), which 
relates the probability p of an event (or a specific parameter value 𝜃𝜃) given evidence (or data) 𝑝𝑝(𝜃𝜃|𝑦𝑦) to the probability 
of the event 𝑝𝑝(𝜃𝜃) and the likelihood 𝑝𝑝(𝑦𝑦|𝜃𝜃):  

 

𝑝𝑝(𝜃𝜃|𝑦𝑦) ∝ 𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃) (3) 

 
Based on this relation, prior beliefs about parameter values 𝑝𝑝(𝜃𝜃) are updated based on observed data 𝑦𝑦 and quantified 

in the form of posterior probability distributions. According to the KOH framework, the relation between observed data 
(field measurements) 𝑦𝑦𝑓𝑓 and computer simulation outputs 𝑦𝑦𝑐𝑐 can be expressed as 

 

𝑦𝑦𝑓𝑓(𝑥𝑥) = 𝜁𝜁(𝑥𝑥) + 𝜀𝜀 = 𝑦𝑦𝑐𝑐(𝑥𝑥, 𝜃𝜃) + 𝛿𝛿(𝑥𝑥) + 𝜀𝜀 + 𝜀𝜀𝑛𝑛 (4) 

 
where 𝜁𝜁 is the true physical process that cannot be observed and depends on the state variable x, which often represents 

an input to the computational model and can also be regarded as the scenario in which the experiments are conducted (e.g., 
elapsed time from heat injection and heat rate in TRT); 𝜀𝜀  represents the measurement errors related to the field 
observations; 𝛿𝛿(𝑥𝑥)  represents the model inadequacy in the form of model bias function representing the discrepancy 
between the model and the true process along the dimensions of the state variables; and 𝜀𝜀𝑛𝑛 is the random numerical error 
term originating from the simulation model. Here, the KOH framework differs significantly from the frequently used GUM 
framework [1], which only takes into account the uncertainty regarding measured quantities and does not allow for explicit, 
inverse quantification of different sources of uncertainty. 

When the computational load of the model is high, simulations with varying parameter values can be performed only a 
limited number of times. On the basis of the approach adopted in previous studies [27,29,30], we use an emulator denoted 
by 𝜂𝜂(𝑥𝑥, 𝜃𝜃) instead of using the computational model directly in order to improve the computational efficiency (Eq. (5)). 

 

𝑦𝑦𝑓𝑓(𝑥𝑥) = 𝜂𝜂(𝑥𝑥, 𝜃𝜃) + 𝛿𝛿(𝑥𝑥) + 𝜀𝜀 + 𝜀𝜀𝑛𝑛 (5) 
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For the generation of training data for the emulator, a finite number of parameter sets 𝜃𝜃∗  are generated from the 

predefined parameter space using the Latin hypercube sampling (LHS) method [31,32], and the ILS model is executed 
using the parameter sets as input values under scenarios x. The emulator is constructed using the simulation output. The 
field observations 𝑦𝑦𝑓𝑓  and computational model outputs 𝑦𝑦𝑐𝑐  are combined into the augmented observation vector 𝑦𝑦 =

�𝑦𝑦𝑓𝑓𝑇𝑇 ,𝑦𝑦𝑐𝑐𝑇𝑇�
𝑇𝑇
. 

The model emulator and the model bias function are both modeled using the Gaussian processes. GP models are 
generalizations of nonlinear multivariate regression models that relate individual input parameters with the model outcome 
by mean and covariance functions [33]. The GP models in this study were defined using a zero mean function corresponding 
to the standardized model outputs and parameters, while the covariance functions for the emulator Σ𝜂𝜂 and the model bias 
Σ𝛿𝛿  are specified according to Eqs. (6) and (7) [34]:  

 

Σ𝜂𝜂(𝑖𝑖,𝑗𝑗) =
1
𝜈𝜈𝜂𝜂

exp �−�𝛽𝛽𝜂𝜂,𝑘𝑘�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗�
2 − � 𝛽𝛽𝜂𝜂,𝑛𝑛𝑥𝑥+𝑘𝑘′�𝜃𝜃𝑖𝑖𝑖𝑖′ − 𝜃𝜃𝑗𝑗𝑗𝑗′�

2
𝑛𝑛𝜃𝜃

𝑘𝑘′=1

𝑛𝑛𝑥𝑥

𝑘𝑘=1

�  (6) 

Σ𝛿𝛿(𝑖𝑖,𝑗𝑗) =
1
𝜈𝜈𝛿𝛿

exp �−�𝛽𝛽𝛿𝛿,𝑘𝑘�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗�
2

 𝑛𝑛𝑥𝑥

𝑘𝑘=1

�   (7) 

 
This formulation introduces several uncertain hyperparameters to the Bayesian calibration process: 𝜈𝜈 determines the 

precision of the corresponding covariance function and thus the magnitude of the emulator term 𝜂𝜂(𝑥𝑥, 𝜃𝜃) and the model 
discrepancy term 𝛿𝛿(𝑥𝑥); two sets of parameters 𝛽𝛽, based on the number 𝑛𝑛𝑥𝑥 of x and the number 𝑛𝑛𝜃𝜃 of 𝜃𝜃, determine the 
correlation strength of the corresponding covariance function and thus the smoothness of the emulator output and the model 
discrepancy function over 𝑥𝑥, respectively [34]. The random error terms for the field observation error and the numerical 
error are represented by the covariances Σ𝜀𝜀 and Σ𝜀𝜀𝑛𝑛, respectively. These error terms are assumed to be independent and 
identically distributed, and their covariances are specified by additional precision hyperparameters, 𝜈𝜈𝜀𝜀 and 𝜈𝜈𝜀𝜀𝑛𝑛 . 

The covariance function of the augmented dataset 𝑦𝑦 used for calibration, which includes both field measurements and 
computer model outputs, is then specified as Eq. (8):  

 

Σ𝑦𝑦 = Σ𝜂𝜂 + �Σ𝛿𝛿 0
0 0� + �

Σ𝜀𝜀 0
0 Σ𝜀𝜀𝑛𝑛

� (8) 

 
Prior probability distributions for the uncertain parameters and hyperparameters are assigned on the basis of suggestions 

made in previous studies [30,34]. Gamma distributions are assigned to the precision parameters; 𝜈𝜈𝜂𝜂: Gamma(10, 10), 𝜈𝜈𝛿𝛿: 
Gamma(10, 0.3), 𝜈𝜈𝜀𝜀: Gamma(10, 0.01), and 𝜈𝜈𝜀𝜀𝑛𝑛: Gamma(10, 0.001). These priors reflect our belief that the emulator 
accounts for the majority of the variation in the standardized field and model responses, while the model bias and 
observation error make smaller contributions and the numerical error is believed to be very small. For the smoothness 
parameter 𝛽𝛽, we follow the re-parameterization suggested by Guillas et al. [30] and specify the priors similarly to reflect 
our belief of a rather smooth emulator and model discrepancy functions (𝛽𝛽𝜂𝜂: Beta(1, 0.5), 𝛽𝛽𝛿𝛿: Beta(1, 0.4)). The prior 
distribution for the unknown model parameters θ is specified using a triangular distribution, the details of which are 
described in Section 3.2.  

Finally, the posterior density of the parameters in this study is explicitly expressed as follows: 
 
𝑝𝑝�𝜃𝜃, 𝜈𝜈𝜂𝜂,𝛽𝛽𝜂𝜂, 𝜈𝜈𝛿𝛿 ,𝛽𝛽𝛿𝛿 , 𝜈𝜈𝜀𝜀, 𝜈𝜈𝜀𝜀𝑛𝑛�𝑦𝑦� ∝ 𝑝𝑝�𝑦𝑦�𝜃𝜃, 𝜈𝜈𝜂𝜂 ,𝛽𝛽𝜂𝜂, 𝜈𝜈𝛿𝛿 ,𝛽𝛽𝛿𝛿 , 𝜈𝜈𝜀𝜀, 𝜈𝜈𝜀𝜀𝑛𝑛��������������������

likelihood

𝑝𝑝(𝜃𝜃)𝑝𝑝�𝜈𝜈𝜂𝜂�𝑝𝑝�𝛽𝛽𝜂𝜂�𝑝𝑝(𝜈𝜈𝛿𝛿)𝑝𝑝(𝛽𝛽𝛿𝛿)𝑝𝑝(𝜈𝜈𝜀𝜀)𝑝𝑝�𝜈𝜈𝜀𝜀𝑛𝑛����������������������������
prior

 (9) 

 
The posterior probabilistic distribution of the unknown model parameters θ (and the hyperparameters) are obtained by 

repeated evaluations of the emulator 𝜂𝜂(𝑥𝑥,𝜃𝜃)  for different θ across x, with iterative sample draws from the prior 
distributions. We use the random-walk Markov chain Monte Carlo method for sampling with 15,000 iterations and the 
Metropolis-Hastings criterion [35–37] to accept or reject new sample draws based on the change in the posterior density 
[38]. After obtaining the posterior samples, we visually inspect the trace plots of all the (hyper-) parameters after a burn-in 
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period of 5000 samples to check for convergence to the target distribution. Then, we statistically evaluate the posterior 
samples to predict the mean (expectation) and the variance of the emulator term and the outcome of the calibrated model. 
By subtracting the emulator results from the model outcome, we can infer the model bias function over the range of x. The 
schematic for the Bayesian calibration framework is shown in Fig. 2.  

 

 
Fig. 2. Schematic of Bayesian calibration with the Kennedy & O’Hagan framework. 
 

Combined dataset  
The combined field experiment and computer model data denoted by the augmented dataset 𝑦𝑦  were used for the 

calibration. The field data consist of the measured outputs 𝑦𝑦𝑓𝑓, which represent the measured mean fluid temperatures, and 
the values of the field scenario variables 𝑥𝑥𝑓𝑓. For the evaluation of the constant heat rate model (Eq. (1)), the elapsed time 
and two weather parameters (ambient air temperature and solar radiation) were selected as scenario variables 𝑥𝑥𝑓𝑓, because 
they are known to play an important role in the perturbation of the temperature response [17–19,39–42]. Because the 
average heat rate does not change with time when the constant heat rate model is used, the heat rate is not considered as 
the scenario variable. By contrast, when the variable heat rate model (Eq. (2)) was used for calibration, the elapsed time 
and variable heat rate, which are required as model inputs, were selected as the scenario variables 𝑥𝑥𝑓𝑓.  

Note that augmented dataset 𝑦𝑦 also includes information from the computer model. The computer model data consist 
of the calculated mean fluid temperature 𝑦𝑦𝑐𝑐 at given scenario values 𝑥𝑥𝑐𝑐, which are set to be identical to 𝑥𝑥𝑓𝑓 in this study, 
and at a given set of values of the calibration parameters 𝜃𝜃. As the computer model used for the TRT includes only two 
unknown parameters, we choose the effective thermal conductivity 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and the borehole resistance 𝑅𝑅𝑏𝑏 as the calibration 
parameters.   

For the training of the GP emulator, we use the model outputs 𝑦𝑦𝑐𝑐 of two computer models (Eqs. (1)) and (2)). The Latin 
hypercube sampling (LHS) method was used to create 40 pseudo-random sets from a pre-defined parameter space of model 
input (calibration) parameters. The parameter ranges of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 were set to 1.7–2.3 W/(m∙K) and 0.13–0.17 m∙K/W, 
respectively, which covers most of past TRT results over 3 years. We use triangular distributions to define priors of 
calibration parameters; in the order of the upper and lower limits and mode, 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒:Tri(1.7, 2.3, 1.9) and 𝑅𝑅𝑏𝑏:Tri(0.13, 0.17, 
0.15).  

Using the 40 input parameter combinations from the LHS, measured heat rates (averaged heat rate for Eq. (1) and 

Augmented data vector
𝑦𝑦 = 𝑦𝑦𝑓𝑓𝑇𝑇 ,𝑦𝑦𝑐𝑐𝑇𝑇

𝑇𝑇
Simulation output

𝑦𝑦𝑐𝑐 = 𝑦𝑦𝑐𝑐 𝑥𝑥1∗,𝜃𝜃1∗ , … ,𝑦𝑦𝑐𝑐 𝑥𝑥𝑚∗ ,𝜃𝜃𝑚∗

Field observation
𝑦𝑦𝑓𝑓 =(𝑦𝑦𝑓𝑓 𝑥𝑥1 , … ,𝑦𝑦𝑓𝑓 𝑥𝑥𝑛𝑛 )

LHS for model input
𝑥𝑥1∗,𝜃𝜃1∗ , … , 𝑥𝑥𝑚∗ ,𝜃𝜃𝑚∗

GP emulator 𝜂𝜂
Σ𝜂𝜂(𝜈𝜈𝜂𝜂 ,𝛽𝛽𝜂𝜂)

Structural error 𝛿𝛿
Σ𝛿𝛿 𝜈𝜈𝛿𝛿 ,𝛽𝛽𝛿𝛿

Observation error 𝜀𝜀
Σ𝜀𝜀 𝜈𝜈𝜀𝜀

Numerical random error 𝜀𝜀𝑛𝑛
Σ𝜀𝜀𝑛𝑛(𝜈𝜈𝜀𝜀𝑛𝑛)

Posteriors
𝑝𝑝 𝜃𝜃, 𝜈𝜈𝜂𝜂 ,𝛽𝛽𝜂𝜂 , 𝜈𝜈𝛿𝛿 ,𝛽𝛽𝛿𝛿 , 𝜈𝜈𝜀𝜀 , 𝜈𝜈𝜀𝜀𝑛𝑛 𝑦𝑦

Output
𝜂𝜂 𝑥𝑥,𝜃𝜃 + 𝛿𝛿 𝑥𝑥 + 𝜀𝜀 + 𝜀𝜀𝑛𝑛

Predictions for 
model and true process

𝑝𝑝 𝜂𝜂 𝜃𝜃,𝜓,𝑦𝑦 and 𝑝𝑝 𝜁𝜁 𝜃𝜃,𝜓,𝑦𝑦

Inference of posteriors (MCMC iterations)

Ev
al

ua
tio

n 
of

 m
od

el
 in

ad
eq

ua
cy

 (b
ia

s)

Observation

Priors for 𝜃𝜃
𝑝𝑝(𝜆𝜆𝑒𝑒𝑓𝑓𝑓𝑓) & 𝑝𝑝 𝑅𝑅𝑏𝑏 ~Triangular

Likelihood
𝑝𝑝 𝑦𝑦 𝜃𝜃, 𝜈𝜈𝜂𝜂 ,𝛽𝛽𝜂𝜂 , 𝜈𝜈𝛿𝛿 ,𝛽𝛽𝛿𝛿 , 𝜈𝜈𝜀𝜀 , 𝜈𝜈𝜀𝜀𝑛𝑛

Hyper-priors for 𝜓
𝑝𝑝(𝛽𝛽𝜂𝜂) & 𝑝𝑝(𝛽𝛽𝛿𝛿)~Beta

𝑝𝑝 𝜈𝜈𝜂𝜂  & 𝑝𝑝 𝜈𝜈𝛿𝛿 ~Gamma
𝑝𝑝 𝜈𝜈𝜀𝜀  & 𝑝𝑝(𝜈𝜈𝜀𝜀𝑛𝑛)~Gamma

Evaluation of 
model inadequacy

𝐸𝐸 𝛿𝛿 𝜃𝜃,𝜓,𝑦𝑦
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variable heat rate for Eq. (2)), and computer models, we generated 40 sets of mean fluid temperature for the elapsed time 
of 16 h to 96 h at 1-h intervals. Because the ILS model with the steady-state 𝑅𝑅𝑏𝑏 assumption cannot accurately predict the 
early-time fluid temperature, we only consider the measured and modeled temperature data from the elapsed time of 16 h. 
Fig. 3 shows the range of the modeled fluid temperatures using 40 random parameter sets with the measured mean fluid 
temperatures.  

From the experience, we know the groundwater flow at the experimental site is usually very weak. Thus, selecting the 
ILS model as the forward model, which only considers the subsurface heat conduction, is a reasonable choice. However, 
unlike Fig. 3(a) and (b), in Fig. 3(c), the generated learning data (gray dots) using the 40 pairs of parameter sets 𝜃𝜃∗ and 
the measured heat rate deviate severely from the experimental response data. This means that a very unusual thermal 
response was obtained because of some unexpected effects, presumably unusual strong groundwater flow and, 
consequently, the selected forward model cannot reproduce the physical phenomenon properly. In this case, the use of a 
general deterministic estimation method or a Bayesian inference that overfits the unknown parameters without considering 
the possible model bias is problematic. The effect of the model bias on the estimation results in comparison to conventional 
estimation methods only with random errors will be discussed in Section 4.2. 

 
 

   
Fig. 3. Range covered by modeled mean fluid temperature with 40 LHS samples of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 ((a): constant model 

TRT1, (b): variable model TRT1, (c): variable model TRT2)  
 

4. Results and discussion 
4.1 TRT1: Conduction-dominated TRT data with contextual disturbances (comparison between constant heat 

rate model with three scenario variables and variable heat rate model with two scenario variables)   
We apply the KOH framework to the conduction-dominated TRT1 data for calibration of the constant heat rate model 

and the variable heat rate model. On the basis of the inferred joint posterior distribution constructed from 10,000 samples, 
we plot predictions over 𝑥𝑥 of the emulator term 𝜂𝜂(𝑥𝑥, 𝜃𝜃) (computer model output) for the two models. Fig. 4 shows the 
expected prediction results based on the posterior mean (PM) and credible intervals (CIs) of two emulators. We observe 
that the variable heat rate emulator shows better prediction performance than the constant heat rate emulator. In the case of 
the constant model, some field data points are out of the 2𝜎𝜎 credible interval of the computer model, whereas in the case 
of the variable model, most field data are covered by the credible interval of 1𝜎𝜎.  

As stated in Section 3.3, the constant model considers three scenario parameters 𝑥𝑥: elapsed time 𝑡𝑡, dry-bulb temperature 
𝑇𝑇𝐷𝐷𝐷𝐷, and solar irradiance 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠. By contrast, the variable model uses two scenario parameters: elapsed time and variable 
heat rate. For the sake of comparison, we show both model emulators over the elapsed time (Fig. 4(a) and (b)). In fact, 
setting the elapsed time as the only scenario parameter for the constant model emulator provides results that are very similar 
to those obtained with three scenario parameters because the computer model (Eq. (1)) does not consider the outdoor 
temperature and solar irradiance directly. However, we have this on-site information and the knowledge that these two 
parameters affect the measured temperature 𝑦𝑦𝑓𝑓 [17,42]. Therefore, they are included as additional state variables in the 
calibration settings to capture model discrepancy as the function of contextual disturbances.  

The hyperparameters 𝛽𝛽𝜂𝜂 in the emulator function represent the correlation strength of the scenario parameters. Thus, 
the posteriors of 𝛽𝛽𝜂𝜂 can provide additional insights into the relevance of the considered scenario parameters, which is not 
possible with the traditional approach for uncertainty assessment; the maximum a posteriori (MAP) estimates of the 
emulator hyperparameters are 𝛽𝛽𝜂𝜂,𝑡𝑡 = 2.4, 𝛽𝛽𝜂𝜂,𝑇𝑇𝐷𝐷𝐷𝐷 = 3.9 × 10−4, and 𝛽𝛽𝜂𝜂,𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = 1.5 × 10−4. From the results, we can conclude 

12 24 36 48 60 72 84 96

Elapsed time [h]

26

27

28

29

30

31

32

33

34

M
ea

n 
flu

id
 te

m
pe

ra
tu

re
 [

°
C

]

(c)

12 24 36 48 60 72 84 96

Elapsed time [h]

26

27

28

29

30

31

32

33

34

M
ea

n 
flu

id
 te

m
pe

ra
tu

re
 [

°
C

]

(b)

12 24 36 48 60 72 84 96

Elapsed time [h]

26

27

28

29

30

31

32

33

34

M
ea

n 
flu

id
 te

m
pe

ra
tu

re
 [

°
C

]

(a)



10 

that the dry-bulb temperature and solar irradiance are more relevant to the fluid temperature fluctuation than the elapsed 
time.  

The precision hyperparameters 𝜈𝜈  (𝜈𝜈𝜂𝜂 , 𝜈𝜈𝜀𝜀 , 𝜈𝜈𝜀𝜀𝑛𝑛  , and 𝜈𝜈𝛿𝛿  ) represent the magnitude of the covariance functions. For 
example, 𝜈𝜈𝜂𝜂 describes the covariance in the combined field and model outputs explained by the emulator term. A small 
value for 𝜈𝜈 implies that the corresponding component of the statistical model (Eq. (5)) absorbs a large part of the variance 
in the model output, and accordingly explains a large amount of the variation in 𝑦𝑦. To prevent the algorithm from putting 
too much focus on the variance of a single component, which would most likely represent an unrealistic solution, we 
constrain some of the posterior distributions by defining upper and lower boundaries. We set 𝜈𝜈𝜀𝜀𝑛𝑛 ≤ 2 × 105, as we expect 
a very small numerical error. For 𝜈𝜈𝜂𝜂, we set 𝜈𝜈𝜂𝜂 ≥ 0.3, which implies that a part of the variance in the model must be 
explained by other components. Inspecting the posterior distribution of 𝜈𝜈𝜂𝜂 reveals that most posterior realizations are 
indeed close to the set boundary. The reason for very low 𝜈𝜈𝜂𝜂 values is probably related to the information contained in the 
data used for the calibration (e.g., strong correlations between individual input parameters 𝑥𝑥  and 𝜃𝜃 , redundant 
information, and noisy data for very similar intervals of 𝑥𝑥). At the same time, we observed very high MAP values for the 
measurement and numerical error terms corresponding to very small error (constant model: 𝜈𝜈𝜀𝜀 = 465, 𝜈𝜈𝜀𝜀𝑛𝑛 = 20,000, 
𝜈𝜈𝛿𝛿 = 22; variable model: 𝜈𝜈𝜀𝜀 = 570, 𝜈𝜈𝜀𝜀𝑛𝑛 = 20,000, 𝜈𝜈𝛿𝛿 = 33).  

 

    
Fig. 4. Mean fluid temperature predicted by the emulator of the simulation model 𝐸𝐸{𝜂𝜂(𝑥𝑥,𝜃𝜃)} and uncertainty ranges 

plotted over the elapsed time ((a) constant model, and (b) variable model) based on the inferred posterior distributions.  
 
From the posterior probability density functions of the unknown calibration parameter 𝜃𝜃, we then infer the unknown 

model parameters. Fig. 5 shows a comparison between the prior distributions and the posteriors from the constant and 
variable heat rate models.  

Because the priors 𝑝𝑝(𝜃𝜃) were set based on the results from past TRTs, they nearly cover the lower and upper bounds 
of the PPDFs of the two parameters in both the constant and the variable models. The mode of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  for the variable model 
is higher than that of the constant model (Fig. 5(a)). In addition, the PPDF range of the variable model is narrower than 
that of the constant model. This means that by using the variable heat rate model and the Bayesian inference framework, 
we can reduce the uncertainty about this unknown model parameter because the additional information contained in the 
more complex model structure leads to better reproducibility of the actual thermal response. The PPDFs of 𝑅𝑅𝑏𝑏 show very 
similar results. The PPDF of variable model is shifted to lower values and the uncertainty range of 𝑅𝑅𝑏𝑏 in the variable 
model is again narrower than that in the constant model. 
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Fig. 5. Prior and posterior distributions of effective thermal conductivity and borehole thermal resistance with the 

constant and variable heat rate models: (a) prior and PPDFs of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 , (b) box plots of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 , (c) prior and PPDFs of 𝑅𝑅𝑏𝑏, 
and (d) box plots of 𝑅𝑅𝑏𝑏. The lower and upper ends of a box represent the first and third quartiles, respectively, while the 
red band inside the box denotes the median. The left and right ends of a whisker represent 𝑄𝑄1 − 1.5(𝑄𝑄3 − 𝑄𝑄1 ) and 
𝑄𝑄3 +1.5(𝑄𝑄3 − 𝑄𝑄1), respectively. Outliers are excluded from the plots. 

 

 
Fig. 6. (a) Measured dry-bulb temperature and solar irradiance during TRT1 and (b) inferred model bias functions (i.e., 

difference between the measured mean fluid temperature and modeled mean fluid temperature) over time for constant and 
variable heat rate models.  
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Based on the separation of structural and random error in the applied approach, we can now examine the model bias 
function associated with the two computer models for the first time. We expect that the function for the constant model 
will explain the additional heat injection due to high solar irradiance during daytime hours. Fig. 6(a) shows the dry-bulb 
temperature and solar irradiance during TRT1 and Fig. 6(b) shows the bias functions of the constant and variable models 
that represent most of the difference between the measured mean fluid temperature and modeled mean fluid temperature. 
We can observe an apparent time-lagged coupling between the weather data and the bias function in the case of the constant 
model. This is confirmed by the posterior mode values of hyperparameter 𝛽𝛽𝛿𝛿,𝑘𝑘 for the constant model, which represents 
the contribution of a certain scenario parameter to the bias function. The smaller a correlation parameter, the greater is the 
sensitivity to the bias function. The PMs of 𝛽𝛽𝛿𝛿,𝑡𝑡, 𝛽𝛽𝛿𝛿,𝑇𝑇𝐷𝐷𝐷𝐷, and 𝛽𝛽𝛿𝛿,𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 are 36.5, 1.4, and 0.4, respectively. This confirms that 
the solar irradiance is the most critical bias factor (i.e., cause of model inadequacy in the constant model) among the 
scenario parameters. The results are consistent with those of Refs. [17,42] in which the contextual disturbances in the 
aboveground TRT setup were analytically modeled and the relative sensitivity of disturbance factors to the temperature 
perturbation was determined.  

By contrast, in the variable heat rate model, no certain periodic pattern or correlation against the weather data was 
observed. The absolute bias is less than 0.2 K except for the first hour, which is close to the measurement accuracy of the 
Pt-100 sensors. From the results, we can confirm that the variable model is better suited to reproduce the temperature 
response data, as was shown in [20]. Moreover, the model bias function of the variable model shows no regular pattern 
over both scenario parameters (elapsed time and variable heat rate), which means that the remaining model inadequacy is 
unlikely to be related to a conduction-related physical effect. If the model bias was related to the physics, we might 
speculate that very weak intermittent subsurface advection could be one possible cause of the result. The remaining model 
bias here might also be related to the GP emulator that we use, which absorbs any small structural error in the data into the 
model bias, regardless of the underlying physical process or original error source. However, inspecting the model bias 
function of the variable heat rate model for other TRT datasets might be useful for investigating other possible structural 
effects.  

 
     

 
Fig. 7. Measured temperature data, predicted fluid temperature by model emulator (𝐸𝐸{𝜂𝜂(𝑥𝑥, 𝜃𝜃)}), calibrated model output 

(𝐸𝐸{𝜂𝜂(𝑥𝑥,𝜃𝜃) + 𝛿𝛿(𝑥𝑥)}), and 2𝜎𝜎 range of calibrated model ((a) constant model, (b) variable model). 
 
Finally, we can use the samples from the joint posterior to make predictions of the model outcome under consideration 

of uncertainty, which represents a significant improvement to common deterministic approaches. Fig. 7 shows that the 
calibrated model outcome of both the constant and the variable models closely follows the measured data, and most 
measured data points are within the 2𝜎𝜎 intervals. For the constant model, we clearly see the effect of the inferred model 
bias function when comparing the model prediction and the calibrated model output lines, which compensates the effect of 
the solar irradiance and outdoor dry-bulb temperature. For the variable heat rate model, the difference between the emulator 
and the model outcome shows that there are some deviations in the elapsed time between ~36 and 40 h and from 72 h 
onwards, which are correctly compensated by the model bias function (see also Fig. 6(b)).  

Because TRT1 dataset was also used in Ref. [43], in which Bayesian inference was conducted by considering only the 
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random error term, it would be interesting to compare the inferred posteriors of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 of the previous and current 
studies. The comparison and discussion between two results are in Appendix A.  

 
4.2 TRT2: Rainfall and groundwater flow affected TRT data 
Results from the conduction-dominated TRT1 data showed that Bayesian calibration leads to reliable PPDFs for the 

calibration parameters and can correctly infer the model bias function caused by ignoring the effect of disturbance. We now 
test the methodology using the TRT2 data. 

Although TRT2 was conducted at the same site with a similar heat injection rate, as shown in Fig. 1(b) and Table 1, 
compared to TRT1, an unusual time evolution of the fluid temperature is observed. Instead of a logarithmically increasing 
trend of the temperature level, the mean fluid temperature remains around 27–28 °C and even decreases slightly over a 
short period of elapsed time around 72 h. We speculate that this is due to subsurface advection by groundwater flow.  

We apply the KOH framework to the TRT2 data to examine whether the methodology can correctly identify the model 
bias and infer reliable posteriors for the calibration parameters. For Bayesian calibration of TRT2, the variable heat rate 
model was selected as the physical model, and the elapsed time and heat rate were selected as scenario parameters 𝑥𝑥. The 
same distributions as those used for TRT1 were set for 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑅𝑅𝑏𝑏 and all (hyper-)parameters. As stated in Section 4.1, 
15,000 MCMC samplings were conducted, and the first 5,000 samples were not considered to construct the posterior 
distributions.  

Based on the obtained posterior distributions, predictions were made for the emulator term. Fig. 8 shows a significant 
over-prediction of the fluid temperature over time, which indicates a significant effect of some physical process that is not 
captured by the emulator. Even the credible interval of 2𝜎𝜎 predicted temperatures cannot cover the measured temperature.   

 

 
Fig. 8. Mean fluid temperature predicted by emulator 𝐸𝐸{𝜂𝜂(𝑥𝑥, 𝜃𝜃)}, prediction uncertainty ranges, and measured mean 

fluid temperature (TRT2). 
 
Fig. 9 shows the posteriors of the calibration parameters 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 from the TRT2 data. Significant differences are 

observed compared to the results of TRT1. The posterior distributions are skewed to the upper and lower bounds of the 
prior distributions (i.e., 2.3 W/(m∙K) and 0.13 m∙K/W), respectively, which suggest a larger thermal conductivity and lower 
borehole resistance. These shifts in the two calibration parameters confirm our assumption that the significant difference 
is due to advection effects. Such high 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  is a typical result from advection-affected TRTs, as the groundwater flow in 
the subsurface carries a significant part of the injected heat away, which results in a nonlinear increase in the thermal 
conductivity because the diffusion (conduction) term alone cannot properly represent the convection mode of subsurface 
heat transfer.  

The difference between the posteriors of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 of TRT1 and TRT2 indicates that the model bias term of TRT2 
compensates any remaining effect caused by the additional physical process in the subsurface. Ideally, the posteriors of 
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 of the two TRTs should be very similar, and the bias function should fully account for any discrepancy. 

On the other hand, the standard interpretation method for TRTs that uses the semi-log linear regression leads to a 
significantly larger 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  of 5.97 W/(m∙K). and a slightly larger 𝑅𝑅𝑏𝑏 of 0.177 m∙K/W compared to the TRT results of the 
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past 3 years at the same site. This large 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  is due to the overfitting of the ILS model to the measured data, whereas the 
large 𝑅𝑅𝑏𝑏 is due to the positive correlation between 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 when two parameters are estimated simultaneously as 
discussed in Ref. [43]. Therefore, whilst the model bias function does not fully capture the convection mode of subsurface 
heat transfer, it does prevent overfitting between the measured data and computer model outputs, yielding improved 
estimates of parameter values.  

It is necessary to investigate the cause of the unusual temperature response and estimates. Fig. 10 shows the rainfall and 
dry-bulb temperature from 14 days before the starting time of TRT2. The pink shaded area in Fig. 10 represents the period 
during which the TRT2 was conducted. Although there was rainfall during the TRT period, it is highly unlikely that the 
rain penetrated the top 8 m formation, which consists of loam and clay, and significantly affected the temperature response 
because the hydraulic conductivity of loam and clay is very low [44]. From approximately nine days before the start of the 
TRT (Sep. 7, see Fig. 10), there was heavy rainfall for 5 days because of a stationary weather front. During these rainy 
days, the maximum hourly and daily precipitations were 25 mm/h and 117 mm/day, respectively, and the average 
precipitation was 56 mm/day. Based on the regional characteristics of the test site located in a coastal area, it is likely that 
the rainfall would cause a regional increase in the groundwater level and groundwater flow velocity in the permeable 
aquifer, which would take effect during the TRT period. Previous studies in similar geomorphological and hydrogeological 
settings have found time delays between the beginning of rainfall events and peaks in groundwater level between 40 hours 
and ~100 days depending on the specific aquifer characteristics, especially the hydraulic storage capacity [45,46]. Given 
the local aquifer thickness and hydraulic parameters (see [28]), a delay time of ~9 days seems to be reasonable for our test 
site (Fig. 10). Based on this assumption, the rainfall for 9 days before TRT2, the predicted and measured temperature 
responses, and the bias function are shown in Fig. 11. 

 

    
Fig. 9. Posterior and prior probability distribution functions of thermal conductivity ((a) and (b)) and borehole thermal 

resistance ((b) and (c)) for conduction dominant TRT1 and advection-affected TRT2.  
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Fig. 10. Rainfall and dry-bulb temperature before and during TRT2.  
 

In Fig. 11 (b) and (c), the difference between the predicted and measured temperatures at the elapsed time of 16 h is 
~1 °C. It should be noted that the predictions by the emulator were made using 𝜆𝜆𝑒𝑒𝑓𝑓𝑓𝑓  and 𝑅𝑅𝑏𝑏 inferred by the calibrated 
TRT2 model. Compared to TRT1, the temperature of TRT2 at the elapsed time of 16 h is ~3 °C lower (see Fig. 1). Thus, it 
can be seen that TRT2 is strongly influenced by the groundwater flow from its early stages. The magnitude of the bias 
increases with time (Fig. 11 (c)), and this increasing trend is similar to the previous trend of rainfall (Fig. 11 (a)). As shown 
in Fig. 12, when the emulator and bias function are considered simultaneously (e.g., calibrated model), the resultant 
temperature response closely follows the measured temperature. Thus, from the viewpoint of prediction, the calibration 
was successful. However, we focus not only on using the calibrated model for future predictions, but also on discovering 
the structural error in the parameter inference. Therefore, this point merits further discussion.  

Unlike for TRT1, a clear model inadequacy was captured by the bias function in TRT2 (Fig. 11 (c)). However, it cannot 
be said that this bias function completely captures the model inadequacy. Compared with previous TRT results, the inferred 
parameters in the KOH framework shown in Fig. 9 are unreasonable, because some part of the model inadequacy that 
should be accounted for by the bias function is compensated by parameter overfitting with convergence to the upper and 
lower bounds of the parameter space. Although completely capturing the bias in the TRT is not possible by applying the 
KOH framework in the form presented in this paper, an important result is that by modeling the bias error term, we can 
determine that there is a structural error between the measured temperature response and the physical model, and infer the 
approximate shape of the model bias function. Moreover, this approach gives us insights into the right selection of physical 
model for parameter estimation and the modification of models or development of alternative models. 
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Fig. 11. (a) Rainfall 9 days before TRT2, (b) temperature responses of emulator and experiment, and (c) bias function. 
The bias function originally has negative values here because it is defined by measured value minus predicted value. For 
the purpose of comparison with the rainfall, the bias function is expressed as an absolute value. The vertical dotted line in 
figures (b) and (c) is the indicator for the elapsed time of 16 h. 
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Fig. 12. Measured temperature data, predicted fluid temperature by model emulator (𝐸𝐸{𝜂𝜂(𝑥𝑥,𝜃𝜃)} ), calibrated model 

output (𝐸𝐸{𝜂𝜂(𝑥𝑥,𝜃𝜃) + 𝛿𝛿(𝑥𝑥)}), and 2𝜎𝜎 range of calibrated model (TRT2). 
 
 

6. Conclusions 
We applied the Kennedy and O’Hagan framework for Bayesian calibration for the first time to two different TRT datasets 

in order to estimate the design parameters for ground heat exchangers and examine structural errors in the models used for 
interpreting TRTs. As the forward model for the Gaussian process emulator, the infinite line source model was used in two 
different forms: the constant heat rate model and the variable heat rate model.  

The difference between the Kennedy and O’Hagan method and other approaches (e.g., Bayesian inference, GUM 
framework) is that it explicitly accounts for different error sources, namely the random errors from the measurements and 
computer model, and the structural error, which we call the model bias function, and which is linked to the physical 
inadequacy of the computer model.  

The Bayesian calibration framework successfully identifies the structural model inadequacy in the constant heat rate 
model. In TRT1 data with the constant model, periodic variations in the model bias with time were clearly captured. 
Moreover, in the bias term of the Gaussian process model, a high correlation between the model bias and the solar irradiance 
and dry-bulb temperature could be assessed by evaluating the posterior distributions of the hyperparameters of the Gaussian 
process model.  

The variable heat rate model, which implicitly incorporates the causes of the model bias in the constant model, enables 
us to infer narrower uncertainty ranges for 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 than those inferred using the constant model. Thus, we have 
stronger confidence about the estimated 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏. At the same time, the irregular shape and small magnitude of the 
model bias function of the variable heat rate model suggests that all major physical effects are considered in the model. 
Therefore, from the results of the Bayesian calibration, we gain clear insights into the model itself. 

For the TRT2 dataset, which was affected by heavy rainfall and the resultant groundwater flow, the clear advantage of 
the Kennedy and O’Hagan framework is that it considers a model bias term that can capture the structural error in the 
model. The inferred posteriors of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑅𝑅𝑏𝑏 differ significantly from the values estimated using the standard semi-log 
plot method. Moreover, the inferred posteriors of TRT2 also differ significantly from the TRT1 results and past TRT results. 
This means that the obtained model bias function does not fully compensate the effect of advection, and the part not 
considered by the bias function still leads to parameter overfitting, albeit less significantly than with the standard method. 
To improve the methodology, employing a model bias that allows more complex specifications or fine-tuning of the prior 
distributions for the Gaussian process model bias can be considered in the future. Alternatively, different analytical 
solutions, such as the moving line source models, which consider groundwater flow, could be employed for case studies 
where sufficient prior knowledge about the additionally required model parameters is available.  
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Appendix A. Comparison between KOH Bayesian calibration and Bayesian inference 
In our previous work [43], we developed a Bayesian inference technique for the TRT parameter estimation in which the  

inference was conducted by considering only the random error term. Thus, it would be interesting to compare the inferred 
posteriors of 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒   and 𝑅𝑅𝑏𝑏  from the previous and current studies. Hereafter, we refer to the previous and current 
frameworks as Bayesian inference (BI) and Bayesian calibration (BC), respectively. We recall that the most significant 
difference between the two studies is the distinction between random error terms and a structured model bias function, 
which should prevent the inferred model parameters from overfitting (i.e., prevent absorption of model bias in the posteriors 
of inferred parameters 𝜃𝜃). Because the number of MCMC in the previous study was 5 × 105 and no informative prior was 
assigned, 1.5 × 104 samplings with the same prior were newly conducted in this study to enable a fair comparison.  

The posterior mean, maximum a posteriori, and 95% credible interval of Bayesian inference and calibration are 
summarized in Table A1. In should be noted that the listed BC values in Table A1 are from PPDFs shown in Fig. 5.  
Compared to the mode of Bayesian inference, a slightly lower mode for 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒  is obtained from Bayesian calibration, and 
the 𝑅𝑅𝑏𝑏 values are nearly identical.  

We can observe differences between the PM for calibration parameters from BI and BC. This difference is most likely 
caused by the absorption of the model discrepancy into the PPDF of the calibration parameters for BI, which only accounts 
for random error. This finding is also supported by the narrower 95% CIs of PPDFs for BI than those for BC, which signifies 
the overfitting of the calibration parameters. In addition, the unknown hyperparameters of the covariance function introduce 
a larger uncertainty to the joint posterior distribution in BC and accordingly also to the marginal distributions of the 
calibration parameters. 

 
Table A1. Characteristics of posterior distributions of calibration parameters obtained by Bayesian calibration (BC) with 

constant and variable models, and by Bayesian inference (BI) with constant model.  
Estimator Method and model Thermal conductivity [W/(m∙K)] Thermal resistance [m∙K/W] 
Posterior mean BC constant 1.97 0.154 

BC variable 1.95 0.150 
BI constant 1.92 0.147 

Maximum 
a posteriori 

BC constant 1.91 0.155 
BC variable 1.93 0.151 
BI constant 1.91 0.147 

95% credible 
interval  

BC constant 1.80–2.16 0.144–0.164 
BC variable 1.82–2.07 0.142–0.158 
BI constant 1.87–2.00 0.144–0.152 
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