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HIGHLIGHTS:

 Schizophrenia patients present with impaired cognitive functions.

 Evidence suggests strong genetic etiology for cognitive deficits in schizophrenia.

 Neurotransmitter system genes showed effect on cognitive deficits in schizophrenia.

 Limited evidence suggests the dopaminergic system genes with inconsistent findings.

 Larger samples are required to examine genetic risk of cognition in schizophrenia.
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ABSTRACT (Word count = 170):

Schizophrenia is a complex and debilitating illness with strong genetic loading.  In line 

with its heterogeneous symptomatology, evidence suggests genetic etiologies for the phenotypes 

in schizophrenia.  A search across endophenotypes has pointed towards consistent findings in its 

neurocognitive deficits.  Extensive literature has demonstrated impaired cognition including 

executive function, attention, and memory in schizophrenia patients when compared to healthy 

subjects.  This review 1) provides an overview of recent studies and 2) develops an up-to-date 

conceptualization of genetic variations influencing neurocognitive functions in schizophrenia 

patients.  Several neurotransmitter system genes have been examined given knowledge of their 

role in brain functions and their reported genetic associations with schizophrenia and cognition.  

Several genetic variations have emerged as having preliminary effects on neurocognitive deficits 

in schizophrenia.  These include genes in the neurotrophic, serotonin, cell adhesion, and sodium 

channel systems.  Limited evidence also suggests the dopaminergic system genes, with the most 

studied catechol-o-methytransferase (COMT) gene showing inconsistent findings.  Further 

investigations with larger samples and replications are required to elucidate genetic risk for 

cognitive deficits in schizophrenia.
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INTRODUCTION

Schizophrenia is a chronic and severe neuropsychiatric disorder with a lifetime 

prevalence of 0.4-1% in the general population (1, 2).  The core features of this disorder are 

characterized by three symptom domains including positive symptoms, negative symptoms, and 

cognitive deficits (1).  The identification of neurocognitive deficits in schizophrenia patients is 

important because cognitive impairment is associated with poor functional outcome (3).  Up to 

98% of schizophrenia patients have a degree of neurocognitive impairment (4, 5).  Although 

antipsychotic medications reduce positive symptoms significantly, they have limited efficacy for 

remediating neurocognitive deficits and negative symptoms of schizophrenia (6, 7).

Cognitive dysfunction has repeatedly been identified as one of the hallmark features of 

schizophrenia starting as early as 1950 by Bleuler (8) and recently in the past decade (3, 4, 9, 

10).  A systematic review reported global cognitive impairment and specifically worse verbal 

memory, executive function, and general IQ, in first-episode psychotic patients when compared 

to healthy controls (11).  Recent meta-analyses also detected significant deficits in working 

memory, attention/vigilance, verbal/visual learning and memory, executive functions (reasoning 

and problem solving), processing speed, social cognition, and psychomotor control (7, 12).

Evidence has shown that schizophrenia and cognitive impairment have heritability 

ranging between 70-90% and 24-55% respectively (13, 14).  Schizophrenia is a complex and 

heterogeneous neuropsychiatric disorder with a polygenic architecture (15) and even following 

recent genome-wide association studies (GWAS) (16, 17), multiple small gene effects with only 

several replicable findings have been found to contribute to risk.  Therefore, the identification of 

endophenotypes, with an attempt to ascertain a more homogeneous phenotype for genetic 

studies, is important for elucidating the etiology of schizophrenia.  The search for 
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endophenotypes is guided by their strong association with the illness, high heritability, and 

observable similar deficits in unaffected relatives (18).  Cognitive deficits are heritable and are 

core features of schizophrenia, thus they may be valuable endophenotypes for schizophrenia.  

Twin studies (19-21) and two recent molecular genetic studies (22, 23) have reported significant 

genetic overlap between neurocognition and schizophrenia.  Additionally, neuropsychological 

studies have observed that unaffected relatives of schizophrenia patients performed significantly 

worse in estimated intelligence, immediate and delayed logical memory, immediate visual 

reproduction, and sustained attention, therefore implicating genetic loading within families (24-

26).  Although research on the genetics of neurocognitive domains in schizophrenia has grown 

rapidly over the last decade in parallel with attempts to determine the genetic etiology of 

schizophrenia, the last review to have covered some genetic studies of cognitive endophenotypes 

in schizophrenia was published in 2008 (27).  Therefore, we now provide an up-to-date review of 

this important topic.

Methods:

We reviewed all molecular genetic studies of cognition in schizophrenia that were 

published in PubMed and/or MEDLINE until January 1, 2015.  Specific search terms used 

included: genetics, molecular genetics, schizophrenia, cognition, neurocognition, cognitive or 

neurocognitive or neuropsychological deficits or impairments or endophenotypes or traits.  

Eighty-twoSeventy-three  original studies were included in this review article.  A summary can 

be found on Table 1 (Table S1 in Supplement 1 for full details).

Results:
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Many genes have been reported to be associated with cognitive impairment in 

schizophrenia as shown in Table S1 in Supplement 1.  The next sections of this review will 

provide a comprehensive summary of these genetic findings organized according to important 

bio-molecular systems (Figure 1).

Dopaminergic System Genes:

The dopaminergic system genes that have been investigated in neurocognitive deficits of 

schizophrenia include catechol-O-methyltransferase (COMT) (10, 28-47), dopamine transporter 

(DAT) (10, 28, 41, 47, 48), dopamine D1 receptor (DRD1) (10), dopamine D2 receptor (DRD2) 

(10, 43, 45), dopamine D3 receptor (DRD3) (10, 46, 48), dopamine D4 receptor (DRD4) (30), 

dopamine D5 receptor (DRD5) (49), dopamine beta-hydroxylase (DBH) (12, 46), vesicular 

monoamine transporter 2 (SLC18A2) (10, 46), ankyrin repeat and kinase domain containing 1 

(ANKK1) (10), and protein phosphatase 1, regulatory (inhibitor) subunit 1B (PPP1R1B) (10).

The most extensively examined candidate gene in neurocognition of schizophrenia is 

COMT.  A reduction in dopaminergic neurotransmission in specific brain regions such as the 

anterior cingulated and the dorso-lateral prefrontal cortex has been postulated to alter cognition, 

specifically executive function and working memory, in schizophrenia (50).  A functional 

polymorphism within COMT, Val158Met, accounts for a four-fold variation in its enzymatic 

activity and dopamine catabolism in the prefrontal cortex, with Met as the low functioning allele 

(34).  Twenty three studies were found as defined by our search criteria (31).  Barnett et al. (31) 

performed a meta-analysis including 12 studies of the impact of COMT Val158Met on executive 

function and detected significant association between Val/Val and worse cognitive performance 

than Met/Met only in healthy controls but not in schizophrenia patients.  A recent study (43) 
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similarly reported no association between this locus and theory of mind dysfunction in 

schizophrenia but detected worse performance in Met-carrier females in the combined 

schizophrenia and control sample.  However, a 94-multi-gene family study examining COMT, 

found associations with verbal learning, ‘false’ memory, and prepulse inhibition in schizophrenia 

patients (44).  Twamley et al. (51) also reported better learning, memory, and abstraction with 

the Met allele than Val, and when Green et al. (52) investigated cognitive function in 

schizophrenia patients with childhood trauma history, they detected significant links of the Val 

homozygotes with worse cognitive performance in the absence of childhood adversity, and better 

executive function with positive abuse history, suggesting a gene-environment interaction.  

Overall, given the pleiotropic effects of most genes, it appears unlikely that changes in cognition 

in relation to COMT are specific to schizophrenia.

Other dopamine-related genes, DAT, DRD1, DRD2, DRD3, DRD4, DRD5, DBH, 

SLC18A2, ANKK1, and PPP1R1B, have also been investigated in cognitive deficits of 

schizophrenia.  These genes were examined because of their prior association with schizophrenia, 

antipsychotic actions, and/or their involvement in dopamine neurotransmission.  Four studies 

involved DAT, one with rs6350 and three with the functional 3’ VNTR, but none reported 

association with cognitive measures in schizophrenia (28, 41, 47, 48).  Three studies investigated 

DRD2 markers in executive functioning (45) and theory of mind impairment (43) in 

schizophrenia (10) and all were negative.  Two significant and one negative studies of DRD3 

have been published.  Firstly, Szekeres et al. (48) reported a significant association between the 

DRD3 Ser9Gly low functioning (53) Ser/Ser genotype and fewer categories completed and more 

perseverative errors on the Wisconsin Card Sort Test (WCST) than Ser/Gly.  Secondly, a 94-

multi-gene study reported a significant association between DRD3 and emotional recognition 
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(44).  However, Bombin et al. (45) only detected significant associations of DRD3 in the 

combined first-episode psychosis and healthy adolescents suggesting a lack of power.  One 

DRD5 study (49) reported a significant association between the presence of two copies of the 7 

(148-bp) allele in the (CT/GT/GA)n microsatellite and lower word generation (visual voluntary 

attention) than one copy of the 7 allele in schizophrenia (P=0.018) and their relatives.  Kukshal 

et al. (46) reported no association between COMT, DRD3, DBH, and SLC18A2 with performance 

in the Trail Making Test.  For the DBH 19-bp deletion, Hui et al. (12) detected significantly 

poorer immediate memory with the carriers in schizophrenia patients but not in controls.  Several 

markers across DAT, DRD1, DRD3, and SLC18A2 were also found to be significantly associated 

with poorer cognitive functions in schizophrenia patients in a multi-gene study (10).

Thus, dopamine-related genes may be implicated to a limited extent in the neurocognitive 

deficits in schizophrenia patients, especially in memory, attention and executive function.  

However, except for COMT, few studies have examined other dopamine-related genes and recent 

GWAS of cognitive performance in schizophrenia (22, 23, 54, 55) failed to implicate any 

dopamine-related genes, suggesting the existence of additional possible mechanisms and 

interactions in the genetic etiology of neurocognitive deficits in schizophrenia and the need for 

more systematic studies.

Neurodevelopmental and Neuroplasticity Genes:

Genes related to neurodevelopment and neuroplasticity are obvious candidates for 

cognitive deficits in schizophrenia.

The dystrobrevin binding proteint 1 (DTNBP1) gene encodes dysbindin, a key subunit of 

the biogenesis of lysosome-related organelles complex-1, which regulates protein trafficking and 
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cell-surface expression of neurotransmitter receptors (56).  It has been shown to modulate 

prefrontal cortical activity via glutamatergic neurotransmission (57, 58).  Significant reduction of 

DTNBP1 in glutamatergic neuronal terminal fields in the hippocampus has been reported and 

Talbot et al. (57) postulated that glutamatergic dysconnectivity may contribute to cognitive 

impairment in schizophrenia.  Three Four studies examined the effect of this gene in cognitive 

deficits of schizophrenia.  Burdick et al. (59) first demonstrated an association between a 

schizophrenia risk haplotype of DTNBP1 (rs909706-rs1018381-rs2619522-rs760761-rs2619528-

rs1011313), CTCTAC, and greater decline in IQ in 183 schizophrenia/schizoaffective disorder 

patients.  Baek et al. (60) later reported a significant association between DTNBP1 rs760761 and 

rs1018381 and the attention/vigilance domain when comparing schizophrenia patients to 

controls.  Another study (61) reported that the DTNBP1 rs2619539-rs3213207-rs2619538 C-A-T 

haplotype was associated with impaired spatial working memory performance.  However, one 

study (62) did not report any association between single tagging sequence variants and their 

relevant haplotypes across DTNBP1 and neurocognitive endophenotypes in schizophrenia after 

separating individuals into cognitive deficit and cognitive sparing groups.

The disrupted in schizophrenia 1 (DISC1) gene is considered to be a central hub of 

cellular development and regulation given its importance in neurogenesis and neuroplasticity 

(63).  It has been previously shown to be associated with schizophrenia, initially from a large 

multiplex family although not specific to schizophrenia (64) and a recent European meta-analysis 

(65).  Furthermore, the down-stream cascade of DISC1 and its interaction with 

phosphodiesterase-4B have been implicated in learning, memory, and mood (66).  Thus, DISC1 

has become a candidate for the genetic study of neurocognitive dysfunctions in schizophrenia 

(67).  Only threeFive studies have been reported.  The first (68) reported an association between 
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the DISC1/translin-associated factor X (TRAX) haplotype and impairments in short- and long-

term memory and reduced gray matter density in the prefrontal cortex.  The second (69) reported 

an association between the DISC1-HEP3 (rs751229-rs3738401) haplotype and poorer 

performance on short-term visual memory and attention.  The third demonstrated a significant 

finding between DISC1 rs821616 Ser/Ser genotype and reduced performance on WMS Logical 

Memory II subsection in schizophrenia patients in addition to a lower WCST category scores in 

the entire sample (schizophrenia, unaffected siblings, parents, and healthy controls) (70).  

Burdick et al. (71) observed positive association between DISC1 rs2255340 genotype and rapid 

visual search and verbal working memory.  The last is a recently published multi-gene study (28) 

who reported a trend association between DISC1 rs12133766 and deficient verbal fluency in 

schizophrenia males (P=0.049).

Neurotrophic factors have been postulated to affect cognition given their roles in 

neuroplasticity and their interactive and modulatory effects on various neurotransmitter systems.  

The brain-derived neurotrophic factor (BDNF) gene has been examined due to its role in cell 

differentiation, survival, long-term potentiation, synaptic plasticity, learning, and memory (72-

75).  Its functional polymorphism, rs6265 (Val66Met), has been extensively investigated with 

prior significant associations in memory impairment (76) and schizophrenia (77).  Three Eight 

studies in addition to a multi-gene study and a meta-analysis including twoseven studies from 

our search were detected.  The first studyEgan et al. (78) detected a significant association 

between individuals with one or two Met allele(s) regardless of their disease status 

(schizophrenia patients, their healthy siblings, and healthy controls) and lower abilities to 

perform tasks of learning and memory.  Another study (79) reported that schizophrenia patients 

with the high-functioning Val/Val genotype of BDNF Val66Met had superior scores for both 
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voluntary and involuntary attention tasks, in contrast to the serotonin 2A receptor gene (HTR2A 

T102C)T-Met combination, linked to inferior performance for voluntary attention but superior 

performance for involuntary attention.  Ho et al. (80) reported observed a significant association 

between the BDNF Met allele with poorer verbal memory performance in both schizophrenia 

patients and healthy volunteers, and visuospatial impairment in schizophrenia only.  Val carriers 

were found to be associated with better visuospatial and constructional performance in both 

schizophrenia and healthy subjects whereas only schizophrenic Met carriers had significantly 

greater attention impairment (81).  In another study, schizophrenic Met carriers showed higher 

percentage of WCST perseverative errors especially in males (82).  Although Rybakowski et al. 

(83), Ho et al. (84), and Chung et al. (85) reported no association between BDNF Val66Met and 

cognitive performance on WCST but, Rybakowski et al. (80) demonstrated that Val/Val was 

significantly associated with higher correct responses on the N-back test.  A recent meta-

analysis, which included 12 studies including Egan et al. (78), Ho et al. (80),  Rybakowski et al. 

(83), Ho et al. (84), Chung et al. (85), Lu et al. (82), and Zhang et al. (81) compared 

neurocognitive domain scores between Met carriers and Val homozygotes in 1890 schizophrenic 

patients and did not report any significant difference (86) and a recent multi-gene study also did 

not support a role of BDNF in schizophrenia patients with cognitive deficits (Nicodemus et al., 

2013).

Although threewo of the three four studies above showed modest significant association 

between DTNBP1 variants and poor cognitive performance in schizophrenia patients, and three 

five studies suggested some associations of DISC1 genetic variants in neurocognitive deficits in 

schizophrenia, the recent GWAS (23) support neither of these genes as being strongly related to 

schizophrenia.  Furthermore, a recent meta-analysis did not support the involvement of BDNF 
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Val66Met in psychotic patients with neurocognitive deficits.  Thus, the overall status of these 

genes in neurocognitive function in schizophrenia remains unresolved. 

Glutamatergic System Genes:

The glutamatergic neurotransmitter system has received much attention given its 

neuronal excitatory properties in network functions throughout the brain, especially in the 

cerebral cortex, its influence in psychotic and cognitive symptoms, as well as being a source of 

potential drug targets (87, 88).  In animal studies, the mGluR3 knockout mouse showed 

hyperactivity and impaired working memory (89, 90), and these cognitive deficits are consistent 

with those of schizophrenia patients (7, 11).  Reduction in glutamate levels has also been found 

in schizophrenia patients with impaired cognitive control functioning but not in healthy controls 

(87).

Effects of glutamatergic modulatory drugs such as mGluR2/3 agonists (i.e. metabotropic 

glutamate receptor group II agonists), have been investigated in animal models of schizophrenia 

(91, 92).  Other drugs that regulate activation or inhibition of the N-methyl-D-aspartate (NMDA) 

receptor including the glycine transporter-1 inhibitors (93) and NMDA receptor antagonist (94) 

have also been investigated for their potential role in the treatment of cognitive impairment in 

schizophrenia.  These medications have had mixed results in early clinical trials in schizophrenia 

but more recently, a mGluR2/3 agonist has shown promising results in the treatment of early 

psychosis (95), possibly with relatively good efficacy for cognition, in particular, working 

memory (96).

Of the glutamatergic system genes, only three have been studied: the glutamate receptor, 

ionotropic, N-methyl-D-aspartate, subunit 2B (GRIN2B) (28, 97), GRIN2A (97), and glutamate 
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receptor, metabotropic 3 (GRM3) (97).  Jablensky et al. (97) reported a significant association 

between the GRIN2B rs220599 T allele with poorer immediate and delayed recall on the Rey 

Auditory Verbal Learning Test; however, Nicodemus et al. (28) did not detect any positive 

findings with this gene in cognitive deficits of schizophrenia.  Jablensky et al. (97) also observed 

enhanced cognitive performance with the GRM3 rs2189814 C allele but not with GRIN2A.

Very few studies of glutamate system genes have examined neurocognitive impairments 

in schizophrenia, although new medications targeting the glutamatergic system have shown 

possibly promising results in the treatment of cognitive deficits in schizophrenia and in reducing 

psychosis.  The use of genetic tools to subdivide groups of patients in trials of new glutamatergic 

drugs may help to identify patients, whose cognition will show greater improvement, thus 

pointing to more personalized treatment options.

Serotonergic System Genes:

The serotonergic system interacts with many neurotransmitter systems and serotonin 

plays a important role in the regulation of morphogenesis in CNS development, neuronal 

proliferation, migration, differentiation, and cognition (98-100).  In term of gene expression, the 

frontal cortex and anterior cingulate cortex have approximately 10-fold higher mRNA expression 

of the serotonin 2A receptor (HTR2A) than hippocampus or caudate and putamen according to 

the Genetic Tissue Expression database (GTEx: http://www.gtexportal.org).

Five studies have examined the HTR2A T102C polymorphism (28, 79, 101-103) with 

three significant associations.  As mentioned above, Alfimova et al. (104) reported a significant 

association between the T allele and more time for performing the test in addition to the T-

(BDNF Val66Met)Met combination and lower scores for voluntary attention and higher scores 

http://www.gtexportal.org
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for involuntary attention.  Uçok et al. (103) reported significant associations between the high 

expression (105) T allele with a lower hit rate in Continuous Performance Task (CPT) and the 

T/C genotype with more commission errors on CPT and fewer correct responses on WCST.  

Alfimova et al. (101) reported a significant association between the T/T homozygotes and lower 

verbal fluency in male schizophrenia patients only and not the entire sample, including controls.  

Although Chen et al. (102) did not detect a significant association between the HTR2A T102C 

polymorphism and cognitive deficits in schizophrenia patients.  The authors observed a trend 

between T/C genotype and better verbal fluency and less motor co-ordination soft neurological 

signs.  Nicodemus et al. (28) however did not demonstrate any role of this genetic variation in 

cognitive deficits in schizophrenia.

Besides HTR2A, one study of the serotonin 1A receptor (HTR1A) (106) and three studies 

of the serotonin transporter (5HTT, also known as SLC6A4) (107) have been conducted.  Bosia et 

al. (106) reported schizophrenia patients with the low-expression (108) CC genotype of HTR1A -

1019C/G polymorphism performed better on Theory of Mind tasks.  Bosia et al. (107) reported a 

significant association between the HTTLPR polymorphism and executive function and sustained 

attention, specifically the high activity long allele with better executive performance and with 

poorer attention, but two additional studies were negative (45, 47).

Genome-Wide Association Studies (GWAS):

To date, five GWAS have been published recently (see Table S1 in Supplement 1 for full 

details).  The first GWAS was published in 2012 and written in Chinese (109).  Xiang et al. 

(109) identified five risk genes, which were associated with memory deficits.  The second 

GWAS examining genetic influence of neurocognitive traits in schizophrenia found the strongest 
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genetic enrichments for performance in a colour-interference Stroop test and sets associated with 

the rate of learning (23).  The third GWAS (22) reported significant genetic overlap between 

general cognitive ability and risk for schizophrenia, implicating similar pathophysiological 

processes between the two.  Although schizophrenia patients had lower general cognitive ability 

than healthy controls, the authors did not detect genome-wide significance.  In the meta-analysis 

(22), they observed significant association between MAD1 mitotic arrest deficient-like 1 

(MAD1L1) and cyclin M2 (CNNM2) and lower general cognitive ability.  Additionally, the 

LSM1 homologue, U6 small nuclear RNA associated (LSM1) and the neurogranin (protein 

kinase C substrate, RC3) (NRGN) schizophrenia risk alleles were associated with higher 

cognitive ability in schizophrenia patients (22).  Through the recent PGC schizophrenia GWAS, 

Hargreaves et al. (54) detected an increased polygenic risk score for the cell adhesion molecule 

pathway with poorer performance on memory and attentional tasks.  The strongest signal was 

detected within the human leukocyte antigen system, HLA-DQA1 rs9272105 marker, which was 

associated with attentional control only.  The latest GWAS (55) showed genome-wide significant 

associations between cognitive ability in schizophrenia and polymorphisms in the sodium 

channel, voltage-gated, type II, alpha subunit (SCN2A) gene.

Genetics of Normal Cognition, Alzheimer’s Disease, and Other Cognitive Disorders:

General intelligence may in fact play a role in cognitive deficits of schizophrenia patients.  

Therefore, we included a brief summary of the genetics of general intelligence in healthy 

individuals and patients with cognitive disorders in order to determine whether there are distinct 

genetic risks that differentiate between healthy individuals, patients with cognitive disorders, and 

schizophrenia patients with cognitive deficits.
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A GWAS of general intelligence has not yielded genome-wide significance in 3,511 

healthy adults (110); however, using a gene-based approach, Davies et al. (110) detected a 

genome-wide significant association with the forming-binding protein 1-like (FNBP1L) gene but 

it was not replicated in an independent sample from the same study.  The apolipoprotein E 

(APOE) gene was found to be associated with cognition in older individuals, suggesting a 

genetic overlap with Alzheimer’s disease (111).  A recent review article on GWAS in 

Alzheimer’s disease identified several major pathways, including amyloid, immune system, 

inflammation, lipid transport and metabolism, synaptic functioning, and endocytosis (112).  

Similarly in a recent review of the genetics of recessive cognitive disorders, significant 

associations have been found in genes that are involved in synaptic function, basic cellular 

processes including DNA transcription, translation, and degradation, mRNA splicing, energy 

metabolism, and fatty-acid synthesis and turnover (113, 114).

There are genetic overlaps between general intelligence in healthy individuals, cognitive 

disorders, and cognitive deficits in schizophrenia (Table 2).  Interestingly, energy metabolism 

appears to be a common genetic pathway that affects cognition regardless of disease status.  

Nonetheless, many genes have been detected in specific disorders but replication studies are 

required to further expand on these reports and to differentiate disease-specific genetic markers. 

Treatment Implications:

Pharmacotherapy of schizophrenia has only shed light in the treatment of positive, but not 

cognitive or negative symptoms.  No known treatment has provided significant improvement in 

these latter symptoms to date.  Since cognitive and negative symptoms are associated with poor 

functional outcome, the development of new pharmacological strategies is crucial for reducing 
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disease-related disability.  Recent studies of cognitive enhancers and immunomodulatory drugs 

have reported promising effects on cognition in schizophrenia (115, 116); however, replications 

are warranted to provide support for clinical application.  Thus, the search for genetic 

vulnerability in cognition and eventual discovery of a biomarker will enable researchers to 

identify new drug targets, which will hopefully lead to the improvement of cognitive deficits in 

schizophrenia patients.

Discussion:

This is the first comprehensive attempt to review all molecular genetic studies of 

cognitive impairments in schizophrenia to date.  Neurocognitive deficits are one of the key 

symptom dimensions of schizophrenia.  The study of cognition in schizophrenia is a strong and 

important unmet need for new drug targets since cognitive deficits are often the most difficult to 

treat.

Although 73 82 publications were qualified according to our search criteria, a 

considerable expansion of current work will be required to further identify risk loci for cognitive 

dysfunction in schizophrenia.  Multiple genetic variants have been examined in different 

cognitive domains in schizophrenia but there have been few replication studies to date.  The most 

examined candidate genes include COMT, DISC1, HTR2A, and BDNF, which all provided 

inconsistent findings, often associated with different aspects of cognitive dysfunction in 

schizophrenia.

Evidence has suggested overlapping genetic etiology between neurocognition and 

schizophrenia (21).  Although the number of molecular genetic studies is growing, these studies 

use traditional clinical and convenient neuropsychological test measures, which are often 
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insensitive, non-specific, and neurally ill-defined.  The hope is for a more homogeneous 

phenotype; however, current studies often use the label of cognitive impairment loosely in 

schizophrenia.  Many of these studies focused on genes that were previously implicated in 

schizophrenia and very few of them have investigated interactions between genetic variations 

across different genes.  Calcium and sodium channels have emerged in recent schizophrenia 

genetic association studies as well as the most recent GWAS examining cognitive impairment in 

schizophrenia.  These will hopefully lead researchers to search for an underlying common 

mechanism that may partly explain the etiology of schizophrenia and its related cognitive 

deficits.  Advances in bioinformatics are allowing researchers to analyze large datasets despite 

the relatively low prevalence of schizophrenia and multiple common loci explaining only small 

fractions of the genetic variance.  Linking functional implication to identified genetic markers 

(e.g., expression via GTEx) and testing these functional hypotheses may prove to advance our 

understanding of the etiology of neurocognitive dysfunction in schizophrenia.

The complexities of both schizophrenia and cognition provide additional challenges 

including the potential role of illness epiphenomena and illness-specific mechanisms of cognitive 

impairment.  Furthermore, one of the two twin studies that have examined the genetic influences 

in schizophrenia and cognition detected limited genetic overlap between the two (117).  

Suggestive of the lack of overlap can be observed in two schizophrenia risk alleles counter-

intuitively being associated with better cognitive performance (22).  Common genetic markers 

affecting cognitive performance in schizophrenia may not have been detected at present given 

the complex interactions of genetic, environmental, and random influences that affect individuals 

across their developmental stages and lifespan.  Investigating interactions between other 

endophenotypes of schizophrenia that may be related to cognitive functions, such as 
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neuroimaging findings, are potentially crucial for linking genetics to brain structure and function.  

Larger sample sizes with definition of homogeneous subgroups may aid in the identification of 

specific and shared genetic markers that influence schizophrenia and cognition.  Moreover, there 

are numerous different facets of neurocognition and many different methods for testing these 

cognitive domains; thus, development of a broad battery of systematic and well-standardized 

cognitive tasks that are reliable, easy to interpret, and comparable based on modern cognitive 

neuroscience approaches will be required in order to derive more definitive conclusions.  

Significant associations with performance on a single test of a particular function such as 

working memory or attention will ideally be supported by more than one test measure.  The 

behavioural specificity of such effects will also need to be carefully assessed.  One major, though 

controversial, hypothesis relating to intellectual deficits in schizophrenia is that it may be driven 

by the general factor, g, from conventional IQ tests (118, 119).  The relationship of specific, or 

general, aspects of cognition to identified neural system dysfunction is also required so that 

neurocognitive phenotypes and endophenotypes can be accurately delineated.

Further research is warranted to target known hypotheses and mechanisms of cognitive 

deficits in schizophrenia, which may in turn contribute to the development of preventative 

measures and new drug targets.  Cognitive deficits in schizophrenia are associated with poor 

functional outcome and therefore, the identification of biomarkers to predict different outcomes 

may influence treatment options including the intensity, duration, choice of medication, and type 

of therapy such as brain stimulation.  Genetic markers related to electrophysiology and/or 

neuroplasticity such as BDNF may attract interest and attention in treatment utilizing brain 

stimulation techniques.   New advances in differentiating cognitive deficits, impairment in social 

cognition, and negative symptoms of schizophrenia, including motivational and emotional 
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measures, may further delineate different subgroups within the current schizophrenia population.  

Genetic biomarkers may aid in the identification of these subgroups, which may in turn translate 

into clinical utility via personalized medicine.

Word Count: 4000 4296 including track changes (excluding title page, abstract, 

acknowledgements, references, tables, and figures).
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Figure 1. Candidate gene studies according to their biomolecular systems.  Dopaminergic system genes have been examined the most in genetic 
studies of cognition in schizophrenia given the important role of dopamine in the etiology of schizophrenia and cognition.  Neurodevelopmental 
genes are amongst the second most commonly studied candidate, followed by serotonergic and glutamatergic system genes.  Although the glutamate 
hypothesis in schizophrenia has sparked new insight into the mechanism of schizophrenia, only 4% of studies have examined genes related to 
glutamatergic system.



Table 1. Molecular genetic studies of cognitive deficits in schizophrenia (for full details, please refer to Table S1 in Supplement 1).*

Candidate Gene 
Studies Significant

System Gene N
Positive Negative Multi-gene GWAS

Cognitive Domains Reference

Dopamine COMT 23 12 11 2 - Executive function, theory of mind, reaction time, processing speed, attention, IQ, spatial working 
memory, attentional flexibility and planning (1-25)

DAT/SLC6A3 4 0 4 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension

(1, 7, 21, 
23, 26)

DRD1 - - - 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension (23)

DRD2 2 0 2 1 - - (2, 22, 23)

DRD3 3 1 2 1 -
Perseveration
- Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension

(20, 22, 23, 
26)

DRD4 1 1 0 - - Working memory, verbal fluency (5)
DRD5 1 1 0 - - Visual voluntary attention (27)
DBH 2 1 1 - - Immediate memory (20, 28)

SLC18A2 1 0 1 - - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension (20)

ANKK1 - - - 1 - - (23)
PPP1R1B - - - 1 - - (23)

Neuro DISC1 5 5 0 2 - Verbal fluency, verbal working memory, short- and long-term memory, short-term visual memory, 
visual search, attention

(1, 17, 23, 
29-32)

DTNBP1 4 3 1 1 - Attention/vigilance domain, spatial working memory, IQ (23, 33-36)

BDNF 8 5

4 (one of 
which is 
a meta-

analysis)

1 -
Voluntary and involuntary attention, verbal memory, visuospatial skills, working memory
- Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension

(1, 23, 37-
45)

NRG1 2 2 0 2 - Processing speed, visuomotor speed, attention, long-term episodic memory, short-term memory (17, 23, 46, 
47)

NRG3 2 2 0 - - Visuomotor speed, processing speed, mental flexibililty, executive function, sustained attention (48, 49)
NRN1 1 1 0 - - General intellectual ability (50)
SNAP-25 1 1 0 - - Verbal memory, attention, executive function (51)
PRODH 1 0 1 1 - - (23, 52)
P2RX7 - - - 1 - - (23)
NPY - - - 1 - - (23)
NQO1 - - - 1 - - (23)
GST-1 - - - 1 - - (23)
GST-2 - - - 1 - - (23)

Serotonin 5HTT 2 1 1 1 - Executive function, attention (17, 21, 53)
HTR1A 1 1 0 1 - Theory of mind (17, 23, 54)

HTR2A 5 3 2 2 - Voluntary and involuntary attention, executive function, verbal fluency (1, 17, 23, 
37, 55-57)

NET 2 0 2 - - - (6, 7)



System Gene N
Candidate Gene 

Studies Significant
Cognitive Domains Reference

Positive Negative Multi-gene GWAS
Oligodendrocyte QKI 1 0 1 - - - (46)

MAG 1 1 0 - - Processing speed, visuomotor speed, attention (46)
CNP 1 0 1 - - - (46)
OLIG2 1 0 1 - - - (46)
ERBB4 1 0 1 1 - Verbal learning, abstraction, visuospatial memory (17, 46)

Glutamate GRIN2A 1 0 1 - - - (58)
GRIN2B 2 1 1 1 - Immediate and delayed recall (verbal memory) (1, 17, 58)
GRM1 - - - 1 - Attention, verbal learning, abstraction, visuospatial memory, spatial processing (17)
GRM3 1 1 0 1 - Enhanced performance (23, 58)
SLC1A2 - - - 1 - Attention, abstraction, spatial memory (17)
DAOA 1 1 0 1 1 Verbal memory (23, 59, 60)
GAD1 - - - 1 - - (23)

Ion channel CACNA1C 2 1 1 - - Logical memory (1, 61)
SCN2A - - - - 1 Cognitive ability (62)

Energy 
metabolism LYRM4 1 1 0 - - Verbal memory (63)

FARS1 1 1 0 - - Verbal memory (63)
ATP2C2 1 0 1 - - - (1)

Others ANK3 2 2 0 - - Working memory, verbal memory, attention (22, 64)
TCF4 1 1 0 - - Reasoning, problem-solving, attention-related tasks (65, 66)
CNNM2 1 0 1 - - Social cognition (67)
CSMD1 1 1 0 - 1 General cognitive ability,  memory cognition (68, 69)
STH 2 2 0 - - Executive function (25, 70)
ACT 1 0 1 - - - (71)
DCDC2 1 0 1 - - - (1)
DYX1C1 1 0 1 - - - (1)
KIAA0319 1 1 0 - - Verbal learning and recall (1)
NAGPA 1 0 1 - - - (1)

ZNF804A 4 3 1 - - Verbal learning and recall, verbal and spatial working memory, verbal episodic memory, visual 
memory (1, 72-74)

CLSTN2 1 0 1 - - - (1)
WWC1 2 0 2 - - - (1, 75)
ATRNL1 1 0 1 - - - (1)
C20orf196 1 0 1 - - - (1)
CRTC3 1 0 1 - - - (1)
DIP2C 1 0 1 - - - (1)
NFKBIL1 1 0 1 - - - (1)



System Gene N
Candidate Gene 

Studies Significant
Cognitive Domains Reference

Positive Negative Multi-gene GWAS
PDE1C 1 0 1 - - - (1)
PKNOX1 1 0 1 - - - (1)
SPATA7 1 0 1 - - - (1)
ADCY8 2 0 2 - - - (1, 58)
CAMK2G 2 0 2 - - - (1, 58)
PRKACG 1 0 1 - - - (58)
PRKCA 1 1 0 - - Verbal memory (58)
HEY1 - - - - 1 Working memory (76)
MAD1L1 - - - - 1 Cognitive ability (77)
LSM1 - - - - 1 Cognitive ability (77)
CAM - - - - 1 Memory, attention (78)

 HLA-DQA1 - - - - 1 Attention (78)
RASGRF2 - - - - 1 Memory cognition (69)
PLCG2 - - - - 1 Memory cognition (69)
LMO1 - - - - 1 Memory cognition (69)
PRKG1 - - - - 1 Memory cognition (69)
EPO 1 1 0 - - Processing speed, short-term memory, and tasks requiring distinct fine motor component (79)
EPOR 1 1 0 - - Processing speed, short-term memory, and tasks requiring distinct fine motor component (79, 80)
RGS4 1 1 - 1 - Face and verbal memory speed (23)
PIP5K2A - - - 1 - - (23)
AKT1 - - - 1 - - (23)
LRRTM1 - - - 1 - - (23)

FGF2 - - - 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension (23)

FGFR1 - - - 1 - - (23)
GPM6A - - - 1 - - (23)
GABRA6 - - - 1 - - (23)
NOS1 1 1 - 1 - General cognitive ability, verbal and spatial working memory (23, 81)
RGS2 - - - 1 - - (23)
ROBO1 - - - 1 - - (23)
CHRM3 - - - 1 - - (23)
TBX1 - - - 1 - - (23)
ADRA2C - - - 1 - - (23)

FKBP5 - - - 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension (23)

DNMT3B - - - 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension (23)

CNR1 - - - 1 - - (23)



System Gene N
Candidate Gene 

Studies Significant
Cognitive Domains Reference

Positive Negative Multi-gene GWAS
MTHFR 1 1 - 1 - IQ, spatial working memory, attentional flexibility and planning (23, 24)
MTR - - - 1 - - (23)
MTRR - - - 1 - - (23)
EHMT1 - - - 1 - - (23)
EHMT2 - - - 1 - - (23)
PRDM2 - - - 1 - - (23)

* This table did not include the genome-wide association study by Fernandes et al., 2013 (82) because no specific genes were identified.

Abbreviations for genes: serotonin transporter (5HTT), alpha-1-antichymotrypsin (ACT, also known as serine proteinase inhibitor 3 [SERPINA3]), adenylate cyclase (ADCY8), adrenoceptor alpha 2C 
(ADRA2C), v-akt murine thymoma viral oncogene homolog 1 (AKT1), ankyrin 3 (ANK3), ankyrin repeat and kinase domain containing 1 (ANKK1), ATPase, Ca++ transporting, type 2C, member 2 
(ATP2C2), attractin-like 1 (ATRNL1), brain-derived neurotrophic factor (BDNF), chromosome 20 open reading frame 196 (C20orf196), calcium channel, voltage-dependent, L type, alpha 1C (CACNA1C), 
cell adhesion molecules (CAM), calcium/calmodulin-dependent protein kinase II gamma (CAMK2G), cholinergic receptor, muscarinic 3 (CHRM3), calsyntenin 2 (CLSTN2), cyclin M2 (CNNM2), 2’,3’-cyclic 
nucleotide 3’-phosphodiesterase (CNP), cannabinoid receptor 1 (brain) (CNR1), catechol-O-methyltransferase (COMT), CREB regulated transcription coactivator 3 (CRTC3), CUB and Sushi multiple 
domains 1 (CSMD1), D-amino acid oxidase activator (DAOA), dopamine transporter (DAT, also known as SLC6A3), dopamine beta-hydroxylase (DBH), doublecortin domain containing 2 (DCDC2), DIP2 
disco-interacting protein 2 homolog C (Drosophila) (DIP2C), disrupted in schizophrenia 1 (DISC1), DNA (cytosine-5)-methyltransferase 3 beta (DNMT3B), dopamine D1 receptor (DRD1), dopamine D2 
receptor (DRD2), dopamine D3 receptor (DRD3), dopamine D4 receptor (DRD4), dopamine D5 receptor (DRD5), dystrobrevin binding protein 1 (DTNBP1), dyslexia susceptibility 1 candidate 1 (DYX1C1), 
euchromatic histone-lysine N-methyltransferase 1 (EHMT1), euchromatic histone-lysine N-methyltransferase 2 (EHMT2), erythropoietin (EPO), erythropoietin receptor (EPOR), v-erb-b2 avian 
erythroblastic leukemia viral oncogene homolog 4 (ERBB4), phenylalanyl-tRNA synthetase 2, mitochondrial (FARS2), fibroblast growth factor 2 (basic) (FGF2), fibroblast growth factor receptor 1 (FGFR1), 
FK506 binding protein 5 (FKBP5), gamma-aminobutyric acid (GABA) A receptor, alpha 6 (GABRA6), glutamate decarboxylase 1 (brain, 67kDa) (GAD1), glycoprotein M6A (GPM6A), glutamate receptor, 
ionotropic, N-methyl-D-aspartate, subunit 2A (GRIN2A), glutamate receptor, ionotropic, N-methyl-D-aspartate, subunit 2B (GRIN2B), glutamate receptor, metabotropic, 3 (GRM3), glutathione S-
transferase-1 (GST-1), glutathione S-transferase (GST-2), hairy/enhancer-of-split related with YRPW motif 1 (HEY1) , human leukocyte antigen (HLA), serotonin 1A receptor (HTR1A), serotonin 2A 
receptor (HTR2A), LIM domain only 1 (LMO1), leucine rich repeat transmembrane neuronal 1 (LRRTM1), LSM1 homolog, U6 small nuclear RNA associated (LSM1), MAD1 mitotic arrest deficient-like 1 
(MAD1L1), myelin-associated glycoprotein (MAG), MicroRNA 137 (MIRN137), mitochondrial pyruvate carrier 2 (MPC2), methylenetetrahydrofolate reductase (NAD(P)H) (MTHFR), 5-
methyltetrahydrofolate-homocysteine methyltransferase (MTR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), N-acetylglucosamine-1-phosphodiester alpha-N-
acetylglucosaminidase (NAGPA), norepinephrine transporter (NET, also known as SLC6A2), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1 (NFKBIL1), nitric oxide 
synthase 1 (neuronal) (NOS1), neuropeptide Y (NPY), NAD(P)H dehydogenase, quinone 1 (NQO1), neuregulin 1 (NRG1), neuregulin 3 (NRG3), neurogranin (protein kinase C substrate, RC3) (NRGN), 
neuritin 1 (NRN1), 5’-nucleotidase, cytosolic II (NT5C2), oligodendrocyte lineage transcription factor 2 (OLIG2), purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7), prostate-specific transcript 
(non-protein coding) (PCGEM1), phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP4K2A), PBX/knotted 1 homeobox 1 (PKNOX1), phospholipase C, gamma 2 (PLCG2), protein phosphatise 1, 
regulator (inhibitor) subunit 1B (PPP1R1B), PR domain containing 2, with ZNF domain (PRDM2), protein kinase, cAMP-dependent, catalytic, gamma (PRKACG), protein kinase C, alpha (PRKCA), protein 
kinase, cGMP-dependent, type 1 (PRKG1),  proline dehydrogenase (oxidase) 1 (PRODH), quaking (QKI), Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2), regulator of G-protein signalling 
2, 24kDa (RGS2), regulator of G-protein signalling 4 (RGS4), roundabout, axon guidance receptor, homolog 1 (Drosophila) (ROBO1), sodium channel, voltage-gated, type II, alpha subunit (SCN2A), 
serologically defined colon cancer antigen 8 (SDCCAG8), vesicular monoamine transporter 2 (SLC18A2), zinc finger, spermatogenesis associated 7 (SPATA7), saitohin (STH), synaptosomal-associated 
protein 25 (SNAP-25), T-box 1 (TBX1), transcription factor 4 (TCF4), translin-associated factor X (TRAX), SWIM-type containing 6 (ZSWIM6).
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Table 2. Molecular genetic studies of cognition across healthy to disease spectrum.*

System Gene Schizophrenia 
Cognition

Schizophrenia 
Disease Risk Healthy Dementia Cognitive Domains References

Dopamine COMT +/- +/- +/-9 +/- Executive function, theory of mind, reaction time, 
processing speed, attention

(1-20, 22-25, 83-
85)

DAT/SLC6A3 +/- +/- +/-9 +/-

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension

(1, 7, 23, 26, 60, 
86, 87)

DRD1 + -9

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension

(23)

DRD2 - +/- +/-9 - - (2, 22, 23, 85, 88-
91)

DRD3 +/- +/- +/-1,9 -

Perseveration
- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension

(20, 22, 23, 26)

DRD4 + +/- + +/- Working memory, verbal fluency (5, 60, 85)
DRD5 + +/- -2 Visual voluntary attention (27)
DBH +/- +/- - + Immediate memory (20, 28, 92, 93)

SLC18A2 +/- +/- -1

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension

(20)

ANKK1 - +/- -9 - (23)
PPP1R1B - +/- +/-9 - (23, 94)

Neuro DISC1 + +/- +/-9
Verbal fluency, verbal working memory, short- and 
long-term memory, short-term visual memory, 
visual search, attention

(1, 17, 23, 29-32)

DTNBP1 +/- +/- +/-9 Attention/vigilance domain, spatial working 
memory, IQ (23, 33-36)

BDNF +/- +/- +/-9 +/-

Voluntary and involuntary attention, verbal 
memory, visuospatial skills, working memory
- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension

(1, 23, 37-45, 85)

NRG1 + +/- -3,9 + Processing speed, visuomotor speed, attention, 
long-term episodic memory, short-term memory (17, 23, 46, 47)

NRG3 + +/- + Visuomotor speed, processing speed, mental 
flexibililty, executive function, sustained attention (48, 49, 95)

NRN1 + +/- -3 General intellectual ability (50)
SNAP-25 + +/- +1 + Verbal memory, attention, executive function (51, 96)
PRODH - +/- +/-9 - (23, 52, 97)
P2RX7 - - -9 - - (23, 98)



NPY - +/- -9 - - (23)
NQO1 - - -9 +/- - (23)
GST-1 - -9 - (23)
GST-2 - -9 - (23)

Serotonin 5HTT/SLC6A4 +/- +/- + +/- Executive function, attention (17, 21, 53, 99)
HTR1A + +/- Theory of mind (17, 54)

HTR2A +/- +/- -9 +4/- Voluntary and involuntary attention, executive 
function, verbal fluency

(1, 17, 23, 37, 55-
57, 83)

NET/SLC6A2 - - - (6, 7)
Oligodendrocyte QKI - - -5 + - (46, 100)

MAG + +/- +5 Processing speed, visuomotor speed, attention (46)
CNP - +/- -5 - (46)
OLIG2 - +/- +5 +4/- - (46, 101)
ERBB4 - +/- +5 + Verbal learning, abstraction, visuospatial memory (17, 20, 46)

Glutamate GRIN2A - +/- + - (58)
GRIN2B +/- +/- + +/- Immediate and delayed recall (verbal memory) (1, 17, 58)

GRM1 + + Attention, verbal learning, abstraction, visuospatial 
memory, spatial processing (17, 21, 86)

GRM3 + +/- +/-9 Enhanced performance (23, 58, 87)
SLC1A2 + +/- Attention, abstraction, spatial memory (17)
DAOA + +/- +6/-9 +4 Verbal memory (23, 59, 60)
GAD1 - +/- -9 - (23)

Ion channel CACNA1C +/- + -3 + Logical memory (1, 61, 88, 89)
SCN2A + -2 Cognitive ability (g) (62, 90)

Energy 
metabolism LYRM4 + Verbal memory (63)

FARS1 + Verbal memory (63)
ATP2C2 - - (1)

Others ANK3 + +/- +/-3 +/- Working memory, verbal memory, attention (64, 91, 92, 102)

TCF4 + +/- +7 Reasoning, problem-solving, attention-related 
tasks (65, 66)

CNNM2 - + - Social cognition (67, 103)
CSMD1 + + + General cognitive ability,  memory cognition (68, 69, 104, 105)
STH + - +/- Executive function (25, 70)
ACT - - + - (71, 106)
DCDC2 - - - (1)
DYX1C1 - - (1)
KIAA0319 + Verbal learning and recall (1)
NAGPA - - (1)

ZNF804A +/- +/- +/-
Verbal learning and recall, verbal and spatial 
working memory, verbal episodic memory, visual 
memory

(1, 72-74, 107-
110)



CLSTN2 - +/- - (1, 111, 112)
WWC1 - + +/- +/- - (1, 75, 113-116)
ATRNL1 - - (1)
C20orf196 - - (1)
CRTC3 - - (1)
DIP2C - - (1)
NFKBIL1 - - - (1)
PDE1C - - (1)
PKNOX1 - - (1)
SPATA7 - - (1)
ADCY8 - - (1, 58)
CAMK2G - - - (1, 58)
PRKACG - - (58)
PRKCA + +/- + Verbal memory (58, 117)
HEY1 + Working memory (76)
MAD1L1 + + Cognitive ability (77, 118)
LSM1 + +/- Cognitive ability (77, 119, 120)
CAM + Memory, attention (78)

 HLA-DQA1 + - +/- (A2) Attention (78, 121-123)
RASGRF2 + Memory cognition (69)
PLCG2 + Memory cognition (69)
LMO1 + Memory cognition (69)
PRKG1 + - +/- Memory cognition (69, 124, 125)

EPO + Processing speed, short-term memory, and tasks 
requiring distinct fine motor component (79)

EPOR + Processing speed, short-term memory, and tasks 
requiring distinct fine motor component (79)

RGS4 +/-1 +/- +1/-9 - - (23, 80, 126)
PIP5K2A - +/- -9 - (23)
AKT1 - +/- -9 - (23)
LRRTM1 - + -9 - (23, 127)

FGF2 + - -2/-9

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension

(23)

FGFR1 - -9 - (23)
GPM6A - + -9 - (23, 128)
GABRA6 - +/- -9 - (23)

NOS1 +/- +/- +/-2,9 +/- General cognitive ability, verbal and spatial 
working memory (23, 81)

RGS2 - + -9 - (23, 129)



ROBO1 - -9 - (23)
CHRM3 - -9 - (23)
TBX1 - +/- -9 - (23)
ADRA2C - -9 - (23, 130)

FKBP5 + - -9

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension

(23)

DNMT3B + + -9 +/-

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension

(23, 131, 132)

CNR1 - +/- -9 - (23, 133)
MTHFR +/- +/- -9 +/- - (23, 24, 133-137)
MTR - + -9 +/- - (23, 134)

MTRR - - -9 - (23, 134, 138, 
139)

EHMT1 - -9 - (23)
EHMT2 - - -9 - (23)
PRDM2 - -9 - (23)

* The list of genes in this table has been cross-referenced with the genetic databases in schizophrenia www.alzgene.org (100) and Alzheimer’s 
disease www.szgene.org (101) and updated with references from PubMed for schizophrenia risk genes, dementia risk genes, and genes affecting 
normal cognition.
“+” indicates previous significant association(s), “-” indicates prior negative association(s), and “+/-” indicates previous positive and negative 
associations.
1 This study reported a significant association between SNP(s) across this gene and cognitive function(s) in the combined psychosis and healthy 
control sample.
2 This study detected a significant association between SNP(s) across this gene only in schizophrenia patients and their unaffected relatives but not in 
healthy controls.
3 This study found significant association between SNP(s) across this gene only in schizophrenia patients but not in healthy controls.
4 This study found significant association between this gene and psychosis in patients with Alzheimer’s disease.
5 This study reported significant associations for MAG in schizophrenia patients and healthy controls but in different cognitive domains and for 
OLIG2 and ERBB4 in only healthy controls; QKI and CNP were not significant in either sample.
6 This study found significant association between DAOA and cognitive function regardless of disease status (psychosis patients and healthy controls).
7 This study found significant association between TCF4 and cognitive function in schizophrenia patients and healthy controls but opposite alleles 
associated with cognitive better performance.
8 This study with two independent samples found significant associations between NOS1 and cognitive function in Irish controls but not in Irish 
schizophrenia patients, and German schizophrenia patients but not controls.
9 This study found significant association between SNP(s) across this gene only in schizophrenia patients but not in their unaffected relatives or 
healthy controls.

http://www.alzgene.org
http://www.szgene.org


Supplementary Table 1. Molecular genetic studies of cognitive deficits in schizophrenia.

Gene Chromosome Polymorphism Sample Cognition Result Reference
343 schizophrenia 
patients

Brief Assessment of 
Cognition in 
Schizophrenia, 
WCST, CPT

 Significant effects on 
processing speed and 
executive functions

 COMT × STH Q7R 
interaction on 
executive functions 
with COMT Val/Val 
and STH R carriers 
performing worse

Bosia et al., 
2014 (1)

188 DSM-IV 
psychotic (94 
schizophrenia and 
94 schizoaffective 
disorder) patients

ANART, BVMT-R, 
HVLT-R, CPT-IP, 
WAIS-III, Digit 
Symbol and Symbol 
Search subtests, D-
KEFS

 Met allele with better 
learning/memory 
(P=0.034) and D-
KEFS abstraction 
(P=0.038)

Twamley et 
al., 2014 (2)

COMT 22q11.21 Val158Met (rs4680)

429 DSM-IV 
Australian 
schizophrenia 
and/or 
schizoaffective 
disorder patients

RBANS, COWAT, 
LNS, WTAR

 Val homozygotes 
with worse cognitive 
performance in the 
absence of childhood 
adversity

 Val homozygotes and 
history of abuse with 
better executive 
function

 Met carriers and 
history of physical 
abuse with worse 
positive symptoms

 Met carriers and 
history of emotional 

Green et al., 
2014 (3)



Gene Chromosome Polymorphism Sample Cognition Result Reference
neglect with worse 
negative symptoms

90 DSM-IV 
schizophrenia 
patients and 55 
healthy controls

CANTAB: Motor 
Control, Pattern 
Recognition 
Memory and Spatial 
Recognition 
Memory, Intra-Extra 
Dimensional Set 
Shifting Task, 
Stockings of 
Cambridge, Spatial 
Working Memory, 
WAIS-III to assess 
IQ

 COMT × MTHFR 
rs1801133 interaction 
on spatial working 
memory (P=0.048) 
and planning 
(P=0.026) in cases 
and controls

 COMT Val/Val and 
MTHFR C/C 
individuals with 
more spatial working 
memory errors 
(P=0.033) and 
solving fewer 
Stockings of 
Cambridge problems 
(P=0.025) in both 
groups

 COMT × MTHFR 
interaction with IQ 
(P=0.035), worse 
performance with 
COMT Met carriers 
and MTHFR T 
carriers (P=0.021)

Kontis et 
al., 2013 (4)

74 DSM-IV 
schizophrenia 
spectrum disorder 
patients (44 
schizophrenia, 16 

MATRICS battery 
with WAIS-III: 
category fluency, 
digit symbol, 
TMTA, WMS-III, 

 No association Lopez-
Garcia et 
al., 2013 (5)



Gene Chromosome Polymorphism Sample Cognition Result Reference
schizoaffective 
disorder, 4 
delusional 
disorder, 5 brief 
psychotic disorder, 
and 5 schizotypal 
personality 
disorder), 48 non-
psychotic first-
degree relatives, 
and 67 healthy 
controls

HVLT-R, BVMT-R, 
DPX task (modified 
version of the 
expectancy AX-
CPT)

194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus, 

 No association Nicodemus 
et al., 2013 
(6)

209 schizophrenia 
and 172 healthy 
people

ToM: second-order 
false belief, faux pas 
stories

 No association in 
schizophrenia

 Met allele in females 
(schizophrenia and 
controls) with worse 
performance than 
Val/Val genotype in 
males

Alfimova et 
al., 2013 (7)

32 ICD-10 
schizophrenia, 22 
bipolar I disorder, 
26 OCD, and 20 
healthy individuals

Sternberg paradigm 
(delayed match-to-
sample task), 4 tasks 
testing verbal and 
visuospatial working 
memory

 No association Zilles et al., 
2012 (8)



Gene Chromosome Polymorphism Sample Cognition Result Reference
97 DSM-IV 
patients (28 
schizophrenia, 8 
schizophreniform 
disorder, 17 
bipolar disorder, 
13 psychosis not 
otherwise 
specified, and 18 
other affective 
disorders with 
psychotic 
symptoms) and 90 
healthy controls

WAIS-III (digits 
forward, digits 
backward, number-
letter sequencing), 
TMTA, TMTB, 
Stroop 1 words, 
Stroop 2 colours, 
CPT, TAVEC (total 
learning, short term 
free recall, long term 
free recall, 
discrimination), 
FAS, COWAT, 
WCST

 No association Bombin et 
al., 2008 (9)

Meta-analysis:
1910 patients and 
controls
 Szöke et al. 

(2006)
 Rybakowski et 

al. (2006a)
 Minzenberg et 

al. (2006; 67 
DSM-III-R 
schizotypal 
personality 
disorder, 154 
non-schizotypal 
personality 
disorder, and 60 
unrelated normal 
controls)

WCST  No association in 
schizophrenia

 Met/Met genotype 
with better 
performance than 
Val/Val in healthy 
controls (d=0.29, 
95% CI 0.40-0.26, 
P=0.03)

Barnett et 
al., 2007 
(10)



Gene Chromosome Polymorphism Sample Cognition Result Reference
 Ho et al. (2005)
 Galderisi et al. 

(2005)
 Bruder et al. 

(2005; healthy 
volunteers)

 Rosa et al. 
(2004)

 Tsai et al. (2003; 
120 Chinese 
healthy female 
volunteers)

 Malhotra et al. 
(2002; 73 
healthy 
volunteers)

 Joober et al. 
(2002)

 Bilder et al. 
(2002)

 Egan et al. 
(2001)

50 DSM-IV 
schizophrenia 
patients and 
responders to one 
adequately dosed 
antipsychotic for 3 
months
 Placebo vs. 

active (both with 
SRT)

BACS, WCST, CPT  Met carriers on active 
treatment with 
greater improvement 
for WCST 
performance when 
compared with 
Val/Val on placebo 
(P=0.01)

Bosia et al., 
2007 (11)



Gene Chromosome Polymorphism Sample Cognition Result Reference
150 schizophrenia 
patients, 83 
relatives, and 118 
mentally healthy 
subjects with no 
family history of 
psychosis

Verbal memory, 
executive functions, 
and peculiarities of 
associative 
processes (details 
not shown)

 Val158Met-DRD4 -
521C/T Val/Val+C/C 
and Met/Met+T/T 
with better 
performance on 
verbal fluency

 Val158Met-DRD4 
rs936461 Val-G 
haplotype with best 
results on working 
memory and Met-A 
haplotype with worst 
performance

Alfimova et 
al., 2006 
(12)

318 participants 
(66 DSM-IV 
schizophrenia or 
schizoaffective 
disorder, 94 DSM-
IV bipolar 
disorder, and 158 
healthy controls or 
relatives)

TMT (TMTA and 
TMTB), WCST

 No association Szöke et al., 
2006 (13)

124 DSM-IV 
schizophrenia 
patients (60 males; 
mean age 27 years; 
mean age at onset 
23 years)

WCST  Val/Val genotype 
with better results on 
all domains of WCST 
in males (P=0.044) 
but worse in females 
(P=0.042)

Rybakowski 
et al., 2006 
(14)

159 DSM-III-R or 
DSM-IV 
schizophrenia 
patients (74.21% 

WCST, WAIS-R, 
TMT, N-back test

 No association Ho et al., 
2005 (15)



Gene Chromosome Polymorphism Sample Cognition Result Reference
male; mean age 
26.5 years) and 84 
healthy volunteers 
(40.48% male; 
mean age 27.0 
years)
60 deficit/non-
deficit DSM-IV 
schizophrenia pairs 
(56 with deficit 
schizophrenia and 
41 males vs. 50 
with non-deficit 
and 35 males)

NES, CPT-AX, 
WCST

 Significant main 
effect accounting for 
6.6% of cognitive 
performance variance 
(F=3.28, d.f.=2.91, 
P<0.04)

 Val/Val genotype 
with worse WCST 
and CPT-AX when 
compared to Met 
carriers

 Val/Val genotype 
with worse NES 
motor scores than 
Met carriers in deficit 
schizophrenia 
(P<0.005)

Galderisi et 
al., 2005 
(16)

26 (18 males; 25 
Caucasians and 1 
Hispanic; mean 
age of 41.4 years) 
schizophrenia or 
schizoaffective 
disorder patients

Competing 
Programs Task

 Val with slower 
reaction time when 
compared to Met 
homozygotes 
(P<0.05)

 Met homozygotes 
with greater accuracy 
for imitation but not 
reversal response, 

Nolan et al., 
2004 (17)



Gene Chromosome Polymorphism Sample Cognition Result Reference
lower trials to 
criterion (P<0.05), 
and greatest 
sensitivity to conflict 
than Val 
homozygotes

89 schizophrenia 
spectrum disorder 
patients (48 
schizophrenia, 14 
psychotic mood 
disorder, 11 
schizoaffective 
disorder, 8 
schizophreniform 
disorder, 5 brief 
psychotic disorder, 
2 delusional 
disorder) and their 
family members 
(total 356 
individuals)

WCST  Val/Val genotype 
with more 
perseverative errors 
in healthy siblings 
(P=0.007) but not in 
schizophrenia 
spectrum disorder 
patients

Rosa et al., 
2004 (18)

74 DSM-IV 
schizophrenia or 
schizoaffective 
disorder patients 
(59 males; mean 
age 37 years), 108 
siblings (46 males; 
mean age 37 
years), and 68 
controls (41 males; 

N-back task, CPT 
“1-9 Distractibility 
Version”, WAIS-R

 Val/Val genotype 
with lowest (n-back) 
and slowest 
performance in 
controls, siblings and 
patients

 Met/Met genotype 
with highest 
performance

Goldberg et 
al., 2003 
(19)



Gene Chromosome Polymorphism Sample Cognition Result Reference
mean age 35 years)
104 DSM-IV 
schizophrenia 
patients and 96 
unrelated healthy 
volunteers (94 
patients and 31 
controls with 
neuropsychologica
l testing)

WCST  Met allele with better 
WCST performance 
in the combined 
patient and control 
group and trend in 
schizophrenia 
(P=0.07)

Joober et 
al., 2002 
(20)

58 DSM-IV 
schizophrenia or 
schizoaffective 
disorder patients 
who are defined as 
treatment resistant 
(persistent positive 
symptoms despite 
adequate treatment 
with conventional 
antipsychotics and 
poor 
social/vocational 
functioning level 
>2 years and 
PANSS >60 at 
baseline)

WCST, Category 
Fluency, Letter 
Fluency, Block 
Design, Visual 
Reproductions I, 
Visual 
Reproductions II, 
Paragraph Recall I, 
Paragraph Recall II, 
Word list Learning 
I, Word List 
Learning II, TMT 
(TMTA and 
TMTB), Digit 
Symbol, Tapping 
Left, Tapping Right

 Met allele with better 
performance in the 
processing speed and 
attention domain but 
not with executive 
and visuoperceptual 
functions, declarative 
verbal learning and 
memory, simple 
motor ability, or 
global neurocognitive 
function (P=0.01-
0.04)

Bilder et al., 
2002 (21)

175 DSM-IV 
schizophrenia or 
schizoaffective 
disorder patients 
(138 males; mean 

WCST, WAIS-R  Accounted for 4.1% 
of variance in 
executive function 
performance 
(P=0.001)

Egan et al., 
2001 (22)



Gene Chromosome Polymorphism Sample Cognition Result Reference
age 36.1 years), 
219 unaffected 
siblings (97 males; 
mean age 35.6 
years), and 55 
controls (23 males; 
mean age 33.9 
years)

 Val/Val genotype 
with worse 
performance than 
Val/Met and 
Met/Met (P<0.002)

 Met allele with 
perseverative errors 
(P=0.001)

Val158Met (rs4680)
rs4646315
rs9332377

601 Indian DSM-
IV schizophrenia 
case-parent trios 
and 468 controls; 
119 north Indian 
trio replication 
sample

TMT for 260 cases 
and 302 parents

 No association Kukshal et 
al., 2013 
(23)

rs6350 (Asn38Asn) 194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus, 

 No association Nicodemus 
et al., 2013 
(6)

rs403636 601 Indian DSM-
IV schizophrenia 
case-parent trios 
and 468 controls; 
119 north Indian 
trio replication 
sample

TMT for 260 cases 
and 302 parents

 No association Kukshal et 
al., 2013 
(23)

DAT 
(SLC6A3)

5p15.3

VNTR * 32 ICD-10 
schizophrenia, 22 
bipolar I disorder, 
26 OCD, and 20 

Sternberg paradigm 
(delayed match-to-
sample task), 4 tasks 
testing verbal and 

 Significant effect of 
verbal and 
visuospatial working 
memory performance 

Zilles et al., 
2012 (8)



Gene Chromosome Polymorphism Sample Cognition Result Reference
healthy individuals visuospatial working 

memory
with 10-repeat 
homozygote showing 
worse ‘visuospatial 
rehearsal’ 
performance than 9-
repeat carriers 
(corrected for disease 
status) – unable to 
conclude for 
schizophrenia 
patients alone

124 DSM-IV 
schizophrenia 
patients (60 males; 
mean age 27 years; 
mean age at onset 
23 years)

WCST  No association Rybakowski 
et al., 2006 
(14)

VNTR *

 No association120 Caucasian 
volunteers (75 
DSM-IV 
schizophrenia [34 
males], 45 healthy 
controls [17 
males])

WCST
 Ser/Ser genotype 

with fewer categories 
completed and more 
perseverative errors 
than Ser/Gly 
(P<0.01)

 Ser/Ser genotype 
with non-responders 
(P=0.0018)

Szekeres et 
al., 2004 
(24)

DRD3 3q13.3 Ser9Gly (rs6280)

97 DSM-IV 
patients (28 
schizophrenia, 8 
schizophreniform 
disorder, 17 

WAIS-III (digits 
forward, digits 
backward, number-
letter sequencing), 
TMTA, TMTB, 

 Significant difference 
for executive 
functioning domain 
(P=0.002) with no 
group effects

Bombin et 
al., 2008 (9)



Gene Chromosome Polymorphism Sample Cognition Result Reference
bipolar disorder, 
13 psychosis not 
otherwise 
specified, and 18 
other affective 
disorders with 
psychotic 
symptoms) and 90 
healthy controls

Stroop 1 words, 
Stroop 2 colours, 
CPT, TAVEC (total 
learning, short term 
free recall, long term 
free recall, 
discrimination), 
FAS, COWAT, 
WCST

rs7631540
rs2046496
rs2134655
rs324030

601 Indian DSM-
IV schizophrenia 
case-parent trios 
and 468 controls; 
119 north Indian 
trio replication 
sample

TMT for 260 cases 
and 302 parents

 No association Kukshal et 
al., 2013 
(23)

Not provided 209 schizophrenia 
patients and 172 
healthy people

Second-order false 
belief and faux pas 
stories

 No associations Alfimova et 
al., 2013 (7)

DRD2 11q23.2

TaqIA (rs1800497) 97 DSM-IV 
patients (28 
schizophrenia, 8 
schizophreniform 
disorder, 17 
bipolar disorder, 
13 psychosis not 
otherwise 
specified, and 18 
other affective 
disorders with 
psychotic 
symptoms) and 90 

WAIS-III (digits 
forward, digits 
backward, number-
letter sequencing), 
TMTA, TMTB, 
Stroop 1 words, 
Stroop 2 colours, 
CPT, TAVEC (total 
learning, short term 
free recall, long term 
free recall, 
discrimination), 
FAS, COWAT, 

 No association Bombin et 
al., 2008 (9)
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healthy controls WCST

DRD4 11p15.5 -809G/A (rs936461)
-521C/T *

150 schizophrenia 
patients, 83 
relatives, and 118 
mentally healthy 
subjects with no 
family history of 
psychosis

Verbal memory, 
executive functions, 
and peculiarities of 
associative 
processes (details 
not shown)

 COMT Val158Met-
rs936461 Val-G 
haplotype with best 
results on working 
memory and Met-A 
haplotype with worst 
performance

 COMT Val158Met-
DRD4 -521C/T 
Val/Val+C/C and 
Met/Met+T/T with 
better performance 
on verbal fluency

Alfimova et 
al., 2006 
(12)

DRD5 4p16.1 CT/GT/GA 
microsatellites

152 schizophrenia 
patients (81 males; 
mean age 34.7 
years) and 81 
mentally healthy 
individuals without 
family history of 
schizophrenia (54 
males; mean age 
31.8 years)

Short-term memory 
(reproduction of 
spoken words with 2 
series of 10 words), 
long-term memory 
(16 words and to 
draw picture for 
each word, verbal 
fluency (generation 
of words from 2 
semantic 
categories), attention 
and working 
memory (serial 
counting from 200 
to 100 by 2 and 5)

 2 allele 7 with lower 
word generation 
(visual voluntary 
attention) than 1 
allele 7 in 
schizophrenia 
(P=0.018) and their 
relatives (P=0.006)

Golimbet et 
al., 2008 
(25)

DBH 9q34.2 5’–Ins/Del 195 DSM-IV first-
episode psychosis 

RBANS – Form A  19bp Del allele and 
Del/Del homozygous 

Hui et al., 
2013 (26)
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schizophrenia 
patients (drug-
naïve) and 304 
healthy controls

with lower 
immediate memory 
score in patients 
(P<0.05) but not in 
healthy controls

rs6271 601 Indian DSM-
IV schizophrenia 
case-parent trios 
and 468 controls; 
119 north Indian 
trio replication 
sample

TMT for 260 cases 
and 302 parents

 No association Kukshal et 
al., 2013 
(23)

SLC18A2 10q25.3 rs363399
rs363338
rs10082463
rs363285

601 Indian DSM-
IV schizophrenia 
case-parent trios 
and 468 controls; 
119 north Indian 
trio replication 
sample

TMT for 260 cases 
and 302 parents

 rs363285 with 
TMTB (P=0.025)

Kukshal et 
al., 2013 
(23)

rs2492367
rs6675281
rs12133766

194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus, 

 rs12133766 with 
verbal fluency in 
male probands 
(P=0.049) and 
healthy males only 
(P=0.018)

Nicodemus 
et al., 2013 
(6)

DISC1 1q42.1

rs1322784
rs2255340
rs2738864
hCV1650723 *
hCV9628138 *

250 schizophrenia 
patients

WRAT-III, WAIS 
Digits Forward 
(auditory attention), 
CPT-I/P (visual 
attention), TMT-A 
& TMT-B (rapid 
visual search), 

 rs2255340 genotype 
with rapid visual 
search (P=0.002) and 
verbal working 
memory (P=0.010), 
explaining 3-4% of 
the variance

Burdick et 
al., 2005  
(27)
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Digits Backward 
(working memory), 
CVLT (verbal 
learning), COWAT 
(executive 
functioning) 

rs751229
rs1572899
rs1934909
rs1538976
rs4079841
rs999710
rs821597
rs821616
rs1411776

252 schizophrenia 
patients, 311 
unaffected 
siblings, 368 
parents, and 238 
healthy controls

WMS-R, CVLT, 
WCST, N back, 
CPT, letter fluency, 
WAIS-R, WRAT

 rs821616 Ser/Ser 
with reduced 
performance on 
WMS Logical 
Memory II 
subsection (P=0.02) 
in schizophrenia and 
lower WCST 
category scores 
across all diagnoses 
(P=0.04)

Callicott et 
al., 2005 
(28)

rs1615409
rs766288
rs751229
rs3738401
rs6675281
rs3890280
rs1000731

236 DSM-III-R or 
DSM-IV 
schizophrenia 
subjects (6 MZ and 
1 DZ concordant 
for schizophrenia, 
20 MZ and 32 DZ 
discordant for 
schizophrenia, and 
28 MZ and 31 DZ 
normal twin pairs)

WAIS-R  DISC1-TRAX 
haplotype with short-
/long-term memory 
impairment and 
reduced gray matter 
density in the 
prefrontal cortex

Cannon et 
al., 2005 
(29)

rs1073507
rs1630250
rs1615344
rs1615409

746 DSM-IV 
schizophrenia 
patients including 
356 unaffected 

WMS-R, CVLT, 
WAIS-R

 DISC1 HEP3 
(rs751229-
rs3738401) haplotype 
with poorer 

Hennah et 
al., 2005 
(30)
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rs766288
rs1655285
rs1982095
rs3738398
rs751229
rs3738401
1872C/T *
rs3890280
rs1000731
rs1000730
rs734551
rs1015100
rs999710
rs999709
rs999708
rs1073180
rs1073179
rs821616
2879A/G *
rs1411771
5320A/G *
6070C/T *
rs980989
6347A/G *

offsprings (subset 
of 215 families 
with 1437 
individuals and 
400 affected; 390 
males; average age 
50.2 years) 

performance on 
short-term visual 
memory and 
attention

DTNBP1 6p22.3 rs2619539
rs3213207
rs1011313
rs760761
rs1018381
rs2619528
rs2619522

122 DSM-IV 
schizophrenia 
patients and 119 
healthy subjects

Korean version of 
WAIS, word 
fluency, TMT 
(TMTA and 
TMTB), RAVLT, 
CPT-DS, span of 
apprehension

 No differences 
between 
schizophrenia and 
controls

 No interaction with 
cognitive measures

 rs760761 
(P=0.00015) and 

Baek et al., 
2012 (31)
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rs1018381 
(P=0.00004) with 
performance of 
“attention/vigilance” 
domain after multiple 
testing correction 
whereas rs2619539 
did not survive 
correction in 
combined patient and 
healthy subjects

39 tagging SNPs (1 
removed after QC): 
rs3213207
rs2619545
rs1011313
rs2619547
rs2619528
rs2619522
rs1018381
rs1997679
rs909706
rs9476886
rs2743852
rs2619538

508 (371 males) 
European (>75% 
Anglo-Irish) DSM-
IV and ICD-10 
schizophrenia 
patients (155 with 
pervasive cognitive 
deficit and 121 
with relatively 
spared cognition) 
and  172 controls 
(102 males)

NART, SILS, visual 
CPT-DS and CPT-
IP, FAS version of 
COWAT, RAVLT, 
IT task, EHI

 No association with 
schizophrenia 
diagnosis or any 
cognitive measures

Peters et al., 
2008 (32)

rs2619539
rs3213207
rs2619538

52 DSM-IV 
schizophrenia or 
schizoaffective 
disorder patients

CANTAB, WMS, 
CPT, simple go/no-
go task, WTAR

 C-A-T haplotype 
(rs2619539-
rs3213207-
rs2619538) with 
lower spatial working 
memory performance

Donohoe et 
al., 2007 
(33)

rs909706 183 Caucasian WAIS-R, CPC-I/P,  CTCTAC risk Burdick et 
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rs1018381
rs2619522
rs760761
rs2619528
rs1011313

schizophrenia or 
schizoaffective 
disorder patients

CVLT, COWAT, 
TMT A & B

haplotype with 
greater decline in IQ 
(P=0.05)

al., 2007 
(34)

1890 schizophrenia 
(972 Met carriers 
and 918 Val 
homozygotes)

MCCB (processing 
speed, 
attention/vigilance, 
working memory, 
verbal learning, 
visual learning, 
reasoning and 
problem solving), 
language and 
general intelligence 
(g)

 Non-significant 
difference between 
genotype groups and 
most neurocognitive 
domains

Ahmed et 
al., 2015 
(35)

194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus 

 No association Nicodemus 
et al., 2013 
(6)

BDNF 11p13 Val66Met (rs6265)

657 DSM-IV 
schizophrenia 
patients and 445 
healthy controls

RBANS (immediate 
memory, attention, 
language, 
visuospatial/constru
ctional performance, 
delayed memory)

 Cognitive test scores 
were significantly 
lower in 
schizophrenic than 
control subjects 
except for 
visuospatial/construct
ional index

 Schizophrenia Met 
carriers with 

Zhang et al., 
2012 (36)
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attention impairment

 Val allele with better 
visuospatial/construct
ional performance in 
both schizophrenic 
and healthy subjects

112 antipsychotic-
naïve 
schizophrenia 
patients and 63 
healthy controls

WAIS-R (verbal and 
performance IQ), 
WMS-R, WCST

 Schizophrenia Met 
carriers showed 
higher percentage of 
WCST perseverative 
errors (P=0.007), 
especially in males 
(P=0.014) but no in 
females (P=0.09)

Lu et al., 
2012 (37)

51 male DSM-IV 
schizophrenia 
patients who had 
committed 
homicide, 50 male 
DSM-IV 
schizophrenia 
patients without 
homicide, and 50 
healthy male 
controls

WAIS, RAVLT 
learning, RAVLT 
delayed recall, 
RAVLT delayed 
recognition, RCFT 
copy, RCFT 
immediate recall, 
RCFT delayed 
recall, WCST NCC, 
WCST perseverative 
responses %, WCST 
perseverative errors 
%

 No association Chung et 
al., 2010 
(38)

89 schizophrenia 
patients, 91 
unaffected 
relatives, and 163 
controls

Voluntary and 
involuntary visual 
attention

 Val/Val genotype 
with higher scores of 
both voluntary and 
involuntary attention

 (HTR2A T102C)T-

Alfimova et 
al., 2008 
(39)
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Met with lower 
scores of voluntary 
attention and higher 
scores of involuntary 
attention

119 patients with 
first-episode 
CASH 
(Comprehensive 
Assessment of 
Symptoms and 
History) diagnosis 
of DSM 
schizophrenia or 
schizophrenia-
spectrum disorders

Verbal memory 
domain, 
speed/attention 
domain, problem 
solving domain, 
language domain, 
and visuospatial 
domain

 No association Ho et al., 
2007 (40)

293 DSM-IV 
schizophrenia 
patients and 144 
healthy volunteers

RAV, WAIS-R  Met allele carriers 
with poorer verbal 
memory performance 
and visuospatial 
impairment in 
schizophrenia

Ho et al., 
2006 (41)

129 DSM-IV/ICD-
10 schizophrenia 
patients (66 males; 
mean age 27 years; 
mean age of onset 
23 years) and 111 
DSM-IV/ICD-10 
bipolar disorder 
patients (37 males; 
mean age 43 years; 

WCST, N-back test  No association with 
WCST

 Val/Val genotype 
with higher correct 
reactions (working 
memory) in N-back 
test

Rybakowski 
et al., 2006 
(42)
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mean age of onset 
31 years)
203 schizophrenia 
patients and their 
healthy siblings, 
and healthy 
controls

WRAT reading 
comprehension, 
WAIS-R category 
fluency, and WCST 
perseverative errors

 Individuals with one 
or two Met allele(s) 
had lower abilities to 
perform tasks of 
learning and memory

Egan et al., 
2003 (43)

SNAP-25 20p12-p11.2 MnlI (rs3746544) 66 major psychosis 
patients, 75 
relatives, and 136 
controls

Verbal memory, 
attention, executive 
functions

 TT genotype with 
worse performance 
on most tasks

Golimbet et 
al., 2009 
(44)

PRODH 22q11.21 1945T/C
1852G/A

167 Chinese Han 
DSM-IV first-
episode 
schizophrenic 
families with 167 
first-episode 
patients (80 males)

Stroop test, TMT 
(TMTA and 
TMTB), Tower of 
Hanoi, WCST-M, 
WAIS-R (Chinese 
version), WMS-R

 No association Li et al., 
2008 (45)

NRG1 8p12 SNP8NRG243177
SNP8NRG221533

60 DSM-IV 
schizophrenia 
patients and 60 
healthy controls

EXIT, letter number 
span, Stroop ratio, 
letter cancellation, 
finger taps 
(dominant and non-
dominant hands), 
grooved pegboard 
(dominant and non-
dominant hands), 
RBANS

 SNP8NRG221533 
and 
SNP8NRG243177, 
MAG rs2301600 and 
rs720309, and 
ERBB4 rs839523 
with processing 
speed, visuomotor 
speed and attention in 
schizophrenia, 
visuomotor speed 
and verbal memory 
in controls (P=0.02)

 SNP8NRG221533, 

Voineskos 
et al., 2013 
(46)
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MAG rs2301600 and 
rs720309 in 
schizophrenia with 
the same tasks as 
above (P=0.01)

478B14-848 *
420M9-1395 *

338 Russian 
schizophrenia 
patients, 162 
unaffected 
relatives, and 316 
healthy controls

Semantic verbal 
fluency, working 
and episodic 
memory

 Allele 0 of 478B14-
848 with long-term 
episodic memory in 
schizophrenia

 Allele 0 of 420M9-
1395 with short-term 
memory in 
schizophrenia

Alfimova et 
al., 2011 
(47)

rs6584400 358 DSM-IV 
schizophrenia (214 
males; average age 
35.78 years) and 
111 DSM-IV 
bipolar disorder 
(55 males; average 
age 42.30 years) 
patients; OPCRIT 
for psychotic 
symptoms

TMT (TMTA and 
TMTB), CSP-DS

 Minor allele with 
higher OPCRIT 
scores (r=0.110, 
P=0.037) in 
schizophrenia but not 
bipolar disorder 
(P=0.885)

 A carriers with faster 
TMTA and TMTB in 
schizophrenia 
(P<0.05) and bipolar 
disorder (P<0.05)

 Bipolar disorder 
faster than 
schizophrenia in 
TMTA (P=0.001) 
and TMTB 
(P<0.001)

Meier et al., 
2013 (48)

NRG3 10q22-q23

rs6584400 411 European Battery of  No association with Morar et al., 
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rs10883866 (>75% Anglo-

Irish) DSM-
IV/ICD-10 
schizophrenia 
inpatients (180 
with pervasive 
cognitive deficit 
and 148 with 
relatively spared 
cognition) and 223 
non-psychiatric 
controls

neurocognitive tests: 
general cognitive 
ability (premorbid 
and current IQ), 
learning and 
episodic verbal 
memory, executive 
function, speed of 
information 
processing and 
focused sustained 
attention

schizophrenia 
diagnosis

 rs6584400 and 
delusional factors in 
spared cognition 
group (OR=1.67, 
1.10-2.53, P=0.02)

 No effect on general 
intelligence or verbal 
memory

 A allele of rs6584400 
(=0.523, 95% CI 
0.070-0.976, 
P=0.025) and G 
allele of rs10883866 
(=0.687, 95% CI 
0.195-1.178, 
P=0.007) with 
degraded-stimulus 
continuous 
performance task and 
better performance in 
schizophrenia

2011 (49)

NRN1 6p25.1 rs1475157
rs605865
rs642883
rs686628
rs9405890
rs9379002
rs4960155
rs10484320
rs3763180

508 (371 males) 
Australian (>75% 
Anglo-Irish) DSM-
IV and ICD-10 
schizophrenia 
patients (155 with 
pervasive cognitive 
deficit and 121 
with relatively 

SILS, WAIS-R, 
NART

 No association with 
schizophrenia 
diagnosis

 G allele of rs1475157 
(P=0.005, P=0.047 
after multiple testing 
correction) with 
lower SILS scores in 
schizophrenia

Chandler et 
al., 2010 
(50)
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rs582262
C-318delA *
rs11285278
rs645649
rs107738
rs582186
rs3749860
rs2208870
rs17363382
rs6597175

spared cognition) 
and  172 controls 
(102 males)

 G allele rs9405890 
(P=0.001, P=0.027 
after multiple testing 
correction) with 
higher SILS scores in 
schizophrenia

 G-A haplotype of 
rs1475157-
rs9405890 with 
lower current SILS 
IQ (P=0.001) and the 
opposite A-G 
haplotype with 
higher IQ (P=0.003)

32 ICD-10 
schizophrenia, 22 
bipolar I disorder, 
26 OCD, and 20 
healthy individuals

Sternberg paradigm 
(delayed match-to-
sample task), 4 tasks 
testing verbal and 
visuospatial working 
memory

 No association Zilles et al., 
2012 (8)

5HTT 
(SLC6A4)

17q11.2 HTTLPR

223 schizophrenia 
patients

WCST, CPT  High activity long 
(L) allele with better 
executive 
performances and 
poorer attention

Bosia et al., 
2010 (51)

HTR1A 5q11.2-q13 -1019C/G (rs6295) 118 (75 males) 
DSM-IV 
schizophrenia 
patients and 
responders (30% 
reduction in 
PANSS) to one 

WAIS-R, WCST, 
BACS, ToM Picture 
Sequencing Task

 CC genotype and 
higher ToM task 
score (F=4.13, d.f.=2, 
P=0.019)

Bosia et al., 
2011 (52)
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adequately dosed 
antipsychotic for 3 
months

T102C (rs6313)
rs6314

194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus, 

 No association Nicodemus 
et al., 2013 
(6)

89 schizophrenia 
patients, 91 
unaffected 
relatives, and 163 
controls

Voluntary and 
involuntary visual 
attention

 T allele with more 
time for performing 
the test

 T-(BDNF 
Val66Met)Met with 
lower scores of 
voluntary attention 
and higher scores of 
involuntary attention

Alfimova et 
al., 2008 
(39)

82 DSM-IV 
schizophrenia 
patients (47 males; 
mean duration of 
illness 6.7 years)

BPRS, CPT, WCST  T allele with lower 
hit rate in CPT

 T/C genotype with 
more commission 
errors in CPT and 
fewer correct 
responses in WCST

Uçok et al., 
2007 (53)

108 schizophrenia 
or schizotypic 
disorder patients 
and 97 mentally 
healthy individuals

Verbal fluency 
(details not shown)

 A2/A2 homozygotes 
with lower verbal 
fluency in male 
schizophrenia 
patients (N=67)

Alfimova et 
al., 2003 
(54)

HTR2A 13q14-q21

T102C (rs6313)

471 DSM-IV 
Chinese Han 

Semantic verbal 
fluency (animal 

 No association
 Trend between T/C 

Chen et al., 
2001 (55)
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schizophrenia 
patients (334 
males; mean age 
42.3 years) and 
523 unrelated 
healthy controls

category), motor co-
ordination soft 
neurological signs 
examination from 
Cambridge 
Neurological 
Inventory, Stroop 
test (“colour task” 
and “colour-word 
task”), WAIS

genotype and better 
verbal fluency and 
less motor co-
ordination soft 
neurological signs

1287A/G *
-182T/C *

318 participants 
(66 DSM-IV 
schizophrenia or 
schizoaffective 
disorder, 94 DSM-
IV bipolar 
disorder, and 158 
healthy controls or 
relatives)

TMT (TMTA and 
TMTB), WCST

 No association Szöke et al., 
2006 (13)

NET 
(SLC6A2)

16q12.2

1287A/G * 124 DSM-IV 
schizophrenia 
patients (60 males; 
mean age 27 years; 
mean age at onset 
23 years)

WCST  No association Rybakowski 
et al., 2006a 
(14)

rs1544514 194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus, 

 No association Nicodemus 
et al., 2013 
(6)

CACNA1C 12p13.3

rs1006737 202 Japanese WMS-R, WAIS-R,  A allele carriers with Hori et al., 
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DSM-IV 
schizophrenia from 
a total sample of 
552 patients (304 
males; mean age 
43.7 years) and 
706 controls

WCST worse logical 
memory performance 
in schizophrenia 
(P=0.006) but not in 
controls

2012 (56)

LYRM4
FARS2

6p25.1 1170 tagging SNPs:
rs7752203
rs4141761
rs17736905
rs2503812

507 European 
(>75% Anglo-
Irish) DSM-IV and 
ICD-10 
schizophrenia 
patients and  282 
controls; 
independent 
replication sample 
with 288 
schizophrenia 
cases and 172 
controls

CVLT-II, RAVLT-
DW

 rs17736905 with 
pervasive cognitive 
deficit schizophrenia 
(P=0.029) and 
rs2503812 with 
RAVLT-DW 
(P=0.026) after 
multiple testing 
correction

 rs7752203-
rs4141761 G-A 
haplotype with poor 
memory and high 
cognitive deficit in 
schizophrenia

Jablensky et 
al., 2012 
(57)

QKI 6q26 rs2784865  No association
MAG 19q13.1 rs756796

rs756596
rs720308
rs720309
rs2301600

60 DSM-IV 
schizophrenia 
patients and 60 
healthy controls

EXIT, letter number 
span, Stroop ratio, 
letter cancellation, 
finger taps 
(dominant and non-
dominant hands), 
grooved pegboard 
(dominant and non-
dominant hands), 
RBANS

 MAG rs2301600 and 
rs720309, NRG1 
SNP8NRG221533 
and 
SNP8NRG243177, 
and ERBB4 rs839523 
with processing 
speed, visuomotor 
speed and attention in 

Voineskos 
et al., 2013 
(46)
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schizophrenia, 
visuomotor speed 
and verbal memory 
in controls (P=0.02)

 MAG rs2301600 and 
rs720309, and NRG1 
SNP8NRG221533 in 
schizophrenia with 
the same tasks as 
above (P=0.01)

CNP 17q21 rs2070106  No association
OLIG2 21q22.11 rs1059004

rs9653711
ERBB4 2q33.3-q34 rs839523

 No association in 
schizophrenia

 OLIG2 rs1059004 
and ERBB4 rs839253 
predicting 
performance on tasks 
related to memory, 
language, executive 
function, visuospatial 
ability, visuomotor 
speed and dexterity, 
and working memory 
(P=0.05) only in 
controls

ANK3 10q21 rs10761482
rs10994336

163 first-episode 
schizophrenia 
patients 
(antipsychotic-
naïve) and 42 
healthy subjects 
(sex and age-

N-back task  Schizophrenia 
patients with poorer 
performance than 
healthy controls 
(P<0.01)

 rs10994336 T/T 
genotype with lower 

Zhang et al., 
2014 (58)
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matched) accuracy rate and 

more reaction time at 
2-back task in 
schizophrenia 
patients

rs10994336
rs1938526

173 (first-episode 
psychosis) DSM-
IV affective 
(bipolar disorder, 
major depressive 
disorder with 
psychosis) or non-
affective psychotic 
disorders 
(schizophrenia, 
schizoaffective 
disorder, 
schizophreniform 
disorder, 
delusional 
disorder, psychosis 
not otherwise 
specified)

WMS-III (Logical 
Memory for verbal 
memory, Visual 
Reproduction for 
visual memory 
immediate/delayed 
recall and 
recognition, Spatial 
Span for working 
memory) WAIS-III 
(IQ, Digit Span for 
working memory, 
Digit Symbol for 
processing speed, 
Block Design for 
reasoning and 
problem solving), 
TMTA and TMTB, 
D2 Test of Attention 
concentration 
performance for 
attention

 Significant 
differences between 
rs1938526 genotype 
groups on working 
memory (P=0.006), 
verbal memory 
(P=0.015), and 
attention (P=0.019)

 Identical pattern 
adding diagnosis as 
covariates

Cassidy et 
al., 2014 (9)

TCF4 18q21.1 rs9960767 173 first-episode 
psychosis patients

MCCB, WMS-III, 
WAIS-III, TMT 
(TMTA and TMTB)

 C carriers with lower 
cognitive ability in 
reasoning and 
problem-solving 
(P=0.038)

Albanna et 
al., 2014 
(59)
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rs2958182 580 ICD-10 

schizophrenia 
patients and 498 
healthy controls

WAIS-Revised 
including the 
forward and 
backward digit span 
tasks, ANT, Stroop 
task, DPX task, N-
back task

 Risk (T) allele with 
better performance 
on cognitive tasks in 
schizophrenia 
patients but with 
worse performance in 
controls

 Genotype and disease 
(P=0.011), attention-
related tasks (WAIS: 
P=0.032; ANT: 
P=0.020; reaction 
time: P=0.036; 
Stroop: P=0.032; 
DPX: P=0.002)

Zhu et al., 
2013 (60)

CNNM2 10q24.32 rs7914558 400 schizophrenia 
patients and 160 
healthy controls

Measures of 
neuropsychological 
function and social 
cognition

 No association
 Dosage effect of risk 

allele with 
attributional style in 
social cognition 
across both 
schizophrenia and 
healthy subjects 
(P<0.05)

Rose et al., 
2014 (61)

CSMD1 8p23.2 rs10503253 378 Irish DSM-IV 
schizophrenia 
patients and 171 
healthy controls; 
205 German DSM-
IV schizophrenia 
patients and 533 
healthy controls

Irish: WAIS-III (11 
verbal/performance 
subtests for 
vocabulary, 
comprehension, 
information, digit 
span, arithmetic, 
similarities, block 

 Schizophrenia risk A 
allele with poorer 
performance in 
general cognitive 
ability and memory 
but not attentional 
control

Donohoe et 
al., 2013 
(62)
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design, picture 
completion, picture 
arrangement, object 
assembly, and digit 
symbol coding), 
CPT-IP
German: WMS-III 
(verbal and visual 
episodic memory 
with logical memory 
and faces subtests), 
CANTAB (letter 
number sequencing 
task and spatial 
working memory 
task, WMS-R (Digit 
Span and Spatial 
Span score), N-back 
task, CPT 3-7 
version

Q7R * 343 schizophrenia 
patients

Brief Assessment of 
Cognition in 
Schizophrenia, 
WCST, CPT

 Significant effects on 
executive functions

 COMT rs4680 × STH 
interaction on 
executive functions 
with COMT Val/Val 
and STH R carriers 
performing worse

Bosia et al., 
2014 (1)

STH 17q21.1

128A/G * 220 DSM-IV 
schizophrenia 
patients and 
responders (30% 

WCST  Significant predictor 
of WCST 
performance 
(P=0.007) in 

Bosia et al., 
2012 (63)



Gene Chromosome Polymorphism Sample Cognition Result Reference
reduction in 
PANSS) to one 
adequately dosed 
antipsychotic for 3 
months, 48 
frontotemporal 
dementia patients, 
and 47 healthy 
subjects

schizophrenia 
patients

 G allele with poor 
performances on 
WCST (P=0.044)

2 Affymetrix chips 
with ~262,000 and 
~238,000 SNPs
 rs1570709
 rs9586843
 rs7324448
 rs1575633
 rs7329966

178 DSM-IV 
schizophrenia-
spectrum disorders 
patients (158 
schizophrenia, 13 
schizoaffective 
disorder, and 7 
schizophreniform 
disorder) and 144 
healthy controls

WRAT-III 
(premorbid 
intellectual 
capacity), WAIS-R 
(Digit Span for 
auditory attention 
and verbal working 
memory), CPT-
Identical Pairs 
Version (sustained 
attention and 
vigilance), CVLT 
(verbal learning and 
memory), TMTA 
and TMTB (visual-
motor speed and 
executive control)

 GCGGC carrier with 
better performance 
on semantic fluency 
than non-carriers 
regardless of disease 
status

Opgen-
Rhein et al., 
2008 (64)

DAOA 13q33.2

rs2391191 (M15; 
Arg30Lys)

93 Irish DSM-IV 
schizophrenia 
patients (from 373 
cases and 812 
controls)

WMS-III, CANTAB 
(Paired Associate 
Learning task, IED), 
CPT, N-back task, 
WTAR

 Arg allele with 
poorer episodic 
memory performance 
for immediate 
(P=0.028) and 
delayed recall 

Donohoe et 
al., 2007 
(65)
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(P=0.015)

 6.4% variance 
explained verbal 
memory performance

 No differences in 
attentional control, 
working memory, 
and spatial memory

ACT 
(SERPINA3)

14q32.1 Ala-15Thr * 175 DSM-IV 
schizophrenia 
inpatients and 114 
healthy controls

CDR, MMSE  No difference 
between 
schizophrenia and 
control

 No significant 
difference with 
cognitive impairment

Chiu et al., 
1999 (66)

EPO 7q22.1 rs1617640
rs564449

 Carriers of EPO 
rs1617640 and EPOR 
STR(GA)n low 
repeat sum showed 
superior performance 
in cases

 No differences for 
EPOR STR(GA)n in 
healthy controls

EPOR 19p13.2 STR(GA)n

1054 DSM-IV 
schizophrenia or 
schizoaffective 
disorder patients 
and 1142 healthy 
controls

MMSE, Digit 
Symbol-Coding 
(Zahlen-Symbol-
Test), WAIS, 
Dotting and Tapping 
from Mac-Quarrie 
Test for Mechanical 
Ability, VLMT



Kästner et 
al., 2012 
(67)

(WWC1)
KIBRA

5q34 rs17070145 544 (166 probands 
with schizophrenia 
or bipolar disorder, 
201 unaffected 
relatives, and 177 
healthy controls)

WMS-R for episodic 
memory, immediate 
and delayed logical 
memory and 
immediate and 
delayed visual 
reproduction

 No association
 Nominal significant 

for both immediate 
and delayed logical 
memory in 
unaffected relatives 
(P=0.020) and 

Vassos et 
al., 2010 
(68)
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healthy controls only 
(P=0.025)

 Trend for delayed 
visual memory in 
patients (P=0.05)

ATP2C2 16q24.1 rs2303853  No association
DCDC2 6p22.1 rs2274305  No association
DYX1C1 15q21.3 rs600753  No association
KIAA0319 6p22.3-p22.2 rs807534

rs807541
rs4576240

 rs807534 with verbal 
learning and recall in 
female siblings 
(P=0.041) and 
healthy females only 
(P=0.032)

NAGPA 16p13.3 rs887854  No association
CLSTN2 3q23 rs17348572

rs7632885
rs10804675

 No association

WWC1 
(KIBRA)

5q34 rs17551608
rs3822659
rs3733980
rs3203960

 No association

ATRNL1 10q26 rs10885721  No association
C20orf196 20p12.3 rs1699233  No association
CRTC3 15q26.1 rs8033595  No association
DIP2C 10p15.3 rs3740304

rs2288681
 No association

NFKBIL1 6p21.3 rs2230365  No association
PDE1C 7p14.3 rs3213709

rs2302450
rs1860790

194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus

 No association

Nicodemus 
et al., 2013 
(6)
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PKNOX1 21q22.3 rs234781  No association
SPATA7 14q31.3 rs3179969  No association

rs1366842
rs12477430

194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus

 rs1366842 with 
verbal learning and 
recall in male 
probands (P=0.033) 
and healthy males 
only (P=0.042)

Nicodemus 
et al., 2013 
(6)

418 schizophrenia 
or schizoaffective 
disorder patients 
and 200 healthy 
controls

Theory of Mind 
with “Eyes of the 
Mind” task and 
“Hinting task”, 
attributional style 
with “Interpersonal 
social attributions 
questionnaire”

 No association for 
Theory of Mind

 A allele carriers with 
higher personalizing 
bias in controls

Hargreaves 
et al., 2012 
(69)

ZNF804A 2q32.1

rs1344706

113 DSM-IV 
schizophrenia 
patients and 184 
healthy controls

WMS-R for verbal 
memory, visual 
memory, attention 
and concentration, 
and delayed recall

 Diagnosis with 
verbal memory 
(P<0.001), visual 
memory (P<0.001), 
attention and 
concentration 
(P<0.001), and 
delayed recall 
(P<0.001)

 Diagnosis-genotype 
interaction with 
visual memory 
(P=0.0048)

 Schizophrenia 
patients with lower 
scores on all memory 

Hashimoto 
et al., 2010 
(70)
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indices than controls

 Genotype effect in 
schizophrenia 
patients (P=0.018) 
but not in controls

 T/T genotype with 
significantly lower 
performance on 
visual memory than 
T/G (P=0.0046) in 
schizophrenia 
patients

2 independent 
samples: 297 Irish 
DSM-IV 
schizophrenia 
patients and 165 
controls, 251 
German DSM-IV 
schizophrenia 
patients and up to 
1472 controls

Irish: WAIS-III for 
general cognitive 
functioning (IQ), 
WMS-III for 
episodic memory, 
WMS-III and 
CANTAB for verbal 
and spatial working 
memory, and CPT 
for vigilant attention
German: WAIS-R 
for IQ, WMS-R for 
verbal and visual 
episodic memory, 
WAIS-R and WMS-
R for working 
memory, and CPT 
for vigilant attention

 Irish: AA genotype 
with better verbal 
(P=0.046) and spatial 
(P=0.045) working 
memory, AA and AC 
genotypes with better 
verbal episodic 
memory (AA: 
P=0.01; AC: P=0.02) 
in schizophrenia 
patients

 German: AA 
genotype with better 
performance on 
above tests

Walters et 
al., 2010 
(71)

ADCY8 8p24 rs12545028 194 DSM-IV 
schizophrenia 

WMS, CVLT, 
category fluency 

 No association Nicodemus 
et al., 2013 
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patients, 164 
unaffected 
siblings, and 307 
healthy controls

task, TASA corpus (6)

rs263249 336 European 
(>75% Anglo-
Irish; 80% males; 
mean age 33.9 
years; mean length 
of illness 9.8 
years) DSM-IV 
and ICD-10 
schizophrenia 
patients and  172 
normal (59% 
males; mean age 
40.7 years) 
controls

NART, SILS, 
WAIS-R, CPT-DS, 
CPT-IP, FAS 
version of COWAT, 
RAVLT, IT task

 No association Jablensky et 
al., 2011 
(72)

rs3026160 194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus

 No association Nicodemus 
et al., 2013 
(6)

GRIN2B 12p12

rs12828473
rs220599

336 European 
(>75% Anglo-
Irish; 80% males; 
mean age 33.9 
years; mean length 
of illness 9.8 
years) DSM-IV 
and ICD-10 

NART, SILS, 
WAIS-R, CPT-DS, 
CPT-IP, FAS 
version of COWAT, 
RAVLT, IT task

 rs220599 T allele 
with poorer 
immediate and 
delayed recall 
(RAVLT) (P=0.008-
0.02)

Jablensky et 
al., 2011 
(72)
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schizophrenia 
patients and  172 
normal (59% 
males; mean age 
40.7 years) 
controls

rs2675671 194 DSM-IV 
schizophrenia 
patients, 164 
unaffected 
siblings, and 307 
healthy controls

WMS, CVLT, 
category fluency 
task, TASA corpus

 No association Nicodemus 
et al., 2013 
(6)

CAMK2G 10q22

rs11000787 336 European 
(>75% Anglo-
Irish; 80% males; 
mean age 33.9 
years; mean length 
of illness 9.8 
years) DSM-IV 
and ICD-10 
schizophrenia 
patients and  172 
normal (59% 
males; mean age 
40.7 years) 
controls

NART, SILS, 
WAIS-R, CPT-DS, 
CPT-IP, FAS 
version of COWAT, 
RAVLT, IT task

 No association Jablensky et 
al., 2011 
(72)

GRM3 7q21.1-q21.2 rs2189814
rs6465084

 rs2189814 C allele 
with enhanced 
performance 
(P=0.007), 

PRKACG 9q13 rs3730386  No association
GRIN2A 16p13.2 rs1868291

336 European 
(>75% Anglo-
Irish; 80% males; 
mean age 33.9 
years; mean length 
of illness 9.8 

NART, SILS, 
WAIS-R, CPT-DS, 
CPT-IP, FAS 
version of COWAT, 
RAVLT, IT task

 No association

Jablensky et 
al., 2011 
(72)
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PRKCA 17q22-q23.2 rs8074995 years) DSM-IV 

and ICD-10 
schizophrenia 
patients and  172 
normal (59% 
males; mean age 
40.7 years) 
controls

 rs8074995 with 
RAVLT (P=0.02)

RGS4 1q23.3 rs10917670
rs951436
rs951439
rs28757216
rs28757217
rs6427711
rs2661319
rs10799897
rs10759

37 multiplex, 
multigenerational 
Caucasian families 
with DSM-IV 
schizophrenia (at 
least 2 affected 
first-degree 
relatives, 16% with 
schizophrenia 
diagnosis)

Computerized 
neurocognitive 
battery (Penn 
Conditional 
Exclusion Test for 
abstraction and 
mental flexibility, 
Penn Continuous 
Performance Test 
for attention, Penn 
Word Memory Test 
for verbal memory, 
Penn Face Memory 
Test for face 
memory, Visual 
Object Learning 
Test for spatial 
memory, Judgment 
of Line Orientation 
for spatial 
processing, Emotion 
Intensity 
Discrimination Test 
for emotion 

 rs10917670 with face 
and verbal memory 
speed (P=0.0003) in 
the total sample

Prasad et 
al., 2010 
(73)
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processing, and 
clicking 
progressively 
smaller squares for 
sensorimotor 
dexterity

NOS1 12q24.22 rs6490121 2 independent 
samples: 349 Irish 
DSM-IV 
schizophrenia 
patients and 230 
controls, 232 
German DSM-IV 
schizophrenia 
patients and 1344 
controls

Irish: WAIS-III for 
general cognitive 
functioning (IQ), 
WMS-III for verbal 
and visual episodic 
memory, WMS-III 
and CANTAB-
Expedio Version for 
verbal and spatial 
working memory, 
and CPT for 
attentional control
German: WAIS-R 
for IQ, WMS-R for 
verbal and visual 
episodic memory, 
WMS-R and N-back 
task for verbal and 
spatial working 
memory, and CPT 
for attentional 
control

 GG genotype with 
poorer verbal IQ in 
both Irish (P=0.04) 
and German 
(P=0.01) cases and 
controls

 GG genotype with 
poorer verbal 
(P<0.001) and spatial 
(P=0.008) working 
memory in Irish 
controls but not in 
patients

 Significant 
association between 
working memory 
score in patients 
(P=0.005) but not in 
controls

Donohoe et 
al., 2009 
(74)

MTHFR 1p36.22 rs1801133 (C677T) 90 DSM-IV 
schizophrenia 
patients and 55 
healthy controls

CANTAB: Motor 
Control, Pattern 
Recognition 
Memory and Spatial 

 MTHFR × COMT 
rs4680 interaction on 
spatial working 
memory (P=0.048) 

Kontis et 
al., 2013 (4)
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Recognition 
Memory, Intra-Extra 
Dimensional Set 
Shifting Task, 
Stockings of 
Cambridge, Spatial 
Working Memory, 
WAIS-III to assess 
IQ

and planning 
(P=0.026) in cases 
and controls

 COMT Val/Val and 
MTHFR C/C 
individuals with 
more spatial working 
memory errors 
(P=0.033) and 
solving fewer 
Stockings of 
Cambridge problems 
(P=0.025) in both 
groups

 COMT × MTHFR 
interaction with IQ 
(P=0.035), worse 
performance with 
COMT Met carriers 
and MTHFR T 
carriers (P=0.021)

46 Candidate 
Genes:
RGS4, 
NRG1, 
DTNBP1, 
PIP5K2A, 
G72/DAOA, 
DISC1, 
HT2A, 
AKT1,
LRRTM1, 

Candidate genes 152 SNPs in 43 
genes (quality 
controlled from 179 
SNPs)

1120 patients with 
DSM-IV non-
affective psychotic 
disorder, 1057 
siblings, 919 
parents and their 
siblings, and 590 
unrelated controls

WAIS-III (Digit 
Symbol Coding for 
processing speed, 
CPT-HQ for 
attention/vigilance, 
Word Learning Task 
for verbal learning 
and memory) 
WAIS-III 
Arithmetic for 
working memory, 

 DRD1 rs265981 
allele G (P=0.010), 
DRD3 rs6280 allele 
C (P=0.031), 
SLC6A3 rs456082 
allele C, rs463379 
allele G, rs464049 
allele C, BDNF 
rs988748 allele G, 
FGF2 rs7700205 
allele C, SLC18A2 

Simons et 
al., 2013 
(75)
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FGF2, 
FGFR1, 
GPM6A, 
PRODH, 
GRM3, 
GABRA6, 
GAD1, 
NOS1,
RGS2, 
ROBO1, 
CHRM3, 
TBX1, 
COMT, 
ANKK1, 
DRD1, 
DRD2, 
DRD3, 
SLC6A3, 
PPP1R1B, 
SLC18A2, 
CNR1, 
ADRA2C, 
FKBP5, 
BDNF, 
P2RX7, NPY, 
NQO1, GST-
1, GST-2, 
MTHFR, 
MTR, 
MTRR, 
DNMT3B, 
EHMT1, 

WAIS-III Block 
Design for reasoning 
and problem 
solving, Reponse-
Shifting Task for set 
shifting (modified 
version of 
Competing 
Programs Task), 
WAIS-III 
Information (verbal 
comprehension)

rs363393 allele A, 
rs363338 allele C, 
rs363227 allele T, 
FKBP5 rs1334894 
allele G, DNMT3B 
rs2424913 allele T, 
and rs406193 allele C 
with worse cognitive 
performance in 
patients

 SLC18A2 rs363227 
allele T with poorer 
cognitive functioning 
in siblings (P=0.04) 
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EHMT2, 
PRDM2
94 Candidate 
Genes

Candidate genes 1,536 single-
nucleotide 
polymorphism 
custom-made array

534 individuals 
from 130 families 
(DSM-IV 
schizophrenia)

University of 
Pennsylvania 
Computerized 
Neurocognitive 
Battery

 Multiple significant 
associations with 
cognitive domains 
including continuous 
performance (i.e., 
DISC1, GRM1), 
letter-number span 
(i.e., DISC1, ERBB4, 
HTR2A), verbal 
learning (i.e., 
ERBB4, HTR1A, 
GRM1, NRG1, 
SLC1A2, GRIN2B, 
COMT), abstraction 
(i.e., ERBB4, NRG1, 
SLC1A2), face 
memory (i.e., 
ERBB4, 5HTT, 
GRM1, COMT), 
spatial memory (i.e., 
ERBB4, GRM1, 
SLC1A2), and spatial 
processing (i.e., 
5HTT, GRM1, 
NRG1, HTR2A)

Greenwood 
et al., 2011 
(76)

GWAS
 SCN2A

Whole genome
 2q24.3

GWAS
 rs10174400
 rs10182570

Discovery cohort: 
339 DSM-IV 
schizophrenia 
patients and 363 
community control 

WAIS, verbal 
memory, visual 
memory, N-back, 
processing speed, 
card sorting, 

 rs10174400 
(P=9.27×10-10) and 
rs10182570 
(P=2.56×10-9) with 
cognitive ability

Dickinson et 
al. 2014 
(77)
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individuals
Full sibling 
sample: 147 
sibling pairs

working memory 
span, and cognitive 
ability

GWAS
 HEY1

Whole genome ~1 million SNPs 
(Illumina 
HumanHap550v3, 
HumanExon510Sv1
, Human1Mv1, and 
Human1M-Duov3 
BeadChips)

1,269 Mexican 
American 
individuals from 
extended pedigrees 
(75 families; 37% 
males; mean age 
44.78 years) with 
33% life-time 
depression, 18% 
recurrent 
depression, 19% 
anxiety disorders, 
2% hypomania, 
0.5% dysthymia, 
32% alcohol 
disorders, 13% 
substance 
disorders, 0.7% 
schizoaffective 
disorders, and 
0.5% 
schizophrenia

WASI, TMTA, 
TMTB, letter 
fluency, facial 
memory, digit span 
backwards and 
forwards, digit 
symbol memory, 
CVLT learn, CVLT 
delay, category 
fluency, emotion 
recognition, CPT 
false alarms, CPT 
hits, SCAP, CVLT 
semantic

 rs723686 
(chromosome 
8q21.13) with 
working memory 
ability in 
schizophrenia and 
schizophrenia risk 
(P=0.00728)

Knowles et 
al., 2014 
(78)
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GWAS meta-
analysis
 MIR137
 MPC2
 SDCCAG8
 ZNF804A
 PCGEM1
 ZSWIM6
 MAD1L1
 CSMD1
 LSM1
 CNNM2
 NT5C2
 NRGN
 TCF4

Whole genome
 1-21.3
 1q24.2
 1q43
 2q32.1
 2q32.3
 5q12.1
 7p22.3
 8p23.2
 8p11.23
 10q24.32
 10q24.33
 11q24.2
 18q21.2

~900 K SNPs 
(Affymetrix 6.0) 
and ~770 K SNPs 
(Illumina 610 K or 
Illumina 
OmniExpress)

 rs1625579
 rs10489202
 rs6703335
 rs1344706
 rs17662626
 rs7709645
 rs12666575
 rs10503253
 rs16887244
 rs7914558
 rs1191580
 rs12807809
 rs12966547

5446 (primarily 
European-
American) 
schizophrenia 
individuals and 
5830 controls 
(meta-analysis)

MMSE, WAIS-R, 
CANTAB, N-back 
task, WCST, Stroop 
Interference Test, 
Iowa Gambling 
Task, WMS, WISC-
III, CVLT-II, D-
KEFS, RCFT, 
WASI, Alice Heim 
4, Mill Hill 
Vocabulary A and 
B, Cattell and 
Cattell Cultural Fair 
intelligence tests, 
Finnish Defesnse 
Forces Basic Ability 
Test battery, MCCB 
(BACS, TMTA, 
CPT-IP, HVLT-R, 
BVMT-R, NAB, 
MSCEIT)

 No genome-wide 
significance

 Schizophrenia 
patients with lower 
general cognitive 
ability than healthy 
controls

 MAD1L1 rs12666575 
(P=0.032) and 
CNNM2 rs7914558 
(P=0.040) 
schizophrenia risk 
alleles with lower 
cognitive ability

 LSM1 rs16887244 
(P=0.017) and NRGN 
rs12807809 
(P=0.040) 
schizophrenia risk 
allele with higher 
cognitive ability

Lencz et al., 
2014 (79)

GWAS Whole genome 554,225 SNPs 
(Illumina Human 
610-Quad 
BeadChip)

>9600 
schizophrenia 
patients, >8,000 
bipolar disorder 
patients, and 670 
healthy Norwegian 
subjects 
(independent 

WASI, CVLT-II, D-
KEFS, Cued 
Discrimination Task

 Strongest genetic 
enrichments for 
performance in a 
colour-interference 
test and sets 
associated with 
memory learning 
slope

Fernandes et 
al., 2013 
(80)
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sample)

CAM 
Pathway
HLA-DQA1

Whole genome 
enrichment

GWAS
 rs9272105

424 DSM-IV 
psychotic patients 
(schizophrenia, 
schizoaffective 
disorder, bipolar 
disorder, major 
depressive disorder 
with psychotic 
features, or 
psychosis not 
otherwise 
specified)

WTAR, WAIS-III, 
WMS-III, CANTAB 
(Paired Associate 
Learning Task, 
Spatial Working 
Memory Task), 
CPT-IP, SART

 Increased CAM 
pathway polygenic 
risk scores with 
poorer performance 
on measures of 
memory and 
attention

 HLA-DQA1 
rs9272105 (strongest 
signal) with 
attentional control 
but not memory

Hargreaves 
et al., 2013 
(81)

GWAS

 RASGRF2
 PLCG2
 LMO1
 CSMD1
 PRKG1

Whole genome HumanHap660 
Bead Array
 rs401758
 rs7185362
 rs484161
 rs2469383
 rs7898516

98 chronic 
schizophrenia 
patients and 60 
matched controls

Memory cognition 
(details in Chinese)

 RASGRF2 rs401758 
(P=8.03×10-5), 
PLCG2 rs7185362 
(P=4.54×10-5), 
LMO1 rs484161 
(P=9.80×10-7), 
CSMD1 rs2469383 
(P=2.77×10-6), and 
PRKG1 rs7898516 
(P=6.94×10-5)

Xiang et al., 
2012 (82)

* rs number not available.
Abbreviations for genes: serotonin transporter (5HTT), alpha-1-antichymotrypsin (ACT, also known as serine proteinase inhibitor 3 
[SERPINA3]), adenylate cyclase (ADCY8), adrenoceptor alpha 2C (ADRA2C), v-akt murine thymoma viral oncogene homolog 1 
(AKT1), ankyrin 3 (ANK3), ankyrin repeat and kinase domain containing 1 (ANKK1), ATPase, Ca++ transporting, type 2C, member 2 
(ATP2C2), attractin-like 1 (ATRNL1), brain-derived neurotrophic factor (BDNF), chromosome 20 open reading frame 196 
(C20orf196), calcium channel, voltage-dependent, L type, alpha 1C (CACNA1C), cell adhesion molecules (CAM), 
calcium/calmodulin-dependent protein kinase II gamma (CAMK2G), cholinergic receptor, muscarinic 3 (CHRM3), calsyntenin 2 
(CLSTN2), cyclin M2 (CNNM2), 2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNP), cannabinoid receptor 1 (brain) (CNR1), 



catechol-O-methyltransferase (COMT), CREB regulated transcription coactivator 3 (CRTC3), CUB and Sushi multiple domains 1 
(CSMD1), D-amino acid oxidase activator (DAOA), dopamine transporter (DAT, also known as SLC6A3), dopamine beta-hydroxylase 
(DBH), doublecortin domain containing 2 (DCDC2), DIP2 disco-interacting protein 2 homolog C (Drosophila) (DIP2C), disrupted in 
schizophrenia 1 (DISC1), DNA (cytosine-5)-methyltransferase 3 beta (DNMT3B), dopamine D1 receptor (DRD1), dopamine D2 
receptor (DRD2), dopamine D3 receptor (DRD3), dopamine D4 receptor (DRD4), dopamine D5 receptor (DRD5), dystrobrevin 
binding protein 1 (DTNBP1), dyslexia susceptibility 1 candidate 1 (DYX1C1), euchromatic histone-lysine N-methyltransferase 1 
(EHMT1), euchromatic histone-lysine N-methyltransferase 2 (EHMT2), erythropoietin (EPO), erythropoietin receptor (EPOR), v-erb-
b2 avian erythroblastic leukemia viral oncogene homolog 4 (ERBB4), phenylalanyl-tRNA synthetase 2, mitochondrial (FARS2), 
fibroblast growth factor 2 (basic) (FGF2), fibroblast growth factor receptor 1 (FGFR1), FK506 binding protein 5 (FKBP5), gamma-
aminobutyric acid (GABA) A receptor, alpha 6 (GABRA6), glutamate decarboxylase 1 (brain, 67kDa) (GAD1), glycoprotein M6A 
(GPM6A), glutamate receptor, ionotropic, N-methyl-D-aspartate, subunit 2A (GRIN2A), glutamate receptor, ionotropic, N-methyl-D-
aspartate, subunit 2B (GRIN2B), glutamate receptor, metabotropic, 3 (GRM3), glutathione S-transferase-1 (GST-1), glutathione S-
transferase (GST-2), hairy/enhancer-of-split related with YRPW motif 1 (HEY1) , human leukocyte antigen (HLA), serotonin 1A 
receptor (HTR1A), serotonin 2A receptor (HTR2A), LIM domain only 1 (LMO1), leucine rich repeat transmembrane neuronal 1 
(LRRTM1), LSM1 homolog, U6 small nuclear RNA associated (LSM1), MAD1 mitotic arrest deficient-like 1 (MAD1L1), myelin-
associated glycoprotein (MAG), MicroRNA 137 (MIRN137), mitochondrial pyruvate carrier 2 (MPC2), methylenetetrahydrofolate 
reductase (NAD(P)H) (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), 5-methyltetrahydrofolate-
homocysteine methyltransferase reductase (MTRR), N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (NAGPA), 
norepinephrine transporter (NET, also known as SLC6A2), nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor-like 1 (NFKBIL1), nitric oxide synthase 1 (neuronal) (NOS1), neuropeptide Y (NPY), NAD(P)H dehydogenase, quinone 1 
(NQO1), neuregulin 1 (NRG1), neuregulin 3 (NRG3), neurogranin (protein kinase C substrate, RC3) (NRGN), neuritin 1 (NRN1), 5’-
nucleotidase, cytosolic II (NT5C2), oligodendrocyte lineage transcription factor 2 (OLIG2), purinergic receptor P2X, ligand-gated ion 
channel, 7 (P2RX7), prostate-specific transcript (non-protein coding) (PCGEM1), phosphatidylinositol-5-phosphate 4-kinase, type II, 
alpha (PIP4K2A), PBX/knotted 1 homeobox 1 (PKNOX1), phospholipase C, gamma 2 (PLCG2), protein phosphatise 1, regulator 
(inhibitor) subunit 1B (PPP1R1B), PR domain containing 2, with ZNF domain (PRDM2), protein kinase, cAMP-dependent, catalytic, 
gamma (PRKACG), protein kinase C, alpha (PRKCA), protein kinase, cGMP-dependent, type 1 (PRKG1), proline dehydrogenase 
(oxidase) 1 (PRODH), quaking (QKI), Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2), regulator of G-protein 
signalling 2, 24kDa (RGS2), regulator of G-protein signalling 4 (RGS4), roundabout, axon guidance receptor, homolog 1 (Drosophila) 
(ROBO1), sodium channel, voltage-gated, type II, alpha subunit (SCN2A), serologically defined colon cancer antigen 8 (SDCCAG8), 
vesicular monoamine transporter 2 (SLC18A2), zinc finger, spermatogenesis associated 7 (SPATA7), saitohin (STH), synaptosomal-
associated protein 25 (SNAP-25), T-box 1 (TBX1), transcription factor 4 (TCF4), translin-associated factor X (TRAX), SWIM-type 
containing 6 (ZSWIM6).



Abbreviations for tests: American National Adult Reading Test (ANART), Brief Assessment of Cognition in Schizophrenia (BACS), 
Brief Visuospatial Memory Test-Revised (BVMT-R), California Verbal Learning Test (CVLT), Cambridge Automated Test Battery 
(CANTAB), Clinical Dementia Rating Scale (CDR), confidence interval (CI), Controlled Oral Word Association Task (COWAT), 
Continuous Performance Task (CPT), CPT-Degraded Stimulus (CPT-DS), CPT-Identical Pairs (CPT-IP), Delis-Kaplan Executive 
Function System (D-KEFS), Edinburgh Handedness Inventory (EHI), Executive Interview (EXIT), Hopkins Verbal Learning Test-
Revised (HVLT-R), F, A, S letters verbal fluency test (FAS), Intra-Extra Dimensional Set Shifting Task (IED), Inspection Time (IT), 
Letter Number Sequencing (LNS), Operational Criteria Checklist for Psychotic Illness (OPCRIT), NIMH Measurement and Treatment 
Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB), Mini-Mental Status 
Examination (MMSE), Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), Neuropsychological Assessment Battery 
(NAB), National Adult Reading Test-revised (NART), Neurological Evaluation Scale (NES), Positive and Negative Syndrome Scale 
(PANSS), quality control (QC), Rey Auditory Verbal Learning Test (RAVLT), RAVLT-Delayed Word recall (RAVLT-DW), 
Repeatable Battery for Assessment of Neuropsychological Status (RBANS), Rey Complex Figure Test (RCFT), Theory of Mind 
(ToM), Sustained Attention to Response Task (SART), Social Cognitive Assessment Profile (SCAP), Shipley Institute of Living Scale 
(SILS), standard rehabilitation treatment (SRT), Touchstone Applied Science Associates, Inc. (TASA), Spanish version of the 
California Verbal Learning Test (TAVEC), Trail Making Test (TMT), Verbaler Lern- and Merkfähigkeitstest (VLMT), Weschsler 
Adult Intelligence Scale (WAIS), Wechsler Adult Intelligence Scale-Revised (WAIS-R), Wechsler Abbreviated Scale of Intelligence 
(WASI), Wechsler Memory Scale (WMS), Wechsler Intelligence Scale for Children (WISC), WMS-Revised (WMS-R), Wechsler 
Test of Adult Reading (WTAR), Wisconsin Card Sorting Test (WCST).
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HIGHLIGHTS:

 Schizophrenia patients present with impaired cognitive functions.

 Evidence suggests strong genetic etiology for cognitive deficits in schizophrenia.

 Neurotransmitter system genes showed effect on cognitive deficits in schizophrenia.

 Limited evidence suggests the dopaminergic system genes with inconsistent findings.

 Larger samples are required to examine genetic risk of cognition in schizophrenia.




