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Quasicrystals are long-range ordered and yet non-periodic. This interplay results in a wealth
of intriguing physical phenomena, such as the inheritance of topological properties from higher
dimensions, and the presence of non-trivial structure on all scales. Here we report on the first
experimental demonstration of an eightfold rotationally symmetric optical lattice, realising a two-
dimensional quasicrystalline potential for ultracold atoms. Using matter-wave diffraction we observe
the self-similarity of this quasicrystalline structure, in close analogy to the very first discovery of
quasicrystals using electron diffraction. The diffraction dynamics on short timescales constitutes
a continuous-time quantum walk on a homogeneous four-dimensional tight-binding lattice. These
measurements pave the way for quantum simulations in fractal structures and higher dimensions.

Quasicrystals exhibit long-range order without being
periodic [1–6]. Their long-range order manifests itself
in sharp diffraction peaks, exactly as in their periodic
counterparts. However, diffraction patterns from qua-
sicrystals often reveal rotational symmetries, most no-
tably fivefold, eightfold, and tenfold, that are incompat-
ible with translational symmetry. Therefore it immedi-
ately follows that long-range order in quasicrystals can-
not originate from a periodic arrangement of unit cells
but requires a different paradigm. Quasicrystalline or-
der naturally arises from an incommensurate projection
of a higher-dimensional periodic lattice and thereby en-
ables investigation of physics of higher dimensions, in
particular in the context of topology [7–11]. For in-
stance, one-dimensional (1D) quasiperiodic models, such
as the Fibonacci chain and the Aubry-Andre model, are
closely connected to the celebrated two-dimensional (2D)
Harper-Hofstadter model, and inherit their topologically
protected edge states [9, 11]. An alternative approach to
constructing quasicrystals was described by Penrose [12]
who discovered a set of tiles and associated matching
rules that ensure aperiodic long-range order when tiling
a plane [5]. The resulting fivefold symmetric Penrose
tiling and the closely related eightfold symmetric octago-
nal tiling [3, 5, 13, 14] (also known as Ammann-Beenker
tiling) have become paradigms of 2D quasicrystals. In
addition to their disallowed rotational symmetries, these
tilings have the remarkable feature of being self-similar
in both real and reciprocal space [2, 5]. Self-similarity
upon scaling in length by a certain factor (the silver
mean 1 +

√
2 in case of the octagonal tiling) implies

that non-trivial structure is present on arbitrarily large
scales. Correspondingly, diffraction patterns from qua-
sicrystals display sharp peaks at arbitrarily small mo-
menta. Important manifestations of this non-trivial or-
der on all length scales include the absence of univer-
sal power-law scaling near criticality [15] and its ap-
plication to quantum complexity [16]. Moreover, qua-
sicrystals exhibit fascinating phenomena such as pha-
sonic degrees of freedom [6, 17, 18]. To date, quasicrys-
tals have been extensively studied in condensed matter

and material science [1, 3, 4, 6, 17], in photonic struc-
tures [9, 13, 18–20], using laser-cooled atoms in the dissi-
pative regime [21, 22], and very recently in twisted bilayer
graphene [23]. Quasicrystalline order can even appear
spontaneously in dipolar cold-atom systems [24].

In this work we realise a quasicrystalline potential for
ultracold atoms based on an eightfold rotationally sym-
metric optical lattice, thereby establishing a new exper-
imental platform for the study of quasicrystals. Opti-
cal lattices, i.e. standing waves of light, have become a
cornerstone in experimental research on quantum many-
body physics [25]. They offer an ideal environment for ex-
amining quasicrystals since optical potentials are free of
defects which greatly complicate measurements on qua-
sicrystalline solids [6]. In addition, we are able to di-
rectly impose ‘forbidden’ rotational symmetries, thereby
circumventing the elaborate synthesis of stable single
crystals [26]. So far, quasiperiodic optical lattices have
been used as a proxy for disorder in ultracold quan-
tum gases [27–31], but the intriguing properties of qua-
sicrystalline order have remained unexplored. Here we
use a Bose-Einstein condensate of 39K atoms to probe a
quasicrystalline optical lattice in a matter-wave diffrac-
tion experiment, namely Kapitza-Dirac scattering [32].
This allows us to observe a self-similar diffraction pat-
tern, similar to those obtained by Shechtman et al. us-
ing electron diffraction [1] in their original discovery of
quasicrystals. Additionally, we investigate the diffraction
dynamics which at short times constitutes a continuous-
time quantum walk on a four-dimensional (4D) homo-
geneous tight-binding lattice. Confined synthetic dimen-
sions, which can be created by employing the discrete hy-
perfine states of atoms, already play an important role in
quantum simulation [33–35]. Our measurements demon-
strate the potential of quasicrystalline optical lattices to
be used for the simulation of extended higher dimensions.

We create the 2D quasicrystalline potential using
a planar arrangement of four mutually incoherent
1D optical lattices, each formed by retro-reflecting a
single-frequency laser beam, as shown schematically in
Fig. 1 (a). The angle between two neighbouring lattice
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FIG. 1. (a) Schematic of the eightfold optical lattice formed by superimposing four independent 1D lattices. (b) Fractal
momentum space structure. The first 15 orders of possible diffraction peaks are shown. They are constructed by iteratively
adding or subtracting one of the four reciprocal lattice vectors Ĝi (inset on the right) to the peaks in the previous order,
starting with k = (0, 0). This results in a fractal structure, whose self-similarity is illustrated by a sequence of octagons, which
are each scaled by the silver mean 1 +

√
2 relative to the next. The left inset shows one inflation step (see text). (c) Raw

time-of-flight images resulting from four different lattice configurations at fixed lattice pulse duration (t = 3.5µs). Using just

one of the lattice axes results in a regular 1D simple-cubic lattice characterized by Ĝ1; adding the perpendicular lattice creates
a regular 2D square lattice with Ĝ1 and Ĝ2. By adding the first diagonal lattice we obtain a regular array of quasiperiodic
1D lattices. These are characterised by a dense sets of momentum states along Ĝ3 whereas the direction perpendicular to Ĝ3

remains periodic (labelled 3D). Finally, using all four axes we create the 2D quasicrystal (labelled 4D) whose self-similarity is
illustrated by the octagons.

axes is 45(1)◦, similar to the setup proposed in ref. [14]
(see also Refs. [36, 37]), thereby imposing a global eight-
fold rotational symmetry in close analogy to the octag-
onal tiling. The right inset of Fig. 1 (b) shows the re-
ciprocal lattice vectors Ĝ1, Ĝ2, Ĝ3, and Ĝ4 of the four
1D lattices. In contrast to a periodic lattice the combi-
nation of several Ĝi here may give rise to new, smaller
momentum scales, as shown the left inset of Fig. 1 (b);
for example, the combination −Ĝ1 + Ĝ3 − Ĝ4 results in
a new k-vector (red arrow) that is shorter than the orig-
inal Ĝ1 by a factor of 1 +

√
2 (the silver mean). This

process can be repeated ad infinitum and results in a
self-similar fractal structure containing arbitrarily small
k-vectors, giving rise to the sequence of octagons in Fig. 1
(b). Consequently, it is impossible to assign a maximum
characteristic length to this quasicrystal, heralding the
presence of structure on all scales. The set of momenta
that are reachable from k0 = (0, 0) by combining the Ĝi

is dense in the kx, ky-plane and any element G of this set

is determined by four integers (i, j, l, n) ∈ Z4 as

G = iĜ1 + jĜ2 + lĜ3 + nĜ4 . (1)

While physical momentum remains two-dimensional, all
four integers are nonetheless required to describe a given
G, since cos(45◦) = sin(45◦) = 1/

√
2 is irrational and

hence incommensurable with unity. In fact, Fig. 1 (b)
can be viewed as an incommensurate projection of a 4D
simple-cubic ‘parent’ lattice to the 2D plane, similar to
the ‘cut-and-project’ scheme for constructing the octago-
nal tiling, starting from Z4 [5]. By using fewer than four
lattice beams we can control the dimensionality of the
parent lattice and reduce Z4 to ZD with D ∈ {1, 2, 3, 4}.

The experimental sequence starts with the preparation
of an almost pure Bose-Einstein condensate of 39K atoms
in a crossed-beam dipole trap [38]. Using the Feshbach
resonance centred at 402.70(3) G [45] we tune the contact
interaction to zero just before we release the condensate
from the trap. Then we immediately expose it to the op-
tical lattice for a rectangular pulse of duration t. During



3

t = 0.0μs t = 1.0μs t = 3.0μs t = 6.0μs

O
pt

ic
al

 d
en

si
ty

0.0

0.3

FIG. 2. Dynamics of Kapitza-Dirac diffraction in the quasicrystalline optical lattice. The figure shows raw absorption images
for four different lattice pulse durations. After 1µs, only the first diffraction order has been populated, while longer pulses lead
to populations in successively higher orders as the atoms perform a quantum walk on the fractal momentum structure. Black
octagons with a circumradius of |Ĝi| = 2klat illustrate the fundamental momentum scale due to two-photon processes.

this pulse, atoms in the condensate can undergo several
stimulated two-photon scattering events (Kapitza-Dirac
scattering [32]), which scatter photons from one lattice
beam into its counterpropagating partner and transfer
quantized momenta of ±2~klat, where ~klat is the mo-
mentum of a lattice photon and |Ĝi| = 2klat. The lattice
wavelength λlat = 2π/klat = 726 nm is far detuned from
the D-lines in 39K, ensuring that single-photon processes
are completely suppressed. Throughout this work, the
lattice depth of each individual axis is 14.6(2)Erec, with
Erec = h2/(2mλ2lat) denoting the recoil energy, m be-
ing the atomic mass and h being Planck’s constant. Fi-
nally, we record the momentum distribution of the atomic
cloud by taking an absorption image after 33 ms time-of-
flight [38].

In a first experiment we fix the lattice pulse duration
at t = 3.5µs and vary the number of lattice beams, as
shown in Fig. 1 (c). Starting from the single-axis (1D)
case, we subsequently add lattice axes, finally complet-
ing the eightfold symmetric case (4D), representing the
quasicrystalline structure with its striking self-similarity
under (1 +

√
2) scaling.

The diffraction dynamics offers additional signatures of
the fractal nature of the eightfold optical lattice: during
the lattice pulse the condensate explores reciprocal space
in discrete steps of ±Ĝi, leading to profoundly distinct
behaviours in the periodic (2D) and in the quasicrys-
talline case (4D). Fig. 2 shows absorption images for four
different values of pulse duration t in the latter configura-
tion, illustrating the occupation of more and more closely
spaced momenta. Using individual fits [38] we extract
the number of atoms in every k-state up to the seventh
diffraction order, i.e. those momenta reachable by seven
or fewer two-photon scattering events. In all cases, high
momentum states are inaccessible, as the corresponding
two-photon transitions become off-resonant due to ki-
netic energy. Therefore, in the 2D simple cubic lattice
(Fig. 3 on the left) the total number of accessible states

0.0

0.5

1.0

0 5 10 15 20
Lattice pulse duration (µs)

0 5 10 15 20 25
Lattice pulse duration (µs)

2D 4D

1st

2nd

3rd

4th

5th

6th

0th

1st

2nd

3rd

4th

5th

6th

0th

7th7thP
op

ul
at

io
n

FIG. 3. Kapitza-Dirac diffraction dynamics in a periodic (2D)
and quasicrystalline (4D) lattice. The normalized popula-
tions (coloured dots) of the condensate (0th order) and the
first seven diffraction orders are plotted against pulse dura-
tion, together with the numerical solution to the Schrödinger
equation (lines). The periodic case (2D) is oscillatory as ki-
netic energy limits the accessible momenta. In contrast, the
quasicrystalline lattice (4D) contains a fractal set of k-states,
c.f. Fig.1 (b), enabling the population of higher and higher
orders without kinetic energy penalty. Correspondingly, the
expansion carries on linearly, indicated by the light blue ‘wave
front’ as a guide to the eye. Error bars denote the standard
deviations from five realisations of the experiment, and are
typically smaller than symbol size.

is limited and the dynamics is oscillatory, reminiscent
of a simple harmonic oscillator. In the quasicrystalline
case (4D, right of Fig. 3), in contrast, the diffraction dy-
namics is non-oscillatory: due to the fractal momentum
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space structure, the atoms can access states in ever higher
diffraction orders that correspond to ever smaller mo-
menta. As a consequence, large parts of the population
propagate ballistically to progressively higher orders, as
illustrated by the light blue ‘light cone’. Our data agrees
excellently with exact numerical solutions (lines in Fig. 3)
of the single-particle time-dependent Schrödinger equa-
tion in momentum basis [38].
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FIG. 4. Continuous-time quantum walk in D dimensions,
where D is controlled by the number of lattice beams. Dots
represent the measured root-mean-square momentum (see
text), while lines represent numerical solutions to the full
Schrödinger equation. The inset shows the same data, but
scaled by

√
D. Here the dashed line represents the expansion

dynamics of a continuous-time quantum walk on a homoge-
neous D-dimensional tight-binding lattice. The

√
D scaling

(Eq. S13 in the Supplemental Material) is a direct conse-
quence of the separability of hypercubic lattices. Deviations
from the linear behaviour at later times are due to kinetic
energy, and the lines would differ from each other at long
times [38]. Error bars denote standard deviations from five
identical realisations of the experiment.

In the regime of short pulses, the Fourier limit ensures
that kinetic energy can be neglected for all dimensions
and the discrete momentum space structure can be seen
as a homogeneous tight-binding lattice [46, 47]. A hop-
ping event in this effective lattice corresponds to a two-
photon scattering event and connects momenta differing
by ±~Ĝi. In this picture, the diffraction dynamics is
equivalent to the expansion of initially localized particles
in this synthetic lattice and gives rise to a continuous-
time quantum walk with its characteristic light-cone-like
propagation [48–50]. For a hypercubic lattice in D di-
mensions, the separability of the tight-binding dispersion
relation leads to an average group velocity proportional
to
√
D [38]. Due to the correspondence between the num-

ber of lattice beams and the dimension of the resulting

tight-binding hamiltonian, we are able to extend the dy-
namics to up to four dimensions. Using the appropriate
form of Eq. 1 in ZD, we extract the effective root-mean-
square momentum in D dimensions, e.g.

√
〈i2 + j2〉 in

the 2D case and
√
〈i2 + j2 + l2 + n2〉 in the 4D case,

from the individual populations of all diffraction peaks,
and find excellent agreement between the measurements
and the analytic result vp ∝

√
D [38], as shown in Fig. 4.

The departure from linear behaviour at longer times is
due to kinetic energy and is captured well by the ex-
act numerical solution to the Schrödinger equation (solid
lines in Fig. 4). The extent of the linear region is con-
trolled by the lattice depth. For even longer times, kinetic
energy enforces fundamentally different behaviours for
periodic and quasicrystalline lattices, as shown in Fig. 3
(and in Fig. S3 in the Supplemental Material).

In conclusion, we have realised a quasicrystalline po-
tential for ultracold atoms, which can facilitate the cre-
ation of ever more complex many-body systems [16] and
novel phases [51]. By observing the occupation of suc-
cessively closer-spaced momenta, we were able to con-
firm its self-similar fractal structure in momentum space.
In addition, we experimentally verified the fundamen-
tally different diffraction dynamics between periodic and
quasicrystalline potentials, in excellent agreement with
theory. Finally, we demonstrated the ability to sim-
ulate tight-binding models in one to four dimensions,
by observing the light-cone-like spreading of particles
in reciprocal space. On the one hand, these measure-
ments pave the way for more elaborate quantum simula-
tions in four dimensions, including topological effects and
charge pumps [10, 52]. On the other hand, quasicrys-
talline potentials enable experimental studies of novel
quantum phenomena that have been predicted for qua-
sicrystals, such as non-power-law criticality [15], topolog-
ical edge states [7, 11, 53], and spiral holonomies [54].
Finally, our system will provide unprecedented access
to transport and localisation properties of quasicrystals,
thereby addressing fundamental questions about the re-
lation between quasiperiodic order and randomness [55]
and extending studies of many-body localisation and
Bose glasses to two dimensions [29, 30, 56, 57].
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[57] Ş. G. Söyler, M. Kiselev, N. V. Prokof’ev, and B. V.
Svistunov, “Phase Diagram of the Commensurate Two-
Dimensional Disordered Bose-Hubbard Model,” Physical
Review Letters 107, 185301 (2011).

Acknowledgments

We would like to thank Oliver Brix, Michael Höse,
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