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The genus Legionella comprises 65 species among, which Le-
gionella pneumophila is a human pathogen. To understand the
evolution of an environmental to an accidental human pathogen,
we have functionally analyzed 80 Legionella genomes spanning
58 species. Uniquely, an immense repository of 18,000 secreted
proteins encoding 137 different eukaryotic-like domains and over
200 eukaryotic-like proteins is paired with a highly conserved
T4SS. Specifically, we show that eukaryotic Rho and Rab-GTPase
domains are found nearly exclusively in eukaryotes and Legionella.
Translocation assays for selected Rab-GTPase proteins revealed
that they are indeed T4SS secreted substrates. Furthermore, F/U-
box and SET domains were present in >70% of all species suggest-
ing that manipulation of host signal transduction, protein turnover
and chromatin modification pathways are fundamental intracel-
lular replication strategies for Legionellae. In contrast, the Sec-7
domain was restricted to L. pneumophila and seven other species,
indicating effector repertoire tailoring within different amoebae.
Functional screening of 47 species revealed 60% were competent
for intracellular replication in THP-1 cells, but interestingly this
phenotype was associated with diverse effector assemblages.
These data, combined with evolutionary analysis indicate that the
capacity to infect eukaryotic cells has been acquired independently
many times within the genus and that a highly conserved T4SS
secretes an exceptional number of different proteins shaped by
inter-domain gene transfer. Furthermore we revealed the surpris-
ing extent to which Legionellae have co-opted genes and thus
cellular functions from their eukaryotic hosts and provide a new
understanding of how dynamic reshuffling and gene-acquisition
has led to the emergence of human pathogens.
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Introduction

Legionnaires' disease or legionellosis is an atypical pneumonia
caused by bacteria of the genus Legionella. Shortly after the dis-
covery of L. pneumophila (1) it was reported that this bacterium is
pathogenic for freshwater and soil amoebae of the genera Acan-
thamoeba and Naegleria (2). This finding led to a new perception
in microbiology, whereby bacteria that parasitize protozoa can
utilize similar processes to infect human cells. Sequencing and
analyses of the L. pneumophila genome substantiated this idea,
when it revealed the presence of a large number and variety
of eukaryotic-like domains within the predicted proteome (3).
Many of these proteins, termed effector proteins, were shown
to be secreted into the host cell where they facilitate Legionella
intracellular replication within a specialized compartment termed
the Legionella containing vacuole (LCV) (3, 4). Overall, the type
IV secretion system (T4SS), Dot/Icm, secretes more than 300 dif-
ferent effector proteins into the host cell and is indispensable for
virulence of L. pneumophila (5-8). The presence of the Dot/Icm
T4SS in other L. pneumophila strains and in selected Legionella

species had also been reported (9-12) but recent genome scale
studies of Legionella (13-15) indicated that the T4SS system is
present in every Legionella strain analyzed.

Despite high conservation of the Dot/Icm system among
different Legionella species, effector repertoires appear to vary
greatly. An analysis of putative T4SS effectors of L. longbeachae,
the second most frequent cause of Legionnaires’ disease, revealed
that only about 50% of the virulence factors described in L.
pneumophila were also present in the genome of L. longbeachae
(16). Recently, Burstein et al. (14) analyzed 38 Legionella species
using a machine learning approach to predict T4SS effectors and
Joseph et al. (15) examined Legionella genome dynamics, both
concluding that DNA interchange between different species is
rare. However, still little is known about the potential of the
different species to cause human disease and about the impact
and the specific characteristics of the T4SS effectors on the
evolution of new human pathogens within this environmental
bacterial genus.

Here we present a comprehensive analysis of the Legionella
genus genome, covering 80 Legionella strains belonging to 58
Legionella species and subspecies. We establish a pan-genus pool
of putative T4SS effectors and show that this comprises over
18,000 proteins and identify more than 200 new eukaryotic-like
proteins and 137 eukaryotic domains, including a unique class

Significance

Legionella comprises 65 species for which aquatic amoebae
are the natural reservoirs. Using functional and comparative
genomics to deconstruct the entire bacterial genus we reveal
the surprising parallel evolutionary trajectories that have led
to the emergence of human pathogenic Legionella. An un-
expectedly large and unique repository of secreted proteins
(>18,000) containing eukaryotic-like proteins acquired from all
domains of life (plant, animal, fungal, archaea) is contrasting
with a highly conserved type 4 secretion system. This study
reveals an unprecedented environmental reservoir of bacterial
virulence factors, and provides a new understanding of how
reshuffling and gene-acquisition from environmental eukary-
otic hosts, may allow for the emergence of human pathogens.
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Fig. 1. The Legionella genomes are diverse in size and gene content. A) Phylogeny of the genus based on the core genome, genome size, GC content and
number of singletons of each species are depicted. Numbers represent bootstrap values. Branches are coloured according to the clade they belong to. Genome
size and GC content include plasmids if present in the corresponding species. The number of singletons is based on the results of OrhtoMCL (takes into account
orthologs and paralogs). Each species has been compared to the others without taking into account strains from the same species to avoid bias due to the
number of strains sequenced within a species. B) Occurrence of genes within the 80 analysed Legionella genomes. Left end of the x-axis, genes present in a
single genome (strain specific genes; 5832 ≈32% of the pangenome); right end of the x-axis, genes present in all 80 genomes (core-genome; 1008 genes ≈6%
of the pan-genome) C) Gene accumulation curve for the total number of proteins of the 80 genomes. D) Negative correlation between genome size and GC
content indicating high acquisition of foreign genes (Pearson’s correlation coefficient equal to -0.46 with a p-value<0.0001)

of putative bacterial Rab GTPases. We confirmed experimentally
that a subset of these proteins translocate into the host cell
upon infection. We conclude that the T4SS is highly conserved at
the sequence level, but the effector proteins secreted are highly
diverse.

Results and discussion
The Legionella genus genome is dynamic and characterized by
frequent genetic exchange. We sequenced 58 Legionella species
of which 16 were newly sequenced, and analyzed them in combi-
nation with all publicly available genomes (80 genomes in total)
(SI Appendix, Table S1). The Legionella genomes were extremely
diverse, as the genome size varied from 2.37Mb (L. adelaidensis)
to 4.88Mb (L. santicrucis), the GC content from 34.82% (L. busa-
nensis) to 50.93% (L. geestiana) and the number of clusters of or-
thologous genes as defined with OrthoMCL was 17,992 of which
5,832 (32%) were strain specific (singletons) (Fig. 1A). Only 1,008
genes (6%) constituted the core genome (Fig. 1B), compared to
an earlier analysis of 38 Legionella species, which found 16,416

clusters of orthologous and 1,054 core genes (14). The addition
of 40 new genomes comprising 16 newly sequenced Legionella
species in our study increased the number of orthologous gene
clusters by over 1,576 and decreased the core genome by 46
genes, underlining the high diversity of the Legionella genus. This
difference suggested that the Legionella genus pan-genome is far
from fully described and that sequencing of additional Legionella
species will increase the genus gene repertoire significantly. This
was supported by the rarefaction curve that does not reach a
plateau (Fig. 1C).

The highly dynamic nature of these genomes is also seen
in the analysis of the strain specific genes and the accessory
genome as it highlights the presence of several mobile genetic
elements; often associated with genes encoding for transfer re-
gions/conjugative elements such as the type IVA secretion sys-
tems (T4ASS). These T4ASSs (classified as T4SSF, G, I and
T (17) are present in each strain to varying degrees indicating
that they circulate among the different Legionella strains (SI
Appendix, Table S2) and therefore drive genome dynamics and
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Fig. 2. Eukaryotic domains have a diverse distribution within the genus Legionella suggesting multiple acquisition events. The number and distribution of the
41 most frequently identified eukaryotic motifs within the genus Legionella are shown. Numbers represent the number of proteins containing this eukaryotic
motif. Abbreviations used: ANK (ankyrin), F-box, U-box), SET domain, Pkinases (protein kinases), Sec-7 domain, LLR (leucine rich repeats), Miro (Mitochondrial
Rho domain), TTL (tubulin-tyrosine ligase), SH2 (The Src homology 2), PAM2 (ataxin-2, C-terminal), PPR (pentatricopeptide repeat), I-set (immunoglobulin
I-set), NP (nucleoside phosphatase gda1/cd39), HAD (HAD-superfamily hydrolase), DH (Dbl homology domain), Mit. Substrate (mitochondrial substrate/solute
carrier), Rho GTPases-activating protein domain, T-complex (T-complex10/11), PC65 (Peptidase C65 otubain), Ergosterol (Ergosterol biosynthesis), Flavin (flavin
monooxygenase-like), Astacin (Peptidase M12A, astacin), Cyt:P450 (Cytochrome P450), Cytokine FAD (Cytokinin dehydrogenase 1, FAD/cytokinin binding
domain ), PQ loop repeat, Peptidase C2 (calpain, catalytic domain), LR glioma (Leucine-rich glioma-inactivated, EPTP repeat), Ovarian (Ovarian tumour,
otubain), Papain (Peptidase C1A, papain C-terminal, DOT1 (Histone methylation DOT1) , Rab small GTPases, DUF155, C/C (Clathrin/coatomer adaptor,
adaptinlike), RCC1 (Regulator of chromosome condensation).

diversification. It has been suggested that the incorporation of
foreign DNA via horizontal gene transfer (HGT) is responsible
for an increase in the AT content and the increase in genome
size (18). Indeed, we found a negative correlation between the
genome size and the GC content for the Legionella genomes,
which also suggests frequent HGT (Fig. 1D) (19). Despite the
importance of flagella for transmission to new hosts as shown
for L. pneumophila, flagella encoding genes were not conserved
in all species, but showed a patchy distribution, as 23 of the 80
strains analyzed lacked flagella genes (SI Appendix, Fig. S1).
The analyses showed that the Legionella genus genome is highly
diverse, dynamic and shaped by HGT.

The genus Legionella encodes proteins with 137 different
eukaryotic domains. Interpro scan analysis of all 58 Legionella
species revealed the presence of 137 different eukaryotic mo-
tifs/domains in the genus Legionella (SI Appendix, Table S3)
according to the definition that an eukaryotic domain is one that is
found in >75% of eukaryotic genomes and <25% in prokaryotic

genomes. The most abundant eukaryotic domains identified were
ankyrin repeats. Interestingly, L. santicrucis and L. massiliensis
encoded 41 and 39 ankyrin domains, respectively (Fig. 2). Ankyrin
motifs were found frequently associated with other eukaryotic
motifs and thus constituted modular proteins associated with
eukaryotic F-box, U-box, Rab or SET domains. Notably, F-box
and U-box domains were present in more than two thirds of
the species analyzed (Fig. 2) suggesting manipulation of the host
ubiquitin-system is a fundamental virulence strategy of Legionella
species. Generally, the genomes contained one to three F-box
containing proteins with the exception of L. nautarum and L.
dronzanskii, which contained 18 and 10, respectively. The SET
domain containing protein RomA of L. pneumophila that induces
a unique host chromatin modification (20) is present in 46 of the
58 Legionella species suggesting the ability of many Legionella
species to manipulate host chromatin (Fig. 2). Interestingly, the
Sec-7 domain present in the effector RalF, a bacterial ARF
guanine exchange factor and the first described Dot/Icm effector
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Table 1. Homology of Legionella Rab domains-containing proteins against protozoan
Rab proteins

Domain Protein First blast hit Identity Coverage e-value

Rab Lade0491 Entamoeba histolytica 35% 52% 4.E-17
Rab LgoA0634 Paramecium tetraurelia 33% 51% 2.E-19
Rab Llo3288 Ichthyophthirius multifiliis 42% 53% 4.E-31
Rab Lstei0814 Tetrahymena thermophila 34% 86% 3.E-26
Rab Lstei2185 Stentor coeruleus 38% 55% 6.E-29
Rab Lbir2252 Entamoeba invadens 32% 55% 5.E-15
Rab Lges1860 Entamoeba histolytica 34% 55% 7.E-25
Rab+ Fbox Lwad3214 Paramecium tetraurelia 34% 35% 7.E-14
Rab Lgra2891 Guillarda theta 36% 56% 2.E-19
Rab Lgra3435 Entamoeba histolytica 35% 59% 2.E-27
Rab Lma1540 Paramecium tetraurelia 34% 55% 1.E-17
Rab + ank LmasA3690 Oxytricha trifallax 34% 19% 2.E-19
Rab Lqua0234 Dictyostelium fasciculatum 38% 34% 1.E-25
Rab Lquin3026 Tetrahymena thermophila 34% 57% 1.E-19
Rab Lspi0161 Naegleria gruberi 34% 24% 7.E-24
Rab Lwal3261 Paramecium tetraurelia 33% 85% 7.E-18

Each Rab protein listed in the table represents a different orthologous group. Results are based
on blastp searches using the non-redundant NCBI database.

of L. pneumophila (21) was present in only eight (L. pneumophila,
L. longbeachae, L. feelei, L. sainthelensis, L. santicrucis, L. shake-
speari, L. quateirensis L. moravica) of the 58 Legionella species
analyzed, suggesting that, different effectors may compensate
for RalF activity or that LCV biogenesis varies among different
species (Fig. 2).

One newly identified motif in Legionella was the ergosterol
reductase ERG4/ERG24 (IPR001171) domain. Ergosterol is the
primary sterol in the cell membranes of filamentous fungi, present
in membranes of yeast and mitochondria (22). Importantly, it
is also the major sterol of amoebae such as A. castellanii and
A. polyphaga, the natural hosts of Legionella (23, 24). We found
that 31 Legionella species encoded one or two proteins with
the ERG4/ERG24 domain (Fig. 2). The L. longbeachae protein
(L1o1320) containing this domain showed 56% aa identity to that
encoded by the amoeba Naegleria gruberi and 30% aa identity to
that encoded by A. castellani strain Neff. This domain was also
present in other amoebae related bacteria such as Parachlamydia
acanthamoebae and Protochlamydia naegleriophila, as well as Cox-
iella burnetii. Phylogenetic analyses suggested that L. longbeachae
acquired this domain from amoeba (SI Appendix, Fig. S2A).

Phylogenetic analyses of the here identified C-terminal al-
liinase and Caleosin domains present in L. beliardensis and L.
anisa or the L. longbeachae clade (Fig. 2), respectively further
supported acquisition of these domains from plants, amoeba or
fungi (SI Appendix, Fig. S2B-C). They probably help Legionella
to fight competitor bacteria or fungi in amoebae or in the en-
vironment. Taken together, our analyses highlight key domains
preferentially present in protozoa, fungi, plants or animals that
have been acquired by different Legionella species.

A unique case in the prokaryotic world: Legionella encode
small GTPase-like domains The Ras-related small GTPase su-
perfamily comprises more than 150 members in humans, which
function as key regulators of signal transduction in almost all
cellular processes(25). These enzymes bind and hydrolyse GTP to
GDP and activate downstream effectors when bound to GTP. The
first identified member was the p21-Ras protein, an evolutionary
conserved small GTPase that controls cell proliferation, survival
and migration through its effector binding at RAF/MAPK and
PI3K (26). The Ras protein superfamily is subdivided into at
least five distinct branches: Ras, Rho, Rab, Arf and Ran (27).

Evolutionarily conserved orthologs are found in Drosophila, C.
elegans, S. cerevisiae, S. pombe, Dictyostelium and plants (28).

The only Rab-like protein in a prokaryotic genome was re-
ported in the L. longbeachae genome sequence (16). However,
upon analysis of our 80 Legionella strains, we identified 184
small GTPases of which 104 could be classified with a very high
confidence as Rab, Ras or Rho like proteins (34 Ras, 71 Rab and
one Rho domain) (SI Appendix, Table S4 and Fig. S3). Blastp
analysis of these proteins in the NCBI database revealed that 149
of the 184 small GTPases of Legionella were exclusively present in
Legionella and eukaryotic organisms (Table 1). The Rab domain
was localized to different parts of the effector proteins, and a
subset of Rab proteins carried additional domains such as U-box
domains, ankyrin motifs or F-box domains (Fig. 3A). Alignment
of the different Rab domains identified in the Legionella genomes
revealed that the structural features of eukaryotic Rab domains
were conserved among the Legionella proteins (SI Appendix, Fig.
S4).

To analyze further the evolutionary history of the Ras-related
domains in Legionella we undertook phylogenetic analyses of
these proteins. For example, the two L. longbeachae Rab proteins,
Llo1716 and Llo3288, were present in all strains closely related
to L. longbeachae, suggesting that they and their orthologous
share a common origin and evolved from a gene acquired by
the ancestor of all these species (SI Appendix, Fig. S5). Further
phylogenetic analysis of 16 Rab proteins present in eight different
Legionella species showed that these Rab domains were acquired
by HGT, mainly from protozoa (Fig. 3B and SI Appendix, Fig.
S6A-P). Recently a novel isoform of Rab5D was identified in
the Acanthamoeba polyphaga mimivirus (APMV) and all group
I members of the Mimiviridae (29). Phylogenetic analyses sug-
gested that the Rab GTPase was acquired by an ancestor of
the Mimiviridae family and Rabs from Mimiviridae, Plasmodium
and few lower eukaryotes form a separate clade (29). Thus, Le-
gionella and APMV that both infect the protozoa Acanthamoeba
encode Rab proteins most likely to mimic and subvert host cell
function. To substantiate that these proteins act in the host cell,
we determined whether the Rab containing proteins were bona
fide substrates of the Dot/Icm T4SS by creating fusion proteins
between the 16 different Rab proteins and the catalytic domain
of the TEM-1 beta-lactamase (indicated by a star in SI Appendix,
Fig. S5). Translocation assays were performed using wild type L.
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Fig. 3. Domain organization of small GTPases in Legionella and phylogenetic analyses of the Llo3288 Rab proteins suggests eukaryotic origin. A) Domain
organization of the different small GTPases proteins identified. B) Unrooted tree of Llo3288 and homologues recruited by blastp constructed using likelihood.
Local support values are represented with circles on the corresponding branches and size of circles is proportional to the values (only local support of at least
0.7 are shown). C) Transloctaion of selected proteins using the beta-lactamase transloctaion assay and infection of Raw264.7 cells for 1h with Lp wild typeor
LpΔdotA expressing BlaM-effector fusions analysed with a microplate reader. Three independent experiments (n=9) were done. Statistical significance was
determined by 2-way Anova with multiple comparisons test (*, P<0.05; **, P<0.01; ***, P<0.001. D) Transloctaion of selected proteins using the beta-lactamase
transloctaion assay and infectionof THP-1 cells at an MOI of 50 during 1h 30min with Lp and Llo strains in before addition of CCF4-AM and analyses by flow
cytrometry. Histograms show the frequency of BlaM- translocated, blue fluorescence-emitting cells as means ± SD of three independent experiments (n=12).
Statistical significance was determined by Wilcoxon matched pairs test (**, P<0.01; ***, P<0.001). ). Lp, L. pneumophila wild type; Llo, L. longbeachae wild
type; Lp ΔdotA, L. pneumophila ΔdotA; LloΔ, L. longbeachae ΔdotA.

pneumophila as a surrogate host and compared with an isogenic
Dot/Icm mutant (∆dotA). All 16 Rab motif-containing proteins
were translocated by L. pneumophila but not by the ∆dotA mutant
(Fig. 3C-D).

More than 250 different eukaryotic like proteins are encoded
in Legionella genomes. In addition to modular effectors with
eukaryotic domains, the Legionella genome encodes proteins that
are similar to eukaryotic proteins, many of which are proven
effectors of the Dot/Icm T4SS. A wider search for eukaryotic like
proteins in the Legionella genus identified 2196 eukaryotic like
proteins representing more than 400 different orthologous groups
that matched better to eukaryotes than to prokaryotes from a
total of 6809 different orthologous proteins that matched with
eukaryotic proteins. Among these, we identified 156 proteins with
a eukaryotic domain, and 210 new eukaryotic-like proteins (SI
Appendix, Table S5). Furthermore, 152 eukaryotic like proteins
detected possess a higher GC content (40%-62%) than the rest
of the genome indicating recent HGT. Phylogenetic analysis of

selected, newly identified proteins suggested that these were
acquired from eukaryotes. As an example, SI Appendix, Fig. S7
shows the protein LanA0735 from Legionella anisa, a species
frequently found in artificial water systems. This protein belongs
to the pyridine nucleotide-disulfide oxidoreductase family, a sub-
family of the FAD dependent oxidoreductase family. LanA0735
showed some similarity to thioredoxin reductase that exists as
two major ubiquitous isoenzymes in higher eukaryotic cells, one
cytosolic and the other one mitochondrial. The cytosolic form
has been implicated in interference with the acidification of the
lysosomal compartment in C. elegans (30), and thus LanA0735
may help Legionella avoid vacuole acidification during infection.

Among the proteins defined as eukaryotic like, two pre-
viously described phospholipases of L. pneumophila, PlcB
(Lpp1411/Lpg1455) and PlcA (Lpp0565/Lpg0502) were identi-
fied in our analysis as eukaryotic proteins. The only other bacteria
encoding these two enzymes are Pseudomonas and amoebae-
associated bacteria. The two enzymes have phospholipase activity
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Fig. 4. Gain/loss prediction for selected eukaryotic proteins and domain
containing proteins. Circles on the branches represent gain events, crosses
loss events.The full squares, circles, triangles or stars indicate the presence of
the respective protein; the emptysquares, circles, triangles or stars indicate
that the protein is absent in this species.

(31), but their role in infection is unknown. Here they were
predicted as phosphatidylcholine-hydrolyzing phospholipase C.
Phosphatidylcholine is a eukaryotic membrane phospholipid that
is present in only about 15% of prokaryotic species, in partic-
ular bacteria interacting with eukaryotes (32). L. pneumophila
belongs to the phosphatidylcholine-containing group of bacteria,
which includes Francisella tulurensis or Brucella abortus (33).
These pathogens use the phosphatidylcholine synthase pathway
exclusively for phosphatidylcholine formation and are thought to
depend on choline supplied from the host cell (34). Indeed, it has
been shown that phosphatidylcholin synthesis is required for L.
pneumophila virulence (35). Thus, it is tempting to infer that the
role of these enzymes may be to help acquire choline from the
host cell.

Evolutionary history of eukaryotic domains and eukaryotic
proteins. It is intriguing that Legionella species encode such
a diverse repertoire of eukaryotic domains and eukaryotic-like
proteins. To understand better this unique feature of the genus
we analyzed the evolutionary history of these proteins. After
phylogenetic reconstruction of the genus Legionella based on the
core genome (at least 50% identical) (Fig. 1A), we analyzed the
distribution of the eukaryotic motifs and the eukaryotic proteins
with respect to the evolution of the genus. For most we found
patchy distribution, as the repertoire of these proteins is variable
among the different Legionella species (Fig. 2). Such a distribu-
tion is indicative of gain and loss events during the evolution of the

genus. To analyze further how these proteins may have evolved
in Legionella we selected 25 eukaryotic motifs representing 2,837
different proteins in over 800 orthologous groups and used the
program Gloome to analyze the gain and loss events for these
proteins. We found that the number of gain events (1,197/69%)
considerably exceeded the number of loss events (549/31%), a
bias that was even stronger when using parsimony (1,628 gain
events versus 89 loss events) (SI Appendix, Fig. S8). These results
were confirmed also when using a more conservative approach by
taking a probability cut-off for the stochastic model of 0.8 instead
of 0.5, and when analyzing each motif separately.

An exemplary view of this result is shown for four proteins
encoding different motifs (U-box and ankyrin repeat, SET do-
main and ankyrin repeat, astacin domain and allinase domain;
Fig. 4). Loss events are indicated by a star and gain events by
a dot. The number of gain events exceeds the number of loss
events, indicating that in the Legionella genus gene acquisition
is dominant. Moreover, gene acquisition seems to be an on-
going and frequent process in the genus Legionella given the high
number of events we observed and the fact that most of them
are localized in the terminal branches of the tree (SI Appendix,
Fig. S8). To analyse if eukaryotic-like proteins have the same
evolutionary history, we took the sphingosine1-phosphate lyse
(LpSpl) (36, 37) as an example. Indeed, when running the same
analyses this gene also appeared to have been gained multiple
times during the evolution of the genus (Fig. 4).

Thus, in comparison to most prokaryotic species analysed to
date, more gene gain events are evident than loss events during
evolution of the Legionella genus, which is also corroborated by
the fact that the ancestral genomes were probably smaller (Fig.
1A, cluster I). Indeed, as seen in Fig. 1A, in each of the defined
phylogenetic clusters only few genomes have a larger size e.g. in
cluster II L. massiliensis is the only species with a big genome,
thus the most parsimonious explanation is that the ancestor of
this clade had a small genome and in the branch leading to L.
massiliensis gene gain occurred. This finding is similar to what
was described for the adaptation of louse-borne intracellular
pathogens and amoeba associated bacteria. It is well known
that the specialization of intracellular bacteria is associated with
genome reduction, and extreme genome reduction cane be seen
in louse‐borne human specialists. In contrast, nonspecialized
intra‐amoebal microorganisms exhibit a genome larger than their
relatives due to gene conservation and acquisition (38).

The Dot/Icm secretion system is a highly conserved machin-
ery secreting thousands of different proteins. The Dot/Icm T4SS
is indispensable for intracellular replication of L. pneumophila in
both amoeba and macrophages (39). In stark contrast to the high
genetic diversity observed in the Legionella genomes, the Dot/Icm
T4SS is part of the core genome as it is present in all species
analyzed and the organization of the constituent proteins is highly
conserved, even at the amino acid level. The proteins comprising
the secretion machinery show an average amino acid identity of
more than 50% and some even more than 90% when compared
to the L. pneumophila Dot/Icm components (SI Appendix Fig.
S9A and Table S6). The most conserved proteins are DotB, a
secretion ATPase (86-100% aa identity) and IcmS, a small acidic
cytoplasmic protein (74-98% aa identity). This high conservation
is even seen with one of the few non-Legionella species that
encode a Dot/Icm system, Coxiella burnetti.

The only gene of the Dot/Icm system that is not present in all
Legionella species is icmR. IcmR interacts with IcmQ as a chap-
erone preventing IcmQ self-dimerization (40). Although IcmQ is
highly conserved, the gene encoding IcmR is frequently replaced
by one or two non-homologous genes encoding for proteins that
are called FIR because they can functionally replace IcmR (41).
When overlapping the occurrence of the different FIR genes with
the phylogeny of the species, most phylogenetically closely related
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Fig. 5. The replicative capacity of the different Legionella species in THP-1 cells correlates with their epidemiological features. Replication of each strain at
the time point 72h after infection of THP-1 cells is shown (24h and 48h of infection are shown in SI Appendix,Fig. S14. Intracellular replication was determined
by recording the number of colony-forming units (CFU) after plating on BCYE agar. L. pneumophila Paris, representative of a replicating strain (blue box); L.
pneumophila ΔdotA, representative of non-replicating strain (red box). The strains are ordered according to the mean replication values. A) Legionella species
replicating like or significantly better than L. pneumophila Paris. B) Species with no or significantly lower replication capacities than L. pneumophila Paris.

species share homologous FIR genes (SI Appendix, Fig. S10).
Apart from two conserved regions (SI Appendix, Fig. S11), the
absence of sequence homology among FIR proteins indicates that
icmR is an extremely fast evolving gene and therefore probably
under positive selection. The reason why this gene is extremely
divergent is still unknown but could be also linked to the high
variety of Dot/Icm effectors described in this genus. Thus, except
for the FIR genes, the Dot/Icm T4SS is highly conserved and
encoded in a very dynamic genetic context.

It has been shown previously, that the more than 300 sub-
strates of the L. pneumophila Dot/Icm system are not uni-
versally present within the genus Legionella as among 38 Le-
gionella species only seven core effectors had been described
(14). Surprisingly, when adding the 40 additional genomes and
16 new Legionella species sequenced in this study, we identified
8 core effectors instead of seven. A comparison of the two
studies confirmed Lpg0103 (VipF), Lpg0107 (RavC), Lpg2300
(LegA3/AnkH/AnkW), and Lpg2815 (IroT/MavN) as core sub-
strates (14) (SI Appendix, Fig. S9B and Table S7). Three of the
previously defined core substrates (Lpg0140, Lpg2832, Lpg3000)
were present in two genomes as two consecutive genes instead
of one, however, this fragmentation might be a sequencing error,
and thus we considered these substrates also as core substrates
(SI Appendix Table S7). In our study we identified one additional
core effector gene, lpg1356/lpp1310. This protein has been re-
ported by Lifshitz and colleagues (42) as secreted protein, but
had not been included in the Burstein effector search, which
explains the different result (SI Appendix, Fig. S9B and Table S7).
Similarly, to most of the other core substrates, their functions are
not known, but Lpg1356 encodes eight eukaryotic Sel-1 motifs
similar to LpnE, a L. pneumophila virulence determinant that
influences vacuolar trafficking (43). Furthermore, seven other
genes are present in all but one, two or four genomes, thus they
might have important functions in host pathogen interactions (SI
Appendix Table S7). Interestingly, when the effector repertoire
of several strains of one species is compared the conservation of
the effectors is very high (between 82 and 97%) (SI Appendix
Table S8). However, if more strains than two are available for a
species as it is the case for L. pneumophila where 11 strains could
be compared, the conservation of the effector pool is only 65%
(264 of the 408 different effectors identified in the 11 strains) (SI
Appendix Table S8). Thus the L. pneumophila core effector set is
also smaller than previously thought. Taken together, the genus

Legionella has 8 core substrates present in all genomes and seven
additional ones that are present in nearly all genomes.

Interestingly, whereas the number of core Dot/Icm substrates
is extremely small, the number and the diversity of predicted
Dot/Icm substrates is extremely high. Indeed, through a machine
learning approach, Burstein et al predicted that the Legionella
genus would encode 5,885 effectors (14). Here we extended these
analyses and identified 4,767 proteins with eukaryotic motifs that
have a high probability to be secreted effectors as shown for the
Rab-like proteins. If we consider that the orthologous of these
proteins in each species are also effectors then the number raises
to 7103 (representing 1145 different orthologous proteins) (SI
Appendix Fig. S9C). Moreover, we identified 2,196 eukaryotic
like proteins representing 414 different orthologous genes, which
form together with the above-mentioned eukaryotic motif carry-
ing proteins 1,400 different putative orthologous substrates of the
Dot/Icm T4SS. Finally, when adding to the effectors predicted in
this study (based on their similarity to eukaryotic domains and
proteins), the effectors previously described in L. pneumophila
and their orthologues (more than 7000 proteins representing
about 300 different orthologous), as well as the effectors pre-
dicted by the machine learning approach and their orthologous
(more than 10 000 proteins representing about 900 different
orthologous) (14) the total number of different effectors rises
to almost 18,000 proteins (more than 1,600 orthologous groups)
(SI Appendix, Table S9 and Fig. S9C). Therefore, the Legionella
genus has by far the highest number and widest variety of effec-
tors described for an intracellular bacterium. Furthermore, when
calculating the growth accumulation curve for Dot/Icm predicted
effectors, this number should still increase with the sequencing
of new Legionella genomes, as the plateau is not reached yet (SI
Appendix, Fig. S9D).

The ability to infect human cells has been acquired inde-
pendently several times during the evolution of the genus Le-
gionella. Among the 65 Legionella species known, L. pneumophila
is responsible for over 90% of human disease, followed by L.
longbeachae (2-7% of cases, except Australia and New Zealand
with 30% (44)). Certain Legionella species such as L. micdadei,
L. dumoffii or L. bozemanii have once or sporadically been as-
sociated with human disease (44), and all other species seem to
be environmental bacteria only. The reasons for these differences
are not known. To explore whether all species are able to replicate
in human cells we chose the human macrophage like cell line
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THP-1 as model and tested the replication capacity of 47 different
Legionella species. Infections were carried out in duplicates or
triplicates and colony-forming units were recorded at 24h, 48h
and 72h post infection. Levels of intracellular replication were
compared to wild type L. pneumophila strain Paris and an isogenic
non-replicating ∆dotA mutant as reference strains (Fig. 5 and
SI Appendix, Fig. S12 and S13). Results were also compared to
data previously reported for different Legionella species in THP-
1, U937 and A549 cells, Mono Mac 6, mouse and guinea pig
derived macrophages, or in guinea pigs (SI Appendix, Table S10).
When results at 72 h after infection were analyzed, 28 of the 47
species tested were impaired for intracellular replication whereas
nine species replicated similarly to L. pneumophila Paris or better
(Fig. 5). These nine species were L. gormanii, L. jamestowniensis,
L. jordanis, L. like brunensis, L. maceachernii, L. micdadei, L.
nagasikiensis L. parisiensis, and L. tucsonensis. Interestingly, L.
jamestowniensis, for which one human case has been reported
(45), replicated better than L. pneumophila Paris. Indeed, L.
jamestowniensis productively infects human U937-derived phago-
cytes. The remaining eight species showed variable replication
patterns being significantly different from L. pneumophila Paris
only in one or two of the three analyzed time points (SI Appendix,
Fig. S12). Broadly, the species most frequently reported from
human disease (L. pneumophila, L. longbeachae, L. micdadei, L.
bozemanii and L. dumoffii) are also those that replicated robustly
in THP-1 cells. The only exception was the L. dumoffii strains
that were impaired for replication in THP-1 cells but which have
been shown to replicate in other cell types and guinea pigs.
Taken together, there is a convincing correlation between the
frequency of isolation from human disease and the ability to grow
in macrophage-like cells.

To analyze this further, we overlapped the replication results
with the phylogeny of the genus. Apart from the small cluster
containing L. beliardensis, L. gresilensis and L. busanensis, which
were all unable to grow in THP-1 cells, replicating and non-
replicating strains were mixed in the phylogeny (SI Appendix,
Fig. S14). This suggests that the capacity to replicate in human
cells has been acquired independently several times during evo-
lution of the Legionella genus, possibly as a result of recruiting
effectors that allow adaptation to particular niches. To understand
whether a specific set of effectors is necessary to infect human
cells, we further analyzed the combination of effectors present
in the strains isolated from human disease and effectors present
in strains capable of replicating in THP-1 cells. Surprisingly, no
specific set of effectors could be attributed to strains capable
of replicating in human cells or isolated from human disease,
although among these strains certain conserved motifs always
present were identified, such as ankyrin motifs, F-box or SET-
domains, suggesting that common pathways need to be subverted
to cause human infection. Thus, the capacity to infect human
cells has been acquired independently, several times during the
evolution of the genus Legionella.

In conclusion, the analysis of 80 Legionella strains represent-
ing 58 different Legionella species has revealed a contrasting pic-
ture of the Legionella genus. It encodes a highly conserved T4SS
predicted to secrete more than 18,000 proteins, of which only 8
are conserved throughout the genus. Together the genomes por-
tray an extremely diverse genus shaped by massive inter-domain
horizontal gene transfer, circulating mobile genetic elements and
eukaryotic like proteins. Our in-depth analyses of eukaryotic fea-
tures of the Legionella genomes identified 137 different eukary-
otic domains of which Rab or Ras domain-containing proteins
were quasi unique to the genus Legionella. The secretion assays

undertaken for 16 of these Rab or Ras domain-containing pro-
teins confirmed that these were translocated Dot/Icm effectors.
In addition to the eukaryotic domains, we identified 210 orthol-
ogous groups of eukaryotic like proteins. If all these proteins in
the different species and their orthologues are taken into account,
we found more than 8,000 proteins that have been shaped by
inter-domain horizontal gene transfer in the genus Legionella.
Thus, to our knowledge the genus Legionella contains the widest
variety and highest number of eukaryotic proteins and domains of
any prokaryotic genus genome analyzed to date. Analyzing more
strains per species will probably discover new unknown effectors
increasing our knowledge of the set of tools used by Legionella to
infect eukaryotic cells. Although eukaryotic proteins and domains
were a universal feature of the genus Legionella, the repertoire
of these proteins for each species was different. Surprisingly,
even when the same motif was present in different species, these
were often present in different proteins with no orthology. In
accordance with this finding, our evolutionary analysis of the
presence/absence of these domains and proteins suggested that
these proteins were mostly acquired through gene gain events.

When exploring the replication capacity of 47 different Le-
gionella species in human macrophage-like cell line THP-1, we
found that the 23 species were capable of replicating in THP-1
cells. However, these did not cluster in the phylogeny, indicating
that the capacity to replicate in macrophages can be achieved by
different combinations of effectors, and this capacity has been
acquired several times during the evolution of the Legionella
genus. As humans are an accidental host for Legionella, the
capacity to replicate in macrophages may also have been obtained
by a coincidental acquisition of different virulence properties
initially needed to adapt to a specific natural host, such as
amoebae. Indeed, due to the high conservation of key signaling
pathways in professional phagocytes such as amoebae and human
macrophages, different combinations of effectors may allow Le-
gionella species to infect higher eukaryotic cells by chance.

Here we show that all Legionella species have acquired eu-
karyotic proteins that likely modulate specific host functions to
allow intracellular survival and replication in eukaryotic host cells.
At a certain point, the evolution of a combination of effector pro-
teins that allow replication in human cells may inadvertently lead
to the emergence of new human pathogens from environmental
bacteria.

Material and Methods
The materials and methods are described at length in SI

Appendix. This includes: Sequencing and assembly, sequence pro-
cessing and annotation, pan/core genome, ortholog and singleton
definition, phylogenetic reconstruction and evolutionary analy-
sis, phylogenetic analyses of Rab and eukaryotic-like proteins,
infection assays, statistical analysis, and translocation assays. The
raw sequence reads were deposited in the European Nucleotide
Archive (study accession number PRJEB24896). The sequences
and annotations can be accessed through: https://github.com/bbi-
ip/Legionella genus proteins.git
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