View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Apollo

CheriRTOS: A Capability Model for Embedded
Devices

Hongyan Xia*, Jonathan Woodruff*, Hadrien Barral*, Lawrence Esswood*, Alexandre Joannou®, Robert Kovacsics*,

David Chisnall*, Michael Roe*, Brooks Davis’, Edward Napierala™,
John Baldwin®, Khilan Gudka*, Peter G. Neumann', Alex Richardson*, Simon W. Moore*, Robert N. M. Watson*

*Computer Laboratory, University of Cambridge, Cambridge, UK
Website: www.cl.cam.ac.uk/research/comparch

Abstract—Embedded systems are deployed ubiquitously
among various sectors including automotive, medical, robotics
and avionics. As these devices become increasingly connected,
the attack surface also increases tremendously; new mechanisms
must be deployed to defend against more sophisticated attacks
while not violating resource constraints. In this paper we present
CheriRTOS on CHERI-64, a hardware-software platform atop
Capability Hardware Enhanced RISC Instructions (CHERI) for
embedded systems.

Our system provides efficient and scalable task isolation,
fast and secure inter-task communication, fine-grained memory
safety, and real-time guarantees, using hardware capabilities as
the sole protection mechanism. We summarize state-of-the-art se-
curity and memory safety for embedded systems for comparison
with our platform, illustrating the superior substrate provided
by CHERD’s capabilities. Finally, our evaluations show that a
capability system can be implemented within the constraints of
embedded systems.

I. INTRODUCTION

Embedded processors are prevalent today in consumer prod-
ucts (such as disk controllers, smart watches, and WiFi chips)
and security-critical applications (such as self-driving vehicles,
medical instruments and aviation). With larger deployments
came increased connectivity, invalidating previous assump-
tions that embedded systems were isolated and primarily sub-
ject to physical attacks. Even though many vulnerabilities have
already been disclosed by attackers and researchers [[1]] [2]] [3]
[4]], it still remains a challenge to provide a comprehensive
security framework within the highly constrained hardware-
software budgets of embedded systems.

Unfortunately, many security mechanisms target large-scale
systems and rarely scale down to low-cost, real-time and
deterministic usage models, or else are too limited and too
static to provide a scalable and flexible solution. Other state-
of-the-art approaches aim to establish security frameworks for
embedded environments, but still face many issues with the
growth of embedded systems. To address these problems, we

The CSC Cambridge Scholarship for the first author is gratefully ac-
knowledged. This work is also part of the CTSRD project sponsored by the
Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views,
opinions, and/or findings contained in this paper are those of the authors and
should not be interpreted as representing the official views or policies, either
expressed or implied, of the Department of Defense or the U.S. Government.
We also acknowledge the EPSRC REMS Programme Grant [EP/K008528/1],
the EPSRC Impact Acceleration Account [EP/K503757/1], an ARM iCASE
award and Google, Inc.

TSRI International, Menlo Park, CA, USA
Website: www.csl.sri.com

present and evaluate CheriRTOS on CHERI-64, a hardware-
software platform for embedded systems that is based solely
on the CHERI protection model.

The contributions of this paper include:

o CHERI-64, an implementation of 64-bit compressed ca-
pabilities for embedded systems.

o A CHERI-aware real-time operating system, CheriRTOS.
In addition to the common properties of real-time embed-
ded systems, we implement fine-grained memory protec-
tion and secure centralized heap management, dynamic
task loading, low-latency and direct domain crossing,
distributed trusted stacks to protect return contexts, and
secure peripherals.

« Evaluation of the overhead, latency and determinism of
the implementation.

e Summary of state-of-the-art memory safety approaches
for embedded systems.

II. BACKGROUND
A. State-of-the-art

The constraints of embedded devices directly forbid the
use of complex, high-cost, high-latency, and non-deterministic
security solutions. As a result, many security components have
been implemented specifically for embedded systems.

The Memory Protection Unit (MPU) is commonly adopted
in embedded processors to mark memory regions with security
attributes [5] to prevent arbitrary physical memory access.
Although widely implemented, MPUs have several inherent
drawbacks. First, an MPU is implemented as a kernel space
device, and each register takes multiple cycles to configure.
As a result, they are normally configured only globally at
system start-up, which makes per-task memory access control
difficult; user space cannot leverage it for intra-task protection.
Second, MPU entries are limited. With only around 8 MPU
regions in most implementations, only security-critical mem-
ory partitions are protected, e.g., the kernel, encryption keys,
code sections, etc.; thus, any fine-grained memory protection is
impractical. Third, MPU lookups involve associative searches
of all entries. Each cycle can potentially require up to 32
(assuming 8 MPU entries, accounting for both instruction
fetch and data) comparisons. This means that MPUs are
inherently inefficient in terms of power and die area. The
RISC-V Physical Memory Protection (PMP) unit is a state-

https://core.ac.uk/display/187716129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of-the art MPU specification [6], which we have implemented
for comparisons in this paper.

In addition to MPUs that generally provide system-wide
memory protection for critical regions, TrustZone® from
ARM partitions memory into secure and non-secure worlds [7]]
with constrained control flow. Non-secure code can jump only
to valid entry points on the secure side, and secure code calls
non-secure functions after clearing registers and pushing the
return address on the secure stack. This constrained entry-point
design guarantees a certain degree of domain isolation with
Control Flow Integrity (CFI), which avoids Return-Oriented
Programming (ROP) attacks. Nevertheless, TrustZone is likely
to encounter scalability issues. For example, further isolation
within a world is not possible, still enabling attacks in the same
world. Separating the entire system into only two worlds may
not be a wise design choice.

TrustLite [8] and TyTAN [9] extend the kernel and build
the Execution-Aware MPU (EA-MPU), which links data and
code entries to distinguish between different tasks. The aim
is to control memory access on a per-task basis. However,
an MPU-based approach inherits several flaws as described
above, restricting the number of simultaneous tasks and inter-
task memory sharing. For CFI and defense against ROP
attacks, several schemes for embedded systems [[10] [[11] use
dedicated instructions for function calls, exposing only valid
entry points, hiding return addresses in protected spaces, etc.
On the other hand, Sanctus [12]] [13]] builds tasks into Self-
Protecting Modules (SPMs) to restrict access and enforce
control flow. However, it sacrifices software flexibility and
incurs a high hardware cost by implementing SPM loading,
measurement, and runtime identification in the trusted CPU.

Research projects also tackle the memory protection prob-
lem on a programming-language level for embedded devices.
nesCheck [14] modifies the language and compiler to perform
stronger type safety, static analysis, and run-time checks.
Others develop new compiler frameworks to address stack,
array and pointer safety, and implement new heap allocation
techniques [[15]]. However, these approaches protect only code
written in specific language variants or compiled with the
modified toolchain. A malicious task may directly execute
or inject low-level code that circumvents any language-level
invariants. Similar to many software schemes for desktop
systems, this type of memory protection is most useful for
debugging existing codebases, and has weaker security guar-
antees.

Centralized heap management. In typical embedded sys-
tems with a flat address space, all dynamic memory allocations
are commonly done in a centralized heap. However, without
bounded access, allocations from a user can easily overflow
into other allocations or even the heap metadata to attack other
users or the heap allocator itself. Many allocators including
jemalloc [[16] organize the metadata in separate structures and
use hashing to locate the corresponding metadata; however,
embedded systems still prefer to have inlined metadata into
each allocated chunk and use “free-lists” like dlmalloc [[17]
for lower latency. Such allocators demand low-latency and

fine-grained memory protection for effective isolation, which
unfortunately is difficult and inherently creates the tension
between flexibility and security on current hardware-software
platforms.

B. Capabilities and CHERI

A capability is an unforgeable token, which when presented
can be taken as incontestable proof that the presenter is
authorized to have access to the object named in the token [18].
Capability systems provid an architectural protection model,
along with segmented memory, MMU protection, access con-
trol lists, etc.

CHERI (Capability Hardware Enhanced RISC Instruc-
tions) [19] [20] has a capability Instruction-Set Architecture
(ISA) that enforces bounded memory access via capabilities.
A memory capability extends the pointer with base, top
and permission bits (read, write, execute, etc.) to control
memory access, with a tag bit to enforce its integrity and
unforgeability. The CHERI ISA can perform manipulations on
capabilities only if they do not increase rights (e.g., they cannot
reduce bounds, clear permissions, or create a tag bit). For
compartmentalization and fast domain crossing, capabilities
can be made immutable and non-dereferenceable (“sealed
capabilities”) by using another capability as a key, and the
sealed capability is given an Object Type (otype) from the
key. Sealed capabilities can be unsealed only by the key
or by secure Capability Calls (CCalls). Calling into another
domain requires a pair of otype-matched sealed code and data
capabilities of the callee to enter the secure domain. Upon
a CCall, the sealed pair is atomically unsealed and installed,
transferring control to the new domain. The immutability and
non-dereferenceability also guarantee that the caller cannot
tamper with callee’s state using sealed capabilities.

Existing research on CHERI [19] [21]] [22] has shown
that a capability system can complement traditional paged-
memory in modern OSes. However, we believe the nature
of CHERI also integrates well with embedded systems that
have no MMU, limited memory, a single flat address space,
low-latency requirements and real-time guarantees. We have
implemented CHERI-64 (which supports a 32-bit flat address
space with 64-bit compressed capabilities) and CheriRTOS (an
RTOS kernel), illustrating that capabilities can be a generic
and unified security interface that offers strong and scalable
task isolation, fast domain transition, as well as fine-grained
memory protection. In the meantime, the system does not
violate a low-cost and low-latency profile, and provides novel
solutions to many problems that are inherently challenging
or impossible for conventional memory safety measures in
embedded systems.

III. REQUIREMENTS

From the survey of state-of-the-art solutions, the short-
comings of existing protection schemes, and the properties
and growth of embedded systems themselves, we identify the
following requirements that are essential to a secure design.

Task isolation. In a flat physical address space, it is
essential to separate different tasks into different domains.
Unconstrained access means a malicious task can easily com-
promise other critical components in the system.

Fine-grained memory protection. Existing embedded sys-
tem memory protections mediate access only to large segments
of code and data. Protecting finer granularities often requires
explicit checks from the compiler or programmer at a cost
of run-time slowdown [15] [14], and can be error-prone or
incomplete [2]. An architecture should provide a generic
mechanism for low-cost and fine-grained memory protection.

Low-latency and secure domain crossing and inter-task
communication. A system with multitasking often requires
communication among components, either in terms of message
passing and memory sharing, or in cross-domain function
calls. Strong task isolation should not prohibit efficient and
secure domain crossing and communication.

Secure centralized heap management. Flexible heap al-
location demands fine-grained memory protection, which then
enables a secure shared-heap allocator by restricting any user
of allocations from reaching metadata or any other allocations.

Real-time guarantees. No security architecture should vi-
olate real-time constraints. Cached memory translation and
protection, for example, directly violate the low-latency and
deterministic properties of embedded systems.

Scalability. The rapid growth of the embedded market
demands scalable solutions. MPU-based approaches described
above suffer from scalability issues and may not meet the
needs as these systems become more capable and dynamic.

A generic solution for security. Embedded chips often
implement multiple components to enforce safety. ARM solu-
tions typically provide an MPU, a Security Attribution Unit,
TrustZone®, and even an Implementation Defined Attribution
Unit for security. However, orchestrating many security mech-
anisms is non-trivial, and we have seen that vendors often
revert to manual assertions and explicit checks, leaving these
security layers largely unused [2]. A single, generic solution
would ease the effort of orchestration and deployment.

IV. ARCHITECTURE AND IMPLEMENTATION

A. Hardware and compiler

The CHERI CPU extends the BERI processor [23|] (our
baseline MIPS ISA) with capability extensions and a capability
coprocessor. In CHERI-64, we implement 64-bit capabilities
(Figure [1) in a flat 32-bit address space. We use an encoding
similar to the capability compression algorithm described
in [24] [25]. The format is shown in Figure E} The copro-
cessor is responsible for executing capability instructions and
mediating memory accesses via capabilities. We implement
8 capability registers in our coprocessor, corresponding to
typically 8 entries in MPUs. The CHERI-64 CPU is syn-
thesized on a Stratix IV FPGA running at 100MHz. Our
processor implementation (including pipeline stages, memory
organization, exception and interrupt delays) is very close to
a commercial ARM Cortex-RS5 implementation [26].

31 0

permissions’ 12

compressed bounds’18

address’32

} 64 bits

Fig. 1. Memory representation of an unsealed CHERI-64 capability.

Fast
PCC PCC CcCall PCC
Heap [DDC || = | User 0 [DDC || = | User 1 | DDC
otype otype otype

It I omeimsgquose } 1

| CheriRTOS [scheduler | [Timer | [MsgQ] [...] |

| Hardware [BERI CPU][Cap Coprocessor] [| |

Fig. 2. Overall architecture

The compiler is the LLVM toolchain [27] with CHERI
extensions. We modified the compiler to support the MIPS-
n32 ABI with a 32-bit address space, using only eight 64-bit
capability registers.

B. Operating System

To incorporate capabilities into the kernel itself, we imple-
ment CheriRTOS, a kernel that holds the common properties
of an RTOS, including (1) multi-tasking support, (2) priority-
based pre-emptive scheduling, (3) real-time guarantees, (4)
message queues and direct inter-task communication, (5) cy-
cle accurate timers, etc. Additionally, CHERI primitives are
essential in implementing (6) fine-grained memory protection
and secure centralized heap management, (7) dynamic task
loading and unloading with non-Position Independent Code
(non-PIC), (8) secure low-latency and direct domain crossing,
(9) distributed trusted stacks to protect return contexts, and
(10) secure peripherals.

OS structure. The structure of the CheriRTOS system is
shown in Figure [2| At start-up, each user task is confined
within a pair of code (Program Counter Capability, PCC)
and data (Default Data Capability, DDC) capabilities, with
PCC restricted to its code section and DDC restricted to data
sections and the stack. The PCC and DDC pair defines the
initial domain of a task. Under the CHERI architecture, the
Program Counter (PC) is allowed to fetch only instructions
within the bounds and permissions of PCC. By default, data
loads and stores are restricted implicitly by the bounds and
permissions of DDC. Any access outside the domain can be
granted only by receiving additional capabilities and explicitly
specifying the capability to use instead of using its own DDC
(Figure [3).

The overall structure reflects the requirement of an isolated
and scalable system. All tasks reside within individual domains
and the architecture does not impose a limit on the number
of domains created. Theoretically, CheriRTOS scales up to
arbitrary numbers of tasks, and should be limited in practice
only by memory and processing power.

1w $t0, 8(S$s0) # implicit, check against DDC
load addr = DDC.base+$s0+8

clw $t0, $s0, 8($cl) # explicit, check against $cl
load addr = $cl.base+$s0+8

Fig. 3. Example of memory access instructions under CHERI. “$” denotes
registers. Loading a word at address $s0 + 8 (relative to the base of the
capability) into $t O, either implicitly or via an explicit capability register.

For inter-task communication, the kernel provides buffered
message queues, but direct Capability Calls (fast CCall) are
supported for low-latency use cases as well. In addition, each
task is given a capability as a key with a unique otype, so that
it can seal and unseal capabilities with its own otype.

Dynamic task loading and unloading. The OS and the
scheduler are able to dynamically load and unload tasks during
run-time. Unlike many systems that require either Position
Independent Code (PIC) or a binary loader to perform run-time
loading at arbitrary addresses, memory accesses are offset by
the base field of PCC or DDC; a task can simply be loaded
or relocated by assigning a different pair of PCC and DDC
without PIC or run-time relocation, significantly simplifying
the binary loader.

Context switch. Capability registers have single-cycle ac-
cess for most capability instructions. Context switches, excep-
tions, and interrupts will also store and load the capability
register file (including PCC and DDC). This means a context
switch also becomes a domain switch. Because capability
registers can be stored or loaded like general purpose registers,
we can efficiently maintain a capability context for each
user task. As a result, we do not have to use the capability
register file globally like MPU solutions, and we do not have
an inherent limit on the number of tasks (and the number
of protection regions for each task) that could be enabled
simultaneously.

Fast and secure inter-task communication. CheriRTOS
provides kernel message queues for regular and buffered
communication, which takes around 1300 cycles (13us) for
a round trip. Meanwhile, the requirement in Section mo-
tivates us to implement a secure and low-latency mechanism.
As a result, fast CCall (introducing a CCallFast instruction)
is used to bypass the kernel and the exception path to perform
a direct cross-domain function call or message passing in user
space with a round trip of around only 100 cycles. To do a fast
CCall, a task needs a pair of sealed and type-matched PCC
and DDC as a handle to another domain. Upon a successful
CCallFast instruction, the callee’s PCC and DDC are
atomically unsealed and installed, transferring control to the
new domain. Sealed capabilities can be possessed by other
tasks because they are immutable and cannot be dereferenced;
therefore, they do not expose memory to other tasks, and the
pointer field in PCC is the only valid entry point, enforcing
Control Flow Integrity (CFI) between domains.

Secure peripherals. Accesses to peripherals are commonly
granted to only a few privileged tasks, mostly the kernel, to re-
strict and arbitrate the usage from untrusted user tasks through

$KR1C TStack . Empty $KR1C.ptr
$DDC| Stack & Data Caller's PCC, DDC, time stamp P
$PCC Code
Push TStack Prologue
Prologue Cap jump
CcCallFast
Pop TStack
. . Epilogue
Epilogue L_|_Capjump C(F:)alllgast
Kernel CCall Helper
Caller Callee

Fig. 4. Trusted stack and fast CCall round trip. Dark indicates kernel-only
objects. The pointer field of $KR1C points to the top of the trusted stack.

an interface like system calls. However, with capabilities we
are able to take a de-centralized approach. As peripherals are
commonly memory-mapped, we simply separate their accesses
from the kernel into user tasks. For example, the UART
module is just a task possessing a capability to the UART
memory region. Whether another user task is able to access
the UART is determined by whether it has received the sealed
capability pair to CCall into the UART task. There are two
major advantages of this design. First, direct CCalls achieve
lower latencies than kernel system calls. Second, the kernel
becomes smaller, further reducing the attack interface for a
minimum Trusted Computing Base (TCB).

This further illustrates capabilities being a generic secu-
rity mechanism. Implementing secure peripherals is simply
a specific instance of task isolation and secure inter-task
communication.

Return and real-time guarantees with distributed
trusted stacks and kernel CCall helper. To return from a
fast CCall, the caller’s PCC and DDC have to be securely
restored. We implement distributed trusted stacks to protect
these capabilities from tampering by the callee, as shown in
Figure |4 A kernel capability register (named $KRI1C, not
accessible to user tasks) is reserved for this purpose, which
points to a small stack for each task; a kernel CCall helper is
inserted between the caller and the callee. With a trusted stack,
a fast CCall first calls into a kernel helper, which pushes the
caller’s PCC and DDC onto the trusted stack, and then calls
into the callee. A CCall return also returns into the helper,
popping the caller’s PCC and DDC before jumping back.
These measures ensure the caller’s return information cannot
be tampered with or cleared; as a result, it is always possible
to securely return to the caller regardless of the callee, further
enforcing CFI between domains.

To enforce real-time guarantees, a caller may also specify
a timeout for a CCall, which will cause a time stamp to be
recorded. Time stamps are regularly checked by the timer in-
terrupt, and force the callee to return after expiry. Only trusted
tasks are given the privilege to specify timeouts, as a malicious
task could combine this with the highly accurate timer to
perform a series of side channel and timing attacks [28]].

Secure centralized heap management. Two properties

Buckets

head
8B M cel‘inekr —L —L —L

Allocator’s
free lists
168 .| —I.> (unallocated)
Bucket ID User
Bucket 1D, (allocated)

Fig. 5. Memory allocator structure (gray boxes indicate that the bucket ID
is sealed inside a sealed capability)

of CHERI - fine-grained memory protection and capability
unforgeability — provide the ideal infrastructure to address the
challenge of a safely shared heap. Every malloc () call is
now a fast CCall into the heap manager that returns a bounded
capability instead of a 32-bit pointer. With strict bounds and
permissions, we can safely use dlmalloc style allocators for
low latency because it is impossible to overflow into the
metadata or into other allocations.

Capabilities being unforgeable can be further leveraged to
enforce heap integrity. As shown in Figure [5} the header of a
freed memory chunk has a capability to the next free chunk;
the header of a capability in use has a sealed capability with
the pointer field being the bucket ID. Upon each free ()
call, the allocator verifies that the sealed capability is intact,
changes it into the header of a freed chunk and then returns
it to the free list. It is impossible for a user task to forge
the sealed capability because each task is assigned a unique
otype, and others cannot seal a capability with the heap
allocator’s otype. In this way, the allocator is able to verify
that the memory chunk being freed was indeed allocated by the
allocator itself, effectively preventing user tasks from freeing
arbitrary memory and from freeing an already freed chunk to
contaminate the free lists.

The implementation of the heap manager fits the require-
ment of providing a secure and fine-grained dynamic memory
allocation subsystem. Unlike TrustLite, the capability register
file is not privileged (except for $KR1C) and capabilities can
be loaded and stored within the user’s domain like traditional
pointers, therefore no kernel calls are required to modify
capability entries. This also means that heap allocations are
scalable, as the user is no longer restricted by the number
of protection entries in MPU-based solutions. For example, it
is possible to construct a pointer-based data structure (e.g., a
linked list) with each node being a bounded capability from
the heap, whereas the limit of MPU entries often requires
the programmer to request a single large contiguous memory
region as a pool and manually allocate from it, losing any
fine-grained protection on individual nodes.

V. EVALUATION

We have chosen the MiBench benchmark suite to evalu-
ate performance. MiBench is an open-source commercially

representative benchmark suite targeting embedded system
workloads [29]. We ported the benchmarks with minor modifi-
cations to several APIs so that they function under the security
primitives of CheriRTOS.

On the software side, we compare CheriRTOS with its
baseline version that removes all CHERI protections by us-
ing direct jumps, unguarded pointers, and offering no return
or real-time guarantees. In order to compare and evaluate
hardware costs, we also implement the PMP unit (the MPU
component for RISC-V), as it has a state-of-the-art feature set
and an open-source specification.

A. Software costs

Dynamic tasks with non-PIC. The baseline RTOS without
CHERI uses Position Independent Code (PIC) for tasks to load
them dynamically. Offsetting all memory accesses by the base
of the capability in CHERI removes the need for PIC or run-
time relocation. In our evaluation we found that avoiding PIC
translates to a run-time performance gain of around 5% and
a reduction of memory access of 10% on our platform due to
a lower instruction count and fewer indirections for memory
access. (Non-MIPS ISAs with better PIC support will see less
benefit.) Therefore, to compare fairly with the baseline, we
compile all benchmarks under CheriRTOS in PIC, to separate
the overhead due to CHERI protections from the benefit of
CHERI relocation.

Context switching. Context switches include task schedul-
ing, system calls, exceptions, and interrupts. Due to the addi-
tional capability registers (8 user and 3 kernel capabilities), the
handler needs 22 more cycles (including exception entry and
exit) for each context switch. The priority-based pre-emptive
scheduler in the baseline system requires 230 cycles (2.3us) to
schedule the next task, which means that the capability context
adds around 10% overhead in context switches.

Fast and direct domain crossing. Message queues in
CheriRTOS provide buffered inter-task communication prim-
itives, which are created and controlled by the kernel and
scheduler. With fast CCall, we are able to bypass the kernel
and exception paths, and directly CCall into the callee —
significantly reducing the latency of inter-task communication.

The results are presented in Figure [} The benchmark
is done by sending a short message from a user task to
an encryption task, and returning immediately. The baseline
system does this by directly jumping to the entry point of the
callee. Under CheriRTOS, a direct jump is impossible due to
task isolation, and must be done via CCall. We implement
two CCall paths. One signals an exception to a kernel handler
that performs software otype checking and unsealing before
jumping to the new domain, similar to the exception-based
domain crossing in Cortex A and R TrustZone. The other is
the fast CCall path, which uses the CCallFast instruction
to perform hardware and exception-less inter-task calls.

Compared with a direct jump, the overhead of fast CCall
comes from the preparation of caller and callee capabilities
and the trusted stack. For exception-based CCalls, the domi-
nant overhead is exception entry and exit, and the attendant

CCall instruction decomposition

Direct Jump N 1
Fast CCall IS -
Exception I W e
CcCall cycle decomposition

Direct Jump [N |
Fast CCall NN -
Exception NN [N |

0 20 40 60 80 100 120 140 160 180

[l Caller Pipeline Flush [l Trusted stack ~ Mutex, args, callee, etc

Fig. 6. Instruction and cycle counts for a round trip: direct jump vs. capability
jump (fast CCall) vs. exception based CCalls

pipeline flushes. Each round trip involves 4 pipeline flushes,
wasting up to 40 cycles. Bypassing the exception path with
CCallFast avoids this overhead, drastically reducing the
Cycle Per Instruction (CPI) from 1.64 down to 1.17.

Register safety, return and real-time guarantees. Domain
crossing with fast CCalls achieves low-latencies while still
supporting strong task isolation. To guarantee register safety as
well, a caller should backup all its callee-saved registers, and
clear all non-argument registers before performing a CCall.
Similarly, a callee that does not trust the caller would clear
all registers except for return values. These require additional
instructions in the CCall prologue and epilogue. This addi-
tional latency is required only when interacting with untrusted
modules; for example, a user calling malloc () may trust
the heap allocator to maintain registers.

In addition, we attach time stamps to trusted stack entries,
and use timer interrupts to guarantee that malicious callees
cannot violate real-time constraints. For evaluation, we imple-
ment both randomized trusted stack checking and full trusted
stack traversal. For randomized checks, the timer interrupt
inspects only one random slot on the trusted stack, giving
deterministic timer interrupt delays, but inaccurate expiry of
CCalls. The full traversal inspects all slots on the stack and
checks expiry for all time stamps. This full traversal adds
non-determinism, as the timer interrupt delay now depends
on the depth of the trusted stack, but may be necessary for
tasks requiring precise real-time guarantees. To limit non-
determinism, we restrict the trusted stack depth to only 4. This
is clearly a trade-off between supporting long CCall chains and
determinism; we believe that in practice a depth of one or two
may be sufficient, as it is unlikely that a real-time task being
called will further perform fast CCalls to deepen the stack.

Figure [7] shows the costs in both the CCall routines and the
timer interrupt.

Overall system performance. In addition to latency and
determinism, we evaluate the overall performance across mul-
tiple MiBench benchmarks. All datasets (e.g., arrays to be
sorted in gsort, strings to be searched in stringsearch, etc.) are
allocated on the heap outside the domains of the benchmarks

Instruction and cycle count of fast CCall round trip

st |
Cycles |

. Simple CCallFast [l Reg safety Return guarantee Real-time return

Instr. iti i i
Retum [Additional cost per timer interrupt |
uarantee
9 Cycles
min max
. Instr.
Real-time . ’
turn r e
re Cycles

0 20 40 60 80 100 120 140

Fig. 7. Overhead of different protection levels: the bar chart at the top is
additive, and the next protection level includes the costs from the previous
level. The bottom shows the additional costs in the timer interrupt. Both the
return and the real-time guarantees require the timer interrupt to check the
time stamps on the trusted stack, while simple CCallFast and register safety
do not require timer interrupt modifications. The return guarantee computes
a hash and examines one random stack slot at a time, while the real-time
guarantee has a cost that depends on the run-time trusted stack depth, between
examining only one stack slot (min) and a full stack (max).

(%)
8

Il Cycles M Instr. ~ Data Accesses

6
4
2
adpcm
0 s 10-5%
qsort stnngsearch bitcount
dijkstra

Fig. 8. Overall overhead across benchmarks

and must now be accessed via constrained capabilities.

Of these benchmarks, Dijkstra particularly stresses central-
ized heap allocation. It builds graphs by frequently calling
malloc () and free (), which here use capabilities with
cross-domain calls into the heap manager.

We have modified the AES and SHA benchmarks of the
MiBench suite in order to stress domain crossing and inter-task
communication. Rather than using statically-allocated local
datasets, AES and SHA have been modified to receive data
through inter-task communication. Another user task, ccalltest,
CCalls into AES and SHA to perform encryption and message
digest respectively on 1-MiB of data. This test has a data buffer
of 8KiB in each invocation, therefore 128 domain crossings
are required in each case. In the CHERI case, these are safe
domain transitions with memory safety; in the baseline case,
these are simple function calls passing unprotected pointers.

We set the timer interrupt at 100Hz, the suggested rate
by FreeRTOS, to also detect the expiry of real-time tasks (a
resolution of 0.01s). The results are shown in Figure [§]

Overall, the cycle overhead falls below 5%, varying from

4.7% to almost no overhead. Dijkstra sees the highest overhead
because each node of the graph is dynamically allocated with
CCall. In addition, as a capability is double the size of a 32-
bit pointer, graphs constructed with capabilities have a larger
cache and memory footprint. Despite these issues, Dijkstra’s
cycle count is still only 4.7% above the insecure baseline.

In two benchmarks, namely AES and adpcm, a negative
overhead is sometimes observed. Tracing shows that having
an additional 8 registers used for capabilities relieves register
pressure and reduces stack loads and stores. Although in
the extreme case data accesses are reduced by 10%, they
are typically on the stack with good spatial locality, which
normally hit in the data cache and have less impact on cycles.

B. Hardware costs

Our baseline is the BERI processor. We synthesize two
configurations, one enhancing BERI with the capability co-
processor and the other adding a Physical Memory Protection
(PMP) unit for memory access control. To make the costs
clear, we disable BRAM usage so that all logic is generated
using combinational circuits or registers. We synthesize 5
times and take the mean and deviation.

Area. We choose to implement 8 PMP registers, to match
typical commercial MPUs and also to match our capability
coprocessor. The logic utilization is shown in Table [} Overall,
the capability coprocessor has 39.4% more logic utilization.
Note that the capability coprocessor not only supports ca-
pability registers, but also implements the CHERI ISA; the
PMP is a basic implementation of the RISC-V specification.
We anticipate that any extensions on PMPs or MPUs will
quickly increase the logic utilization. These include increasing
the register count to 16 to enable more simultaneous tasks, the
Execution-Aware MPU from TrustLite and TyTAN, separating
MPU entries further into subregions as in ARM embedded
processors, etc. In terms of logic usage in an ASIC, we do
not think that a well optimized capability coprocessor is much
more expensive than a commercial MPU or PMP.

Critical path and timing constraints. The pipeline of the
capability coprocessor is simple and operates in parallel with
the main pipeline, not disturbing the critical path. However,
fitting the PMP into our pipeline proves to be very difficult.
For 8 PMP entries, we have to perform a full associative
match, introducing 32x32-bit comparators (each PMP entry
has a base and length and the associative match has to be

TABLE I
FPGA RESOURCE UTILIZATION AND TIMING

Category PMP Unit Capability
Coprocessor
Total ALUTS 5174 + 26 7212 + 27
Combinational w/o register 4241 + 26 3879 + 25
Combinational w/ register 759 + 20 2278 + 18
Register only 174 £+ 20 1055 + 20
Core clock freq. (MHz) 86.71 & 6.37 105.83 + 3.13

done for both data and instruction fetch) within a single clock
cycle. This difficulty is confirmed by timing analysis, which
shows that the maximum clock frequency achieved is around
20MHz lower than with the capability coprocessor (Table [I).
Unsurprisingly, further analysis reveals that the PMP lies in
the critical path while the capability coprocessor does not.

Power. Although FPGA synthesis is not indicative of ASIC
power, we can still qualitatively estimate the power consump-
tion. The major power draw from PMPs (as well as MPUs) is
the large number of comparisons within each cycle. A capabil-
ity coprocessor has drastically reduced power consumption due
to the absence of associative searches. CHERI always specifies
the region of each access explicitly, so that only one bounds
check is required for instruction fetch, and one for data access:
instruction fetch is checked against PCC, and the data access
is checked against either the DDC or an explicit capability. On
the other hand, the CHERI coprocessor does require additional
power to decompress the compressed capability bounds, but
this is still dramatically less than the power required by an
active MPU. We might note that the MPU model also has
room for optimization. For example, the EA-MPU avoids full
associative searches by linking code and data regions. Once
the code entry is matched, only linked data regions will be
searched.

VI. FUTURE WORK AND DIRECTIONS

Many future directions are worth pursuing to improve the
efficiency of our system.

Having a separate capability coprocessor requires separate
logic and extra context switch latency. It is possible to extend
existing registers to hold capabilities and to merge the capa-
bility coprocessor operations into the main core, reducing the
context-switch latency and overall hardware logic usage.

Currently, pushes and pops on the trusted stack are done in
software by the kernel CCall helper, as the traditional MIPS
pipeline is unable to handle complicated loads and stores in
a single instruction. However, in other ISAs we imagine that
the kernel CCall helper can be completely implemented in
hardware to remove the software helper in the middle of a
CCall, further reducing the latency of inter-task calls.

VII. CONCLUSION

In this paper, we present the CHERI-64 processor and
CheriRTOS, a hardware-software architecture for embedded
systems. We conclude that our capability approach addresses
many existing memory safety problems for embedded systems,
and also enables novel, efficient, and scalable solutions to
task isolation with control-flow integrity. Both the software
and hardware evaluations confirm that these benefits can be
achieved without violating the performance and determinism
constraints of embedded systems.

Our review of state-of-the-art security architectures for
embedded systems demonstrates the difficulty in finding a
comprehensive security framework that is efficient, scalable
and generic. Nevertheless, our implementation relies on the
fundamental protection mechanisms of CHERI, which are

utilized by our platform to enforce fine-grained memory pro-
tection, task separation with fast and secure inter-task domain
crossing, secure peripherals, secure centralized heap allocation
and returns, and real-time guarantees.

We envisage a future where a fine-grained and unified
security interface eases the safe design and deployment of
embedded software systems. For example, removing position-
independent code or run-time relocation results in a much
simpler binary loader; separating peripherals from the kernel
reduces its complexity and the attack surface; fine-grained
memory protection removes many manual (and likely incom-
plete) bound checks and assertions made by programmers,
resulting in higher assurance and performance. New software
stacks targeting CHERI-64 and CheriRTOS specifically could
easily achieve high robustness and efficiency, with less effort
than state-of-the-art approaches.

[1]

[2]

[4]

[5]

[6]

[7

—

[8]

[9

—

[10]

[11]

[12]

[13]

REFERENCES

A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A Large-Scale
Analysis of the Security of Embedded Firmwares,” in 23rd USENIX
Security Symposium (USENIX Security 14). San Diego, CA: USENIX
Association, 2014, pp. 95-110.

G. Beniamini, “Over The Air: Exploiting Broadcoms Wi-Fi Stack,”
2017. [Online]. Available: https://googleprojectzero.blogspot.co.uk/
2017/04/over-air-exploiting-broadcoms-wi-fi_4.html!

“QSEE privilege escalation vulnerability and exploit,”
2016. [Online]. Available: https://bits-please.blogspot.co.uk/2016/05/
gsee-privilege-escalation- vulnerability.html

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
Experimental Analyses of Automotive Attack Surfaces,” in Proceedings
of the 20th USENIX Conference on Security, ser. SEC’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 6-6.

ARMv8-M Memory Protection Unit, 0200th ed., ARM Ltd., 2 2017.
A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovi,
“The RISC-V Instruction Set Manual Volume II: Privileged Architecture
Version 1.10,” EECS Department, University of California, Berkeley,
Tech. Rep., May 2017.

TrustZone technology for ARMvS8-M Architecture, 0101st ed., ARM Ltd.,
8 2016.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A Security Architecture for Tiny Embedded Devices,” in Proceedings
of the Ninth European Conference on Computer Systems, ser. EuroSys
’14. New York, NY, USA: ACM, 2014, pp. 10:1-10:14.

F. Brasser, B. E. Mahjoub, A. R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny trust anchor for tiny devices,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2015,
pp. 1-6.

L. Davi, M. Hanreich, D. Paul, A. R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, “HAFIX: Hardware-Assisted Flow Integrity eXten-
sion,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2015, pp. 1-6.

L. Davi, P. Koeberl, and A. R. Sadeghi, “Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2014, pp. 1-6.

J. Noorman, P. Agten, W. Daniels, R. Strackx, A. V. Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost Trustworthy Extensible Networked Devices with a Zero-
software Trusted Computing Base,” in Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13). Washington, D.C.:
USENIX, 2013, pp. 479-498.

R. Strackx, F. Piessens, and B. Preneel, “Efficient Isolation of Trusted
Subsystems in Embedded Systems,” in Security and Privacy in Com-
munication Networks, S. Jajodia and J. Zhou, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 344-361.

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

D. Midi, M. Payer, and E. Bertino, “Memory Safety for Embedded
Devices with nesCheck,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ser. ASIA CCS
’17. New York, NY, USA: ACM, 2017, pp. 127-139.

D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, “Memory Safety
Without Garbage Collection for Embedded Applications,” ACM Trans.
Embed. Comput. Syst., vol. 4, no. 1, pp. 73-111, Feb. 2005.

J. Evans, “A scalable concurrent malloc(3) implementation for
FreeBSD,” in BSDCan, 2006.

D. Lea, “A Memory Allocator,” http://g.oswego.edu/dl/html/malloc.
html, April 2000.

J. H. Saltzer and M. D. Schroeder, “The Protection of Information in
Computer Systems,” Communications of the ACM, vol. 17, no. 7, Jul.
1974.

J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in 2074
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), June 2014, pp. 457-468.

R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore,
S. J. Murdoch, P. G. Neumann, and J. Woodruff, “Capability Hardware
Enhanced RISC Instructions: CHERI Programmer’s Guide,” University
of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-877,
Sep. 2015.

R. N. M. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G.
Neumann, J. Anderson, D. Chisnall, B. Davis, B. Laurie, M. Roe,
N. H. Dave, K. Gudka, A. Joannou, A. T. Markettos, E. Maste, S. J.
Murdoch, C. Rothwell, S. D. Son, and M. Vadera, “Fast Protection-
Domain Crossing in the CHERI Capability-System Architecture,” IEEE
Micro, vol. 36, no. 5, pp. 3849, Sept 2016.

D. Chisnall, B. Davis, K. Gudka, D. Brazdil, A. Joannou, J. Woodruff,
A. T. Markettos, J. E. Maste, R. Norton, S. Son, M. Roe, S. W. Moore,
P. G. Neumann, B. Laurie, and R. N. Watson, “CHERI JNI: Sinking the
Java Security Model into the C,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’17. New York, NY,
USA: ACM, 2017, pp. 569-583.

R. N. M. Watson, J. Woodruff, D. Chisnall, B. Davis, W. Koszek, A. T.
Markettos, S. W. Moore, S. J. Murdoch, P. G. Neumann, R. Norton, and
M. Roe, “Bluespec Extensible RISC Implementation: BERI Hardware
reference,” University of Cambridge, Computer Laboratory, Tech. Rep.
UCAM-CL-TR-868, Apr. 2015.

R. N. Watson, P. G. Neumann, J. Woodruff, M. Roe, J. Anderson,
D. Chisnall, B. Davis, A. Joannou, B. Laurie, S. W. Moore et al.,
“Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture (Version 6),” University of Cambridge, Computer
Laboratory, Tech. Rep., 2017.

A. J. P. Joannou, “High-performance memory safety - Optimizing the
CHERI capability machine,” Ph.D. dissertation, University of Cam-
bridge, May 2018.

RM57L843 Hercules™ Microcontroller Based on the ARM Cortex-R
Core, June 2016 ed., Texas Instruments, 2016. [Online]. Available:
http://www.ti.com/lit/ds/symlink/rm571843.pdf

C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, ser. CGO ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75—

Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, pp. 1-27.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3-14.

https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://bits-please.blogspot.co.uk/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.co.uk/2016/05/qsee-privilege-escalation-vulnerability.html
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://www.ti.com/lit/ds/symlink/rm57l843.pdf

