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Abstract
Magnetisation is one of the main barriers to practical use of bulk superconductors as high field
magnets. Recently several authors have reported a flux jump effect that allows penetration of
magnetic flux into a bulk superconductor during pulsed field magnetisation (PFM) at lower fields
than that would be predicted on the basis of the Bean model. We have systematically investigated
macroscopic flux jumps in single grain GdBa2Cu3O7−δ–Ag (GdBCO–Ag) bulk superconductors
with diameters of up to 30mm when subjected to pulsed magnetic fields. Flux jumps were observed
at temperatures between 30 and 77 K and in applied magnetic fields of up to 7 T. The applied pulsed
field required to trigger the instability or flux jump field, Bj, was determined experimentally and
found to increase with decreasing temperature. An extended instability criterion based on a 2D
axisymmetric model was used to predict Bj at various temperatures and the results are in good
agreement with experiments. A significant temperature rise has been measured experimentally
during the magnetisation process which indicates that local heat generation due to the sharp rise of
the applied field in the PFM process is the primary cause of the flux jumps. The experimental results
suggest further that the critical current density reduces to almost zero in the warm part of the sample
during the short period of non-equilibrium. A peak trapped field of 4.1 T at the surface and 5.3 T
between a stack of two GdBCO–Ag bulk superconductors was achieved at 30 K by means of an
optimised two-step pulse sequence with the assistance of the flux jumps, which is extremely
promising for potential applications of these technologically important materials.
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Introduction

Large, single grain (RE)-Ba–Cu–O [(RE)BCO, where RE is a
rare-earth element or Y] bulk high temperature super-
conducting (HTS) materials can potentially be used to

improve the performance of a range of engineering applica-
tions, such as superconducting bearings, flywheel energy
storage systems, rotating machines and non-contact mixers
[1–6]. This is due, primarily, to their ability to trap magnetic
fields that are significantly greater than those produced
by conventional, iron-based permanent magnets. Indeed, a
trapped magnetic field of 17.6 T at 26 K, reported in 2014 in a
stack of two, Ag-containing GdBa2Cu3O7−δ (GdBCO) bulk
superconductors [7], underlines the potential of these mate-
rials for practical applications. However, magnetisation is one
of the main barriers to practical use of bulk superconductors
as high field pseudo-permanent magnets. Recently several
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authors have reported a flux jump phenomenon that enables
efficient magnetisation at lower fields than would be predicted
on the basis of the Bean model using the pulsed field
magnetisation (PFM) technique [8–10].

Magnetic flux jumps which are a common phenomenon
in type II superconductors, often present a significant chal-
lenge to the development of practical applications of these
materials. Wipf described flux jumps as a runaway process
initiated by a small fluctuation of the external magnetic field
or temperature, manifesting itself as an avalanche-like
migration of magnetic flux into or out of the volume of the
superconductor [11]. It is possible to use magneto-optical
imaging to visualise the avalanche process, which provides
clear experimental basis for this observation [12, 13]. During
a flux avalanche, the critical current density, Jc, is reduced
dramatically due to a rise in sample temperature during the
flux jump process, which, in turn, causes a reduction in the
screening current to such an extent that the external field can
no longer be shielded from the interior of the sample. The
superconductor is consequently in a non-equilibrium state
during a flux jump and a theory to describe comprehensively
the dynamic characteristics of the magnetic flux, and thus Jc
during this process, has yet to be developed. The solution to
this problem is likely to involve multiple flux pinning
mechanisms [14, 15], and is of great relevance to under-
standing both the fundamental physics and applied properties
of bulk superconductors. The flux jump phenomenon has
been observed and studied in both conventional type II
superconductors and in high temperature superconductors
[16, 17] primarily via non-contact magnetisation measure-
ments. However, flux jumps, as reported by Müller et al have
been observed only at temperatures below 7.6 K, in hysteresis
loops of melt-textured YBa2Cu3O7−δ (YBCO) [16]. The
occurrence of flux jumps is related closely to the sweep rate of
the external field [13, 18].

Flux jumps are generally thought of as a hazard that lead
commonly to the quench of superconducting magnets, and, as
far as possible, are designed out in practical applications. It is
pleasing to be able to report that for the conditions discussed
in this work, flux jumps can be used to assist the penetration
of magnetic flux into bulk superconductors in the PFM pro-
cess. In PFM, flux jumps minimise the shielding effect of the
induced supercurrent and reduce significantly the magnitude
of applied magnetic field (Ba) required to achieve a target
trapped field [8–10, 19–21], analogous to a process that is
closer to field cooling (FC). In this paper, we report flux
jumps in bulk HTS observed during a PFM process with a
pulsed magnetic field of up to 7 T and a fixed rise time of
35 ms. The flux jumps were studied using cylindrical GdBCO
samples of 30 mm diameter with a view to developing a
practical magnetisation process for high field applications, in
general.

Instability criterion for flux jumps

The criterion for the occurrence of flux jumps, which is based
on the assumption that the thermal diffusivity of the material

is much smaller than its electromagnetic diffusivity, is
appropriate for PFM which has, in general, an extremely short
time duration. This means that any heat generated due to the
movement of magnetic flux cannot be removed quickly from
the sample by cooling and, as such, the problem can be
simplified by assuming the process is adiabatic. A theory was
proposed on this basis by Wipf [22] and by Swarts and Bean
[23] based fundamentally on the critical state model. The
theory assumed a sample of infinite slab geometry in the
superconducting state and subject to an external field, Ba,
with a field penetration depth given by a= Ba/μ0Jc. The
total flux in the superconductor changes when the applied
field is increased by a small amount, ΔBa, by D =Ф
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cD = D where C is the specific heat capacity of the
superconductor. Consequently, the field shielding ability of
the sample is reduced by B J a.sh 0 cmD = D A flux jump is
then triggered ifΔBsh�ΔBa. In this case, the instability field
for the flux jump is given straightforwardly by the following
equation using ΔBsh= ΔBa as a critical condition,
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The same formula can be deduced if the origin of disturbance
is due to temperature rather than applied field. Jc is reduced
by J T dJ dTc 1 cD = when temperature is increased by ΔT1,
which leads to the dissipation of heat and raises the temper-
ature by ΔT2. A flux jump will be triggered if the temperature
rise is not convergent, which means ΔT2> ΔT1.

Mints calculated the heat dissipation as J EQ dxò= ·
by introducing the conductivity σ from the E–J power law,
E/E0= (J/Jc)n, into the formulation [18]. This is closely
related to the ramp rate Ba� of the applied field given that

E Bd dt.a´ = - Mints gives the following expression for
the flux jump field using the Jc (B, T) relationship, where
Jc(B)= α(T)/B is given by the Kim–Anderson model
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Here h is the heat transfer coefficient to the coolant at ambient
temperature T0.

This instability criterion predicts when a flux jump will
happen based on the thermodynamic conditions of the mat-
erial. The superconductor enters a highly non-equilibrium
state during a flux jump, however, where Jc (B, T) can no
longer be derived from the critical state by the balance of the
Lorentz and flux pinning forces or the Bean model. As a
result, a parameter α (0�α�1), defined by the ratio of Jc
during and before the flux jump, has been proposed in pre-
vious studies to quantify the magnetisation or ‘size’ of the
flux jump [24, 25]. It is possible to inversely deduce α and
thus Jc in the non-equilibrium state according to the flux
jumps in the hysteresis loops [16]. Romero-Salazar et al [24]
simulated flux jumps in hysteresis curves of MgB2 and
achieved good agreement with theory using the instability

2

Supercond. Sci. Technol. 31 (2018) 105005 D Zhou et al



criterion. They reported that the ratio α should be selected
carefully based on specific experimental conditions, which
include temperature, the magnetic history of the super-
conductor and the specific quadrant of the hysteresis curve.
This study showed, for example, the first flux jump in the
virgin curve, where Ba increases from 0 T, at 5 K is inde-
pendent of the value of α. However, the second flux jump
then occurs at the Ba measured experimentally only when
α= 0.025, which indicates that the remnant magnetisation
influences the instability. This is important in the optimisation
of a multi-pulse magnetisation procedure such as that studied
here [26, 27].

Zhou et al [28] simulated numerically the flux jumps in a
hysteresis loop reported in [17]. The results obtained are in
good agreement with experiment when the Bj predicted by
equation (1) is one order of magnitude smaller than the
experimental data and the Bj given by equation (2) is larger by
a factor of two. These results are based on modification of the
E–J relationship and the addition of the thermal transient
equation to the model, which was then solved via a finite
difference method (FDM). These authors reported that Jc was
reduced by five to six orders of magnitude at each jump,
accompanied by a sudden rise in temperature.

More recently, Ainslie et al [29] reproduced the flux
jumps during a PFM process in a well-developed 2D axi-
symmetric model using the finite element method (FEM).
One concern, however, is how to translate the discontinuity of
Jc in the magnetisation curve. In general, Jc, as defined by the
Jc (B, T) relationship, is a continuous variable unless Ba

exceeds the irreversibility field or T exceeds the critical
temperature, Tc, which, for example, is frequently the case for
MgB2 [30–32]. However, this is an unlikely case for HTS
materials due to their higher Tc, Jc and irreversibility field and
lower thermal conductivity at typical operating temperatures.
The discontinuity associated with a flux jump may be intro-
duced at the boundary of the elements in the FDM or FEM,
which appears physically reasonable given that flux jumps
originate predominantly at hot spots associated with the
localised generation of heat. In the present study, the
instability criterion to address specifically the discontinuity in
Jc. We extend the instability criterion in a 2D axisymmetric
model using experimental data, including a realistic Jc (B, T),
to re-calculate Bj and compare the outcome with the results of
the PFM experiments.

Experimental details

GdBCO bulk superconductors, containing 10% Ag by
weight, of diameter 30 mm and thickness 12 mm were pre-
pared by a standard top seeded melt growth technique
[33, 34]. The trapped field performance of these samples was
evaluated following field cooled magnetisation at 77 K. The
peak magnetic flux density on the surface of the large single
grains, on average, exceeded 1 T. The observed trapped field
distribution of each single grain sample exhibited good
homogeneity, as shown in figure 1(c), which generally sug-
gests a high-quality sample. Each sample was cooled

conductively using a GM cryo-cooler, illustrated in
figure 1(a), with a base temperature of 17 K. The temperature
was monitored and controlled throughout the cooling and
measurement process by means of a Cernox temperature
sensor coupled to a heater. The local magnetic flux density
was measured directly using an array of five calibrated Hall
sensors separated by 2.5 mm to obtain a field profile from the
centre to the edge of the sample. Data were collected during
the entire PFM process with a sampling rate of 2 kHz. The
sample was then cut in half to form a stack of two indepen-
dent discs, and the measurements were repeated with the Hall
sensors re-positioned at the centre of the stack (i.e. along the
radius between the two discs), as shown in figure 1(b). An
additional Cernox temperature sensor was placed in contact
with the sample in the new arrangement to measure the
temperature rise during the PFM process.

The pulsed magnetic field was provided by discharging a
capacitor bank through a copper solenoid immersed in liquid
nitrogen. The rise time of the pulse, shown in figure 2, was
35 ms for a quarter cycle of a sine wave (the RLC circuit had
an under-damped response). The charging circuit was opened
when the current reached its peak value, with the return
current flowing through a fly-back diode and reducing to zero
in about 450 ms. On this basis, the pulsed field can be
expressed as

B
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This expression for applied field was used for all the sub-
sequent simulations undertaken as part of this study.

Figure 1. (a) Photograph of a stack of two single grain GdBCO–Ag
bulk superconductors encapsulated in a slotted copper holder, which
is connected to the cold-finger of the cyrocooler. (b) The
arrangement of the array of five Hall sensors and Cernox temperature
sensor. (c) Trapped field distribution of the GdBCO–Ag sample
measured after field cooled magnetisation at 77 K.
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Modelling framework

A standard 2D axisymmetric model, described in [29, 35–38]
was used in this study, which is based on the H-formulation
with the following governing equations (Faraday’s and
Ampere’s laws)

E
H

H J

d

dt . 4
r0m m

´ = -

´ =

⎧
⎨⎪
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( )

These are coupled with the thermal transient equation,

C
dT
dt

k T Q. 5r = +· · ( ) ( )

The simulation was implemented using the commercial FEM
software package COMSOL Multiphysics. A relative per-
meability, μr= 1 was assumed for the superconductor, and
its electrical properties were modelled using the E–J power
law, E J ,nµ where n= 20. In this case, the resistivity of the
superconductor ρsc is equal to

E
J
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where the characteristic electric field Ec= 10−4 V m−1. The
resistivity is modified to include the flux flow region
regarding the rapidly changing external field as follows,

. 7sc normal
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r r
r r
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In this case, the resistivity tends towards a normal state value,
ρnormal= 3.5×10−6Ωm, when the induced electrical field
E significantly exceeds Ec. The key parameter Jc (B, T) for the
model was obtained directly via a two-variable interpolation
from the Jc(B) curves calculated from magnetisation loops
measured between 30 to 85 K and up to 6 T using a SQUID
magnetometer, which was further extended mathematically
up to 10 T, as described in [29, 35]. The heat source, Q, was
calculated as Q= E·J.

Results and discussion

Bj measured experimentally

Figure 3 shows the profile of the trapped field measured 15min
after the PFM process at different temperatures to allow for
flux creep. Taking the 60K results as an example, the trapped
field profile exhibits a trough-like, half ‘M’ shape distribution
when Ba is 4.2 T. However, when the applied field is increased
by only 0.2 T to Ba= 4.4 T, the trapped field profile changes
to a peak distribution with a maximum peak flux density of

Figure 2. Profile of applied fields of magnitude of 4 and 6 T. The
solid lines are fits to the experimental curves using equation (3). The
rise time of the pulse is 35 ms over a quarter cycle of a sine wave,
and the fall time is approximately 450 ms.

Figure 3. Trapped field profile measured above the surface of the
GdBCO–Ag bulk superconductor 15 min after the PFM process, for
different applied fields, Ba, at temperatures of 30, 50 and 60 K.

Figure 4. Trapped field measured between the stack of two GdBCO–
Ag bulk superconductors after PFM at 60 K.
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2.1 T at 60K. Increasing the applied field further to 4.6 and 4.8
T decreases the peak flux density monotonically due to
excessive generation of heat. The critical applied field,
Ba= 4.4 T, is therefore defined as Bj at 60 K. The measured Bj

was observed to be consistent in repeated experiments and to
increase with decreasing operating temperature.

The Hall sensors measure only the perpendicular comp-
onent of the magnetic field. In order to minimise the trans-
verse field component, the magnetic field was also measured
by Hall probes sandwiched between the stack of two
GdBCO–Ag discs, as shown in figure 4. The observed critical
field, Bj, in the two-sample stack was 4.2 T which was
approximately 0.2 T smaller than that measured for the single
domain. The incorporation of the Hall sensors within the bulk
superconductor stack introduces a gap of 2 mm which will
affect the behaviour of the magnetic field to penetrate the
samples. And the process of splitting the bulk superconductor
may cause a slight degradation of its properties. The peak in
the trapped field profile for this arrangement was off-centre,
which differed from that measured at the top surface of the

sample. This indicates that the magnetic flux actually did not
jump all the way to the centre of the sample. Flux was pushed
further towards the centre when magnetic fields higher than
4.2 T were applied, which enhanced the peak flux density, but
reduced the trapped field towards the edge of the sample as
indicated by the dashed arrows in figure 4.

The local flux density was recorded at different radial
positions during the entire PFM process to obtain a better
understanding of the flux penetration dynamics within the bulk
superconductor. Figure 5 shows the measured magnetic field
at 60 K and applied fields of Ba= 4.2 T, which is the flux
jump field, Bj, and Ba= 4.6 T. It can be seen from figure 5(a)
that a flux jump occurs when the external field approaches Bj,
and that it is shielded perfectly by the induced current prior to
the occurrence of flux jump. However, the measured field rises
sharply once the flux jump has occurred and becomes equal to
the applied field at a position of 2.5 mm from the centre of the
sample. This indicates that the induced shielding current, and
thus Jc at the outer portion of the sample, has decreased to zero
which means this part of the sample is in the flux flow state.

Figure 5. Measured magnetic field at different positions in the stack of two GdBCO–Ag discs for applied field Ba= 4.2 T at 60 K.
(a) Measured magnetic field as a function of time during the entire PFM process, and (b) field distribution at different times during the rise
and fall of the applied field. (c) and (d) correspond to the case where Ba= 4.6 T at 60 K.
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The variation of the field profile in such a relatively large
sample, illustrated in figure 5(b), enables a closer examination
of the flux penetration front. The magnetic field distribution
follows the critical state model, with the gradient of the flux
density being directly proportional to Jc of the sample, until a
flux jump occurs at 31 ms. The magnetic field, assisted by the
flux jump, fully penetrates to around 2.5 mm from the centre
of the sample. It is worth noting that the flux creep at the outer
portion of the sample is much more severe during and fol-
lowing the removal of the external field, and that the magnetic
flux that ‘jumps’ in during the PFM process remains stable. It
can be seen by comparing the results for applied fields Ba of
4.2 and 4.6 T that the flux jump occurs earlier (at around
29 ms) and that a greater amount of flux penetrates to the
centre of the sample for Ba of 4.6 T. In addition, more flux
exits the sample from its periphery due to flux creep during
the period over which Ba decreases to zero for Ba= 4.6 T.
These observations are consistent with the measured final
trapped field shown in figure 4.

Figure 6 shows the measured magnetic field as a function
of applied field for Ba= 4.2 T at 60 K. The curves appear
similar to M–H hysteresis loops, and the flux jump can be
observed clearly at the point where the measured field at 5
and 10 mm from the centre of the sample increases in mag-
nitude from zero to a value equal to the external field.

Bj obtained by the numerical method

It is apparent from the preceding discussion that the flux jump
instability is triggered at the point where the shielding field
(i.e., the magnetic field generated by the induced screening

Figure 6. Local magnetic field measured at r= 0, 5 and 10 mm from
the centre inside the two-disc GdBCO–Ag stack as a function of
applied field for the case where Ba= 4.2 T at 60 K.

Figure 7. (a) Magnitude and distribution of the induced current
density, J, flowing in the cross section of the bulk superconductor at
times t= 10, 20 and 35 ms for Ba= 4.3 T at 60 K (left) and
Ba= 5.6 T at 30 K (right). (b) Temperature distribution at t= 35 ms
(peak of the applied field) for Ba= 4.3 T at 60 K (left) and Ba= 
5.6 T at 30 K (right).

Figure 8. Calculated induced current, Iinduced, during the rise of the
pulsed field at 60 and 30 K. The inset illustrates the process of the
triggering of an instability and the reconstruction of a critical state at
the penetration front.
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current) starts to decrease while the external field is still
increasing. At this point, the forces on flux lines that were
previously pinned can no longer be resisted, and the critical
state breaks down. In the 2D axisymmetric model, the
induced current, Iinduced in the bulk superconductor can be
expressed as the current density, J, flowing around the bulk
superconductor, integrated over the cross section of the
sample (i.e., radius×thickness),

I J ds. 8
s

induced ò= · ( )

Figure 7(a) shows the distribution of the induced current
density, J, for the cases of Ba= 4.3 T at 60 K (left) and
Ba= 5.6 T at 30 K (right). Iinduced increases with the increase
of the penetration region during the rise of the external field.
However, the induced current decreases synchronously due to
the generation of heat, which reduces Jc, and subsequently J.
The decrease in J is significant, as illustrated in figure 7(a),
due to the dramatic temperature rise as shown in figure 7(b).
The heat capacity, C, of GdBCO is very small at low tem-
peratures and increases rapidly with increasing temperature.
The magnitude of C at 30 K is approximately 56 times larger
than its value at 4 K in the model parameters used for simu-
lation [36]. Therefore, the change of temperature, and hence
Jc of the superconductor, for a given amount of heat generated
due to flux motion reduces significantly at higher operating
temperatures. This explains both why flux jumps are observed
only at temperatures below 7.6 K in the magnetometry mea-
surements performed on a YBCO sample in [16] and why
they are less problematic for HTS materials at elevated tem-
peratures. In PFM, however, the rapid change of the external
field, especially during the rise of the pulsed field increases
significantly the amount of heat generated in the super-
conductor, which facilitates the occurrence of flux jumps.

Figure 8 shows the change of induced current during the
increase in pulsed field. At 30 K, for example, when Ba=
4.4 T, the current increases with increasing applied field and

reaches a maximum value when Ba approaches its peak.
When Ba is increased to 5.6 T, the maximum value of induced
current appears after approximately 22 ms and starts to
decrease afterwards due to the severe generation of heat. This
represents the point at which the shielding current is unable to
exclude the external field, as described by the instability
criterion. Bj is then defined as the value of Ba that reduces the
induced current by 10% of its maximum value at the end of
the field rise period of the PFM process. The values of Bj

determined at different temperatures by the numerical meth-
ods, shown in figure 9, are in good agreement with the
experimental data derived from figure 3. The ramp rate of the
external field, dBa/dt, is determined by the magnitude of Ba

given that the time duration of the PFM process is a constant.
Therefore, Bj is influenced by both the magnitude and ramp
rate of the applied field.

A critical state, as illustrated schematically in the inset of
figure 8, will be re-established at the penetration front

Figure 9. Critical applied field, Bj, triggering the flux jump, obtained
from experiments and simulations at different temperatures for the
GdBCO–Ag single grain sample.

Figure 10. Trapped field profile achieved using the two-temperature,
multi-pulse magnetisation (MPFM) method with temperature
sequences of 60–30 K (a) and 65–35 K (b). The measurements were
performed at the surface and in the middle of the two-sample
GdBCO–Ag stack. The sigle pulse result for Ba= 5.6 T at 30 K was
included for reference.
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following the flux jump. The flux jump occurs within the
penetration area of the sample where most of the heat has
been generated (i.e., the ‘warm region’), which explains why
the peak trapped field appears further away from the sample
centre at lower temperatures, where the penetration area is
smaller due to a higher Jc, as shown in figures 3 and 4. Hence,
the value of Jc in the warm region during the flux jump is
critical to the process. Jc in the model is continuous, although
the average Jc decreases dramatically to approximately 40%
of its original value at t= 35 ms. However, the experimental
results shown in figures 5 and 6, indicate that Jc decreases
entirely to zero in the outer portion of the sample, since the
measured magnetic field in these regions is equal to the
applied field.

It is worth noting that Ba observed both experimentally
and predicted by the model is smaller than the full penetration
field B*. The induced current will decrease monotonically
with decreasing Jc once Ba reaches B*. After that the pene-
tration area becomes stable, suggesting that a flux jump is
likely to happen when Ba�B*, which is consistent with
considerations of the effect of sample size on the probability
of flux jumps [28].

Multi-pulse magnetisation

The accumulated, localised heat is directly responsible for
producing the flux jump in the model presented here. The flux
jump initiates in the field penetration area which decreases in
size at lower temperatures due to stronger pinning forces (and
hence higher Jc). This hypothesis has been used to develop a
two-temperature, multi-pulse magnetisation (MPFM) method,
in which a field slightly smaller than Bj is applied to the
superconductor at temperature T1, to partially magnetise the

sample, followed by the application of a higher field at T2,
where T2< T1. As a result, some flux is pinned in the
superconductor by the application of the first pulse in an
attempt to reduce the heat generated during the field pene-
tration in the second pulse [39], consequently triggering the
flux jump at a higher Ba and at a position closer to the centre
of the sample.

Figure 10 shows the results of a two-temperature MPFM
process with temperature sequences of T1= 60 K to T2=
30 K (a) and T1= 65 K to T2= 35 K (b). As is expected for
the MPFM method, the peak magnetic flux density at the
surface of the sample, shown in figure 10(a), reaches 4.1 T at
30 K with the peak at its centre. This is in contrast with the
peak magnetic flux density of 3.2 T achieved from a single-
pulse where the peak position is 2.5 mm away from the centre
of the sample, as shown in figure 3. Significantly, the value of
Bj at 30 K increases from 5.6 T for the single-pulse magnet-
isation process to 7.1 T for MPFM. This confirms that an
applied field of greater magnitude is required for the sub-
sequent pulse in the MPFM process, as reported in [39]. The
same temperature sequence was used for the stack of two
GdBCO–Ag discs. The trapped field profile, as shown in
figure 10(a), reveals clearly that the flux has not yet com-
pletely ‘jumped’ to the centre of the sample.

Trapped field profiles achieved using a temperature
sequence of T1= 65 K to T2= 35 K are shown in
figure 10(b). The peak trapped field is 3.9 T at the surface of
the single domain and 5.3 T in the middle of the two-sample
stack. This indicates that reducing the operating temperature
in PFM is not always efficient for enhancing the trapped
magnetic field. A greater temperature rise of the sample is
observed due to the smaller heat capacitance and increased
generation of heat at lower operating temperatures. An opti-
mal operating temperature, therefore, exists for the PFM
process.

Figure 11 summaries the maximum trapped field
achieved in the present study at different temperatures. The
MPFM method is applicable when the temperature is below
60 K, and had been used to generate a maximum peak flux
density of 4.1 T at the surface and 5.3 T at the centre of a
GdBCO–Ag single grain of diameter 30 mm.

Conclusions

Flux jumps in a single grain GdBCO–Ag bulk superconductor
of diameter up to 30 mm have been observed during the PFM
process. The critical applied field required to trigger the flux
jump, Bj, at different temperatures has been determined. An
instability criterion has been proposed based on a 2D axi-
symmetric finite element to enable the occurrence of flux
jumps to be predicted. The value of Bj obtained numerically
using this criterion agrees well with the results of experiment.

We conclude that accumulated heat during the magnetic
field penetration is the dominant factor that leads directly to
the flux jump. The ‘warm area’ where the flux jump occurs,
which is predicted successfully by the model, explains why at
lower temperatures the flux jump happens only partially in the

Figure 11. Maximum magnetic flux densities achieved at different
temperatures at the surface and in the middle of the two-sample
GdBCO–Ag stack of diameter 30 mm via single PFM (�60 K) and
MPFM (< 60 K, corresponding to the operating temperature of the
second pulse).
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outer portion of the sample. The experimental results reveal
that Jc in the ‘warm area’ is approximately zero during the
flux jump itself.

The results of this investigation have been used to further
refine the PFM approach and to develop a multi-pulse
magnetisation technique, which has been used to achieve
trapped field with peak value of 4.1 T at the surface and 5.3 T
inside a GdBCO–Ag sample. This is a significant step
towards achieving higher trapped fields in bulk super-
conducting magnets, magnetised by the PFM technique,
towards utilising these materials practically in range of
engineering applications.
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