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For almost half a century, ACID transactions have been the
abstraction of choice for ensuring consistency in data stor-
age systems. The well-known atomicity property ensures
that either all or none of a transaction’s writes take effect in
the case of a failure; isolation prevents interference from
concurrently running transactions; and durability ensures
that writes made by committed transactions are not lost in
the case of a failure.

While transactions work well within the scope of a sin-
gle database product, transactions that span several different
data storage products by distinct vendors have been very
problematic: many storage systems do not support them,
and those that do often perform poorly. Today, large-scale
applications are often implemented by combining several
distinct data storage technologies that are optimised for dif-
ferent access patterns. In our experience, distributed trans-
actions have failed to gain adoption in most such settings,
and most large-scale applications instead rely on ad-hoc,
unreliable approaches for maintaining the consistency of
their data systems.

However, in recent years we have observed the increasing
use of event logs as a data management mechanism in large-
scale applications. This trend includes the event sourcing
approach to data modelling, the use of change data capture
systems, and the increasing popularity of log-based pub-
lish/subscribe systems such as Apache Kafka. Although
many databases use logs internally, e.g. as write-ahead logs
or replication logs, this new generation of log-based sys-
tems is different: rather than using logs as an implementa-
tion detail, they raise them to the level of the application
programming model.

As this approach uses application-defined events to solve
problems that traditionally fall in the transaction-processing
domain, we name it online event processing (OLEP) to con-
trast with OLTP. In this article, we explain the reasons for
the emergence of OLEP, and show how it allows applica-
tions to guarantee strong consistency properties across het-
erogeneous data systems, without resorting to atomic com-
mit protocols or distributed locking. The architecture of
OLEP systems allows them to achieve consistently high
performance, fault tolerance, and scalability.

Application Architecture Today: Poly-
glot Persistence

Different data storage systems are designed for different ac-
cess patterns, and there is no single “one size fits all” stor-
age technology that is able to efficiently serve all possible
uses of data. Consequently, many applications today use

a combination of several different storage technologies, an
approach sometimes known as “polyglot persistence”. For
example:

Full-text search. When users need to perform keyword
search on a dataset, e.g. a product catalog, a full-text
search index is required. Although some relational
databases such as PostgreSQL include a basic full-text
indexing feature, more advanced uses generally re-
quire a dedicated search server such as ElasticSearch.
To improve the indexing or search result ranking al-
gorithms the search engine’s indexes may need to be
rebuilt from time to time.

Data warehousing. Most enterprises export operational
data from their OLTP databases and load it into a data
warehouse for business analytics. The storage layouts
that perform well for such analytic workloads, such
as column-oriented encoding, are very different from
those of OLTP storage engines, necessitating the use
of distinct systems.

Stream processing. Message brokers allow an application
to subscribe to a stream of events as they happen (e.g.
representing the actions of users on a website), and
stream processors provide infrastructure for interpret-
ing and reacting to those streams (e.g. detecting pat-
terns of fraud or abuse).

Application-level caching. In order to improve the per-
formance of read-only requests, applications often
maintain caches of frequently-accessed objects (e.g. in
memcached). When the underlying data changes, ap-
plications employ custom logic to update the affected
cache entries accordingly.

Note that these storage systems are not fully independent of
each other. Rather, it is common for one system to hold a
copy or materialized view of data in another system. Thus,
when data in one system is updated, it often also needs to
be updated in another, as illustrated in Figure 1.

OLTP Transactions Are Predefined and Short
In the traditional view, as implemented by most relational
database products today, a transaction is an interactive ses-
sion in which a client’s queries and data modification com-
mands are interleaved with arbitrary processing and busi-
ness logic on the client. Moreover, there is no time limit for
the duration of a transaction, since the session traditionally
may have included human interaction.

However, reality today looks different. Most OLTP
database transactions are triggered by a user request made
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via HTTP to a web application or web service. In the vast
majority of applications, the span of a transaction extends
no longer than the handling of a single HTTP request: that
is, by the time the service sends its response to the user, any
transactions on the underlying databases have already been
committed or aborted. In a user workflow that spans several
HTTP requests (for example, adding an item to a cart, going
to checkout, confirming shipping address, entering payment
details, giving a final confirmation), there is no transaction
that spans the entire user workflow; there are only short,
non-interactive transactions to handle a single step of the
workflow.

Moreover, an OLTP system generally executes a fairly
small set of known transaction patterns. On this basis, some
database systems encapsulate the business logic of transac-
tions as stored procedures that are registered ahead of time
by the application. To execute a transaction, a stored pro-
cedure is invoked with certain input parameters, and the
procedure then runs to completion on a single execution
thread without communicating with any nodes outside of
the database.

Heterogeneous Distributed Transactions Are
Problematic
It is important to distinguish two types of distributed trans-
action:

Homogeneous distributed transactions are those in
which the participating nodes are all running the same
database software. For example, Google’s Spanner
and VoltDB are recent database systems that support
homogeneous distributed transactions.

Heterogeneous distributed transactions span several
different storage technologies by distinct vendors.
For example, the XA standard defines a transaction
model for performing two-phase commit (2PC) across
heterogeneous systems, and the Java Transaction API
(JTA) makes XA available to Java applications.

While some homogeneous transaction implementations
have proved successful, heterogeneous transactions con-
tinue to be very problematic. By their nature, they can only
rely on a lowest common denominator of participating sys-
tems. For example, XA transactions block execution if the
application process fails during the prepare phase; more-
over, XA provides no deadlock detection, and no support
for optimistic concurrency control schemes [3].

Many of the systems listed above, such as search indexes,
do not support XA or any other heterogeneous transaction
model. Thus, ensuring the atomicity of writes across differ-
ent storage technologies remains a challenging problem for
applications.

Building upon Event Logs
Figure 1 shows an example of polyglot persistence: an ap-
plication that needs to maintain records in two separate stor-
age systems, such as an OLTP database (e.g. an RDBMS)
and a full-text search server. If heterogeneous distributed
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Figure 1: An updated record needs to be written both to
a database and to a full-text search index, necessitating
atomic commit across the two systems.

transactions are available, the system can ensure atomicity
of writes across the two systems. However, most search
servers do not support distributed transactions, leaving the
system vulnerable to potential inconsistencies:

1. Non-atomic writes. If a failure occurs, a record may
be written to one of the systems but not the other, leav-
ing them inconsistent with each other.

2. Different order of writes. If there are two concur-
rent update requests A and B for the same record, one
system may process them in the order A,B while the
other system processes them in the order B,A. Thus,
the systems may disagree on which write was the lat-
est, leaving them inconsistent.

Figure 2 presents a simple solution to these problems: when
the application wants to update a record, rather than per-
forming direct writes to the two storage systems, it appends
an update event to a log. The database and the search index
each subscribe to this log, and write updates to their stor-
age in the order they appear in the log [4]. In effect, the
database and the search index are materialized views onto
the sequence of events in the log. This approach solves both
of the aforementioned problems:

1. Appending a single event to a log is atomic; thus, ei-
ther both subscribers see an event, or neither does. If
a subscriber fails and recovers, it resumes processing
any events that it has not processed previously. Thus,
if an update is written to the log, it will eventually be
processed by all subscribers.

2. All subscribers of the log see its events in the same
order. Thus, each of the storage systems will write
records in the same serial order.

In this example, the log only serializes writes, but the appli-
cation may read from the storage systems at any time. Since
the log subscribers are asynchronous, reading the index may
return a record that does not yet exist in the database, or vice
versa; such transient inconsistencies are not a problem for
many applications. For those applications that require it,
reads can also be serialized through the log; we discuss an
example of this later.

The Log Abstraction
There are several log implementations that can serve this
role, including Apache Kafka, CORFU (from Microsoft Re-
search), Apache Pulsar, and Facebook’s LogDevice. The
log abstraction we require has the following properties:
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Figure 2: By sequencing updates through a log, the database
and the search index apply the same set of writes in the same
order, keeping them consistent with each other.

Durable. The log is written to disk and replicated to sev-
eral nodes, ensuring that no events are lost in a failure.

Append-only. New events can only be added to the log by
appending them at the end. Besides appending, the log
may allow old events to be discarded, e.g. by truncat-
ing log segments older than some retention period, or
by performing key-based log compaction.

Sequential reads. All subscribers of the log see the same
events in the same order. Each event is assigned a
monotonically increasing log sequence number (LSN).
A subscriber reads the log by starting from a specified
LSN, and then receiving all subsequent events in log
order.

Fault-tolerant. The log remains highly available for reads
and writes in the presence of failures.

Partitioned. An individual log may have a maximum
throughput it can support (e.g. bounded by the
throughput of a single network interface or a single
disk). However, we assume that the system can scale
linearly by having many partitions, that is, many in-
dependent logs that can be distributed across many
machines. We assume there is no ordering guarantee
across different log partitions. Multiple logical logs
may be multiplexed into a single physical log partition.

For subscribers of a log we make the following assump-
tions:

• A subscriber may maintain state (e.g. a database) that
is read and updated based on the events in the log, and
that survives crashes. Moreover, a subscriber may ap-
pend further events to any log (including its own in-
put).

• A subscriber periodically checkpoints the latest LSN
it has processed to stable storage. When a subscriber
crashes, upon recovery it resumes processing from the
latest checkpointed LSN. Thus, a subscriber may pro-
cess some events twice (those processed between the
last checkpoint and the crash), but it never skips any
events. We say that events in the log are processed at
least once by each subscriber.

• The events in a single log partition are processed se-
quentially on a single thread, using deterministic logic.
Thus, if a subscriber crashes and restarts, it may ap-
pend duplicate events to other logs.

These assumptions are satisfied by existing log-based
stream processing frameworks, such as Kafka Streams and
Apache Samza. Updating state deterministically based on
an ordered log corresponds to the classic state machine
replication principle [5]. Since it is possible for an event
to be processed more than once when recovering from a
failure, we also require state updates to be idempotent.

Aside: Exactly-Once Semantics

Some log-based stream processors such as Apache Flink
support so-called exactly-once semantics, which means that
even though an event may be processed more than once,
the effect of the processing will be the same as if it had
been processed exactly once. This behavior is implemented
by managing side-effects within the processing framework,
and atomically committing these side-effects together with
the checkpoint that marks a section of the log as processed.
However, when a log consumer writes to external storage
systems, like in Figure 2, exactly-once semantics cannot
be ensured, since doing so would require a heterogeneous
atomic commit protocol across the stream processor and the
storage system, which is not available on many storage sys-
tems such as full-text search indexes. Thus, frameworks
with exactly-once semantics still exhibit at-least-once pro-
cessing when interacting with external storage, and rely on
idempotence to eliminate the effects of duplicate process-
ing.

Atomicity and Enforcing Constraints

A classic example where atomicity is required is in a bank-
ing/payments system, where a transfer of funds from one
account to another account must happen atomically, even
if the two accounts are stored on different nodes. More-
over, such a system typically needs to maintain consistency
properties or invariants, e.g. that an account cannot be over-
drawn by more than some set limit. In Figure 3 we show
how such a payments application can be implemented us-
ing the OLEP approach instead of distributed transactions.
It works as follows:

1. When a user wishes to transfer funds from some source
account to some destination account, they first append
a payment request event to the log of the source ac-
count. This event merely indicates the intention to
transfer funds; it does not yet imply that the transfer
has been successful. The event carries a unique ID to
identify the request.

2. A single-threaded payment executor process sub-
scribes to the source account log. It maintains a
database containing transactions on the source ac-
count, and the current balance. This process determin-
istically checks whether the payment request should
be allowed, based on the current balance and perhaps
other factors. This log consumer is very similar to the
execution of a stored procedure.

3. If the executor decides to grant the payment request,
it writes that fact to its local database, and appends
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Figure 3: Flow of events in a financial payments system. Arrows with a arrowhead denote appending an event to a
log, while arrows like denote subscribing to the events in a log.

events to several different logs: as a minimum, an out-
going payment event to the source account log, and an
incoming payment event to the log for the destination
account. If a fee is due for this payment (e.g. because
of an overdrawn account or currency conversion), an
additional outgoing payment event for the fees may be
appended to the source account log, and a correspond-
ing incoming payment event may be appended to the
log of a fees account. The original event ID is included
in all of these generated events, so that their origin can
be traced.

4. Since the executor subscribes to the source account
log, the outgoing payment event will be delivered back
to the executor again. It uses the unique event ID to de-
termine that it has already processed this payment and
recorded it in its database.

5. The payment events on other accounts, such as the in-
coming payment on the destination account, are sim-
ilarly processed by single-threaded executors, with a
separate executor per account. The event processing is
made idempotent by suppressing duplicates based on
the original event ID.

6. The server handling the user’s request may also sub-
scribe to the source account log, and thus be notified
when the payment request has been processed. This
status information can be returned to the user.

If the payment executor crashes and restarts, it may re-
process some payment requests that were partially pro-
cessed before the crash. Since the executor is deterministic,
upon recovery it will make the same decisions to approve or
decline requests, and thus potentially append duplicate pay-
ment events to the source, destination, and fees logs. How-
ever, based on the ID in the events it is easy for downstream
processes to detect and ignore such duplicates.

Multi-partition processing
In this payment example, each account has a separate log,
and thus may be stored on a different node. Moreover, each
payment executor need only subscribe to events from a sin-
gle account, and different accounts are handled by different
executors. These factors allow the system to scale linearly
to arbitrary numbers of accounts.

In this example, the decision of whether to allow the
payment request is conditional only on the balance of the

source account; we assume that the payment into the desti-
nation account always succeeds, since its balance can only
increase. For this reason, the payment executor need only
serialize the payment request with respect to other events in
the source account. If other log partitions need to contribute
to the decision, the approval of the payment request can be
performed as a multi-stage process in which each stage se-
rializes the request with respect to a particular log.

Splitting a “transaction” into a multi-stage pipeline of
stream processors allows each stage to make progress
based only on local data; it ensures that one partition is
never blocked waiting for communication or coordination
with another partition. Unlike multi-partition transactions,
which often impose a scalability bottleneck in distributed
transaction implementations, this pipelined design allows
OLEP systems to scale linearly.

Advantages of Event Processing
Besides this scalability advantage, developing applications
in an OLEP style has several further advantages:

• Since every log can support many independent sub-
scribers, it is easy to create new derived views or ser-
vices based on an event log. For example, in the pay-
ment scenario of Figure 3, a new account log sub-
scriber could send a push notification to a customer’s
smartphone if a certain spending limit on their credit
card is reached. A new search index or view over an
existing dataset can be built simply by consuming the
event log from beginning to end [3].

• If an application bug causes bad events to be appended
to a log, it is fairly easy to recover: subscribers can
be programmed to ignore the incorrect events, and any
views derived from the events can be recomputed. In
contrast, in a database that supports arbitrary inser-
tions, updates, and deletes, it is much harder to re-
cover from incorrect writes, potentially requiring the
database to be restored from a backup.

• Similarly, debugging is much easier with an append-
only log than a mutable database, because events can
be replayed in order to diagnose what happened in a
particular situation.

• For data modeling purposes, an append-only event log
is increasingly preferred over free-form database mu-
tations; this approach is known in the Domain-Driven
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Design community as event sourcing [2]. The rationale
is that events capture state transitions and business pro-
cesses more accurately than insert/update/delete op-
erations on tables, and those state updates are better
described as side-effects resulting from processing an
event. For example, the event “student cancelled their
course enrollment” clearly expresses intent, whereas
the side-effects “one row was deleted from the enroll-
ments table, and one cancellation reason was added to
the student feedback table” are much less clear.

• From a data analysis point of view, an event log is more
valuable than the state in a database. For example, in
an e-commerce setting, it is valuable for business ana-
lysts to see not only the final state of the cart at check-
out, but rather the full sequence of items added to and
removed from the cart, since the removed items carry
information too (e.g. that one product is a substitute
for another, or that the customer may return to buy a
certain item on a later occasion).

• With a distributed transaction, if any one of the par-
ticipating nodes is unavailable, the whole transaction
must abort, so failures are amplified. In contrast, if a
log has multiple subscribers, they make progress inde-
pendently from each other: if one subscriber fails, that
does not impede the operation of the publisher or other
subscribers, so faults are contained.

Disadvantages of OLEP approach

In the above examples, log consumers update the state
in datastores (the database and search index in Figure 2;
the account balances and account statements in Figure 3).
While the OLEP approach ensures that every event in the
log will eventually be processed by every consumer, even
in the face of crashes, there is no upper bound on the time
until an event is processed.

This means that if a client reads from two different data-
stores that are updated by two different consumers or log
partitions, the values read by the client may be inconsistent
with each other. For example, reading the source and desti-
nation account of a payment may return the source account
at a time after the payment has been processed, but the desti-
nation account at a time before it has been processed. Thus,
even though the accounts will eventually converge towards
a consistent state, they may be inconsistent when read at
one particular point in time.

Note that in an ACID context, preventing this anomaly
falls under the heading of isolation, not atomicity; a system
with atomicity alone does not guarantee that two accounts
will be read in a consistent state.

At present, the OLEP approach does not provide isolation
for read requests that are sent directly to datastores (rather
than being serialized through the log). We hope that future
research will enable isolation levels such as snapshot isola-
tion across datastores that are updated from a log.

Case Study: The New York Times
The New York Times maintains all textual content published
since the newspaper’s founding in 1851 in a single log par-
tition in Apache Kafka [6]. Image files are stored in a sep-
arate system, but URLs and captions of images are also
stored as log events.

Whenever a piece of content (known as an asset) is pub-
lished or updated, an event is appended to this log. Several
systems subscribe to this log: for example, the full text of
each article is written to an indexing service for full-text
search; various cached pages (e.g. the list of articles with a
particular tag, or all pieces by a particular author) need to
be updated; and personalization systems notify readers who
may be interested in a new article.

Each asset is given a unique identifier, and an event may
create or update an asset with a given ID. Moreover, an
event may reference the identifiers of other assets — much
like a normalised schema in a relational database, where one
record may reference the primary key of another record. For
example, an image (with caption and other metadata) is an
asset that may be referenced by one or more articles.

The order of events in the log satisfies two rules:

1. Whenever one asset references another, the event that
publishes the referenced asset appears in the log before
the referencing asset.

2. When an asset is updated, the latest version is the one
published by the latest event in the log.

For example, an editor might publish an image, and then
update an article to reference the image. Every consumer of
the log then passes through three states in sequence:

1. The old version of the article (not referencing the im-
age) exists;

2. The image also exists, but is not yet referenced by any
article;

3. The article and image both exist, with the article refer-
encing the image.

Different log consumers will pass through these three states
at different times, but in the same order. The log order en-
sures that no consumer is ever in a state where the article
references an image that does not yet exist, ensuring refer-
ential integrity.

Moreover, whenever an image or caption is updated, all
articles referencing that image need to be updated in caches
and search indexes. This can easily be achieved with a log
consumer that uses a database to keep track of references
between articles and images. This consistency model lends
itself very easily to a log, and it provides most of the benefits
of distributed transactions without the performance costs.

Further details on the New York Times approach appear
in a blog post [6].

Conclusions
Support for distributed transactions across heterogeneous
storage technologies is either non-existent, or suffers from
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poor operational and performance characteristics. In con-
trast, Online Event Processing (OLEP) is increasingly used
to provide good performance and strong consistency guar-
antees in such settings.

In data systems it is very common for logs (e.g. write-
ahead logs) to be used as an internal implementation de-
tail. However, the OLEP approach is different: it uses
event logs, rather than transactions, as the primary appli-
cation programming model for data management. Tradi-
tional databases are still used, but their writes come from a
log rather than directly from the application. This approach
has been explored by several influential figures in industry,
such as Jay Kreps [4], Martin Fowler [2], and Greg Young
under names such as event sourcing and Command/Query
Responsibility Segregation (CQRS) [1, 7].

The use of OLEP is not simply pragmatism on the part
of developers, but rather offers a number of advantages,
including linear scalability, a means of effectively manag-
ing polyglot persistence, support for incremental develop-
ment where new application features or storage technolo-
gies are added or removed iteratively, excellent support for
debugging via direct access to the event log, and improved
availability (because running nodes can continue to make
progress when other nodes have failed).

Consequently we expect OLEP will increasingly be used
to provide strong consistency in large-scale systems that use
heterogeneous storage technologies.
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