
    

 - 1 - 

 

Near-Field Electrospinning Patterning Polycaprolactone and 

Polycaprolactone/ Collagen Interconnected Fiber Membrane 

 

Rox Middleton1, Xia Li2, Jenny Shepherd3, Zhaoying Li2, Wenyu Wang2, Serena Best3, Ruth 

Cameron3, and Yan Yan Shery Huang2* 

 

1. Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW 

2. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 

1PZ, UK 

3. Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles 

Babbage Rd, Cambridge CB3 0FS 

* Corresponding author: yysh2@cam.ac.uk 

 

Solution based near-field electrospinning is employed to construct polymeric network 

membranes, made of orderly-arranged and interconnected fibres. The narrow tip-to-nozzle 

separation of the direct-writing process leads to solvent enriched fibres being deposited on the 

substrate, despite the use of a low boiling point solvent. This results in fibres with low cross-

sectional aspect ratio (flattened appearance), but providing a unique opportunity to produce 

interconnected fibre junctions through in situ, localised solvent etching by subsequent fibre 

overlays. Orthogonal networks of polycaprolactone (PCL) fibres, or PCL/collagen composite 

fibres, are fabricated, and then characterised by microscopy and spectroscopy techniques. 

This study presents a direct approach to strengthen inter-fibre junctions, and further the 

feasibility to interweave and interconnect fibres of different properties, leading to networked 

membranes with potentially tailorable functions for tissue engineering applications and 

beyond. 
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FIGURE FOR ToC_ABSTRACT 

  

 

Orderly and interconnected fiber arrays are incorporated into thin membranes using near-field 

electrospinning. Orthogonal networks of polycaprolactone fiber membranes demonstrate 

superior mechanical properties arisen from the strong fiber junctions. Interconnecting 

polycaprolactone and polycaprolactone/collagen fibers is also demonstrated. This patterning 

approach may find uses in creating mechanically robust thin membrane, tailoring structural and 

functional properties for tissue engineering scaffolds and beyond. 
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1 Introduction 

 

The ability to structure materials from the microscopic to the macroscopic scale is an 

important facet in harnessing diverse functionalities and applications of polymeric materials

1,2,3. A number of methods have been investigated to form polymeric scaffolds from fibre 

structures, such as far-field electrospinning4, centrifugal spinning5, electro blow spinning6 and 

pressurised gyration7. Despite their applications from filtration membranes to tissue 

engineering scaffolds6,8, the fibrous membranes produced by these methods are commonly 

limited by the ability to produce orderly patterns9,10,11. A further challenge associated with 

these existing techniques is the inability to create non-woven fabrics unless post deposition 

treatment is applied to obtain interconnected fibre junctions12,13,14,15. Recent progress in 

precision electrospinning techniques, such as near-field electrospinning (NFES)16,17 

electrohydrodynamic writing18, and low-voltage electrospinning patterning (LEP)19, has 

extended the fibre patterning capability, approaching that of a direct-writing fashion. Since 

these techniques rely on the close spineret-to-collector distance to obtain a stable jet, solvent 

evaporation may be incomplete depending on various parameters, including the target to 

collector distance20. For example, in the conditions where solvents are allowed to completely 

evaporate, a circular fibre cross-section is resulted21,22. In contrast, when residual solvent is 

involved, surface properties of the collecting substrate will determine the fibre cross-sectional 

profile upon drying, and may further impart strong attachment between the fibres and the 

substrate23,24.  

In this study, harnessing the potential of NFES in producing as-deposited solvent enriched 

fibres, we create biopolymer membranes of orthorgonal line patterns held by strong fibre 

interconnecting junctions which were formed in situ during the patterning process. By tuning 

the fibre-writing path, integrated membranes composing of polycaprolactone (PCL, a 

biodegradable polymer), or polycaprolactone/ collagen composite (PCL/col, with added 

collagen for potential bioactivity) fibres were demonstrated. Inter-changing the above two 

electrospinning solutions for patterning further allows us to connect and integrate PCL and 

PCL/col fibres into the same membrane structure. By improving the mechanical robustness of 

ultra-thin membranes, this capability may open up future uses in coupling and tailoring 

mechanical performance and biological functions for tissue engineering scaffolds. 
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2 Experimental Section  

2.1 Solution preparation 

To construct PCL fiber patterns, 1,1,1,3,3,3-Hexafluoro-2-propanol (HFP, from Sigma 

Aldrich) was used to dissolve 4 wt% to 8 wt% PCL (Mn=80,000 g/mol, Sigma Aldrich) to 

create the electrospinning solutions. Tetrahydrofuran (THF, Sigma Aldrich) was also tried as 

an alternative solvent, though less satisfactory patterns were formed (see Supporting 

Information, Figure S1).  

For the PCL/col fiber patterns, a two-step solution preparation process was adapted. First, 

type I collagen from bovine Achilles tendon was immersed at 1wt% in HFP. After being 

swollen in HFP for 24 hours, the mixture was sonicated for 5 hours with a sonicator probe. 

The solution was viscous and of pale yellow color, with very few solids remaining. Any 

evaporated HFP during the sonication process was replaced in the same quantity. 

Subsequently, the 1wt% collagen-HFP solution was mixed with an 8wt% PCL-HFP solution 

at a 1:1 volume ratio. Hence, this yielded a 4.5wt% of PCL/col in HFP solution, where the 

PCL to collagen weight ratio is 8:1.  

 

2.2 Near field electrospinning 

Figure 1 (a) shows a schematic of the near-field electrospinning (NFES) setup and also the 

patterning procedure. The setup included a syringe pump (World Precision Instruments, AL-

1000), a 1 ml syringe (BD Plastipak), a needle tip (BD Microlance, 19G), a high voltage 

power supply (Stanford Research Systems, INC., PS350/5000V-25W), an X-Y motion stage 

(PI micos, LMS-60; set at 100mm/s), and a Z motion stage (Thorlabs, L490MZ/M). The stage 

movement path was controlled by a Labview program written in house. The syringe needle 

was ground blunt and its outer diameter was 1.08 mm. The positive terminal of the high 

voltage power supply was attached to the syringe needle, and the collector was grounded. 

Silicon wafers (bare, or with a water soluble coating) were used as substrates for fiber 

deposition. The Z stage was adjusted so that the distance between the syringe tip and the 

substrate surface was ~1 mm. Some adjustments to the distance was required depending on 

the solutions, in order to avoid electrical arching. In a typical experiment, a voltage of 1000 V 

was applied between the spinneret and the deposition collector. The flow rate was adjusted to 

study its effects on pattern formation, as a result also to tune the fiber width. All fiber 

production was carried out at room temperatures of ~20°C, at humidity of 60-70%. A video 

showing the process of the NFES is included in the Supporting Information.  
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2.3 Tensile testing 

For tensile testing, fibers were deposited onto silicon wafer substrates pre-coated with a water 

soluble coating (poly(4-styrenesulfonic acid), PSS) to allow membrane detachment. PSS 

solution (Mw ~75,000, 18 wt. % in water, Sigma Aldrich) was first diluted and thoroughly 

mixed with ethanol with a 1:5 weight ratio. A thin PSS coating on silicon wafer was formed 

by a spin-coater (Electronic Micro Systems Spin Coater Model 4000) with 100 rpm for 5 

seconds, then 2000 rpm for 2 minutes. This PSS coated silicon wafer was then used as a 

substrate to collect the fibre membrane. To form robust thin membranes for substrate 

detachment, and mechanical testing, NFES with higher solution flow rates (~500 µL/min), 

which produces thicker fiber lines were adapted. To detach the thin membrane post 

deposition, the construct was merged into water for the dissolution of the PSS sacrificial 

layer. This process released the fibre membrane on to the water surface, which was then 

transferred to a manifold (see Supporting Information, Figure S2). Mechanical testing was 

carried out on a Hounsfield 5kN uniaxial extension instrument, at an extension speed of 1 

mm/min. It is to note that samples need to be lifted and tested within 1 day of production, 

otherwise the bonding between the PSS sacrificial coating and the deposited membrane will 

be too strong to prevent the membrane release.  

 

2.4 FTIR 

Bruker FT-IR spectroscopy (reflection mode) was used to measure the solid samples. After 

collecting a background scan, the powder sample was placed in the spectroscopy. The 

absorbance was measured over 450 – 4000 cm-1. The spectrum was averaged over 50 scans. A 

new background scan was performed for each new sample. 

 

2.5 Microscopy 

To visualize the presence of the collagen, PCL/col composites were stained using a 0.1% w/v 

aqueous solution of Acriflavine (Fisher UK). Acriflavine shows affinity to collagen and has 

been previously applied in the imaging of collagen structures25,26. To perform the 

characterization, samples were floated from the wafer and placed on a glass slide. A few 

drops of the staining solution were dropped onto the sample using a Pasteur pipette and left 

for 5 minutes. Careful rinsing was then carried out with deionized water. Imaging was carried 

out using a Leica SP2 confocal laser scanning microscope with excitation at 488 nm. For 

scanning electron microscopy (SEM) imaging of samples, a Philips XL30 sFEGSEM was 

used. Diameter measurements were performed on optical images, which were determined 
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manually using a line measurement tool in ImageJ. Histograms of the diameter distributions 

were shown in Supporting Information, Figure S3. It is noted that the diameter distributions 

do not exhibit a Gaussian profile, but an average and a standard deviation are reported for the 

fibre width nonetheless.     

 

3 Results and Discussion 

3.1 Patterning parameters 

A number of processing parameters, including solvent choice, polymer concentration, and flow 

rates, were experimented to optimize fibre patterning during NFES. As shown in Figure 1 and 

in Figure S1 (Supporting Information), the use of HFP successfully produced uniform layered 

structures in parallel arrays, or orthogonal lattice. In contrast, THF was shown not to allow 

regular fibre formation, and produced beaded and broken fibres. Although both HFP and THF 

are hygroscopic solvents and are good solvents of PCL, HFP (boiling point of 59°C) was 

expected to undergo more rapid solvent evaporation than THF (boiling point of 66°C), 

depositing fibres with less residual solvents on the substrate. This may explain the fact that at 

similar flow rates, a higher polymer content needs to be dissolved in THF than HFP to minimise 

the spreading of the deposited line patterns. Moreover, beaded fibre morphology was observed 

in THF even at >10wt% polymer concentration. Other factors influencing fibre uniformity may 

be a result of the intrinsic solution properties such as solvent polarity, which should warrant 

additional systematic studies as a comparison to far-field electrospinning in the future.   

For solutions containing pure PCL in HFP, uniform fibres were produced where the fibre line 

width was found to depend on the polymer concentration and the flow rate (when voltage and 

tip-to-substrate distance were kept constant). With a line speed of 100 mm/s, the writing of a 

single fibre layer on a 2 inch silicon wafer is in the order of minutes depending on the writing 

line density (see supporting video). A satisfactory patterning condition was found using 4 wt% 

PCL in HFP with varied flow rates to tune the fibre width. At a flow rate of ~200 µL/hr, a fibre 

width distribution of ~2 to ~20 µm (with mean 6.3±4.5 µm) was resulted; while at a high flow 

rate of ~2000 µL/hr, a fibre width distribution of ~90 to ~200 µm (with mean 135.9±40.5 µm) 

was resulted (see Figure 1(b)). Based on the above solution properties, composite fibres with 

PCL and collagen were further prepared (see Experimental Section). A solution combining 4 

wt% PCL and 0.5 wt% collagen in HFP was used for final NFES. Such a mixed solution 

typically resulted in less regular fibre patterns (mean 7.5±4.8 µm) than the pure PCL 

counterpart. Thin fibres were also observed which underwent selected modes of bending 

instability, as shown in Figure 1(c).    
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3.2 Interconnected fibre junctions 

Thin membranes were created with fibres patterned in layers of x-aligned and y-aligned fibres 

alternatively. For the current setup, since the exchange in fibre patterning between subsequent 

layers are done by rotating the silicon wafer by 90°C, the alignment between subsequent layers 

are not completely regular. It is expected that the fibre regularity can be further improved by 

incorporating an automatic process. Atomic force microscope (AFM) and scanning electron 

microscope (SEM) images of PCL grid patterns were shown in Figure 2 (a-c). These images 

show that the PCL fibres interfacing the substrate are flat bands with heights of below 0.5 µm, 

and with a cross-sectional aspect ratio of less than 1/10. Since fibres with almost complete 

solvent evaporation should exhibit an approximate circular fibre cross-section (with an aspect 

ratio of 1), the flat morphology of the PCL fibres strongly suggests that a significant amount of 

residual solvents are present post NFES deposition under our operating conditions. This is 

despite of the fact that HFP, a very low boiling solvent is used in comparison to other common 

solvents used for electrospinning PCL in the far-field regime27. Further evidence for the 

incomplete solvent evaporation was shown by the interconnected nature of the surface over the 

crossing horizontal and vertical fibres. Closer examination illustrates that crystalline patterns 

on the surface are extended over the joint (shown by both AFM and SEM). Finally, insignificant 

height difference was observed in the cross-sectional profile of multiple adjacent fibres.  

 

3.3 PCL/collagen composite fibres 

Figure 2(d) shows a typical SEM image of a composite membrane, which demonstrates similar 

network morphology as the pure PCL membrane, demonstrating interconnected junctions. 

There were however black spots, apparent pits in the fibres that had not been seen on the pure 

PCL sample. Fluorescence imaging and FTIR were used to characterise the presence of collagen 

in PCL/col composite membranes post NFES.  FTIR in Figure S4 (Supporting Information) 

shows the presence of amide I and amide II peaks in the PCL/col composite membranes. The 

typical PCL absorption bands (carbonyl stretching at 1724 cm-1 and asymmetric C-O-C 

stretching at 1238 cm-1) were observed in both pure PCL and PCL/col composite membranes. 

The positions of amide I and II peaks show slight shifts in PCL/col composite membrane 

comparing to the reference collagen I powder. The amide I peak shifts from 1627 cm-1 to 1653 

cm-1 and the amide II peak shifts from 1526 cm-1 to 1545 cm-1. Despite the slight change in 

peak positions, both amide I and II peaks are within the theoretical range (1800 – 1600 cm-1 for 

amide I and 1450 – 1550 cm-1 for amide II). These signals also compared well to previous far-
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field electrospinning work28. Figure 2(e) illustrates spatial distribution of collagen contents by 

confocal microscopy for the PCL/col samples underwent acriflavine staining. Homogenous 

fluorescence was shown throughout the membrane structure, which suggests the absence of 

unmixed collagen clusters. To further prove that the fluorescence is specific to collagen, 

staining was performed on a membrane structure formed by orthogonally aligned fibres of pure 

PCL and PCL/col composites. Figure 2(f) indicates more pronounced fluorescence given rise 

by the PCL/col composite fibres than the PCL counterpart, confirming successful collagen 

inclusion post membrane release from the silicon water.  

 

3.4 Mechanical properties of orthorgonally aligned, interconnected fibre membranes  

The direct-writing attribute of NFES enables facile design of the fibre packing density (i.e. 

number of lines per unit width in the x-y directions) within the membrane. For mechanical 

testing, PCL membranes were constructed with 18 overlays (9 layers in each x and y directions), 

with each layer having a fibre density of 6 lines/mm. With a NFES condition leading to fibre 

widths of around 24 µm, this means that there are very few vertically overlapping fibres 

following shifted deposition (i.e. 9×24×6=1296 µm vs. 1 mm). It was found that post-membrane 

release using the method shown in Figure 3(a), some fibres were broken during the process 

(example see Supporting Information). Nonetheless, membranes can be mounted in manifolds 

and characterised by tensile testing, where extension is applied in the direction along one of the 

fibre direction. Reproducible behaviours were observed for the PCL membranes produced 

under the same NFES parameters (see Figure S5, Supporting Information). Figure 3(b) grey 

curve, shows a typical plot of line force (force per unit width of membrane) versus sample 

strain. We observe seemingly three phases of mechanical deformation, with phase I being the 

elastic deformation, phase II the yielding process with maximum load achieved, and phase III 

the step-wise fibre breakage. During phase III, one could visualise fibres breaking sequentially 

from the outer edge inwards during the stretching process, supporting the mechanical data 

(highlighted by arrow labels in Figure 3(b)). Typical failure strains achieved under a 1 mm/min 

extension rate were between 400% and 600%, indicating strong interconnected junctions, and 

good fibre continuity.  

With the prescribed network geometry, we can start to compare how the NFES membrane 

perform with respect to the theoretically expected membrane performance. This could act as an 

indicator to whether the patterning approach can potentially lead to designable membranes 

made to specifications. At a first approximation, one can assume that in the initial deformation 

stages (phase I and II), tensile loads are mostly bore by the aligned fibre direction. Taking an 
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average fibre dimension of 24 µm in width and 0.5 µm in height, and a cumulated fibre number 

of 54 lines per mm (6 lines/mm for 9 overlays in one NFES direction), the cumulated area per 

mm for the fabricated membrane is estimated to be 6.5×10-10 m2/mm. With known Young’s 

modulus (~300 MPa) and ultimate tensile stress (~14 MPa) of PCL of the same molecular 

weight29, the NFES PCL membrane fabricated here would have an estimated stiffness of ~0.2 

N/mm, and a maximum line force of ~0.01 N/mm. These values fall in the similar range as the 

experimental results (stiffness~0.06 N/mm, maximum line force~0.008 N/mm). The lower 

values of the experimental results can be explained by the fact that some fibres were damaged 

during the membrane release and transfer process; and the relaxed membrane structure would 

result in an apparent lower stiffness value. Nonetheless, results from the tensile experiments 

suggests that, designable and prescribed membrane properties can potentially be fabricated 

using the PCL-HFP solution system.  

For the membranes formed by the PCL/col composite fibres, the samples proved to be 

significantly more fragile than the pure PCL samples. An example tensile behaviour of the 

PCL/col sample is shown in Figure 3(b) blue curve, as a comparison to the PCL sample. The 

poorer tensile performance could be a consequence of the pitted structure of PCL/col fibres, 

which further make them prone to breakage during the membrane release process. Another 

possible explanation could be that in our study, collagen crosslinking was not performed post 

fabrication. Hence, during the membrane release process, direct water contact may have weaken 

the structure of the PCL/col fibres which contains weakly water soluble collagen contents. 

Hence, the extent of fibre damage during the membrane release process is suggested to be the 

dominating factor controlling the mechanical performance. Depending on the applications, 

post-fabrication cross-linking of PCL/col fibres could be considered in the future to improve 

the mechanical properties. Nonetheless, as shown in the detailed view of the force-extension 

data in Figure 3(c), the mechanical behaviour of the membrane reflects those of the remaining 

intact fibres (shown by the camera images A-F).  The fibre junctions interconnect orthogonally 

placed fibres, and can withstand substantial stretching (see images D & E). One can again 

observe stepwise decrease in the force level, which corresponds to distinct breakage of 

individually aligned fibres (see images D to F).  

 

4 Conclusions and outlook 

PCL and PCL/collagen fibres are successfully produced by NFES. Studying various parameters 

associated with the NFES process lead us to choose a 4 wt% polymer in HFP solution to create 

interconnected fibre networks. FTIR and confocal imaging of the PCL/collagen fibre samples 
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demonstrate the successful incorporation of collagen into the fibre structure; further, 

interconnected junctions are preserved in the composite fibre network. Tensile test showed that 

the PCL thin membrane exhibit good mechanical properties, which also underpins the potential 

of using NFES to structure interconnected fibre networks with tailored mechanical response. 

Although the biofunctionality of the PCL fibres can be potentially improved with the 

incorporation of collagen, our result show that the resulted mechanical property is significantly 

compromised. A potential avenue to overcome this would be to interweave and interconnect 

pure PCL and PCL/collagen fibres with appropriately designed overlays, or to impart collagen 

crosslinking post deposition. In summary, our study presents the feasibility to potentially mix 

and match desirable characteristics of different fibre types within thin network membranes for 

a wide range of applications.  
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Figures 

  

Figure 1. (a) Scheme of the NFES process for fabricating thin membrane structures. (b) PCL 

fibres produced with solutions of 4 wt% polymer in HFP, where varied widths can be tuned 

by solution flow rates. (c) PCL/col composite fibres produced with a combined 4 wt% PCL 

and 0.5 wt% collagen solution.  
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Figure 2. (a-c) Microstructures of PCL fibre network membrane imaged by SEM (a & b), and 

AFM (c). (d & e) Microstructures of PCL/col composite fibre network membrane imaged by 

SEM (d) and confocal microscopy (e), where the fluorescence is given rise by the acriflavine 

staining. (f) Confocal image of cross lattices of pure PCL fibres and composite PCL/col 

fibres.  
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Figure 3. (a) Scheme of the membrane release process for producing samples for mechanical 

testing. (b) Line force versus apparent strain plots for a PCL fibre network (grey), where three 

deformation phases are identified, with arrows highlighting step-wise drop in force level in 

phase III. The deformation plot for a PCL/col network (blue) is also included as a comparison. 

(c) Zoom-in plot of the PCL/col composite network, with labels A-F which correspond the 

stages of deformation to the camera images (A-F).  
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