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Chapter 1: Introduction 

Section 1.1: The function of non-coding DNA in the human genome 

Section 1.1.1. Functional roles of non-coding elements in the human genome 

The vast majority of DNA sequence in the human genome does not code for 

protein1. Non-coding DNA can serve many functional roles including transcriptional 

activation, repression, and three-dimensional genome organisation. Based on comparative 

evolutionary analyses, between 3% to 15% of the non-coding genome is predicted to be 

under purifying selection2-4, while protein-coding sequence comprises less than 2% of the 

genome1. Thus, the amount of functional non-coding sequence likely outnumbers functional 

coding sequence, yet the function of most non-coding sequence is poorly understood. 

The regulation of gene expression in time and space is an essential part of 

organismal development. The ‘core promoter’ includes a transcription start site (TSS), a 

binding site for RNA polymerase II, and binding sites for more general transcription factors5. 

The proximal promoter is less rigidly defined and includes regulatory sequence to the 5’ end 

of the transcribed strand which may harbour tissue-specific transcription factors (TFs). For 

many genes, particularly those with complex tissue-specific regulation, enhancers play an 

important role in regulating transcription6,7. Enhancers contain numerous transcription 

factor binding sites (TFBS), which can be identified by distinctive sequence patterns called 

motifs. These sequence patterns are often very flexible, maintaining binding efficiency 

despite changes to the underlying sequence. Furthermore, enhancers and TFBS show a high 

degree of evolutionary turnover8,9. Villar et. al identified putative regulatory regions in the 

liver of twenty different mammals and showed that nearly half of all enhancers show rapid 

lineage specific evolution9. While some principles of the enhancer ‘grammar’ have emerged, 

including cooperation and antagonism between different TFs10, the nucleotide-level logic in 

most enhancers are poorly understood. Enhancers can be proximal (tens of kilobases from 

the TSS) as well as distal (in some cases, more than one million bases from the TSS).  

While distal enhancers may be hundreds of kilobases from the genes they regulate in 

genomic space, they often colocalise in physical space. Topologically associated domains 

(TADs) are large genomic segments (median size 880kb) that interact more frequently than 
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expected under a model of random interactions11. The prevailing model by which looping is 

thought to occur is by loop extrusion by the cohesin complex, until the complex encounters 

a ‘boundary element’ containing the transcription factor CTCF12. TAD boundaries have been 

shown to be highly conserved across different cell types and tissues11. Interactions between 

regulatory elements and genes are far more likely occur within a TAD than between TADs, 

although there are examples of interactions between enhancers and promoters in different 

TADs13. While physical looping has been proposed as the primary mechanism for long-range 

enhancer-promoter interactions (Figure 1A), there is evidence that looping may not occur in 

all cases14. In particular, other mechanisms have been proposed including induced phase-

separation, chromatin decompaction, and subsequent diffusion of transcription factors 

(Figure 1B)14,15. Via looping or diffusion, general transcription factors and tissue specific 

transcription factors complex with RNA polymerase II to promote transcription16. While 

general principles of gene regulation are beginning to emerge, there is still no broad 

consensus around a unified model of gene regulation in all cases.  

 

 
Figure 1 Schematic of transcriptional activation via enhancer looping and diffusion facilitated by 

chromatin decompaction and phase separation (a) Looping brings enhancers into physical proximity 

of the gene promoter. (b) Phase transition and chromatin decompaction allows rapid 1D diffusion of 

transcription factors to the target promoter.  

 

 Many genes encoding transcription factors are only transcribed in a subset of cells, 

tissues, or developmental time-points. As a result, enhancers and promoters harbouring 

binding sites for these TFs can drive tissue-specific transcriptional patterns. For example, the 

GLI3 gene is expressed primarily in the developing brain and limb. Antagonistic interactions 

between GLI3 and Sonic Hedgehog (SHH) in the developing limb results in SHH expression in 

the Zone of Polarising activity, but nowhere else in the developing limb bud. Together, 

interactions between GLI3 and SHH impact the expression of more than 1,000 downstream 
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genes in the developing limb17. Detailed annotations of enhancer activity across mouse 

development suggest that the majority of enhancers are expressed during temporally-

restricted windows, which were associated with different stages of organogenesis18. 

Multiple enhancers can act in a particular tissue or time-point in a coordinated 

manner. For example, the Wap gene is upregulated more than 1,000 fold in the mouse 

mammary gland19 by the coordinated interaction of three different enhancers. A series of 

experiments deleting or perturbing individual enhancers and pairs of enhancers in the locus 

showed that all three were necessary to achieve the 1,000-fold upregulation. Clusters of 

coordinated enhancers, bound by the mediator complex, with non-additive contributions to 

gene expression have been termed super-enhancers20. However, the appropriateness and 

utility of this new category has been disputed, and it is not clear whether super-enhancers 

are simply collections of ‘normal’ enhancers with acting with varying degrees of strength or 

represent a novel functional category where constituent enhancers display synergistic 

properties21. 

Enhancers can also exhibit functional redundancy22. Osterwalder et. al created ten 

mouse lines with homozygous deletions of individual enhancers shown to regulate genes 

critical for normal limb development. Single deletions showed no discernible limb 

malformations. However, combinatorial deletion of multiple enhancers in a single locus did 

result in limb malformations. For example, deletion of mm1179 and hs1586, two enhancers 

shown to regulate GLI3 expression, results in a duplication of the first digit23. 

Section 1.1.2. Characterising non-coding elements in the human genome 

In light of the evidence for an important functional role for non-coding elements in 

the human genome, there have been a number of efforts to annotate non-coding function. 

These efforts have introduced novel methods to annotate non-coding function and 

collaborative efforts have been formed to apply new and established methods to a diverse 

range of organisms, tissues, and time points. 

The earliest large-scale annotations of putative functional non-coding DNA leveraged 

DNA sequence from different mammalian and vertebrate species to identify non-coding 

sequence with low levels of sequence divergence24. Early work on ultra-conserved non-
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coding elements (defined as having >97% sequence identity between human, mouse, and 

rat) showed that a large fraction of these elements were likely acting as enhancers24-27. 

These enhancers were enriched near genes previously known to be involved in 

development, suggesting that their evolutionary conservation was due to a highly conserved 

role in gene expression during development27. Beyond the most highly ultra-conserved 

elements, which comprised a very small fraction of the genome, multi-species alignments 

indicated that 3-15% of the genome was conserved2-4. As only 1-2% of genome encodes 

protein-coding, large-scale efforts are underway to annotate non-coding functional 

elements genome-wide. 

The Encyclopedia of DNA Elements (ENCODE) project launched in 2007 to 

systematically map functional elements across the human genome using a variety of 

different biochemical methods28,29. Nucleosome occupancy and epigenetic modification of 

the histone proteins comprising the core of the nucleosome have a profound impact on the 

accessibility of a segment of DNA. DNase-seq identifies regions of DNA that are sensitive to 

cleavage by DNase I30. These regions are often denoted as ‘open’ as they are fully or 

partially free of nucleosomes. More recently, ATAC-seq has emerged as the method of 

choice for identifying open chromatin due to its low requirement for input material 

compared to DNase-seq, and comparative speed and ease of use31. 

 In addition to nucleosome occupancy, epigenetic modifications to histone proteins 

can shed light on the underlying function of a piece of DNA. Promoter regions and 

transcription start sites are often marked by trimethylation of K4 (H3K4me3)32 and the 

bodies of transcribed genes by trimethylation of histone H3 at lysine 36 (H3K36me3)33. Like 

promoters, active enhancers can be identified by distinctive chromatin signatures, including 

open chromatin, monomethylation of histone H3 at lysine 4 (H3K4me1) and acetylation of 

histone H3 at lysine 27 (H3K27ac)34. H3K27ac by p300/CBP has been shown to destabilise 

nucleosomes, promoting accessibility by transcriptional machinery and TFs. In contrast, 

repressed or inactive chromatin is marked by trimethylation at histone H3 lysine 27 

(H3K27me3) or trimethylation at histone H3 lysine 9 (H3K9me3)35,36. These marks are 

assayed using a technique called chromatin immunoprecipitation followed by high 

throughput sequencing (ChIP-seq)37-39. In the ChIP-seq method, DNA is first cross-linked to 

preserve any DNA-protein interactions. An antibody to the protein of interest in then used 

to extract the short DNA fragments bound to the protein. These short fragments are 
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sequenced and mapped back to the reference genome, providing indication of where the 

protein was bound37-39. 

While there are many other potential histone modifications, six core marks 

(H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3) have been shown to 

sufficient to define a number of different ‘chromatin states’. Assaying these modifications 

has been the focus of large-scale efforts such as the ENCODE project29 and the Roadmap 

Epigenome Project40 to annotate non-coding function across different tissues and 

developmental time-points. A number of methods have been developed to integrate data 

from open chromatin assays and histone modifications to define the chromatin state. One 

of the most widely used methods, chromHMM, integrates aligned reads from each input 

feature and uses a hidden markov model to partition the genome into predicted chromatin 

states41. The simplest model has 15-states, which include active states such as strong and 

weak transcription, active/weak/poised promoters, and active/weak/poised enhancers as 

well as inactive or repressed states such as heterochromatin, or polycomb repression. 

 Beyond histone modifications, ChIP-seq can be used to identify DNA-binding events 

for any protein for which an antibody is available. To date, the ENCODE project has assayed 

more than 167 human transcription factors in 127 different tissue/cell types. These data 

sets have been used to identify canonical and non-canonical transcription factor binding 

motifs42. Due to the difficulties associated with testing thousands of transcription factors 

across hundreds of different spatial and temporal contexts, machine learning techniques 

have been developed to detect TF-binding motifs in the absence of direct measurement by 

ChIP-seq43. 

 Regulatory elements can also be identified using variation in gene expression or 

chromatin features resulting from natural genetic variation in a population. Associations 

between genetic variation and gene expression, termed expression quantitative trait loci44-

46 (eQTLs), were first established using Lymphoblastoid Cell Lines (LCLs) and have expanded 

substantially to include a wide range of cell types and tissues47-49. Analysis of the underlying 

genetic architecture of eQTLs suggests that a large fraction of associations fall within open 

chromatin peaks and directly impact transcription factor binding50. The majority of SNPs 

implicated in genome-wide association studies of common and complex disease risk fall 

outside coding regions, and there is a substantial overlap between these risk-associated loci 



 6 

and eQTLs in disease-relevant cell types, suggesting gene mis-regulation as a primary 

contribution to common and complex disease49.  

 As discussed in section 1.1, genomic elements that are far apart in sequence space 

may interact by forming loops in three-dimensional space. The spatial organisation of 

chromatin can be detected by a number of different methods. The most widely used 

techniques are innovations around the chromosome conformation capture (3C) technique51. 

The original 3C technique, which used PCR to check for interaction between known 

fragments, has been modified to produce genome-wide interaction maps (Hi-C52), and 

detailed interaction maps centred on promoters or other elements of interest (Capture-C53-

55). Hi-C has been used to define TADs in a number of different tissues and cell types11. 

However, Hi-C and Capture-C can also reveal more fine-grained regulatory interactions 

within TADs, including promoter-promoter and enhancer-promoter interactions. While Hi-C 

and Capture-C have proved valuable tools for linking enhancers to putative target genes, the 

sheer complexity of potential tissues, cell types, and time points to assay, combined with 

the incomplete sensitivity of the tools means that gene target prediction remains a 

challenge. 

 Other methods for interrogating three-dimensional organisation that are not based 

on ligation have recently emerged. Genome architecture mapping (GAM) assays three-

dimensional organisation by freezing the cells of interest, cryosectioning the frozen cells, 

and isolating nuclei using laser capture microdissection. The DNA in each of these thin slices 

is sequenced and the frequency of interaction is quantified based on the proportion of 

cellular slices in which two genomic segments are sequenced together13. This method has 

the advantage of improved detection of interactions between three different segments – in 

ligation based methods where only two interacting segments can be identified at a time, 

two separate pair-wise interactions cannot be easily disambiguated from a single three-way 

interaction. Furthermore, GAM requires a small amount of cellular material and makes use 

of laser microdissection, which enables this method to be used on rare cell types or directly 

on patient tissue13. 

 The applications of open chromatin assays, ChIP-seq, and 3C techniques in the 

ENCODE and Roadmap Epigenome Projects have produced fundamental insights into 

human biology, but have focused primarily on natural variation present in human tissues, 

cell lines, induced pluripotent stem cells (iPSCs) and iPSC-derived tissues29,40. Improvements 
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in oligo synthesis and genome-editing technologies have given rise to new high-throughput 

methods for generating programmed variation in the underlying DNA sequence. 

Reporter assays have been long been used to test putative promoters and enhancers 

for their ability to drive gene expression56. Reporter assays use a bacterial plasmid with a 

putative regulatory element upstream of a reporter gene, often GFP or luciferase. These 

plasmids can then be transfected into a cell type of interest and the output of the reporter 

gene quantified, either by measuring fluorescence intensity or by quantitative PCR. The 

original reporter assays, designed to test a small number of putative regulatory elements, 

have been adapted to allow testing of tens of thousands of elements at once. For example, 

massively parallel reporter assays (MPRAs) can quantify the regulatory activity of tens of 

thousands of enhancers in a single experiment57,58. MPRAs work by adding a DNA barcode 

to each putative regulatory element. The reporter gene is then inserted between the 

enhancer element and the barcode, resulting in the barcode being transcribed on the 3’ end 

of the reporter gene. These barcodes can be quantified with RNA-sequencing and regulatory 

elements driving stronger reporter gene expression will have a greater number of barcodes 

relative to the amount of input DNA. Different MPRA variations have emerged including 

STARR-seq, which places the regulatory element downstream of the reporter gene, allowing 

a direct readout of the element rather than a linked barcode.  

Saturation mutagenesis experiments using this technology have recovered known 

disease-associated variants, for example in the TERT promoter (unpublished work from 

Nadav Ahituv) and to test for causal variants in eQTL studies from a large number of SNPs in 

linkage disequilibrium59. Beyond testing variations in wild-type sequence, these assays can 

be used to understand the ‘grammar’ of non-coding elements at a more fundamental level, 

by building functional sequences from scratch, and systematically altering or destroying 

synthetic sequences10,57,60. These assays have a number of drawbacks – in particular, the 

enhancer or promoter is being tested outside of its native context, either in an episome or 

integrated into the genome by a lentivirus. Furthermore, not all tissues or cellular models 

are amenable to transfection. Greater detail on the rapid evolution of the experimental 

techniques and applications of MPRA to interrogate enhancer and promoter function is 

included in the Introduction to Chapter 4. 

 In order to test the impact of genetic changes in their native genetic context, several 

methods have been pioneered using programmed guide-RNAs and the genome-editing 
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enzyme Cas9. Gasperini et. al use pairs of programmed guide-RNAs to delete thousands of 

kilo-base sized genomic regions61. Their first application of the method was applied to a 

housekeeping gene, HPRT1, which has little distal regulatory sequence, but in principal this 

method has the potential to test the impacts on cellular fitness or gene expression from 

deletion of coding or non-coding sequence.  

Cas9 cutting can be paired with a repair template, allowing more precise edits such 

as single base pair changes via homology directed repair (HDR). However, the double-strand 

break (DSB) induced by the CRISPR enzyme most often resolves by non-homologous end-

joining (NHEJ) usually resulting in small deletions at the cut site. Recent work by Findlay et. 

al has shown that performing the edits in a cell-line with LIG4, an important gene in the 

NHEJ pathway, knocked out results in lowered efficiency in NHEJ and a greater proportion of 

DSBs proceeding via HDR. Findlay et. al created more than 96.5% of all possible SNVs in two 

exons of the BRCA1 gene, paving the way for CRISPR-based alternatives to the massively 

parallel reporter assays discussed above62. 

Cellular models may not reveal the full spatial and temporal complexity of enhancer 

activity on an organismal level. Mouse transgenesis assays use a GFP reporter construct 

driven by the putative enhancer of interest to test for tissue-specific enhancer activity. To 

date, more than 2,800 putative enhancers have been tested and results made available 

through the VISTA browser63, with more than 1,500 testing consistently positive in at least 

one tissue. Beyond transgenesis assays, mouse knockouts can reveal the function of 

evolutionarily conserved enhancers in vivo. ARX is an essential neuronal transcription factor 

in the human and mouse brain with at least two enhancers (hs119 and hs121) that control 

expression in the ventral forebrain. These enhancers are ultraconserved, exhibiting >97% 

identity between human and mouse.24 Homozygous deletion of either hs119 or hs121 show 

subtle phenotypic changes including subtle changes in body weight and density of 

cholinergic neurons. However, deletion of both ultraconserved enhancers shows a dramatic 

reduction in both body weight and cholinergic neurons64. 

Taken together, these technologies provide a detailed overview of the functional 

non-coding sequence across the genome for hundreds of different cellular contexts and 

time-points. An overview of each of these techniques is described in Table 1 which includes 

the type of elements/interactions tested, the approximate throughput (number of genomic 

elements tested in a typical experiment).  Projects such as ENCODE29, The Roadmap 
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Epigenome Project40, and FANTOM65 have focused on building an atlas of reference 

epigenomes and functional non-coding elements in primarily healthy tissues and cellular 

contexts. As the role of non-coding elements in common and Mendelian disease becomes 

increasingly apparent, these technologies can be applied to understand the mechanism of 

gene mis-regulation in these diseases. 
 

Name of technique Element/interaction assayed 
Number of elements tested in a 

typical experiment 
DNase-seq Open chromatin Genome-wide 
ATAC-seq Open chromatin Genome-wide 

ChIP-seq 

Protein-occupancy (commonly 
histone marks, or transcription 

factors) Genome-wide 

Hi-C/Capture-C 
Three-dimensional interaction 

between DNA elements Genome-wide 

Reporter Assays 
Ability of putative regulatory 

element to drive gene expression 100s of loci 

Mouse Transgenesis Assays 

Ability of putative regulatory 
element to drive gene 

expression, with tissue specificity. 10s of loci 

Massively Parallel Reporter 
Assays (MPRAs) 

Activity of putative 
enhancer/promoter to drive gene 

expression >10,000 loci 

CRISPR-inactivation 
Assessing the impact repressing a 

genomic element >10,000 loci 

CRISPR-editing 

Assessing the impact of 
deletion/alteration of a genomic 

element. >10,000 loci 
 

Table 1 Overview of established and emerging techniques in non-coding genome annotation. 

 

Section 1.2: The role of non-coding variation in Mendelian disease 

Section 1.2.1. The contribution of protein-coding variation to Mendelian disease 

 

The overwhelming majority of established genetic causes of Mendelian disease are 

caused by protein-altering single-nucleotide variation, small insertions/deletions (indels), or 

larger copy number variations (CNVs). Clinical microarrays and gene panels have been used 

extensively to test for diagnostic protein-altering variation in Mendelian disease, particularly 

in developmental disorders. As the cost of genome-sequencing has continued to decline, 
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whole exome sequencing, which allows for targeted sequencing of protein-coding regions, 

has proven to deliver a higher diagnostic yield66,67. Across a broad category of Mendelian 

disorders, diagnostic yield is approximately 25-30%, but the actual diagnostic yield differs 

substantially between different disease groups68. For example, RASopathies, a collection of 

disorders resulting from mutations in the RAS-MAP kinase pathway, have diagnostic rates of 

over 60% whereas developmental disorders, which suffer from the issue of phenotypic 

similarity across a wide range of potential causal genes, have a diagnostic yield of 25-30%68-

70. 

Study design can also influence diagnostic yield. For example, sequencing of parent-

offspring trios has been shown to greatly improve the diagnostic yield compared to 

sequencing the proband-only71,72. In the past few years, hundreds of novel Mendelian 

disease genes have been identified using exome sequencing, improving the diagnostic yield 

even further73. In the case of severe developmental disorders, Wright et. al estimate that 

implementing parent–offspring whole-exome sequencing as a first-line diagnostic test 

would diagnose approximately 50% of patients74. 

McRae et. al estimated that 42% of undiagnosed severe developmental disorder 

cases harboured damaging de novo mutations in protein-coding genes70. Of this estimated 

42%, ~25% could be robustly linked to a known or novel developmental disorder gene while 

the remaining ~17% were found in genes not yet robustly linked to developmental 

disorders. Beyond the contribution from de novo mutations in genes with a monoallelic 

disease mechanism, Martin et. al estimated the contribution of protein-altering variation in 

biallelic genes to be only 4% in British-European cases, and up to 20% in British-Pakistani75. 
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Figure 2 Diagnoses in the DDD project broken down by variant class. De novo mutations in protein-coding 

genes make up the largest fraction of diagnoses (25%), and analyses suggest that a substantial fraction of 

the missing diagnoses (~17%) will come from genes not yet robustly associated to DD. As of this writing, 

~45% of the DDD cases likely lack a highly penetrant protein-coding variant contributing to their disorder. 

 

Beyond developmental disorders, other severe Mendelian diseases have a high rate 

of unsolved cases, despite large-scale exome sequencing projects. In pulmonary arterial 

hypertension (PAH) heterozygous mutations in the coding sequence BMPR2 are found in an 

estimated 80% of familial cases and 20% of sporadic cases76. However, sporadic cases 

greatly outnumber familial cases; in a study of 1,048 individuals affected with PAH, 5.5% 

reported a family history77. Mutations in BMPR2 and other recently reported novel genes 

were found in just 23.5% of cases77. Thus, a substantial fraction of individuals remain 

without a cause in the protein-coding regions, even in large and well-powered studies of 

Mendelian Diseases (Figure 2). These results have motivated the search for causal variation 

outside of protein-coding genes. 

Section 1.2.2. Regulatory variation in Mendelian phenotypes 

 

 The importance of the non-coding genome in complex disease is well established - 

the vast majority of disease-associated single nucleotide polymorphisms (SNPs) lie in 

intergenic or intronic regions78,79. Fine-mapping studies have shown that in most cases 
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associations with a non-coding SNP cannot simply be accounted for by linkage with a coding 

variant on the same haplotype. Analysis of forty coding SNPs associated with Type-II 

Diabetes showed that a large fraction of associations (13/40) are actually ‘false leads’ that 

are likely driven by a nearby non-coding SNP80. In Mendelian disorders, the role of 

enhancers or other non-coding elements is less clear. There have been a number of 

regulatory elements linked to Mendelian disorders through targeted re-sequencing and 

pedigree analyses. Lettice et. al identified a set of single nucleotide variants in evolutionarily 

conserved sites in a regulatory element located 1Mb from the target gene, Shh, responsible 

for polydactyl81. Inherited single nucleotide variants as well as whole-element deletions in 

SOX10 enhancers have also been shown to reduce SOX10 expression, contributing to 

isolated Hirschprung disease82. Weedon et. al describe a set of six different recessive 

variants in an enhancer located 25kb from PFT1A that disrupt transcription factor binding 

sites for FOXA2 and PDX1, abolishing enhancer activity and causing pancreatic agenesis83. A 

single nucleotide variant in an ultraconserved element regulating the expression of PAX6, a 

critical gene in eye development, has also been shown to cause Aniridia. Other examples of 

point mutations and small insertions/deletion in non-coding elements that have been 

causally linked to human disease are described in a review by Mathelier et. al84. 

 In addition to point-mutations and small insertions/deletions, larger-scale copy-

number variations and rearrangements of regulatory sequence have been shown to cause 

Mendelian disorders. Loss of function can be caused by deletion of an enhancer, as in the 

SOX10 case described above resulting in isolated Hirschsprung disease82, as well as in Pierre-

Robin syndrome85,86 , a condition marked by malformations of the cranial skeleton. Genomic 

rearrangements or disruptions of topologically associated domains (for example, by deletion 

of a CTCF binding site) can cause enhancers to regulate a gene they do not normally 

regulate. This phenomenon is termed ‘enhancer adoption’ and has been implicated in 

brachydactyl type A287 (a shortening of the digits) as well as sex-reversal due to a gonad-

specific gain of function of SOX988. A number of studies in which copy number variation and 

rearrangements of non-coding cis-regulatory elements contribute to Mendelian disorders 

by disrupting or altering gene regulation are reviewed by Malte Spielmann and Stefan 

Mundlos89.  

Nearly all of these well-established examples of regulatory causes of Mendelian 

disease share the common characteristic of being non-syndromic. In each of the cases, a 
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single organ or organ system is affected, reflecting the tissue-specificity of the enhancer 

element whose function is being perturbed. It is unclear whether this is a common 

characteristic of Mendelian disease caused by variants in regulatory regions, or a by-product 

of ascertainment based on recognisable phenotypes. Furthermore, unlike loss-of-function 

mutations in protein-coding genes that may only impact the amount of functional protein 

produced, mutations in regulatory elements have the potential to cause more complex mis-

regulation. Thus, the impact of variation in regulatory elements may not be directly 

comparable to changes in the protein-coding sequence. 

 

Section 1.2.3 The role of regulatory variation in cancer and neurodevelopmental disorders 

 

There have been reports of recurrent somatic mutations in regulatory regions in 

several cancer types using whole genome sequence data from The Cancer Genome Atlas 

(TCGA)90,91. These studies included nearly 500 whole genome sequences of tumours and 

matched normal tissue and primarily identified mutations in promoter sequences as well as 

3’ UTRs and 5’ UTRs. The strongest signal, in the TERT promoter, comprises mutations that 

show substantial overexpression of a luciferase reporter as well as RNA levels of the TERT 

transcripts in the cancerous tissue90,91. Further work using a combination of whole genome 

sequencing and chromatin immunoprecipitation sequencing (ChIP-exo) highlighted 

disruption of CTCF and cohesin binding sites in colorectal cancer which contribute to 

genomic stability and establishment/maintenance of TAD boundaries92. 

Expanding these analyses to nearly 1,000 tumour whole genomes with matching 

transcriptomes, Zhang et. al recapitulated the variants resulting in overexpression in the 

TERT promoter and discover novel regulatory elements regulating the expression of 

DAAM1, MTG2, and HYI93. Their approach leverages the matched transcriptomes to identify 

‘somatic eQTLs’ linking regulatory elements to putative target genes. This is a promising 

new approach for disorders where RNA transcript levels can be measured in the relevant 

tissue, or where accurate cellular models can be derived, for example, by reprogramming 

induced pluripotent stem cells (iPSCs). 

There is substantial evidence for protein-coding DNMs contributing to autism 

spectrum disorder (ASD), albeit at a lower contribution than in severe developmental 
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disorders94. Thus, there has been a similar motivation to assess the contribution of DNMs in 

the non-coding genome to ASD. For example, Turner et. al reported a nominally significant 

enrichment for de novo mutations in autism cases compared to unaffected siblings in 3’ 

UTRs, promoters, and conserved transcription factor binding sites95 using data from whole 

genome sequenced trios. However, independent analysis of the same cohort from Werling 

et. al find no significant enrichment and show that without appropriate correction for 

multiple statistical tests, plausible associations can be observed in both cases and controls96.  

Thus, the contribution of variation in the non-coding genome to developmental 

disorders and other rare disorders is not clear. The Deciphering Developmental Disorders 

study has nearly an order of magnitude more cases than the ASD studies discussed above, 

and included approximately 4 megabases of regulatory sequence in the exome capture. This 

study design may afford greater power to test for DNM burden, albeit in a more limited set 

of non-coding annotations. This study will be covered in detail in Chapter 2. The dramatic 

increase in the number of whole genome sequenced individuals affords an opportunity to 

identify non-coding elements under purifying selection across the genome in a disease-

agnostic manner. Analyses based on more than 25,000 deep whole genomes using 

population genetics methods to identify selectively constrained non-coding elements will be 

covered in detail in Chapter 3. Finally, methods for assaying the function of non-coding 

elements and the impact of genetic variation in these elements can be used to delineate 

benign from damaging variation in these non-coding elements and to understand their 

function. Chapter 4 includes results from a series of MPRA experiments and mouse 

transgenesis assays including non-coding mutations identified in developmental disorder 

cases. 

 
1 International Human Genome Sequencing, C. Finishing the euchromatic sequence of 

the human genome. Nature 431, 931-945, doi:10.1038/nature03001 (2004). 
2 Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 

29 mammals. Nature 478, 476-482, doi:10.1038/nature10530 (2011). 
3 Ponting, C. P. & Hardison, R. C. What fraction of the human genome is functional? 

Genome Res 21, 1769-1776, doi:10.1101/gr.116814.110 (2011). 
4 Lunter, G., Ponting, C. P. & Hein, J. Genome-wide identification of human functional 

DNA using a neutral indel model. PLoS Comput Biol 2, e5, 
doi:10.1371/journal.pcbi.0020005 (2006). 

5 Smale, S. T. & Kadonaga, J. T. The RNA Polymerase II Core Promoter. Annual Review 
of Biochemistry 72, 449-479, doi:10.1146/annurev.biochem.72.121801.161520 
(2003). 



 15 

6 Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to 
genome-wide predictions. Nat Rev Genet 15, 272-286, doi:10.1038/nrg3682 (2014). 

7 Banerji, R., Schaffner. Expression of a Beta-Globin Gene is Enhanced by REmote SV40 
DNA Sequences. Cell (1981). 

8 Meader, S., Ponting, C. P. & Lunter, G. Massive turnover of functional sequence in 
human and other mammalian genomes. Genome Res 20, 1335-1343, 
doi:10.1101/gr.108795.110 (2010). 

9 Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554-566, 
doi:10.1016/j.cell.2015.01.006 (2015). 

10 Smith, R. P. et al. Massively parallel decoding of mammalian regulatory sequences 
supports a flexible organizational model. Nature Genetics 45, 1021-1028, 
doi:10.1038/ng.2713 (2013). 

11 Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis 
of chromatin interactions. Nature 485, 376-380, doi:10.1038/nature11082 (2012). 

12 Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 
102-105, doi:10.1126/science.aar7831 (2018). 

13 Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome 
architecture mapping. Nature 543, 519-524, doi:10.1038/nature21411 (2017). 

14 Benabdallah, N. S. & Bickmore, W. A. Regulatory Domains and Their Mechanisms. 
Cold Spring Harb Symp Quant Biol 80, 45-51, doi:10.1101/sqb.2015.80.027268 
(2015). 

15 Benabdallah, N. S. et al. PARP mediated chromatin unfolding is coupled to long-
range enhancer activation. bioRxiv, doi:10.1101/155325 (2017). 

16 Hardison, R. C. & Taylor, J. Genomic approaches towards finding cis-regulatory 
modules in animals. Nat Rev Genet 13, 469-483, doi:10.1038/nrg3242 (2012). 

17 Tickle, C. & Towers, M. Sonic Hedgehog Signaling in Limb Development. Front Cell 
Dev Biol 5, 14, doi:10.3389/fcell.2017.00014 (2017). 

18 Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage 
during mammalian development. Cell 155, 1521-1531, 
doi:10.1016/j.cell.2013.11.033 (2013). 

19 Shin, H. Y. et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. 
Nature Genetics, 1-10, doi:10.1038/ng.3606 (2016). 

20 Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 
934-947, doi:10.1016/j.cell.2013.09.053 (2013). 

21 Hay, D. et al. Genetic dissection of the alpha-globin super-enhancer in vivo. Nature 
Genetics 48, 895-903, doi:10.1038/ng.3605 (2016). 

22 Frankel, N. et al. Phenotypic robustness conferred by apparently redundant 
transcriptional enhancers. Nature 466, 490-493, doi:10.1038/nature09158 (2010). 

23 Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in 
mammalian development. Nature 554, 239-243, doi:10.1038/nature25461 (2018). 

24 Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 
1321-1325, doi:10.1126/science.1098119 (2004). 

25 Kleinjan, D. A. & Van Heyningen, V. Long-Range Control of Gene Expression: 
Emerging Mechanisms and Disruption in Disease. Am. J. Hum. Genet 76, 8-32, 
doi:10.1086/426833 (2005). 

26 Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and 
yeast genomes. Genome Research 15, 1034-1050, doi:10.1101/gr.3715005 (2005). 



 16 

27 Sandelin, A. et al. Arrays of ultraconserved non-coding regions span the loci of key 
developmental genes in vertebrate genomes. BMC Genomics 5, 99, 
doi:10.1186/1471-2164-5-99 (2004). 

28 Birney, E. et al. Identification and analysis of functional elements in 1% of the human 
genome by the ENCODE pilot project. Nature 447, 799-816, 
doi:10.1038/nature05874 (2007). 

29 Consortium, E. P. An integrated encyclopedia of DNA elements in the human 
genome. Nature 489, 57-74, doi:10.1038/nature11247 (2012). 

30 Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using 
massively parallel signature sequencing (MPSS). Genome Res 16, 123-131, 
doi:10.1101/gr.4074106 (2006). 

31 Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. 
Transposition of native chromatin for fast and sensitive epigenomic profiling of open 
chromatin, DNA-binding proteins and nucleosome position. Nature Methods 10, 
1213-1218, doi:10.1038/nmeth.2688 (2013). 

32 Liu, C. L. et al. Single-nucleosome mapping of histone modifications in S-cerevisiae. 
Plos Biol 3, 1753-1769, doi:10.1371/journal.pbio.0030328 (2005). 

33 Bannister, A. J. et al. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 
at active genes. J Biol Chem 280, 17732-17736, doi:10.1074/jbc.M500796200 (2005). 

34 Creygthon, C., Welstead, Kooistra, Carey, Steine, Hanna, Lodato, Frampton, Sharp, 
Boyer, Young, Jaenisch. Histone H3K27ac separates active from poised enhancers 
and predicts developmental state. PNAS (2010). 

35 Young, M. D. et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that 
correlate with transcriptional activity. Nucleic Acids Res 39, 7415-7427, 
doi:10.1093/nar/gkr416 (2011). 

36 Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome 
regulation by polycomb and trithorax proteins. Cell 128, 735-745, 
doi:10.1016/j.cell.2007.02.009 (2007). 

37 Barski, A. et al. High-resolution profiling of histone methylations in the human 
genome. Cell 129, 823-837, doi:10.1016/j.cell.2007.05.009 (2007). 

38 Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in 
vivo protein-DNA interactions. Science 316, 1497-1502, 
doi:10.1126/science.1141319 (2007). 

39 Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE 
consortia. Genome Research 22, 1813-1831, doi:10.1101/gr.136184.111 (2012). 

40 Consortium, R. E. et al. Integrative analysis of 111 reference human epigenomes. 
Nature 518, 317-330, doi:10.1038/nature14248 (2015). 

41 Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for 
systematic annotation of the human genome. Nature Biotechnology 28, 817-825, 
doi:10.1038/nbt.1662 (2010). 

42 Kheradpour, P. & Kellis, M. Systematic discovery and characterization of regulatory 
motifs in ENCODE TF binding experiments. Nucleic Acids Res 42, 2976-2987, 
doi:10.1093/nar/gkt1249 (2014). 

43 Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep 
learning-based sequence model. Nature Methods 12, doi:10.1038/nmeth.3547 
(2015). 



 17 

44 Dixon, A. L. et al. A genome-wide association study of global gene expression. Nat 
Genet 39, 1202-1207, doi:10.1038/ng2109 (2007). 

45 Stranger, B. E. et al. Population genomics of human gene expression. Nat Genet 39, 
1217-1224, doi:10.1038/ng2142 (2007). 

46 Morley, M. et al. Genetic analysis of genome-wide variation in human gene 
expression. Nature 430, 743-747, doi:10.1038/nature02797 (2004). 

47 Consortium, G. T. et al. Genetic effects on gene expression across human tissues. 
Nature 550, 204-213, doi:10.1038/nature24277 (2017). 

48 Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 
580-585, doi:10.1038/ng.2653 (2013). 

49 Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues 
in twins. Nat Genet 44, 1084-1089, doi:10.1038/ng.2394 (2012). 

50 Gaffney, D. J. et al. Dissecting the regulatory architecture of gene expression QTLs. 
Genome Biol 13, R7, doi:10.1186/gb-2012-13-1-r7 (2012). 

51 Dekker, R., Dekker, Kleckner. Capturing Chromosome Conformation. Science (2002). 
52 Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions 

reveals folding principles of the human genome. Science 326, 289-293, 
doi:10.1126/science.1181369 (2009). 

53 Jager, R. et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer 
risk loci. Nat Commun 6, 6178, doi:10.1038/ncomms7178 (2015). 

54 Davies, J. O. et al. Multiplexed analysis of chromosome conformation at vastly 
improved sensitivity. Nat Methods 13, 74-80, doi:10.1038/nmeth.3664 (2016). 

55 Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high 
resolution in a single, high-throughput experiment. Nat Genet 46, 205-212, 
doi:10.1038/ng.2871 (2014). 

56 Dewet, J. R., Wood, K. V., Deluca, M., Helinski, D. R. & Subramani, S. Firefly 
Luciferase Gene - Structure and Expression in Mammalian-Cells. Mol Cell Biol 7, 725-
737, doi:Doi 10.1128/Mcb.7.2.725 (1987). 

57 Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in 
human cells using a massively parallel reporter assay. Nature Biotechnology 30, 271-
277, doi:10.1038/nbt.2137 (2012). 

58 Patwardhan, R. P. et al. High-resolution analysis of DNA regulatory elements by 
synthetic saturation mutagenesis. Nature Biotechnology 27, 1173-1175, 
doi:10.1038/nbt.1589 (2009). 

59 Tewhey, R. et al. Direct Identification of Hundreds of Expression- Modulating 
Variants using a Multiplexed Reporter Resource Direct Identification of Hundreds of 
Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell 165, 1519-
1529, doi:10.1016/j.cell.2016.04.027 (2016). 

60 Kheradpour, P. et al. Systematic dissection of regulatory motifs in 2000 predicted 
human enhancers using a massively parallel reporter assay. Genome Research, 800-
811, doi:10.1101/gr.144899.112 (2013). 

61 Gasperini, M. et al. CRISPR/Cas9-Mediated Scanning for Regulatory Elements 
Required for HPRT1 Expression via Thousands of Large, Programmed Genomic 
Deletions. Am J Hum Genet 101, 192-205, doi:10.1016/j.ajhg.2017.06.010 (2017). 

62 Findlay, G. M. et al. Accurate functional classification of thousands of BRCA1 
variants with saturation genome editing. bioRxiv, doi:10.1101/294520 (2018). 



 18 

63 Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser - A 
database of tissue-specific human enhancers. Nucleic Acids Research 35, 88-92, 
doi:10.1093/nar/gkl822 (2007). 

64 Dickel, D. E. et al. Ultraconserved Enhancers Are Required for Normal Development. 
Cell 172, 491, doi:10.1016/j.cell.2017.12.017 (2018). 

65 Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. 
Nature 507, doi:10.1038/nature12787 (2014). 

66 Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human 
exomes. Nature 461, 272-U153, doi:10.1038/nature08250 (2009). 

67 Yang, Y. et al. Clinical whole-exome sequencing for the diagnosis of mendelian 
disorders. N Engl J Med 369, 1502-1511, doi:10.1056/NEJMoa1306555 (2013). 

68 Rehm, H. L. Evolving health care through personal genomics. Nat Rev Genet 18, 259-
267, doi:10.1038/nrg.2016.162 (2017). 

69 Cizmarova, M. et al. New Mutations Associated with Rasopathies in a Central 
European Population and Genotype-Phenotype Correlations. Ann Hum Genet 80, 50-
62, doi:10.1111/ahg.12140 (2016). 

70 Mcrae, J. F. et al. Prevalence and architecture of de novo mutations in 
developmental disorders. Nature 542, 433-438, doi:10.1038/nature21062 (2017). 

71 Retterer, K. et al. Clinical application of whole-exome sequencing across clinical 
indications. Genet Med 18, 696-704, doi:10.1038/gim.2015.148 (2016). 

72 Lee, H. et al. Clinical Exome Sequencing for Genetic Identification of Rare Mendelian 
Disorders. Journal of the American Medical Association 312, 1880-1887, 
doi:10.1001/jama.2014.14604 (2014). 

73 Chong, Jessica X. et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, 
Challenges, and Opportunities. The American Journal of Human Genetics 97, 199-
215, doi:10.1016/j.ajhg.2015.06.009 (2015). 

74 Wright, C. F. et al. Making new genetic diagnoses with old data: iterative reanalysis 
and reporting from genome-wide data in 1,133 families with developmental 
disorders. Genet Med, doi:10.1038/gim.2017.246 (2018). 

75 Martin, H. C. et al. Quantifying the contribution of recessive coding variation to 
developmental disorders. bioRxiv, doi:10.1101/201533 (2017). 

76 Lane, K. B. et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta 
receptor, cause familial primary pulmonary hypertension. Nature Genetics 26, 81-84 
(2000). 

77 Graf, S. et al. Identification of rare sequence variation underlying heritable 
pulmonary arterial hypertension. Nature Communications 9, doi:ARTN 1416 
10.1038/s41467-018-03672-4 (2018). 

78 Hindorff, L. a. et al. Potential etiologic and functional implications of genome-wide 
association loci for human diseases and traits. Proceedings of the National Academy 
of Sciences of the United States of America 106, 9362-9367, 
doi:10.1073/pnas.0903103106 (2009). 

79 Maurano, M. T. et al. Systematic Localization of Common Disease-Associated 
Variation in Regulatory DNA. Science 337, 1190-1195, doi:10.1126/science.1222794 
(2012). 

80 Mahajan, A. et al. Refining the accuracy of validated target identification through 
coding variant fine-mapping in type 2 diabetes. Nat Genet 50, 559-571, 
doi:10.1038/s41588-018-0084-1 (2018). 



 19 

81 Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the developing 
limb and fin and is associated with preaxial polydactyly. Human Molecular Genetics 
12, 1725-1735, doi:10.1093/hmg/ddg180 (2003). 

82 Lecerf, L. et al. An impairment of long distance SOX10 regulatory elements underlies 
isolated Hirschsprung disease. Hum Mutat 35, 303-307, doi:10.1002/humu.22499 
(2014). 

83 Weedon, M. N. et al. Recessive mutations in a distal PTF1A enhancer cause isolated 
pancreatic agenesis. Nature Genetics 46, 61-64, doi:10.1038/ng.2826 (2014). 

84 Mathelier, A., Shi, W. & Wasserman, W. W. Identification of altered cis-regulatory 
elements in human disease. Trends in Genetics 31, 67-76, 
doi:10.1016/j.tig.2014.12.003 (2015). 

85 Gordon, C. T. et al. Long-range regulation at the SOX9 locus in development and 
disease. J Med Genet 46, 649-656, doi:10.1136/jmg.2009.068361 (2009). 

86 Gordon, C. T. et al. Identification of Novel Craniofacial Regulatory Domains Located 
far Upstream of SOX9 and Disrupted in Pierre Robin Sequence. Hum Mutat 35, 1011-
1020, doi:10.1002/humu.22606 (2014). 

87 Dathe, K. et al. Duplications Involving a Conserved Regulatory Element Downstream 
of BMP2 Are Associated with Brachydactyly Type A2. Am J Hum Genet 84, 483-492, 
doi:10.1016/j.ajhg.2009.03.001 (2009). 

88 Amiel, J., Benko, S., Gordon, C. T. & Lyonnet, S. Disruption of long-distance highly 
conserved noncoding elements in neurocristopathies. Ann N Y Acad Sci 1214, 34-46, 
doi:10.1111/j.1749-6632.2010.05878.x (2010). 

89 Spielmann, M. & Mundlos, S. Looking beyond the genes: the role of non-coding 
variants in human disease. Human Molecular Genetics 25, 157-165, 
doi:10.1093/hmg/ddw205 (2016). 

90 Melton, C., Reuter, J. a., Spacek, D. V. & Snyder, M. Recurrent somatic mutations in 
regulatory regions of human cancer genomes. Nature Genetics, doi:10.1038/ng.3332 
(2015). 

91 Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis 
of noncoding regulatory mutations in cancer. Nature Genetics 46, 1160-1165, 
doi:10.1038/ng.3101 (2014). 

92 Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in cancer. 
Nature Genetics, 818-821, doi:10.1038/ng.3335 (2015). 

93 Zhang, W. et al. A global transcriptional network connecting noncoding mutations to 
changes in tumor gene expression. Nature Genetics 50, 613-+, doi:10.1038/s41588-
018-0091-2 (2018). 

94 Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum 
disorder. Nature 13, 216-221, doi:10.15154/1149697 (2014). 

95 Turner, Tychele N. et al. Genome Sequencing of Autism-Affected Families Reveals 
Disruption of Putative Noncoding Regulatory DNA. The American Journal of Human 
Genetics 98, 58-74, doi:10.1016/j.ajhg.2015.11.023 (2016). 

96 Werling, D. M. et al. An analytical framework for whole-genome sequence 
association studies and its implications for autism spectrum disorder. Nature 
Genetics 50, doi:10.1038/s41588-018-0107-y (2018). 
 

 
 



	 21	

Chapter 2: De novo mutations in regulatory elements contribute to severe 
neurodevelopmental disorders 

 

Introduction 
 
The Deciphering Developmental Disorders Study 
 

The Deciphering Developmental Disorders (DDD) study is a collaboration 

between the National Health Services (NHS) Regional Genetics Centres in the United 

Kingdom and Ireland and the Wellcome Trust Sanger Institute which has enrolled 

nearly 14,000 patients with severe developmental disorders (DD)1. Patients enrolled 

in the DDD study do not have a molecular diagnosis for their disorder after testing by 

clinical microarray, single-gene tests, or gene panels by a senior clinical geneticist in 

the NHS. The sheer number of genes implicated in DD (2,045 as of this writing 

https://decipher.sanger.ac.uk/ddd#ddgenes), and the often-overlapping phenotypes 

from different genes (for example, intellectual disability or developmental delay) 

have made diagnosing this class of rare disorders very challenging. The rate of 

molecular diagnosis for these disorders has been estimated to be between 20% and 

60% dependent on a number of factors, including the specificity of the clinical 

presentation and the technology used to detect mutations, underscoring the need 

for greater understanding in the underlying genetic architecture and improvements 

in diagnosis2. 

Successful molecular diagnosis may provide opportunities for treatment. A 

number of metabolic disorders, provided they are correctly diagnosed, are amenable 

to treatment by vitamin or mineral supplementation. In Duchenne Muscular 

Dystrophy, exon-skipping therapies have been used in clinical trials to restore the 

open-reading frame of the DMD gene. Approaches such as these may be amenable 

to other developmental disorders, and successful diagnosis is a critical first step to 

understanding the mechanisms underlying these disorders, and conducting clinical 

trials. Furthermore, knowing the likely genetic cause of the disorder is essential for 

counselling families considering having more children. For example, the recurrence 

risk for a family whose child carries a de novo mutation (DNM) in a dominant 
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developmental disorder gene is far lower than for a family where the child has 

inherited a rare and damaging genetic variant from each parent in a recessive 

developmental disorder gene. 

The DDD study has performed exome sequencing on approximately 14,000 

affected individuals. Nearly 10,000 of the affected individuals were recruited as full 

trios (mother, father, and child). The trio study design allows for detection of both 

rare recessive variants and de novo mutations, which are more challenging to detect 

from singleton affected patients. A subset of patients were also tested using array 

CGH, which allows for detection of large copy number variations (CNVs). The 

affected individuals and parents enrolled in the study have undergone systematic 

phenotyping using the Human Phenotype Ontology3 as well as growth parameters 

including height, weight, and head circumference, and developmental milestones.  

Large copy-number variations, rare genetic variants, and de novo mutations 

disrupting protein-coding genes have been identified as likely causal in nearly one-

third of patients. The majority of these diagnosis are from de novo mutations in 

protein-coding genes. In the first 4,000 DD trios analysed, 25% of patients carried a 

likely causal de novo mutation in a known developmental disorder gene, and an 

additional 17% were predicted to carry pathogenic mutations in genes not yet 

robustly associated to developmental disorder4. However, after accounting for 

pathogenic de novo mutations and inherited variants, the majority of the individuals 

in the DDD study remain undiagnosed. For this reason, I sought to explore the 

contribution of de novo mutations outside of the protein-coding sequence. 

 

Assaying non-coding sequence in the Deciphering Developmental Disorders Study 

The majority of disease-associated common SNPs lie in intergenic or intronic 

regions, albeit with low effect sizes. In severe Mendelian disorders, rare sequence 

and structural variants in relatively few regulatory elements have been causally 

linked to Mendelian disorders5-7 (reviewed in Chapter 1, and Mathelier et. al, 2015, 

Zhang and Lupski, 2015, and Spielmann and Mundlos, 2016). These pathogenic 

regulatory variants can act by loss-of-function8-11 or gain-of-function12,13 and most 

act dominantly, with a few exceptions14. These regulatory elements can lie far from 

the gene they regulate. For example, sequence variants in an evolutionarily 
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conserved regulatory element located 1Mb from its target gene, SHH, can cause 

polydactyly12. As a consequence, it can be challenging to identify the gene whose 

regulation is being perturbed by an associated regulatory variant15-17. Moreover, the 

contribution of highly penetrant mutations in regulatory elements to genetically 

heterogeneous rare diseases, such as neurodevelopmental disorders, has not been 

firmly established. 

To assess the contribution of variation outside the coding regions to severe 

DD, more than 6,000 putative regulatory elements were included in the exome 

capture. These elements were derived from three major categories: 4,307 highly 

evolutionarily conserved non-coding elements18, 595 experimentally-validated 

enhancers19, and 1,237 putative heart enhancers20, together covering 4.2Mb of 

sequence (see Methods). 

 

Variant effect prediction in the non-coding genome 

 A number of computational tools have been developed that combine 

evolutionary conservation, chromatin modifications in different tissues, transcription 

factor binding sites, and other genomic features to predict the impact of variation 

genome-wide. Combined Annotation Dependent Depletion uses a support vector 

machine (SVM) to predict pathogenicity of coding and non-coding variation and has 

proved to be a powerful tool in the coding regions, particularly for improved 

stratification of missense variation21. FATHMM-MKL also uses an SVM to predict the 

pathogenicity of variation genome-wide, but instead of combining all features into 

one model, constructs a kernel for each different feature group (Histone 

modifications, TF binding sites, Open Chromatin, evolutionary conservation, GC 

content, amongst others)22. 

 In contrast to CADD and FATHMM-MKL, which attempt to model 

pathogenicity genome-wide, Genomiser addresses the more precise use-case of 

variant prioritisation in Mendelian disease23. Genomiser relies on a set of 453 non-

coding variants previously associated with Mendelian disorders, collected through 

literature review and in some cases, computational prediction. Genomiser employs a 

similar set of features to CADD and FATHMM-MKL, including evolutionary 
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conservation, histone modifications, and open chromatin data and uses a Random 

Forest model to make pathogenicity predictions. 

 Other methods have been developed to predict disruptions to TFBS, and 

integrate these disruptions with evolutionary conservation data to infer 

pathogenicity. One such method, DeepSEA uses a convolutional neural network 

(CNN) to predict TF binding intensity based on sequence context alone, using peak 

intensity from the ENCODE project to train the model24. While this method has been 

shown to outperform motif-based predictions of TF-binding, neural networks and 

other machine learning models that predict on sequence data alone are more 

challenging to interpret than models with structured feature sets. 

 CADD, Fathmm-MKL, Genomiser, and other non-coding variant effect 

predictors have purported to improve variant effect prediction for non-coding 

variation, but the utility of these scores has not been robustly verified in the non-

coding genome to the same degree as tools such as Variant Effect Predictor25 (VEP), 

SIFT26, PolyPhen27, or CADD21 which are used in interpretation of coding variation. 

This difference is in large part due to the paucity of disease associated regulatory 

variation to verify the models. In the case of Genomiser, which was trained using 

curated disease variants, testing on an independent set of disease-linked variants 

will not be possible until more variants independent of the training set have been 

reported. Furthermore, effect sizes in the non-coding genome may be smaller in 

general, as suggested by the greater burden of non-coding variation in common 

disease, making the detection of damaging variation more difficult. 

 An alternative approach to validate the utility of these models is to use 

selective constraint, which can be inferred from the allele frequency of variation in 

modern humans. Sites under negative selection will on average harbour fewer 

variants, and variants at lower allele frequencies, than sites evolving neutrally28-30 

This approach has been successfully applied in the coding regions of the genome—

CADD, SIFT, and PolyPhen scores show a strong correlation with pathogenicity 

predictions and inferred strength of purifying selection30. In this chapter, the 

mutability adjusted proportion of singletons (MAPS30) method is used to assess the 

relationship between non-coding variant effect predictors and selective constraint as 

a proxy for their potential in non-coding variant prioritisation. The topic of variant 
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effect prediction and selective constraint in the non-coding genome is explored in 

greater detail in Chapter 3 using whole genome-sequence data from >28,000 

individuals. 

Methods 

 
Recruitment in the Deciphering Developmental Disorders (DDD) project 

At the time of this analysis, 7,930 trios (mother, father, affected child) were 

recruited through NHS Clinical Genetics Centres in the U.K. and Ireland and had been 

sequenced. The families gave informed consent for participation and the study has 

research ethics approval (10/H0305/83, granted by the Cambridge South Research 

Ethics Committee and GEN/284/12, granted by the Republic of Ireland Research 

Ethics Committee). DECIPHER was used to collect and store clinical data including 

family history, growth measurements, developmental milestones, and structured 

phenotypic descriptions (using the Human Phenotype Ontology3). Saliva was 

collected from all family members, and blood was collected from affected probands 

and DNA was extracted for sequencing. 

 

Sequencing in the DDD Cohort 

Genomic DNA was extracted from patient saliva and sheared into 150bp fragments. 

Libraries were created following standard Illumina paired-end protocols in the 

Wellcome Trust Sanger Institute sequencing facility. SureSelect RNA baits were used 

to do the exome pulldown. Enriched libraries were sequenced on Illumina HiSeq at 

the Wellcome Trust Sanger Institute using 75-base paired-end sequencing. 

 

Alignment, Variant Calling, and Quality Control 

Mapping of short-read sequences was carried out using the Burrows-Wheeler 

Aligner31 (BWA; version 0.59) algorithm with the GRCh37 1000 Genomes Project 

phase 2 reference. The Genome Analysis Toolkit32 (GATK; version 3.1.1) and 

SAMtools33 (version 0.1.19) were used for sample-level BAM improvement. Ensembl 

Variant Effect Predictor (VEP25) based on Ensembl gene build 76 was used to 

annotate variants and, in coding regions, the transcript with the most severe 
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consequence was selected.  I identified a trinucleotide specific error mode 

(GTN->GGN) that introduced false positives which was corrected by strict strand 

filtering (FS < 20). I determined the number of variants called per individual, and 

excluded unaffected parents with variant counts on the extremes of the distribution 

(top 1% and bottom 1%). Across the 7,080 unaffected parents that passed quality 

control filters, I identified 1,520,250 unique variants in the targeted non-coding 

elements and coding regions. 

 
De novo mutation calling 

De novo mutations were called as described in McRae et al, 2017, excluding SNVs 

and indels with posterior probability <0.00781 as annotated by DeNovoGear34. 

 

Defining targeted non-coding elements 

The placental mammal 28-way phastCons score35 was used to select the top 4,432 

conserved non-coding elements with no overlap with RefSeq genes (downloaded 

from UCSC on August 4th, 2010). Using the VISTA enhancer browser19, all 622 

putative enhancers with evidence of in vivo activity in developing mouse embryos 

were downloaded on August 3rd, 2010. At the time the capture was designed, the 

observation had been made that heart enhancers are depleted among ultra-

conserved elements20. As heart defects are the largest group of non-CNS 

abnormalities in the DDD cohort ultra-conserved elements were supplemented with 

an early annotation of heart enhancers. These putative heart enhancers were kindly 

provided by Axel Visel based on ChIP-seq of p300 in human fetal heart described in 

May et. al, 2012 in GRCh36 coordinates, mapped over to GRCh3736. Collectively, 

these elements cover approximately 4.6 megabases of total sequence. First, 

elements were filtered to exclude any targeted sequences with less than 10x 

coverage across the DDD data set. Second, any elements previously annotated to be 

non-coding, but classified as protein-coding in Gencode v1937 were removed. Finally, 

any elements less than 50bp in length were excluded. After filtering, 4,307 

conserved elements, 595 enhancer elements and 1,237 putative heart enhancers 

remain.  
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Defining intronic control sequences 

The exome baits designed to capture the coding regions frequently have 

considerable overlap with non-coding intronic regions. To define a set of putative 

well-covered introns, a 10bp buffer was added upstream and downstream of all 

gencode v19 coding sequence (to avoid classifying any critical splice sites in the 

control introns) and this coding sequence was subtracted from the exome probes. 

Furthermore, any introns within known developmental disorder genes (the DDG2P 

gene set38) were excluded. This set of control introns filtered to include only 

elements 30bp in length or larger with >30x coverage. 

 

Evolutionary conservation using phastcons and phylop 

The degree of evolutionary conservation across vertebrates at the element level was 

calculated using the phastcons vertebrate 100-way score. Scores were retrieved in R 

using the Bioconductor39 package phastCons100way.UCSC.hg1935 (Siepel et. al, 

2005). 

 

PhyloP scores represent the –log10 p-value that a given nucleotide is evolving 

neutrally40 (Pollard et. al, 2010). I used a tabix file of pre-computed PhyloP 

vertebrate 100-way scores for every site in the genome in order to annotate the 

DNMs observed in exome-negative probands, exome-positive probands and the 

simulated null model. 

 

Functional genomic annotation using the Roadmap Epigenome Project data 

Data from DNase hypersensitivity assays (broadPeak set, FDR 1%) were downloaded 

from the Roadmap Epigenome Project41 ftp site 

(http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak/) 

in order to predict regulatory function and tissue-specificity in the enhancers and 

conserved noncoding elements. The GenomicRanges Bioconductor39,42 package was 

used to intersect DHS peaks with the elements sequenced in this analysis. All code 

used in this analysis can be found at 

https://github.com/pjshort/DDDNonCoding2017. 
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Chromatin state predictions (chromHMM 15-state model43) for 111 different tissue 

types were downloaded from the Roadmap Epigenome Project41 (REP) ftp site 

(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/Chmm

Models/coreMarks/indivModels/default_init/). I considered a CNE to be inactive in a 

given tissue if it was completely contained within a chromHMM segment described 

as Quiescent, Heterochromatin, or Polycomb Repressed ("9_Het", "13_ReprPC", 

"14_ReprPCWk", and "15_Quies") in the 15-state model. Using the GenomicRanges42 

Bioconductor package and coding sequence from gencode v19, I calculated the 

distance of each active and broadly inactive element to the nearest exon or 

transcription start site. All code used in this analysis can be found at 

https://github.com/pjshort/DDDNonCoding2017. 

 

Trinucleotide mutation rate model with CpG-methylation status 

The germline mutation rate model described in Samocha et. al, 2014 based on tri-

nucleotide context44 was adapted to include a correction at CpG sites for 

methylation status. This method models the null mutation rate at a given site as a 

Poisson rate parameter that is dependent on the tri-nucleotide context, where the 

second base is mutated. I fit a linear model to the ratio of observed/expected 

variants at MAF <0.1% in CpG sites based on their methylation status in embryonic 

stem cells. For all CpG sites, I corrected the tri-nucleotide mutation rate based on the 

methylation status to produce a methylation-aware mutation rate model. As the 

sum of Poisson random variables is Poisson, the rate parameter for a given element, 

or set of elements, can be determined by summing the mutation rate for each 

individual site. Simulated mutations were based on the same tri-nucleotide mutation 

framework and implemented in an R software package: 

https://github.com/pjshort/DenovoSim. 

 

Statistical testing for mutational burden 

The p-value for the number of observed de novo mutations compared to expected is 

calculated in R as:  

 

ppois(n_obs - 1, lambda = mu, lower.tail = FALSE)  
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where n_obs is the number of observed mutations within an element and mu is the 

mutability of the element(s) being tested (under the null model described above) 

multiplied by the number of probands. The burden testing I performed across 

subsets of elements and phenotypes included multiple nested hypotheses that were 

accounted for with a conservative Bonferroni-adjusted p-value threshold based on 

the number of explicit and implicit tests. 

 

Gene-target prediction 

I used four different methods of gene target prediction to link CNEs and enhancers 

to putative target genes.  

 

The first method, Genomicus, predicts gene targets based on evolutionary 

conservation with nearby genes. Genomicus determines the extent to which each 

CNE is within the same syntenic block with nearby genes across a number of 

vertebrate species and predicts one or more targets16. The Genomicus method 

produces at least one prediction for 90% of CNEs (approximately 1/3 of these are the 

closest gene). 

 

The second method, described in Shooshtari et. al, 2016, compares DNase 

hypersensivity at each CNE to expression of nearby genes in 56 different tissues 

(using RNA-seq) to search for CNE-gene pairs that show a correlation between 

DNase signal and gene expression45. This method produces statistically significant 

predictions for only 28% of CNEs in our set and is likely underpowered to detect 

elements that are active in specific tissues or timepoints. 

 

The third method is to link CNEs to putative target genes using chromatin interaction 

data (Hi-C) in two different regions of the fetal brain derived from Won et. al, 201646. 

Using Hi-C data is the most direct and tissue specific of all of the prediction methods 

used, but the prediction is sparse (26% of CNEs with evidence for fetal brain activity 

have a predicted target). 
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The fourth method used is a simple heuristic to choose the gene with the closest TSS 

(for intergenic elements) or the gene containing the element (for introns). Choosing 

the closest gene allows us to make a prediction for 100% of elements, but 

comparison with chromatin conformation and DHS-based methods has shown that 

the closest gene is likely the target 7% and 12% of cases45,47. 

 

I used the Genomicus, DHS, and Hi-C predictions to generate aggregated predictions 

which I considered ‘high confidence’ if predicted by at least two of the three 

methods. 

 

To assess the pair-wise concordance, I took the set of CNEs for which at least one 

gene target was reported in both methods and tested how frequently both methods 

identified the same gene within the set of predicted targets. 

 

Transcription factor binding site analyses 

The JASPAR2016 and TFBSTools Bioconductor packages48 were used to retrieve 

position weight matrices for 454 human transcription factors (TFs). Analyses in this 

chapter focus on the 202 TFs predicted to be expressed in the brain (cortex-

expressed from GTEx dataset49). 

 

A custom R package called ‘denovoTF’ (https://github.com/pjshort/denovoTF) was 

written to predict any change in TF binding at sites where DNMs were observed or 

simulated. This analysis works by scanning the reference and alternative sequence 

for all 202 PWMs and comparing predicted binding events on both sequences. By 

comparing the potential binding affinity for ref and alt sequences, I can predict loss 

of binding (alt binding < ref binding), gain of binding (alt binding > ref binding), and 

silent (no difference). ‘Silent’ DNMs fall into two classes: those for which binding is 

predicted on both reference and alternate, but strength of binding is unchanged, 

and those which do not lie in a predicted TF binding site. 

 

The analysis of motif enrichment (AME) tool from the meme suite was used to 

identify a subset of PWMs that was significantly enriched in the fetal brain active 
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elements50. Comparing the fetal brain active CNEs to the fetal brain inactive CNEs 

returned a set of 90 transcription factors, of which 45 were expressed in the brain 

and had PWMs available in JASPAR201648. This analysis was performed on the 

meme-suite web server using the following command: 

 

ame --verbose 1 --oc . --control meme_chromHMM_fb_inactive_all.fasta --bgformat 

1 --scoring avg --method ranksum --pvalue-report-threshold 0.05 

meme_chromHMM_fb_active_all.fasta db/JASPAR/JASPAR_CORE_2016.meme 

 

In order to test for enrichment of loss of binding or gain of binding events in the 

observed DNMs, I compared predicted impact on TF binding in observed DNMs to 

1,000 simulations of mutations across the 2,613 fetal brain active elements for 6,147 

probands. 

 

Power calculations at different study sizes 

I used the tri-nucleotide null model described previously in order to estimate our 

power to detect disease-associated elements. Parameters impacting power include 

the fold enrichment for disease-causing mutations in the DDD cohort (proportional 

to the incidence of severe developmental disorders with a genetic basis in the 

population), the proportion of mutations within a true disease-associated element 

expected to be pathogenic, the penetrance of such mutations, the size/mutability of 

the elements tested, and the number of trios analysed. In order to estimate the 

power across different study sizes, I fixed the remaining parameters as follows: 120-

fold enrichment for disease-causing mutations, proportion of mutations expected to 

be pathogenic at 8% (lower bound estimate for coding regions), penetrance at 100%, 

and the elements tested were the 2,613 fetal brain active conserved non-coding 

elements. Code for power analysis can be found in the R script: 

https://github.com/pjshort/DDDNonCoding2017/analysis_notebooks/ 

Figure4_maximum_likelihood_and_genome_estimate.Rmd.  

 

Estimating the genome-wide burden of DNMs in fetal brain active elements 

contributing to severe DD 
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First, I intersected all targeted non-coding sequence, irrespective of original class, 

with fetal brain DHS peaks. I used the phastcons100 score (scores retrieved in R 

using the Bioconductor package phastCons100way.UCSC.hg1935 (Siepel et. al, 2005) 

to rank these elements by evolutionary conservation. The ratio of 

observed/expected DNMs was computed with a sliding window across the elements 

(window size of 1000 elements, shift of 100 elements). This approach resulted in a 

median of 62 DNMs expected in each bin (minimum 51, maximum 68) which was 

compared to the observed number of DNMs. I fit a logistic regression to the excess 

observed/expected in each window, setting any window with observed less than 

expected to have excess of zero. I used the logistic regression fit on the CNEs 

sequenced in our analysis to predict the burden of DNMs in this genome-wide set. 

 

Modelling the likelihood of different proportions of elements and sites with 

monoallelic disease mechanism given observed data  

In order to test the likelihood of different models of dominant disease mechanism 

within the non-coding space I adapted the power calculation framework described 

above to test the probability of observing our data across two different parameters: 

the number of elements (out of 2,613) with a dominant disease mechanism and the 

proportion of mutations expected to be pathogenic. I tested the likelihood of 

observing 286 DNMs, 25 recurrently mutated elements, and zero elements at 

genome-wide significance while systematically varying two parameters: the 

proportion of mutations expected to be pathogenic parameter from 0.01% to 10.0% 

in increments of 0.01% and the proportion of elements with true disease-

associations (from 0 to 2,613 in increments of 5). In this analysis, the remaining 

parameters were held constant: 120x enrichment for pathogenic mutations, 

penetrance at 100%, testing 2,613 fetal brain active conserved non-coding elements, 

and number of trios at 6,147. Code for power analysis can be found in the R 

notebook: https://github.com/pjshort/DDDNonCoding2017/analysis_notebooks/ 

Figure4_maximum_likelihood_and_genome_estimate.Rmd. 
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Results Section 2.1: Assessing the role of de novo mutations in regulatory 

elements in severe DD 

Results Section 2.1.1. Modelling the germline mutation rate in the non-coding 

genome 

 Assessing the contribution of de novo mutations (DNMs) to developmental 

disorders relies on an accurate null model of the germline mutation rate in the 

absence of disease association. Local sequence context has been shown to have a 

significant influence on the per-base mutation rate44. For example, CpG 

dinucleotides have an approximately 10x greater mutation rate than other 

dinucleotides due to spontaneous deamination when the C is methylated. This 

spontaneous deamination results in a high rate C to T transitions, and is reflected in 

an overrepresentation of polymorphisms at CpG sites, and a higher rate of 

DNMs30,44,51,52. 

A well-established mutation rate model incorporating the sequence one base 

upstream and downstream of a nucleotide of interest, referred to as the ‘triplet 

context’, has been shown to significantly outperform sequence-agnostic models in 

predicting the number of DNMs or level of rare variation in a protein-coding gene. 

This model has been used extensively in assessing the burden of DNMs in the autism 

spectrum disorder (ASD) patients and DD patients53, and to predict the level of 

expected rare variation in protein-coding genes in order to detect genes under 

purifying selection30. 

 However, the widely used tri-nucleotide mutation rate model does not 

account for methylation status. Unmethylated CpGs have a substantially lower 

mutation rate. As a result, loci with high levels of methylation relative to the 

genome-wide average for CpG dinucleotides would have a higher than expected 

mutation rate. Conversely, loci with low levels of methylation at CpG dinucleotides 

(for example, promoters) would have a much lower mutation rate than predicted by 

the trinucleotide model. Thus, I adapted this tri-nucleotide model to include CpG 

methylation genome-wide. There is a strong correlation between the observed 

number of rare variants at CpG sites and their methylation levels in either embryonic 

stem cells (ESCs) or sperm (Figure 1A). This methylation-aware model better 
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accounts for levels of rare variation observed in the set of non-coding elements 

sequenced in DDD (Figure 1B).  

 

 

Figure 1 Methylation-aware mutation rate model. (a) Methylation proportion at a given CpG site 

in Embryonic Stem Cells (ESC) and sperm correlates with observed rare variation in gnomAD. (b) 

Incorporating CpG methylation proportion into mutation rate model improves model fit to rare 

variant data. 

 

 

Results Section 2.1.2. Selective constraint acting on non-coding elements 

I reasoned that if the non-coding elements sequenced in DDD were 

contributing to severe developmental disorders, there should be evidence for 

negative selection in these elements. I first assessed how much purifying selection 

had skewed allele frequencies in non-coding elements using the mutability-adjusted 

proportion of singletons (MAPS) metric30 in 7,080 unrelated, unaffected DDD 

parents. I tested six different element classes: introns, heart enhancers, validated 

enhancers, conserved non-coding elements (CNEs), protein-coding genes, and 

known DD-associated genes. The validated enhancers from the VISTA enhancer 

browser vary across the spectrum of evolutionary conservation, while the heart 

enhancers are poorly conserved, consistent with previous reports20, and the CNEs 

show high levels of evolutionary conservation (Figure 2A).  The introns and heart 

enhancers show little evidence of purifying selection, while the experimentally-

validated enhancers and CNEs are constrained to a similar degree to protein-coding 

genes, but less than known DD-associated genes (Figure 2B), consistent with 

evolutionary conservation maintained by purifying selection as has been previously 

reported54,55. 
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Figure 2 Selective constraint in targeted non-coding elements. (a) Evolutionary conservation score 

(phastcons10035) for CNEs (n=4,307), experimentally validated enhancers (n=595), and putative 

heart enhancers (n=1,237). (b) Strength of selection (MAPS metric, mean and 95% CI represented 

by dot and bars) in targeted non-coding elements compared to protein-coding regions, where 

‘Exonic’ refers to all variation within protein coding exons. Stratification based on 

synonymous/non-synonymous consequence displayed on the same row to illustrate power of even 

a simple discriminator. Introns and putative heart enhancers show little evidence of purifying 

selection while CNEs show selection on par with all genes, but less than known DD genes. (c) Using 

CADD to stratify coding and non-coding variants observed in unaffected parents differentiates 

neutral variation from weakly and strongly constrained sites in coding regions, but fails to identify 

non-coding variation with selection pressure on par with protein-truncating variants (stop gained). 

(d) Sites overlapping a DNase I hypersensitive site (DHS) in at least one tissue are under stronger 

purifying selection than sites not overlapping a DHS. 

 

Statistical power to detect functionally relevant variants in protein-coding 

genes is strengthened considerably by stratification of variants by their likely impact 

on the encoded protein and variant deleteriousness metrics such as CADD21. I 

computed the MAPS within bins of CADD scores encompassing 1,520,250 variants in 

unaffected DDD parents to assess whether CADD was predictive of selective 

constraint. In protein-coding genes, the strong correlation between CADD score and 
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strength of purifying selection enabled differentiation between variants that are 

neutral (synonymous sites), weakly constrained (missense variants), and highly 

constrained (protein-truncating variants). In CNEs, CADD differentiates neutral 

variation from variation under weak constraint (comparable to missense variants), 

but failed to identify highly deleterious variants with selective constraint on a par 

with protein-truncating variants (Figure 2C). Other deleteriousness metrics were 

assessed, but none were more informative than CADD (Figure 3).  

I used DNase I hypersensitivity sites (DHS) in 39 tissues and chromHMM 

genome segmentation predictions in 111 tissues41 to predict tissue activity for the 

targeted non-coding elements. Of the 4,307 CNEs sequenced, 4,046 (93.9%) were 

active in at least one of the 111 surveyed tissues while 261 (6.1%) were inactive or 

repressed in all tissues. Variants within a DHS peak in at least one tissue were under 

stronger purifying selection than variants not overlapping a DHS peak (p = 0.019), 

but I did not identify significant differences in selective constraint between different 

tissues (Figure 2D). 

The non-coding elements sequenced in this study are not representative of 

regulatory elements genome-wide, and the MAPS metric used here is not the only 

method for detecting selective constraint. Evidence of selective constraint in the 

non-coding genome is explored in greater detail in Chapter 3 using genome-wide 

assays of putative regulatory function and deep whole genome sequences to test for 

evidence of selective constraint. 
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Figure 3 Assessment of variant deleteriousness metrics and selective pressure in conserved non-

coding elements. Dots and bars represent the point estimate and 95% confidence interval, 

respectively for MAPS and proportion singletons. (a) Fathmm-MKL and (b) Genomiser separate 

benign variation (low MAPS score) from likely damaging variation (high MAPS score), but do not 

identify any classes of variation under strong selective constraint. (c) Validation of Figure 2C in 

main text using whole genome data from UK10K project. While CADD can identify coding variation 

under strong selective constraint (as measured by the proportion of singletons), CADD is unable to 

identify strongly constrained non-coding variants. (d) There was no significant difference in 

strength of purifying selection measured by MAPS between sites predicted to result in loss, gain, or 

no change of transcription factor binding. 

 

 

Results Section 2.1.2. Fetal brain active ultra-conserved non-coding elements are 

enriched for mutations in exome-negative probands with neurodevelopmental 

phenotypes 

 
To assess the contribution of DNMs in regulatory elements sequenced in the 

DDD families, I identified candidate de novo single nucleotide mutations in 7,930 

trios using DeNovoGear (see Methods). I identified 1,691 ‘exome-positive’ 
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known DD-associated gene, with the remaining 6,239 being ‘exome-negative’. Using 

the methylation-aware mutation model, I compared the numbers of observed and 

expected DNMs in the targeted non-coding elements in these individuals. No 

significant DNM enrichment was observed in exome-positive probands in the 

targeted non-coding elements, demonstrating that the mutation model is reasonably 

well-calibrated and that a large proportion of exome-positive cases likely represent 

Mendelian syndromes caused by high-penetrance protein-coding mutations (Figure 

4A). I note that the number of exome-positive individuals affords only limited power 

to reject modest mutation enrichment in the non-coding elements. Based on these 

results, I chose to focus on the 6,239 exome-negative individuals for subsequent 

analyses. 

 
Figure 4 Non-coding mutations in exome-positive and exome-negative probands. Red diamonds 

indicate observed counts, while black circles and bars indicate expected count and 95% CI. (a) In 
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the 1,691 ‘exome-positive’ probands, there is no evidence for a burden of de novo mutations in 

any of the non-coding element classes tested. (b) Enrichment of DNMs across element classes and 

functional annotations in exome-negative probands (n=6,239). Targeted CNEs showed a modest 

enrichment for DNMs (422 observed, 388 expected, p = 0.04) while heart enhancers, 

experimentally-validated enhancers, and control introns matched the null model. Observed 

enrichment is specific to CNEs predicted to be active in the fetal brain and to patients with 

neurodevelopmental disorders (238 observed, 194 expected, p = 1.2e-3). Confidence intervals and 

p-values derived from a Poisson distribution. 

 

 I found that the CNEs are nominally significantly enriched for DNMs (422 

observed, 388 expected, p = 0.04), whereas experimentally-validated enhancers (153 

observed, 156 expected, p = 0.605), heart enhancers (86 observed, 86 expected, p = 

0.514), and intronic controls (901 observed, 919 expected, p = 0.728) were not 

enriched (Figure 4B). 

Given the preponderance of individuals with neurodevelopmental disorders 

in our cohort but broad range of the tissue activity of the targeted CNEs, I focused on 

CNEs active in fetal brain. I observed a strong significant enrichment of DNMs within 

2,077 fetal brain DHS peaks in CNEs (177 observed, 138 expected, p = 8.1e-4) but no 

enrichment in sites in CNEs falling outside of fetal brain DHSs (245 observed, 249 

expected, p = 0.608) (Figure 4B). I also used chromHMM43 predictions of fetal brain 

activity and again identified a significant enrichment of DNMs in the 2,613 fetal brain 

active CNEs (Figure 4B). Moreover, the DNMs observed in fetal brain active CNEs in 

exome-negative probands were at more highly conserved sites (Wilcoxon rank sum 

test on PhyloP 100-way score40, p = 7.5e-4) compared to DNMs observed in exome-

positive probands (Figure 5). 

The excess of DNMs observed in fetal brain active CNEs is concentrated 

exclusively within the 79% of exome-negative probands with neurodevelopmental 

phenotypes (fetal brain DHS peaks: 147 observed, 109 expected, p = 3.1e-4, fetal 

brain active by chromHMM: 238 observed, 194 expected, p = 1.2e-3), with no 

significant enrichment observed in those without neurodevelopmental phenotypes 

(fetal brain DHS: p=0.413; fetal brain active by chromHMM: p=0.681) (Figure 4B). 

The highly significant and specific enrichment of DNMs in fetal brain active CNEs in 

exome-negative probands with neurodevelopmental disorders is robust to 
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Bonferroni correction for thirteen explicitly and implicitly tested hypotheses (Figure 

6A). The fold-enrichment of DNMs is consistent with DNMs in fetal brain active CNEs 

comprising a mixture of 70-80% non-pathogenic DNMs and 20-30% of pathogenic 

DNMs. 

 

 
Figure 5 Evolutionary conservation of mutated base in conserved non-coding elements. DNMs in 

exome-negative probands show a greater degree of evolutionary conservation (measured by 

PhyloP score) compared to DNMs observed in exome-positive probands in two classes: fetal brain 

active CNEs (median 1.57 exome-positive, 2.85 exome-negative, n=368 mutations) and missense 

changes (median 3.43 exome-positive, 3.98 exome-negative, n = 6244 mutations). 

 

 Having identified a signal of DNM enrichment only within CNEs active in fetal 

brain, I re-evaluated the experimentally-validated enhancers with functional 

evidence for activity in fetal brain (N=383, 64%) and observed a nominally significant 

enrichment for DNMs only within the top quartile of evolutionary conservation (18 

observed, 9 expected, p = 0.01) (Figure 6B). This result is suggestive that even for 

experimentally validated fetal brain enhancers, DNM enrichment is concentrated 

within elements with strong evolutionary conservation. 
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Figure 6 Hypothesis test enumeration and enrichment for mutations in highly conserved fetal 

brain active enhancers. (a) We corrected for thirteen tests in order to account for the nested 

hypotheses based on element class and phenotype in this analysis. (b) Evolutionarily conserved 

fetal brain active enhancers (n=106) are enriched for DNMs in exome-negative probands. 

 

 In addition to methylation at CpG sites, other genomic features have been 

previously associated with mutagenicity. To test whether the enrichment for 

mutations I observe is a result of hypermutability rather than disease association, I 

tested four genomic features previously associated with mutagenicity56 for 

enrichment in non-coding elements with DNMs. I found no evidence that these 

genomic features were enriched in non-coding elements with DNMs (H3K27me3 χ2-

test p=0.4809, H3K9me3 χ2-test p=0.1966, replication timing57 Figure 7A, 
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recombination rate58 Figure 7B). To test for any as yet unknown factors causing 

differential mutability, I compared the levels of rare variation in fetal brain active 

and inactive CNEs in 7,509 deep whole genomes from the gnomAD consortium and 

found no evidence for a higher germline mutation rate in fetal brain active elements 

(Figure 7C, D). These results indicate that the enrichment of DNMs in regulatory 

elements in exome-negative probands is not likely to be the result of 

hypermutability not captured by the mutation rate model. 

 

 
Figure 7 Genomic factors influencing mutation rate in non-coding elements. (a) Elements with de 
novo mutations observed in our study are not enriched in late-replicating regions or (b) in regions 
with higher recombination rate. (c) Levels of rare variation in deep whole genomes (n=7,509 non-
Finnish Europeans) were used to estimate power to detect a hypermutability of 1.1X, 1.2X, or 1.3X. 
(d) The level of rare variation in the fetal brain active elements (n=2613, labelled FB(+)) is slightly 
lower than the fetal brain inactive elements (n=1694, labelled FB(-)), consistent with similar 
mutability between the two element sets with slightly stronger purifying selection in the fetal brain 
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active elements. 
 

I next sought to estimate what proportion of the fetal brain active CNEs  

sequenced in the DDD patients act as enhancers. I compared a set of 617 high 

confidence brain enhancers from the VISTA enhancer database to two orthogonal 

enhancer annotations, FANTOM559 and EnhancerAtlas60. The high confidence 

enhancers from the VISTA database were also identified as enhancers in the 

FANTOM5 or EnhancerAtlas datasets, 12% and 36% respectively, providing an 

estimate for the sensivitity of these two datasets. Applying the same test to the 

CNEs, 6% of the fetal brain active CNEs were identified as enhancers by FANTOM5 

and 28% were identified as enhancers by EnhancerAtlas. Taken together, these 

results suggest that at least half and possibly up to three quarters of CNEs are acting 

as enhancers. 

In principle, linking regulatory elements to the gene(s) they regulate may 

improve power (by grouping distinct elements, and by combining burden of 

regulatory and coding mutations). Furthermore, predicting the target gene(s) for a 

given regulatory element may provide greater insight into mechanisms of 

pathogenic mutations in regulatory elements. I assessed four different methods for 

gene target prediction: Genomicus35 (based on evolutionary synteny), correlation 

between DNase accessibility and gene expression36, Hi-C in fetal brain33, and 

choosing the closest gene. Genome annotations are rapidly evolving and the 

sensitivity and specificity of gene target prediction methods is not yet known. 

However, independent eQTL, eRNA and Hi-C data all suggest that the closest gene is 

often not the target of non-coding regulatory variation32-34. Across the four methods 

tested, the proportion of fetal brain active CNEs for which a target gene was 

predicted was 28% (fetal brain Hi-C), 48% (DHS-RNA correlation), 91% (evolutionary 

synteny), and 100% (closest gene). The pairwise-concordance between any two 

methods (given that both methods make a prediction) was between 17% and 35% 

(Figure 8A). Intersecting multiple independent methods may provide higher 

confidence predictions, but comes at a cost of sensitivity and therefore power. I did 

not identify any enrichment for DNMs in elements predicted to target known DD 
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genes, likely dosage sensitive genes (pLI metric22), or genes differentially expressed 

in the brain (Figure 8B). Gene target predictions using fetal brain Hi-C were 

performed by Hyejung Won, a collaborator in the Geschwind Lab at UCLA. 

 

 

Figure 8 Gene target prediction for targeted non-coding elements. (a) Pairwise concordance 
between four different gene target prediction methods is low. (b) Using predicted targets from 
fetal brain Hi-C data, elements with an observed DNM in an exome-negative probands (n=286) do 
not show any bias toward any of the gene sets consistently implicated in neurodevelopmental 
disorders. Dots and bars represent the point estimate and 95% confidence interval, respectively. 

 

I hypothesized that the mutations observed in DDD patients may be altering 

transcription factor binding. To this end, I assessed the impact of DNMs on a set of 

45 transcription factor binding motifs enriched in fetal brain active CNEs (see 

Methods), and observed a nominally significant enrichment for DNMs predicted to 

increase binding affinity which did not survive multiple hypothesis correction (Figure 

9). Given the number of DNMs identified, and the relative immaturity of in silico 

predictions of the impact of non-coding variation, it is not currently possible to 

determine precise mechanisms by which these DNMs contribute to DDs. 
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Figure 9 Predicted transcription factor binding site disruption. (a-d) Comparing predicted change 

in transcription factor binding for observed DNMs compared to null mutation model. Empirical p-

values derived from comparison with mutations simulated from the null mutation model. 

 

Results Section 2.1.3. Recurrently mutated regulatory elements 

 Observing mutations independently in multiple different families has led to 

the discovery of dozens of novel developmental disorder-associated protein-coding 

genes4 . I applied the same approach to the set of targeted non-coding elements to 

test for recurrently mutated non-coding elements (two or more DNMs in unrelated 

individuals). I observed a significant excess of recurrently mutated elements in the 

fetal brain active CNEs and evolutionarily conserved enhancers compared to the 

expectation under the null mutation model (31 observed, 15 expected, p = 9.3e-5) 

(Figure 10A). However, no individual element exceeds a conservative genome-wide 

significance threshold of p<1.91e-5 (Bonferroni-correction for independent tests on 

2,613 fetal brain active elements) (Figure 10B). Nonetheless, the set of thirty-one 
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recurrently mutated elements provides a source of elements for medium and high-

throughput functional assays, albeit with a high false-discovery rate (FDR of 

approximately 50%). I tested these thirty-one recurrently mutated using a saturation 

mutagenesis massively parallel reporter assay in order to gain a better 

understanding of the nucleotide-level patterns underlying these elements. 

Furthermore, a subset of these elements with robust evidence for fetal brain 

enhancer activities were tested in mouse knockout studies in collaboration with 

Evgeny Kvon, Diane Dickel, Len Pennachio, and Axel Visel. These results are 

discussed in detail in Chapter 4, and these assays and other potential functional 

follow-ups are detailed in the Discussion of this chapter. 

 

 
Figure 10 Recurrently mutated elements. (a) Approximately two-fold enrichment of recurrently 
mutated non-coding elements. Grey histogram shows distribution of expected number of 
recurrently mutated fetal brain active non-coding elements under the null model and vertical line 
indicates observed number. (b) Enrichment test of individual non-coding elements. No element 
was significant at a genome-wide threshold of P < 1.9 ´ 10-5 (Bonferroni correction for testing 
2,613 fetal brain active elements). Inset plots for three elements show the nearest exon or 
transcription start site, location of DNMs (red markers) with any predicted transcription factor 
binding site disruptions (gain of binding in blue, loss of binding in red), location of rare variants in 
unaffected parents (grey markers), evolutionary conservation (blue, higher indicates more 
conserved), and fetal brain DNase I hypersensitivity (male in pink, female in blue). 

 

I used chromHMM43 to assign the recurrently mutated CNEs to a predicted 

chromatin state. I observed the greatest excess of DNMs in CNEs predicted to be 

enhancers (N=9) or strongly/weakly transcribed (N=8) (Figure 11). Five of the eight 

transcribed recurrently mutated elements fall in close proximity to exons, but are 

not in protein-coding transcripts and show evidence for involvement in alternative 

splicing (BCLAF1, SRRT, SLC10A7, and MKNK1) or as a 3’ UTR (CELF1). The full set of 
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recurrently mutated elements is described in Supplementary Table 1 (Appendix 1) 

and the location of DNMs relative to population variation and additional annotations 

is shown in Supplementary Figure 1 (Appendix 1). 

 
Figure 11 chromatin state of the recurrently mutated elements. chromHMM was used to 

annotate each of the recurrently mutated elements with a predicted chromatin state. The 

recurrently mutated elements showed an enrichment for enhancers and transcribed elements. 

 

Increased power to detect locus-specific enrichments of DNMs could be 

gained from aggregating DNMs across elements regulating the same target gene(s). 

However, as described above, gene target prediction is lacking in coverage and 

accuracy. CNEs have been shown to cluster together within the genome61 and are 

enriched around developmentally important genes61. An alternate approach, 

analogous to aggregating distinct exons into a single gene, is to cluster regulatory 

elements based on their location in genomic space. Therefore I applied hierarchical 

clustering on the 2,613 fetal brain active CNEs to identify 356 clusters (Methods). I 

found an excess of recurrently mutated clusters, defined as two or more elements 

with at least one DNM in each element (11 observed, 6 expected, p = 0.016), but did 

not find any element clusters with a significant excess of DNMs at a genome-wide 

significance threshold. 
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Results Section 2.2: Extrapolating results from targeted regulatory elements 

to genome-wide estimates 

Results Section 2.2.1. Estimate of proportion of probands carrying a pathogenic 

mutation in a regulatory element genome-wide. 

While only 4.2Mb of non-coding sequence was analysed in this cohort, there 

is more than 80Mb of non-coding sequence overlapping DNase I hypersensitive sites 

in the fetal brain. Unlike the set of elements I targeted, which is biased toward highly 

evolutionarily conserved elements, the vast majority of open chromatin regions in 

the fetal brain are poorly evolutionarily conserved (Figure 12A). Thus, the results 

from the DDD project is biased towards highly evolutionarily conserved elements, 

but also includes elements with lower levels of evolutionary conservation. In the 

targeted elements in this study, all of the observed DNM enrichment is concentrated 

in the highly conserved elements and I see no evidence for enrichment in poorly 

conserved regions, even though a large fraction of the poorly conserved regions 

have strong evidence for enhancer activity in mouse transgenesis assays. 

To extrapolate the excess of DNMs I observed in the targeted non-coding 

elements to a genome-wide estimate, I modelled the enrichment of DNMs in the 

targeted non-coding elements as a function of evolutionary conservation and 

extrapolated to non-coding elements genome-wide (Methods). Factoring in the 

distribution of evolutionary conservation of fetal brain DHS peaks genome-wide, I 

predicted a genome-wide excess of 88 DNMs (95% CI: 48-140), corresponding to 

1.0% - 2.8% of exome-negative cases carrying pathogenic mutations in regulatory 

elements (Figure 12A) in contrast to 13.4% and 28.4% carrying protein-truncating 

variants and missense variants estimated by McRae et. al, 2017 (Figure 12B). This 

estimate does not include small insertions or deletions due to a low number of 

observations in this study and the lack of a well-calibrated mutation model for small 

insertions and deletions. Furthermore, the lack of signal in poorly conserved 

elements should not be considered definitively negative – the targeting strategy in 

this analysis focused on highly evolutionarily conserved elements and comparable 

numbers of affected trios with deep whole genome sequencing will provide a more 
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unbiased assessment of the contribution of mutations in non-coding elements 

genome-wide. 

 

 
Figure 12 Genome-wide estimate of DNM burden. (a) Logistic regression used to model the 

genome-wide contribution of dominant-acting DNMs in fetal brain DNase hypersensitive sites in 

non-coding elements as a function of level of evolutionary conservation using a sliding window 

approach including 1,000 elements in each bin (see Methods). Dashed lines indicate the upper and 

lower 95% CI. The barplot shows the fetal brain active DHS peaks genome-wide (in megabase of 

total sequence) at a given level of evolutionary conservation. (b) The proportion of probands 

carrying a pathogenic de novo SNV in a fetal brain active regulatory element (1-2.8%) is far lower 

than the proportion carrying a pathogenic de novo protein-truncating variant (PTV) (~13.4%) or de 

novo missense variant (~28.4%). 

 
 

Results Section 2.2.2. Power calculations and estimation of fraction of bases 

contributing to severe DD when mutated 

 
The significant excess of recurrently mutated elements, but absence of 

individual non-coding elements with a genome-wide significant enrichment of DNMs 

is indicative of low power. This was initially surprising, as in a study comprising 4,293 

trios, roughly half the sample size of this analysis, McRae et. al discovered 94 

robustly associated protein-coding genes4. However, a large fraction of the 

difference in power can be attributed to the smaller size of CNEs compared to 
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protein-coding genes and the lack of nucleotide-level variant effect prediction in the 

non-coding genome. The CNEs sequenced in this analysis are a median of 600bp in 

length, while protein-coding genes are median of 1800bp. Furthermore, variant 

effect predictor (VEP) reliably stratifies likely damaging from benign variation in 

protein-coding genes, while no such tool exists in non-coding elements. Down-

sampling gene length to 600bp and masking protein consequence annotation results 

in an 80% drop in empirical power for the 94 genes passing the genome-wide 

significance threshold in McRae et. al, 2017 (Figure 13A). However, even after down-

sampling genes in size and masking the predicted consequence of individual 

mutations, I still discover more than 20 genes at a genome-wide significance 

threshold (Figure 13A). 

Beyond element length and consequence annotation, the proportion of sites 

that, when mutated, result in a severe developmental disorder with a dominant 

mechanism may differ between non-coding elements and protein-coding genes. At 

least 8% of mutations in protein-coding genes are predicted to cause loss of function 

due to protein-truncation44,62, and many variants may result in missense changes 

causing full or partial loss of function. The fact that I do not discover any genome-

wide significant CNEs at this sample size suggests that the proportion of DNMs in 

CNEs that are pathogenic and highly penetrant must be substantially lower than 8%. 

I modelled the likelihood of observing 286 DNMs, 25 recurrently mutated 

CNEs, and zero CNEs at genome-wide significance across different values for the 

number of fetal brain active CNEs (out of 2,613) and the proportion of mutations in 

those elements that are pathogenic with a dominant mechanism for 

neurodevelopmental disorders (see Methods). The maximum likelihood model is one 

in which 3.5% of mutations within approximately 100 elements are pathogenic with 

a dominant mechanism. However, there is considerable uncertainty around this 

point estimate (Figure 13B), with the credible interval including scenarios whereby 

tens of elements have ~5-7% of mutations being pathogenic or thousands of 

elements have <1% of mutations being pathogenic. Our results support a model in 

which most sites in highly conserved non-coding elements are reasonably tolerant to 

heterozygosity. This result implies that the extreme sequence conservation in these 

elements may be maintained by selection against lower-effect size heterozygotes, 
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compound heterozygotes, or oligogenic selection reflecting full or partial 

redundancy between multiple regulatory elements. 

 
Figure 13 Power calculations estimates of genetic architecture in non-coding elements. (a) 

Estimating the reduction in power due to size differences between non-coding elements and genes 

(median 600bp vs. 1800bp) and ignoring VEP annotations used to stratify benign from likely 

damaging variants. Dots and bars represent the point estimate and 95% confidence interval, 

respectively. (b) Credible intervals for the proportion of fetal brain active conserved elements and 

proportion of sites within those elements with a dominant mechanism for developmental 

disorders.  Based on our observation of zero non-coding elements at genome-wide significance in 

6,239 exome-negative probands, very few sites within these elements (<5%) are likely to 
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contribute to developmental disorders through a highly penetrant dominant mechanism. (c) Power 

calculations for disease-associated non-coding element discovery. Without annotation or tools to 

discriminate pathogenic from benign variants in non-coding elements (grey), more than 100,000 

trios are required to achieve 40% power. With annotation or tools to fully discriminate likely 

pathogenic from benign variants (blue), 40% power is achieved with only 21,000 trios. 

 
 

Discussion 

In summary, I have demonstrated that de novo mutations in regulatory elements 

contribute to severe neurodevelopmental disorders. This significant excess of DNMs 

is only observed in highly evolutionary conserved elements that are active in the 

fetal brain. I observed a 1.3-fold excess of DNMs within DHS peaks in these 

regulatory elements, suggesting that a minority of such DNMs are pathogenic. 

Moreover, our modelling suggests that there are few, if any, regulatory elements in 

which >4% of mutations cause neurodevelopmental disorders with a dominant 

mechanism. Our data are consistent with only 0.15% of mutations within fetal brain 

active CNEs being highly penetrant for neurodevelopmental disorders (Appendix 1, 

Figure S7A), likely considerably lower than the proportion of dominant pathogenic 

mutations in protein-coding regions. As a consequence, this class of pathogenic non-

coding DNMs is only likely to account for a small proportion (<5%) of ‘exome-

negative’ individuals and robustly identifying disease-associated regulatory elements 

will present a greater challenge than protein-coding genes.  

This estimate does not include the potential contributions from indels. While 

the indel mutation rate is approximately 10-fold lower than the SNV mutation rate, 

indels have been suggested by evolutionary studies to be more deleterious than 

single nucleotide changes in non-coding regions63. I also did not quantify the 

contribution of large copy number variations in regulatory elements. Deletion of 

enhancer elements as well as enhancer adoption due to genomic rearrangements 

have been previously associated with severe disorders. Whole genome sequencing 

of affected trios will allow us to better detect this class of variation in order to 

accurately quantify the contribution of structural variants in non-coding elements to 

severe DD. 
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Our study design focuses on highly conserved elements and fetal-brain active 

elements and is relatively uninformative with respect to pathogenic ‘gain-of-

function’ DNMs within elements that show no wildtype activity in fetal brain, and are 

not highly evolutionarily conserved. While our findings have focused on the highly 

conserved elements, I do not consider our observations to be definitively negative 

about the role of less highly conserved fetal brain enhancers in neurodevelopmental 

disorders, or the role of heart enhancers in CHD (due to the low proportion of 

subjects with CHD). The field of regulatory element annotation has progressed 

tremendously over the past six years since this study design was initially conceived. 

Therefore, a comprehensive analysis of the contribution of variation within all 

classes of non-coding elements to neurodevelopmental disorders is likely to require 

whole genome sequencing (WGS) of many tens of thousands, if not hundreds of 

thousands of parent-proband trios (Figure 13C).  

A few recently published studies using whole genome sequencing in trios 

with Autism Spectrum Disorder have produced mixed results. One challenge of 

interpreting WGS data is the vast universe of hypotheses that could be tested, and 

thus how to account appropriately for multiple hypothesis testing. Turner et al. 

recently reported a nominally significant enrichment (p = 0.03) of de novo SNVs and 

private copy number variants in fetal brain DHS or at sites with PhyloP conservation 

score of >4, within 50kb of known autism-associated genes in WGS from 53 

individuals with autism64. Caution should be exercised in interpreting findings based 

on: small sample sizes relative to that required for well-powered analyses (as 

discussed above) and analyses requiring multiple, arbitrary, levels of variant 

stratification (e.g. gene set, genomic proximity threshold, and conservation score). 

WGS-based analyses need to account for all explicit and implicit hypothesis testing. 

Sanders et. al, analysed a larger data set using an unbiased method to test for 

enrichment of mutations in more than 50,000 different annotations and found little 

evidence for enrichment of DNMs in non-coding annotations.   

The disease-associated elements identified in this analysis primarily act either 

as enhancers or to regulate alternative splicing, but establishing the precise 

mechanism for each element has proved challenging. Our analyses highlight an 

urgent need for improved tools to stratify benign and damaging variants within non-
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coding elements and annotate gene targets for regulatory elements. Improvements 

in annotation of functional non-coding elements and nucleotides within these 

elements will dramatically increase power to detect highly-penetrant disease-

associated non-coding variation, for example, increasing power more than ten-fold 

from 8% to 83% in 40,000 trios (Figure 13C).  

Functional characterisation of increasing numbers of robustly-associated, 

highly-penetrant, regulatory variants in cellular and animal models will be critical in 

moving from a descriptive to a more predictive understanding of non-coding 

variation in the human genome. There are a number of experimental tools available 

to better understand the impact of mutations in regulatory elements. Massively 

parallel reporter assays (MPRAs) can be used to assess the function of tens of 

thousands of putative regulatory elements in parallel. Whereas mouse transgenesis 

assays or mouse knock-in models can assay particular variants in great detail, MPRAs 

provide far greater throughput allowing every base within an element to be assessed 

for allele specific expression. Results from a set of MPRA experiments in elements 

harbouring DNMs in the DDD patients are detailed in Chapter 4. While MPRA allows 

for very high throughput characterisation of regulatory element function, mouse or 

zebrafish assays can reveal spatiotemporal mis-regulation that may not be apparent 

in reporter assays. Results from a collaborative study contrasting expression patterns 

between wildtype and mutated alleles in mouse embryos is also discussed in detail 

in Chapter 4. 

 

 
1	 Study,	D.	D.	D.	Large-scale	discovery	of	novel	genetic	causes	of	

developmental	disorders.	Nature	519,	223-228,	
doi:10.1038/nature14135	(2015).	

2	 Wright,	C.	F.	et	al.	Making	new	genetic	diagnoses	with	old	data:	iterative	
reanalysis	and	reporting	from	genome-wide	data	in	1,133	families	with	
developmental	disorders.	Genet	Med,	doi:10.1038/gim.2017.246	(2018).	

3	 Köhler,	S.	et	al.	The	Human	Phenotype	Ontology	in	2017.	Nucleic	acids	
research	45,	D865-D876,	doi:10.1093/nar/gkw1039	(2017).	

4	 Mcrae,	J.	F.	et	al.	Prevalence	and	architecture	of	de	novo	mutations	in	
developmental	disorders.	Nature	542,	433-438,	
doi:10.1038/nature21062	(2017).	

5	 Mathelier,	A.,	Shi,	W.	&	Wasserman,	W.	W.	Identification	of	altered	cis-
regulatory	elements	in	human	disease.	Trends	in	Genetics	31,	67-76,	
doi:10.1016/j.tig.2014.12.003	(2015).	



	 55	

6	 Zhang,	F.	&	Lupski,	J.	R.	Non-coding	genetic	variants	in	human	disease.	
Hum	Mol	Genet	24,	R102-110,	doi:10.1093/hmg/ddv259	(2015).	

7	 Spielmann,	M.	&	Mundlos,	S.	Looking	beyond	the	genes:	the	role	of	non-
coding	variants	in	human	disease.	Human	Molecular	Genetics	25,	157-165,	
doi:10.1093/hmg/ddw205	(2016).	

8	 Jeong,	Y.	et	al.	Regulation	of	a	remote	Shh	forebrain	enhancer	by	the	Six3	
homeoprotein.	Nature	Genetics	40,	1348-1353,	doi:10.1038/ng.230	
(2008).	

9	 Benko,	S.	et	al.	Disruption	of	a	long	distance	regulatory	region	upstream	
of	SOX9	in	isolated	disorders	of	sex	development.	J	Med	Genet	48,	825-
830,	doi:10.1136/jmedgenet-2011-100255	(2011).	

10	 Bhatia,	S.	et	al.	Disruption	of	autoregulatory	feedback	by	a	mutation	in	a	
remote,	ultraconserved	PAX6	enhancer	causes	aniridia.	Am	J	Hum	Genet	
93,	1126-1134,	doi:10.1016/j.ajhg.2013.10.028	(2013).	

11	 Weedon,	M.	N.	et	al.	Recessive	mutations	in	a	distal	PTF1A	enhancer	cause	
isolated	pancreatic	agenesis.	Nature	Genetics	46,	61-64,	
doi:10.1038/ng.2826	(2014).	

12	 Lettice,	L.	A.	et	al.	A	long-range	Shh	enhancer	regulates	expression	in	the	
developing	limb	and	fin	and	is	associated	with	preaxial	polydactyly.	
Human	Molecular	Genetics	12,	1725-1735,	doi:10.1093/hmg/ddg180	
(2003).	

13	 Hill,	R.	E.,	Lettice,	L.	A.	&	Hill,	R.	E.	Alterations	to	the	remote	control	of	Shh	
gene	expression	cause	congenital	abnormalities.		(2013).	

14	 Sellick,	G.	S.	et	al.	Mutations	in	PTF1A	cause	pancreatic	and	cerebellar	
agenesis.	Nature	Genetics	36,	1301-1305,	doi:10.1038/ng1475	(2004).	

15	 Noonan,	J.	P.	&	McCallion,	A.	S.	Genomics	of	Long-Range	Regulatory	
Elements.	Annual	Review	of	Genomics	and	Human	Genetics	11,	1-23,	
doi:10.1146/annurev-genom-082509-141651	(2010).	

16	 Naville,	M.	et	al.	Long-range	evolutionary	constraints	reveal	cis-regulatory	
interactions	on	the	human	X	chromosome.	Nature	Communications	6,	
6904,	doi:10.1038/ncomms7904	(2015).	

17	 Whalen,	S.,	Truty,	R.	M.	&	Pollard,	K.	S.	Enhancer-promoter	interactions	
are	encoded	by	complex	genomic	signatures	on	looping	chromatin.	
Nature	Genetics	48,	488-496,	doi:10.1038/ng.3539	(2016).	

18	 Bejerano,	G.	et	al.	Ultraconserved	elements	in	the	human	genome.	Science	
304,	1321-1325,	doi:10.1126/science.1098119	(2004).	

19	 Visel,	A.,	Minovitsky,	S.,	Dubchak,	I.	&	Pennacchio,	L.	A.	VISTA	Enhancer	
Browser	-	A	database	of	tissue-specific	human	enhancers.	Nucleic	Acids	
Research	35,	88-92,	doi:10.1093/nar/gkl822	(2007).	

20	 Blow,	M.	J.	et	al.	ChIP-Seq	identification	of	weakly	conserved	heart	
enhancers.	Nature	Genetics	42,	806-810,	doi:10.1038/ng.650	(2010).	

21	 Kircher,	M.	et	al.	A	general	framework	for	estimating	the	relative	
pathogenicity	of	human	genetic	variants.	Nature	Genetics	46,	310-315,	
doi:10.1038/ng.2892	(2014).	

22	 Shihab,	H.	a.	et	al.	An	integrative	approach	to	predicting	the	functional	
effects	of	non-coding	and	coding	sequence	variation.	Bioinformatics	
(Oxford,	England)	31,	1536-1543,	doi:10.1093/bioinformatics/btv009	
(2015).	



	 56	

23	 Smedley,	D.	et	al.	A	Whole-Genome	Analysis	Framework	for	Effective	
Identification	of	Pathogenic	Regulatory	Variants	in	Mendelian	Disease.	
The	American	Journal	of	Human	Genetics	99,	595-606,	
doi:10.1016/j.ajhg.2016.07.005	(2016).	

24	 Zhou,	J.	&	Troyanskaya,	O.	G.	Predicting	effects	of	noncoding	variants	with	
deep	learning-based	sequence	model.	Nature	Methods	12,	
doi:10.1038/nmeth.3547	(2015).	

25	 McLaren,	W.	et	al.	Deriving	the	consequences	of	genomic	variants	with	the	
Ensembl	API	and	SNP	Effect	Predictor.	Bioinformatics	(Oxford,	England)	
26,	2069-2070,	doi:10.1093/bioinformatics/btq330	(2010).	

26	 Vaser,	R.,	Adusumalli,	S.,	Leng,	S.	N.,	Sikic,	M.	&	Ng,	P.	C.	SIFT	missense	
predictions	for	genomes.	Nature	Protocols	11,	1,	
doi:10.1038/nprot.2015.123	(2015).	

27	 Adzhubei,	I.,	Jordan,	D.	M.	&	Sunyaev,	S.	R.	Predicting	functional	effect	of	
human	missense	mutations	using	PolyPhen-2.	Curr	Protoc	Hum	Genet	
Chapter	7,	Unit7	20,	doi:10.1002/0471142905.hg0720s76	(2013).	

28	 Tennessen,	J.	A.	et	al.	Evolution	and	Functional	Impact	of	Rare	Coding	
Variation	from	Deep	Sequencing	of	Human	Exomes.	Science	337,	64-69,	
doi:10.1126/science.1219240	(2012).	

29	 Walter,	K.	et	al.	The	UK10K	project	identifies	rare	variants	in	health	and	
disease.	Nature	526,	82-90,	doi:10.1038/nature14962	(2015).	

30	 Lek,	M.	et	al.	Analysis	of	protein-coding	genetic	variation	in	60,706	
humans.	Nature	536,	285-291,	doi:10.1038/nature19057	(2016).	

31	 Li,	H.	&	Durbin,	R.	Fast	and	accurate	short	read	alignment	with	Burrows-
Wheeler	transform.	Bioinformatics	25,	1754-1760,	
doi:10.1093/bioinformatics/btp324	(2009).	

32	 Aaron	McKenna,	M.	H.,	1	Eric	Banks,1	Andrey	Sivachenko,1	Kristian	
Cibulskis,1	Andrew	Kernytsky,1	Kiran	Garimella,1	David	Altshuler,1,2	
Stacey	Gabriel,1	Mark	Daly,1,	2	&	and	Mark	A.	DePristo1.	The	Genome	
Analysis	Toolkit:	A	MapReduce	framework	for	analyzing	next-generation	
DNA	sequencing	data.	Genome	Research,	254-260,	
doi:10.1101/gr.107524.110.20	(2009).	

33	 Li,	H.	et	al.	The	Sequence	Alignment/Map	format	and	SAMtools.	
Bioinformatics	25,	2078-2079,	doi:10.1093/bioinformatics/btp352	
(2009).	

34	 Ramu,	A.	et	al.	DeNovoGear:	de	novo	indel	and	point	mutation	discovery	
and	phasing.	Nature	Methods	10,	3-7,	doi:10.1038/nmeth.2611	(2013).	

35	 Siepel,	A.	et	al.	Evolutionarily	conserved	elements	in	vertebrate,	insect,	
worm,	and	yeast	genomes.	Genome	Research	15,	1034-1050,	
doi:10.1101/gr.3715005	(2005).	

36	 May,	D.	et	al.	Large-scale	discovery	of	enhancers	from	human	heart	tissue.	
Nature	Genetics	44,	89-93,	doi:10.1038/ng.1006	(2012).	

37	 Harrow,	J.	et	al.	GENCODE:	the	reference	human	genome	annotation	for	
The	ENCODE	Project.	Genome	Research	22,	1760-1774,	
doi:10.1101/gr.135350.111	(2012).	

38	 Wright,	C.	F.	et	al.	Genetic	diagnosis	of	developmental	disorders	in	the	
DDD	study:	a	scalable	analysis	of	genome-wide	research	data.	The	Lancet	
385,	1305-1314,	doi:10.1016/S0140-6736(14)61705-0	(2015).	



	 57	

39	 Gentleman,	R.	et	al.	Bioconductor:	open	software	development	for	
computational	biology	and	bioinformatics.	Genome	Biology	5,	R80,	
doi:10.1186/gb-2004-5-10-r80	(2004).	

40	 Pollard,	K.	S.,	Hubisz,	M.	J.,	Rosenbloom,	K.	R.	&	Siepel,	A.	Detection	of	
nonneutral	substitution	rates	on	mammalian	phylogenies.	Genome	
Research	20,	110-121,	doi:10.1101/gr.097857.109	(2010).	

41	 Consortium,	R.	E.	et	al.	Integrative	analysis	of	111	reference	human	
epigenomes.	Nature	518,	317-330,	doi:10.1038/nature14248	(2015).	

42	 Lawrence,	M.	et	al.	Software	for	computing	and	annotating	genomic	
ranges.	PLoS	Comput	Biol	9,	e1003118,	doi:10.1371/journal.pcbi.1003118	
(2013).	

43	 Ernst,	J.	&	Kellis,	M.	ChromHMM:	automating	chromatin-state	discovery	
and	characterization.	Nature	Methods	9,	215-216,	
doi:10.1038/nmeth.1906	(2012).	

44	 Samocha,	K.	E.	et	al.	A	framework	for	the	interpretation	of	de	novo	
mutation	in	human	disease.	Nature	genetics	46,	944-950,	
doi:10.1038/ng.3050	(2014).	

45	 Shooshtari,	P.,	Huang,	H.	&	Cotsapas,	C.	Integrative	genetic	and	epigenetic	
analysis	uncovers	regulatory	mechanisms	of	autoimmune	disease.	
bioRxiv,	doi:10.1101/054361	(2016).	

46	 Won,	H.	et	al.	Chromosome	conformation	elucidates	regulatory	
relationships	in	developing	human	brain.	Nature	538,	523-527,	
doi:10.1038/nature19847	(2016).	

47	 Sanyal,	A.,	Lajoie,	B.	R.,	Jain,	G.	&	Dekker,	J.	The	long-range	interaction	
landscape	of	gene	promoters.	Nature	489,	109-113,	
doi:10.1038/nature11279	(2012).	

48	 Mathelier,	A.	et	al.	JASPAR	2016:	A	major	expansion	and	update	of	the	
open-access	database	of	transcription	factor	binding	profiles.	Nucleic	
Acids	Research	44,	D110-D115,	doi:10.1093/nar/gkv1176	(2016).	

49	 Consortium,	G.	T.	The	Genotype-Tissue	Expression	(GTEx)	project.	Nat	
Genet	45,	580-585,	doi:10.1038/ng.2653	(2013).	

50	 McLeay,	R.	C.	&	Bailey,	T.	L.	Motif	Enrichment	Analysis:	a	unified	
framework	and	an	evaluation	on	ChIP	data.	BMC	bioinformatics	11,	165,	
doi:10.1186/1471-2105-11-165	(2010).	

51	 Duncan,	B.	K.	&	Miller,	J.	H.	Mutagenic	Deamination	of	Cytosine	Residues	
in	DNA.	Nature	287,	560-561,	doi:DOI	10.1038/287560a0	(1980).	

52	 McVean,	G.	A.	et	al.	An	integrated	map	of	genetic	variation	from	1,092	
human	genomes.	Nature	491,	56-65,	doi:10.1038/nature11632	(2012).	

53	 Kosmicki,	J.	A.,	Samocha,	K.	E.,	Howrigan,	D.	P.	&	Sanders,	S.	J.	Refining	the	
role	of	de	novo	protein	truncating	variants	in	neurodevelopmental	
disorders	using	population	reference	samples.	Nature	Genetics,	1-18	
(2016).	

54	 Chen,	C.	T.	L.,	Wang,	J.	C.	&	Cohen,	B.	A.	The	Strength	of	Selection	on	
Ultraconserved	Elements	in	the	Human	Genome.	Am	J	Hum	Genet.	80,	
692-704,	doi:10.1086/513149	(2007).	

55	 Derti,	A.,	Roth,	F.	P.,	Church,	G.	M.	&	Wu,	C.-t.	Mammalian	ultraconserved	
elements	are	strongly	depleted	among	segmental	duplications	and	copy	
number	variants.	Nature	Genetics	38,	1216-1220,	doi:10.1038/ng1888	
(2006).	



	 58	

56	 Carlson,	J.	et	al.	Extremely	rare	variants	reveal	patterns	of	germline	
mutation	rate	heterogeneity	in	humans.	bioRxiv,	
doi:https://doi.org/10.1101/108290	(2017).	

57	 Koren,	A.	et	al.	Genetic	variation	in	human	DNA	replication	timing.	Cell	
159,	1015-1026,	doi:10.1016/j.cell.2014.10.025	(2014).	

58	 Kong,	A.	et	al.	Fine-scale	recombination	rate	differences	between	sexes,	
populations	and	individuals.	Nature	467,	1099-1103,	
doi:10.1038/nature09525	(2010).	

59	 Andersson,	R.	et	al.	An	atlas	of	active	enhancers	across	human	cell	types	
and	tissues.	Nature	507,	doi:10.1038/nature12787	(2014).	

60	 Gao,	T.	et	al.	EnhancerAtlas:	a	resource	for	enhancer	annotation	and	
analysis	in	105	human	cell/tissue	types.	Bioinformatics	32,	3543-3551,	
doi:10.1093/bioinformatics/btw495	(2016).	

61	 Sandelin,	A.	et	al.	Arrays	of	ultraconserved	non-coding	regions	span	the	
loci	of	key	developmental	genes	in	vertebrate	genomes.	BMC	Genomics	5,	
99,	doi:10.1186/1471-2164-5-99	(2004).	

62	 Kryukov,	G.	V.,	Pennacchio,	L.	a.	&	Sunyaev,	S.	R.	Most	rare	missense	
alleles	are	deleterious	in	humans:	implications	for	complex	disease	and	
association	studies.	The	American	Journal	of	Human	Genetics	80,	727-739,	
doi:10.1086/513473	(2007).	

63	 Lunter,	G.,	Ponting,	C.	P.	&	Hein,	J.	Genome-wide	identification	of	human	
functional	DNA	using	a	neutral	indel	model.	PLoS	Comput	Biol	2,	e5,	
doi:10.1371/journal.pcbi.0020005	(2006).	

64	 Turner,	Tychele	N.	et	al.	Genome	Sequencing	of	Autism-Affected	Families	
Reveals	Disruption	of	Putative	Noncoding	Regulatory	DNA.	The	American	
Journal	of	Human	Genetics	98,	58-74,	doi:10.1016/j.ajhg.2015.11.023	
(2016).	

 
 



 59 

Chapter 3: Mutation rate and selective constraint in the non-coding genome 
 

Introduction 

Heterogeneity in the human germline mutation rate 

 Identifying associations between de novo mutations and disorders such as Autism 

Spectrum Disorder (ASD) or Developmental Disorders (DD) relies on a well-calibrated model 

of the underlying mutation rate, particularly if a large number of unaffected siblings or 

healthy trios are unavailable. Many methods for detecting positive and negative selection 

also rely on well-calibrated models of the germline mutation rate1,2. Assuming a 

homogeneous mutation rate across the whole genome can confound tests of purifying 

selection, increasing the false positive rate in hypomutable regions, and the false negative 

rate in hypermutable regions. 

 Historically, the mutation rate in humans has been inferred by comparing divergence 

between closely related species, for example other great apes3. These evolutionary methods 

have a number of drawbacks, including the difficulty in deconvoluting changes in mutational 

processes, generation times, and selective pressure. Furthermore, evolutionary measures 

have difficulty in distinguishing changes due to mutations from changes due to 

recombination-associated events such as biased gene conversion2,4.  

The rapid decline in sequencing cost has resulted in the sequencing of thousands of 

human exomes and whole genomes in recent years and rare variation in these individuals 

has also been used to model the germline mutation rate. These studies have focused on 

rare and putatively neutral sites (e.g. synonymous sites with minor allele frequency < 0.1%) 

where the mutational origin is likely recent and selection has had little time to act5,6. Under 

these assumptions, rare synonymous variation will closely reflect the underlying mutational 

processes6,7. 

Furthermore, increasing numbers of whole exome and whole genome sequenced 

trios have allowed more direct estimates of the germline mutation rate. Trio sequencing 

data has the advantage of measuring de novo variation directly, but at current sample sizes, 

the number of mutations observed is still low, approximately 100,000 de novo mutations in 

the largest study as of writing. 
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Trio sequencing studies also allow for the parent-of-origin to be determined for a 

large fraction of mutations. Using these data, the contribution of maternal and paternal age 

to the SNV mutation rate has been quantified8. Subtly different mutational spectra in the 

maternal and paternal germline have also been characterised, including an enrichment for 

C>T mutations with increasing paternal age, and increasing C>G mutations with maternal 

age with particularly striking maternal-biased hotspots in a small number of sub-

chromosomal segments8,9. These maternal-biased hotspots coincide with large 

hypermutable regions in the genome, most strikingly apparent on chromosomes 2,7,8,9, 

and 16. Thus, trio sequencing data can be used to estimate the total human mutation rate, 

but may not be sufficient to detect heterogeneity, except on a megabase scale.  

Studies using de novo mutations, rare variants, as well as evolutionary comparisons 

to detect heterogeneity in the underlying mutation rate have identified a number of 

genomic features associated with mutation rate and spectra. Local sequence context has 

been shown to have a significant influence on the per-base mutation rate. SNV mutation 

models incorporating triplet context (the base before and after the mutating base) capture 

variation in the mutation rate and have been used extensively in rare disease studies and 

models of selective constraint7. Extending beyond the triplet context, pentamer (5-bases) or 

heptamer (7-bases) context centred on the nucleotide of interest further improve modelling 

of DNMs and rare variants5.  

Beyond sequence context, other features related to cellular processes and 

chromatin modifications have been linked to mutation rate heterogeneity. Later replicating 

regions of the genome have been shown to accumulate a greater number of mutations10. A 

number of mechanisms have been proposed for this phenomenon, including exhaustion of 

the pool of dNTPs, causing polymerase stalling and that later replicating regions lack 

sufficient time to undergo mismatch repair. Increased recombination rate has also been 

linked to increase SNP density and mutation rate11,12. The proposed mechanism for this 

relationship is the mutagenic effect of double strand breaks, which are required for 

recombination. Two chromatin marks characteristic of repression, H3K27me3 and 

H3K9me3, have also been suggested to influence the germline mutation rate5, perhaps by 

reducing accessibility of the DNA repair machinery. Transcription factor binding has also 

been suggested to influence mutation rate13. 



 61 

Despite analyses implicating different genomic features and sequence features in 

germline mutation rate heterogeneity, there are no widely used models incorporating these 

features together. Furthermore, the heterogeneity in the germline mutation rate has not 

been fully explained by the features studied to date, motivating continued work in 

characterising factors contributing to variation in the germline mutation rate. 

 

Measuring selective constraint in the human genome 

Putative functional DNA can be identified by using alignments between multiple 

species to detect orthologous segments and testing the divergence of these segments 

relative to a neutral model of evolution. Based on this approach, the majority of putative 

functional sequence is thought to be non-coding14. A small set of these elements show 

extreme sequence conservation and were originally dubbed ‘ultra-conserved’15. These 

evolutionary methods have also suggested that non-coding sequence may be more 

intolerant to small insertions and deletions than single-nucleotide changes16. 

More recently, different population genetics methods have been applied to large 

sets of exome and whole genomes sequences to detect selective constraint in humans. In 

sites or regions undergoing purifying selection, there will be a greater proportion of 

observed rare alleles compared to sites or regions evolving neutrally. These shifts in the 

variant frequency spectrum (VFS) have been quantified using different methods including 

the proportion of singletons (the number of polymorphic sites observed once in a 

population sample of unrelated individuals divided by the total number of observed 

polymorphic sites) as well as methods such as RVIS that quantify the difference between 

two allele frequency distributions6,17,18. As sample sizes have increased beyond tens of 

thousands of individuals, the assumptions of the infinite sites model have been broken for 

some classes of variation with high mutation rates (e.g. CpG sites) and measures of selection 

based on the variant frequency spectrum have required revision6. The mutability adjusted 

proportion of singletons (MAPS) is an extension of the proportion of singletons measure 

that corrects for biases due to hypermutability6. 

Yet another way to quantify purifying selection is to compare the number of 

observed rare variants to the number of expected variants under a neutral model. This 

approach has been applied to protein-coding genes to identify genes intolerant of protein 
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truncating variation6. Using a germline mutation rate model, the expected number of 

protein-truncating variants can be determined for each gene in the absence of selection. 

Genes with few observed variants relative to the number expected are annotated as loss of 

function intolerant. The degree of intolerance can be quantified as a ratio of observed 

divided by expected with an associated Z-score, or using a mixture model to identify genes 

with a high ‘probability of loss of function intolerance’ (pLI)6. The pLI score has been utilised 

in a number of different contexts to prioritise disease causing variants. For example, 

Kosmicki et. al show that the enrichment for damaging DNMs in ASD and DD patients can be 

explained almost entirely by enrichment in genes with pLI > 0.9, which represent only ~17% 

of all genes19. This approach has also been applied to identify protein-coding genes or gene 

sub-regions that are intolerant to missense variation20.  

Using data from approximately 10,000 deep whole genome sequences, Di Iulio et. al 

developed the ‘context dependent tolerance score’ (CDTS), to measure selective constraint 

genome-wide. Like the pLI and MAPS scores, which use the triplet sequence context to 

correct for heterogeneity in the germline mutation rate, the CDTS model uses the heptamer 

sequence context. However, the CDTS method suffers from a few potential drawbacks, most 

notably failure to model germline mutation rate heterogeneity and background selection21 

(the loss of heterogeneity or depression of allele frequencies at a site due to selection on 

nearby sites due to linkage). The pLI and MAPS scores also do not account for mutation rate 

heterogeneity beyond sequence context, but failing to account for mutation rate 

heterogeneity in coding regions is likely less impactful due to greater similarity in features 

such as replication timing and recombination rate compared to non-coding regions22. 

Both the evolutionary methods and the population genetics methods described 

above rely on a well-calibrated model of neutral evolution or the germline mutation rate. 

The risk of a mis-specified mutation rate causing false positive or false negative rates can be 

mitigated in protein-coding genes by testing for enrichment or depletion of variation in 

synonymous variants alongside missense or protein-truncating variants6. In the event that a 

gene has a higher mutation rate than predicted under the mutation rate model, this will be 

apparent as an increased number of synonymous sites. While these mutation rate 

differences are not modelled explicitly, genes with great deviations in synonymous rates can 

be flagged for removal or further analysis. In non-coding elements, it is more challenging to 

identify likely benign variation that can be assumed to be shaped almost entirely by 



 63 

mutation and not selection. As a result, negative selection will be confounded by 

hypomutability. In the case of the CDTS score discussed above, non-coding regions in the 

highest percentile CDTS score are highly enriched for promoter marks, which Di Iulio et. al 

interpret as evidence of strong purifying selection on promoters. However, promoters are 

enriched for CpG sites which are highly mutable when methylated, but CpG sites are often 

hypomethylated in promoters. As a result, a model based only on sequence and not 

incorporating methylation status will greatly overestimate the mutation rate, leading to a 

false positive prediction of constraint.  

Detecting selectively constrained non-coding elements has the potential to greatly 

improve the signal-to-noise ratio in disease association studies in non-coding elements. 

However, identification of constrained elements relies critically on a robust germline 

mutation rate model, and a sufficient number of deep whole genome sequences to ensure 

power to detect modest selective constraint. The analyses I describe in this chapter make 

use of over 28,000 deep whole genome sequences and more than 1,500 whole genome 

sequenced trios to construct an improved model of germline mutation rate and apply this 

model to detect selective constraint genome-wide.  

Methods 

De novo mutations from 1,548 healthy trios 

De novo mutations (DNMs) from 1,548 healthy trios described in Jonsson et. al 2017 were 

downloaded from the online supplementary information: 

https://www.nature.com/articles/nature24018#supplementary-information. These DNMs 

were lifted over from GRCh38 to GRCh37 using the UCSC LiftOver tool (https://genome-

store.ucsc.edu/) and filtered to include only single nucleotide changes, leaving a total of 

100,714 de novo SNVs. The DNMs were intersected with the regions used to build the model 

in Samocha et. al, 2014. These observed number of DNMs per triplet were compared to the 

fraction of triplets in the reference genome to determine the per triplet mutation rate.  

 

Quality control of allele frequency data from 15,000 whole genome sequenced individuals 

from the genome aggregation database (gnomAD) and 13,000 individuals from the 

BRIDGE consortium 
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The gnomAD consortium (http://gnomad.broadinstitute.org/about) runs a unified 

bioinformatics pipeline on a large number of exome and whole genome sequencing samples 

and provides access to allele frequency data and other meta-data including depth of 

coverage across samples. Depth of coverage was included as a covariate for in the mutation 

rate model and all analyses related to selective constraint. All sites with low-quality variants 

(defined by the gnomAD random forest model) were flagged as low-quality, and the 

proportion of variants called as low quality in a given element was also included as a 

covariate. 

 

The BRIDGE project also runs a unified bioinformatics pipeline for whole genome sequence 

data in a collection of rare disease cohorts. Coverage for every base as well as variant 

quality metrics provided were available, and as with the gnomAD sites, depth of coverage 

and the proportion of low quality variants was included as a covariate in the mutation rate 

model and all analyses related to selective constraint. 

 

All analyses in the selective constraint section were run on the full set of 28,000 deep whole 

genome sequences from unrelated individuals as well as a subset of 15,000 whole genome 

sequenced from non-Finnish Europeans defined by principal components analysis. The 

number of rare variants in 50kb bins genome-wide was highly correlated between the full 

set of individuals compared to using only the non-Finnish Europeans (r^2 = 0.93, p < 2.2e-

16). As a result, I performed all analyses with the full set of 28,000 individuals as the greater 

number of individuals improves power to detect depletion or enrichment for rare variation. 

 

Tri-nucleotide mutation rate table based on 100,714 observed mutations 

A custom R script was used to determine the trinucleotide sequence context for 100,714 de 

novo SNVs identified in 1,548 healthy trios. These de novo SNVs were used to construct a 

table describing the empirical mutation rate for each of 96 possible trinucleotide changes 

(e.g CCG -> CTG is one such change where CCG is the reference sequence and a C to T DNM 

is observed). 

 

Genomic features included in the germline mutation rate random forest regression model 
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To model the variation in mutation rate due to genomic features, annotations in different 

functional categories were assembled: 

- Recombination rate 

The 1000 genomes Phase 3 recombination map23 

Recombination rate in the male germline24.  

Recombination rate in the female germline24. 

 

- Replication timing 

Replication timing in lymphoblastoid cell lines25. 

Replication timing in embryonic stem cells26. 

 

- Chromatin features 

ATAC-seq data in human spermatogonial stem cells27 

ATAC-seq data in human embryonic stem cells27 

Embryonic stem cell H3K9me3, H3K27me3, H3K4me3, H3K4me1, H3K36me3, 

and H3K9ac from the Roadmap Epigenome Project28 

Ovary H3K9me3, H3K27me3, H3K4me3, H3K4me1, H3K36me3, and H3K9ac from 

the Roadmap Epigenome Project28 

CTCF binding sites from the ENCODE project29 

 

Modelling genome-wide regional variation in mutation rate using random forest 

regression 

The expected variation in sites predicted to be evolving neutrally based on the PhyloP score 

(PhyloP < 1 and PhyloP > -1) was calculated in 50kb bins genome-wide using the 

trinucleotide mutation rate model from Samocha et. al with the correction for CpG 

methylation status described in Chapter 2. Dividing the observed variation in these 50kb 

bins by the expected variation yielded the observed/expected ratio based on sequence 

context alone. 

 

In order to determine the contribution to variation in observed/expected ratio from 

genomic and technical features, a random forest regression model was used. Seventy-

percent of the data was used for hyperparameter tuning and model selection using 10-fold 
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cross validation. The remaining thirty percent of data was held out to evaluate the model. 

The model was also evaluated on a completely independent set of de novo mutations 1,548 

trios described in Jonsson et. al, 2017. 

 

Measuring selective constraint using rare single nucleotide variants 

A linear model was trained to predict number of observed variants given the mutation rate 

of a genomic segment using only sites with PhyloP between -1 and 1 in the ENCODE 

Ancestral Repeat sequences with >25x coverage in BRIDGE and gnomAD and >80% high 

quality variant calls in BRIDGE and gnomAD. Given a new genomic element, set of elements, 

or set of sites, the mutation rate was determined from the mutation rate model discussed 

above and the number of expected variants was generated using this linear model. Dividing 

the observed number of variants by the number of expected variants yields the 

observed/expected ratio. 

 

Measuring selective constraint using rare indels 

The number of rare indel variants per megabase (indels per megabase, or IPM) was first 

calculated for the ENCODE Ancestral Repeat sequences with >25x coverage in BRIDGE and 

gnomAD and >80% high quality variant calls in BRIDGE and gnomAD. The number of de novo 

indel calls per megabase (dnIPM) in 1,548 DECODE trios was also determined.  

 

Given a new set of genomic elements of interest, for example DHSs, the IPMDHS can be 

determined as above. The IPMDHS is then multiplied by dnIPMAR /dnIPMDHS and the 

observed/expected value is:  

 

dnIPMAR
dnIPMDHS

∗ IPMDHS	
IPMAR

 

 

Including the de novo indel rates is critical, as elements with dnIPMDHS < dnIPMAR will appear 

under selective constraint, when in fact the paucity of rare variants is due to differences in 

mutation rate. Due to the relatively small number of observed de novo indels, Indel 

constraint is only feasible for element sets with a sufficient number of observations. For this 

work, only element sets with at least 100 expected mutations under the neutral model were 
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included, limiting the noise introduced by the mutation term to approximately 20%, 

assuming the rate of indels follows a Poisson distribution. 

 

Evolutionary conservation using PhyloP and PhastCons 

PhastCons scores describing degree of evolutionary conservation at the element level in 

vertebrates and primates were retrieved in R using the Bioconductor30 package 

GenomicScores 

(http://bioconductor.org/packages/devel/bioc/vignettes/GenomicScores/inst/doc/Genomic

Scores.html). 

 

PhyloP scores represent the –log10 p-value that a given nucleotide is evolving neutrally31 

(Pollard et. al, 2010). A tabix file of pre-computed PhyloP vertebrate 100-way scores and 

primate 46-way scores were used to annotate rare variants and de novo mutations. 

 

ENCODE open chromatin clusters 

All of the ENCODE V3 DNase I hypersensitive peaks were overlapped to generate singly-

linked clusters. These clusters were downloaded from 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseCluster

ed/wgEncodeRegDnaseClusteredV3.bed.gz. 

 

Simulations to determine the power to detect selective constraint in non-coding elements  

Random segments of the required size (10bp, 20bp, 100bp, 200bp) were selected from the 

ENCODE V3 DNase I hypersensitivity sites and the mutation rate and expected amount of 

rare variation under a neutral model was calculated. To simulate selective constraint, the 

amount of observed variation was sampled from a Poisson distribution with lambda = 

0.8*expected. This simulated constraint is approximately equal to the deficit of variation 

observed in the average protein-coding exon, thus is a conservative estimate if constrained 

non-coding elements are less constrained, on average, than protein-coding exons. The 

observed/expected ratio and Z score was calculated from the simulated observed count and 

the expected count. The proportion of elements with Z < -2.58 was recorded as the power 

to detect a true association. This Z-score results in a false discovery rate of approximately 

10%, under the assumption of ~5% of the genome under selective constraint, as a Z-score of 
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less than or equal to -2.58 would be achieved under the null model in ~1/200 tests (false 

positive rate of 0.005). 

 

Conserved transcription factor binding sites  

Conserved transcription factor binding sites based on the Transfac database were 

downloaded from the UCSC genome browser (http://rohsdb.cmb.usc.edu/GBshape/cgi-

bin/hgTables?db=hg19&hgta_table=tfbsConsSites). This set includes any binding sites that 

successfully align in human, mouse, and rat and are predicted to bind based on position 

weight matrices in the Transfac Matrix Database (v7.0). 

 

Analysing selective constraint stratified by number of active tissue groups 

Non-coding elements defined by DNase hypersensitive sites were annotated with a 

predicted chromatin state in each of the following ten tissue groups from the Roadmap 

Epigenome Project data: 

- Embryonic stem cells (Roadmap IDs: "E002", "E008", "E001", "E015", "E014", 

"E016", "E003", "E024") 

- Blood (Roadmap IDs: "E062", "E034", "E045", "E033", "E044", "E043", "E039", 

"E041", "E042", "E040", "E037", "E048", "E038", "E047") 

- Hematopoietic Stem Cell and B Cell (Roadmap IDs: "E029", "E031", "E035", 

"E051", "E050", "E036", "E032", "E046", "E030") 

- Mesenchymal Cells (Roadmap IDs: "E026", "E049", "E025", "E023") 

- Epithelial Cells (Roadmap IDs: 

"E055","E056","E059","E061","E057","E058","E028","E027") 

- Adult Brain (Roadmap IDs: "E071", "E074", "E068", "E069", "E072", "E067", 

"E073", "E070") 

- Adult Muscle (Roadmap IDs: "E100", "E108","E107") 

- Adult Heart (Roadmap IDs: "E104", "E095", "E105", "E065") 

- Fetal Tissues (Roadmap IDs: E082", "E081", "E080", "E083", "E084", "E085", 

"E086", "E088", "E089", "E090", "E092", "E093", "E017") 

- Smooth Muscle (Roadmap IDs: "E078", "E076", "E103", "E111") 
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An element was considered active in a tissue group if it was annotated as an enhancer in 

any of the constituent tissues (Roadmap IDs above). The obs/exp ratio was calculated for 

elements grouped by the number of tissue groups they were active in (from 0 to 10). 

 

Results Section 3.1: Modelling the human germline mutation rate 

Results Section 3.1.1. Improved modelling of the human germline mutation rate. 

 

 The reduction in cost of whole genome sequencing has led to adoption of this 

technology in a number of different research efforts worldwide. Many of these efforts are 

focused around generating diagnoses in rare or common disease, but whole genome 

sequence data is also of general utility to address questions in population genomics. With 

this goal in mind, researchers at the genome aggregation database (gnomAD) have collected 

data from dozens of such studies and processed the raw data through a unified quality 

control and variant calling pipeline. To date, data from more than 15,000 deep whole 

genome sequences have been released by the gnomAD consortium. The latest gnomAD 

release (r2.0.2) was downloaded for use in these analyses. This release includes allele 

counts at each polymorphic site and metadata including depth of coverage. The BRIDGE 

consortium has sequenced more than 13,000 deep whole genomes from individuals with 

different rare diseases and in some cases, unaffected family members. Allele counts from 

the BRIDGE and gnomAD data were combined and annotated with depth of coverage and 

variant call quality (see Methods). I also downloaded high-quality de novo mutations from 

1,548 whole genome sequenced healthy trios8 in order to validate analyses on the germline 

mutation rate derived from rare variant data (see Methods). 

 The widely used germline mutation rate model from Samocha, 2014 described 

previously relies on a 96-row table that describes the mutation rate from one triplet 

sequence to another7. This table was derived using polymorphism data in orthologous 

chimp and human sequence. As it has been shown that there have been changes in triplet-

specific mutation rates between humans and other great apes, as well as within human 

populations32,33, I reasoned that building this table directly from high-quality DNMs would 

be more accurate. To build this table, I intersected the DNMs with the same set of regions 

used to build the original mutation rate table (see Methods). 
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The triplet mutation rates derived from de novo mutations differed slightly from 

those derived from evolutionary estimates, notably in the rate of mutations at CpG sites. 

The DNM-based triplet model modestly but significantly outperforms the triplet model 

derived from polymorphisms in orthologous sequence in predicting the observed number of 

variants with MAF < 0.1% in 2kb bins genome-wide (r2 = 0.61 compared to r2 = 0.64). As 

described in Chapter 2, the addition of CpG methylation status also improved the model fit. 

A number of additional genomic features have been previously associated with 

differences in rare variant density and divergence over evolutionary time, specifically 

replication timing, recombination rates, and H3K9me3, with conflicting evidence for 

H3K27me34,5,10. As a previous study by Carlson et. al, used rare variant data from just 3,000 

individuals to test potential mutation-associated germline features, I reasoned that with 

over 28,000 deep whole genomes as well as mutations from whole genome sequenced 

trios, an analysis to test association across a wide range of potential associated features 

would have much greater power. Furthermore, Carlson et. al was descriptive, but did not 

provide a model to predict the mutation rate given a sequence and set of genomic 

features5. Such a model integrating known sequence-associated variation in mutation rate 

with genomic features would be a useful tool in disease-association studies, population 

genomic models of selection, and for identifying ‘mutational outliers’ that are not well-

explained by known mutation-associated futures which may provide insight into novel 

mutational mechanisms. 

 I reasoned that rare variants in deep whole genome sequences could be used to 

assess variation in the germline mutation rate independent of selection by focusing only on 

sites that are likely to be evolving neutrally. While our understanding of the ‘regulatory 

code’ does not allow for identification of benign sites to the same degree of certainty as in 

protein-coding genes, I reasoned that nucleotide level evolutionary conservation could be a 

useful proxy. I annotated every base genome-wide with the PhyloP score (see Methods). 

Sites with PhyloP greater than one (referred to as ‘conserved sites’ going forward) had on 

average 25% fewer variants than sites with PhyloP less than 1 and greater than -1 (referred 

to as ‘neutrally evolving sites’ going forward). There was no significant difference in the 

mutation rate between conserved sites and neutral sites, indicating that the deficit of 

variation observed in the conserved sites is likely the result of purifying selection. Taken 

together, these results imply that, in the aggregate, sites predicted to be evolving neutrally 
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by PhyloP are under minimal purifying selection and can be used to quantify the background 

mutation rate. 

 I compiled data from twenty-six different sources representing established or 

potential mutation-associated genomic features including replication timing, recombination 

rate, and chromatin marks from the male and female germline (see Methods). I also 

included technical covariates including depth of coverage, presence of low complexity 

repeats34, and variant quality to quantify the amount of variation that is attributable to 

technical sources rather than variation in mutation rate. Finally, I included the proportion of 

polymorphisms observed split across the six different 1mer possibilities (C>T, C>A, C>G, T>A, 

T>C, T>G). Including this feature was motivated by the observation that a subset of highly 

hypermutable regions of the genomes are enriched for C>G mutations which are high bias 

toward maternal-origin8,9. Unlike other genomic features, associations with this feature may 

not necessarily have a clear mechanistic interpretation, but are nonetheless useful to model 

mutation rate heterogeneity, or generate hypotheses for the source of mutational 

heterogeneity based on known mutational signatures, for example those found in the 

Cosmic database (https://cancer.sanger.ac.uk/cosmic).  

 I then split the genome into non-overlapping segments and annotated these 

segments with the number of observed rare putatively neutral variants, and the number 

expected given the mutation rate based on sequence context alone. The ratio of observed 

to expected variation was fit using a random forest regression (RFR) on a randomly selected 

subset of the two-kilobase segments (the ‘training’ set). The performance of the model was 

then tested on a held-out subset (the ‘test’ set) (see Methods). I hypothesized that different 

genomic features may influence the mutation rate at different length scales. Thus, a 

separate model was trained for input segments of size 2kb, 10kb, 50kb, 200kb, and 1Mb.  

Incorporating genomic features substantially improved prediction of rare variation 

over sequence context and technical covariates alone across all of the different length 

scales, with the largest length scales showing the greatest improvement (Figure 1A), as 

variation in sequence context plays a larger role for smaller regions, while genomic features 

dominate over larger length scales where sequence context becomes more homogeneous 

(Figure 1B).  
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Figure 1 Modelling heterogeneity in the germline mutation rate. (a) Correlation between different model features. (b) adding genomic features and polymorphism nucleotide 

signatures (1mer) improves prediction of level of rare variation in different sized genomic bins. (c) Random forest regression feature importance shows decreasing importance of 

sequence context at larger length scales, and increased importance of chromatin features. (d) adding genomic features to mutation rate model improves prediction of de novo 

mutation rates. 



 73 

Figure 2A shows the observed/expected values in 2kb bins across chromosome 8 for 

the model incorporating sequence context and technical covariates compared to the model 

incorporating sequence context, technical covariates, and genomic features. As the model 

was trained using rare variant data, which may not accurate reflect the underlying mutation 

rate, I sought to validate this model using 100,714 de novo SNVs from 1,548 healthy trios6. 

De novo SNVs will more closely reflect the mutation rate independent of selection, but are 

fewer in number than rare variants, motivating the choice to train using rare variant data, 

and validate using the DNMs. To validate the model performance, I ordered all of the 2kb 

bins genome-wide based on their predicted deviation from the mutation rate based on 

sequence context alone. Splitting the ordered bins into deciles, the expected number of de 

novo mutations was estimated for each bin using the sequence context-based model as well 

as the model including genomic features. The model including genomic features was a 

better predictor of the DNM rate than the model based on sequence context alone (Figure 

2B). 
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Figure 2 Visualising and validating the improved germline mutation rate model. (a) Observed over 

expected ratios across chromosome 2. Calculating the expectation from the sequence context only (red 

dots) and using the genomic features and sequence context (blue dots). (b) All 2kb elements genome-wide 

ordered by their observed enrichment of rare variation predicted rare variant enrichment. The enrichment 

of de novo mutations in each bin was calculated using the model based on sequence context only (red dots) 

and the model using genomic features and sequence context (blue dots). The mutation rate model 

incorporating genomic features was a closer fit to the observed number of de novo mutations. 

 

Results Section 3.1.2. Genomic features associated with hypermutability 

This random forest regression approach detailed in Section 3.1.1. identified significant 

associations between the rate of rare likely neutral variation and a number of different 

genomic features (Figure 1C). This analysis recapitulated several known mutagenic features. 

Increase in recombination rate by one standard deviation was associated with an increase in 
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mutation rate of approximately 0.5% - 1%. Replication timing had a modest but significant 

effect (increase in mutation rate of 0.2% per standard deviation increase in replication 

timing). In somatic tissues, replication timing has been observed as one of the primary 

determinants of mutation rate, whereas these results suggest that replication timing has a 

significant, but overall modest effect on variation in mutation rate in the germline.  

I observed a strong positive correlation between the proportion of C>G polymorphisms 

and the mutation rate (mutation rate increase of 4.6% per standard deviation increase in 

C>G proportion), consistent with striking sub-chromosomal mutation hot-spots identified 

previously on chr2, chr7, chr8, chr9, and chr168,9. Re-analysing the DNMs from Jonsson et. al 

shows that regions with strong enrichment for maternal biased C>G also exhibit a maternal 

bias for other mutation signatures, and a paternal bias for C>T mutations. The DNM counts 

in two megabase bins on chromosome 8, which has a mutational hotspot on the first 40 

megabases of the chromosome, are shown in Figure 3A, B (enrichment for rare variation is 

also shown in Figure 2A). 
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Figure 3 Hypermutable elements with C>G polymorphism signature. (a) De novo single nucleotide 

variants of maternal origin and (b) paternal origin in 2Mb bins across chromosome 8 stratified by the 

reference and alternate base to illustrate the difference in mutational signature between maternal 

and paternal derived mutations.   

Even after removing chromosomes 2,7,8,9, and 16 which show large regions of extreme 

enrichment for C>G polymorphisms, we detect an association between this feature and 

increased mutation rate on other chromosomes, indicating that the phenomenon 

underlying these extreme events may be pervasive across the genome. Previous work 

describing this phenomenon has posited a role for recombination in generating these 

hotspots. I found a significant enrichment for maternal as well as paternal recombination 

hotspots in hypermutable elements with C>G polymorphism rates in the top decile, 

supporting previous work suggesting a role for recombination in these mutational hotspots. 
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I next sought to take a more unbiased approach to identify patterns underlying these 

hypermutable elements. I supplied maternal and paternal phased mutations to Raheleh 

Rahbari, a collaborator in the Voet group at the Wellcome Trust Sanger Institute, who 

performed non-negative matrix factorisation to detect mutation signatures separately in the 

maternally and paternally phased DNMs. DNMs of maternal and paternal origin both 

showed a strong contribution from Signature 1 (spontaneous deamination of 5-

methylcytosine) and Signature 5 (unknown etiology) which were shown to predominate in 

the Germline by Rahbari et. al, 2016. The maternally phased DNMs also showed a strong 

contribution from Signature 3 (which has been linked with double strand break repair), 

supporting the hypothesis that double strand breaks in the maternal germline, perhaps due 

to recombination, are contributing to the enrichment for DNMs, particular C>G changes, in 

these regions. In contrast, there was no evidence for Signature 3 in the paternally phased 

DNMs or in DNMs in regions of the genome not enriched for C>G polymorphisms.  

An inverse relationship between RNA expression level and mutation rate has been 

reported in somatic tissues based on analysis of whole-genome sequenced tumours and 

matched normal tissues by The Cancer Genome Atlas (TCGA)35,36. However, analyses in the 

germline based on evolutionary divergence and more recently, analysis of whole exome 

sequenced trios has suggested the opposite effect, whereby higher expression is associated 

with a higher mutation rate37. I tested the relationship between density of rare variation 

and RNA expression levels in the testis based on the GTEx data set. Consistent with previous 

reports in the germline, I detected a strong positive relationship between increased 

expression and density of rare variation as well as de novo mutations. Notably, this 

relationship was only evident in coding sequence, not in the non-coding intronic sequence. 

Protein-coding exons on the most highly expressed decile of transcripts had approximately 

25% more DNMs than the lowest expressed decile of protein-coding exons (Figure 4). 

 



 78 

 

 

 
Figure 4 Association between mutation rate and expression in the ovaries and testis. Protein-coding 

exons were split into deciles based on transcript levels in ovary and testis from the GTeX project. 

Observed de novo mutations were compared to the expectation, generated using the random forest 

regression mutation rate model and show a positive correlation between transcript level and 

observed mutation rate that is not captured in the existing model. 

 

It is possible that this apparent hypermutability in coding sequence could actually be 

explained by a fraction of mutations in highly expressed genes in the testis conferring a 

selective advantage by increasing spermatogonial stem cell proliferation or sperm motility. I 

reasoned that if this was the case, there would be an enrichment for non-synonymous 

changes relative to synonymous changes in the highly expressed genes compared to the 

lowly expressed genes. I compared the fraction of DNMs predicted to be protein-truncating, 

missense, and synonymous in each transcription decile and did not find any evidence for 

higher-than-expected rates of missense or protein-truncating mutations compared to 

synonymous changes that might suggest this observation was driven by a selective 

advantage in sperm or sperm progenitors. 

After incorporating known and suspected mutation-associated genomic features into 

the mutation rate model, there were still genomic regions with a significant excess of rare 

variation. These genomic regions were also enriched for de novo mutations, indicating that 

the enrichment for rare variation is likely due to an elevated mutation rate, not selection or 
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sources of technical variation. Thus, while the mutation rate model developed here is an 

improvement on the existing model based on sequence context alone, there is still 

opportunity for improvement, particularly in modelling finer scale variation in mutation 

rate. CTCF binding has been shown to be associated with increased mutation rate13 and 

other transcription factors may have also increase the mutation rate when bound. Better 

understanding of mutation rate heterogeneity in the germline will be possible as tens of 

thousands of whole genome trio sequencing data sets become available – these next steps 

are discussed in greater detail in the Discussion. 

 

Results Section 3.2: Measuring selective constraint in regulatory elements genome-

wide 

Results Section 3.2.1. Patterns of purifying selection in non-coding elements genome-wide 

 
 The degree of selective constraint on a non-coding sequence can be expressed as a 

ratio of observed variation divided by expected, with elements under stronger constraint 

having lower observed/expected ratios. The germline mutation rate model discussed in 

section 3.1.1 was used to calculate the mutation rate for approximately 46,000 

Human/Chimp Ancestral Repeats. A linear regression was fit to predict the observed 

number of rare single nucleotide variants in likely neutrally evolving bases given the 

mutation rate in these neutral bases. This approach is analogous to the approach taken in 

Lek et. al, 2016 in the coding regions using synonymous variation, which is expected to be 

under little purifying selection, to calibrate the model. 

 This model was applied to 1.7 million DNase I hypersensitive sites, 22,000 3’ UTRs, 

28,000 5’ UTRS, 15,000 promoters, 88,000 exons from long non-coding RNAs (lncRNAs) and 

182,000 exons from protein-coding genes. I first assessed evidence of selective constraint 

for rare variants in these elements regardless of any annotation of evolutionary constraint 

or variant effect on the nucleotide level (Figure 5A). Protein-coding exons showed the 

greatest degree of selective constraint, with a median depletion of 28% (observed/expected 

ratio = 0.72). The DNase hypersensitive sites showed evidence for a modest, but statistically 

significant depletion of approximately 5.5% (observed/expected ratio = 0.945). The 5’ UTRs, 

3’ UTRs, and promoter sequence were not significantly different from the ancestral repeats. 

This was an unexpected result, but may be due to a small fraction of the nucleotides within 
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these elements being selectively constrained, or potentially an underestimate of the 

mutation rate leading to a false negative call. Of note, a previous publication from Di Iulio 

et. al reported a striking level of selective constraint in promoters: 23-fold enrichment in the 

top 1% of elements genome-wide compared to the genome-wide average, whereas protein-

coding exons were only 12-fold enriched. As mentioned previously, Di Iulio et. al do not 

model variation in the germline mutation rate21.  This analysis does account for CpG 

methylation status, amongst other genomic features – as promoter elements have 

hypomethylated CpGs, failure to account for this feature in a sequence-context based 

model would drastically overestimate the mutation rate and lead to incorrect predictions of 

extreme selective constraint. 

Long non-coding RNAs (lncRNAs) are typically identified in RNA sequencing data as 

transcripts with little protein-coding potential, and are often transcribed at much lower 

levels than protein-coding genes. There are relatively few lncRNAs with well-understood 

functions. Some examples include XIST, which is involved in the X-inactivation process38,39, 

and MALAT1, which has been implicated as a lung cancer driver40. Assessing selective 

constraint in 15,904 lncRNA genes defined by the GENCODE consortium (v24), I find 

evidence for a significant depletion of rare variation in lncRNAs (Figure 5A). 

Small insertions and deletions (indels), while rarer than SNVs, may have a greater 

functional impact than SNVs and therefore shed greater light on functional and non-

functional regions of the genome16. However, while considerable progress has been made in 

modelling the single nucleotide mutation rate in the germline, modelling the rate of indels 

has posed a greater in challenge. This challenge is in part due to the greater complexity of 

these mutations, which vary may vary in size and, in the case of insertions, the sequence 

inserted. Furthermore, the mutation rate for indels is also ~10-fold lower than single-

nucleotide variation, resulting in a smaller number of de novo mutations to train and 

validate new models. Thus, while there are several models of the indel mutation rate in 

development, some of which make use of convolutional neural networks using DNA 

sequence as an input, no well-validated models exist to date. While the lack of a validated 

indel mutation rate model makes predicting indel constraint for any individual element 

challenging, estimating constraint in the aggregate for different element classes (for 

example, protein-coding exons, non-coding RNA exons, and DNase hypersensitive sites) can 
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still be achieved by using de novo indels from the 1,548 DECODE WGS trios to account for 

any underlying heterogeneity in the indel mutation rate (see Methods). 

 The protein-coding exons showed a very strong depletion for indels compared to the 

other element classes analysed, consistent with strong purifying selection against frameshift 

variation reported previously. Of the non-coding elements assessed, the lncRNAs, CNEs, 3’ 

UTRs, and 5’ UTRs showed the greatest degree of indel constraint, followed by promoters 

and ENCODE open chromatin peaks (Figure 5A).  

Evolutionary studies have suggested that insertions and deletions may be more 

deleterious than single nucleotide variants in regulatory elements16. All of the element sets 

with sufficient de novo indels to accurately assess the indel mutation rate had a 

substantially greater degree of indel constraint than SNV constraint. This result has 

important implications for how constraint is assessed, as constraint methods based on 

indels may have greater power to detect constrained non-coding elements, despite being 

fewer in number. Furthermore, this result suggests that while de novo indels may be rarer 

than de novo SNVs, they may be more pathogenic and therefore have a non-trivial 

contribution to severe Mendelian disorders akin to frameshift mutations in coding regions 

that, despite their low mutation rate, contribute to an outsized fraction of diagnoses in 

severe developmental disorders. 
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Figure 5 SNV and indel constraint in non-coding and coding elements. (a) observed over expected ratio for 

SNVs and indels in non-coding element sets and protein-coding exons. While the number of indel 

observations limits precise estimates, point estimates of indel constraint suggests stronger constraint 

against indels than SNVs. (b) Exons and 3’ UTRs of genes with pLI > 0.9 (likely intolerant of heterozygous loss 

of function) show a greater degree of indel constraint than genes with pLI <= 0.9. 

 

The exome aggregation consortium (ExAC) profiled loss of function mutations in 

more than 60,000 individuals and identified a depletion for loss of function mutations, 

including protein-truncating variants and splice variants. In this study, a subset of genes with 

a high probability of loss of function intolerance (pLI > 0.9) were identified. These genes 

have a high overlap with known haploinsufficient genes (in which loss of a single copy of the 

gene causes a severe phenotype). It has been proposed that high pLI genes require RNA 
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expression above a particular threshold in order to maintain a critical function. Thus, genetic 

variation outside of the coding sequence causing reduction in expression may also be under 

selective constraint. To this end, I hypothesized that in addition to constraint on changes to 

the protein-coding sequence, there would be greater constraint on proximal regulatory 

elements such as promoters, 3’ UTRs, and 5’ UTRs in high PLI genes compared to other 

genes with less evidence for dosage sensitivity. I found a significant depletion in variation in 

protein-coding exons of high pLI genes compared to exons of genes with pLI < 0.9, 

consistent with previous reports6. I found evidence for a moderate depletion of rare SNVs in 

3’ UTRs of high pLI genes compared to genes with pLI < 0.9, but did not find any evidence 

for increased selective constraint on promoters or 5’ UTRs of high pLI genes.  

This result contradicts a relationship between selective constraint in non-coding 

elements and pLI score of the nearest protein-coding genes reported by Di Iulio et. al. 

However, as discussed previously, Di Iulio et. al, fail to account for variation in the germline 

mutation rate which may have biased some of their results. In particular, failure to account 

for variation in CpG methylation status led to a high rate of false positive predictions of 

selective constraint in promoter elements. Promoters of haploinsufficient genes, which have 

a high degree of overlap with high pLI genes, are enriched for CpG islands and have been 

shown to be less mutable41, which could explain the strong enrichment for constrained 

promoters near high pLI genes. 

I also tested the relationship between constraint and gene dosage sensitivity using 

indel constraint. The protein-coding exons of high pLI genes showed a very strong depletion 

for indels compared to exons of genes with pLI < 0.9. There is a strong correlation between 

3’ UTR length and gene dosage sensitivity41 hypothesised to be due in part to a greater 

number of microRNA binding sites required to exert tight transcriptional control in these 

genes. Further work to understand the precise patterns of purifying selection, particularly 

for indels, is warranted in these elements. As with the SNVs, I did not observe any significant 

difference in indel constraint in the 5’ UTRs or promoters of genes with pLI > 0.9 compared 

to genes with pLI < 0.9 (Figure 5B). 

Beyond testing known categories of non-coding element for selective constraint, 

there is great interest in using selective constraint as a method to identify regulatory 

elements that are evolutionarily novel or have adopted a novel function in humans, such as 

human gained enhancers42 (HGEs). Putative HGEs were identified by Reilly et. al by 
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comparing H3K27ac and H3K4me2 levels in human to mouse and macaque. A total of 912 

putative HGEs active in the fetal brain were identified. I observed moderate selective 

constraint on these putative HGEs, but this constraint was not significantly different from 

open chromatin peaks in general. Thus, while these elements do show human specific 

activity, there is little evidence for strong selective constraint that would imply a critical 

novel function. Reilly et. al report that the HGEs identified in their study do not show 

exceptional human specific changes, lending further support that the majority of HGEs may 

be the result of gradual changes in regulatory element function over evolutionary time, and 

have not undergone strong positive selection for a novel and critical function in brain 

development. 

Human accelerated regions (HARS) are another class of regulatory element with 

putatively novel function in humans. HARs are non-coding elements that are highly 

evolutionarily conserved, but have accelerated divergence on the human lineage43,44. It is 

hypothesized that HARs have undergone recent positive selection for new and potentially 

human-specific function. Thus, these elements are of great interest in human evolution, 

developmental biology, and disease studies. HARs were originally described 

contemporaneously by Prabahakar et. al and Pollard et. al in 2006. The two groups relied on 

slightly different methodology, but both sought to identify genomic elements with 

extremely high sequence conservation across different vertebrate species, but a larger than 

expected number of point mutations that have reached fixation on the human lineage. 

HARs, like conserved non-coding elements in general, are enriched near genes involved in 

development45. A small number of HARs have been studied in detail, including HACNS1, an 

enhancer that has acquired 16 different human specific mutations46. HACNS1 is a weak limb 

enhancer in chimpanzee and macaque, but is strong enhancer in humans and is an 

important component of the development of the thumb. Doan et. al also report an 

enrichment for biallelic variants in HARs in Autism cases in consanguineous families47. 

I assessed the selective constraint on HARs using a set of 2,649 putative HARs 

compiled by Capra et. al in a meta-analysis of four different studies45. The selective 

constraint on HARs is greater than that of HGEs and not significantly different from other 

conserved non-coding elements, which are amongst the most highly constrained non-coding 

elements. These results indicate that the majority of HARs are likely to be functional and 

under selective constraint in humans. However, one particular HAR, 2x.HAR.238, has a 
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striking three-fold enrichment for rare variation (Figure 6A,B). 2x.HAR.238 has been shown 

to act an enhancer for GLI2, an important gene in brain development. This element lies very 

close to a recombination hotspot and shows evidence for localised mutational clustering 

(Figure 6C), which I hypothesize may be the source of the hypermutability in this element. 

Thus, the enrichment for variation in 2x.HAR.238 in humans may be due to hypermutability 

rather than positive selection on variation enabling a novel function. 
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Figure 6 Density of rare variation in CNEs, HARS, and DHSs. (a) One human accelerated region (HAR), 

2x.HAR.238, has a very strong enrichment for rare variation. No conserved non-coding elements (CNEs) or 

DNase I Hypersensitive Sites (DHSs) was observed with as extreme of an enrichment for variation. (b) 

Examination of the rare variation in the 2kb sequence upstream and downstream of 2x.HAR.238 reveals 

localised hypermutability in a window of approximately 750bp. (c) Rare variation in 2x.HAR.238 exhibits a 

high degree of clustering. 

There are many more regulatory elements than protein-coding genes in the human 

genome29. Mammalian genes have a median of twelve associated regulatory elements, 

and the number of regulatory elements is positively correlated with higher expression, 

and greater stability of gene expression48. Likewise, large arrays of ultra-conserved 

regulatory elements have been shown to cluster near genes involved in early 

development, and are hypothesized to exert tight control over timing and expression 

levels49. However, the activity of more individual regulatory elements, is often restricted 

to a subset of tissues and developmental time points. It is not clear whether regulatory 

elements that drive expression in a large number of tissues, or those that operate within 

a relatively narrow, but potentially critical, functional window are under stronger 

selective constraint at the sequence level.  

To test this, I used data from the Roadmap Epigenome Project to annotate activity for 

non-coding elements across 10 different tissue groups (see Methods) and found a 

significant correlation between the number of tissues in which an element is predicted to 

be active and the level of selective constraint (Figure 7). In contrast, we did not find 

strong evidence of a relationship between activity in a particular tissue or organ system 

(e.g. the fetal brain) and selective constraint that would imply strong constraint on 

enhancers active in a narrow but critical window of organismal development.  
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Figure 7 Activity in a greater number of tissues is correlated with increased selective constraint. 

Annotating DNase hypersensitive sites with predicted enhancer activity across ten different tissue 

groups shows a significant correlation between selective constraint and the number of tissues in 

which an enhancer is active 

 

 
 

Results Section 3.2.2. Nucleotide-level conservation scores are more informative of 

selective constraint than locus-level scores 

 A large fraction of the human genome—by some estimates more than 80 percent—

is biochemically active in at least one tissue. However, biochemical activity does not 

necessarily imply function or selective constraint. A number of different studies based on 

multispecies alignments suggest that just 3-15%of the genome is subject to purifying 

selection16,50,51. One potential explanation for these potentially contradictory observations is 

that a small fraction of biochemically active segments of the genome are functional and 

under selection at the sequence level, while the majority of biochemically active segments 

are explained by non-specific protein-binding that has no functional consequence. A second 

potential explanation is that a large fraction of biochemically active peaks are indeed 

functional, but this function is driven by a small fraction of nucleotides within these regions 

which are under selective constraint.  

I sought to test these hypotheses on 1.7 million open chromatin regions covering 

nearly 400Mb of sequence outside of protein-coding exons. These regions were defined by 

the ENCODE consortium using DNase I hypersensitivity (DHS) assays in more than 200 

different cell types and primary tissues. In combination with histone modifications and 
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transcription factor binding sites, these open chromatin regions can be used to identify 

enhancers, promoters, and other functional non-coding elements.  

I observed a strong correlation between evolutionary conservation and selective 

constraint in the ENCODE open chromatin peaks using rare variant data from the BRIDGE 

and gnomAD whole genome sequences (Figure 8A), which has been described 

previously17,21,23. However, even within poorly conserved peaks, there are individual 

nucleotides or sets of nucleotides that appear to be evolutionarily conserved within 

primates or vertebrates. To this end, I hypothesized that while these poorly evolutionarily 

conserved peaks do not appear to be under selective constraint in the aggregate, they may 

contain individual nucleotides that are selectively constrained. 

 To test this hypothesis, I selected the subset of nucleotides within the ENCODE open 

chromatin peaks with a PhyloP score greater than one, indicative of evolutionary 

conservation across vertebrates. The evolutionarily conserved nucleotides showed a 

depletion for rare variation regardless of the degree of conservation of the surrounding 

element (Figure 8A). Repeating this analysis using PhyloP scores based on primate multi-

species alignments returned a similar result. Thus, while the open chromatin peaks cover 

nearly 400Mb of sequence, selective constraint is concentrated within a subset of 

approximately 120 Mb of sequence defined by nucleotide-level conservation. This sequence 

is spread throughout the genome, indicating that the elements underlying these peaks may 

be functional, albeit with a small fraction of nucleotides under selective constraint. 

To further explore the relationship between element level constraint (measured by 

PhastCons) and nucleotide level constraint (measured by PhyloP), I annotated every 

nucleotide with the PhastCons100 score of the open chromatin peak in which the 

nucleotide is positioned and the PhyloP score of the nucleotide itself. Analysing the 

depletion of rare variation in a grid comprising deciles of PhyloP100 and PhastCons100 

scores, it is clear that evolutionarily conserved nucleotides, even within poorly conserved 

peaks, are under selective constraint. Furthermore, as PhyloP score increases the degree of 

selective constraint also increases. Taken together, these results indicate that PhyloP score 

is a reasonable proxy for selective constraint in the non-coding genome, even when the 

sequence surrounding the conserved base is not conserved. 
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Figure 8 Nucleotide level conservation is more predictive of selective constraint than element-level 

conservation. (a) There is strong correlation between constraint, measured by the observed over 

expected ratio, and the element level correlation of DNase I Hypersensitive sites, measured by 

PhastCons100. Focusing on the bases with evidence for nucleotide level conservation (PhyloP > 1, 

denoted ‘conserved nucleotides’), it is evident that even in elements with poor element-level 

conservation, there is constraint on conserved nucleotides. (b) All nucleotides in the 1.7 million DHSs 

genome-wide were annotated with nucleotide-level conservation (PhyloP) and element-level 

conservation (PhastCons100). Nucleotides were split into ten equal sized bins for each measure and 

plotted as a grid, showing a clear relationship between nucleotide-level conservation and constraint, 

regardless of the element-level conservation of the surrounding sequence. 

 

I hypothesized that constraint on a small fraction of nucleotides within a DNase peak 

that is poorly evolutionarily conserved could be due to selective constraint on functional 

transcription factor binding sites within those peaks. To test this hypothesis directly, I 
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calculated the selective constraint on a set of over two million TFBSs conserved between 

human, rat, and mouse (based on computational prediction of TFBS) and overlapping an 

open chromatin peak in at least one tissue. These TFBS are between 6bp and 30bp with a 

median size of 14bp. As with individual nucleotides identified by PhyloP score, the 

conserved TFBSs are constrained, even when they lie within poorly conserved open 

chromatin peaks (Figure 9A). 

Testing each conserved transcription factor binding site independently, there is clear 

variation in the patterns of rare variation. A small fraction of the TFBS had greater levels of 

variation than expected. Testing these TFBS independently using de novo mutations from 

1,548 healthy trios, I observed a 1.42-fold enrichment for mutations compared to the 

expectation under a null model (Figure 9B), indicating that this enrichment for rare variation 

is likely driven by hypermutability not captured by the updated model, perhaps due to TF 

binding in germline tissues as has been suggested previously for CTCF13. A more 

comprehensive analysis with greater numbers of whole genome sequenced trios will likely 

reveal a greater number of associations between mutation rate and transcription factor 

binding. On the other end of selective constraint spectrum, a number of transcription factor 

binding sites appear to be under strong selective constraint. The TFBS under the greatest 

degree of constraint is the TATA-box binding protein (TBP) motif, which is ubiquitous in 

mammalian promoters (Figure 9B). As this motif is likely active in a wide range of tissues, 

due to its general role in transcriptional activation, I hypothesize that the difference in 

selective constraint between TFs may be driven in part by their tissue specificity/ubiquity, in 

line with the observations on DHS described earlier (Figure 7), but further work is required 

to refine this hypothesis.  
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Figure 9 Constraint in conserved transcription factor binding sites. (a) Observed over expected ratio 

in conserved transcription factor binding sites (TFBS), stratified by the PhastCons100 score (element-

level conservation) of the surrounding DHS peak. Conserved TFBS were selectively constrained to a 

similar degree regardless of the conservation of the peak in which they lie. (b) Different conserved 

TFBS showed different levels of selective constraint. TFBS with an enrichment for rare variation also 

showed an enrichment for de novo mutations, indicating that there is still variability in mutation rate 

that may be due to mutagenicity of TF binding not captured by the mutation rate model developed 

here. 

 

Regulatory elements are more numerous and show greater evolutionary turnover 

compared to protein-coding genes52,53. Furthermore, the nucleotide level patterns denoting 

regulatory sequence are not yet as well understood as protein-coding genes. It has been 

hypothesized that with a sufficient number of deep whole genome sequences, functional 

regulatory elements could be detected by examining patterns of purifying selection and 

overlapping with biochemical signals associated with enhancers, promoters, or other 

regulatory sequence. However, if a relatively small fraction of nucleotides within an active 
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enhancer or promoter are under selective constraint, the power to detect these elements 

will be significantly lower. 

To address this question directly, I calculated the power to detect constrained non-

coding sequence in this manner using 28,000 whole genomes (see Methods). At this sample 

size, there is sufficient power to detect large tracts of constrained non-coding sequence 

(e.g. 200bp or larger, Figure 10). For example, ultra-conserved non-coding elements or 

human accelerated regions where several hundred base pairs are under selective constraint 

could be detected at this sample size. However, as I have shown here, the vast majority of 

regulatory sequence is poorly conserved on an element-level, but likely harbours individual 

nucleotides or sets of nucleotides, perhaps constituting TFBSs, that are under selective 

constraint. Power to detect constrained sequence the size of a TFBS (e.g. 10-20bp) is 

extremely limited; power calculations indicate that upwards of 1 million deep WGS will be 

needed for this approach to succeed (Figure 10). However, the use of computational tools 

and biochemical assays to refine to identify likely TFBS a priori (analogous to using the 

protein code to identify variants likely to cause protein truncation) could be used to improve 

power. 

 

 

 
Figure 10 Power calculations for detecting constrained regulatory sequence Rare variation from 25,000 to 

100,000 whole genome sequenced individuals provides substantial power to detect large tracts (e.g. 100bp 

– 200bp) of selectively constrained sequence. Power calculations suggest that greater than 1 million WGS 
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will be required to detect constraint on the level of a single TFBS (10bp-20bp).  

Results Section 3.2.3. Dominance and selection in the non-coding genome 

 
Conservation is the result of selection against fixation of non-ancestral alleles over a 

period of evolutionary time. Selection against fixation can manifest in a number of ways, 

including strong selection against heterozygotes (e.g. in the case of severe dominant 

disorders), weak selection against heterozygotes where the selection coefficient is greater 

than 1/Ne (the effective population size), or via selection against homozygotes, compound 

heterozygotes, or more complex multi-locus models. 

I sought to test how selective constraint in the non-coding genome differs from 

constraint in the protein-coding genome, where patterns of selection and disease 

mechanisms are more well-understood. I annotated every nucleotide in the protein-coding 

exons and ENCODE open chromatin peaks with their PhyloP scores. Comparing the 

observed/expected ratios of protein-coding nucleotides to putative regulatory non-coding 

nucleotides within the same bins of evolutionary conservation reveals a pattern of selective 

constraint in non-coding elements that is more similar to recessive disease genes than likely 

dosage sensitive genes (pLI > 0.9) and known dominant disease genes (Figure 11). This result 

indicates that at the same degree of evolutionary conservation, regulatory elements have 

weaker selection on heterozygotes than protein-coding genes. This result is consistent with 

the limited role for de novo mutations in regulatory elements discussed in Chapter 2, and 

the predominant role for regulatory variation in common/complex disease54,55. However, as 

the ratio of observed to expected variation is most sensitive to detect strong selection 

against heterozygotes, these data alone do not clearly delineate between evolutionary 

conservation in regulatory elements being maintained by weak selection on heterozygotes, 

selection on homozygotes/compound heterozygotes, or oligogenic selection. Recent work in 

population genetics suggests that distinguishing these two modes of selection may be 

difficult using existing data and methodology56. 
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Figure 11 Comparing selective constraint in coding and non-coding elements Observed over expected ratio 

for various protein-coding gene sets with different hypothesized strength of selection on heterozygotes 

alongside the observed over expected ratio for DNase Hypersensitive Sites (DHSs). The DHSs show a pattern 

of selective constraint that is most similar to known recessive disease genes, whereas genes with known or 

suspected strong selective pressure against heterozygotes (Monoallelic DDG2P genes, genes with pLI > 0.9) 

show a much greater decrease in rare variation at equivalent levels of evolutionary conservation. 

 
To further explore the strength and dominance of selection in the non-coding 

genome, I computed the mutability adjusted proportion of singletons (MAPS) scores for the 

same element sets, again stratified by PhyloP scores. I also annotated the protein-coding 

variants with a predicted consequence using the variant effect predictor and extracted 

bases predicted to result in synonymous changes, missense changes, and protein 

truncation. The MAPS score of non-coding variants in the top decile of nucleotide 

conservation was similar to missense changes in protein-coding genes genome-wide 

(excluding known developmental disorder genes and genes with pLI > 0.9) and consistently 

lower than loss of function variants (Figure 12). The results from Figures 11 and 12 together 

imply that there is pervasive weak selection on a small subset of evolutionarily conserved 

non-coding sites, and patterns of selection on these sites may be similar to those of 

missense changes in protein-coding exons, the majority of which have been previously 

reported to be weakly deleterious57. Further study is warranted to determine whether 
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disease-causing alleles in regulatory elements are contributing small, additive effects, or are 

contributing primarily through recessive or oligogenic mechanisms. 

 

 
 

 
Figure 12 Comparing non-coding variation to protein-coding variation. Strength of selection measured 

by proportion singletons compared to nucleotide-level evolutionary conservation for protein-coding 

gene sets and DNase I Hypersensitive sites. Protein-coding variation was annotated with predicted 

effect (stop gained, missense, and synonymous) and plotted with the median PhyloP score for that 

category. As no such prediction is available in the non-coding genome, nucleotides in DHSs were split 

based on PhyloP score for comparison. Strength of selection on evolutionarily conserved nucleotides in 

the DHSs was similar to missense variation and substantially lower than stop-gained variants, regardless 

of gene set. 

 
 
 

Discussion 

 
 A large fraction of the functional DNA in the human genome has been predicted to 

be non-coding. These predictions have relied primarily on evolutionary comparisons which 

may not be able to reveal relatively recent loss or gain of selective constraint.  Furthermore, 

it can be challenging to deconvolute changes in mutational processes, generation times, and 

selective pressure across evolutionary time2.   
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As large numbers of deep whole genome sequences become available, there has 

been great interest in applying population genetics tools to detect regions of the non-coding 

genome under selective constraint. However, the germline mutation rate is very 

heterogeneous and failure to appropriately model this heterogeneity can lead to false 

positives, for example in promoter regions, as well as false negatives in hypermutable 

regions. To this end, I have developed a new germline mutation rate model using thirty-two 

different features including sequence context, histone modifications in germline tissues, 

replication timing, and recombination rate. This model greatly improves prediction of the 

rate of de novo mutations and rare variants over the existing model which relies on 

sequence context alone. This mutation rate model also corroborates previously published 

mutation rate associated features including a recent observation of hypermutable regions 

with a strong bias toward maternal inheritance8,9. Another limitation to this mutation rate 

model was the lack of available chromatin data in oogonial stem cells. Chromatin marks and 

RNA sequencing data from ovary were used, but a tissue that is closer to the germline will 

likely improve the characterisation of factors influencing the maternal germline. The 

relationship between transcription factor binding and mutation rate should also be explored 

in greater detail. Analysis in this chapter on conserved transcription factor binding sites 

revealed an increased mutation rate in a subset of binding sites, in line with previous 

reports of hypermutability in CTCF binding sites in cancer13. Full characterisation the 

transcription factor binding profiles in germline tissues will likely lead to the discovery of 

more mutation-rate associated TF binding events and further improve understanding of 

mutation rate heterogeneity in the germline. 

Using this improved germline mutation rate model, I modelled selective constraint in 

the non-coding genome using whole genome sequence data from 28,000 individuals, nearly 

3-fold greater than previous non-coding constraint metrics. Furthermore, I showed that 

constraint on indels is much greater than SNVs across a number of coding and non-coding 

elements, consistent with previous results based on evolutionary divergence. I found a 

strong relationship between evolutionary conservation and selective constraint, but showed 

that this relationship was driven primarily by conservation on individual nucleotides and 

suggest that a substantial fraction of these sites may lie in conserved transcription factor 

binding sites.   
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While similar methodologies for detective selective constraint methods have been 

applied successfully to find selectively constrained protein-coding genes, the sparsity of 

functional nucleotides in regulatory elements presents a challenge. Power calculations 

suggest that 25,000 individuals provides sufficient power to detect long contiguous tracts of 

constrained sequence, for example ultraconserved non-coding elements, but affords little 

power to detect constrained TFBS within an otherwise poorly constrained element. 

Improvements in variant effect prediction in the non-coding genome such as identification 

of functional transcription factor binding sites and deleterious variation within them will 

improve power to detect constrained non-coding sequence substantially. 

 In the previous chapter, I showed that de novo mutations in highly evolutionarily 

conserved non-coding elements contribute to severe developmental disorders. Based on 

the analyses presented here, I hypothesize that de novo mutations in highly conserved 

bases within poorly conserved, but nonetheless active, regulatory elements may also 

contribute to these disorders. Identifying these functional non-coding bases is a 

considerable challenge and will be critical to improve power to discover pathogenic DNMs 

and rare variation in non-coding elements. Improvements in computational prediction of 

non-coding variant effects could allow for study designs that assign weights a priori based 

on a predicted functional effect (e.g. by PhyloP or a variant deleteriousness metric such as 

CADD), improving power akin to the implicit weighting scheme already used in protein-

coding genes whereby enrichment analyses focus on missense and protein-truncating 

variation58 or explicit weighting schemes such as independent hypothesis weighting59. 

Furthermore, these analyses suggest that constraint against heterozygosity in 

regulatory elements is in general not as strong as in coding regions. This suggests that the 

effect size or dominance of mutations in regulatory elements will be smaller, and there may 

be a greater role for recessive or oligogenic models. Results from large-scale exome-

sequencing studies indicate that a substantial fraction of individuals do not carry protein-

coding variant that is pathogenic with high penetrance60,61. Thus, it is likely that many 

unsolved disorders may be the result of multiple variants in the coding and non-coding 

regions with moderate to modest effect sizes. Approaches to integrate coding and non-

coding variation, for example by analysing matched RNA-sequencing and whole genome-

sequencing data, may be another strategy to interpret non-coding variant effects through 

their impact on transcript levels. This strategy will require sampling of the relevant tissue or 
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cell types, as is already clinical practice in many types of cancer, or in cases where accessing 

the primary tissue is challenging (e.g. the developing brain), the development of cellular 

models or organoids to recapitulate the tissue of interest. 

As whole genome sequencing is completed in tens of thousands of trios in with 

Autism spectrum disorder, developmental disorders, and other Mendelian disorders, there 

will be greater opportunities to explore the role of de novo mutations as well as recessive 

and oligogenic disease mechanisms across the whole genome in an unbiased manner. 
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Chapter 4: Functional characterisation of mutations in ultra-conserved elements 

associated with severe developmental disorders 

 

Introduction 

Methods for assessing enhancer activity using reporter constructs 

 

 While there are robust computational tools to identify putative protein-coding genes 

based on sequence alone, detecting transcriptional enhancers has proved more challenging. 

Large scale collaborations such as the ENCODE project and the Roadmap Epigenome Project 

have experimentally profiled hundreds of different cell types and tissues to identify putative 

enhancers, promoters, and other genomic elements1,2 (these projects are discussed in 

greater detail in Chapter 1). While these projects have identified millions of putative 

regulatory elements across hundreds of different tissues and time points, these data are 

observational, presenting a number of drawbacks. First, regulatory elements active at a 

tissue or time point that is difficult to sample, for example very early embryonic 

development, may not be identified. Second, these efforts have been focused around 

assaying a small number of individuals per tissue/time point, limiting the insight into the 

impact of variation on enhancer function. Thus, while resources such as ENCODE or the 

Roadmap Epigenome Project provide a rich resource for identifying active regulatory 

elements, these resources are unable to predict the impact on regulatory element function 

by the introduction of a genetic variant. 

 Reporter assays are one of the most widely used methods for assessing promoter 

and enhancer activity. Early reporter assays made use of a modified version of the firefly 

luciferase gene in a mammalian expression vector3. Putative promoter or enhancer 

sequence could be inserted upstream of the luciferase gene and luciferase-induced 

fluorescence could be quantified as a proxy for activity. These assays have improved and 

diversified in many ways since their first use. To assess enhancer activity rather than 

promoter activity, the putative enhancer can be inserted into a vector with a minimal 

promoter upstream of the luciferase gene. Shortly after the introduction of the luciferase 
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reporter gene, many other read-outs of enhancer and promoter activity were developed, 

including the use Green Fluorescent Protein4 (GFP) and lacZ staining5,6. 

 Mouse transgenesis assays using lacZ staining have been used to assess the impact 

of regulatory mutations identified in patients7, study the role of ultraconserved regulatory 

elements in brain development8, and characterise ultraconserved regulatory elements that 

have adopted new functions in humans9. Over the past decade, expression patterns in the 

developing mouse embryo from nearly 3,000 putative enhancers have been collected in the 

VISTA database10. While the reporter assays described above are amenable to testing 

dozens of putative enhancers or promoters in a single experiment and provide a powerful 

view into the complexity of enhancer function with respect to tissue and developmental 

time, they are impractical to scale to hundreds or thousands of tests. This limitation has led 

to a number of different high-throughput reporter assay techniques known collectively as 

massively parallel reporter assays (MPRAs). 

 

Massively parallel reporter assays methods and applications 

MPRAs make use of oligo synthesis to generate libraries of tens of thousands of 

putative enhancers or promoter elements to test in a single experiment. Each enhancer is 

assigned to a unique 15-20bp DNA barcode either during the oligo synthesis step11 or added 

after oligo synthesis using PCR12. Paired-end sequencing is then used to identify the 

enhancer-barcode pairs. Next, a reporter gene, typically GFP is inserted between the 

enhancer and the barcode. As a result, the barcode is situated on the 3’ end of the reporter 

gene and included in the gene transcript. This library of barcoded enhancers is then 

transfected into the cell type of interest, the RNA is harvested and reverse transcribed into 

cDNA, and the short barcode fragments are sequenced to quantify the transcriptional 

output of the upstream enhancer. Comparing the transcriptional output to the amount of 

DNA input, the enhancer potential of a putative regulatory sequence can be assessed. This 

approach, which has been applied to detect eQTLs, is described in detail in Tewhey et. al. An 

alternative approach, STARR-seq, does not make use of DNA barcodes. Instead, the 

enhancer is inserted downstream of the reporter gene in the viral vector13. As the viral 

vector is circular, the enhancer can drive expression of the reporter gene, transcribed along 

with the gene, and used as a readout for its own activity. 
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The first application of the MPRA was a proof of concept saturation mutagenesis 

experiment in a synthetic enhancer11. Since this proof of concept, the approach has been 

used in a number of different applications including construction of synthetic enhancers and 

dissection of enhancers with links to disease or interesting evolutionary properties. Tewhey 

et. al used an allele specific expression strategy to compare enhancer activity of the SNPs in 

linkage disequilibrium with the most significantly associated SNP in gene expression 

quantitative trait loci12 (eQTLs). Smith et. al, generated approximately 5,000 synthetic 

enhancers containing twelve different transcription factor binding sites (TFBSs) important 

for function in the liver, arranged with varying degrees of complexity, from testing more 

than 500 sequences with a single TF binding site and more than 2,500 putative enhancers 

with three or more transcription factor binding sites. This work revealed general principles 

of enhancer function consistent with the ‘billboard model’ including increased expression 

correlating with the number and heterogeneity of TFBSs. The authors also demonstrated 

synergistic and antagonistic interactions between different transcription factors (TFs). Ryu 

et. al, recently used a series of MPRA to test 714 putative human accelerated regions, 

conserved non-coding elements with a greater number of human-specific variation than 

expected under a neutral model, for enhancer activity in induced pluripotent stem cell 

derived neuronal progenitors. Different MPRA variations and applications are reviewed in 

Inoue and Ahituv 14. 

After generating MPRA data, statistical methods are needed to quantify the effect of 

individual variation on reporter gene activity relative to a reference sequence. Many of the 

first studies in this field drew on previous work in allele-specific expression (ASE) in RNA-

sequencing to analyse MPRA data11,12,15. However, there are major differences between 

these two types of analysis, most notably that the input DNA sequence in a MPRA 

experiment may not be the same between the reference and alternate alleles, whereas in 

ASE studies, the ratio of DNA from the two alleles is equal. Recently, the QuASAR-MPRA 

approach was developed which incorporates plasmid proportions and uses a beta-binomial 

distribution model variance16. Applying this method to previously published data12,16 

indicates that this approach reduces false positives while improving power to detect ASE in 

MPRAs. Other statistical methods have been developed for different types of analysis. For 

example, Sharpr-MPRA was designed to analyse data from oligonucleotides densely tiled 
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across a larger regulatory element to make inferences about which nucleotides are 

functional within the regulatory sequence17. 

While mouse transgenesis assays and MPRAs have proved to be powerful tools, they 

come with important caveats to consider. In the case of MPRAs, the activity of a putative 

enhancer or promoter will depend on the cell type or tissue in which the assay is conducted, 

not least due to the expression of different transcription factors in different cell types 15. 

Likewise, gathering sufficient RNA to maintain library complexity requires high transfection 

efficiency or a large amount of cellular material to balance out low transfection efficiency. 

These technical limitations may limit the choice of cell types considerably and potentially 

bias studies toward cell lines that are experimentally tractable but less biologically relevant. 

Moreover, many experimental approaches involve the reporter gene being expressed in an 

episomal context (i.e. not integrated into a chromosome), and it has been suggested that 

integration into the genome, using a lentiviral vector, provides a more biologically realistic 

context18. It is currently challenging to synthesise elements longer than approximately 

150bp. In the case where the true functional sequence is longer than 150bp, a MPRA may 

not faithfully represent in vivo function. For these reasons, no individual functional assay 

should be considered conclusive, either of enhancer function or the impact of genetic 

variation on enhancer function. Integrating data from evolutionary genetics, medical 

genetics, and multiple experimental approaches is likely to provide greatest insight into 

gene mis-regulation as a mechanism for disease. 

This MPRA data discussed in this Chapter are derived from a pilot project designed 

as a follow-up to the results presented in Chapter 2. Specifically, I sought to test the 

evidence for enhancer activity of the CNEs sequenced in the DDD project, assess the impact 

of SNVs and indels in these CNEs, and to compare the impact of patient mutations to 

common and rare variation observed in unaffected individuals. Sebastian Gerety and Matt 

Hurles contributed a substantial amount of work and oversight in the study design and 

Sebastian Gerety and Holly Ironfield performed all of the wet-lab experiments generating 

the underlying data. 
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Methods 

MPRA oligo design 

Reference sequence was included in the oligo synthesis for the following element sets:  

 

1. Conserved non-coding elements and enhancers with at least one DNM (SNV or indel) 

in 7,930 probands (n = 767 unique sites) from Short et. al, 2018. 

 

2. Control elements assayed in U87 cells and neural progenitor cells 

- 90 elements with varying evidence for biochemical activity in Neural Progenitor 

Cells (30 low, 30 medium, 30 high from data kindly provided by Barak Cohen and 

Brett Maricque, described in Maricque et. al 2016). 

 

3. Positive control regulatory elements 

- Three high-confidence neural cis-regulatory elements, derived from data kindly 

provided by Barak Cohen and Brett Maricque, from a LV-MPRA assay in neural 

progenitor cells described in Maricque et. al, 2016, chr2:72898217-72898346, 

chr17:44916284-44916413, and chr3:71241866-71241995 in GRCh37 

coordinates. 

 

The following subset of elements were selected for saturation (all possible SNV changes) 

 

1. Recurrently mutated fetal brain active elements from Short et. al, 2018 

-     64 unique sites across 31 elements 

 

2. Positive controls 

- Three high-confidence neural cis-regulatory elements, derived from data kindly 

provided by Barak Cohen and Brett Maricque, from a LV-MPRA assay in neural 

progenitor cells described in Maricque et. al, 2016, chr2:72898217-72898346, 

chr17:44916284-44916413, and chr3:71241866-71241995 in GRCh37 

coordinates. 
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The following elements were selected and variants were synthesized with non-overlapping 

5bp deletions across the entire element: 

 

1. Conserved non-coding elements and enhancers with at least one DNM (SNV or indel) 

in 7,930 probands (n = 767 unique sites). 

 

2. Positive controls 

- Three high-confidence neural cis-regulatory elements, derived from data kindly 

provided by Barak Cohen and Brett Maricque, from a LV-MPRA assay in neural 

progenitor cells described in Maricque et. al, 2016, chr2:72898217-72898346, 

chr17:44916284-44916413, and chr3:71241866-71241995 in GRCh37 

coordinates. 

 

All of the oligonucleotides for this experiment were synthesized by Agilent Technologies 

using a 244K array. Oligos are 180bp long, within 15bp of adapter sequence on the 5’ and 3’ 

end, and 150bp of genomic context in between. 

 

Four different adapters were designed in order to allow for sub-pooling of the library to 

improve complexity throughout the experiment. 

 

POOL_A_F ACTGGCCGCTTGACG 

POOL_A_R CACTGCGGCTCCTGC 

 

POOL_B_F CTGCGCCTGATGCAG 

POOL_B_R GGTGCTCGCTATCGC 

 

POOL_C_F TACGCTAGCCCGTGG 

POOL_C_R TGCGTTTGGCAGGAC 

 

POOL_D_F AGTCAGGACCGACGC 

POOL_D_R AGCGCTTTCGCCCAC 
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The POOL_A adapter sequences were the same as the adapter used in Tewhey et. al, 2016, 

which did not employ any sub-pooling strategy. 

 

The four separate adapter sequences were used to define four different pools: 

Pool 1 - first 22 recurrently mutated elements (lexicographical ordering) in exome-negative 

probands (ref, saturation, and tiling indels) 

Pool 2 - second 21 recurrently mutated elements (lexicographical ordering) in exome-

negative probands (ref, saturation, and tiling indels) 

Pool 3- remaining 21 recurrently mutated elements (lexicographical ordering) in exome-

negative probands (ref, saturation, and tiling indels) 

Pool 4 – remaining 703 elements with single DNM (ref, tiling indels from exome-positive and 

exome-negative) 

 

One of each of the three positive controls from Maricque et. al, 2016 were included in each 

pool. The 90 common controls were included in all three pools to allow for normalization 

and comparison between pools. 

 

Reference Testing (4 oligos) 

- Wildtype sequence in the forward direction with the DNM centered at +25bp, 

+75bp, and +125bp. 

- Wildtype sequence in the reverse direction with the DNM centered at +75bp. 

 

Saturation mutagenesis (453 oligos) 

- 150bp of reference genomic sequence, with DNM at position +75, every position in 

sequence changed to three possible alt SNVs. (450 oligos) 

- 150bp of reference genomic sequence, with DNM at position +25, only site where 

DNM is located is changed to alt. (1 oligo) 

- 150bp of reference genomic sequence, with DNM at position +125, only site where 

DNM is located is changed to alt. (1 oligo) 

- 150bp of reversed reference genomic sequence, with DNM at position +75, only site 

where DNM is located is changed to alt. (1 oligo) 
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- If there is a variant present in addition to the DNM within the 150bp window, one 

extra oligo is generated including both the variant and DNM to analyse the full 

haplotype. 

 

Tiling indels (30 oligos) 

- 5bp deletions beginning at position +0, +5, +10, …, +145, with respect to the DNM at 

position +75bp. 

 

All oligos were generated using the oligo_design.R script in the MPRA_ddd project: 

https://github.com/pjshort/MPRA_ddd/ 

 

In total, 56,688 oligos were generated: 

- 3,068 oligos were generated with four different ref sequences (767 unique DNMs, 

see above for different ref sequences). 

- 363 sequences were generated with ref in the forward direction (90 common 

controls with each of four adapters, plus 3 positive controls with one adapter each). 

- 30,150 oligos were generated with a single nucleotide of wild-type sequence 

changed (64 unique DNMs in recurrent elements + 3 positive controls, 450 oligos 

each). 

- 7 oligos where child has other common or rare variants within 150bp oligo in 

addition to the observed DNM. 

- 23,100 oligos were generated with a 5bp deletion of wild-type sequence (767 unique 

DNMs, 3 positive controls, 30 oligos each. 

 

 

Adding barcodes and pool adapters to oligos 

In order to easily identify individual oligo plasmids, 20bp barcodes were added by PCR to 

the oligo pools.  Primers were designed to specifically amplify each subpool, adding a 3' 20-

base random barcode to each fragment, and the necessary overlaps with the target vector 

to perform Gibson cloning.  For pools A-D, these were forward primers #430-433, and 

reverse primers #434-437.  For each pool (A-D), 300 uL PCR reactions (spread across a 96 

well plate as 6 X 50ul reactions) were run using 6ng of oligo library template.  Q5 NEB 



 111 

polymerase was used, and all reactions were done at 15 cycles: this gave us sufficient 

material for downstream cloning while avoiding over-amplification and potential bias in the 

oligo pool. The resulting PCR products were treated with ExonucleaseI (NEB) to remove 

unincorporated barcode primers, and then purified using standard SPRI bead methods 

(Ampure, Agilent). 

 

Creating the MPRA vector library 

The plasmid backbone used in this analysis (pGL4:23:∆xba∆luc) was provided by Ryan 

Tewhey and is the same backbone used in Tewhey et. al, 2016. This vector was prepared by 

PCR, incorporating sequence overlapping the library oligos (#525 and 526), thus enabling 

the use of Gibson assembly.  1 microgram(ug) of vector was combined with 1 ug of purified 

oligo in a 40ul Gibson assembly reaction, using standard conditions.  The gibson reactions 

were purified using standard SPRI bead isolation, eluting in 20ul of elution buffer (EB, 

Qiagen).  10ul of this eluate was electroporated into 100 ul of high efficiency 

electrocompentent bacterial cells (C3020K, NEB) using recommended protocols and 

parameters: 0.1mm cuvettes (Biorad), with settings of 2KV,200 ohm,25uF.  After recovery, 

cells were plated on large 22.5cm X 22.5cm agar/ampicillin plates at around 2 million CFU 

per plate.  Plating density was confirmed by serial dilution, plating, and counting.  After 

overnight at 37 degrees, the cells from the plates were harvested in LB broth, and plasmid 

DNA was prepared using two Qiagen PLUS Midiprep columns (Qiagen) per subpool.  This 

yielded around 250ug per subpool.  

 
These oligo-barcode libraries were sequenced in order to determine the oligo-barcode pairs 

for downstream analyses.  This was done as described in Tewhey et. al, with modifications, 

using paired end 150bp Illumina chemistry.   

 

 To generate the final MPRA libraries, containing an open reading frame downstream of the 

oligo/elements, we cut 15ug of each pool DNA with Sgf1 followed by SPRI bead purification.  

We generated PCR amplicons containing the GFP ORF (primers #426-450), and ligated 2ug 

of this to 2ug of the cut vector pool using Gibson assembly. These reactions were purified 

using SPRI beads, re-cut with AsiSI, and purified using SPRI beads.  The reactions were then 

electroporated into high efficiency electrocompetent bacterial cells as described above.  
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After recovery, these transformed cells were grown in LB+Carbenicillin for 9 hours, 

harvested, and purified using Qiagen PLUS maxiprep columns (4 columns per pool).  The 

initial electroporation was also serially diluted and plated on LB/agar+AMP plates to 

estimate yield.  Each electroporated pools each gave around 8 X 108 CFUs. 

 

Transfection into HeLA and Neuroblastoma cell lines 

The Neon Transfection System (ThermoFisher Technologies) was used to transfect HeLA 

cells and SHSy5y human neuroblastoma cells (https://www.lgcstandards-

atcc.org/Products/All/CRL-2266.aspx) in triplicate.  We electroporated 5 million cells with 30 

ug of plasmid pool DNA per replicate, using 100uL NEON tips.  For HELA, we used 1005 

Volts, 35ms pulse, with 2 pulses.  For SHSy5y cells, we used 1200 volds, 20ms pulse, for 3 

pulses.  Cells were recovered into standard growth media, and allowed to grow for two 

days.  The presence of GFP expression was confirmed by epifluorescence microscopy.  Cells 

were then trypsinized, spun down and snap frozen for RNA extraction. 

 

RNA taqSeq library preparation 
RNA extraction from cell pellets was done using RNeasy columns (Qiagen).  All RNA samples 

were DNAse treated (TURBO DNA-free Kit, Thermofisher) to remove any residual plasmid 

DNA.  cDNA was synthesised using 2.5 ug of total RNA, and a primer specific to the plasmid-

derived 3' UTR (primer #543), thus ensuring enrichment for plasmid-derived transcripts 

(SuperScript IV First-Strand Synthesis System, Thermofisher).  To introduce 15bp unique 

molecular identifiers (UMIs), we performed a second strand synthesis (primer extension 

reaction) using a primer that annealed 125 bases upstream of the barcode, and included 15 

random bases in addition to Illumina partial adaptor sequences for library construction 

(primer #539).  After SPRI bead purification, these uniquely labeled cDNA molecules were 

then amplified in two rounds of 15 cycles of PCR, to progressively add the necessary 

Illumina adaptors (primers #544,535), then index barcodes (Illumina 11bp index set, PE 1.0).  

Purified library DNA was then subjected to 25bp paired-end sequencing on an Illumina 

HiSeq4000 to identify barcode expression (3' end) and UMI identity (5' end).  Each replicate 

gave around 165 million read-pairs.   
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The plasmid library DNA was sequenced in an identical manner, starting with primer 

extension step using plasmid DNA and UMI containing primer (primer #539).  These plasmid 

counts provide the DNA input amounts with which we normalise element expression. 

 

Linking elements to barcodes with 150bp paired-end sequencing data 

First, I fused the 150bp paired-end reads to a single read using the FLASH19 with the 

following flags:  

flash -r 150 -f 220 -s 10 PoolA_R1.fastq.gz PoolA_R2.fastq.gz -o PoolA.Mar2018.Lane1 

 

This will output the extended fragments as PoolA.Mar2018.Lane1.extendedFrags.fastq. 

 

Next, the fused reads were aligned to the reference oligos using BWA mem20 version 0.7.13: 

 

bwa mem -v 0 ddd_noncoding_MPRA.refs_and_controls.dups_removed.fasta 

PoolA.Mar2018.extendedFrags.fastq > PoolA.Mar2018.sam 

 

A custom python script was written using pysam to reconstruct the element sequence from 

the alignment and populate a table of element-barcodes pairs. 

 

Counting UMI-labelled barcodes from 25bp paired-end sequencing data  

A custom python script was written using pysam to extract the barcode and UMI from the 

25bp paired-end sequences and populate a table of unique barcode-UMI pairs with the total 

number of reads observed for each pair.  

 

In order to correct for sequencing errors in the barcodes, any barcodes not matching a 

previous element-barcode, the edit distance was calculated for all known element-barcode 

pairs. If a barcode was within two edits of a known barcode from the previous step, it was 

corrected to this barcode. If there were multiple matching barcodes, the count was 

excluded. 

 

Calculating normalised expression values in HeLa and Neuroblastoma and testing 

correlation between replicates 
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Elements were split into four different sub-pools (as described above) and each sub-pool 

was tested in HeLa and Neuroblastoma in three independent biological replicates. For each 

sub-pool and replicate, normalised expression was calculated as the ratio between RNA and 

DNA, normalised by the total number of RNA and DNA UMIs sequenced: 

 

𝑒𝑥𝑝𝑟%&%'%() = 	
RNAelement	/RNA56578
DNAelement	/DNA56578

 

  

Spearman rank correlation was used to assess the correlation of normalised expression 

values across different experimental replicates. 

 

 

Results Section 4.1: Assessing disease-associated enhancer activity using massively 

parallel reporter assays 

 

Results Section 4.1.1. Design of a MPRA experiment to assess enhancer activity of 

elements harbouring de novo mutations in patients 

 

 In Chapter 2, I demonstrated an enrichment for damaging de novo mutations 

(DNMs) in evolutionarily conserved non-coding elements and I showed that a substantial 

fraction of these elements are likely acting as enhancers. However, determining the precise 

effect of these regulatory DNMs remains a substantial challenge. This hampers the 

discovery of novel genetic associations and in resolving variants of unknown significance in 

patient genomes. Putative pathogenic variants in regulatory elements have been assayed 

previously using zebrafish models, mouse transgenesis assays, and mouse knock-ins. 

However, these experimental assays can only test tens of variants due to prohibitive cost or 

experimental complexity. Massively parallel reporter assay (MPRAs) allow traditional 

reporter assays to be scaled to test tens of thousands of variants in a single experiment. 

Thus, patient DNMs within the elements of interest can be tested alongside population 

variation as well as variants that have not yet been observed, providing insight not only into 
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the impact of specific mutations discovered in patients, but also, potentially, a systematic 

overview of nucleotide-level functional importance within an element. 

 The primary aim of this experiment was to serve as a pilot experiment to shape 

future studies using MPRAs as a tool to evaluate putative pathogenic regulatory variation. I 

chose to focus on the elements that were most likely to be harbouring pathogenic 

regulatory variants based on the analysis in Chapter 2. While conserved non-coding 

elements are depleted for genetic variation, they still harbour rare and common variation 

that is found in healthy individuals, and one of the goals of this pilot was to compare 

putative pathogenic variation found in patients to variants observed in healthy individuals. I 

also sought to compare the impact of SNVs and deletions in these elements, with the 

hypothesis that deletions would be more disruptive to element function. Published work 

has shown a higher impact from deletions than SNVs, albeit in the context of a synthetic 

enhancer. If deletions do cause a more pronounced effect, they may also be a more efficient 

way of determining which regions in an enhancer are critical for function.  

As part of the pilot project, I also ran the experiment in HeLa cells as well as 

neuroblastoma cells. While HeLa cells are experimentally tractable and have been used in 

previous MPRA work, they may not contain the relevant TFs for expression of elements 

likely to be active in neural tissues. In contrast, Neuroblastoma expresses many of the 

essential neuronal markers21, but has lower transfection efficiency than HeLa cells. Thus, an 

essential part of the pilot project was determining whether we can observe cell type-specific 

enhancer activity, and whether choice of cell type dramatically impacts any conclusions. 

 To this end, I designed a series of MPRA experiments testing 56,688 different 

enhancer sequences based on results from Chapter 2. These 56,688 sequences included 

thirty-one genomic elements with DNMs observed in multiple families. A total of 64 

independent DNMs were identified in these recurrently mutated elements. These 64 DNMs 

were included in the analysis with 150bp of genomic sequence (74bp upstream and 75bp 

downstream). These 64 elements were also synthesized with every possible SNV change 

from the reference sequence throughout the 150bp element. In the case that two DNMs fall 

within 150bp, a saturated element was programmed for each DNM and thus the DNMs 

would be evaluated twice in different contexts—once in the center of a saturated element, 

and a second time in the oligo centred on the other DNM. To mitigate the risk of false 

negatives due to the 150bp element centred on the DNM would be non-functional, I also 
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included the wild-type sequence of the element with the DNM at the 25th base, at the 125th 

base, and at the 75th base with the element in reverse orientation. 

A total of 767 elements, including the 64 selected for saturation SNV editing, with a 

DNM observed in one patient were synthesized with the reference sequence as well as five 

base pair deletions tiled across the element (see Methods). Control elements assayed in a 

previously published MPRA conducted in U87 glioblastoma cell line and neural progenitor 

cell line were also included11,22 (see Methods). The experimental workflow for this analysis 

was based on Tewhey et. al, but included adaptations to the protocol most notably the 

addition of unique molecular identifiers (UMIs) to ensure all sequencing steps are reflective 

of the original input material and not subject to overcounting or PCR biases. This work was 

led by Sebastian Gerety in the laboratory and I worked on the experimental design, 

bioinformatics, and statistical analysis. An overview of the experimental design and 

laboratory protocol is provided in Figure 1, and described in the Methods section. 
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Figure 1 Overview of the MPRA method adapted to include UMIs. 

	

	

 The oligo synthesis design included 28,800 SNVs and 23,010-thousand five base pair 

deletions in non-coding elements with mutations observed in patients with severe 

developmental disorders (see Methods). However, oligo synthesis is error-prone and as a 

result a far greater diversity of variation was observed than what was originally designed. In 

particular, 22% of oligonucleotides had a one base pair deletions and 7% had large deletions 

(>20bp). By comparing the sequencing reads spanning the same element-barcode pairs, I 

determined that these deletions were likely present in the oligo-synthesis step, not as a 

sequencing error. Figure 2A shows the distribution of actual observed deletions sizes 

relative to the reference compared to what was expected based on the array design. 

However, due to the quasi-random nature of the deletions, the vast majority of ‘non-

programmed’ variants were observed at lower frequency in the barcoded library (Figure 

2B).  
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Figure 2 Linking elements to barcodes. (a) Oligo-synthesis is error-prone and introduces non-

programmed variation. One base pair deletions are the most common error mode, but large deletions 

(>20bp) are also common. (b) Most programmed oligonucleotides are present with tens to hundreds 

of different barcodes in the input DNA, while non-programmed variation is at a much lower 

abundance in the library. 

	

	

Previous MPRA work has not, to my knowledge, addressed the issue of errors in 

oligo-synthesis directly. Instead, they have used approximate string matching to match non-

programmed variation to expected variation within a stated error tolerance (typically two 

edits)12. In cases where barcodes are synthesized on the oligo rather than ligated in a 

separate step, synthesis errors cannot be easily separated from sequencing errors11,15. In 
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either case, pooling data from oligonucleotides sharing the same programmed edit but with 

different non-programmed edits may introduce noise to the experiment. For this reason, I 

chose to begin by strictly filtering to ensure that any inferences made about variant effect 

were due to the precise programmed variation and not due to error-prone oligo synthesis. I 

successfully recovered barcodes for 27,146/28,800 (94.2%) of SNV-containing sequences 

and 21,238/23,010 (92.3%) of 5bp deletion-containing sequences. Of the 64 elements 

selected for saturation, 61/64 elements had near complete saturation (median 447/450 

SNVs recovered), while 3/64 elements were very poorly represented (Figure 3A). These 

three elements had long runs of repeated sequence. These elements had a high error rate 

during oligo synthesis and were also observed at lower abundance, indicative of low PCR 

efficiency. Due to these technical limitations, these three elements were excluded from 

further analyses. The programmed deletions were also well-represented in the library. Of 

the 767 elements selected for tiling 5bp deletions, >80% of elements had at least 27/30 

deletions observed (Figure 3B).  

	

 

 

 
Figure 3 Proportion of programmed SNVs and deletions. (a) 61/64 elements selected for saturation 

had nearly all of the 450 expected SNVs observed after the barcoding step. (b) of the 767 elements 
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selected for tiling 5bp deletions, recovery of observed deletions was also very high.  

	

The expression of a putative regulatory element in a massively parallel reporter 

assay is calculated by dividing the observed RNA levels after transfection by the input DNA 

levels. Previously published MPRA studies have calculated normalised expression based on 

dividing the proportion of sequenced reads matching element-associated barcodes in the 

cDNA by the proportion of those barcodes in the original library DNA library used in 

transfections12. One concern with this approach is that performing PCR before sequencing 

may result in PCR biases confounding expression estimates as well as redundant sequencing 

of the same original DNA molecule in cases where the amount of starting material is low. 

This has been observed in bulk RNA-sequencing23 and single cell RNA sequencing24, and 

these biases have been addressed using unique molecular identifiers (UMIs), but this 

approach has not yet been applied to MPRA to my knowledge. In order to test and 

potentially correct for overcounting the same DNA molecule, the protocol described in 

Tewhey et. al was adapted by Sebastian Gerety in the Hurles Lab to include incorporation of 

UMIs to each DNA molecule prior in the plasmid library prior to PCR amplification and 

sequencing as well as to each cDNA molecule harvested from HeLa and neuroblastoma cell 

lines prior to sequencing (Figure 1). 

I found that in the cDNA pools, each individual molecule was sequenced, on average, 

just over three times, implying that the complexity of input material used in sequencing was 

too low. Without the use of UMIs, it would be difficult to know whether the amount of 

input material was sufficient. In the case of low input material, counting sequencing reads 

rather than UMIs would result in an artificially high level of certainty around estimates of 

variant effect due to overestimate of the denominator (input DNA) and numerator (output 

RNA) in estimates of allele specific expression (ASE). In the case of abundant input material, 

I expect that the UMIs will reduce the variance between independent controls by reducing 

the noise due to sequencing the same original molecule twice, due to sampling with 

replacement. For these reasons, I used the UMI counts, rather than the total read counts, in 

all analyses going forward. 

The choice of cellular system used in MPRA has shown to impact the regulatory 

activity of putative enhancer sequence22. For this reason, I chose to test the enhancer 
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elements in both HeLa cells and neuroblastoma cells. HeLa cells are more easily transfected 

and have been used extensively in MPRAs, but are lacking in many of the tissue-specific 

transcription factors important for activity of developmental enhancers. I sought to test the 

robustness of the assay in HeLa and neuroblastoma by testing the expression of putative 

enhancer sequences in multiple independent experiments and comparing results. I 

calculated the ratio of RNA output to DNA input within a given pool, normalised by the total 

number of unique UMIs observed (referred to as ‘normalised expression’ throughout) in 

three independent biological replicates in both HeLa cells and Neuroblastoma cells. To 

reduce the likelihood of PCR biases causing particular elements to be at much higher 

proportion in the MPRA library, all experiments were performed in four different sub-pools 

using specific primers included at the oligo synthesis step, resulting in a total 24 different 

experiments (see Methods).  

I first calculated the normalised expression of each wild-type reference sequence 

and compared the estimated expression in independent biological replicates. The 

correlation was unexpectedly low compared to that reported in Tewhey et. al (Figure 4A, r2 

= 0.06, p = 0.0002093) and there were a large number of elements that showed evidence for 

expression in one replicate and no expression in another. I reasoned that this may be the 

result of a bottleneck causing elements at low abundance in the pool to have high variance 

between pools. Ranking the elements by their abundance in the plasmid pool and restricting 

to the top 10%, I find a much higher correlation between independent replicates (Figure 4B, 

r2 = 0.58). 

This phenomenon was not reported in Tewhey et. al, so I downloaded the publicly 

available data to see if I could reproduce the same phenomenon. I saw no evidence for 

drop-out or markedly high variance at low abundance plasmids in the Tewhey et. al data, 

suggesting that differences in the experimental protocol, potentially due to the lower 

number of cells used in our experiment (5 million cells versus 100 million) or the 

transfection method used (electroporation versus lipofectamine), may have resulted in a 

bottleneck in our data that is not present in the data from Tewhey et. al. As of this writing, 

the source of this loss of complexity in our experimental workflow has not been resolved, so 

all analyses going forward have been restricted to include elements above an abundance 

threshold of 0.0014 (see Figure 4C). As a result, approximately 40% of programmed variants 

were excluded from the analysis. Even at this strict abundance cutoff, the correlation 
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between replicates in the publicly available data from Tewhey et. al is higher (r2 = 0.58 

versus r2 = 0.64). Thus resolving the potential bottleneck in our experimental pipeline is 

critical to improve correlation between experimental replicates. 

 

 

 
Figure 4 Correlation between biological replicates. (a) the number of unique plasmid molecules in 

the starting library correlates strongly with correlation between independent biological replicates. 

Increasing the starting material to tens of thousands of molecules per DNA sequence tested will 

improve reproducibility. (b) Correlation between normalised expression in HeLa cell line replicate 1 

and replicate 2 (r2 = 0.76). 

 

After establishing criteria for reliable correlation between replicates, I next sought to 

test the enhancer activity for the wild-type sequence of all 767 conserved non-coding 

elements (CNEs) and enhancer sequences included in the MPRA design. The expression of 

the reference sequences assayed showed bimodal distribution in both HeLa and 

Neuroblastoma cell lines (Figure 5A,B), indicating that a subset of elements are likely driving 

robust expression, while others are not acting as enhancers in that particular cellular 

context. 

I fit a two-component gaussian mixture model to the expression data to classify 

elements as likely active or inactive. In HeLa cells, 64% of elements showed strong evidence 
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of enhancer activity and in neuroblastoma cells, 72% showed strong evidence of activity. 

Across the two different cellular systems, 85% of all elements were active in at least cellular 

context and 50% were active in both. Elements overlapping a DNase I hypersensitive site 

(DHS) in HeLa cells showed 1.4-fold greater expression (p = 0.00003043, Wilcoxon rank sum 

test) and elements overlapping a DHS in neuroblastoma showed a 1.1-fold greater 

expression which was not significant (p = 0.24, Wilcoxon rank sum test) (Figure 5C,D). Only 

one source of DHS data was available for the neuroblastoma cell line used, and these DHS 

data were generated as part of an early ENCODE study, thus the sensitivity may not be 

equivalent to the data used in HeLa cells. Elements that are active in the MPRA experiment 

in both neuroblastoma and HeLa cells are also 1.4-fold more likely to be overlapping open 

chromatin peaks in both HeLa and Neuroblastoma (p = 0.0235, chi-square test). These 

results support the finding from Chapter 2 that a large fraction (50-70%) of the non-coding 

elements sequenced in the DDD project were likely acting as enhancers.  

 

 
Figure 5 Activity of reference sequences in different cellular contexts. Ratio of RNA to DNA in the 

wildtype sequence of 767 conserved non-coding elements and enhancers in (a) HeLa cell line and (b) 

neuroblastoma cell line shows bimodality. (c) Elements overlapping an open chromatin peak in HeLa 

cells show higher expression in the MPRA experiment. (d) Elements overlapping an open chromatin 
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peak in Neuroblastoma cells do not show any statistically significant expression differences in the 

MPRA assay.  

	

Results Section 4.1.2. Impact of SNVs and indels on ultra-conserved element function 

 

 Across all of the genetic variants tested, the majority of single nucleotide variants 

and indels resulted in decreased expression relative to the reference sequence (Figure 6), 

suggesting that the evolutionary conservation of these elements may be maintained in large 

part by selection against reduction in gene expression on the genes they regulate. 

Population genetic analyses in Chapter 3 and previous reports based on patterns of 

evolutionary conservation in the non-coding genome across species suggest that selective 

constraint on indels may be stronger than selective constraint on SNVs.  

 

 

 
Figure 6 Impact of all SNVs on reporter gene expression. In both HeLa and neuroblastoma, 

approximately 60% of SNVs result in reduced expression compared to the reference sequence. 
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In both HeLa and neuroblastoma cells, the 5bp deletions showed substantially 

greater impact on expression of the wildtype sequence compared to SNVs (median 1.39-fold 

change from 5bp deletions compared to median 1.22-fold change for SNVs in HeLa cells p < 

2.2e-16, Figure 7A, and median 1.42-fold change from 5bp deletion compared to median 

1.34-fold change for SNVs in neuroblastoma cells p < 2.2e-16, Figure 7B). 

 While the majority of elements tested in this assay are highly evolutionarily 

conserved, not all nucleotides within these elements are conserved across species. I sought 

to test the relationship between nucleotide level evolutionary conservation across 100 

vertebrate species (measured by PhyloP) and changes in reporter gene expression. Variation 

in sites with the highest decile of evolutionary conservation reduced expression by ~7% 

more than variation in sites with the lowest decile of evolutionary conservation (median 

1.32-fold change versus 1.39-fold change, p = 0.000032, Figure 7C) in neuroblastoma, but 

the difference was not significant in HeLa. I did not find any significant difference in reporter 

gene expression and CADD score25, one of the most commonly used metrics for assessing 

variant deleteriousness in the coding and non-coding genome (Figure 7D). The data in 

neuroblastoma are suggestive of a relationship between evolutionary conservation and 

magnitude of MPRA expression changes, but given the lack of concordance between 

different cell types, further study is warranted before drawing any broad conclusions. 

 Forces of selection acting to reduce the frequency of deleterious alleles in the 

population imply that rare variation is more likely to be deleterious than common variation. 

For example, singleton variants (observed only once in the population being studied) have 

been shown to be enriched for damaging variation compared to more common variation. To 

this end, I hypothesized that the allele frequency of variants may correlate with effect size in 

the reporter assay. I used the genome aggregation database (gnomAD) and the DDD 

unaffected parents to identify variants observed as singletons and compared their effect 

size to sites with two or more alleles observed. I did not find any significant difference 

between effect size the in the reporter assay for singleton compared to non-singleton 

variation in either HeLa or neuroblastoma. However, as only approximately 3% of the 

variants assessed in the MPRA assay have been observed in these populations, power to 

detect any difference is far more limited than with PhyloP, or CADD which can be applied to 

every tested variant. 
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Figure 7 Impact of SNVs and deletions on reporter gene expression. Deletions result in significantly greater 

changes than SNVs in (a) HeLa cell line and (b) neuroblastoma cell line. (c) Increase in PhyloP score is 

associated with a greater impact on reporter gene expression. (d) CADD score of the variant did not show a 

clear relationship with impact on the reporter gene. 

	

Results Section 4.1.3. Assessing the impact of patient mutations using MPRAs 

 

 A lack of understanding of the nucleotide-level ‘grammar’ of enhancers, promoters, 

and other regulatory sequence presents a challenge to variant interpretation in the non-

coding genome. MPRAs present an opportunity to test the impact of thousands of 

potentially pathogenic non-coding variants in a single experiment. If these experimental 

assays prove robust and informative with respect to pathogenicity and faithfully 

recapitulate in vivo activity, they could serve as a ‘look-up’ table for variant pathogenicity, as 

well as a source of data to improve machine learning models for variant pathogenicity 

prediction. 

In Chapter 2, I identified a set of 31 non-coding elements that were recurrently 

mutated in developmental disorder cases without a pathogenic variant in the coding 

regions. These 31 recurrently mutated elements harboured 64 distinct mutations which 

were selected for saturation mutagenesis in these MPRA experiment (see Methods). I 
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sought to compare the impact of these patient-mutations to variation observed in the 

apparently healthy population. I reasoned that variation in these elements that is observed 

in a healthy population is likely benign or under weak selective constraint, whereas the 

impact of variation that had not been observed in patients, or in healthy individuals is 

unknown. For this analysis, I use any variation in the gnomAD database (15,796 individuals) 

as well as unaffected parents from the DDD project (13,192 individuals). 

While median change in expression was higher for patient mutations than for sites 

with variation observed in unaffected individuals in neuroblastoma (1.39-fold versus 1.33-

fold in neuroblastoma, Figure 8B), the difference was not statistically significant. Due to the 

high sample to sample variability described in Section 4.1.1, approximately half of the 

patient mutations and polymorphic variants had to be excluded from this analysis, and as a 

result this analysis is likely underpowered.  

I also used QuASAR-MPRA, a statistical package for detecting allele specific 

expression (ASE) in MPRA data to test the patient mutations and polymorphic variation for 

evidence of significant ASE. Approximately 10% of the variants tested were nominally 

significant, but none of the variants survived multiple hypothesis test correction. QuASAR-

MPRA uses a beta-binomial distribution and fits an overdispersion parameter to the data. 

QuASAR-MPRA has been applied successfully to MPRA data from eQTL fine-mapping studies 

where a large fraction of tests were expected to be negative16. However, in the case of the 

highly conserved non-coding elements tested here, where a large fraction of sites might be 

expected to alter gene expression, fitting the overdispersion parameter to the data may be 

overly conservative. Thus, modelling approaches that fit overdispersion on likely benign 

variation, potentially using nucleotide level conservation as a proxy as shown in Chapter 3, 

or modelling approaches that account for prior information about the fraction of sites 

expected to result in ASE may be more appropriate. This set of MPRA experiments has not 

shown any compelling evidence for dramatic expression changes resulting from patient 

mutations, but as improvements in the experimental workflow are made to ensure robust 

expression across experimental replicates, and larger numbers of robustly disease-

associated mutations are discovered, these analyses should be re-visited. 
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Figure 8 Assessing the impact of patient mutations in the MPRA assay. No significant difference in 

impact on expression of the reference sequence was observed between patient mutations and variation 

observed in gnomAD or the DDD unaffected parents in (a) HeLa cells and (b) neuroblastoma cells. 

 

	

Results Section 4.2: Assessing disease-associated enhancer activity using mouse 

transgenesis assays 

Results Section 4.2.1. Mouse transgenesis assays to identify putative developmental 

enhancers 

 
 While MPRAs have the capacity to test tens of thousands of variants in a given 

experiment, they are feasible only in cellular models with high transfection efficiency, and 

therefore may provide information only within a potentially limited cellular context. In 

contrast, mouse transgenesis assays are lower throughput, but provide an opportunity to 

test the function of an enhancer element across many tissues of a developing mouse 

embryo, albeit still upstream of a reporter gene.  

In Chapter 1, I analysed sequence data from 7,390 trios where the child was affected 

with a severe developmental disorder and identified an enrichment of de novo mutations 

(DNMs) in highly evolutionary conserved non-coding elements (CNEs) with evidence for 

activity in the fetal brain. Thirty-one of the CNEs were recurrently mutated (DNM observed 

in two or more independent families). Under the null mutation rate model, we expected to 

see approximately fifteen recurrently mutated elements by chance. Thus, these thirty-one 

elements represent a source of candidate disease-associated elements with a false 

discovery rate of ~50%. I sought to test a subset of these candidate disease-associated 
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elements in a mouse transgenesis assay in collaboration with Evgeny Kvon, Diane Dickel, 

and Len Pennachio at Lawrence Berkeley Labs. 

 To prioritise elements for testing, all thirty-one recurrently mutated elements 

identified in Chapter 1 were annotated with histone modifications and measures of open 

chromatin in the fetal brain and the developing mouse brain by Evgeny Kvon. In line with 

the analysis in Chapter 1 suggesting that the majority of the conserved non-coding elements 

we tested were acting as enhancers, 26/31 recurrently mutated elements overlapped an 

H3K27ac peak, a mark associated with enhancer activity, in either human fetal brain or 

mouse brain.  

Based on evidence of activity in human/mouse brain and any testing in a mouse 

transgenesis assays, eleven of the thirty-one recurrently mutated elements were selected 

for testing. The wild-type sequence showed brain-specific expression at mouse 

developmental stage E11.5 in eight out of the eleven elements. As all eleven estimates had 

very strong evidence for H3K27ac and open chromatin in multiple developmental timepoint 

in mouse, there are a few potential explanations for the three negative elements. First, 

these elements may be functioning as enhancers in vivo, but may not be sufficient to drive 

expression on their own. Second, the mouse transgenesis assay was only completed at a 

single timepoint (E11.5) and these elements may be expressed at a different developmental 

timepoint. For example, one of the elements testing negative (chr10:131699490-

131700091) has H3K27ac marks in the midbrain and hindbrain in E12.5, E13.5, and E14.5, 

but not E11.5. Ten of the eleven elements tested in the mouse transgenesis assay were 

tested in the MPRA and drove expression in either HeLa or Neuroblastoma (see Figure 9), 

including the three elements testing negative, supporting the hypothesis that these 

elements may be acting as enhancers in a different context other than that surveyed in the 

mouse transgenesis assay. The only element that tested negative was chr6:14501358-

14501959, which had low representation in the pool likely due to its repetitive sequence 

(see Figure 3) and was excluded from further analyses. 
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Figure 9 MPRA expression estimates for the elements tested in the mouse transgenesis assay. All of 

the elements that were tested in the mouse transgenesis assay showed evidence for enhancer 

activity in the MPRA assay in both HeLa and neuroblastoma. 

 

 The eight elements with reproducible enhancer activity in the mouse transgenesis 

assay were modified to include patient mutations. Three of the eight mutants substantially 

altered or completely ablated expression of the reporter gene. The wild-type sequence of 

chr14: 57553276-57553757 drove reporter gene expression in the hindbrain, but hindbrain 

expression was completely absent in the element containing the two patient mutations (see 

Table 1). This regulatory element is in a gene desert near OTX2, an important gene for brain 

and eye development expressed throughout the brain in early development. Multiple lines 

of evidence support a role for the non-coding element at chr14:57553276-57553757 acting 

as an enhancer to OTX2. Both of the mutations present in patients in chr14:57553276-

57553757 resulted in loss of expression in the MPRA in both HeLa and neuroblastoma cells, 

although this difference was not significant after correcting for multiple tests. Taken 

together these results point toward loss of expression, perhaps exclusively in the hindbrain, 

of the dosage sensitive gene OTX2 as a potential regulatory cause of severe developmental 

delay. Additional functional validation such as a mouse knock-in of the patient mutation is 

warranted to establish whether the regulatory variants observed here are indeed sufficient 

to cause a severe patient phenotype.  

The wild-type sequence of chr6:14501358-14501959 drove expression in the 

midbrain and forebrain of the developing mouse embryo. After introducing the patient 
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mutations, expression in both the forebrain and midbrain were greatly reduced. The wild-

type sequence of chr7:13506147-13507336 drove expression in the forebrain, branchial 

arch, and trigeminal. The element containing patient mutations was active in the forebrain 

and branchial arch, but inactive in trigeminal. I was unable to assess concordance in the 

MPRA as the first element (chr6:14501358-14501959) had very low representation in the 

original pool due to its highly repetitive sequence (see Figure 3) and the second element 

(chr7:13506147-13507336) did not have sufficient observations to pass the threshold for 

correlation between biological replicates set in Section 4.1. As the MPRA experimental 

workflow is refined and more data is generated, these comparisons should be revisited. 

 

 

Discussion 

 

In this chapter, I presented preliminary data from two complementary experimental 

approaches to test the impact of non-coding variation on reporter gene expression. MPRAs 

have the potential to test tens of thousands of non-coding variants in a single experiment, 

but as evidenced from the data presented here, there are still experimental challenges to 

overcome to improve the utility of these assays. Using a strictly filtered set of elements, I 

find evidence for enhancer activity in a large fraction (>75%) of the developmental disorder-

associated non-coding elements tested. I also find compelling evidence for 5bp deletions 

causing a greater change in reporter gene activity compared to SNVs. This is concordant 

with evidence from evolutionary studies26, and from selective constraint in humans 

presented in Chapter 3, that indels are under stronger selective constraint in the non-coding 

genome. While MPRA assays represent a promising experimental technique for variant 

effect prediction in the non-coding genome, I was unable to draw any firm conclusions 

about the impact of patient mutations tested in this assay in large part due to low 

reproducibility between experimental replicates and a relatively small number of 

observations. As the correlation between independent replicates in published data is much 

higher, this is likely the result of experimental differences, possibly related to the the 

number of cells or the transfection method used.  
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Going forward, there are a number of important steps to optimise and adapt the 

MPRA pilot experiment conducted here. The number of cells used in this pilot experiment 

per replicate was much lower than that used in Tewhey et. al, and this likely resulted in a 

bottleneck due to the number of cells or the transfection method used. Adapting the 

method to add UMIs before each sequencing step also allowed us to determine that the 

amount of RNA sequenced was too low, as each input molecule was sequenced an average 

of three times. Increasing the number of cells used and the amount of genomic material 

sequenced will likely substantially improve the correlation between independent replicates 

and enable a larger fraction of the programmed variation to be reliably assessed. 

While we have tested two different cellular models, HeLa and neuroblastoma, we 

have not tested whether genome integration methods provide more reliable estimates of 

gene expression than the episomal method employed here, as has been suggested 

previously18. Furthermore, we tested 150bp sequences created using oligo synthesis 

technology, but other approaches exist that allow for larger sequences to be tested 

including using PCR on patient samples, and the construction of larger elements out of 

synthesized oligos, albeit at lower throughput than the method employed here. 

The current informatics pipeline does not incorporate any analysis of TFBS 

disruption. As published MPRAs have identified relationships between reporter assay 

expression and motif perturbation11, this is an important next step toward understanding 

the mechanism underlying gene mis-regulation. As more developmental disorder associated 

elements are discovered, extending saturation mutagenesis to cover a greater number of 

elements beyond the 64 tested here will provide more power to discover nucleotide-level 

patterns associated with pathogenic mis-regulation. 

In contrast to MPRAs, mouse transgenesis assays have been repeatedly validated as 

predictive of enhancer function, applied to thousands of different putative regulatory 

elements, and provide an organismal-level view of regulatory element function. However, 

these assays are much lower throughput in the number of putative regulatory elements 

they can assess and can only be cost-effectively applied to a small number of elements. For 

this reason, we selected eleven elements with strong prior evidence of enhancer activity in 

mouse and human brain, and with a high prior of association to severe DD. The majority 

(8/11) of the developmental disorder associated non-coding elements tested in the mouse 
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transgenesis assay drove robust expression in at least one tissue and introducing patient 

mutations disrupted reporter gene expression in three out of eight of the enhancers.  

One drawback of the two methods used here is that both MPRAs and mouse 

transgenesis assays rely on testing putative regulatory elements in a reporter construct, 

rather than in its endogenous locus. Ablation of expression in a reporter construct does not 

necessarily imply that expression will be ablated in vivo, as there may be compensatory 

effects from nearby elements8,27. Furthermore, mouse transgenesis assays do not provide a 

link from gene mis-regulation to the patient’s phenotype. Thus, results from the mouse 

transgenesis assay should be corroborated by CRISPR knock-ins of patient mutations into 

the endogenous locus to establish the link between genotype and phenotype. 

An additional challenge of assaying putative pathogenic variants in regulatory 

elements in MPRAs is that it is difficult to know based on sequence alone how a genetic 

variant will impact gene regulation. While variation resulting in loss-of-expression may be 

readily detectable in MPRAs, it is not clear how variation resulting in ectopic expression in 

vivo (e.g. in a different tissue/cell type) will manifest in a MPRA. Combining whole genome 

sequencing with RNA-sequencing in the relevant tissues for the patient’s disorder may 

provide an opportunity to identify patients with abnormal expression levels attributable to a 

regulatory variant that can be tested in these systems. The advent of large whole genome-

sequencing projects will likely uncover increasing numbers of disease-associated regulatory 

variants. For highly penetrant regulatory variants in particular, MPRAs, mouse transgenesis 

assays, and other functional assays will be critical to better understand the link between 

sequence and phenotypic effect. 
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Chapter 5: Discussion 
 

Gene regulation plays a central role in evolution, organismal development, 

and disease. Despite the critical importance of gene regulation throughout 

development, there have been few genetic variants in regulatory elements with 

large effects that have been robustly associated to disease (several notable 

examples are reviewed in Chapter 1). Even in common and complex disease where 

regulatory variation has estimated to account for more than 80% of disease risk 

attributable to genetics1, there is still little mechanistic understanding of how this 

risk manifests. In this work, my overarching aim was to gain a better understanding 

of the contribution of genetic variation in regulatory elements to Mendelian 

disorders and attempted to approach this problem from three different 

perspectives. I first sought to assess the contribution of regulatory variation to 

severe developmental disorders using sequence data from 8,000 affected individuals 

and their parents and to identify individual elements with a high probability of 

harbouring pathogenic regulatory elements (Chapter 2). Next, I used data from more 

than 28,000 whole genome sequenced individuals to examine the forces of selection 

operating on non-coding elements more generally (Chapter 3). Finally, I conducted a 

pilot experiment to assay >50,000 different non-coding variants across more than 

700 different non-coding elements, including variants observed in patients with 

developmental disorders in a massively parallel reporter assay (MPRA) and 

collaborated on an assessment of the impact of patient mutations in eleven different 

enhancers using mouse transgenesis assays (Chapter 4). 

 Analysing mutations in more than 8,000 trios with severe developmental 

disorders from the Deciphering Developmental Disorders (DDD) project2,3, I showed 

that de novo single nucleotide variants (SNVs) in highly conserved non-coding 

elements contribute to these disorders. The DDD project sequenced approximately 

5Mb of non-coding sequence in all 8,000 trios, but this sequence was biased to 

contain primarily highly evolutionarily conserved non-coding elements. As a result, 

the observations and estimates here are based primarily on highly conserved non-

coding sequence, although this analysis did include more than 500 experimentally 

validated enhancers with varying levels of evolutionary conservation. 
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I estimated that 1-3% of patients in this cohort carry a pathogenic de novo 

SNV in a regulatory element active in the fetal brain. Approximately ~20-50% of 

these pathogenic mutations were sequenced directly in the capture, and serve as a 

conservative lower bound for estimates of burden in the non-coding genome. While 

regulatory variants have been previously associated with Mendelian disorders 

(reviewed in the Introduction), this is the first time, to my knowledge, that a role for 

damaging regulatory variation has been reported in such a large and phenotypically 

heterogeneous set of disorders. 

 It is important to note that this estimate does not include the contribution of 

small insertions and deletions (indels), which has not yet been assessed in the DDD 

cohort. The lack of robust models of the indel mutation rate presents a challenge for 

analyses of mutational burden. These variants play a large role in disrupting protein-

coding sequence due primarily to frameshift mutations, and are also likely to be 

more damaging than SNVs in non-coding regions. Thus, there is a strong motivation 

for improved modelling of the germline mutation rate and variant calling pipelines to 

accurately detect this class of variation. The contribution of larger copy number 

variants (CNVs) in non-coding elements has also not yet been assessed on a large 

scale. As a number of Mendelian disorders are caused by enhancer duplications, 

deletions, and disrupting TAD boundaries,4 this class of variation should be 

prioritised for future work within the DDD cohort and in large whole genome 

sequencing studies which have greater sensitivity for calling CNVs and identifying 

breakpoints5.  

Using data from large-scale annotations of function in the non-coding 

genome including the Roadmap Epigenome Project6, the ENCODE project7, the 

FANTOM5 consortium8, and the VISTA enhancer database9, I showed that the 

majority of conserved non-coding elements sequenced in the DDD patients are likely 

functioning as enhancers. A subset of conserved non-coding elements show little 

evidence of enhancer activity across a wide range of tissues, but are instead 

predicted to be involved in post-transcriptional regulation. Conserved non-coding 

elements (CNEs) have long captured the interest of the scientific community due to 

their near perfect sequence identity across hundreds of millions of years of 

evolution10. These elements have been shown to be under ongoing purifying 
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selection and unlikely to be mutational coldspots11. I showed that conserved non-

coding elements sequenced in the DDD project were under selective constraint, 

albeit to a lesser degree of known developmental disorder genes, consistent with 

these previous reports11,12.  

The distribution of de novo mutations (DNMs) in CNEs in Chapter 2 also 

suggests that within a disease-associated CNE, a small fraction of sites (maximum 

likelihood estimate of 3%) are pathogenic with a dominant mechanism for DD. In 

contrast, in DD-associated haploinsufficient disease genes, 8-10% of mutations result 

in protein truncation and many missense variants may also result in loss of function 

via other mechanisms13. Thus, even for the most highly evolutionarily conserved 

regulatory elements in the genome, the role these mutations play in disease and 

therefore the forces of selection acting upon them, differs substantially from 

protein-coding genes. The pattern of evolutionary conservation in these elements 

could be the result of pleiotropy, where a single ultraconserved regulatory element 

is responsible for multiple different important regulatory functions. While this model 

could explain the relatively low contribution to severe developmental disorders from 

mutations in these elements, this model would likely result in levels of selection on 

par or greater than protein-coding genes, which I did not observe. Furthermore, 

non-coding elements are typically active in fewer tissues than coding genes, making 

the pleiotropy argument less likely14. Alternatively, evolutionary conservation in 

these elements may be maintained by weak selection against heterozygosity, or 

potentially strong selection against homozygosity that prevents deleterious variation 

from becoming fixed in the population. I found suggestive evidence in Chapter 2 that 

patient mutations more frequently resulted in gain of transcription factor binding 

than expected under a null mutational model. Thus, I hypothesise that a large 

fraction of the deleterious non-coding variants in CNEs may result in gain of function, 

as has been observed previously15,16. The answer to these questions has important 

implications for the role these elements play in disease, the study designs required 

to detect them, and potential therapeutic strategies. Furthermore, these questions 

apply not only to CNEs, but to non-coding elements genome-wide, motivating a 

more comprehensive study of selective constraint in the non-coding genome. 
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In Chapter 3, I analysed data from more than 28,000 whole genome 

sequenced individuals from the gnomAD and BRIDGE projects to examine patterns of 

selective constraint in the non-coding genome in greater detail. I detected evidence 

for pervasive constraint against SNVs in the non-coding genome, most notably in 

DNase hypersensitive sites, long non-coding RNAs, and 3’ UTRs. In each of these 

element sets, there was a strong correlation between evolutionary conservation of 

the elements and observed selective constraint. However, I found that even 

elements that are poorly evolutionarily conserved contain a subset of nucleotides 

that are evolutionary conserved which are under selective constraint. This result has 

important implications for the role of regulatory variation in disease. Namely, it 

suggests that a large fraction of active regulatory elements genome-wide may 

harbour variation conferring disease risk, albeit in a small fraction of the total 

sequence underlying the open chromatin peak or activity-associated histone mark.  

If this model holds true, then it implies that efforts to understand the 

functional bases within a putative enhancer sequence are likely to greatly improve 

power to detect pathogenic variation. This also suggests that whole genome-

sequencing, rather than targeted sequencing of a subset of selected regulatory 

elements, may be necessary to detect disease-associated variants in research or 

clinical applications where identifying pathogenic non-coding variation is a primary 

aim. Furthermore, it suggests that the conventional model of regulatory ‘elements’ 

that are hundreds or thousands of bases in length may actually be more accurately 

modelled as a loose collection of smaller functional sequences. As the de novo 

enrichment analyses presented in Chapter 2 focus on highly evolutionarily conserved 

elements, increasing genome coverage to include a greater number of less well 

conserved regulatory elements may provide further opportunity to answer this 

question. Large-scale whole genome sequencing efforts such as the Genomics 

England 100,000 Genomes project have recruited thousands of affected patients and 

their parents and these data will provide a great opportunity to assess this question 

and others. 

Evolutionary estimates suggest that a small fraction of the genome, between 

3% and 15%, is under selective constraint17,18, while large-scale annotations of 

regulatory function such as the ENCODE project have suggested as much as 80% of 
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the genome is biochemically active in at least one tissue7. The results presented in 

Chapter 3 are consistent with a model in which a large fraction of the genome may 

be biochemically active, but only a small fraction of functional nucleotides give rise 

to this activity. I have also shown that conserved transcription factor binding sites, 

regardless of the evolutionary conservation of the surrounding sequence, are under 

purifying selection. Taken together, these results lend support to the ‘billboard 

model’ of regulatory element function whereby transcription factor binding sites or 

sets of sites in close spatial proximity confer regulatory potential to previously inert 

sequences19. However, this analysis did not consider the potential impact of the 

variant (e.g. loss, gain, or neutral effect on binding), nor the impact of spacing 

between transcription factor binding sites. As this analysis incorporated data from 

approximately 28,000 healthy individuals, there is significant scope to increase this 

analysis using data from the UK Biobank and the 100,000 Genomes Project that is 

soon to be made publicly available. However, I estimated that even hundreds of 

thousands of deep whole genomes would not provide the resolution necessary to 

detect selection at 10-20bp resolution (e.g. the size of a typical transcription factor 

binding sites). Thus, understanding and predicting the precise patterns underlying 

nucleotide-level constraint in the non-coding genome represents an important area 

for future work that may not be resolved by population genetic approaches alone. 

Evolutionary studies have suggested that regulatory elements are more 

intolerant of insertions and deletions (indels) than SNVs18. Modelling selective 

constraint against indels presents several challenges, most notably the lack of well-

calibrated null models for the indel mutation rate. To overcome this challenge, I 

used de novo indels to directly account for variation in the underlying indel mutation 

rate. Results from this analysis suggest that indel constraint is substantially greater 

than SNV constraint in non-coding elements. However, the confidence intervals of 

these estimates are still large, primarily due to the relatively small number of de 

novo indels from healthy individuals used to calibrate the mutation rate model. In 

addition to simply collecting larger numbers of whole genome sequenced trios to 

more accurately quantify the indel mutation rate, a number of models are in 

development to predict the indel mutation rate from sequence context. 

Improvement of these models is critical to enable indel constraint to be quantified 
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for individual elements, rather than aggregated groups of elements as was 

performed in Chapter 3. 

As suggested by the analysis of selective constraint on the CNEs sequenced in 

the DDD project, regulatory elements show systematically lower selection on 

heterozygotes than protein-coding genes even at the same level of evolutionary 

conservation. This result, alongside the estimate that a low proportion of bases in 

regulatory elements are predicted to contribute to severe DD with a dominant 

mechanism (maximum likelihood estimate of 3%), suggests that the effect sizes of 

genetic variants in regulatory elements may, on average, be far smaller than protein-

coding genes. Apparently weaker selection on heterozygotes in regulatory elements 

could also point to a greater role for selection on homozygotes maintaining 

evolutionary conservation. While there have been attempts to model selection on 

heterozygotes with an assumed dominance coefficient of one20, there are, to my 

knowledge, no established methods for jointly modelling strength of selection and 

the dominance coefficient using human whole genome sequencing data. Recent 

population genetics work has suggested that it may be fundamentally difficult to 

separate weak selection against heterozygotes from selection against homozygotes 

using human polymorphism data21. More development in this area will improve 

modelling the genetic architecture of disease not only in the non-coding genome, 

but in protein-coding genes where incomplete penetrance or oligogenic models may 

play an important role22. 

Chapters 2 and 3 together provide insight into the patterns of selection 

shaping the non-coding genome and their role in disease. However, more in-depth 

functional assays incorporating mutations linked to severe disorders may provide a 

complementary view into the nature of gene mis-regulation and the ‘enhancer 

code’. Furthermore, these assays present an opportunity to test the impact of 

patient mutations on regulatory element function, and to validate observations from 

the population genetic analyses presented in Chapter 3.  

For this MPRA pilot experiment, I designed a set of experiments testing more 

than 50,000 different putative enhancer sequences including all possible SNV 

changes in 64 elements, and 5bp deletions tiled across more than 700 elements. The 

64 elements selected for saturation were identified as developmental disorder 
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associated in Chapter 2. More than 75% of wild-type sequence tested showed 

evidence for enhancer activity in either HeLa or Neuroblastoma cells. I also found 

evidence for a relationship between nucleotide level conservation and magnitude of 

change in expression in the MPRA in neuroblastoma, but did not find any effect in 

HeLa cells. Deletions resulted in a larger effect in the MPRA in both HeLa and 

Neuroblastoma compared to SNVs, supporting the prior evolutionary work18, and 

population genetic studies in Chapter 3 suggesting that indels may be more 

disruptive of regulatory element function, and therefore under stronger selective 

constraint. 

While population genetic studies rely on data from only a small fraction of 

nucleotides where variation is observed, MPRAs provide the opportunity to test 

every nucleotide in a given regulatory sequence of interest. Thus, these tools may 

provide deeper insight into the nucleotide-level patterns responsible for regulatory 

element function. However, these experimental assays are still limited to cell types 

amenable to transfection in the laboratory and in the data from our pilot 

experiment, show relatively low correlation across biological replicates. As published 

data shows higher correlation across experimental replicates than we observed 

here23, additional optimisation of laboratory protocols should yield higher quality 

data and allow us to make reliable inference on the impact of patient mutations. 

These experiments serve as a valuable pilot experiment to understand the power as 

well as limitations of this new experimental technique and provide a starting point 

for further experiments. 

 In addition to testing patient mutations in a series of MPRA experiments, I 

worked with collaborators at Lawrence Berkeley National Laboratory to test a subset 

of disease-associated elements in a mouse transgenesis assay. We selected eleven 

elements with two or more DNMs in patients for testing based on strong evidence of 

enhancer activity in mouse and human brain, and observed robust expression at 

specific brain regions at mouse developmental stage E11.5 for the wildtype 

sequence in 8/11 elements in the mouse transgenesis assay. Notably, I was able to 

test the wildtype sequence for 10/11 elements in the MPRA and found evidence for 

regulatory activity for all 10 in both HeLa and neuroblastoma, suggesting that the 

elements failing to drive expression in the mouse transgenesis assay are likely active 
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enhancers in a different context than that tested in the mouse transgenesis assay. 

Three of the eight enhancers testing positive in the mouse transgenesis assay 

showed marked reductions in activity after introduction of patient mutations. While 

these assays present compelling evidence for reduction or ablation in expression in 

the context of a reporter gene, further work to knock-in the patient mutations to 

their endogenous context are needed to determine whether these gene expression 

changes are sufficient to cause a severe disorder. Work is now under-way in the 

Hurles lab to further characterise the phenotype of patients carrying these 

regulatory mutations and prioritise elements for mouse knock-in modelling based on 

the mouse transgenesis results. 

Beyond evaluating the impact of patient mutations, high throughput 

functional assays have the potential to contribute to other longstanding problems in 

gene regulation. For example, predicting the target gene of a putative enhancer 

remains a substantial challenge that was evident in my analysis of de novo mutations 

in non-coding elements in severe developmental disorders in Chapter 2. I assessed 

the overlap in gene target predictions using four different approaches (Hi-C, 

DNase/RNA-seq correlation, evolutionary synteny, nearest gene) and found a low 

degree of overlap between the predictions from different methods. One challenge of 

using both Hi-C and predicting targets based on correlation between DNase I 

hypersensitivity and transcriptional output is the necessity to survey the precise 

tissue and timepoint of interaction. The sheer quantity of different cell types and 

developmental timepoints poses a fundamental challenge to observational 

approaches to gene target prediction. One possible solution is to use machine 

learning to predict gene targets in unseen tissues or timepoints by learning patterns 

from available data. For example, TargetFinder integrates 15 chromatin features 

across multiple cell types to predict gene targets24. For single-cell sequencing data, 

Cicero integrates sparse chromatin features within a single cell type to predict 

changes in gene expression25. Going forward, tools such as Hi-C or Capture-C may 

also be applied to directly to patient derived cell lines or tissue samples, allowing 

gene mis-regulation to be observed directly, rather than inferred based on gene 

target predictions produced from wild-type sequence. 
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 Another approach to improve gene target prediction is to use CRISPR 

activation (CRISPRa) to force enhancer activity in a cell line representative of the 

tissue of interest and measure the impact on nearby genes26. In principle, this 

method can be used to direct the factors required for enhancer activation to the site 

of interest, and nearby genes can be profiled with qPCR or RNA-sequencing to test 

for changes in transcriptional output. However, it is still unclear how well CRISPRa 

recapitulates enhancer-gene interactions in vivo, with the exception of a small 

number of tested cell types26,27.  CRISPR inactivation (CRISPRi) has also been used to 

selectively silence putative regulatory elements and measure the impact on the 

expression of nearby genes. This approach has been used to silence elements in 

specific loci28 as well as genome-wide as a novel method for eQTL discovery29. 

 Improvements in gene target prediction will improve power to detect 

disease-associated regulatory variation in several ways. Linking enhancers to the 

relevant gene will allow for more reliable assessment of the impact of regulatory 

mutations acting as a ‘second hit’ to a damaging protein-coding mutation. For 

patients with very distinctive disorders associated with well-characterised disease 

genes, but no pathogenic variant in the exome, regulatory variation is often cited as 

a potential source of missed diagnoses22,30,31. There have been a few examples of 

this phenomenon reported, but the prevalence cannot be reliably assessed without 

robust gene target maps in the relevant cell type or tissue. Analysis of transcriptomic 

data from patients with autism spectrum disorder and patients with cancer has 

suggested that cis-regulatory variation can modify risk of a coding variant by 

changing expression of the ‘risk haplotype’22. This analysis was performed using 

eQTLs to link regulatory variant to target genes, but in cases where gene expression 

is tightly controlled and depleted for eQTLs (e.g. near dosage sensitive genes32), 

establishing gene target prediction via alternative routes such as Capture-C, CRISPRa, 

or CRISPRi may improve power. 

CNEs and enhancers are known to cluster in the genome, and these clusters 

often, but not always, regulate the same gene or genes33. Reliable gene target 

prediction will allow enhancers active in the same tissues and time points to be 

jointly analysed, improving power to discover disease associations. Genome editing 

in mice has already revealed examples of compensatory interactions between 
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ultraconserved enhancers driving expression in the same brain region of a critical 

developmental gene16,34. As studies focused on individuals with Mendelian disorders 

begin to incorporate RNA sequencing, gene target predictions will be essential to link 

variation in enhancers to changes in transcriptional level. Regulatory variation that 

phenocopies a loss of function mutation in a gene, or decreases expression enough 

to cross a critical threshold, will be challenging to identify without reliable gene 

target predictions. 

 A sizeable fraction (>8%) of the possible mutations in protein-coding genes 

results in loss of function13. These variants can be aggregated together in gene 

burden tests, increasing power and helping to establishing clear hypotheses for 

disease mechanisms (e.g. haploinsufficiency leading to destabilisation of a protein-

complex). Variation in the non-coding genome may prove to be more similar to 

missense variation in that many changes are neutral or weakly deleterious, and a 

small fraction or highly deleterious either acting as loss-of-functions or gain of 

function13.  The MPRA experiment conducted in Chapter 4 supports this 

hypothesis—~62% of SNVs caused decrease in reporter gene expression in both 

HeLa and Neuroblastoma. Thus, assessing the impact of regulatory variation, 

particularly in a clinical context, where effect sizes are likely to be small and 

heterogeneous will require a greater understanding of the underlying ‘enhancer 

code’ or high-throughput assays to assess variant pathogenicity at scale35. 

Furthermore, there may be such a variety of risk variants or haplotypes across the 

population that observing any one variant or haplotype multiple times is rare. This 

has been the case for missense mutations in the BRCA1 and BRCA2 genes, for which 

a large proportion (>70%) of missense mutations are variants of unknown 

significance (VUS)35,36. Substantial progress has been made in separating benign from 

damaging missense variation using multiplexed assays of variant effect35,36 (MAVEs). 

It has been suggested that these experiments could produce ‘lookup tables’ for 

clinical use, and the data can also be used to train machine learning models to better 

discriminate pathogenic and benign variants computationally36. In the non-coding 

genome, machine learning models have been trained using data from synthetic 

enhancers to predict enhancer function, but these models have not yet been applied 

to clinically ascertained non-coding variants37. MAVEs have been shown to 
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outperform computational predictors of missense deleteriousness metrics, which 

are based primarily on evolutionary and physicochemical data38-40, in some 

contexts36. Thus, it stands to reason that non-coding variant deleteriousness metrics 

may be improved by incorporating information from functional assays35. 

 Extending the experimental strategies already successfully employed to study 

missense mutations in BRCA136 to the non-coding genome comes with several 

challenges. Assays of missense effect have been performed in haploid cell lines for 

which the gene of interest has been determined to be essential for survival. It may 

be more challenging to identify cell lines in which individual enhancers are essential 

for survival due to the high degree of enhancer redundancy. Even in the case that 

cell lines can be identified that are intolerant of deletion of an enhancer, individual 

genetic variants may result in change of gene expression, but not complete loss of 

function. Simultaneous advances in large scale genome sequencing projects in rare 

and common disease and high throughput experimental techniques will create 

tremendous opportunities for better understanding of the non-coding genome and 

the role of non-coding variation in disease. Going forward, approaches integrating 

regulatory mutations from patients, which have a higher prior probability of large 

effect, with high-throughput functional assays will improve our understanding of the 

principles of gene regulation and the mechanisms by which gene mis-regulation 

contributes to disease. 
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Appendix 1 – supplementary tables and figures for: 
 

Chapter 2: De novo mutations in regulatory elements contribute to severe 
neurodevelopmental disorders 

 
A 

 
 
 
 
 



 152 

A (continued) 
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A (continued) 
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Figure S11 A) Recurrently mutated elements likely to be an enhancer. B) Recurrently mutated 
elements likely to be transcribed or involved in alternative splicing. The element is in black, red 
markers denote observed DNMs, grey markers denote observed variation at MAF > 0.1% in 7,080 
unaffected parents, phastcons100 conservation score is shown in blue, and DNase hypersensitivity 
sites in fetal brain from the Roadmap Epigenome project are shown in blue (female) and pink (male) 
in the bottom track. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 
Genomic coordinates of the 31 recurrently mutated fetal brain active CNEs and conserved enhancers. Annotated with the nearest gene and any gene interaction 
reported by Hi-C data in the fetal brain. P-value is the probability of observing at least as many as the reported number of DNMs in the 6,239 exome-negative 
probands under the null mutation model.

Region Class DNMs p-value Nearest Gene Hi-C Gene Interactions 
chr6:136594963-136595444 Conserved 3 5.30E-05 BCLAF1 AHI1,MAP7 
chr1:47040703-47041712 Conserved 3 0.000640696 MKNK1 NONE 
chr8:25867716-25868077 Conserved 2 0.001859799 EBF2 EBF2,DOCK5 
chr17:2095049-2095410 Conserved 2 0.002057076 SMG6 NONE 
chr14:57553276-57553757 Conserved 2 0.002134137 EXOC5 NONE 
chr3:71277252-71279016 Enhancer 3 0.002356077 FOXP1 NONE 
chr1:87795132-87796797 Enhancer 3 0.002754705 LMO4 NONE 
chr7:114999315-114999916 Conserved 2 0.002818309 MDFIC FOXP2 
chr14:37558933-37559534 Conserved 2 0.0032701 SLC25A21 TTC6 
chr3:136760251-136760852 Conserved 2 0.003280877 IL20RB MSL2,PPP2R3A,STAG1,CLDN18 
chr5:163987267-163987868 Conserved 2 0.003430287 MAT2B NONE 
chr4:147215258-147215935 Conserved 2 0.00352168 SLC10A7 NONE 
chr6:14501358-14501959 Conserved 2 0.003823222 CD83 NONE 
chr10:131699490-131700091 Conserved 2 0.004207684 EBF3 NONE 
chr6:91341961-91342682 Conserved 2 0.004761199 MAP3K7 NONE 
chr3:19028185-19028906 Conserved 2 0.00484094 KCNH8 NONE 
chr11:8310678-8311279 Conserved 2 0.004900527 LMO1 NONE 
chr1:90847520-90848241 Conserved 2 0.006338024 BARHL2 NONE 
chr12:17033589-17034430 Conserved 2 0.007524004 LMO3 NONE 
chr10:103245609-103246330 Conserved 2 0.008489455 BTRC LBX1 
chr7:100480136-100480803 Conserved 2 0.009844978 SRRT MUC17 
chr11:20297786-20298693 Conserved 2 0.009961525 HTATIP2 NONE 
chr11:47487425-47488506 Conserved 2 0.010602029 CELF1 MTCH2 
chr2:60077201-60078311 Conserved 2 0.012703131 BCL11A NONE 
chr7:13506147-13507336 Enhancer 2 0.013290101 ETV1 NONE 
chr3:180461765-180462934 Enhancer 2 0.014462824 CCDC39 NONE 
chr5:87839871-87841137 Conserved 2 0.014749778 MEF2C NONE 
chr14:29858890-29860091 Conserved 2 0.016188696 PRKD1 FOXG1,C14orf23 
chr8:77710296-77711833 Conserved 2 0.020547115 ZFHX4 NONE 

chr1:44989764-44991209 Enhancer 2 0.026516706 RNF220 NONE 
chr19:30840239-30843596 Enhancer 2 0.090055315 ZNF536 ZNF536 
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